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Introduction

In 1958, C. H. Townes and A. L. Schawlow submitted a paper about their
theoretical calculations and considerations on a device which was able to
emit coherent light through a process of optical amplification based on the
stimulated emission of electromagnetic radiation, the laser. Lasers became
rapidly a fundamental tool in many fields of the scientific research, allowing
to achieve extraordinary advances in science as well as in technology.

Initially lasers were employed to probe atomic and molecular structures,
but in the 1970s it was realized that they could be used as powerful tools
to control and manipulate the motion of the atoms. Immediately these
possibilities were investigated and new results were obtained beyond the
spectroscopy, as the invention of laser cooling : through lasers, atoms can
be slowed and cooled to very low temperatures, not accessible with the
traditional cryogenic techniques. The realization of ultra-cold atomic gases
has paved the way to unimaginable developments, such as Bose-Einstein
condensates, quantum degenerate Fermi gases, stable and accurate atomic
clocks and interferometers with matter waves, just to cite the most remarkable
[16].

Moreover, it was discovered that laser light can be used to confine atoms
in small potential traps. Periodical array of these traps can be arranged,
creating optical lattices, whose applications in atomic physics are various. For
instance, ultra-cold atoms trapped in such potentials closely resemble systems
in condensed matter physics. From late 1970s, optical lattice potentials have
been implemented in several ultra-cold atoms experiments [39]. Following,
some applications of optical periodical structures and lattices in the atomic
physics field are presented.

Atom diffraction As a light beam is diffracted by a grating, as a collimated
beam of cooled atoms can be separated in several beams with quantized
transverse momentum p⊥ = 2nℏk (where n is an integer number and k the
wave-vector of the standing-wave electric field) by light periodical structures.
(Gould, Ruff, and Pritchard, 1896 [31], Arimondo, Lev, and Oka, 1979 [4],
Grinchuk, Kuzin, Nagaeva, et al., 1981 [34], Moskowitz et al., 1983 [57] and
Martin et al., 1988 [54]).

iii



iv INTRODUCTION

Atom interferometry On the basis of the atomic diffraction, atomic
interferometers were built through the optical splitting of an initial atomic
beam into two different ones, recombined at a later stage. (Rasel, Oberthaler,
Batelaan, et al., 1995 [62], Giltner, McGowan, and Lee, 1995 [29] and Adams,
Sigel, and Mlynek, 1994 [1] for a review).

Atom trapping Evidences of quantized motion of particles in periodical
structures were observed in laser-cooled atoms in optical standing waves.
(Verkerk et al., 1992 [65] and Jessen et al., 1992 [45]). In other experiments,
atoms were cooled to very low temperatures (µK regime) in optical lattices.
(Grynberg et al., 1993 [35], Hemmerich and Hänsch, 1993 [37] and Hemmerich
et al., 1995 [38]). Thanks to the development of the velocity-selective coherent

population trapping, temperatures below the sub-recoil limit have been reached
with the technique of Raman cooling. (Aspect et al., 1988 [6] and Kasevich
and Chu, 1992 [46]).

Solid-state models demonstration and quantum computation Re-
cently the innovative techniques in the field of ultra-cold atoms have allowed
for fine control and manipulation of the system hamiltonians in order to
simulate the complex condensed-matter systems. As foreseen by R. Feynman
(Feynman, 1982 [23]), the final aim for this kind of experiments would be
the realization of quantum simulators. They are laboratory systems in which
theories or models of great interest in modern physics, hardly solvable with
classical computational methods, can be implemented and studied by measur-
ing directly the properties of the system quantum states. (Lloyd, 1996 [53],
while for a review of this approach, see Lewenstein, Sanpera, and Ahufinger,
2012 [51]). For example, with potential arrangements such as that provided
by optical lattices, trapped atoms can simulate the behaviour of electrons
in a perfectly periodical ions potential, revealing the energy band structure
and demonstrating the existence of Bloch oscillations, first observed by C.
Salomon. (Dahan et al., 1996 [17]).
With the possibility of creating a Bose-Einstein condensate (Anderson et al.,
1995 [3]) of neutral atoms using evaporation cooling techniques (first achieved
successfully by Masuhara et al., 1988 [55]), a new and different approach
was introduced. A Bose-Einstein condensate (BEC) can be adiabatically
transferred into an optical lattice without any further cooling process. This
provides the starting point to study and investigate other solid-state physics
systems, as tunnelling processes, Josephson dynamics, superfluidity and Bloch
oscillations (Anderson and Kasevich, 1998 [2], Cataliotti et al., 2001 [13],
Burger et al., 2001 [10] and Morsch et al., 2001 [56]).

Measurements of fundamental constants With the aid of moving op-
tical lattices, fundamental physics constants – like the fine-structure constant
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α, the Rydberg constant R∞ or the ratio h/m for several atoms – can be
determined with remarkably small uncertainties (for example, Bradley et al.,
1999 [9] and Cladé, Mirandes, Cadoret, et al., 2006 [15]).

Optical lattices are usually created by a pair of counter-propagating laser
beams, i. e. exploiting their interference as explained in details in Sec. 1.3.
Nevertheless this method can hardly create dynamic or adjustable patterns,
because their characteristics are mainly determined by the beams geometry
which may not be easily modifiable, in most cases. Moreover, only certain
kinds of patterns – the ones based on the interference profiles – can be obtained,
so there is no freedom to choose and create any other figure. Furthermore, in
spite of the possibilities provided by using superlattice techniques [27], the
dynamic control of such patterns is quite limited.

The main goal of the present master thesis work is to investigate the
possibility of realizing with a Digital Micromirror Device arbitrary, dynamic
and easily interchangeable optical patterns to be employed in experiments of
atomic physics.

Invented by L. Hornbeck and W. E. Nelson of Texas Instruments in
1987 [47], a Digital Micromirror Device (DMD) is a semiconductor-based
"light switch" array, core of Digital Light Processing (DLP) projection tech-
nology [41]. This device is used in a variety of display applications, from
traditional static to interactive displays and also in non-traditional applica-
tions including medical, security and industrial uses. Mainly, DLP technology
is employed in front projectors and rear projection television; furthermore,
the most part of digital cinema projectors are based on this technology [47].
Recently, several new applications for the DMD have been explored, like
digital photofinishing, volumetric display, lithography, holography and data
storage, microscopy and medical purposes, just to cite a few [19]. In this
regard, in Zhu et al., 2012 [66], a DMD has been used to create a single-photon
patterned optical stimulation of a zebrafish’s neurons.

In general, the DMD is a kind of SLM, Spatial Light Modulator, a wider
family of tools which impose some form, completely arbitrary, of spatially
varying modulation on a incident beam of light. Another types of SLM are,
for example, the Liquid Crystal on Silicon devices (LCoS). These devices
present some notable differences and extra requirements with respect to
the DMD. First of all, LCoS devices manipulate the Fourier Transform of
the image to be created, while DMDs operate on the real image, directly
modulating the electric field amplitude without involving any phase change.
This allows an easier and more immediate implementation and use. Moreover,
LCoS devices have a low damage threshold and a slower refresh rate between
the projected patterns compared with DMDs [7]. For these reasons, in the
present work a DMD has been preferred over a LCoS device.
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Due to their ability to rapidly refresh the arbitrary patterns displayed, the
Digital Micromirror Devices have already been implemented in atomic physics
experiments. For example, in Ha et al., 2015 [36], the DMD is used in order
to perform Bragg spectroscopy in order to probe a roton-maxon excitation
spectrum in an interacting Bose-Einstein condensate in a 1-D shaken optical
lattice, created by a couple of counter-propagating laser beams. Instead, in
Fukuhara et al., 2013 [26], a DMD is implemented to achieve a simultaneous
multiple-site addressing on arrays of parallel 1-D Mott insulators created
by rubidium-87 atoms trapped in periodical optical potentials. In Bellem,
2011 [7], the DMD is exploited to perform multi-site addressing and study
single-spin impurity dynamics.

With this in mind, this master thesis work examines the possibility of ma-
nipulating the intensity profile of a laser beam through a Digital Micromirror
Device in order to achieve, both static and dynamic, arbitrary optical poten-
tials to be projected on ultra-cold atoms. Such an opportunity would allow
for several different implementations in atomic physics experiments. First of
all, "non-gaussian" static potentials could be created: this means that the
original intensity profile – usually of gaussian shape – of a laser beam could
be corrected. Moreover, one- and two-dimensional arrangements of optical
trapping potentials could be achieved (without the superimposition of the
previous laser beam intensity profile shape), opening the door to interesting
utilizations in lattice physics. In the end, a dynamic control of arbitrary
moving patterns would provide a powerful tool for directly manipulating
the projected optical potentials, allowing for a new series of applications in
cutting-edge experimental physics fields, as quantum simulation and quantum
computation.

Outline

In the first chapter, the main features of Ytterbium atoms are reported
along with the theoretical principles of the dipole forces arising from the
interaction between the atoms and an optical radiation and the standard
methods for realizing optical lattices. The theoretical framework of the Mott
insulator phase is presented too.

The second chapter is devoted to the main characteristics of the Digital
Micromirror Device model used during this work, the optical set-up imple-
mented in order to test the device, the experimental procedure for realizing
a spatial filtering of the images, the diffraction limits of the experimental
set-up and some considerations about the possibility of creating trapping
lattices for Yb atoms with the DMD.

Dithering processes and the digitization algorithms applied to the patterns
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in order to obtain one-bit images to be projected by the DMD are explained
in the third chapter.

In the fourth chapter, the control program designed during this work,
"DMD Easy", is described along with the feedback process, developed in
order to improve the images quality and obtain a better overlap with the
target patterns projected by the DMD.

Chapter five shows some experimental images of some static patterns (Flat-
Tops and lattices among the others) projected by the DMD and corrected by
the feedback mechanism. Their quantitative characterization is given as well.

In the sixth chapter, some applications of dynamic patterns projected
by the DMD, as the stimulated Raman effect and the Bragg scattering,
are discussed. The possibility of realizing quantum registers and gates are
investigated too. Eventually, experimental evidences of the Talbot effect are
reported.





Chapter 1

Theoretical background

The work presented in this master thesis has been developed as a part
of a wider experiment running at LENS (Florence), whose goal, among
others, is to implement quantum computation techniques with ultra-cold
neutral Ytterbium atoms. A "quantum computer" is a system able to
perform operations on data exploiting quantum-mechanical effects such as
state superposition and entanglement [58]. The realization of a quantum
computer requests a series of requirements, as the possibility to trap atoms
and the existence of two stable states characterized by a long coherence,
which can be satisfied by the peculiar features of Ytterbium, as explained
in the first section of this chapter. Moreover, atoms needs to be confined in
well-defined space arrangements without spoiling the states coherence. In
order to perform this task, optical dipole potential induced by an external
electromagnetic radiation – as described in the second section – is exploited
to create "optical lattices" via a standard technique presented in the third
section of this chapter. Provided some conditions – reported in the fourth
section – are satisfied, single Ytterbium atoms can be trapped in single sites
of such periodical potentials, realizing a prime candidate system for quantum
information and computation purposes.

1.1 Ytterbium

Ytterbium is a rare-earth metal having atomic number 70, atomic weight
173.054 amu and several stable bosonic and fermionic isotopes. Its electronic
configuration is [Xe] 4f14 6s2 with two electrons in the most external orbital,
so its energetic levels structure – presented in Fig. 1.1 – is very similar to
the Helium and the alkaline-earth elements ones, like Calcium. Its levels
scheme can be divided into two branches, singlet and triplet, having total spin
angular momenta S = 0 and S = 1, respectively, as shown in the Grotrian
diagram along with some relevant transitions [11] following explained.

•
1S0 → 1P1 (398.9 nm, Γ = 2π · 28.9 MHz) It is an allowed transition

1



1. Theoretical background

Figure 1.1: Ytterbium Grotrian diagram.

in the electric dipole approximation, characterized by a short mean
lifetime (5.5 ns). In the experiments, this transition is employed in a
first cooling step of the atoms with the aid of a Zeeman Slower [59].

•
1S0 → 3P1 (556 nm, Γ = 2π · 182 kHz) It is an inter-combination tran-
sition because it violates the ∆S = 0 selection rule of spin conservation,
which is carefully respected in the LS coupling approximation, i. e. if
the spin-orbit term in the atomic hamiltonian is negligible with respect
to the Coulomb repulsion one. However, this condition is no more
verified if the atomic number is much larger than 30: yet in this case,
the two terms have comparable magnitude, so S can not be considered
a good quantum number any more. Thus, the selection rule is not so
rigorous as in the other case and the transition becomes weakly allowed.
For Ytterbium atoms, the mean lifetime of the 3P1 state is 850 ns. This
transition is used for trapping the atoms in a magneto-optical trap
(MOT).

•
1S0 → 3P0 (578, 42 nm, Γ ≃ 2π 10 mHz) It is a doubly forbidden
transition because it violates both the ∆S = 0 selection rule – as the
previous one – and the total orbital angular momentum (J) conservation,
which would not allow the transition Ji = 0→ Jf = 0. Still, in fermionic
isotopes of Ytterbium, this transition is very weakly allowed due to
the level mixing with upper manifolds: actually its mean lifetime has
been measured to be about 20 s, so it can be considered stable within

2



1.1. Ytterbium

the experimental time-scale. The fermionic isotopes actually own an
hyperfine structure which makes J not a good quantum number any
more and, consequently, the total angular momentum conservation a
"less prohibitive" rule. The bosonic isotopes have not any hyperfine
structure because their nuclear spin I vanishes. Nevertheless, applying
a constant magnetic field, it is possible to mix the 3P0 state with the
3P1 one, making the former accessible as well from the 1S0 ground
state. In these cases, the transition to the 3P0 state would be slightly
allowed, having a linewidth which depends on the external magnetic
field magnitude and on the exciting radiation intensity. This transition
is generally known as clock transition. (Poli et al., 2008 [61] and Lemke
et al., 2009 [50]).

Ytterbium, as the other alkaline-earth-like and alkaline-earth atomic
species, is an interesting candidate to address challenges in quantum com-
puting (see Sec. 6.2) with neutral atoms due to its peculiar characteristics,
mainly arising from the singlet-triplet levels configuration and the richness of
the levels structure [18], described following.

First of all, Ytterbium has an energy structure particularly stable against
the external magnetic perturbations which would easily shift the energy levels
bringing undesired decoherence into the system.

The hamiltonian which describes the interaction between the atomic
system and a magnetic field B is

H = −µ̂ ·B (1.1)

where the magnetic dipole momentum operator µ̂ is given by

µ̂ = −µB
ℏ

L̂− gS
µB
ℏ

Ŝ+ gI
µN
ℏ

Î (1.2)

where L̂ is the orbital angular momentum operator, Ŝ the spin angular
momentum operator, Î the nuclear spin angular momentum operator, µB =
eℏ/2me the Bohr magneton, µN ≃ µB/2000 the nuclear magneton, gS the
electron gyromagnetic factor and gI the nuclar Landé factor.

The ground state 1S0 and the metastable one 3P0 have both a zero total
orbital angular momentum J , so the first contribution in Eq. 1.2 is null.
Bosonic isotopes – which have also nuclear momentum I = 0 – in the ground
state are not influenced at all by external magnetic fields. For bosonic atoms
in the metastable state, there is only the electronic spin contribution. The
same holds for fermionic isotopes, although the nuclear spin contribution has
to be taken into account: actually they have nuclear momentum not-null –
I = 1/2 for 171Yb and I = 5/2 for 173Yb –, but the corresponding energy

3



1. Theoretical background

shift due to magnetic fields is a factor of 2000 lower then for alkalis because
of the small coupling constant µN .

Hence, one could expect that Ytterbium shows a light rejection to spurious
magnetic fields fluctuations, avoiding detrimental decoherence processes of
the levels.

Second, Ytterbium clock transition provides a meta-stable state (3P0)
with a mean lifetime of tens of seconds. Therefore it can be considered as
an "extra" ground state, in addition to the 1S0 state. The existence of two
stable and addressable states during the typical experimental time-scale is
a requirement for quantum computing: actually, data can be encoded by
localized atoms populating these two different states (see Sec. 6.2).

Third, Ytterbium has a so-called "magic wavelength" in an accessible
spectrum range, 759 nm. In order to trap atoms, the dipole force exerted
by an external light field is employed, so the consequent light shift of the
energy levels must be considered. However certain wavelengths, called magic,
have the characteristic of performing the same energy shift for two different
states. In the case of Ytterbium these are the 1S0 and the 3P0 states. This
means that the system constituted by those two levels evolves coherently if it
is trapped in such potential.

1.2 Optical dipole potentials

The interaction between an electromagnetic wave and the atomic energy
levels generates an optical dipole potential which can be employed in order
to trap or confine ultra-cold atomic gases.

In the following treatment of this phenomenon, a two-levels atom has
been considered for simplicity. Afterwards, the results will be generalized for
more realistic multi-level atoms.
A two-levels system is composed by two states: the "ground state" described

Figure 1.2: Two-levels system scheme.

by the wave function |g〉 with energy Eg = 0 and the excited state |e〉 with

4



1.2. Optical dipole potentials

energy Ee = ℏω0 as can be seen in Fig. 1.2. A generic state of this system is
given by a superposition of those two states

ψ = ag|g〉+ ae|e〉 (1.3)

where ag and ae are two complex coefficients such that |ag|2 + |ae|2 = 1.
In order to solve this problem, the density matrix operator will be used,
defined as follows

ρ̂ = |ψ〉〈ψ| =
(

|ag|2 a∗eag
a∗gae |ae|2

)

(1.4)

where the diagonal elements represent the probability to find an atom
in a level (ground or excited), while the off-diagonal elements the coupling
strength of the levels.

In general, neutral atoms can interact with light in both dissipative
and conservative way: the first kind of interaction can be used to cool the
atoms down to a µK regime, whereas the latter can be employed to create
conservative trapping potential.
When an atom is immersed in a laser light field, the oscillatory electrical field
(Eq. 1.5) induces an atomic electric dipole moment D.

