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Abstract

This thesis reports on the experimental investigation of ultracold fermionic
Ytterbium atoms in optical lattices. Ytterbium is a two-electron atom and,
due to its rich electronic structure, it allows the investigation of many dif-
ferent physical phenomena. In particular, it is characterized by a purely
nuclear spin, which is completely decoupled from the electronic degrees of
freedom. This property makes Ytterbium a valuable candidate in the con-
text of quantum simulation. I will mainly focus on how we exploited the
coherent Raman coupling between different nuclear spin states in order to
engineer an artificial magnetic field for ultracold atoms. The nuclear spin
degree of freedom acts as a synthetic dimension that, in addition to a real
one-dimensional optical lattice, gives rise to a synthetic two dimensional
lattice. Since the Raman coupling depends on the particular position of
the atoms in the real one-dimensional lattice, when a particle hops around
a closed loop in this synthetic system it acquires a non-zero phase, which
is reminiscent of the Aharonov-Bohm phase acquired by a charged particle
in a magnetic field. This technique allowed us to experimentally realize
chiral edge states within this ribbon geometry and, for the first time, to
observe skipping-type orbit dynamics, that is a hallmark of quantum Hall
physics.

The optical detection and careful manipulation of the number of spin
components allowed us to study also the behaviour of a one-dimensional
liquid of interacting fermions with a tunable number of spin components,
validating for the first time the prediction that a one-dimensional liquid of
fermions with many spins exhibits properties of a bosonic spinless liquid.

Moreover, in addition to their nuclear spin, two-electron atoms pos-
sesses an excited metastable state that can be addressed with an ultra-
narrow clock laser. Coherent control of Ytterbium clock transition 1S0 →
3P0 in three-dimensional optical lattices has led to the first observation of
fast, coherent spin-exchange oscillations between two 173Yb atoms in dif-
ferent electronic orbitals. These experiments show that Ytterbium, with its
many powerful properties, is a perfect candidate for the realization of a
novel quantum simulator of unique many-body phenomena.
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Introduction

In the last two decades, thanks to the incredible advances in atomic ma-
nipulation through laser light, it has been possible to cool down atomic
gases to the nanokelvin regime, enlighting their quantum nature and re-
alizing degenerate samples, both bosonic [1, 2] and fermionic [3]. These
achievements led to the emergence of the new branch of physics of ul-
tracold atoms, which is characterized by an unprecedented control over
the experimental parameters. In particular, ultracold atoms are perfect
candidates to practically implement the famous idea of R. Feynman [4]
regarding the possibility of engineering a quantum system to simulate,
experimentally, a specific quantum physical phenomenon or theoretical
model. Within this context, the unique development of a tuning knob of
the interactions between the atoms [5] and the realization of optical lat-
tices [6, 7], opened the door to the simulation of condensed-matter models
[8] and led to the investigation of strongly-correlated many-body systems
[9, 10]. Moreover, the realization of artificial magnetic fields for ultracold
neutral atoms [11–15] and the engineering of spin-orbit coupling [16, 17]
opened the door to the study of quantum Hall physics within a control-
lable experimental setup and to the investigation of topological properties
of some paradigmatic condensed-matter models [18–20].

This PhD thesis fits into these last frontiers of quantum simulation,
and it is mainly focused on the realization of a synthetic magnetic field
for a gas of ultracold fermions loaded in an optical lattice. Unlike pre-
vious techniques, based on laser-assisted tunneling [12, 13, 21] or lattice
shaking schemes [18, 20], we use a completely novel approach based upon
the concept of synthetic dimensions [22, 23]. The atom we use in our lab,
fermionic 173Yb, possesses N = 6 spin components in its ground state,
that can be coherently coupled by means of Raman transitions. Inter-
estingly, the mathematical description for this coherent spin system is
completely equivalent to the one describing a particle hopping between
different sites of a one-dimensional lattice. Indeed, the spin components
can be treated as synthetic lattice sites, coherently connected by the tun-
neling given by the Raman coupling. If the atoms are then loaded in a
real one-dimensional lattice, the Raman coupling effectively gives rise to
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Figure 1: 1. A synthetic gauge field in a synthetic dimension. We confine
the motion of fermionic ultracold atoms in a hybrid lattice, generated by an
optical lattice along a real direction x̂ with tunneling t, and by laser-induced
hopping between spin states along a synthetic direction m̂. By inducing a
complex tunneling ΩReiΦj along m̂, the atom wave function acquires a phase
Φ per plaquette, mimicking the effect of a transverse magnetic field B on
effectively charged particles.

a synthetic two-dimensional lattice. In order to realize an effective mag-
netic field in this 2D hybrid lattice, it is sufficient that the phase of the
Raman coupling depends on the particular lattice site in which an atom
sits. In this way, atoms tunneling from different sites will acquire differ-
ent phases giving an effective Aharonov-Bohm phase when the trajectory
forms a closed loop, as it is depicted in Fig. 1. The generated effective
magnetic field is of the order of one flux-quantum per plaquette, corre-
sponding to unreachable magnetic field intensities of thousands of Tesla,
for experiments in solid-state physics. The synthetic dimensions approach
is straightforwardly implemented, without the need of complex super-
lattice potentials or non-trivial lattice driving schemes. Furthermore, the
chosen Raman light, leads to heating effects that are completely negligible
on the timescale of the experiments. Also, the possibility of optically de-
tecting the single spin components (by means of optical Stern-Gerlach or
spin-selective imaging) effectively realizes single-site detection along the
synthetic direction. Another important feature of this hybrid 2D lattice
is the presence of sharp edges, at the border of the spin direction. We
have indeed investigated edge-physics properties and, for the first time,
we have observed, in neutral matter, chiral edge-currents and skipping-
orbit-like trajectories [24, 25], paving the way to the study of quantum-Hall
physics within the highly controllable environment of ultracold quantum
gases.

In this PhD thesis I will also describe how it is possible to exploit
the properties of quantum degenerate Ytterbium (173Yb) Fermi gases [26]
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loaded in optical lattices to pursue the study of many other physical sys-
tems. Unlike alkalis, Ytterbium is a two-electron atom which does not
possess an electronic angular momentum (J = 0) in its ground state and,
in the case of the fermionic isotopes, only a nuclear spin exists, which is
completely decoupled from the electronic degrees of freedom. These pe-
culiar properties have two striking consequences: the first one, is the exis-
tence of a metastable excited state which is connected to the ground state
via an optical clock transition [27–31], bringing Ytterbium in the spotlight
for applications within quantum metrology [28, 32]. This state can also be
used as an additional “orbital” degree of freedom for quantum simuation
applications. This characteristic allowed us to study two-orbital physics, in
particular observing for the first time coherent inter-orbital spin-exchange
oscillations, whose nature is at the basis of some paradigmatic quantum
magnetism lattice model [33–35]. Also, we have very recently observed a
new kind of Feshbach resonance, called orbital Feshbach resonance [36] in
which the scattering properties between atoms in different electronic states
can be tuned by means of an external magnetic field. We studied the hy-
drodynamic time-of-flight expansion of a strongly interacting Fermi gas,
and used the characteristic aspect-ratio inversion to identify the position
of the Feshbach resonance [37, 38].

The second property, connected to the presence of a purely nuclear
spin, is manifested in the physics of collisions. In particular, the interac-
tion between ultracold 173Yb atoms does not depend on the nuclear spin
orientation, giving rise to a high degree of symmetry, called SU(N) sym-
metry [34], where N is the number of nuclear spin components. This
cancels any possible collision-induced spin relaxation mechanism making
the spin component a good quantum number. This property allowed us
to study the role of spin multiplicity in the context of one-dimensional
physics, going beyond the standard solid-state, spin 1/2 case. In particu-
lar, we have investigated the correlations-induced broadening of the mo-
mentum distribution as a function of the number of spin components and
also observed, for the first-time, the predicted [39] high-spin bosonization
phenomena in a multicomponent one-dimensional liquid of fermions.

Thesis overview

This thesis is organized as follows:

• Chapter 1 describes the basic theoretical ingredients necessary to de-
scribe ultracold fermions in optical dipole potentials. Attention will
be given to the description of optical lattices, state-dependent dipole
potentials and the low-energy properties of scattering between ul-
tracold atoms. The fundamental ingredient of the coherent coupling
between internal degrees of freedom, will be introduced.
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• Chapter 2 is devoted to the description of the experimental setup
and of techniques developed to reach quantum degeneracy with the
fermionic 173Yb isotope. We will describe the all-optical procedures
used to detect, manipulate and coherently couple the nuclear-spin
components. Thanks to these, three main experiments have been
performed which will be described in three independent chapters.

• Chapters 3, 4, 5 are at the heart of this PhD thesis and describe
the engineering of an artificial magnetic field in a ribbon geome-
try in which one direction is constituted by the sites of a real one-
dimensional optical lattice and the other direction is encoded in the
coherently coupled nuclear spin components, which can be inter-
preted [22, 23] as an “extra-dimensional” lattice. With this novel
technique it has been possible to observe, for the first time, paradig-
matic phenomena of quantum Hall physics such as chiral edge states
and skipping-orbit-like dynamics [24]. The theory at the basis of
these observations will be reviewed in Chapter 4, where we give a
basic description of quantum Hall physics from a lattice perspective.

