Two electrons are better than one... In the Yb lab we produce Bose-Einstein condensates and degenerate Fermi gases of ytterbium atoms. These atoms offer metastable electronic states, ultranarrow clock transitions, multicomponent fermions with SU(N) interactions: a whole range of experimental tools that allow new possibilities for quantum simulation and quantum information processing.

Measuring Hall voltage and resistance for interacting fermions

The Hall effect is a cornerstone of modern science, spanning applications from cutting-edge technologies to the discovery of exotic topological phases of matter. In solid-state systems, it manifests as a voltage perpendicular to current flow in a magnetic field, giving rise to transverse Hall resistance. Yet, its behavior in quantum systems remains elusive. Using neutral-atom quantum simulators, we introduce the first direct measurement of Hall voltage and resistance in a non-electron-based system. This work links quantum simulations to real-world experiments, unlocking new avenues to explore the Hall effect in tunable, strongly correlated systems.

T.-W. Zhou et al.
Measuring Hall voltage and Hall resistance in an atom-based quantum simulator
arXiv:2411.09744 (2024)

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.