EL(r, t) = εL(r)EL(r) cos(ωLt+ φ(r)) (1.5)

where εL(r) is the polarization vector, EL(r) is the field amplitude, ωL

the laser angular frequency (also called pulsation) and φ(r) its phase.
The dipole moment D oscillates at the same frequency νL = ωL/2π of

EL and with amplitude given by

D = α(ωL)E (1.6)

where α(ωL) is the atomic polarizability, which depends on the pulsation
ωL.
In the density matrix frame, the electric dipole momentD can be expressed

as the expectation value of the electric dipole operator d̂ = −er̂ on the state
described by the density matrix

D = Tr[ρ̂ d̂]

= −e (ρeg dge + ρge deg)

= −e
(

ρ̃eg dge e
−iωLt + ρ̃ge deg e

iωLt
)

(1.7)

where in the last passage the rotating-wave approximation has been
invoked, which consists in taking into account only the near resonant terms
of the electric field in the description of the interaction between atoms and

5



1. Theoretical background

radiation [25]. Actually, an external linearly polarized electric field can be
decomposed into two counter-rotating circularly polarized fields. Through an
opportune reference frame change, a phase with a pulsation equal to ωL can
be added to ae, as shown in Eq. 1.8. In this rotating reference frame, one of
the external field becomes quasi-static if the laser beam is quasi-resonant with
transition frequency, while the frequency of the other field – (ωL + ω0) – is
doubled, hence its contribution is neglected because atoms are not influenced
by electric field oscillations with such a fast frequency.

{

ãg = ag

ãe = ae e
iωLt

(1.8)

At this point, an explicit expression of ρ̃ge = ã∗eãg is requested: it can be
obtained by solving the optical Bloch equations (see Cohen-Tannoudji and
Guéry-Odelin, 2011 [16]). The optical Bloch equations, also known as Maxwell-
Bloch equations, describe the dynamics of a two-state quantum system
interacting with an monochromatic electromagnetic radiation providing the
temporal variations of the two coherences and the population difference
between the two states |g〉 and |e〉.

Hence ρ̃eg can be expressed as follows

ρ̃eg = ρ̃∗ge =
Ω

2

δ − iΓ2
δ2 + Γ2

4 + |Ω|2

2

(1.9)

where Ω = deg · ε(r)EL(r)/ℏ is the Rabi frequency, δ = ωL − ω0 is the
detuning between the laser and atomic resonance frequencies and

Γ =
ω30

3πǫ0ℏc3
d2eg (1.10)

is the radiative decay rate. Therefore the electric dipole moment can be
rewritten as following

D = −
e2 d2ge
ℏ

δ − iΓ2
δ2 + Γ2

4 + |Ω|2

2

E

2
e−iωLt + h.c. (1.11)

where the transition dipole moment is supposed to be parallel to the
external electric field.
Thus, comparing the expression for EL(r, t) and with Eq. 1.6, the atomic
polarizability turns out to be

α(ωL) = −
e2 d2ge
ℏ

δ − iΓ2
δ2 + Γ2

4 + |Ω|2

2

(1.12)

Now, with the analytic expression of the atomic polarizability, the electric
dipole moment can be calculated from the external field applied. Moreover,

6



1.2. Optical dipole potentials

the induced electric dipole moment interacts in turn with E. The resulting
dipole potential energy is given by the equation Eq. 1.13.

Vdip(r) = −
1

2
〈D ·E〉 = − 1

2ǫ0c
Re(α)I(r) (1.13)

where the mean is intended over time and the 1/2 extra factor is due to
the fact that the electric dipole is induced by the same electric field with
which interacts.

Substituting Eqs. 1.10 and 1.12 in Eq. 1.13, an expression for the dipole
potential energy can be obtain in far-off resonance approximation1

Vdip(r) =
3πc2

2ω30

(

Γ

δ

)

I(r) (1.14)

from which it can be noticed the explicit dependence of the potential
nature from the detuning sign: for so-called red detuning (δ < 0), the dipole
potential energy is negative, so the atoms will tend to be trapped in the
intensity maxima. Other treatments can be found in Grimm and Weidemüller,
2000 [33] or in Cohen-Tannoudji and Guéry-Odelin, 2011 [16].

"Dressed states" picture The dipole potential energy can be described
also with an alternative (but equivalent under certain approximations) repre-
sentation in which the atom structure and the electrical field are considered
together [32]. The energy in the ground and excited states of the system are

{

Eg = nℏωL

Ee = (n− 1) ℏωL + ℏω0 = −ℏδ + nℏωL

(1.15)

where n is the photons number of the quantized field and the internal
ground state energy is assumed to be null. The energy shift due to the
external perturbation can be evaluated with the second order perturbation
theory: for non-degenerate states, the corrections are

∆Ei =
∑

j 6=i

|〈j|H|i〉|2
Ei − Ej

(1.16)

where H = −d̂ ·E with d̂ is the electric dipole operator d̂ = −er̂. This
energy shift is often called "light-shift" or "AC-Stark shift".

For a two-levels system, the numerator is simply |deg|2 |E|2, which can
be rewritten as a function of Γ via Eq. 1.10. The denominator is instead

1In the far-off resonance approximation the detuning δ is considered larger than the
radiative linewidth Γ and the Rabi frequency Ω.

7



1. Theoretical background

± (Eg − Ee) = ± ℏ (ωg − ωe)

= ± ℏ (ωg − ωe + ωL)

= ± ℏ (ωL − ω0)
= ± ℏ δ

(1.17)

where the rotating-wave approximation has been taken into account.
Therefore, for the ground state, the light-shift yields

∆Eg =
|deg|2 |E|2

ℏ δ
=
3πc2

2ω30

(

Γ

δ

)

I(r) (1.18)

where I(r) = cε0|E(r)|2 / 2 and Eq. 1.10 have been used.
This result is in full agreement with the one obtained previously.

The "dressed states" picture can be particularly useful if a multi-level
atom is taken into account. In this case, all the transitions from the ground
state |g〉 to the excited levels |i〉 have to be considered in Eq. 1.16. The
energy shift for the ground state can be expressed as

∆Eg =
∑

i 6=g

|〈i|H|g〉|2
Ei − Eg

=
∑

i 6=g

ℏ|Ωi|2
4(ω − ωig)

(1.19)

where |i〉 is an unperturbed state of the atomic hamiltonian having energy
Ei, Ωi are the Rabi frequencies for the transitions connecting the ground
state to the i-th excited state with an associated energy ℏωig.

Regarding Ytterbium atoms, the atomic polarizability can be evaluated
with Eq. 1.12 for the magic wavelength 759 nm. The proportional constant
C(ωL) between Vdip and I,

Vdip(r) = C(ωL) I(r) (1.20)

can be calculated with no RWA and taking into account the nearest
transitions2, as follows

C(ωL) =
∑

i

3πc2

2ω3i

(

Γi

ωi − ωL
+

Γi

ωi + ωL

)

(1.21)

where the index i runs over the atomic transitions.
If I(r) is expressed in Watt/cm2 and Vdip(r) is desired in nK,

2The transitions between the ground state 6s2 1S0 and the following states have been
considered: 6s6p 3P1, 6s6p

1P1, (7/2, 5/2) j = 1, 6s7p 1P1 and 6s8p
1P1.
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1.3. Standard optical lattices

V [nK] = 0.4 I[W/cm2] (1.22)

This means that the depth of an optical potential created by a laser beam
having waist wL = 150 µm, an overall power P = 500 mW and wavelength
λ = 759 nm is 572 nK in case of Ytterbium atoms.

When an atom is placed into a light field having a non-uniform spatial
intensity profile, it undergoes an optical dipole force which arises from the
conservative optical dipole potential expressed by Eq. 1.14.

Fdip(r) = −∇Vdip(r) =
3πc2

2ω30

(

Γ

δ

)

∇I(r) (1.23)

This force can be used to manipulate the atomic motion or to confine
neutral atoms: actually, a common application of Fdip is the far-off resonance
trap (FORT) in which the atoms can be stored for several seconds practically
without heating effects due to the spontaneous fluorescence scattering. In
this sense, the first successful optical trapping was obtained by S. Chu and
co-workers [5].

For red detuning, the potential minima correspond to the intensity max-
ima, which can be achieved in a very simple way with a focused laser beam
with a frequency lower than ω0, for example.
For a TEM00 gaussian beam, the maximum of the intensity is reached on
the propagation axis at the beam waist3. Therefore, the dipole force will
be more attractive in that point: the atoms will be forced to stay along the
beam propagation axis, in proximity of the beam waist [39]. Similarly, with
two orthogonal laser beams crossed in their waists, a FORT in which the
atoms are trapped in the crossing area can be implemented. Fig. 1.3 shows
the trapping geometries described.

1.3 Standard optical lattices

By exploiting the FORT scheme, many different kinds of trapping poten-
tials can be created through the interference between several coherent laser
beams. In the simplest geometry, two laser beams with the same polarization
can cross forming an angle θ between the beams axes, as shown in Fig. 1.3.
In this configuration, the spatial intensity modulation due to the interference
(represented in Fig. 1.4) is given by

d =
λ

2 sin(θ/2)
(1.24)
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1. Theoretical background

Figure 1.3: Optical dipole force, arising from the interaction between the atoms
and the optical radiation, traps atoms where the intensity is higher (in case of red
detuning). a) Gaussian laser beam, red-detuned with respect to the trapping atomic
transition, confines atoms along its axis at its waist. b) Pair of gaussian laser beams:
the atoms are confined in the crossing area.

Figure 1.4: Interference pattern created by two crossed laser beams.

If the two beams were counter-propagating (or if only one laser beam
incident normally on a mirror were made interfere with itself), the interference
fringes would be separated by a length d = λ/2.

Exploiting this phenomenon, periodical arrangements, called "optical
lattices", of trapping potentials can be achieved by using couples of counter-
propagating laser beams, as shown in Fig. 1.5. In the frame a), a 1-D optical
lattice is shown: ultra-cold atoms loaded into this kind of potentials are
organized in parallel planes, orthogonal with respect to the beams axes. In
the frame b), two couples of counter-propagating laser beams form a 2-D
optical lattice where the loaded atoms are arranged in wires. The frame c) of

3See Sec. 4.2 for further details on the gaussian beam intensity profile.
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1.4. Mott insulating phase

Figure 1.5: Optical lattices in one dimension a), two dimensions b) and three
dimensions c). Courtesy of L. Fallani.

Fig. 1.5 reports three couples of beams which create a periodical trapping
potential along the three dimensions where cooled atoms are confined in an
optical arrangement. It can simulate, for example, the behaviour of electrons
moving in an ionic potential.

1.4 Mott insulating phase

The system formed by an ultra-cold atomic gas loaded into an optical
lattice can be quantum-mechanically well described by the Bose-Hubbard
model [43], whose hamiltonian is

H = −J
∑

<i,j>

â†i âj +
∑

i

(εi − µ)n̂i +
U

2
n̂i(n̂i − 1) (1.25)

In Eq. 1.25, â†i and âi are the creation and annihilation operators, re-

spectively, at the i-th lattice site, εi is the i-th site energy offset, n̂i = â†i âi
is the number operator and µ is the chemical potential. The parameter J
is the tunneling matrix element, while U is the on-site interaction energy
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1. Theoretical background

between two atoms. The sum is meant over the nearest neighbours, denoted
by < i, j >.

Regarding the eigenfunctions of this system, the single particle is described
by delocalized Bloch states. However, a transformation to a different basis of
localized eigenfunctions is requested in order to obtain the second-quantized
hamiltonian presented in Eq. 1.25: in general, the Wannier basis is used. It
is a set of orthonormal localized states represented by wn(x− xj), where j is
the lattice site and n identifies the energy band.

The tunneling matrix element J in Eq. 1.25 can be written as follows

J = −
∫ ∞

−∞
w⋆(x+ dlat)

[

− ℏ
2

2m

∂

∂x
+ V (x)

]

w(x) dx (1.26)

where dlat is the lattice pitch and V is the lattice potential.

The on-site interaction energy U between two atoms is instead given by

U =
4πℏ2a

m

∫

|wn(r)|4 dr3 (1.27)

where a is the s-wave scattering length. It well described the interactions
if their range is short compared to the lattice spacing. This interaction term
tends to localize atoms to lattice sites.

The system properties are influenced by the relative magnitudes of J
and U , which can be tuned by either adjusting the lattice potential V or by
exploiting eventual Feshbach resonance in order to vary the scattering length
a [14].

In the system formed by an ultra-cold atomic gas trapped in a lattice
potential, the transition from a superfluid (atoms delocalized all over the
lattice sites) to a Mott insulating phase can be induced by manipulating the
parameters U and J .

If in the hamiltonian Eq. 1.25, interactions dominate such that U/J ≫ 1,
then the variation of the atoms number on a single lattice site becomes ener-
getically unfavourable. In this regime, the ground state of the system consists
of localized atomic wave functions which minimize the interaction energy.
Such a system is an ideal starting point in order to perform operations on sin-
gle atoms: actually, if the number of the atoms is chosen carefully, this phase
can provide a system in which each lattice site is occupied by exactly one atom.

In order to achieve this experimental conditions, ultra-cold atoms have
to be trapped in an optical lattice structure with the sites deep enough to
guarantee the Mott insulating phase. Considerations about the sites depth
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1.4. Mott insulating phase

of a lattice for trapping Ytterbium atoms will be reported in Sec. 2.5.

In this chapter, the characteristics of the Ytterbium atoms and the reasons
why Ytterbium is an ideal candidate for the implementation of quantum
computing experiments have been explained along with the optical dipole
potentials theory and the "traditional" methods used in order to create optical
lattices. During this master thesis work, a new method to achieve 2-D optical
lattices for trapping Ytterbium atoms is investigated (see Sec. 2.5). This
innovative technique is based on the possibility of directly manipulating the
laser beam intensity profiles in arbitrary shapes through a Digital Micromirror
Device. The DMD and its properties will be presented in the next chapter
along with the experimental set-up implemented and its features.
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Chapter 2

DMD characterization

The general technical properties of a Digital Micromirror Device will be
explained in this chapter.
In the first section the attention is mainly focused on the technical features
of the DMD model used, including its behaviour as a diffraction grating, its
effects on the incoming laser polarization and its main timing characteristics.
In the second section, the experimental optical set-up is explained in its
components. In the third, a theoretical treatment of the spatial filtering
method is presented. In the fourth, considerations about the set-up diffraction
limit are reported, while in the last section theoretical simulations about
the projection of a suitable lattice for atomic physics experiments will be
presented.

2.1 DMD properties

The DMD model used and characterized in this master thesis work is
DLP Discovery 4100, type 0.7” XGA 2xLVDS, produced by Vialux, with a
v-7000 board. It is shown in Fig. 2.1.

The DLP Discovery 4100 chip-set includes the following four components

• DLPC410 DMD Digital Controller. It provides high speed data and
control interface to the user. It drives the Mirror Clocking Pulses and
the timing information to the driver (see below for the details). It also
supports random row addressing.

• DLPR410 EEPROM, which stands for Electrically Erasable Programmable
Read-Only Memory. DLPR410 contains start-up configuration infor-
mation.

• DLPA200 DMD Micromirror Driver. It generates the Micromirror
Clocking Pulses.
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2. DMD characterization

Figure 2.1: The DMD model used with the support designed for it.

• DLP7000 DMD. is the digital micromirror device (DMD) at the heart
of the 0.7” XGA1 chip-set.

The DLP4100 is coupled with a V-7000 board to ease the use of DLP
digital micromirror systems. With this board, 22 727 global array updates
per second are achieved taking advantage of the 50 Gbit/s bandwidth of
the DLP Discovery 4100 chipset. The V-7000 controller board comes with
completely configured high-speed FPGA (Field Programmable Gate Array),
USB controller firmware and a 64 Gbit RAM in which the data of the images
to be projected are stored. The latter will be simply referred to as "DMD
Memory Board" from now on.

The DLP7000 Digital Micromirror Device is a digitally controlled MOEMS
(micro-opto-electromechanical system) spatial light modulator (SLM). When
coupled to an appropriate optical system, the DLP7000 can be used to
modulate the amplitude of incoming light. Electrically, it consists of a
two-dimensional array of 1-bit CMOS memory cells, organized in a grid
of 1024 memory cell columns by 768 memory cell rows. Optically, the
DLP7000 consists of highly reflective micrometer-sized mirrors (micromirrors),
organized in a two-dimensional array of 1024 columns by 768 rows [40]. Each
micromirror is approximately 13.68 µm in size and it can digitally switch
between two discrete angular positions: −12° and +12°, with respect to the
surface normal.

Each individual micromirror is positioned over a corresponding CMOS
memory cell and its angular position is determined by the binary state, 0 or
1, of the corresponding CMOS memory cell contents. The angular position of

1In the field of visual displays, the 1024 by 768 pixels resolution is referred to as "XGA".
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2.1. DMD properties

Figure 2.2: DMD Active Area scheme.

the every micromirror changes synchronously with a "Micromirror Clocking
Pulse”, rather than with the CMOS memory cell data update. Therefore, writ-
ing a logic state into a memory cell will switch the corresponding micromirror
in the chosen position only if this operation is followed by a Micromirror
Clocking Pulse.
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2. DMD characterization

Figure 2.3: Scheme of the incident and reflected beams.

In Fig. 2.2 a schematic representation of the DMD Active Area2 structure
is reported. It is worth noticing that the tilt direction is perpendicular to the
hinge-axis which is positioned diagonally relative to the overall array, thus
the micromirrors rotation axis forms an angle of 45° with the DMD vertical
axis: this feature has to be taken into account during the set-up planning
(see Sec. 2.2).

When the projection is switched off, the micromirrors are set in their
"rest" position, that is parallel to the device surface. Instead, when the
projection is switched on, they can be individually tilted only by an angle
± 12° with respect to the surface normal, assuming their so-called "on" or
"off" state3, as shown in Fig. 2.3. When a micromirror is in its on-state,
it reflects a little portion of the incoming light in order to form the image
displayed; whereas, if it is in the off-state, it reflects the light portion in
the other direction, typically into a beam-dumper. In principle, there is
no difference between the two reflected beams (called "image" and "dump"
beams), so they are interchangeable as well as the role of the two possible
states assumed by the micromirrors. The ones set in the on-state can create
both the image or the dump beam and the same holds for the ones in the
off-state.

As said, the micromirrors pitch is 13.68 µm, so the overall dimensions of
the DMD screen are (14.0× 10.5) mm. However, the micromirrors area is not

2The whole DMD Active Area is protected by a glass windows made in Corning 7056,
which has a broadband anti-reflection coating for the visible region.

3Further technical information about DMD electronic and mechanical working can be
found in Lee, 2013 [49].
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2.1. DMD properties

(13.68 µm)2 = 187.14 µm2, but is actually smaller by a factor – called "Fill
Factor" – equal to 92% for the DMD model used, so the effective micromirror
area is 172.17 µm2. The remaining 8% is occupied by a substrate.