These results pave the way to the study of strongly interacting fermi-
ons in a “Hall-ribbon” geometry, allowing the investigation of frac-
tional quantum Hall physics [40–42] and of exotic quantum phases
in neutral matter [43].

• Chapter 6 describes the first experiment performed on the ytterbium
setup, which constitutes the main topic of the PhD thesis of my col-
league G. Pagano [44, 45]. We studied static and dynamic properties
of a one-dimensional liquid of fermions with a tunable number of
spin components. In one dimension the Landau-Fermi liquid model
breaks down and a new description is needed, based on the famous
Tomonaga-Luttinger liquid model [46, 47]. In particular, we stud-
ied the role of spin multiplicity, going beyond the standard two-
components case typical of electrons in condensed-matter physics.

• Chapter 7 mostly regards the second experiment perfomed [48] on
the ytterbium setup, in which we coherently addressed the excited
metastable 3P0 state using an ultra-narrow clock laser developed by
my colleague G. Cappellini during his PhD [49]. We studied the role
of interactions between atoms loaded in a three-dimensional optical
lattice in different nuclear-spin and electronic states. Because of the
symmetry of the two-particles wavefunction, two possibilities exist,
symmetric and anti-symmetric electronic states, which are separated
by an exchange energy. For the first time we observed inter-orbital
spin-exchange oscillations, a fundamental ingredient in the field of
quantum magnetism, in particular for the realization of the paradig-
matic Kondo lattice model [34]. The final part of the Chapter is ded-
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icated to the description of some very recent results [50] regarding
the first observation of a novel kind of Feshbach resonance, called
orbital Fesbach resonance, affecting atoms in different electronic or-
bitals. We identified the position of the resonance by studying the
hydrodinamic expansion of a Fermi gas in the strongly interacting
regime. We also verified the predicted [36] scaling law of the res-
onance position as ∆m −1 in which ∆m = m − m′ is the difference
between two generic spin components out of the F = 5/2 manifold.
This scaling law is a direct manifestation of the SU(N) character of
both the 1S0 and 3P0 states.
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1 | Trapped Fermi gases:
basic tools

This chapter reviews some basic concepts that are common to many atomic
physics experiments. We will start from Section 1.1 where a brief reminder
of the theory of a non-interacting Fermi gas will be given. Next, in Sec-
tion 1.2, we will discuss how to trap and manipulate the atoms in optical
dipole traps. The fundamental tool of the optical lattice will be introduced,
presenting the typical description in term of Bloch bands and Bloch wave-
functions. We will describe also a method to engineer state-dependent
dipole potentials, allowing for the detection and manipulation of the spin
degree of freedom (see Sec. 2.5). On the same line, in Section 1.3, we
will illustrate how to coherently couple the internal degrees of freedom by
means of Raman transitions. Finally, Section 1.4 describes briefly the low-
energy scattering between ultracold fermions enlighting the emergence of
SU(N) symmetry which characterizes our particular atomic species.

1.1 Non interacting Fermi gases in harmonic poten-
tial

Non interacting fermionic atoms are characterized by the Fermi-Dirac dis-
tribution:

F (ε) = 1

e
ε−µ
kBT + 1

(1.0)

which represents the occupation probability of a single particle state with
energy ε at temperature T. In Eq. (1.1) kB is the Boltzmann constant and
µ is the chemical potential which is fixed by the total number of parti-
cles N. At T = 0 the chemical potential coincides with the Fermi en-
ergy, µ(T = 0) = EF. It is useful to introduce also the Fermi wavevec-
tor kF =

√
2mEF/h̄ and the Fermi temperature kBTF = EF, in which

m is the atomic mass and h̄ is the reduced Planck constant. Another
quantity of interest is the fugacity z = exp( µ

kBT ) which is a monotonic
function useful to characterize the degree of quantum degeneracy of the
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gas: for a thermal gas T � TF, z ' 0 and the Fermi-Dirac distribution
approaches the Boltzmann distribution, while for the deeply degener-
ate regime T � TF, z → +∞ and F (ε) tends to the Heaviside function
Θ(EF − ε).

For a gas trapped in a three-dimensional harmonic potential

V(r) =
1
2

m(ω2
xx2 + ω2

yy2 + ω2
z z2) (1.0)

the density of states at energy ε is equal to

g(ε) =
ε2

2(h̄ω̄)3 (1.0)

where we defined the geometric mean trap frequency ω̄ = (ωx ωy ωz)1/3.
Integrating the density of states weighted by the Fermi-Dirac distribution
at T = 0, we get the total number of atoms

N =
∫ ∞

0
g(ε)Θ(EF − ε)dε =

∫ EF

0
g(ε)dε (1.0)

which defines the Fermi energy EF = h̄ω̄(6N)1/3. The fugacity z(N, T)
can be obtained by inverting the following relation numerically:

N =
∫ ∞

0
g(ε)F (ε)dε = −

(
kBT
h̄ω̄

)3

Li3(−z) (1.0)

where Lin(x) is the polylogarithmic function of the order n. Using the
Sommerfield expansion in the low-temperature limit we can write the
chemical potential,

µ(N, T) = kBT log(z(N, T)) ' EF

(
1− π2

3
T2

T2
F

)
(1.0)
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Figure 1.1: Chemical potential (left) and energy per particle (right) for a non-
interacting trapped Fermi Gas. The dotted curves are the low-temperature
approximations.
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and the energy per particle,

E(N, T)
N

= −3k4
BT4Li4(−z)

Nh̄3ω̄3
' 3

4
EF

(
1 +

2π2

3
T2

T2
F

)
(1.0)

which are plotted in Fig. 1.1.

1.1.1 Density and momentum distribution

In order to extract the real space and momentum distributions, a semi-
classical approximation is typically used, which is quite accurate in the
limit of large atoms number N where many single-particle states are occu-
pied [51]. Within local-density approximation (LDA), the number density
in phase space is

f (r, p) =
1

(2πh̄)3
1

eβ
(

p2
2m+V(r)−µ

)
+ 1

. (1.0)

where β = 1/kBT and from which we can obtain the density and momen-
tum distributions by integration in momentum space and position space,
respectively [52]:

n(r) =
∫

dp f (r, p) = − 1
λ3

dB
Li3/2

(
−ze−βV(r)

)
n(p) =

∫
dr f (r, p) = − 1

m3ω̄3
1

λ3
dB

Li3/2

(
−ze−β p2

2m

)
(1.0)

where λdB =
√

2πh̄2/mkBT is the de-Broglie wavelength. An important
observation is that the momentum distribution for an ideal Fermi gas is
isotropic, leading to a correspondingly isotropic expansion when the gas is
released from a harmonic potential. As it is discussed in [45] the column-
integrated 3D momentum distribution is used to fit the column density in
time-of-flight absorption images, in order to extract the ratio T/TF from
the fugacity z through the relation: T/TF = (−6Li3(−z))−1/3.

1.2 Optical Dipole Potentials

It has become experimental routine to produce ensembles of neutral atoms
in the microkelvin regime. It is thus possible to trap the atoms by means
of optical dipole traps that rely on the electric dipole interaction with far-
detuned laser light [7]. In this case the optical excitation is very low and
the radiation force due to photon scattering is negligible as compared to
the dipole force.

When a neutral particle is placed into laser light, the electric field E
induces an atomic dipole moment d proportional to the complex dynamic
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polarizability of the atom α(ω), d = α(ω)E, where ω is the driving fre-
quency. The interaction potential of the induced dipole moment d in the
driving field E is given by:

U(r, ω) = − 1
2ε0c

Re[α(ω)]I(r), (1.0)

where I(r) = 2ε0c|E(r)|2 is the field intensity. The interaction potential is
nothing else than the light shift experienced by the atom in the laser field
and it is proportional to the real part of the polarizability, which describes
the in-phase component of the dipole oscillation [53]. From the gradient
of the interaction potential we can extract the dipole force:

Fdip(r, ω) = −∇U(r, ω) =
1

2ε0c
Re[α(ω)]∇I(r) (1.0)

which is thus a conservative force.
We have to consider also the dissipative processes associated with

light absorption and spontaneous re-emission, which are connected to the
imaginary part of the dynamic polarizability. The absorption can be in-
terpreted in terms of number of photons which are scattered in cycles of
absorption and spontaneous emission processes. The corresponding scat-
tering rate is:

Γsc(r, ω) =
1

h̄ε0c
Im[α(ω)]I(r). (1.0)

In the case of a two-level atom and using the semiclassical approximation
for the atomic polarizability [7] the following expressions are derived for
the dipole potential and the scattering rate in the case of large detunings:

U(r, ω) = −3πc2

2ω3
0

(
Γ

ω0 −ω
+

Γ
ω0 + ω

)
I(r) (1.1)

Γsc(r, ω) =
3πc2

2h̄ω3
0

(
ω

ω0

)3 ( Γ
ω0 −ω

+
Γ

ω0 + ω

)2

I(r) (1.2)

where ω0 is the resonant frequency of the two-level atom and Γ is the
spontaneous decay rate of the excited level.

These formulas can be easily generalized to the case of a multi-level
atom interacting with a far-off resonant laser light1. The dipole potential
and the scattering rate experienced by an atom in a particular electronic

1We are still considering the case in which each level does not possess a magnetic
substructure.
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Figure 1.2: Calculation of the dipole potential experienced by the 1S0 and 3P0
Yb levels using equation (1.2). The green dot indicates the magic wavelength
for which the two light shifts are equal. This will be important in Chapter 7,
where the experiments with the clock transition are discussed.

state |n〉 are given by:

Un(r, ω) = − ∑
m 6=n

3πc2

2ω3
mn

(
Γmn

ωmn −ω
+

Γmn

ωmn + ω

)
I(r)

Γ(n)
sc (r, ω) = ∑

m 6=n

3πc2

2h̄ω3
mn

(
ω

ωmn

)3 ( Γmn

ωmn −ω
+

Γmn

ωmn + ω

)2

I(r)

where ωmn identifies the transition frequency from level |n〉 to level |m〉
with its respective decay rate Γmn. In Fig. 1.2 we show the calculated
dipole potential experienced by an Yb atom in the 1S0 (blue line) and 3P0
(orange line) energy states. The green dot indicates the “magic” wave-
length (one of the many present) for which the two light shifts are equal.
This will be important in Chapter 7, in which experiments involving the
clock transition will be described.

1.2.1 Optical lattices

Optical lattices are a fundamental tool in the context of quantum simu-
lation with ultracold atoms. They permit the realization of real crystals
of light, which emulate the crystalline solid structure in which electrons
move. Such optical structures are experimentally obtained by superimpos-
ing two counter-propagating gaussian laser beams, resulting in the dipole
potential:

V1D(r, z) = V0e
−2 r2

w2(z) cos2(kLz) ' V0 cos2(kLz) +
1
2

mω2
r r2 +

1
2

mω2
z z2 (1.2)
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where V0 is proportional to the intensity of the laser beams and to the
polarizability of the atoms, kL is the laser wavenumber and the quadratic
terms generate an additional harmonic confinement which comes from
the gaussian shape of the laser beams. The depth of an optical lattice is
naturally expressed in terms of the recoil energy ER = h̄2k2

L/2m through
the dimensionless parameter s = V0/ER. The radial and axial trapping
frequencies of the additional harmonic terms are obtained by expanding
the original dipole potential to second order around r = 0 and z = 0. We
express these frequencies in terms of the lattice depth:

ωr =

√
4V0

mw2
0
=

√
4ER

mw2
0

√
s,

ωz =

√
2V0

mz2
R
=

√
2ER

mz2
R

√
s (1.2)

where w0 is the beam waist of the gaussian beams and zR the Rayleigh
range defined as zR = πw2

0/λ. By expanding the co-sinusoidal term in
Eq. (1.2.1) around z = 0, we obtain the harmonic frequency associated to
the single lattice sites created by the interference pattern along the z-axis,
namely:

ω⊥ =

√
2k2

L
m

V0 =
2ER

h̄
√

s. (1.2)

Optical lattices are a versatile and manoeuvrable tool not only to build
perfect periodic potentials but also to tune the dimensionality of the sys-
tem. Indeed by superimposing many counterpropagating beams along
orthogonal directions, it is possible to realize different geometric patterns,
from one-dimensional tubes [44] to three-dimensional simple cubic lat-
tice structures [54]. If the beams intersect at specific angles, more exotic
patterns can be obtained such as triangular lattices [55] or graphene-like
lattices [56]. By neglecting the weak harmonic confinement it is possible to
analytically solve the hamiltonian of an atom in an optical lattice, finding
the energy levels and the eigenfunctions in terms of Mathieu functions.

Bloch bands and Bloch functions

The problem of a single particle in a periodic potential has been exten-
sively studied in the last century in solid state physics [57]. The hamilto-
nian we want to solve is:

H =
p2

2m
+ V0 cos2(kLz), (1.2)

which gives rise to a second-order differential equation that takes the form
of the famous Mathieu equation, ψ′′ + [a − 2q cos(2x)]ψ = 0 where a =
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Figure 1.3: Energy band diagrams for various lattice depths. The dotted lines
indicates the lattice depths in recoil energy unit. Note how the energy levels
flatten out by increasing the lattice depth.

E/ER− s/2, q = s/4 and x = kLz. The solutions of this equation are called
Mathieu functions, have the same periodicity of the lattice and form a
complete orthogonal set. The Bloch wavefunctions are linear combinations
of Mathieu functions and can be written as:

ψn,k(x) = C
(

E(n)(k)− s
2

, − s
4

, x
)
+ i Sign(k)S

(
E(n)(k)− s

2
, − s

4
, x
)

,
(1.2)

where C and S denote the even and odd Mathieu functions respectively
and the coordinate x is expressed in lattice spacing units dL = λL/2. The
energy levels in recoil energy units can be expressed in term of the Math-
ieu characteristic values A[k,−s/4]:

E(n)(k) = A
[

k± 2 Sign (k)
(

n + 1
2
− 1
)

,− s
4

]
+

s
2

, (1.3)

where, in the reduced zone scheme, the + sign refers to odd band index
n and the − sign refers to even band index n, whereas k ∈ (−1, 1] in
units of lattice wavenumber kL. The energy bands for different values of
s are plotted in Fig. 1.3 along with the lattice parameter s. Within this
formalism, it is possible to define a tunneling energy J associated to the
probability of a particle to hop from a site to the nearest-neighboring one.
In a tight-binding approximation [9], this quantity is related to the kinetic
energy of the particle in a given band of index n and it is proportional to
the width of the band itself:

J(n) =
|E(n)(1)− E(n)(0)|

4
(1.3)

In the case of a 3D lattice, formed by three orthogonal retro-reflected
beams, the hamiltonian is separable and the energy spectrum can be com-
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band gap opens.

puted simply by adding the energies along each direction:

E(nx ,ny,nz)(k) = E(nx)(kx) + E(ny)(ky) + E(nz)(kz). (1.4)

If the lattice depth is equal along the three directions, the first excited band
is threefold degenerate and consists of the sum of two lowest energy 1D
bands and one first-excited 1D band. While in 1D the energy gap between
the fundamental and the first excited band opens as soon as s > 0, in 3D
the band gap only opens for lattice depths larger than V0 ' 2.2ER. This is
illustrated in Figure 1.4.

In the experiments we will describe in the following chapters, the
atoms are loaded in the lowest band of the optical lattice. An equilibrium
state is prepared by adiabatically ramping up the intensity of the lattice
beams, using an exponential ramp, to avoid Landau-Zener tunneling pro-
cesses towards the excited bands. A fundamental observable is the lattice
momentum distribution (Fig. 1.5, see Chapter 5), directly related to the
population in the various Bloch bands. The lattice beams are switched off
adiabatically with respect to the inverse of the band gap, but faster than
the external trap period (band mapping, [54, 58]). With this technique we
map the lattice momentum onto the atomic velocity distribution, that is
directly measured by standard time of flight absorbtion imaging. For ex-
ample, in Fig. 1.5 we show the quasimomentum distribution of a Fermi gas
occupying uniformly the first Brilluoin zone corresponding to the lowest
energy Bloch band. The square shape reflects the simple cubic geometry
of our 3D optical lattice.
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Figure 1.5: False-color time-of-flight image of the lattice momentum distri-
bution of spin-polarized fermions in a 3D optical lattice at sx = sy = sz = 30.
With Nat = 2 · 104 and ω̄ ' 2π × 50 Hz, only the lowest band is populated.

1.2.2 Tight-binding approximation

When the lattice depth s increases, the atomic wavefunction becomes more
and more localized in a single lattice site so that the description in terms
of delocalized Bloch waves is not convenient anymore. It is useful to intro-
duce the Wannier states (see Fig. 1.6) which, in the one-dimensional case,
can be written as Fourier transform of Bloch waves [9]:

wn(z− ldL) = A
∫ kL

−kL

e−i(kldL+θn,k)ψn,k(z)dk (1.4)

in which A is a normalization constant, l is an integer number whereas
θn,k comes from the fact that the Bloch waves are defined up to a phase
factor. Because of this phase factor, the definition of the Wannier functions
is not unique, but depends on the particular set θn,k. The ambiguity can
be solved by choosing the phase factors that give rise to the maximally
localized Wannier functions [59] which minimize the variance

∆x2 =
〈
wn(x)|x2|wn(x)

〉
− (〈wn(x)|x|wn(x)〉)2 (1.4)

and form a complete set of localized states. Wannier functions referred to
different bands and lattice sites respect the orthogonality relation
〈wn(x− ldL)|wn′(x− l′dL)〉 = δn,n′δl,l′ . For a separable potential, the exten-
sion to the 3D case is trivial:

wnx ,ny,nz(x, y, z) = wnx(x)wny(y)wnz(z) (1.4)

which represents localized wavefunctions that collapse onto the harmonic
oscillator eigenfunctions when the lattice depth tends to infinity. However,
we note that the Wannier functions are not eigenfunctions of the lattice
Hamiltonian (1.2.1), since they are linear combinations of Bloch wavefunc-
tions.
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Figure 1.6: Wannier functions. (a) s = 5. (b) s = 30. Solid blue lines are the
absolute squared values of the Wannier functions while the green dashed
lines are the absolute square values of the harmonic oscillator eigenfunctions
with h̄ω = 2

√
sER. The red dashed line represent the lattice potential.