The pattern displayed on the DMD screen can be thought as a gray-scale
raster image4. Each pixel thereof is related to a DMD micromirror with a
one-to-one correspondence: for example, the first top-left pixel of the raster
corresponds to the (0, 0) micromirror of the device. As the available states
of the micromirrors during a projection are two (on-state and off-state), the
possible values assumed by a pixel can be only two. Therefore these pixels
form a one-bit raster image, i. e. a "bitmap", which are images formed by
just two colors (black and white). The value of each pixel (0 or 1) of the
bitmap determines the position of the related micromirror (±12°). Bitmaps
can be directly loaded into the DMD Memory Board with the aid of the
supplied software and projected at a later stage (the DMD control software
developed during this thesis work is presented in Chap. 4).
Technically, a gray-scale image (having a pixel-depth higher than one) could
be loaded into the DMD Board Memory too. In order to emulate it, the
device divides such image into a collection of one-bit sub-images which are
displayed with suitable different "reproduction time" calculated by the DMD
itself. Thanks to this expedient, toggling the mirrors on and off quickly, the
device is able to simulate an image which is perceived in grey-scale to an
human eye. However, it is not effectively static as it could appear. Moreover
this time dependence is not suitable for atoms trapping due to their fast
response time. In order to avoid this inconvenient and obtain a really static
gray-scale image (pixel-depth higher than one), digitization methods can be
employed to reduce it into a bitmap having only two colors (black and white).
Every digitization method is based on the manipulation of the data stored in
the matrix standing for the raster image. For example, let the image matrix
data be normalized in the range (0, 1): the simpler and most immediate
digitization algorithm consists in rounding each pixel value to 0 or 1. The
former represents a black pixel, while the latter a white one. So, if a certain
matrix element were 0.6 (0.35), then it would be changed in 1 (0) and the
corresponding image pixel would appear white (black). The image produced
by this method is called "Rounded version" of the initial one.
Further details about these processes and dithering algorithms, which are
more sophisticated digitization methods than the one described above, are
presented in Chap. 3.

4A raster graphics image is a matrix data structure representing a generally rectangular
grid of pixels, viewable via a display medium as a monitor. A raster is technically
characterized by width and height of the image, expressed in pixels, and by the number of
bits per pixel, called pixel-depth.
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2. DMD characterization

Due to the composite nature of the device, the images projection with
the DMD is not particularly convenient in terms of optical efficiency. This
can be estimated for broadband visible light (400 nm - 700 nm) with the aid
of the following factors (also resumed in Tab. 2.1)

• Fill Factor. It has already been discussed previously.

• Diffraction Efficiency. The DMD works as a grating due to its pixe-
lated nature, so a diffraction efficiency can be defined: it is the power
diffracted into the zero-th order with respect to the overall incoming
beam power. As the zero-th order is the used one, this factor has to be
considered.

• Surface Reflectivity. It is evaluated for a single micromirror and is
defined as the ratio of the incoming beam power to the reflected beam
power, which is smaller because of absorption phenomena.

• Windows Transmission. It is meant as the power percentage of a light
beam which passes through the glass protection window (a single pass
through two faces is considered).

DMD Micromirror Array 1024× 768
Micromirror Pitch 13.68 µm
Micromirror Side 12.59 µm
Active Mirror Array Area 14.0 mm ×10.5 mm
Flipping Angle ± 12°

RAM Capacity on Board 64 Gbit
Binary Patterns on Board 87 380

Windows Option VIS, UV

Damage Threshold 25 W
cm2

Array Switching Rate 1 bit B/W 22 727 Hz
Array Switching Rate 6 bit Gray 1091 Hz
Array Switching Rate 8 bit Gray 290 Hz

Micromirror Array Fill Factor 92%
Micromirror Array Diffraction Efficiency 86%
Micromirros Surface Reflectivity 88%
Window Transmission (VIS region) 97%

Table 2.1: Technical specifications of the DMD model used, DLP7000.
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2.1. DMD properties

Hence, the DMD theoretical optical efficiency turns out to be about 66%.
An experimental evaluation of the optical efficiency has been carried out.
After having displayed on the DMD screen a completely white image (all the
micromirrors set in the same state), the powers of the incident and reflected
laser beams (λL = 578 nm) are measured by a power meter. The image
beam power is recorded far enough from the DMD in order to separate the
several diffraction orders and take into account only the zero-th one. The
ratio of the two measured powers gives the experimental optical efficiency. It
is estimated to be about 61%.

Diffraction Properties Basically a Digital Micromirror Device is a matrix
of tiny mirrors arranged in a chequerboard, with gaps between the mirrors
sides. Therefore, due to the discrete nature of the device, it behaves like
a diffraction grating [42], and, during a projection, it works like a blazed
diffraction grating, which is characterized by a further degree of freedom with
respect to the usual one: the tilting angle of the reflecting slits.
In general, the angular position of the diffraction orders depends only on

the wavelength λ and the spacing a of the slits, as shown in Eq. 2.1.

mλ = a (sin(α) + sin(β)) (2.1)

where m is the diffraction order, α is the angle of incidence of the incom-
ing beam on the grating surface and β is the angle of the m-th diffraction
order5. Fig. 2.4 reports in the left panel a variable scheme used to study the
diffraction caused by a 2-D object: ignoring the y-axis, it shows the variables
used for treating the 1-D object diffraction.

The intensity distribution of a diffraction grating (not blazed) is formed
by a central peak of the zero-th order (α = β) and lateral smaller peaks of
the other ones. Mathematically, the Fraunhofer diffraction (far-field approxi-
mation) describes this intensity distribution (Eq. 2.2) through the product of
a sinc2 function – one per dimension, which represents the diffraction of a
single slit – and a factor which stands for the interference between the beams
diffracted by the slits arrays.

I(p, q) = I0

(

sinc2(kpa)
sin2

(

N kpd
2

)

sin2
(

kqd
2

)

)(

sinc2(kqa)
sin2

(

M kpd
2

)

sin2
(

kqd
2

)

)

(2.2)

where k = 2π/λ is the wave vector, N (M) is the number of enlightened
slits along x-axis (y-axis), a is the slit dimension, d is the grating spacing and

5The angles are measured from the grating surface normal. For a reflective grating,
an angle is considered positive if measured in counter-clockwise direction, otherwise it is
negative.
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I0 is the intensity reflected in the center of the diffraction pattern. Instead, p
and q are defined as follows

{

p = sin(α)− sin(β) = mλ
d

q = sin(γ)− sin(δ) = m′λ
d

(2.3)

where m and m′ are the diffraction orders along the x and y directions,
α (γ) is the angle between the x-axis (y-axis) and the incident beam, while
β (δ) is instead the angle formed by the x-axis (y-axis) and the observation
direction, as can be seen in the scheme to the left in Fig. 2.4. The last passage
can be easily deduced by maximizing the multi-slits interference in Eq. 2.1.

Figure 2.4: Diffraction variables schemes. The 2-D grating lies on the x− y plane.

However the intensity distribution for a blazed grating is different because
the groove faces have a normal that is not collinear with the grating one: the
result is that the center of the sinc2 envelope is decoupled from the zero-th
order. In this case, Eqs. 2.3 become

{

p = sin(α+ φ)− sin(β − φ)
q = sin(γ + φ′)− sin(δ − φ′)

(2.4)

where φ and φ′ are the blazing angles along the grating dimensions (see
the image to the right in Fig. 2.4).

The location of the zero-th interference order only depends on the incident
angles α and γ, whereas all the other orders also depend on the grating pitch
d and on the wavelength λ. Furthermore, the location of the center of the
diffraction envelope depends only on the incident angles α and γ and on the
tilting angles φ and φ′ of the groove faces, while its minima are dependent on
the grooves width a and the wavelength λ. Hence, by changing the incident
angle, it is possible to align the center of the envelope with a diffraction
order.
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In Tab. 2.2 the relative powers measured for the zero-th and first orders
are reported. For these measurements, the DMD has been enlightened by a
laser beam forming an angle of 12° with respect to the DMD surface normal.
Its waist is about 5.8 mm. The overall beam power has been measured before
the device with a power-meter; instead, the powers of the first diffraction
orders have been measured by a power-meter far enough from the DMD in
order to properly separate them. The direct reflection (zero-th order) is the
most powerful and actually is the order used for the experiments, instead of
the other ones which have been blocked.

Zero-th Order 36.74 %

First Orders 7.16 %
5.88 %
1.67 %
1.12 %

Table 2.2: Relative power of different orders. The beam forms an angle of 12° with
respect to the DMD surface normal. The image projected by the DMD is completely
white (all mirrors switched on).

Effects on polarization Technically there are not apparent reasons why
a DMD should change the polarization of a well-defined polarized incoming
laser beam, but a variation of polarization can be noticed, probably due to
the coated protective glass plate placed upon the DMD Active Area.

During this work, it has been verified that an input beam with a horizontal
or vertical linear polarization is reflected into a beam having a quasi-circular
polarization (49% V and 51% H). This statement has been verified making
use of a half-wave plate, a quarter-wave plate, a polarizing beam splitter and
a power-meter; furthermore different patterns have been tested. The output
beam does not have a linear polarization, i.e. a linear combination of H and
V ones, but effectively an elliptic polarization, practically circular. Moreover,
if the polarization of the input beam were circular, the output one would be
linear. A quarter-wave plate has been placed just before the DMD in order
to obtain an output vertical linear polarization.

Due to the cylindrical symmetry of the optical set-up, the light polarization
does not have a particular relevance for the results of the experiments carried
out in this work. However, knowing the effects of the DMD on the polarization
is of high relevance for atomic physics applications.

Timing Properties The images projection with a DMD is divided in
different phases: here some details about their timing characteristics will be
given. In the DMD Memory Board, several images can be organized in a
sorted sequence. Some timing properties, which cannot be changed during
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the projection, can be associated to each sequence. They are explained below
and represented in Fig. 2.5.

• Illuminate Time (IT), which is the duration of the display of a single
picture in a given sequence.

• Picture Time (PT), i.e. the time occurring between two consecutive
frames.

• the so-called Dark Phase (DP), namely the time-interval existing be-
tween the end of an Illuminate Time and the consecutive one’s start.

Figure 2.5: DMD time properties scheme. The Dark Phase minimum value is 44µm,
while the Illuminate Time assumes values between tens of µs and 10 s.

Basically, the single frame projection occupies a part of the Picture Time,
the Illuminate Time. Afterwards it takes some time – Dark Phase – to
initialize and prepare to projection the next frame. During this lapse, the
DMD micromirrors can oscillate among the on-state, the rest position and
the off-state due to the mechanical stimulation received.
While the user can choose the Illuminate Time and Picture Time, the Dark
Phase cannot be modified manually but it is automatically set by the device.
The more convenient choice is to select only the Illuminate Time and let
the Picture Time assume its default value: in this case, the DMD will set
autonomously the Picture Time in order to minimize the Dark Phase. Never-
theless there is a minimum for the Dark Phase (called ∆t1 in the technical
data-sheets), depending on the device model. For the XGA types it is 44 µs:
actually, it is just the time needed to change the position of each mirror. This
gives a maximum frame refresh rate of 22.7 kHz.

In mathematical terms, the DMD timing properties can be expressed as
follows

PT− IT = DP

PT− IT ≥ ∆t1
(2.5)
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2.1. DMD properties

The continuous projection6 is forbidden by the existence of a maximum
value for the Illuminate Time, that is 10 s. This means that if a sequence
contains a single frame, its projection will not be continue: after an Illuminate
Time of 10 s, the DMD will anyway moves its micromirrors to display the
same image, as if the sequence were formed by lots of identical images.
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Figure 2.6: In red, the signal returned by the photo-diode placed along the image
beam path; in blue, the complementary signal referred to the dump beam; in green,
the signal given by the light reflected in the normal direction to the DMD (rest
position).

In order to experimentally verify the DMD timing properties, the power
of the image and dump beams are recorded by two photodiodes as a function
of the time. A third photodiode is placed exactly in front of the DMD surface
in order to detect the light reflected by the micromirrors in the rest position.
A Flat-top pattern of 400 pixels per side has been displayed on the DMD
(for further details about Flat-tops see Sec. 3.2 and Sec. 5.2). In Fig. 2.6 the
three traces are reported.

The Picture Time is set to 100 µs, while the Illuminate Time is forced to be
60 µs, although its effective value is 56 µs in order to respect the Dark Phase
minimum value, 44 µs. These values can be checked on the graph: the green

6There is a projection option called "Bin Uninterrupted" which allows to eliminate the
excess of Dark Phase but not the minimum. With this option set, the Illuminate Time is
ignored because it is implicitly determinate by the Picture Time and the minimum value
of the Dark Phase.
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Figure 2.7: Micromirrors flickering. In red, the signal of the image beam; in blue,
the signal of the dump beam; in green, the signal of the rest position. In this case,
the green trace is supposed to be flat because the micromirrors oscillate around
on-state or off-state positions without passing through the rest one: actually there
are no peeks, as in Fig. 2.6.

peaks delimit the Illuminate Time before and the Dark Phase after. Moreover,
the Illuminate Time has been chosen of the order of hundreds of µs in order to
highlight another DMD projection characteristic: the micromirrors flickering.
This effect can be better appreciated in Fig. 2.7. After the micromirrors
reach their target position, they suffer several oscillations with frequency of
about 450 kHz. The oscillation phase lasts about 20 µs. Afterwards, they
enter in a rest state till next refresh.
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2.2. Optical set-up

2.2 Optical set-up

The optical set-up scheme used to study the DMD properties has been
designed on the basis of the scheme proposed in [7] and it is shown in Fig. 2.8.

Figure 2.8: Optical set-up scheme. The focal lengths are expressed in mm. "DB"
stands for beam dumper.

The laser source used – which is employed for the generation of the lattice for
Yb atoms – is a Coherent MBR110 Ti:Sa at 759 nm, pumped by a Verdi V18.
The laser light is sent via a polarization-maintaining fiber to the DMD set-up,
so the working mode is the fundamental gaussian mode (TEM00). In order
to avoid – or, at least, minimize – polarization oscillations due to the fiber,
the linear polarization of the incoming beam ought to be coincident with the
one of the fiber axes. This matching is obtained by a half-wave plate.
After the fiber stage there is a telescope, made with a divergent lens (f1 =
−50 mm) and a convergent one (f2 = +400 mm) at distance of 35 cm, in
order to enlarge the beam waist and obtaining a more uniform illumination
of the DMD active surface.
A first polarizing beam splitter (PBS) is used to transform any possible
polarization fluctuation after the fiber into power fluctuations. The power is
stabilized by taking a small portion of the laser light with a pellicle beam
splitter (Thorlabs BP108) and by sending it onto a photodiode (Thorlabs
DET36A). The photodiode (PD) output is fed as error signal to a "PI" Servo
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2. DMD characterization

which acts on an acousto-optic modulator (AOM) placed before the fiber
(See Fig.2.8). The power stabilization is a fundamental requirement for the
feedback process to work properly. See Sec. 4.2 for the details about the
feedback.
The DMD axes form a 45° angle with respect to the vertical direction and
lay on a plane that is orthogonal to the table top. In this configuration,
both incident and reflected beams are horizontal. In this set-up, an angle of
−12° is created by the incoming laser beam with respect to the DMD surface
normal. In this way, the dump beam is reflected at an angle of 24°, as can
be seen in the scheme in Fig. 2.8; but, mostly of all, a direct imaging can be
performed (avoiding image distortions) because the outgoing image beam is
perpendicular to the DMD surface.
A half-wave plate is set just before the DMD in order to shift the beam
polarization into a linear vertical one.
After the Digital Micromirror Device a second telescope, formed by a f3 =
+500 mm lens followed by a f4 = +100 mm one at distance of 600 mm, is
placed. It has a total demagnification of 5 to reduce the beam dimensions in
order to allow the feedback CCD (see below) to completely detect it. The
telescope is coupled with an iris placed in the focus position of the first lens
and is also exploited in order to perform a spatial filtering of the beam and
to clear the image from high frequency components in the Fourier domain
(see Sec. 2.3).
With a beam sampler (Thorlabs BSF20-B), a small portion of light is taken
and delivered to a CCD camera (Thorlabs DCC1545M-GL, named in this
set-up CCD 1) in order to perform the feedback on the projected images (see
Sec. 4.2). As also underlined in Liang et al., 2009 [52], the protective glass
plate of CCD used for this aim should be removed in order to minimize the
arising of fringes or diffraction patterns caused by parallel surfaces, etalon
effects and dirty spots.

The imaging set-up is formed by two facing microscopes, each one com-
posed by an infinity-conjugated objective and its respective tube lens. The
objective which is meant to be implemented in order to project the images
(first one) has a numerical aperture of 0.7 and a magnification of 80X. Anyway,
as it was not available during the set-up implementation, a different one has
been used to test and characterize the DMD and its projected images quality.
This objective (CFI "Plan Fluor" 20x/0.50 by Nikon), has a numerical aper-
ture of 0.50 and a magnification of 20X, if coupled with its tube lens. The
second one (50X Plan Apo NUV by Mitutoyo) is used for performing the
imaging. It has a numerical aperture of 0.42 and a magnification of 50X with
its tube lens (200 mm). Therefore, totally, the second telescope and the first
microscope should achieve a demagnification of 100X. The patterns after the
image set-up are recorded by a second CCD (IDS UI-1220LE, called CCD 2
in this set-up).

28



2.2. Optical set-up

Figure 2.9: a) Pattern projected by the DMD and its several images captured by the
CCD 1 with different iris diameter: iris wide open b), iris diameter equal to 0.4 mm
c) and to 0.3 mm d). Regarding the iris and the spatial filtering, see Sec. 2.3.

The frame a) in Fig. 2.9 shows the density-plot of a 1-D sinusoidal function
plotted in a (400×400) area (see Sec. 3). The image of this pattern projected
by the DMD captured by the CCD 1 (before the imaging set-up) is reported
by the frame b) in Fig. 2.9, while the image recorded by the CCD 2 is shown
in the frame a) in Fig. 2.10.
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2. DMD characterization

Figure 2.10: Images of the pattern shown in the frame a) of Fig. 2.9 captured by the
CCD 2 with different iris diameter: iris wide open a), iris diameter equal to 0.4 mm
b) and to 0.3 mm b). Regarding the iris and the spatial filtering, see Sec. 2.3.
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2.3. Spatial filtering

2.3 Spatial filtering

An image can be digitally encoded by the raster graphics. In this repre-
sentation, the image is discretized in a grid structure, whose elements stand
for pixels or points of color. Therefore, numerically, a picture is equivalent
to a data matrix on which several operations could be applied. One of the
most important global operation7 that could be performed on a graphical
object is the Discrete Fourier Transform (DFT) [20]. In the case of an image,
the DFT maps all the pixels if the coordinate space to a new representation
(with the same size) where the brightness of each new element describes the
amount of a particular spatial frequency component occurring in the original
picture. This spatial frequency corresponds to a wave-vector k.