The Wannier functions are very useful in the second-quantization for-
mulation of the lattice Hamiltonian. Indeed, in the tight-binding approx-
imation, it is convenient to expand the fermionic operators in terms of
Wannier states:

ψ̂†
m(r) = ∑

j
w(r− rj)ĉ†

j m (1.4)

where m is a spin index, ĉ†
j m is the fermionic operator creating a particle

at site rj and the single band approximation has been assumed, for which
wn = w1 ≡ w(r− rj). The Hamiltonian in second-quantization takes the
form:

Ĥ =∑
m

∫
dr ψ̂†

m(r)

[
− h̄2

2m
∇2 + Vext(r)

]
ψ̂m(r)

+
1
2 ∑

m,m′

∫
drdr′ψ̂†

m′(r
′)ψ̂†

m(r)Uint(r, r′)ψ̂m(r)ψ̂m′(r′)

in which Vext and Uint are the lattice and interaction potentials respectively.
Using the expansion of Eq. (1.2.2), the above Hamiltonian becomes:

Ĥ = −∑
i,j

tij ĉ†
im ĉjm + Uint ∑

j,m<m′
ĉ†

jm ĉ†
jm′ ĉjm′ ĉjm (1.3)

where tij describes the hopping from site rj to site ri. Since the Wannier
wavefunctions are well localized in each lattice site, we can consider hop-
ping between neighboring sites, rj → rj ± u · dL in which u is a unit vector.
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Figure 1.7: Tunneling and interaction energies. (a) Tunneling energy be-
tween nearest-neighbor sites as a function of the lattice depth. The green line
refers to atoms occupying the fundamental lattice band whereas the blue
lines refers to atoms occupying the first excited lattice band. (b) On-site in-
teraction as a function of the lattice depth, for two 173Yb atoms occupying
the fundamental lattice band.

The tunneling energy then becomes:

t =
∫

dr w∗(r)

[
− h̄2

2m
∇2 + Vext(r)

]
w(r + u · dL) (1.3)

which is plotted in Fig. 1.7a in case of a one-dimensional optical lattice at
various lattice depths. Also, since we are in the ultracold regime, we can
assume a two-body contact interaction (see Sec. 1.4) in order to obtain an
on-site interaction energy2 between fermions with different spins:

Uint =
4πh̄2a

m

∫
dr|w(r)|4 (1.3)

in which a is the s−wave scattering length. In Fig. 1.7b we plot the value
of Uint as a function of the lattice depth in the case of two 173Yb atoms
interacting with a scattering length a = 200 a0.

1.2.3 State dependent dipole potentials

Everything we described so far assumes that the frequency of the laser
used to generate the optical dipole potential is far-detuned from the 173Yb
atomic transitions. In particular, when this condition is satisfied, the light
shift experienced by atoms in the ground state is indipendent of the par-
ticular spin component mF (where F = 5/2 for 173Yb in the 1S0 state).

2This formula is valid for weak interactions, when a � aho where aho is the harmonic
oscillator length associated to a single lattice site. In the opposite limit, a new model must
be introduced [60] taking into account the modification of the lattice wavefunctions due to
the strong interactions.
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Figure 1.8: Hyperfine structure of the 1S0 → 3P1
173Yb transition.

When instead the laser frequency detuning with respect to a particu-
lar transition is comparable or even smaller than the hyperfine splitting
(|δL| . ∆HFS), the proper excited energy level substructure must be consid-
ered. Equations (1.2),(1.2) are indeed approximate limits of the complete
expressions3:

Un(r, ω, q) = − ∑
n 6=m

3πc2

2ω3
mn
|Cmn(q)|2

(
αJ J′Γmn

ωmn −ω
+

αJ J′Γmn

ωmn + ω

)
I(r)

Γ(n)
sc (r, ω, q) = ∑

m 6=n

3πc2

2h̄ω3
mn

(
ω

ωmn

)3

|Cmn(q)|2
(

αJ J′Γmn

ωmn −ω
+

αJ J′Γmn

ωmn + ω

)2

I(r)

in which the transition strengths, defined as the absolute square of the
Clebsch-Gordan coefficients |Cmn(q)|2, the dependence on the light polar-
ization state q = (1, 0,−1) in spherical basis, and the multiplicity factor
αJ J′ = (2J′ + 1)/(2J + 1) appear [61].
The Clebsch-Gordan coefficients related to a particular transition |n〉 =
|γJFmF〉 → |m〉 = |γJ′F′mF + q〉, in which |n〉 and |m〉 are two states with
well-defined electronic, hyperfine and spin-projection quantum numbers,
are given by:

Cmn(q) = (−1)2F′+J+I+mF

×
√
(2J + 1)(2F + 1)(2F′ + 1) (1.3)

×
{

J J′ 1
F′ F I

}(
F′ 1 F

(mF + q) q −mF

)
3The term Γmn = ω3

mn
3πε0 h̄c3

2J+1
2J′+1 |〈J||d||J

′〉|2 gives the possibility of calculating the reduced
dipole matrix element between two fine-structure states J, J′.



19 1.3. Raman transitions

-5/2 -3/2 -1/2 +1/2 +3/2 +5/2

-2 0 2 4 6 8
-100

-50

0

50

100

δ7/2/2π[GHz]

lig
h

t 
sh

if
t 

[H
z]

2 0 2 4 6 8
0.000

0.005

0.010

0.015

sc
at

te
ri

n
g 

ra
te

 [
H

z]

δ7/2/2π[GHz]

Figure 1.9: State-dependent potential (left) and scattering rate (right) expe-
rienced by the 1S0 state in the presence of 556 nm light. The plot is made
versus the detuning δ7/2 = ω7/2 − ω from F = 5/2 → F′ = 7/2 resonance.
The peak intensity is I = 1 mW/cm2 and the polarization is σ−.

where the arrays enclosed in curly brackets and round brackets denote
respectively the 6j-symbol and the 3j-symbol [61]. The dependence of
Cmn(q) on mF and q results in different line strengths characterising each
of the transitions within the magnetic substructure of a dipole transition.

In this subsection we consider the specific case of a radiation whose fre-
quency is close to the 1S0 → 3P1 transition resonance. In Fig. 1.8 we report
the hyperfine structure of the 3P1 energy level which splits into three sub-
levels with total angular momentum F′ = 3/2, 5/2, 7/2. Assuming no ex-
ternal magnetic field, we can calculate the light shift and the scattering rate
experienced by each spin component mF in the 1S0 state, when exposed
to 556 nm radiation. In Figure 1.9 we plot the calculated light shift and
scattering rate as a function of the detuning from the F = 5/2→ F′ = 7/2
cycling transition. We used σ− polarized light (q = −1) and an intensity
I = 1 mW/cm2. We can see that, by approaching δ7/2 = ω7/2 − ω = 0
from the left, the dependence of the light shift on the particular spin state
increases, in particular it is higher for the mF = −5/2 state which expe-
riences the strongest Clebsch-Gordan coefficient. In Section 2.5.2 we will
describe how to use this radiation in order to implement an “optical Stern-
Gerlach” detection technique.

1.3 Raman transitions

The simplest system in which a Raman transition may be driven is the
three-level Λ-configuration system, illustrated in Fig. 1.10. Two long-lived
ground states are coupled via a radiative upper state which, because the
single photon detuning is sufficiently large, is never significantly popu-
lated [62]. We call |e〉 the excited state and |g1〉, |g2〉 the two ground states,
corresponding to the atomic resonance frequencies ω01 and ω02 respec-
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Figure 1.10: Three-level Λ−configuration scheme. |g1〉 and |g2〉 are coupled
resonantly via a two-photon process.

tively [61]. Considering a total electric field:

E(r, t) = ε1E01 cos(k1 · r−ω1t) + ε2E02 cos(k2 · r−ω2t), (1.2)

we can write the free atomic Hamiltonian into the rotating frame of the
laser field as:

ĤA =
p̂2

2m
+ ∆1|g1〉〈g1|+ ∆2|g2〉〈g2|, (1.2)

where ∆1 = ω1 − ω01 and ∆2 = ω2 − ω02 are the detunings with respect
to the corresponding transitions. Considering Eq. (1.3), we can write the
Hamiltonian of the three-level atom interacting with the electric field in
rotating-wave approximation (RWA) [61] as:

ĤI =
h̄
2

[
Ω1eik1·rσ̂†

1 + Ω∗1e−ik1·rσ̂1

]
+

h̄
2

[
Ω2eik2·rσ̂†

2 + Ω∗2e−ik2·rσ̂2

]
, (1.2)

where σ̂i = |gi〉〈e| is a lowering operator and h̄Ωi = −〈e|d|gi〉 · E0i(r) is
the single-photon Rabi frequency. Choosing the ansatz |Ψ〉 = ψg1 |g1〉 +
ψg2 |g2〉 + ψe|e〉, we can impose ∂ψe/∂t = 0 if the detunings ∆1, ∆2 are
sufficiently large (adiabatic approximation), obtaining:

ψe(t) =
Ω1

2∆
ψg1(t) +

Ω2

2∆
ψg2(t), (1.2)

where we defined ∆ = (∆1 + ∆2)/2 assuming |∆1 − ∆2| � ∆, namely that
the two frequency detunings are nearly equal, and we supposed p2/2m�
h̄|∆|. Plugging Eq. (1.3) in the Schrödinger equation (HA + HI) |Ψ〉 =

ih̄ ∂|Ψ〉
∂t leads to a two-level effective Hamiltonian with coherent couplings
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between the ground states:

ĤR =

 p̂2

2m
+ U1

h̄ΩR

2
eiqR·r

h̄Ω∗R
2

e−iqR·r p̂2

2m
+ U2 − δR

 , (1.2)

where qR = 2kR ≡ k1 − k2 is the momentum acquired by the atom
that undergoes a “spin-flip” process from |g1〉 to |g2〉, δR = ∆1 − ∆2 =
(ω1 − ω2) − (ω01 − ω02) is the detuning with respect to the two-photon
resonance and

ΩR =
Ω1Ω∗2

2∆
, Uα =

|Ωα|2
4∆

, (1.2)

are respectively the effective two photon Rabi frequency and the light shift
on |gα〉 with α = 1, 2. Assuming ΩR real and choosing a reference frame
such that kR · r = kRx, it is particularly useful to express the Raman Hamil-
tonian in terms of Pauli matrices:

ĤR =
p̂2

2m
1̂ +

h̄ΩR

2
[
σ̂x cos(2kRx)− σ̂y sin(2kRx)

]
+

δ′

2
σ̂z (1.2)

where we inserted the differential light shift in δ′ = δR − (U2 −U1). it is
worth noting that by applying the gauge transformation Û = eikR x̂σ̂z we
obtain:

Ĥ′R = ÛĤRÛ† =

 (p− h̄kR)
2

2m
+

δ′

2
h̄ΩR

2
h̄Ω∗R

2
(p + h̄kR)

2

2m
− δ′

2

 (1.2)

which can be rewritten in terms of the Pauli matrices as:

ĤR =
(p1̂− h̄kRσ̂z)2

2m
+

δ′

2
σ̂z +

ΩR

2
σ̂x. (1.2)

This simple Hamiltonian features a uniform time-constant vector potential
[63] along one direction qÂ = h̄kRσ̂z and provides the same non-trivial
dispersion relation of a particle subjected to equal Rashba-Dresselhaus
spin-orbit coupling and an external magnetic field [64, 65]. Recently, it
has been implemented for both Bose-Einstein condensates [16] and de-
generate Fermi gases [17, 66]. This simple scheme, with the addition of
an external magnetic field gradient, led to the generation of an artificial
magnetic field for neutral atoms [11], which is the main topic of this PhD
thesis.

1.4 Interactions in ultracold quantum gases

Due to the low-density character of ultracold atoms samples, most of the
scattering properties are related to two-body collisions [67–69]. The inter-
atomic interaction is described by a central potential V(r), which at large
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distances takes the typical attractive form −C6/r6 and at short distances,
on the order of a few Bohr radii a0, can be treated as an hard-core repul-
sive potential. This is only an approximation because the exact inclusion of
the interatomic potential in the description of the gas would be extremely
difficult. However, the samples we are dealing with are ultracold and ul-
tradilute, which implies that both the de Broglie wavelength λdB and the
interparticle separation n−1/3 ∼ 5000− 10000 a0 are much larger than the
range of the interatomic potential r0, which is of the order of the van der
Waals length r0 ∼ (2µC6/h̄2)1/4 ∼ 150 a0 for 173Yb. As a result, scattering
processes never explore the fine details of the short-range scattering poten-
tial and the entire collision process can be described by a single quantity,
the scattering length a.

We start from the Schrödinger equation for two colliding atoms, writ-
ten in the center of mass frame. The relative wavefunction satisfies:

(∇2 + k2)Ψk(r) = v(r)Ψk(r) with k2 =
2µE
h̄2 and v(r) =

2µV(r)
h̄2 (1.2)

where µ = m/2 is the reduced mass. At large distance from the scattering
potential, the relative wavefunction is given by the sum of an incoming
plane wave plus an outgoing scattered wave:

Ψk(r) ∼ eik·r + f (k, k′)
eikr

r
for r → ∞ (1.2)

where f (k, k′) is the scattering amplitude for scattering an incident plane
wave with wave vector k into the direction k′. Since we are considering
elastic collisions, |k| = |k′|.

The potential we are dealing with has spherical symmetry so we can
expand the scattered wavefunction into partial waves with angular mo-
mentum l [69]. In the limit of ultracold collisions, it is sufficient to consider
the scattering processes at low momenta k � 1/r0 and, in the absence of
resonance phenomena (e.g. shape resonances [68] or a Feshbach Reso-
nance [5]) for l 6= 0, s-wave scattering l = 0 dominates over all other
partial waves (in case Pauli principle allows it):

f ' f0 =
1

2ik
(e2iδ0 − 1) =

1
k cot δ0 − ik

(1.2)

where f0 and δ0 are the s-wave scattering amplitude and phase shift re-
spectively. For low momenta, we may expand k cot δ0 to order k2:

k cot δ0 ' −
1
a
+ reff

k2

2
(1.2)

which defines the scattering length

− lim
k→ 0

tan δ0

k
= a, (1.2)
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and the effective range reff of the scattering potential, which, for van der
Waals potentials, is of the order of r0 [70]. We can thus rewrite the scatter-
ing amplitude f as [71]:

f (k) =
1

− 1
a + reff

k2

2 − ik
. (1.2)

In the limit k|a| � 1 and reff . 1/k, f becomes momentum-independent
and equals −a. For k|a| � 1 and reff � 1/k, the scattering amplitude is
f = i/k and the cross section for atom-atom collisions is σ = 4π/k2. This
is the so-called unitarity limit in which the details of the scattering process
become completely irrelevant and the only length scale of importance is
the interparticle distance n−1/3.

At really low temperature the de Broglie wavelength of the colliding
particles is much larger than the finite range r0 of the potential and it is
possible to introduce a much simpler description of the scattering event
based upon the concept of a “pseudo-potential” [72]. The idea is to in-
troduce an easy-to-treat artificial potential that still reproduces the cor-
rect s-wave scattering. It can be demonstrated that the right form for the
pseudo-potential, in the limit kreff � 1 is:

V̂(r) = g δ(r)
∂

∂r
(r·), (1.2)

with the coupling constant g = 4πh̄2a/m.

1.4.1 SU(N)-symmetric interactions

The importance of SU(N) symmetry in fermionic system goes beyond the
research on ultracold gases. For instance, in particle physics the theory
of quantum chromodynamics (QCD) contains two kinds of SU(3) groups
[73]. In the field of nuclear physics, the SU(6) group has also been con-
sidered as a candidate to unify the description of baryons and mesons
into a single group [74]. The SU(N) symmetry can also have remarkable
consequences in condensed-matter physics, in particular in the context of
quantum magnetism [34, 75].

In order to understand how the SU(N) symmetry emerges at ultracold
temperatures we have to generalize the pseudo-potential (1.4) to spin-F
fermions where F = J + I is the sum of the electronic and nuclear total
angular momenta which, in the case of 173Yb in the 1S0 state, equals to
F = 5/2. The generalized form must be [76]:

V̂(r) =
2F−1

∑
even Ftot=0

4πh̄2aFtot

m
δ(r)

∂

∂r
[r·] P̂Ftot (1.2)



1. Trapped Fermi gases: basic tools 24

where P̂Ftot is the projector onto two-particle states with total spin equal
to Ftot = 0, 2, .., 2F − 1. Due to the symmetry of the relative wavefunc-
tion under the exchange of two fermionic particles, only the even Ftot
values are possible in s-wave collisions. Hence it follows that bF − 1c
scattering lengths are needed to describe the interaction between spin-
F fermions. Roughly speaking, the dependence of the s-wave scattering
lengths a0, ..., a2F−1 on the total angular momentum Ftot comes from the
possible arrangements the electronic shells of the colliding atoms can as-
sume. Since in the case of ytterbium and of the other Alkaline-Earth and
Alkaline-Earth-like atoms, the total electronic angular momentum is zero
in the ground state, the influence of nuclear spins on the scattering pro-
cess reduces simply to the Pauli exclusion principle, and all the scattering
lengths aFtot are equal. As a consequence, the interaction Hamiltonian
will be invariant under transformations belonging to the SU(N = 2F + 1)
group [73]. This means that the spin projection mF of each fermion is
individually conserved preventing any possible spin-relaxation mecha-
nism. A remarkable experimental consequence is that all the prepared
spin mixtures are stable against collisions. This will be important in Chap-
ter 6 where a multi-component one-dimensional liquid of fermions is de-
scribed.
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This chapter illustrates the experimental apparatus and the procedures
adopted to trap and cool atomic ytterbium down to quantum degeneracy.
We will then focus on the optical techniques used to manipulate the nu-
clear spin components, giving the emphasis to the optical Stern Gerlach
detection scheme and to the optical pumping procedures.