In mathematical terms, the Discrete Fourier Transform of a 2-D function
f(x, y) which has been sampled at discrete intervals ∆x can be expressed as

F(p, q) =
∞
∑

n=−∞

∞
∑

m=−∞

f(x, y) e−2πi(p n∆x+q m∆x) (2.6)

If the number of the samples are finite, they can be arranged in a finite
matrix M . Therefore a DFT can be performed on an matrix standing for a
raster image as follows

F(p, q) =
NW−1
∑

n=0

NH−1
∑

m=0

M(n,m) e−2πi(p n∆x+q m∆x) (2.7)

where ∆x is the squared pixel size, NW and NH the pixel numbers along
the two dimensions and M(n,m) the value contained in the (n,m) pixel. It
can be noticed that F(0, 0) represents the DC-component of the image which
corresponds to its average brightness.

In general, this operation applied on a vector of real numbers returns a
vector with the same dimension of complex numbers which can be graphically
represented through the magnitude and phase diagrams.

Along one of the two image axes (vertical or horizontal), the lowest fre-
quency of the image that can be obtained by the DFT depends on the real
image dimension and it is (N∆x)−1, while the higher spatial frequency can be
deduced via the Nyquist-Shannon theorem. It states that an sinusoidal signal
has to be sampled at a rate greater than two samples per period in order to
avoid information loss or aliasing. This means that the maximum frequency is
(2∆x)−1. In most graphical representations, the image in the Fourier domain
is shifted in such a way that the DC-value F(0, 0) is displayed in the center
of the image. The further away from the center an image point is, the higher
is its corresponding spatial frequency till the maximum frequency available

7If each pixel of the output image is the result of a transformation which involves all
the pixels of the initial image, then this transformation is called "global".
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2. DMD characterization

(positive or negative), bounded to the pixel dimension.

Fig. 2.11 reports an example of image and the magnitude diagram of its
Fourier Transform. The latter shows that the image contains components of
all frequencies, although their magnitude gets smaller for higher frequencies.

Figure 2.11: a) A classical example in field of graphical elaboration, Lena’s portrait.
b) Its Fourier Transformed version. c) The application of a spatial filter in the
Fourier Space. d) The Anti-transformed Lena’s portrait.

Generally, any local modification of F(p, q) is a filtering operation as
it involves the modification of the contribution of certain spatial frequency
components. The image c) in Fig. 2.11 shows the application of a circular
filter in the Fourier domain: all the spatial frequencies which fall out of the
filter are eliminated. The image d) in Fig. 2.11 reports the result of the
Fourier Anti-transform applied on the modified Fourier space: without the
contribution of the suppressed frequency components, Lena’s portrait now
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2.3. Spatial filtering

appears blurred.

In Fig. 2.12 three kinds of passband filters performed on the Fourier
Transformed Lena’s portrait are reported, along with the anti-transformed
real images produced by their application.

The implementation of a low-pass filter in the optical set-up would be
useful to block and avoid the transmission of the image high-frequency
components. In this way, the image projected could be cleaned from the
high-frequency noise introduced, for example, by the spurious DMD effects
or interference fringes.
Physically, such a filter can be performed by exploiting the Fourier properties
of the lenses. Since a lens is a finite circular object, a laser beam passing
through it undergo the Fresnel-Kirchhoff diffraction (see next Sec. 2.4). If
an object is placed in the lens focus of the object space, then its Fourier
Transform will be formed in the lens focus of the image space. This can be
deduced from the mathematical formulation of the diffraction, for example
treated in Born and Wolf, 1970 [8]. Therefore a low-pass filter can be created
by

• A first lens, which performs the Fourier Transform of the incoming
beam.

• An iris8 placed in the first lens focus in order to block the most external
part of the beam, i. e. the higher frequencies/wave-vectors. Adjusting
the iris diameter, a different cut-off for the higher spatial frequency can
be achieved.

• A second lens, which performs the Fourier Anti-transform of the beam
and returns in the real space the filtered image imprinted on the laser
beam through its intensity modulation.

As this kind of filter eliminates the higher spatial frequencies of an image,
it will be referred to as "spatial filter" from now on.

The frame c) in Fig. 2.9 and the frame b) in Fig. 2.10 report the image of
the density-plot (frame a) of Fig. 2.9) of a 1-D sinusoidal function plotted in a
(400× 400) area (see Sec. 3) projected by the DMD, manipulated by a spatial
having iris diameter equal to 4 mm, captured by the CCD 1 and CCD 2,
respectively. Comparing the two images with the frames b) of Fig. 2.9 and a)
in Fig. 2.10, the effect of the spatial filter can easily be noticed. Reducing
the iris diameter, the filter cuts an higher number of spatial frequencies and

8The beam travelling through the first lens is not a gaussian one due to the previous
intensity spatial modulation of the DMD, so it is not necessary using an obstacle with a
particularly narrow aperture to perform the filtering. That is the reason why an iris is
preferred over a pinhole.

33



2. DMD characterization

Figure 2.12: Examples of bandpass filters. a) A low-pass filter and b) its effect in
the real space. c) A bandpass filter and d) its effect in the real space. e) A high-pass
filter and f) its effect in the real space.

the resulting patterns appeared averaged in intensity (frames d) of Fig. 2.9
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2.4. Diffraction limit of the optical set-up

and c) of Fig. 2.10).

2.4 Diffraction limit of the optical set-up

A light beam incident on a finite aperture exhibits its wave nature through
an intensity distribution characterized by maxima and minima, instead of
the expected aperture shadow, due to the diffraction. This limits the imaging
system optical resolution, which is the ability to resolve details of the observed
object. More precisely, the resolution is defined as the minimum distance
∆xmin at which two different points of the object can be distinguished as
single ones. In order to express this definition in quantitative terms (Eq. 2.8),
several criteria can be followed, but the most common is known as Rayleigh
criterion, which states that two points are resolved if the Airy disk9 maximum
of a point overlaps the first dark ring in the Airy pattern of the other one.

∆xmin =
1.220λ

2N.A.
= 1.220λ

f

D
(2.8)

where the Numerical Aperture N.A. = n sin(θ) has been expressed in
terms of the pupil diameter D and focal length f in the second passage; θ is
instead the half-angle of the maximum cone of light that can enter or exit
the optical object. The second expression in Eq. 2.8 can be more useful for
evaluating the ∆xmin of a lens, for example. The diffraction limits of the two
lenses f3 and f4 of telescope which performs the spatial filtering are 9.1 µm
and 1.8 µm, respectively.
The iris contributes to the diffraction limit too: actually, as said, it operates
a cut of the higher spatial frequencies depending on its diameter, in this
way the smaller details appear blurred or are directly eliminated. If the
iris diameter were the maximum possible, 12 mm, then the cut-off spatial
frequency would be

νco =
D

2λ f
≈ 16mm−1 (2.9)

where D is the iris diameter and f is the distance from the first lens. So
the maximum distance resolvable if the beam is skimmed by the iris is about
63µm and it increases with the decreasing diameter.

Therefore, after the telescope and the iris stage, the minimum resolvable
feature in the projected image is 13µm due to the demagnification of 5.
In the microscope system, the objective is more limiting than its tube lens in
terms of resolution: actually it can resolve a minimum distance of 926 nm in
the sample plane which corresponds to about 18.5µm in its back-focal plane.

9The diffraction pattern resulting from a uniformly-illuminated circular aperture has a
bright central region, known as Airy disk, which is surrounded by a series of concentric
bright rings, called Airy pattern.
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2. DMD characterization

Hence, the diffraction limit of the whole optical set-up is determined by
the objective10: it means that two points distant less than 7 pixels on the
DMD can not be distinguished by this optical set-up.

2.5 Optical trapping with a DMD

The main and ultimate aim of this master thesis work is to find out if
acceptable lattice structures can be created modulating a laser beam with a
Digital Micromirror Device rather than using pairs of counter-propagating
laser beams as in the standard way (see Sec. 1.3). Surely a generic lattice
pattern can be projected by a DMD, nevertheless some constraints, which
might not be satisfied a priori or might be hard to achieve practically, have
to be established in order to employ it in atomic physics experiments. These
requirements are reported below

• In order to trap efficiently the atoms, a lattice potential should have
sites deep enough to provide the necessary dipole potential energy to
avoid, with a certain probability, the atoms "escape".

• The projected pattern should be as close as possible to the analytical
one.

• If, for instance, measurements which involve the inter-sites tunneling
probability have to be carried out, then the depth of each lattice sites
has to be constant.

• For the most common lattice applications, a reasonable sites number is
requested.

A 2-D lattice were supposed to be created with almost 30 sites per side
and lattice pitch of 1µm, manipulating the intensity profile of a laser beam
mode TEM00 at 759 nm

11. This means that the final pattern would have
the dimensions of (30 µm × 30 µm). Obviously, due to the DMD mirrors
size (see Sec. 2.1), a projection system which performs a demagnification
needs to be implemented. In the future, that system will be composed by a
telescope 1 : 3 coupled with an objective 80X, for an overall demagnification
of 240X. Therefore in the "DMD frame" (reference system defined by the
DMD), the pattern would be (7.2 mm × 7.2 mm), i. e. about (527 pixels
× 527 pixels). Hence for each single site almost 18 micromirrors would be
available to manipulate the intensity profile. It is a reasonable number of
pixels: if this number were smaller, then the final pattern would suffer from

10If the iris diameter were smaller than 8.2 mm, it would be the spatial filter itself to
limit the resolution and not the objective.

11See Sec. 6.2 for a practical application of this kind of pattern. For further information
on the laser source, see Sec. 2.2.
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2.5. Optical trapping with a DMD

lack of precision because the intensity profile would assume a "step" aspect
(see Chap. 3); at the same time, the pixels number should not be too large
because, otherwise, a sufficient sites number would be impossible to create
for absence of micromirrors. In this sense, a satisfying trade-off must be
reached by choosing carefully the overall demagnification, the sites pitch and
the patterns dimension as a function of the intrinsic characteristics of the
device.

Now, a constraint on the site depth should be imposed. Normally the
height of a lattice is measured in unit of recoil energy, which is the energy
that an atom would gain by absorbing a lattice photon

Vdip = s Erec (2.10)

where

Erec(λ) =
1

2

ℏ
2

m

(

2π

λ

)2

(2.11)

which is equal to 96.2 nK for Ytterbium atoms at λ = 759 nm (the magic
wavelength, see Sec. 1.1).
The desired lattice should be deep and have almost s = 30: with this lattice
depth, a sample of ultra-cold atoms can be considered trapped with a tunneling
time much grater than the experimental cycle time. In approximation of deep
lattice (satisfied, for example, by systems in Mott insulating phase, which is
the starting point for ideal quantum register implementation. See Sec. 1.4),
the tunnelling probability can be estimated with the following formula [67]

Γ =
1

ℏ

4√
π
Erec

(

Vdip

Erec

)3/4

e−2
(

Vdip

Erec

)1/2

(2.12)

For Ytterbium atoms trapped in a lattice created by a laser at 759 nm
and with depth of s = 30, Γ = 6.36 Hz; in other words, an atom can tunnel
between adjacent sites of the potential every 157 ms, a time interval longer
than the experimental cycle duration.

The laser mode TEM00 has an intensity profile described by

I(r, z) =
( 2P

πw(z)2

)2
e
− 2r2

w(z)2 (2.13)

where P is the overall power carried by the laser beam, r is the radial
distance from the center axis, z is instead the axial distance from the beam
waist and w(z) is the radius at which the intensity drops 1/e2 of its axial
value.
If the squared pattern for creating the lattice is supposed to be displayed in
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2. DMD characterization

the center of the DMD Active Area and the incoming beam hits in its center,
then a constraint on the waist could be obtained: actually, the central area of
the beam, delimited by its waist, should cover completely the pattern till its
farther points, that is the vertexes. Hence, in the DMD frame, the minimum
waist would be

wmin =
√
2
(

d
n

2

)

χ ≃ 5.1mm (2.14)

where d = 1 µm is the lattice pitch, n = 30 is the sites number and
χ = 240 is the overall demagnification.

In the end, depending on the desired lattice depth, a constraint upon the
power P in Eq. 2.13 can be deduced. In the vertexes the local intensity I(r, z)
should be at least enough to guarantee the lattice depth. In mathematical
terms, this condition can be expresses as follows

sErec

C
=
( 2P

πw(z)2

)2
e
−

2(n d/2)2

w(z)2 (2.15)

where C is the proportional constant between the local intensity I(r) and
the dipole potential energy Vdip(r)

12 and r, the radial coordinate, has been
rewritten in terms of n and d.
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Figure 2.13: The lattice depth is plotted as a function of the incoming beam overall
power. The waist has been kept fixed at wopt and the sites number at n = 30. The
losses due to the DMD and the projection system have not been considered in this
graph.

12See Sec. 1.1 for further details.
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Resolving for power P , Eq. 2.16 can be written

P =
sErec

C

πw2

2
e(

d n
w
)2 (2.16)

So, the minimum power requested is P = 370 mW having taken into
account the waist calculated previously. Nevertheless, from Eq. 2.16, the
waist in the DMD frame which minimizes the power can be found

wopt = dnχ = 7.2mm (2.17)

In Fig. 2.13, the linear dependence of the lattice depth on the power is
presented.

This treatment is just theoretical: possible power losses due to the optical
set-up (Sec. 2.2), the dithering (Chap. 3) and feedback process (Sec. 4.2)
must be taken into account in operative phase. For the experimental results,
see Sec. 5.3.
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Chapter 3

Digitization of static patterns

A Digital Micromirror Device is able to statically project only black-and-
white bitmaps, which are images with pixel-depth equal to one, as anticipated
in Sec. 2.1. Nevertheless, physics experiments could require the projection of
smoothed patterns, as lattices, which are instead represented by gray-scale
images. In order to reduce them into two-colors bitmaps, digitization methods
can be used.
Generally, the digitization methods are mathematical operations applied to
the data matrices1 which describe the raster images. In Sec. 2.1, the simple
Round method has been introduced: it consists in rounding all the data of
an image matrix normalized in the range (0, 1) to 0 (white pixel) or 1 (black
pixel). The Round digitization method is an image binarization process and
the starting point of dithering algorithms (see Sec. 3.1).
In Fig. 3.1, Lena’s portrait is proposed again along with its Rounded version.
As can be seen, the original image (having a pixel-depth of 8 bits, i. e. 256
colors) has been transformed into a one-bit image.

Other digitization methods have been implemented, as dithering algo-
rithms. In the first section of this chapter, two dithering algorithms will be
described: Floyd-Steinberg and serpentine Floyd-Steinberg algorithms. The
second and third sections present the results of the application of these three
digitization methods presented on Flat-top and lattice patterns, respectively.
In the last section, instead, a quantitative comparison between these methods
will be reported in order to select the best algorithm for the aims requested
in physics experiments.

1The image data matrix on which this operations are applied are usually normalized in
the range (0, 1).
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3. Digitization of static patterns

Figure 3.1: Left, Lena’s portrait. Right, its rounded version.

3.1 Dithering and error diffusion

"Dither" is a graphic elaboration technique which consists in randomizing
the quantization errors produced during the binarization process (i. e. the
application of the round method described above) applying on purpose a
form of noise or performing an "error diffusion", that is the distribution of
the quantization errors to the image pixel values. Dither converts a given
grey-scale image to a black-and-white bitmap, so that the density of the
black pixels in the new picture approximates the average level of grey in the
original one.

Several algorithms designed to perform dithering have been developed,
but the most popular is certainly the Floyd–Steinberg (FS) one [24]. With
its aid, the visual artifacts produced through the binarization process are
minimized by the error diffusion.
The operating principle of the Floyd-Steinberg algorithm involves the redis-
tribution of the error made by rounding a pixel value to the closest integer
(0 or 1) to certain neighbour pixels with different weights2, as depicted in
Fig. 3.2.

In mathematical terms, the Floyd-Steinberg algorithm is shown below.





I(i−1,j−1) I(i−1,j) I(i−1,j+1)
I(i,j−1) I(i,j) I(i,j+1)
I(i+1,j−1) I(i+1,j) I(i+1,j+1)



 =

2With any error diffusion algorithm, every pixel value (except the initial one) is correlated
to the neighbours ones.
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3.1. Dithering and error diffusion

Figure 3.2: Graphic representation of the Floyd-Steinberg algorithm.





I(i−1,j−1) I(i−1,j) I(i−1,j+1)
I(i,j−1) I(i,j) I(i,j+1)
I(i+1,j−1) I(i+1,j) I(i+1,j+1)



+





0 0 0
0 0 7

16
3
16

5
16

1
16



Err

where

Err = I(i,j) − Round[I(i,j)]

and I(i,j) is the value contained in the image matrix "I" (normalized in
the range (0, 1)) at the i-th row and j-th column, while Round[I(i,j)] is a
function which rounds the I(i,j) value to 0 or to 1.

The weights which multiply the "Err" have selected in order to transform
a grey image (having each pixel value equal to 0.5) into a black-and-white
chequerboard. An example of image created with this algorithm is reported
in Fig. 3.3 (left).

The first pixel to be processed is the topmost left, then the algorithm
proceeds in row-major order. In this classical version of the Floyd-Steinberg
algorithm, the error is propagated from the top-left corner to the opposite
one. For this reason, as highlighted in [64], the pictures created by this dither-
ing algorithm suffer from directional "worm" features and other disturbing
distortions which occur for those patterns close to the perfect chequerboard
with 50% grey (see Fig. 3.4).

43



3. Digitization of static patterns

Figure 3.3: Left, Lena’s portrait created from the original portrait (fig. 3.1, to the
left) by the standard Floyd-Steinberg algorithm. Right, the version of the portrait
elaborated by the Serpentine Floyd-Steinberg algorithm.

Figure 3.4: Pictures above report the same detail (right eye) from the different
versions of Lena’s portrait. a) Rounded version. b) Classical FS version. c)
Serpentine FS version. In b), mostly in the lower part, the presence of the "worm"
can be noticed, partially resolved by the Serpentine FS algorithm as can be seen in
c).
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3.1. Dithering and error diffusion

In order to break up these structures that would occur as unwanted
texture, the input image is processed in the row-major order but alternating
the column order between column-major and column-minor order. In other
words, this means that after having scanned the first row, from the first
column to the last one, the second row is processed starting from the last
column up to the first one. This version of Floyd-Steinberg algorithm is
called Serpentine version. An example of image produced by this method is
reported in Fig. 3.3 (right).

Root-Mean-Square error In order to quantitatively establish how much
a one-bit version of an image is similar to the original, a parameter ǫRMS can
be associate to each picture3, defined as the Root-Mean-Square error of the
variances of every single pixel as expressed in Eq. 3.1.

ǫRMS [%] = 100

√

√

√

√

√

1

I J

(I,J)
∑

(i,j)

(

T(i,j) −D(i,j)

C

)2

(3.1)

where "T" and "D" are the data matrices of the initial image and its
dithered version, respectively, I (J) is the total number of the images rows
(columns), while "C" is the difference between the image maximum and
minimum values4.

Tab. 3.1 reports the ǫRMS for the three final versions of Lena’s portrait;
the last two are similar to each other, as could be noticed.

Image version ǫRMS [%]

Lena, Rounded 36.10
Lena, Floyd-Steinberg 46.20
Lena, Floyd-Steinberg serpentine 46.22

Table 3.1: Root-Mean-Square Errors for the the three versions of Lena’s portrait.

In general, the ǫRMS of Rounded versions is tightly related to the average
level of the original image: the greyer the initial figure is, the higher the error.
It can assume values between 0% – initial image having only completely white
or black pixels – or 50% – the initial image is completely grey (each pixel
value equal to 0.5) –, so it could be interpreted as an index of "how much"
an image is grey.

3The ǫRMS provides a "local" error which can not be used in order to select the best
dithering algorithm among the ones presented. See Sec. 3.4 for further details.

4The sum is extended over the image pixels, therefore, in the case of Flat-tops, only
the pixels of the plateau will be considered and the "C" will be ignored.
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3. Digitization of static patterns

3.2 Flat-tops

A digital Flat-top image is a totally black pattern with a central and
(usually) squared bright area, whose pixels show the same level. This pattern
is very useful if a laser beam with an uniform and flat intensity profile is
desired (see Sec. 5.2 for the experimental results).

An example of Flat-top is reported in Fig. 3.5, image a). In this work,
Flat-tops have been created by displaying on the DMD Active Area a squared
figure with steep edges and the same values for each pixel which forms it.
In others, e. g. in [22], this pattern is simulated by a 2-D density-plot of a
super-lorentzian function.

Figure 3.5: a) Example of Flat-top. The 3002 central pixels which form the squared
figure have values equal to 0.6 in the usual scale where 0 stands for black and 1 for
white. b) Its standard FS version. c) Serpentine Floyd-Steinberg version. Only the
central (500× 500) section of the patterns has been reported.

Fig. 3.6 reports the εRMS, evaluated via Eq. 3.1, as a function of the
gray level (value of the pixels which form the central squared pattern) of the
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3.2. Flat-tops

one-bit Flat-top versions obtained through the dithering method presented
in Sec. 3.1.

Figure 3.6: Dithering errors for Flat-top images as a function of gray level in the
usual scale where 0 represents the color black and 1 the color white.

The Flat-top images with a grey level equal to 0 or 1 are already binary
images: the versions created by the application of the digitization methods
are identical to the initial one, so the εRMS is null. The Rounded version
errors exhibit a linear trend: this is due to the fact that the Eq. 3.1 compares
the initial grey-scale Flat-tops image to the same result of the dithering
process. Actually, for gray levels smaller than 0.5, the final Rounded version
image is a completely black image; whereas for gray levels equal or bigger
than 0.5, the resulting image is a Flat-top with value of the pixels which form
the central squared pattern equal to 1.
The green and blue tracks show a similar trend: this means that the two
algorithms return almost the same results in absence of articulated structures
in the original image, as in this case.
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3. Digitization of static patterns

3.3 Lattices

A periodical modulation of the incoming laser beam intensity could be
achieved by displaying on the Digital Micromirror Device screen a 2-D density-
plot image of the function reported in Eq. 3.2. This intensity profile can be
used in order to create an optical lattice potential on atoms as discussed in
Sec. 2.5. Fig. 3.7 reports an example of a lattice density-plot with 128 pixels
per site and its digitized versions.

L(x, y) =
1

2
(sin2(x) + sin2(y)) (3.2)

Figure 3.7: An example of lattice a) with 128 pixels per site. b) Its Rounded version.
c) Standard Floyd-Steinberg version. d) Serpentine FS version.

A density-plot is a two-dimensional representation of a two variables
function (as Eq. 3.2), where the values assumed by the function are represented
by a color of a defined color-scale. Such image can be described by a matrix
(as a raster picture), whose elements correspond to the values returned by the
function evaluated at the coordinates (i, j), that is the position of the matrix
elements. The analytic function has to be evaluated in a finite number of
samples equal to the elements number of the matrix, so the density-plot is
itself a first approximation of the function.
In addition to this, the errors introduced by the digitization process have
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3.3. Lattices

to be considered too. Fig. 3.8 shows a one-dimensional example of the
approximations introduced by the discretization of the analytic function and
by the dithering processes.

Figure 3.8: In green, the analytic function. In blue, its discretized version. Round
and serpentine FS versions of the blue track are reported in black and red, respectively.
The grey levels are normalized in the range (0, 1).

A 1-D profile of the lattice function Eq. 3.2 with 256 pixels per site is
plotted in green in Fig. 3.8, while the values of the corresponding array are
reported in blue through a "step-function" which assumes the constant value
of a pixel over the pixel length: it is a first and "intrinsic" approximation of
the analytic function reported in green. The profile of the serpentine Floyd-
Steinberg version is reported in red. Around the 80-th pixel, the target profile
(green) approaches values near to 0.5, so the values assumed by the red plot
are alternately equal to 0 and 1, in accordance with the operating principle
of this dithering algorithm. The black profile represents the Rounded version
of the initial curve and exhibits a sudden jump from 0 to 1 where the target
line reaches the value 0.5, as can be expected.

Fig. 3.9 reports the plots of the Root-Mean-Square errors for the three
kinds of digitization methods previously under analysis as a function of the
mirrors number per site. As can be seen, the traces show the same trend,
but the Rounded version errors are lower of about 23% with respect to
the other two. Moreover, the errors are pretty constant with the number
of micromirrors per site (MPS), when this number drops below 10 MPS:
independently of the algorithm employed, a lower number of MPS causes
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3. Digitization of static patterns

Figure 3.9: Dithering errors for different lattices. The red track refers to the Rounded
version, the green one to the classical Floyd-Steinberg version and the blue one to
the serpentine Floyd-Steinberg version.

a Root-Mean-Square error increase of about 12% for the Rounded version
and of about 9% for the other two dithered versions. The standard and
serpentine FS versions traces are practically coincident: it is reasonable to
presume that these two dithering algorithms show appreciable differences
only for non-periodical and structured initial images.

The Root-Mean-Square errors presented in Fig. 3.9 have been calculated
via Eq. 3.1 without taking into account the intrinsic approximation due to
the discrete nature of the data matrix standing for the density-plot image.
This systematic error has been evaluated via Eq. 3.3.

ε [%] = 100

√

1

N2

∫ N

0
dx

∫ N

0
dy

(

I(x, y)− L(x, y)

C

)2

(3.3)

where "I(x, y)" is the step function created with image matrix: for all
the values contained between (i, y) and (i+ 1, y), "I(x, y)" returns the value
of the function "L(x, y)" (Eq. 3.2) evaluated in (i, y). The same holds for
the ordinates. "C" is instead the difference between the "L" matrix data
maximum and minimum, while N is the number of pixels per site. The
integral is extended only over one lattice site. From their own definition, it is
clear that the errors are meant per single pixel.

Fig. 3.10 shows the errors obtained through Eq. 3.3 as a function of the
pixels number per lattice site: with this number decreasing, the volume

50



3.3. Lattices

Figure 3.10: Systematic errors between the exact lattice function and its graphical
representation.

between the two curves increase, so does the error.
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3. Digitization of static patterns

3.4 Selection of the best dithering algorithm

It is now worth asking the question: which is the best digitization algo-
rithm among the ones presented in this chapter? If the judgement were based
only on the value of ǫRMS expressed in Eq. 3.1, then the Rounded version
would be the best, even though the final images which produces are the worst
in terms of global fidelity in the "far field", as can be noticed in Fig. 3.7 or
comparing Fig. 3.1 with Fig. 3.3. The key point is that the diffraction limit
of the experimental set-up (see Sec. 2.4) has to be taken into account when
dithered images are projected: actually it reduces or eliminates the high
frequency features of the images, exalting the lower frequency components.
The atoms interacting with the optical lattice potentials created by projecting
this kind of patterns with the DMD will not be influenced by structures of
dimensions below the diffraction limit.
Considering the set-up diffraction limit effects, the Discrete Fourier Trans-
form expressed in Eq. 2.7 in Sec. 2.3 can be an useful tool to obtain a better
quality estimation. In Fig. 3.11 the Fourier spectra of the lattice and its
three dithered version presented in Fig. 3.7 are reported.

In order to evaluate the Root-Mean-Square error considering the diffrac-
tion limit of the optical system, the procedure described below has been
followed.

• The difference between the lattice image and its dithered version is
achieved by subtracting their data matrices.

• A Discrete Fourier Transform of the difference image is performed.
Fig. 3.12 shows the magnitude diagram of the result.

• A circular low-pass filter is applied to the Fourier spectrum: practically,
this means to crop the image out of a circle centred in the lowest
frequency of the difference spectrum and having a radius which corre-
sponds to a length in the real space equal to the diffraction limit of the
optical system, i. e. 92.5µm on the DMD Active Area (see Sec. 2.4).
In this way only the features which the optical system is able to resolve
are taken into account.

• The filtered spectrum is Fourier Anti-transformed.

• The error εRMS is estimated via the following formula

εRMS[%] = 100

√

√

√

√

√

1

NW NH

(NW ,NH)
∑

(i,j)=(1,1)

D(i, j)2 (3.4)
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3.4. Selection of the best dithering algorithm

Figure 3.11: a) Discrete Fourier Transform of a lattice having 128 pixels per site.
b) DFT of its Rounded version. c) DFT of its standard FS version. d) DFT of its
serpentine Floyd-Steinberg version. Every image is an enlargement of 400 × 400
pixels taken in the central region of the entire Fourier spectrum. This for better
appreciating the difference at low frequencies between the spectra.
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3. Digitization of static patterns

Figure 3.12: DFT of the differences between the lattice image and its three dithered
versions. DFT of the difference with the Rounded a), standard FS b) and serpentine
FS c) versions. d) Application of a circular low-pass filter to the c) difference
spectrum with radius equal to the cut-off frequency corresponding to the set-up
diffraction limit. The central (400 × 400) pixels region of the spectra has been
reported.
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3.4. Selection of the best dithering algorithm

where NW and NH are the pixel numbers along the horizontal and
vertical dimension, respectively, and "D" is the data matrix standing
for the filtered difference image.

Figure 3.13: Root-Mean-Square errors of DFT difference between a lattice image
and its dithered versions.

The ǫRMS trends for the three kinds of dithering algorithms are reported
in Fig. 3.13. It is now clear that the Floyd-Steinberg dithering (in its two
versions) is definitely better than the rough Rounded version of the lattice
image for applications in atomic physics: for this reason, the serpentine FS
version5 is the algorithm used in this work for preparing the images to be
loaded into DMD Memory Board.

5Serpentine Floyd-Steinberg version has been chosen over the classical one for its ability
in avoiding the creation of "worm" sub-structures.
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Chapter 4

Control program and feedback

process

In the first section of this chapter, the program developed during this
work in order to control the DMD, the images projection and its features will
be presented. Moreover, this program is able to perform a feedback process –
described in the second section – on the projected patterns: through this
method, images defects and errors due to the experimental set-up can be
corrected. In the third section, the calibration procedure of the DMD image
on the CCD screen will be explained.

4.1 "DMD Easy"

The DMD comes with a Dynamic-Link Library (DLL) and a stand-alone
program. Nevertheless, the latter is not sufficient for the degree of control,
both static and dynamic, required in typical atomic physics experiments.
Indeed, for example, it is not possible to create sequences with more than
five frames and no feedback system is embedded.
In this work, a program provided with a Graphic User Interface (GUI) has
been developed on LabWindowsTM/CVI platform, which is an ANSI C pro-
gramming environment for measurement, designed by National Instruments.
This program has been named "DMD Easy". A screen shot of its main
interface is shown in Fig. 4.1. The DLL released by ALP contains a set of
useful functions which carry out the principal tasks required to a DMD1:
most of these have been implemented in "DMD Easy".

After having read the data matrix of the images to be projected, with
the aid of the pre-written functions, "DMD Easy" is able to organize them
in sequences to load in the DMD Boad Memory. Afterwards it can start and

1In [30] a complete handbook of the functions present in the DLL can be found with
their explanation.
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4. Control program and feedback process

Figure 4.1: "DMD Easy" main interface, developed during this work.

interrupt the projection, as well as delete the sequences or directly free all
the memory in order to provide memory for new images. "DMD Easy" can
also control the timing options described in Sec. 2.1: the user can choose
and set the values of the Illuminate Time and the Picture Time2 or decide
to select the "uninterrupted projection" mode. The timing option panel is
shown in Fig. 4.2.

In this panel two projection options can be chosen by the user: with the
"shot" mode on, the different frames in a certain sequence can be projected for
IT µs in succession, one after another, as slides in a presentation; otherwise,
with the "scroll" mode selected, the different frames can flow on the DMD
screen in a continuous flux. With the scrolling mode activated, the first frame
of the sequence is projected. After an IT, the first "Line Increment" lines are
eliminated. Consequently, the remaining rows are shifted to the top of the
screen, while the last "Line Increment" lines are occupied by the first "Line
Increment" ones of the successive frame.
This features are very important in applications where the dynamic control
of the trapping potentials is required, e.g. Bragg scattering or quantum
computation experiments (see Chap. 6).

2The Dark Phase is automatically calculated on the basis of IT and PT values.
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4.2. Feedback process

Figure 4.2: "DMD Easy" timing option panel.

4.2 Feedback process

There is no doubt that the greatest challenge in programming "DMD
Easy" has been the implementation of a function – with all its satellite
sub-functions – which is able to perform a feedback on the static images
that are projected. Its dedicated panel is shown in Fig. 4.3. The relevance
of this feature is evident in atomic physics applications, where "non-ideal"
real beams and optical systems are employed. Deviations from the ideal
laser beams could introduce detrimental noise and/or uncontrolled features
in the projected potential which can in turn mask or destroy the physical
phenomena under investigation.

Generally a beam of light incident on the DMD surface has its own
intensity profile. For instance, an ideal TEM00 laser mode has a gaussian
shape, whose formula is re-proposed here

I(r, z) = I0

( ω0
w(z)

)2
e
− 2r2

w(z)2 (4.1)

where I0 is the intensity at the center of the beam, r is the radial distance
from the center axis, z is instead the axial distance from the beam waist –
indicated by w0 – and w(z) is the radius at which the intensity drops 1/e2 of
its axial value I0.

The DMD allows for a spatial modulation of the intensity profile: it
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4. Control program and feedback process

Figure 4.3: "DMD Easy" feedback panel.

can reflect the portion of the beam incident on the single pixel towards the
"image" direction or the "dump" one, but it can not redistribute the light on
a pixel over the others. For this reason, any preceding shape of the intensity
profile remains superimposed on the modulation made by the DMD: for
example, this means that loading and projecting a Flat-top will not produce
an uniform intensity profile (see Fig. 4.4).

Nevertheless, as said, it is very important to be able to produce such
a beam (uniform in intensity) or in general to get rid of the original beam
profile, therefore a feedback mechanism has been implemented.

The basic idea of the feedback process is described below.

• After the target image has been projected, a single acquisition of the
intensity profile is taken3 by CCD 1, whose model, position and other
technical issues have already been discussed in Sec. 2.2.

• Typically the image projected by the DMD does not correspond to the
whole active area of the CCD: it is smaller and its axes are not parallel
to the CCD ones (see Fig. 4.5). Crop, Rotate and Resize operations are
needed to adapt the captured photo to the Target Image: only after
these manipulations, the two images (and, especially, the data matrices
associated to them) can be compared.

3In order to control the CCD, functions of the relative DLL have been used. The library
and its complete manual are freely released by the device producer and available on-line.
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Figure 4.4: Flat-top (blue), squared with 300 pixels per side, and incident gaussian
beam (red) profiles. The DMD selects the portion of incoming light to be reflected.
As the profiles are related to two images taken at different times, they can slightly
be different due to the residual instability of the optical system.

Figure 4.5: Left, an image captured by the feedback CCD is reported. The resulting
image from the Cropping, Rotating and Resizing operations is shown to the right.

• Pixel by pixel, a matrix error is calculated as the difference between
the target (fixed) and the acquired images matrices.

• The error is applied to each single pixel of the image previously loaded
into the DMD Memory Board and currently on projection.

• The new image can be displayed and the feedback process can restart.
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4. Control program and feedback process

I. Image projection At this point, for the sake of clarity, it is worth
reminding that the image displayed on the DMD screen represents the
amplitude reflection coefficient, not the intensity profile desired. The reflection
coefficient is a complex number expressing the ratio of the reflected to incident
electric field amplitude, in contrast to the reflectance – the square of the
reflection coefficient – which is the fraction of incident optical power that
is reflected at the interface. In other words, before the projection, a grey-
scale image (from now on named "Target Image") is prepared: it spatially
represents the intensity in each point of the desired pattern. Then a squared
root is performed on each value of the image data matrix in order to obtain
the amplitude reflection coefficient mask. Finally, the image can be dithered,
loaded into the memory and projected. Later, "DMD Image" will be the
name referring to it.

II. Graphical elaboration of the acquired images As previously said,
the frame captured by the CCD is incompatible with the "Target Image": a
direct comparing would be impossible because their sizes are different and
their sides are not aligned (see Fig. 4.5). Therefore Cropping and Rotating
operation (in "DMD Easy" performed together by the function Rotate) is
applied. In Cod. 4.1, a part of its C-code is reported.

Code 4.1: A section of the function Rotate, which performs a rotation of an image
via its data matrix.