In section 2.1 we outline the principal chemical and physical properties
of atomic ytterbium, in particular the electronic level structure with the
experimentally relevant optical transitions and the scattering properties in
the ultracold regime. In section 2.2.1 we describe the essential features
of the vacuum apparatus, evidencing peculiarities such as the in-vacuum
Fabry-Perot cavity and the high-optical-access glass cell. In section 2.3, the
different laser setups will be briefly described, with reference to their role
in the experimental procedure. Section 2.4 is devoted to the description of
the overall experimental steps which lead to the realization of a degenerate
Fermi gas. Finally, in section 2.5, we outline the nuclear spin detection and
manipulation techniques used to initialize the atomic spin distribution.

2.1 Ytterbium: fundamental properties

Ytterbium is a rare earth metal, strongly diamagnetic and whose elec-
tronic configuration in its fundamental state is [Xe]4 f 14s2. Its atomic mass
is 173.04 u. The melting and boiling points are 824 ◦C and 1196 ◦C respec-
tively. Due to the high atomic number Z = 70 it possesses many stable
isotopes [77], both bosonic and fermionic, as it is illustrated in Table 2.1.

Due to the presence of two electrons in the valence shell, the ytterbium
electronic level structure reproduces the typical structure of alkaline-earth
elements, which in turn partially resembles the one of Helium. This struc-
ture can be divided in terms of the total electronic spin, which can assume
two values: S = 0 singlet states, or S = 1 triplet states. In Figure 2.1
we report the energy level scheme, with the optical transitions used in
the experiment. The transition 6s2 1S0 → 6s6p 1P1 is dipole allowed, has
a linewidth of Γ = 2π · 29.1 MHz corresponding to a lifetime of about
5.5 ns and a saturation intensity of Is = 60 mW/cm2 [78]. It is used in

25



2. The Ytterbium Machine 26

Table 2.1: Ytterbium isotopes properties

Isotope Relative abundance (%) Nuclear spin Statistics
168Yb 0.13 0 bosonic
170Yb 3.05 0 bosonic
171Yb 14.3 1/2 fermionic
172Yb 21.9 0 bosonic
173Yb 16.12 5/2 fermionic
174Yb 31.8 0 bosonic
176Yb 12.7 0 bosonic

the Zeeman Slower cooling stage (see next Sections) and in the imaging
stage. The transitions towards the triplet states 3P0, 3P1, 3P2 are called in-
tercombination transitions because they connect states with different spin
multiplicity (∆S 6= 0) and they are forbidden in the pure LS−coupling pic-
ture. However, a significant mixing between the 1P1 and the 3P1 states is
caused by the spin-orbit interaction, which is a direct manifestation of the
high atomic number Z of ytterbium. The transition 6s2 1S0 → 6s6p 3P1 has
a linewidth Γ = 2π · 182.4 kHz, corresponding to a lifetime of 850 ns and
a saturation intensity of Is = 0.14 mW/cm2 [78]. It is perhaps the most
important transition in the context of this thesis, since it is exploited for
the MOT cooling stage, for the spin manipulation and detection schemes
and for the engineering of the Raman coupling between the spin com-
ponents. The transition 6s2 1S0 → 6s6p 3P0 would be stricly forbidden
(J = 0 → J′ = 0), but the hyperfine interaction for the fermionic isotopes
between the 3P states, originating from the non-zero nuclear magnetic mo-
ment, indirectly enables a decay from the 3P0 to the ground state. This
transition connects the ground state to the metastable state 3P0 and has a
calculated linewidth of about Γ ' 2π · 10 mHz [79, 80], corresponding to
a lifetime of 20 s. In order to address this transition, an ultra-narrow laser
has been built [49, 81].

The s−wave scattering processes between ground state atoms have
been deeply characterized in [82]. Thanks to two-colour photoassocia-
tion spectroscopy on the 1S0 → 3P1 transition, the scattering lengths for
all isotope combinations have been precisely determined. The measured
s−wave scattering lengths are summarized in Table 2.2, in which the large
variety of abundant isotopes and available interaction strengths highlights
how ytterbium is particularly suitable also in the context of many-body
physics with ultracold mixtures [83, 84].

In the next sections we will illustrate the experimental apparatus and
the procedures adopted to trap and cool atomic ytterbium down to quan-
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Figure 2.1: Yb energy level scheme with the relevant optical transitions.

tum degeneracy and to optically manipulate and detect the nuclear spin
components.

Table 2.2: Ytterbium scattering lengths in a0 units [82]

168Yb 170Yb 171Yb 172Yb 173Yb 174Yb 176Yb
168Yb 252 117 89 65 39 2 -359
170Yb 64 36 -2 -81 -518 209
171Yb -3 -84 -578 429 142
172Yb -600 418 200 106
173Yb 200 139 80
174Yb 105 54
176Yb -24

2.2 Experimental Setup

The experimental apparatus has been extensively described in [45, 85, 86].
With respect to the previous references, some modifications have been
introduced, especially in the locking scheme for the green transition. Here
we will briefly recap the main components of the system.
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2.2.1 Vacuum system

The vacuum apparatus is shown in Fig. 2.2. A sample of Ytterbium chunks
in natural isotopes composition is heated up in an oven at a mean tempera-
ture of 525◦C (1). Its vapor pressure (about 10−2 Torr) generates an atomic
beam which is collimated thanks to a square array of 100 small tubes, 1
cm long and with internal diameter of 0.2 mm. In this region, an ion
pump 20 l/s Varian Starcell is present (3) which executes a first pumping
stage. After this, a second ion pump 20 l/s Varian Starcell (3) performs
a second pumping stage which contributes to the efficiency of differential
pumping between the oven and the MOT region. The atoms pass through
two small tubes (6) with lengths 8 and 10 cm, respectively, and with inter-
nal diameter 5 mm, placed before and after the second ion pump. Here
a compressed-air shutter (4) to block the atomic beam and a VAT-48124
UHV gate valve (7) are present. This valve is necessary to separate the
UHV region (10−11 Torr), implemented by the 55 l/s Varian Starcell (14),
from the oven region (10−7 − 10−10 Torr). The atoms then travel along the
Zeeman Slower (8) where they are slowed down from thermal velocity (∼
340 m/s) to a few tens of m/s (see section 2.4.1) in order to be captured
in a magneto-optical trap (MOT, see section 2.4.2). The compensation coil
(10) extinguishes the residual magnetic field of the Zeeman slower in the
MOT chamber.

The MOT is implemented with two, water-cooled, anti-Helmoltz coils
(12) (for details see Ref. [86]) mounted on a AISI L316 stainless steel oc-
tagonal chamber (9). The chamber features seven CF40 flanges on the
horizontal plane: one is used to attach the MOT chamber to the Zeeman
slower; the four flanges at 45◦ degrees with respect to the atomic beam
axis are used for the horizontal MOT beams; the two flanges orthogonal
to the atomic beam axis are used respectively as input window for the op-
tical transport beam and to connect to the glass cell (11). Finally, there is a
CF63 flange on the atomic beam axis towards the cross connecting to the
55 l/s Varian Starcell ion pump (14). Moreover, the MOT chamber has two
CF100 flanges on the vertical direction, both with a CF40 window in the
center. The upper CF100 flange has two metallic supports to implement
an in-vacuum optical cavity (see section 2.2.2) along the axis of two of the
four CF16 windows in the horizontal plane of the MOT chamber (see Fig.
2.10). To further improve the vacuum a titanium sublimation pump (TSP)
(13) is present too. The pressure is measured with an Ion Gauge UHV-24P
Bayard-Alpert (15). The input window (17) of the Zeeman slower beam
(18) is made of sapphire and it is kept at a temperature of about 250 ◦C to
avoid atom deposition which could lower the transmissivity.
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Figure 2.2: 1) Oven. 2) UHV valve. 3) Ion pumps for differential pumping
(20 l/s each). 4) Compressed air shutter for atomic beam. 5) UHV valve. 6)
Differential pumping tubes (not shown). 7) VAT UHV gate-valve. 8) Zeeman
Slower. 9) MOT chamber. 10) Compensation coil. 11) Glass cell. 12) MOT
coils. 13) Titanium sublimation pump (TSP). 14) Ion pump for MOT chamber
(55 l/s). 15) UHV Gauge, mod. Bayard-Alpert, Varian UHV-24p. 16) UHV
Valve. 17) Sapphire window with bellow. 18) Slowing beam at 399 nm.

2.2.2 In-vacuum optical cavity

Inside the MOT chamber we mounted an in-vacuum optical cavity [87]
to trap and pre-cool the atoms before being transported in the glass cell
(see section 2.2.3). The Fabry-Perot cavity is held by two metallic sup-
ports screwed down in the CF100 upper flange of the MOT. The supports
hold two spherical mirrors with a radius of curvature rc = 2 m, diameter
d = 6.35 mm and thickness 2.3 mm. The outer side of the mirrors is AR
coated while the inner side has a reflectivity R = 99.8%, which results in
a theoretical finesse of F ' 1570. The fixed cavity length is L = 9 cm,
leading to a free spectral range FSR= 1.67 GHz. The geometry chosen for
the cavity results in a w0 = 300 µm waist which, along with a measured
finesse of F ' 1850, leads to a trap depth of V0/kB ' 800 µK & 10 TMOT

with an incident power of Pin = 1.8 W.

2.2.3 The glass cell

Another crucial feature of this experimental apparatus is the presence of
a high-optical-access glass cell where the atoms are transported for a dis-
tance of 26 cm by means of an optical translation stage (see section 2.4.4).
Our glass cell is manufactured by HELMA ANALYTICS. The external di-
mensions are (60× 60× 18) mm (see Fig. 2.3). Each face is 5 mm thick
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Figure 2.3: 3D model of the glass cell.

leading to internal dimensions of (50× 50× 8) mm. The reduced thick-
ness in the vertical direction (9 mm between the center and the outer face)
comes from the future implementation of a high-numerical-aperture ob-
jective with a small working distance [88–91]. The glass cell features a
glass-metal junction which leads to a CF40 flange that is attached to the
MOT chamber.

2.3 Laser setup

All the relevant atomic transitions of Ytterbium are in the visible range
(578 nm, 556 nm, 399 nm). Unfortunately, high-power, narrow-linewidth
lasers directly emitting at these wavelengths are not commercially avail-
able, and a convenient way to produce such radiations is to use second
harmonic generation (SHG) starting from commercial infrared high-power
lasers (except for the 578 nm radiation for which a 1156 nm low-power
quantum dot is used, [81]). The scheme adopted in our lab is to use bow-
tie cavities to enhance the efficiency of the frequency-doubling process. In
this section, we first outline the laser systems necessary to address res-
onantly atomic Ytterbium transitions at 399 nm and 556 nm1. Then we
describe the implemented laser setups which generate the far-off resonant
dipole traps at 1064 nm and the optical lattices at 759 nm.

2.3.1 Laser systems at 399 nm and 556 nm

Laser radiation at 399 nm is used both to slow down the atomic beam in
the Zeeman slower and to perform absorption imaging (see [45, 85, 86])

1The laser system at 578 nm will be extensively described in the PhD thesis of my
colleague, G. Cappellini [49, 81].
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Figure 2.4: Laser setup for SHG from 798 nm to 399 nm. The input coupler
(M1) reflectivity is r1 = 99 % at 798 nm. The other mirrors (M1, M2, M3) have
99.9 % reflectivity at 798 nm. The beam waist at the center of the crystal is
w0 = 30 µm. Attached to M2, a piezo stack (PZT) changes the cavity length
according to the Hansch-Couillaud error signal (PID).

addressing the 1S0 → 1P1 Yb strongest transition. A fiber-coupled tapered-
amplifier laser-diode system TOPTICA TA PRO delivers 1.1 W of 798 nm
radiation, which is used to inject a Lithium-Triborate (LBO) non-linear
crystal, 15 mm long, cut for type-I phase matching and stabilized at a
temperature of 55 ◦C (see Fig. 2.4). The LBO is placed in a bow-tie cavity
where the second-harmonic generation takes place. The cavity is formed
by two plane mirrors M1 and M2 and two curved mirrors M3 and M4 with
radii of curvature rc = 60 mm and rc = 100 mm respectively. The cavity
has a free spectral range (FSR) FSR = 749 MHz and a finesse F ∼ 100.
The cavity length is locked to resonance by means of the Hansch-Couillaud
technique [92], acting on a piezoelectric stack (PZT) mounted behind one
of the cavity mirrors (M2). We obtain a stable output of 550 mW of 399 nm
radiation out of 1 W of 798 nm pumping light with a conversion efficiency
of about 50 %.

The green light for the 1S0 → 3P1 transition at 556 nm is generated
exploiting the same techniques described above. This radiation is perhaps
the most important one since it is used for many purposes: from magneto-
optical trapping (section 2.4.2), to optical Stern-Gerlach and optical pump-
ing schemes (section 2.5) and, last but not least, to Raman coupling of the
different spin components (Chapter 3). In this case a fiber laser at 1112 nm
(Menlo Systems mod. ORANGE ONE) pumps a bow-tie cavity in which
the non-linear medium is a 10 mm long Lithium Tantalate (LiTaO3) crys-
tal. The crystal is periodically poled with a period of 9.12 µm to ensure



2. The Ytterbium Machine 32

λ/2 λ/4

OI
f250

f-75

M1M2

M3
M4

PZT

-PID
λ/2λ/4

LiTaO3

Orange One
1112 nm

λ/2

556 nm

Figure 2.5: Laser setup for SHG from 1112 nm to 556 nm. At the infrared
output an optical isolator (OI) is placed. The input coupler (M1) reflectivity is
r1 = 95 % at 1112 nm. The other mirrors (M1, M2, M3) have 99.9 % reflectivity
at 1112 nm. The radius of curvature of both spherical mirrors is rc = 100 mm.
The beam waist at the center of the crystal is w0 = 13 µm. Attached to
M2, a piezo stack (PZT) changes the cavity length according to the Hansch-
Couillaud error signal (PID).

quasi phase-matching and is AR-coated for 1112 nm light. The cavity FSR
is FSR = 567 MHz and the measured finesse is F = 67. When locked
using the Hansch-Couillaud method, the cavity produces 1.050 W of 556
nm light out of 2 W of 1112 nm infrared light. Both cavities are sealed
inside aluminum boxes under vacuum in order to guarantee thermal and
acoustic isolation and achieve a better lock stability.

2.3.2 Locking scheme on the intercombination transition

In order to lock the laser frequencies on the atomic transitions we use
standard fluorescence spectroscopy techniques and electronic feedback on
the lasers. Both spectroscopy setups rely on an independent atomic beam
generated in an additional oven with the same characteristics as the one
in the main setup (Fig. 2.2) at average temperature T = 535 ◦C. The atoms
are interrogated with transverse spectroscopy in two crosses after the oven.

In the case of the strongest transition 1S0 → 1P1 at 399 nm, it is suf-
ficient to perform transverse spectroscopy since the linewidth Γ = 2π ×
29 MHz is larger than the transverse Doppler profile of the collimated
atomic beam. On the other hand, the intercombination transition 1S0 →
3P1 at 556 nm has a much narrower linewidth, (Γ = 2π × 182 kHz) and
Doppler-free saturation spectroscopy is needed. For further details on
both spectroscopy setups and on the locking procedures we refer to Refs.
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Figure 2.6: 556 nm optical setup for the production of MOT beams and
locking on 1S0 → 3P1 transition. RM is a removable mirror used to switch
between the 173Yb and the 174Yb locking schemes. The fluorescence signal,
detected by a photomultiplier (PMT), is sent to a Lock-In amplifier. The
demodulated signal is processed by a PID, amplified again by a high voltage
amplifier (HV) and sent to the laser piezo.

[85, 86].
With respect to [85], a few changes have been made in the green locking

scheme for the fermionic isotope 173Yb [45]. In particular, also in this
case, the Doppler-free signal comes from the bosonic 174Yb, which is the
most abundant isotope. Indeed when the experiments are performed with
174Yb, the high signal-to-noise ratio (SNR) allows a stable lock due to the
absence of hyperfine structure (I = 0). We use π-polarized light which
selects only the magnetic field insensitive |J = 0, mJ = 0〉 → |J′ = 1, m′J =
0〉 transition. After the double-passage in an acousto-optical modulator
(AOM), the effective laser frequency is red-detuned by -166 MHz with
respect to the 174Yb atomic resonance (see Fig. 2.6). In the case of the
closed F = 5/2 → F′ = 7/2 transition of 173Yb, atomic fluorescence has
a worse SNR because, in addition to a smaller natural abundance, the
I = 5/2 nuclear spin gives rise to six π-transitions, which further reduces
the spectroscopy signal. Moreover all six Doppler-free signals are sensitive
to magnetic field fluctuations.

To overcome these difficulties, an alternative optical setup has been
designed in which the locking signal comes from the bosonic 174Yb isotope
also when operating with fermionic 173Yb. In this scheme (see Fig. 2.6), the
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Figure 2.7: Isotope shifts for the intercombination transition 1S0 → 3P1 [78].
In green we indicate the effective laser frequency when operating with the
fermionic isotope 173Yb. The isotope shift with respect to the boson 174Yb is
covered by AOMs and the EOM.

laser frequency in the spectroscopy branch is blue-detuned by +702 MHz
using a double-passage AOM and then it passes through a Qubig electro-
optical modulator (EOM) EO-T1850M3-VIS resonant at 1.85 GHz. In this
way, the effective laser frequency is red-detuned by -2552 MHz (∆1) with
respect to the blue sideband of the EOM-modulated spectroscopy beam.
Since the isotope shift between the F = 5/2→ F′ = 7/2 transition of 173Yb
and the transition of 174Yb is ∆174−173 = 2386 MHz (see Fig. 2.7), when the
spectroscopy beam is resonant with 174Yb, the effective detuning between
the laser and the 173Yb resonance is ∆1 − ∆174−173 = −166 MHz, as in the
case of the bosonic 174Yb locking scheme. In this way it is possible to use
the same AOMs in the other branches (MOT, OSG, OP) for operation with
both 174Yb and 173Yb.

It is possible to switch between the two locking schemes simply using
a removable mirror (RM in Fig. 2.6) which selects the right spectroscopy
path. It shall be noted that when we operate with the bosonic isotope
174Yb, the EOM is switched off and the lock-in frequency modulation is
executed by the AOM.