1 for(row=-ySide; row <ySide; row++)

2 {

3 for(col=-xSide; col <xSide; col++)

4 {

5 newCol = col*cos(ang) + row*sin(ang)

6 + cntr.x;

7 newRow = -col*sin(ang) + row*cos(ang)

8 + cntr.y;

9

10 floorX = floor(newCol );

11 floorY = floor(newRow );

12

13 xVal = (Data[floorY ][ floorX +1]

14 - Data[floorY ][ floorX ]) * (newCol -floorX)

15 + Data[floorY ][ floorX ];

16

17 yVal = (Data[floorY +1][ floorX]

18 - Data[floorY ][ floorX ]) * (newRow -floorY)

19 + Data[floorY ][ floorX ];

20

21 xValUp = (Data[floorY +1][ floorX +1]

22 - Data[floorY +1][ floorX ]) * (newCol -floorX)

23 + Data[floorY +1][ floorX ];
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24

25 yValUp = (Data[floorY +1][ floorX +1]

26 - Data[floorY ][ floorX +1]) * (newRow -floorY)

27 + Data[floorY ][ floorX +1];

28

29 Rotated[row+ySide][col+xSide] =

30 (xVal+yVal+xValUp+yValUp) * 0.25;

31 }

32 }

Through this function, the captured frame is rotated by an ang angle
and transformed into a new image with width 2xSide and height 2ySide.
However the two images are still incomparable due to different physical sizes:
Resizing is requested. In Cod. 4.2, the core of the function performing this
operation is proposed.

Code 4.2: A section of the function Resize, which rescales an image to the DMD
dimensions.

1 stepX = (double) (width -1)/1024;

2 stepY = (double) (height -1)/768;

3

4 for(row =0; row <768; row ++)

5 {

6 newRow = row*stepY;

7 floorY = floor(newRow );

8

9 for(col =0; col <1024; col ++)

10 {

11 newCol = column*stepX;

12 floorX = floor(newCol );

13

14 xVal = (Data[floorY ][ floorX +1]

15 - Data[floorY ][ floorX ]) * (newCol -floorX)

16 + Data[floorY ][ floorX ];

17

18 yVal = (Data[floorY +1][ floorX]

19 - Data[floorY ][ floorX ]) * (newRow -floorY)

20 + Data[floorY ][ floorX ];

21

22 xValUp = (Data[floorY +1][ floorX +1]

23 - Data[floorY +1][ floorX ]) * (newCol -floorX)

24 + Data[floorY +1][ floorX ];

25

26 yValUp = (Data[floorY +1][ floorX +1]

27 - Data[floorY ][ floorX +1]) * (newRow -floorY)

28 + Data[floorY ][ floorX +1];

29
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30 Resized[row+ySide][col+xSide] =

31 (xVal+yVal+xValUp+yValUp) * 0.25;

32 }

33 }

Eventually the "Target Image" and the capture frame – now called "CCD
Image" – can be analyzed and compared. Nevertheless it could be worth
reminding that the three operations introduce in the final "CCD Image" an
unavoidable approximation, as could be noticed reading the codes above:
actually they are based on the linear interpolation of the data stored in the
image matrices. This will surely limit the feedback efficiency.

III. Errors evaluation The "CCD Image" can be now compared with
the "Target Image": an error matrix (called ErrMtrx) is produced by the
difference between the two data matrices, as shown in Cod. 4.3.

Code 4.3: A section of the function Feedback: errors evaluation. Max is a multiplica-
tive factor which rescales each value of the TargetMtrx.

1 for(row =0; row <768; row ++)

2 {

3 for(col =0; col <1024; col ++)

4 {

5 [...]

6

7 ErrMtrx[row][col] = CCDMtrx[row][col]

8 - (TargetMtrx[row][col] * max);

9

10 ErrMtrxInt[row][col] = ErrMtrxInt[row][col]

11 + ErrMtrx[row][col];

12

13 [...]

14 }

15 }

Instead, in the matrix ErrMtrxInt, all the errors calculated pixel by pixel
during the different iterations of the feedback process are stored.

IV. Errors application Now the errors have to be applied to the "DMD
Matrix": this could be made in different ways and combinations.

Pixel by pixel, all the errors are weighted by the same coefficient Kp1.
Then each error is subtracted4 from the value of the corresponding pixel in

4This is a negative feedback process, intended to get the "CCD Image" (signal) closer
to the "Target Image" (set-point); therefore the errors have to be subtracted.
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the "DMD Matrix". This operation is similar to the proportional correction
of a PID, where the gain coefficient is just Kp1.

"DMD Easy" makes also possible to apply the third power of the errors
to each "DMD Image" matrix value, but with a different weight Kp3. This
could be helpful when large errors are meant to be corrected faster than the
smaller ones.
The algorithm can perform another kind of correction, similar to the

integral one of a PID. In order to obtain this effect, the errors evaluated
in each feedback iteration are summed and stored in a matrix, ErrMtrxInt;
then, in every feedback cycle, its elements are summed to each corresponding
pixel value of the "DMD Image" data matrix.
In Cod. 4.4, the code lines which carry out the error application are

reported.

Code 4.4: A section of the Feedback function: the errors distribution. The third
power of the ErrMtrx[row][col] is an operation expensive in terms of time, there-
fore it would be better to avoid its computation if kp3 were null.

1 if(kp3 != 0)

2 {

3 for(row =0; row <768; row ++)

4 {

5 for(col =0; col <1024; col ++)

6 {

7 DMDMtrx[row][col] = DMDMtrx[row][col]

8 - kp1 * ErrMtrx[row][col]

9 - kp3 * pow(ErrMtrx[row][col],3)

10 - ki1 * ErrMtrxInt[row][col];

11 }

12 }

13 }

14

15 else

16 {

17 for(row =0; row <768; row ++)

18 {

19 for(col =0; col <1024; col ++)

20 {

21 DMDMtrx[row][col] = DMDMtrx[row][col]

22 - kp1 * ErrMtrx[row][col]

23 - ki1 * ErrMtrxInt[row][col];

24 }

25 }

26 }

V. Creation of a new image Now that the "DMD Image" has been
corrected to be more similar to "Target Image", the square root of each single
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pixel value can be taken in order to create the reflection coefficient amplitude
matrix. Later, the corresponding image can be dithered, loaded into DMD
Memory and projected. In case, another feedback step can start.

With the typical experimental image parameters, a feedback step has
never required more than 10 s on an Intel Core i7-2670QM based system
with 8Gb DDR3 on-board RAM.

This kind of feedback correction of static images projected by the DMD
has an advantage: there is no need to know a priori the spatial intensity
profile of the light incident on the device. This means that measurements of
the center and the waist of the laser beam on the DMD screen are in principle
not necessary.

4.3 Calibration of the DMD on the CCD

In order to perform the Rotating, Cropping and Resizing operations for
executing the feedback, it is necessary to know the exact position of the DMD
image on the CCD 1 screen, so an initial calibration of the system has to be
done. This is a sensitive procedure which constitutes the second limit to the
whole image correction process efficiency. For this reason, a calibration cycle is
strongly recommended before each feedback process: actually, lenses, mirrors
or the CCD misalignments can easily occur due to mechanical vibrations,
introducing a systematic error when the error matrix is estimated.

Initially, a first calibration is carried out automatically by the "Calibra-
tion" function implemented in "DMD Easy". The position of DMD image
on the CCD screen is characterized by ten parameters: the coordinates of
the vertices of the DMD image on the CCD, the rotation angle between the
CCD major axis and the longer side of the DMD and the demagnification
performed by the optical system between the DMD and the CCD5.
The Calibration function performs the following actions

• A squared Flat-top image with 300 pixels per side is projected.

• A single frame is capture by the feedback CCD Camera.

• Cropping, Rotating and Resizing operations are applied to the image.

• The values of the image pixels which fall into the Flat-top plateau are
averaged to obtain the mean intensity of the figure.

5Image distortions are not expected, that is to say that normal imaging of the DMD
active area should be possibly performed. The whole optical set-up has been designed (see
Sec. 2.2) in order to satisfy this requirement.
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4.3. Calibration of the DMD on the CCD

• One at a time, all the parameters previously enumerated are varied in
order to maximize this mean intensity, calculated for each parameters
variation.

After this first step, the center of the DMD image on the CCD screen –
previously found thanks to the vertices coordinates – can be "blocked" and
manually adjusted for a fine calibration. This could be done for the rotation
angle and the demagnification6 as well.

6The demagnification starting value should be the second telescope one, 5 in this case.
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Chapter 5

Static patterns applications in

Atomic Physics

In this chapter, the experimental results concerning the projection of static
patterns and their feedback corrections will be presented, but before some
quantitative parameters useful for their characterization will be introduced
and defined, as well as some considerations on the feedback intrinsic errors
will be reported. In the last section presents some considerations about the
Talbot effect and its possible applications.

5.1 Characterization parameters

Some parameters have been used in order to quantitatively describe the
images captured by the CCDs (see Sec. 2.2). They are following presented.

Root-Mean-Square Error provides information about the difference be-
tween the ideal target pattern and the image effectively obtained after its
projection. It is expressed mathematically as following

ǫRMS[%] = 100

√

√

√

√

√

1

I J

(I,J)
∑

(i,j)

(

P[i, j]− T[i, j]

C

)2

(5.1)

where the index i runs over the I rows and j over the J columns of the
data matrices standing for the recorded "P" and the target "T" images. "C"
(contrast) is the difference between the lowest and the highest values of the
matrix T.
This parameter takes into account only the "local" differences between the
two images, without considering the effects on the visual quality produced
by the diffraction limit of the experimental set-up (see Sec. 3.4).
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Flatness is particularly useful to describe patterns like Flat-tops: it quan-
tifies the average variation of the pattern from its mean value. In analytical
terms

F.[%] = 100

(

1−

√

√

√

√

√

1

I J

(I,J)
∑

(i,j)

(

P[i, j]−M

M

)2
)

(5.2)

where

M =

√

∑(I,J)
(i,j) P[i, j]

I J
(5.3)

In both the equations, the sum is extended only over certain pixels: in
the case of Flat-tops, for example, only the pixels which compose the squared
central plateau are considered.

Mean-Value-Difference measures quantitatively the deviation of a cer-
tain area mean value from the target one. Its formula is reported below

MVD[%] = 100
∣

∣IM− TM
∣

∣ (5.4)

where "TM" is the theoretical value which should be assumed by the
pixels over which the image mean "IM" is calculated.

Light Utilization is a parameter which characterizes the power conversion.
It is defined as the ratio of the incoming beam power to the image beam
power.

L.U.[%] = 100
Pimage

Pincident

(5.5)

It can not be higher than 37%, which is the percentage of power in the
zero-th diffraction order with respect to the overall incident beam power,
having displayed a completely white image on the DMD screen (see Sec. 2.1).

Edge Smoothness In the target images there could be an area of switched-
off mirrors just next to a bright zone, nevertheless in the projected images
this passage can be not so sudden and well-defined as in the original ones.
"Edge smoothness" can be a very useful parameter to estimate how much
narrow a real image feature is. It is defined as the number of the DMD pixels
corresponding to an intensity jump from 20% to 80% of the maximum in the
image recorded by the CCD.
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5.1. Characterization parameters

Max-Min contrast This parameter can be used to estimate the contrast
between maxima and minima of a lattice pattern. Its formula is

C [%] = 100
1

N

N
∑

i=1

Maxi −Mini
Maxi

(5.6)

where N is the number of the maximum-minimum couples taken into
account.

Feedback Errors During a feedback loop, the Cropping, Rotating and
Resizing operations (described in details in Sec. 4.2) and the dithering algo-
rithm introduce some uncertainties in the evaluation of the errors that will
be assigned to each image pixel1. This problem causes an uncertainty on
the Root-Mean-Square Error value, which can be estimated by operating a
feedback correction on different patterns without effectively assigning any
error to the image pixels, i. e. zeroing the proportional and integral gains. In
this case, if the operations of image adjustment were ideal, the ǫRMS should
be constant over all the iterations, instead a fluctuation of that parameter can
be noticed. The mean value of these fluctuations, obtained by measurements
carried out for several kinds of patterns, is 0.6%. This value is assumed as
the error affecting the ǫRMS estimated during the feedback process.

1For further details and an experimental manifestation of this problem, see Sec. 5.2.
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5.2 Flat-tops

The first pattern taken into account is the Flat-top. As anticipated in
Sec. 3.2, it is an uniform white square surrounded by completely black space
(image a) in Fig. 5.2). Flat-top is the ideal pattern to be projected with the
DMD in order to obtain a laser beam with a flat intensity profile.

Figure 5.1: Flat-top images. a) The ideal Flat-top, having 400 pixels per side,
centred in the DMD screen. b) An image, recorded by the CCD 1, of the Flat-top
without any correction. It will be the starting point for the feedback process. c)
Flat-top after 10 iterations of the feedback process. A spatial filter has been applied
to the beam before the CCD. d) Flat-top after 10 iterations of the feedback process.
The iris of the spatial filter is wide open, so any filter is applied. Only the central
(500× 500) region of the images has been reported.

Due to the original gaussian profile of the beam incident on the DMD, it
is necessary to perform a feedback in order to flatten the central part of the
figure and eliminate the top of the gaussian (image b) in Fig. 5.2). With this
expedient, joined to a spatial filtering (described in Sec. 2.3), a satisfying
result can be achieved.

Feedback processes have been applied on the Flat-top image with and
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5.2. Flat-tops

without spatial filtering (performed during the feedback). Images c) and
d) in Fig. 5.1 show the results obtained after 10 feedback iterations. The
corresponding Root-Mean-Square error trends, estimated via Eq. 5.1, are
reported in Fig. 5.2.

Figure 5.2: Flat-top Root-Mean-Square errors calculated for the Flat-top corrected
by the feedback without any spatial filter applied (red track) and with a spatial
filter performed by an iris with diameter 3.5 mm (blue track).

As can be seen, the red track in Fig. 5.2 shows a minimum at about 3.7%
in the sixth iteration: in the following iterations, the images keep getting
worse. The blue one, instead, settles down at less than 3% after a sudden error
decreasing. The reason of those different trends lies in the intrinsic systematic
errors of the dithering algorithm together with the Cropping, Rotate and
Resizing operations. In order to correct the small features affecting the
original image, the feedback arranges and assigns similar errors to localized
areas (groups of few pixels), whose positions on the image can not be exactly
preserved during the graphical elaborations carried out by the adaptive
operations and the dithering procedure. In this way, it could happen that
the errors introduced by the feedback and weighted by the gain factors (see
Sec. 4.2) are added to the wrong pixels values, creating a sort of positive
feedback, which works against the image quality improvement.
This phenomenon can be noticed in image d) in Fig. 5.1 as the appearance
of series of brighter small dots2. During an iteration, the intensity of one

2This event, affecting the overall Root-Mean-Square Error, can not be attributed to a
bad calibration because it concerns only a part of the image.
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of those dots should be lowered by the feedback mechanism, so a negative
error is assigned to those pixels. However it can be shifted by the graphical
elaboration and hence influence the dark area near the dot, making it even
darker, as in a positive feedback correction3. Nevertheless, spatial filtering (see
Sec. 2.3) can be used in order to get rid of this highly localized contribution,
formed by high frequencies in the Fourier space. Actually, image c) in Fig. 5.1
does not suffer of this problem, therefore the Root-Mean-Square error is lower
for the filtered image (blue track in Fig. 5.2).

Figure 5.3: Flat-top Flatness. The data are calculated for the Flat-top corrected by
the feedback (10 iterations) without any spatial filter applied (red track) and with a
spatial filter performed by an iris with diameter 3.5 mm (blue track).

Figs. 5.3 and 5.4 show the Flatness and the Mean-Value-Difference (MVD)
graphs as a function of the feedback iterations number, respectively. They
are calculated via Eq. 5.2 and Eq. 5.4. These two parameters separate the
contributions which form the Root-Mean-Square error: the MVD represents
the average variance from the image mean value, so it can reveal the presence
of localized peaks on the flat plateau; whereas the Flatness expresses the
variance between the image mean and the target value, in other words the
"DC" error of the feedback loop. In the two graphs proposed, it can be
noticed that the MVD errors have the same trend, while the red track in the
Flatness graph gets worse with the increasing iterations number. This means
that the problem highlighted before does not affect the achievement of the

3For these reasons, it is strongly recommended to keep low the feedback iterations
number.

74



5.2. Flat-tops

Figure 5.4: Flat-top Mean-Value-Difference. The data are calculated for the Flat-top
corrected by the feedback (10 iterations) without any spatial filter applied (red
track) and with a spatial filter performed by an iris with diameter 3.5 mm (blue
track).

target values as much as it influences the Flat-top flatness through several
narrow peaks on the plateau.

In Fig. 5.5 some Flat-top profiles are reported for increasing iterations
number. Comparing the first iteration profiles of the two graphs (red higher
tracks), the action of the spatial filter can be noticed: even if a common
trend can be recognized in both of them, the filtered one is smoother than the
other due to the absence of the higher spatial frequencies. With the iteration
number increasing, the overall profiles get closer to the target one – as shown
by the MVD graph reported in Fig. 5.4 –, but at the same time problems
due to the adaptive operations and dithering arise in no-filtered profiles as
narrow peaks which have negative consequences on the Root-Mean-Square
Error and the Flatness.

In Fig. 5.5 another feature can be inferred, better figured out in Fig. 5.6:
actually the spatial filter has negative effects on the structures edge sharpness,
as can be noticed in the lower part of the filtered profiles in Fig. 5.5. With the
iris diameter decreasing, always lower frequencies are blocked by the spatial
filter, therefore particularly narrow or defined structures – as the sides or the
vertices of the Flat-tops – are formed with increasing number of micromirrors
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5. Static patterns applications in Atomic Physics

Figure 5.5: Some spatial profiles of a Flat-top with 400 pixels per side are presented.
The dashed lines correspond to the target values which have to be reached. Each
pair formed by the profile and its own target value is plotted in the same color.
Offsets have been added for a better reading of the graphs. In both graphs, the
profiles are relative (from the top) to first, second, third, seventh and tenth feedback
iteration. The graph a) reports profiles taken from images recorded during a feedback
process with the spatial filter iris set to a diameter of 3.5 mm. The graph b) shows
profiles taken from images recorded during a feedback process with no spatial filter
performed.

76



5.2. Flat-tops

(as reported in Fig. 5.6).

To summarize, two different procedures have been adopted for creating
a Flat-top. The one which uses the spatial filter exhibits better results in
terms of Root-Mean-Square error, Flatness and Mean-Value-Difference.

In order to obtain better images with the other method, the spatial filter-
ing can be applied after the feedback process. Different iris diameters have
been tested: the Smoothness and the Flatness trends are plotted in Fig. 5.6 as
a function of the iris diameter in order to establish the best trade-off between
these two parameters. The optimal diameter turns out to be slightly smaller
than 2 mm.

Regarding the Light Utilization, the measured DMD optical efficiency is
η = 37% for the specific incident beam used in this work, as reported in
Sec. 2.1. The Flat-Tops created use only 4002 pixels of the device, so the
L.U. expected is

L.U. = 0.37
4002

1024 768
= 7.5% (5.7)

The L.U. measured for the both Flat-Tops corrected by the feedback
process is about 7.2%.

Another method to achieve a Flat-top, presented in details in Etzold,
2010 [22], consists in the calculation of the pattern to be displayed on the
DMD, taking into account the gaussian shape of the incoming laser beam
and correcting the desired intensity profile according to following relation

R[x, y] =

√

T[x, y]

G[x, y]
(5.8)

where "T[x, y]" is the ideal intensity pattern, "G[x, y]" is the theoretical
incident beam profile – which has the analytical form reported in Eq. 4.1 – and
"R[x, y]" is the amplitude reflection coefficient.

This method has the advantage that does not require a feedback process
to get rid of the initial light source intensity profile. On the other hand, the
parameters of the incoming beam need to be carefully determined and possible
defects in the projection optical system, like diffraction of the multiple optical
elements and dust, are not considered. For this reason, it is usually necessary
to employ a feedback process in order to achieve the best fidelity of the final
images to the ideal ones.
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5. Static patterns applications in Atomic Physics

Figure 5.6: Flat-top Smoothness. In red, the Smoothness values for unfiltered images.
In blue, the Smoothness values for filtered images. The diameter of the spatial filter
iris is 3.5 mm. On the vertical axis the Smoothness mean value (calculated with
200 Smoothness values evaluated on the same image) is reported.
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Figure 5.7: Trade-off between Smoothness (in red) and Flatness (in blue) as a
function of the iris diameter.
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5.3 Lattices

The second pattern taken into account is the "lattice" (see Sec. 3.3).
In order to correct the projected images, two different methods have been
implemented

• "Lattice". It consists in projecting the lattice and correcting it directly
through the feedback.

• "Top-Lattice". It consists in creating a Flat-top with the DMD, operat-
ing a feedback on it and then superimposing the ideal lattice pattern
on the flat plateau.

The theoretical calculations reported in Sec. 2.5 show that, in order to
achieve a lattice having 30× 30 sites, a depth of s = 30 and a lattice spacing
of 1 µm after the projection system4 described in the same section, an ideal
beam waist of 7.2 mm would be necessary. Anyway, due to the non-optimal
illumination condition of the DMD screen by the laser beam – which has
a waist that is smaller than the ideal dimension found –, a lattice with the
same number of pixels per site (18 pixels) but a different sites number (22
sites per side) has been achieved and characterized. Actually, for the analysis
purposes, it is important to maintain the pixels needed to create a single site
rather than the overall number of lattice sites. In general, the number of
pixels (or, equivalently, micromirrors) per one site side (MPS) is a parameter
to be chosen carefully. The higher the MPS, the better the site profile can
be achieved: actually, with few micromirrors, the ideal site profile could not
be imitated smoothly and accurately because of the discrete nature of the
projection system. At the same time, a high MPS would restrict the lattice
extension and require a more powerful demagnification system in order to
obtain, in the objective image plane, an acceptable lattice pitch for atomic
physics applications. Therefore a trade-off has to be reached on the basis of
the experimental set-up and the aims of the pattern to be projected.

In Fig. 5.8 the Root-Mean-Square errors as a function of the pixels number
are reported. Each experimental point has been evaluated averaging the
ǫRMS of the last four images (over a total number of ten) produced by the
feedback process applied on each single lattice. Thus, with 18 pixels per site,
an error of about 2% has to be expected.

5.3.1 Lattice

In this section, the experimental results of the "Lattice" projection tech-
nique are reported. The pattern has been achieved performing the feedback

4This system is basically formed by a telescope 1 : 3 (spatial filtering one) coupled with
an objective 80X, which will be soon implemented in the general experimental set-up. Its
demagnification is 240.
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Figure 5.8: Lattice Root-Mean-Square errors as a function of the pixels number per
lattice site.

process directly on the ideal lattice image projected by the DMD, as in the
case of the Flat-top. In Fig. 5.9 the Root-Mean-Square errors as a function of
the iterations number are plotted. The pattern error is ǫRMS = 1.9%. It is
evaluated by averaging the image errors of the last four feedback iterations.

In Fig. 5.10, the lattice profile image of the tenth feedback iteration is
reported, while in Fig. 5.11 a lattice profile cut along a line of the tenth
feedback iteration is plotted. The line represented is parallel to the long side
of the DMD and corresponds to a "maxima line", i. e. a maxima series of
the lattice lies on it.

In Fig. 5.12, a profile of the lattice integrated along the vertical side is
proposed. As can be noticed, the trend is quite smooth and regular in both
graphs. The contrast between the local maxima and the adjacent minima of
that profile has been averaged in order to obtain a quantitative parameter
describing the lattice depth. The value found is (52± 5)%.

The Light Utilization for this pattern is 5.2%. It is expected to be smaller
than the Flat-top one (7.5%) because of the lower number of micromirrors
switched on.

All of the measurements reported above have been made with the wide-
open iris, therefore without operating any spatial filtering. In Fig. 5.13 the
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Figure 5.9: Lattice Root-Mean-Square errors as a function of the iterations number.

Figure 5.10: Lattice intensity profile corrected at the tenth feedback iteration.
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Figure 5.11: Lattice profile, taken along a maxima line.
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Figure 5.12: Integrated lattice profile.

experimental trend of the Root-Mean-Square errors is reported as a function
of the iris diameter.

As can be noticed, εRMS increases with the decreasing iris diameter.
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Figure 5.13: Lattice Root-Mean-Square errors as a function of the iris diameter.

Hence, it is not possible to exploit a full filtering (with iris diameter smaller
than 6 mm) without hampering the lattice structure itself.

83



5. Static patterns applications in Atomic Physics

5.3.2 Top-Lattice

In order to obtain an optical lattice corrected for the gaussian beam shape
and other defects, another method has been implemented. It consists in
creating a Flat-top and then superimposing the target lattice on its corrected
plateau without any further feedback. Regarding the details about the
application of the feedback process on a Flat-top, see the Sec. 5.2.

Figure 5.14: Top-Lattice intensity profile.

A squared Flat-top with 400 pixels per side, centred in the DMD Active
Area, has been projected and corrected via feedback. Then a lattice with
22 sites per side and 18 MPS has been superimposed on it. This operation
can be performed by a function of "DMD Easy", which is able to return the
product of the values contained in two different image data matrices, with the
same sizes, pixel by pixel. If the two starting matrices are normalized between
0 and 1, the resulting matrix will be normalized too. Therefore, the resulting
matrix represents a gray-scale image standing for the superimposition of the
two initial ones.

In Fig. 5.14, the intensity profile of the Top-Lattice is proposed, whereas
in Figs. 5.15 and 5.16 its profile cut along a maxima line and the integrated
profile of the pattern along the short side are respectively reported.
As can be inferred from the last two graphs, the Max-Min contrast is greater
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Figure 5.15: Top-Lattice profile taken along a maxima line.
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Figure 5.16: Integrated Top-Lattice profile.

than the contrast of the lattice created with the other method. It is calculated
as (71± 3)%. This feature allows, for the same incoming laser power, for the
generation of a deeper optical lattice with respect to the one created by the
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Figure 5.17: Top-Lattice Root-Mean-Square errors as a function of the iris diameter.
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Figure 5.18: Top-Lattice contrasts as a function of the iris diameter.

method previously explained.
Regarding the Light Utilization, for this pattern it is equal to 3.4%.

In this case, there is not a Top-Lattice target image as reference for the
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feedback process, so the Root-Mean-Square error can not be easily evaluated
for the final image obtained through this method. This parameter has been
established by comparing the resulting lattice image with the same lattice
pattern (having the same dimensions and MPS) multiplied by a factor (MAX)
and minimizing the εRMS errors calculated by varying MAX. The result
obtained is 2%.

Regarding the spatial filtering, Fig. 5.17 shows the ǫRMS – concerning the
comparison between the lattice images captured by the CCD and the lattice
ideal pattern – as a function of the iris diameter. Instead, in Fig. 5.18, the
contrast is plotted as a function of the iris diameter.
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5.4 Other patterns

Several different patterns which can be implemented in atomic physics
experiments are presented in this section.

• The Ring, Figs. 5.19 and 5.20. It is a pattern formed by an uniform
empty circle. For example, it can be used to select only a circular
portion of the cooled atoms already trapped in a standard optical
lattice.

• The Wire, Figs. 5.21 and 5.22. This pattern is formed by two Flat-
tops with the same gray level linked together by a narrow rectangular
structure having a different gray level. If this pattern is created by a
laser red-detuned with respect to the atomic transition exploited to
trap the atoms, the conditions to study tunneling processes could be
simulated, for example. (Krinner et al., 1999 [48]).

• The Line, Figs. 5.23 and 5.24. It is a very narrow linear pattern with an
uniform gray level. If created by a blue-detuned laser light, it could be
used in order to separate the ultra-cold atomic cloud into two different
parts, while in case of red-detuning, it creates lines among atoms. A
possible application could be the realization of a single particle trapped
in a box-like potential. First, the DMD is used to address a single
line in a Mott insulator and remove all the other atoms. Afterwards,
the lattice perpendicular to the addressed line is ramped up to create
one-dimensional tubes containing only one atom. In the end, a box
shaped potentials (e. g. a Flat-top) is projected onto this structure.
Through this procedure, the atoms are then confined to one dimension
with boundaries. Along this dimension the lattice can be ramped down
too, allowing the atoms to tunnel along its own tube [7].

Tab. 5.1 resumes the εRMS errors and the Light Utilizations of the patterns
presented in this chapter.

Pattern εRMS L.U.

Flat-top 3 % 7.2 %
Lattice 1.9 % 5.2 %
Top-Lattice 2 % 3.4 %

Ring 2.4 % 4 %
Wire 1.8 % 4.8 %
Line 1.9 % 0.4 %

Table 5.1: Static Patterns Root-Mean-Square Errors and Light Utilization.
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Figure 5.19: Circle intensity profile.

Figure 5.20: Circle profile cut along the diameter parallel to the DMD long side.
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Figure 5.21: Wire intensity profile.

Figure 5.22: Wire profile.
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Figure 5.23: Line intensity profile.

Figure 5.24: Line profile.
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5.5 Observation of the Talbot effect

Periodical patterns form an important category of images to be projected
by a DMD due to their possibility of creating regular arrangements of po-
tentials which, anyway, are able to trap ultra-cold atoms only in a plane
transversal with respect to the modulated laser beam axis. By manipulating
the intensity profile of coherent light in periodical shapes, the so-called Talbot
effect could arise. It can be exploited in order to create trap potentials able
to confine atoms along the laser beam axis as well, without using additional
optical lattices or further trapping forces.

The Talbot effect consists in the self-imaging of periodical structures due
to near-field diffraction [12]. When a plane-parallel light beam impinging on
a transmission diffraction grating, its image is repeated at regular distances
away from the grating plane (placed in LT = 0 in Fig. 5.25). This regular
distance is called "Talbot length", LT . At a distance from the grating plane
equal to half the Talbot length, a self-image occurs with a phase-shifting of
half a grating pitch, while at one quarter and at three quarters of the Talbot
length, the self-image is halved in size and appears with half the period of
the grating. The so-called "Talbot carpet", that is the spatial evolution of
the laser beams which form the images of the periodical diffraction object, is
shown in Fig. 5.25.

The theory of the optical Talbot effect was first developed by Rayleigh
in the diffraction theory framework in the near-field approximation (Fresnel
diffraction). He found the following expression for the Talbot length

LT =
λ

1−
√

1− (λ/a)2
(5.9)

where a is the grooves pitch of the diffraction grating and λ is the wave-
length of the incident light.

In principle, a collection of gaussian laser beams travelling along the same
direction and with their axes arranged in a periodical pattern, provides the
requirements for the Talbot effect arising. Thus a diffraction grating can
be simulated by a Digital Micromirror Device by displaying on its screen a
periodical pattern as a lattice in one-dimension (Eq. 6.12 in Sec. 6.1) or in
two-dimensions (Eq. 3.2 in Sec. 3.3).

For a fixed laser wavelength (in this case, the laser used for this experi-
ment has a wavelength of 578 nm), the Talbot length depends only on the
lattice spacing. A 2-D lattice with 40 MPP (a pitch equal to 547.2 µm on
the DMD screen) has been displayed on the DMD in order to observe the
Talbot effect. With the optical system implemented during this work (overall
demagnification of 100 and diffraction limit equal to 92.5 µm, see Sec. 2.4),
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5.5. Observation of the Talbot effect

Figure 5.25: Example of Talbot carpet. The distance is expressed in terms of Talbot
length LT .

this pattern can be created on the image plane of the first objective with
a pitch of 54.7 µm, so the associated Talbot length is about LT = 103 µm.
The Talbot carpet can be imaged through the second microscope system.
Focusing the image plane, the lattice displayed on the DMD should be seen,
then by varying the second objective focus position, the patterns which form
the carpet should be observed. The Talbot effect imaging requires that the
depth of focus of the second objective is smaller than LT so that the different
images of the carpet could be distinguished.

Fig. 5.26 shows several Talbot carpet images captured by the CCD 2.
The frames a) and e) refer to a distance d from the first objective image
plane equal to d = 0 and d = LT , respectively, so they report the same image:
actually, after a distance equal to the Talbot length, the same pattern is
formed again. At intermediate distances, other carpet points are sampled:
for example, in the frame c) the lattice pattern is recorded with a phase-shift
of half the lattice spacing; while frames b) and d) show the lattice having
half period with respect to the original one.

When periodical patterns are projected or when shadow masks are used
for manipulating a laser beam intensity profile, superluminescent diodes
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Figure 5.26: Images of the Talbot carpet recorded at different distances d, expressed
in terms of LT : a) d = 0, b) d = 0.25LT , c) d = 0.5LT , d) d = 0.75LT and e)
d = LT .

(SLD) – characterized by a low temporal coherence – are often employed
as light sources in order to destroy the undesired Talbot effect and other
spurious interference effects [28].
Anyway, if the spatial and temporal coherences of the employed source could
be preserved, interesting applications based on the Talbot effect could be
achieved: e. g. it could be exploited to trap atoms in a normal plane with
respect to the laser propagation [60]. If a 2-D sinusoidal-like pattern were
displayed on the DMD and projected by an objective in parallel to the table
normal, ultra-cold atoms might be confined in a periodical potential and
trapped against the gravity. This sets quite strong requirements on the quality
of the optical system implemented and on the amount of the available laser
power. Anyway, this work demonstrates that a DMD could be successfully
employed also in experiments where Talbot-like features are meant to be
exploited.
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Chapter 6

Dynamic patterns applications

in Atomic Physics

A collection of several images, slightly different from each other, can be
organized in sorted sequences, loaded into the DMD Memory Board and
projected with a very high frame rate in order to simulate the pattern motion,
as in a film. Through this method, moving images and dynamic patterns
can be created, paving the way to new possible applications of the DMD in
atomic physics experiments.

In the first section of this chapter, the realization of the stimulated Raman
effect and Bragg scattering with a DMD is investigated. In the second section,
instead, the possibility of implementing a quantum register and two-qubits
quantum gates is studied.

6.1 Stimulated Raman effect and Bragg scattering

with a DMD

The stimulated Raman effect is a two-photon process in which a photon
is absorbed by an atom and a second one is created by stimulated emission,
changing the internal atomic state.

In order to study this effect, it can be useful to consider an atomic energy
levels structure in Λ-configuration (see Fig. 6.1): it is a three-levels system
where two ground states – |g1〉 and |g2〉 – are both coupled to an excited
state |e〉 by two electromagnetic radiations characterized by two different
angular frequencies – ω1 and ω2 – far-off-resonant to the excited state, i. e.
population transfer to |e〉 and spontaneous emission are explicitly neglected
in this treatment.
Generally, through the stimulated Raman effect, the atomic population can
be driven between |g1〉 and |g2〉 as in an effective two-levels system1.

1In classical non-linear optics picture, this process can be thought as if two waves
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Figure 6.1: Atomic Λ-system energy levels diagram.

The stimulated Raman effect is based on the interaction between the
atomic system and two laser beams which form – in the intersection zone,
where the interaction can occur – an interference pattern depending on the
angular frequencies and the wave-vectors differences of the two optical fields
(see Fig. 1.4 in Sec. 1.3).

By expressing as follows the electric fields of the optical radiations

E1(r, t) = ε1E01 e
i(k1·r−ω1t)

E2(r, t) = ε2E02 e
i(k2·r−ω2t)

(6.1)

the interference pattern can be calculated as

I(r, t) =
cǫ0
2

∣

∣

∣
E1 +E2

∣

∣

∣

2

∼ E2
0 cos

2(∆k · r−∆ω t)
(6.2)

where in the last passage the two optical waves are supposed to have the
same polarization ε1 = ε2 = ε and amplitude E01 = E02 = E0. In the second
step, the following notation has been used

∆k =
k1 − k2

2
∆ω =

ω1 − ω2
2

=
∆E

ℏ

hitting the same atoms were mixed together by non-linearity effects, leading to an effective
wave at the difference frequency of the two initial waves, which would drives the atomic
transition between the ground states.

96



6.1. Stimulated Raman effect and Bragg scattering with a DMD

∆k and ℏ∆ω are the momentum and energy transferred to the system,
respectively2.

The Eq. 6.2 describes an interference pattern formed by linear fringes
separated by a distance d = π∆k which flow with velocity

v = ∆ω/|∆k| = ∆E

ℏ∆k
(6.3)

The hamiltonians describing the atomic system and the interaction be-
tween the atoms and the overall external field E(r, t) = E1(r, t) + E2(r, t)
are respectively

HA =
p2

2m
− ℏω01|g1〉〈g1| − ℏω02|g2〉〈g2|

HAF = −d̂+ ·E− − d̂− ·E+
(6.4)

where in the last expression the external field E(r, t) and the electric dipole
momentum operator d̂ = −er̂ have been separated into their positive- and
negative-rotating components. Moreover the dipole and the Rotating-Wave
approximations have been applied (see Sec. 1.2).

After some mathematical manipulation – reported in details in Steck,
[63], for instance –, the effective Raman hamiltonian can be found. It is given
by

HR =
p2

2m
+ ℏ (∆1 + ωAC1 ) |g1〉〈g1|+ ℏ (∆2 + ωAC2 ) |g2〉〈g2|

+
ℏΩR

2

(

ei(k2−k1)·r |g1〉〈g2|+ ei(k1−k2)·r |g2〉〈g1|
)

(6.5)

where

ΩR =
Ω1Ω2
2∆

(6.6)

is the two-photon Rabi frequency, ∆i is the detuning between the virtual
and the excited states, ∆ = (∆1 + ∆2)/2 and Ωi is the Rabi frequency
describing the coupling between the external field with angular frequency ωi

and the transition |gi〉 − |e〉. Instead,

ωAC i =
Ω2i
4∆

(6.7)

is the Stark shift of the energy levels.
It is interesting to remember that exp(−ik · r) is the momentum-shift

operator, therefore from Eq. 6.5 one can deduce that a transition between

2The maximum and minimum values assumed by ∆k and ℏ∆ω depend on the kind of
dynamic pattern projected by the DMD.
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6. Dynamic patterns applications in Atomic Physics

the two ground states is associated with a momentum kick given by the sum
of two photon-recoil momenta.

In the resonance case, the following formula for the "resonance Raman
condition" can be derived

∆R = 4ωR

p‖ + ℏ δk

ℏ δk
+ (∆2 −∆1) + (ωAC 1 − ωAC 1) = 0 (6.8)

where p‖ is the projection of the the momentum p along the direction of
δk and

ℏωR =
ℏ
2 δk2

2m
(6.9)

is the Raman recoil energy, which is the kinetic energy of an atom having
momentum ℏ δk /2.

Thus, the initial system is reduced to a two-levels one with an energy split-
ting of ℏ∆R, coupled with an external optical field having strength ℏΩR /2.

As seen previously, in order to perform a stimulated Raman or a Bragg
scattering process3, the atomic system should interact with a moving periodi-
cal pattern. This can be represented by the density-plot of the 1-D function
reported in Eq. 6.12, which is characterized by the distance λP between two
adjacent maxima and by the corresponding number of pixels (referred to as
"micromirrors per period" or MPP, from now on) needed to create a single
period of the pattern.

Such density-plots can be gathered and sorted in sequences where each
frame represents the same interference pattern spatially shifted to the same
direction by a constant length s. Clearly, these sequences can be loaded
into the DMD Memory Board and then projected in order to simulate the
presence of two laser beams through their interference.

Due to the periodicity of the interference patterns, the period length
λP , the number N of frames in a sequence and the shifting length s are
bounded among them by the relation N · s = λP . Therefore, depending on
λP , N should be carefully chosen: actually, a low number of frames would
request a high spatial shifting of the patterns, causing a "step motion" of
the figure; in the same way, a high N has disadvantages as well in terms of
excitation energy transfer, later discussed. The maximum N is bounded by
the smallest shift performable, corresponding to a DMD micromirror size,
while the maximum shifting velocity is limited by the maximum refresh rate

3The simulated Raman effect can be actually seen as a Bragg scattering process of first
order.
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6.1. Stimulated Raman effect and Bragg scattering with a DMD

of the images on the device screen.

Initially, a static interference figure were supposed to be projected by
the DMD: the obtained intensity profile modulation would correspond to a
standing wave, the same created by a couple of laser beams with the equal
angular frequency (∆ω = 0). Since λP = π/∆k is the wavelength of the
wave displayed on the DMD, the distance between two adjacent maxima
is related to the momentum kick that can be transmitted. In general, the
accessible range of wave-vectors ∆k is bound to the diffraction limit of the
optical system, the DMD dimensions and the MPP. The smallest momentum
is achieved by the highest λP , equal to the whole DMD horizontal dimension
in the "DMD frame". Instead, the highest momentum is given by the smallest
pattern wavelength, bounded by the largest between the diffraction limit of
the experimental set-up and the mirror size (after the demagnification). For
the optical systems considered, the smallest attainable λP is caused by the
diffraction limit.
Hence, taking into account the projection system with an overall demagnifica-
tion of 100 (the one implemented during this work, see Sec. 2.2), the range of
the possible wave-vectors is ( 22 nm−1− 3.3 µm−1 ). Instead, for the objective
80X / 0.7 N.A. (that will be used for this aim in future) implemented in
an optical system having a demagnification4 of 240, the momenta range is
( 54 nm−1− 4.6 µm−1 ). In both cases, the iris has been considered wide open.

Regarding the excitation energies, the energy ∆E is carried by a moving
interference pattern and is equal to ℏ∆ω. The energy transfer, for a certain
DMD refresh rate R (its maximum value is 22, 727 Hz for the DMD in use,
see sec. 2.1), is given by

∆E = ℏ∆k · s · R (6.10)

where s is the shifting length made by the pattern in each frame. Manip-
ulating the definitions of the variables, the previous relation can be rewritten
as follows in order to evaluate the excitation energy (in frequency unit)

∆E

h
=

R

N
(6.11)

As said previously, the frames number N of a sequence can not be arbi-
trarily chosen, but is related to the λP of the pattern displayed due to its
periodicity. A high λP requests a high number of frames in order to keep low
the value of s and so obtain a smooth movement of the pattern on the DMD

4In this set-up, the telescope 1 : 3 has a diffraction limit of 8.9 µm with the iris
completely open; whereas the objective has a diffraction limit of 53 µm in the back-focal
plane. The minimum length revolvable in the "DMD frame" is 159 µm, corresponding to
12 pixels. See Sec. 2.2.

99



6. Dynamic patterns applications in Atomic Physics

screen, limiting the transferable ∆E.

Regarding the experimental set-up implemented during this work, the
periodical pattern which provides the bigger ∆k has a period of 7 pixels
(100X system), that is the smaller λP allowed by the diffraction limit (see
Sec. 2.4). Therefore, moving this pattern with a shifting length equal to one
micromirror size would demand a sequence of 7 frames. Due to the diffraction
limit, the value of s could be higher (so the frames number lower), but not
excessively in order to avoid the "step motion" of the pattern. In the case
of the seven images sequence, the maximum energy transfer would be about
3.2 kHz · ℏ. For the 240X system (12 frames), the maximum energy is about
1.9 kHz · ℏ.

On the other side, in order to transmit the smallest momentum kick, it is
necessary to create a pattern with the maximum possible λP , that is equal
to 14 mm in the "DMD frame". In this case, it is not convenient to create a
sequence having s equal to one micromirror size, because a large N would be
requested and the maximum energy transmittable would be small. Therefore
a lower N should be chosen with the constraint of projecting a smoothly
moving pattern. Reasonably this number5 could be 20, so the maximum
energy would be about 1.1 kHz, assumed to be the same for the 240X system.

Regardless to the momentum kick, the parameters N and R can be ad-
justed to achieve small ∆ω without losses of the pattern motion quality (or
minimizing it).

Tab. 6.1 resumes the accessible momentum and energy ranges for the
experimental set-up implemented during this work and the future optical
system. In Fig. 6.2 the ∆k : ∆ω accessible region is shown.

System 100X 240X
Diffraction limit (DMD frame) 92.5 µm 159 µm

7 pixels 12 pixels

∆k range ( 22 nm−1 − 3.3 µm−1 ) ( 54 nm−1 − 4.6 µm−1 )
Max ∆ν (1.1 − 3.2) kHz (1.1 − 1.9) kHz

Table 6.1: Bragg scattering accessible momentum and energy ranges for the two
optical systems analysed.

The interference patterns described above can be achieved by the DMD
controlled by "DMD Easy". The device control program developed during
this work is able to create a collection of images representing the density-plots
of the function

5A better estimation would require the direct observation of this pattern effects on the
atoms.
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6.1. Stimulated Raman effect and Bragg scattering with a DMD

Figure 6.2: Accessible ∆k − ∆ω region for Bragg scattering.

Int[x, n] = sin2(∆k(x+ n s) ) (6.12)

where ∆k = π/λP is the momentum related the interference pattern, s is
the shifting length and n is the considered frame number (0 ≤ n < N).

These images can be loaded into the DMD Board Memory and projected
in sequence in order to create a moving interference pattern.

Fig. 6.3 shows four frames of a 16 images sequence created to test the
dynamic properties of the DMD and to achieve the moving interference figure.
Comparing the fringes position, the effect of the shifting can be noticed. The
fringes number is 18, therefore about 57 micromirrors are dedicated to create
a single fringe. This allows for the transmission a momentum kick to the
atoms equal to about 0.4 µm−1 with the optical system having an overall
demagnification of 100 or equal to 0.97 µm−1 for a demagnification of 240.
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6. Dynamic patterns applications in Atomic Physics

Figure 6.3: Frames from a sequence for Bragg scattering formed by 16 images. The
frames are the forth, the eighth, the twelfth and the sixteenth of the sequence. The
interference pattern flows from the left to the right. The overall pattern length is
meant on the CCD 1 screen.
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6.2. DMD in quantum computing

6.2 DMD in quantum computing

Quantum computing, which gathers the notions from classical information
theory, computer science and quantum physics, mainly studies theoretical
computation systems that, exploiting quantum-mechanical effects such as
superposition and entanglement, perform operations on data. As classical
digital computers work on data stored into binary digits (bits) which can only
assume values equal to 0 or 1, quantum computers use "qubits" to encode
data. Regardless of the system nature, a qubit is a quantum object which is
able to represent the Boolean states 0 and 1 with a pair of normalised and
mutually orthogonal quantum states, tagged as |0〉 and |1〉. These two states
form a computational basis and any other pure state of the qubit can be
written as a superposition:

|ψ〉 = α|0〉+ β|1〉 (6.13)

with α and β complex numbers such that |α|2 + |β|2 = 1.
A qubit can be represented by different systems: for instance, polarized

photons, nuclear spins or atoms. For Ytterbium atoms, the two states of the
qubits can be implemented thanks to the metastable state 3P0, which can
be considered stable during the experimental cycles and, therefore, seen as a
"second" ground state (see Sec. 1.1).

A collection of n qubits is called "quantum register" (of size n). Infor-
mation can be stored in each of these register components which can be
individually addressed or modified.
Any kind of manipulation on qubits can be represented by unitary operations.
A "quantum logic gate" is a generic device achieving an unitary operation on
selected qubits in a certain period of time. A series of quantum logic gates
performing computational steps, ordered or synchronized in time, constitutes
a "quantum network". Examples of quantum logic gates working on a single
qubit are the Hadamard gate and the phase gate, described in details in
Ekert, Hayden, and Inamori, [21]. Any kind of universal operation made on
a single qubit can be expressed in terms of these two gates.

A quantum register could be implemented by a sample of ultra-cold atoms
trapped in a periodical arrangement of optical dipole potentials, such as an
optical lattice. If the parameters of this system (atoms number and lattice
site depth) are chosen carefully, the Mott insulator phase can be achieved
(see Sec. 1.4) in order to localize one atom per lattice site. This regular
arrangement of the atoms, along with the two stable states (with respect
to the experimental time-scale) of Ytterbium, provides the basis necessary
for the creation of a quantum register: actually distinguishable, coherently
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stored and localized atoms which can be addressed by two different internal
states can be treated as qubits.

"Cold controlled collisions" can then be exploited as basic mechanism to
entangle the neutral atoms states in order to implement a two-qubit quantum
gate in the system described above. A brief report of this method theoretical
background is now presented. For further details, see Jaksch et al., 1999 [44].

Let two atoms – 1 and 2 – in internal states |a〉1 and |b〉2 – tagged "a" and
"b" – be trapped in the ground states ψa,b of two lattice sites described by
Va,b. Initially, at the time t = −τ , the two wells are centered at the positions
x̄a and x̄b, far enough to avoid any interaction between the atoms. Then,
the site positions are moved in order to make the atoms closer so that their
wave packets overlap for a certain time. In the end, they are restored to the
initial position, reached in t = τ . This situation is described by the following
hamiltonian

H =
∑

α=a,b

[

p̂2α

2m
+ Vα( x̂α − x̄α(t) )

]

+ uab(|x̂a − x̂b|) (6.14)

where p̂α and x̂α are the position and momentum operators, respectively,
Vα( x̂α−x̄α(t) ) describes the trap potentials motion and uab is the atom-atom
interaction term.

Therefore, the transformation implemented would be

ψa( x̂a − x̄a(t) )ψb( x̂b − x̄b(t) ) →
→ e−iφ ψa( x̂a − x̄a(t) )× ψb( x̂b − x̄b(t) )

(6.15)

where the atoms stay in the trapping potential ground state ψ and do
not change their internal state (adiabatic limit). The contribution of the
interaction is contained in the phase φ. In the adiabatic limit and in absence
of interaction (uab = 0), the "kinetic phase" can be evaluated as follows

φa,b =
m

2ℏ

∫ τ

−τ

˙̄xa,b(t)
2 dt (6.16)

Whereas, with the presence of the interaction, the additional contribution
to the phase φ can be calculated as

φab =
1

ℏ

∫ τ

−τ
∆E(t) dt (6.17)

where ∆E(t) is the time-dependent kinetic energy shift due to the atom-
atom interaction, expressed by

∆E(t) =
4πasℏ

2

m

∫

∏

α=a,b

∣

∣ψα( x̂α − x̄α(t) )
∣

∣ (6.18)
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6.2. DMD in quantum computing

with as the s-wave scattering length.

In this way, the cold controlled collisions can be used as a coherent
mechanism in order to induce a phase shift in two-atoms collisions. This
method can be exploited to implement a quantum logic gate.
Actually, for example, if the collision were possible only if the first atom 1 is
in the |a〉1 state and the second in the |b〉2, the possible results – depending
on the initial states – of the described process would be

|a〉1|a〉2 → e−2iφa |a〉1|a〉2
|a〉1|b〉2 → e−i(φa+φb+φab) |a〉1|b〉2
|b〉1|a〉2 → e−i(φa+φb) |b〉1|a〉2
|b〉1|b〉2 → e−2iφb |b〉1|b〉2

(6.19)

where the motional states do not vary during the process. Eqs. 6.19
represent the "truth table" of the quantum gate implemented. A truth table
is a matrix containing all the possible outputs of the gate depending on the
initial parameters setting.

In order to create this kind of two-qubit quantum gates, a dynamic lattice
is requested: actually, at a certain time, two adjacent sites have to be able to
get closer, merge and separate again. This moving pattern can be obtained
with the aid of the DMD controlled by "DMD Easy", which can generate a
sequence of frames that simulates the motion of the desired lattice. In each
frame, the density-plot of the function Eq. 6.20 is plotted.

G(x, y) =
1

2

(

A sin2
( π

2λP
x
)

+ (1−A) sin2
( π

λP
x
)

+ sin2
( π

λP
y
)

)

(6.20)

Here the factor A can vary in the range (0, 1), adjusting the mixing
between the first two terms of the function "G".

Fig. 6.4 shows some examples extracted from a sequence of twenty frames
where the parameter A is varied from 0 (standard lattice) to 1 (lattice with
couples of sites are "melted" together) at step of 0.05 for each plot. The
projection time of each images can be chosen via "DMD Easy" and it should
be large enough to allow for the adiabatic approximation. At the end of
the sequence projection, the lattice sites are overlapped in couples. The
projection of the same sequence with the frames order inverted will bring the
system back to the starting conditions.
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Figure 6.4: Frames from a "Gate" sequence. The value assumed by A are: 0 in a),
0.2 in b), 0.4 in c), 0.6 in d), 0.8 in e), 1 in f). The area delimited in red on the
frames shows the evolution of a single quantum gate and the involved lattice sites.
The reported lengths are meant on the CCD 1 screen.
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Summary and outlook

This thesis work analyses and investigates the possibility to employ a Dig-
ital Micromirror Device in atomic physics experiments, where the capability
to control atoms through optical potentials is typically requested. Though
many optical potentials have been implemented by exploiting interference of
multiple laser beams, a tool able to increase the degree of control, both static
and dynamic, of such potentials would be highly desirable. Actually, a DMD is
able to manipulate the intensity profile of an incident laser beam in arbitrary
shapes, providing a powerful tool to create arbitrary optical potentials in order
to trap atoms, control their motion or address their internal state. Moreover,
the DMD offers a simple solution to generate moving and dynamic poten-
tials, still maintaining the freedom of shaping the intensity profile in any form.

During this work, an experimental set-up has been implemented in order
to characterize the device and its properties (e. g. grating behaviour, effects
on the laser polarization and timing features).

Several dithering algorithms have been taken into account for obtaining
images to be loaded into the DMD Memory Board. The "Serpentine Floyd-
Steinberg" error diffusion algorithm has been proven to be the best method
for digitizing the initial image without remarkable loss in terms of visual
fidelity.

"DMD Easy", a program provided with a Graphic User Interface, has
been created and developed entirely throughout this work in order to control
the device and its timing properties. Beyond the possibility of digitizing
raster images, organizing the loaded frames in sorted sequences and setting
the projection timing features, "DMD Easy" is able to perform a feedback
process on the projected patterns for correcting the defects due to the optical
system and the original shape of the laser beam intensity profile.

Static patterns, which play a major role in atomic physics applications,
have been produced and studied with the aid of physical parameters defined
during this work. For instance, Flat-tops and lattices have been projected
and corrected via the feedback algorithm. The former can be used in order
to create a box-like optical potential, while the latter offers the possibility to
build a periodical arrangement of trap potentials.
By using a coherent laser source, the Talbot effect generated by displaying
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periodical patterns has been observed. Generally, this effect is eliminated by
employing superluminescent diodes as light sources. Nevertheless, it could
be exploited in order to achieve at the same time, beyond a trapping lattice,
a confinement of the atoms against the gravity without using any other
trapping potential.

Several dynamic patterns have been tested as well, along with their possi-
ble applications in atomic physics experiments. Thanks to the high degree
of control on timing and shape of the beam that is delivered by the DMD,
stimulated Raman effect and Bragg scattering could be performed using this
system. The energies and momentum kicks accessible ranges are studied as a
function of the device features.
The possibility to exploit a DMD in the field of quantum computation has
been studied as well. Actually, ultra-cold atoms trapped in a deep lattice can
simulate a quantum register. Moreover, dynamic lattices, suitable in order
to create two (or more) qubits quantum gates, have been implemented by
merging adiabatically the lattice sites at couples and then bringing them
back to the initial state, a logic gate can be achieved where the atoms states
(which contain the encoded information) are modified on the basis of the
tunable atom-atom interaction.

In conclusion, this master thesis work proves that Digital Micromirror
Devices are powerful and versatile tools which could be integrated in actual
atomic physics experiments, providing an enhanced degree of control in the
manipulation of atoms through the projection of arbitrary optical potentials.
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