2.3.3 1064 nm Laser system

Laser radiation at 1064 nm is used both to inject the in-vacuum Fabry-
Perot cavity where the atoms are trapped (section 2.4.3) and to perform
optical transport from the MOT chamber to the glass cell (section 2.4.4).
The source is a Nd:Yag MEPHISTO MOPA 25 (Innolight/Coherent) laser
with linewidth below 100 kHz and maximum output power of 25 W. The
frequency of the laser can be tuned using a piezo for fast corrections (about
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Figure 2.8: a) Optical setup for the 1064 Mephisto laser. b) PDH locking
scheme to the resonator. See text for details.

100 kHz bandwidth) and using the laser seed temperature for slow and
large range corrections (1 Hz bandwidth, 3 GHz/◦C). In Fig. 2.8a, we
show the 1064 nm optical scheme in which the radiation is split in two
optical paths that bring the laser power to the resonator and to the opti-
cal transport setup. Due to the high optical powers involved, the AOMs
are double-frequency driven [85, 93] in order not to damage the optical
fibers by thermally-induced misalignments. The frequency lock to the
in-vacuum optical cavity is performed by a standard Pound-Drever-Hall
(PDH) scheme [94]. The laser frequency is modulated at 39 MHz with a
Qubig EOM. The error signal is split in two by an active filter that sepa-
rates the high-frequency components from the low-frequency components.
The high-frequency parts go to the PID acting on the piezo controlling the
seed laser of the Mephisto in order to perform fast corrections. The low-
frequency parts (<3 Hz) are processed by a PID whose output feeds the
temperature seed of the laser. We also actively stabilize the cavity-reflected
power impinging on the PDH photodiode with an additional AOM (see
Fig. 2.8b). More specifically, we use the AC part of the error signal for
the PDH feedback loop and the DC signal of the PDH photodiode for the
PDH power-lock. In this way we obtain an error signal independent on
the in-cavity power and we avoid damages to the photodiode. The lock is
very stable and it is characterized by a broad power range spanning four
orders of magnitudes (100 µW, 2 W).
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2.3.4 759 nm Laser system

To produce the optical lattices we use laser radiation at 759 nm. This
particular wavelength has been chosen because the light shift it induces is
the same both for the 1S0 state and for 3P0 metastable excited state (“magic
wavelength”, see Chapter 7). The radiation is produced by a standard
Titanium-Sapphire laser (Coherent MBR 110) pumped by a single-mode,
532 nm, Coherent VERDI 18. We get routinely 3.5 W of 759 nm light,
which is split in three different optical paths, each featuring an AOM and
an optical fiber to implement the optical lattices along three orthogonal
directions. A small portion of the laser light is used to inject a confocal
Fabry-Perot cavity to monitor single-mode emission of the MBR.

2.4 Overview of the experimental procedure

2.4.1 Zeeman Slower (1S0 → 1P1)

The experimental cycle begins by slowing down the atomic beam coming
from the oven by means of a Zeeman Slower [95]. A counter-propagating
laser beam, acting on the 1S0 → 1P1 transition, exerts the necessary radia-
tion pressure force, capable of slowing the atoms from an average velocity
of about 340 m/s to a few 10 m/s in a distance of 50 cm [85, 86, 96].
The atoms are kept in resonance by an inhomogeneous magnetic field
BZS(z), whose profile Zeeman-shifts the atomic energy levels matching
the Doppler condition [97]. We use 399 nm, σ− polarized light [98], which
is red-detuned by -983 MHz from the cycling F = 5/2→ F′ = 7/2 transi-
tion of the fermionic 173Yb isotope. In this way, light is resonant with most
of the atoms coming out from the oven and does not affect the slow ones
arrived in the center of the MOT cell2, where the Zeeman Slower residual
magnetic field is compensated by a dedicated coil (see Fig. 2.2).

2.4.2 Magneto-optical trap (1S0 → 3P1)

The magneto-optical trap (MOT) is formed with the standard configura-
tion of three pairs of orthogonal laser beams operating at 556 nm, on the
1S0 → 3P1 intercombination transition. For fermionic 173Yb we use the
cycling transition F = 5/2 → F′ = 7/2 to avoid optical pumping towards
dark states. Due to the narrowness of the transition (Γ556 = 2π× 182 kHz),

2Actually in our setup, the radiation pressure on the slow fermionic atoms is not negli-
gible since, for the atoms trapped in the MOT, the slowing beam is detuned only -216 MHz
with respect to the F = 5/2 → F′ = 5/2 transition. On the one hand, this gives us the
possibility to use the Zeeman slower light to perform a preliminary optical pumping stage
inside the MOT chamber to produce a large spin-polarized Fermi gas in the mF = −5/2
component. On the other hand this additional radiation pressure has to be taken into
account in the fermionic MOT optimization process [45, 85].
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Figure 2.9: MOT of 174Yb bosonic atoms.

we increase the capture velocity by putting frequency sidebands on the
laser light [99]. The Nsb = 18 sidebands are all red-detuned with respect
to the carrier frequency and are separated by 600 kHz. In this way, the
uniformly “filled” spectral region explored with the frequency modula-
tion is maximized in order to capture the highest possible number of ve-
locity classes. With this method, we can routinely trap Nat ' 1 · 108 173Yb
atoms and Nat ' 1 · 109 174Yb atoms. For further details see [45, 85, 86].
The multi-frequency MOT stage lasts for 20 s after which the modulation
is switched off and the carrier frequency and intensity are optimized, in
order to minimize the sample temperature.3 The temperature we get is
T ' 25 µK for the fermionic isotope, which is low enough to reach an effi-
cient transfer inside the Fabry-Perot optical dipole trap (see section 2.4.3).

2.4.3 Resonator stage

As explained in section 2.2.2, the infra-red radiation at 1064 nm is kept
in resonance with the in-vacuum Fabry-Perot cavity by a Pound-Drever-
Hall locking scheme [94]. For the injection power we use, the obtained
maximum trap depth (V0/kB ' 800 µK) combined with a beam waist
w0 ' 300 µm, guarantees a transfer efficiency from the MOT of about 80%.
Before the transfer, the MOT is compressed and gently moved in the center
of the dipole trap by means of three orthogonal compensation coils that

3Indeed the Doppler temperature limit is:

T =
h̄Γ
8kB

Γ
|δL|

[
1 +

I
Is
+

(
2δL
Γ

)2
]

where δL is the detuning from resonance, I is the light intensity, Is is the saturation inten-
sity and Γ is the transition linewidth. We are not considering sub-doppler cooling effects,
since the lowest temperature we reach is approximately 30 times higher than the Doppler
temperature, probably due to light-assisted collision processes [45, 86].
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Figure 2.10: Sketch of the optical transport stage. By means of the air-bearing
translator, the focus of the transport beam is moved along x̂, towards the
center of the glass cell. Along the orthogonal direction ŷ, the IPG beam is
used to generate the crossed dipole trap.

shift the position of the zero of the quadrupole magnetic field [45, 85].
After having completed the transfer, the MOT beams and the magnetic
fields are switched off and a first evaporation stage inside the optical cavity
starts. We exponentially lower the trap depth to approximately V0/kB '
60 µK obtaining Nat ∼ 1 · 107 atoms at roughly T ' 3 µK.

2.4.4 Optical Transport and Crossed Dipole Trap

In order to move the atomic sample from the MOT cell to the center of the
glass cell we use an air-bearing translation stage AEROTECH ABL 1500b
[100]. A laser beam at 1064 nm is tightly focused (P = 3.5 W, w0 = 30 µm,
V0/kB ' 90 µK) onto the atoms by a lens mounted on the stage, thus pro-
viding a movable transport dipole trap. The Fabry-Perot injection power
is adiabatically lowered to an idle value4 and the atoms are transfered
with 30 % efficiency to the transport dipole trap. The beam focus, initially
coincident with the center of the optical resonator trap, is then moved in
T = 2.5 s by a distance ∆x = 26.4 cm towards the center of the glass cell
[45, 101, 102], transporting approximately 66 % of the initial atomic pop-
ulation (see Fig. 2.10). Once arrived at the final position, an additional

4Which is approximately 100 µW. This power is low enough not to trap the atoms
anymore, but high enough to keep the laser locked to the cavity for the next experimental
cycle.
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Figure 2.11: Degenerate Fermi gas of 173Yb with six spin components. (a)
False color image of the momentum distribution detected after a 23 ms time
of flight. (b) One dimensional integrated (along ŷ) density together with the
result of a two-dimensional Fermi distribution and Gaussian fits to the data.
N denotes the total atom number in the cloud. For such a low temperature
T = 0.15 TF, the deviation of the data from the Gaussian profile is clearly
visible.

beam (w0 = 60 µm, P = 3 W) is focused onto the atoms, along a direc-
tion which is orthogonal with respect to the transport beam, see Fig. 2.10.
The source is an IPG FIBERTECH multimode laser at 1070 nm, which is
used to create a crossed dipole trap where the final evaporation towards
quantum degeneracy takes place.

2.4.5 173Yb Degenerate Fermi Gas

Quantum degeneracy is reached by means of optical evaporation inside
the crossed dipole trap. The optimal condition to obtain colder and larger
samples of quantum degenerate Fermi gases is to use two different expo-
nential ramps for the transport beam and for the IPG beam. The transport
power is lowered with an exponential ramp of duration Tramp = 3.5 s, and
decay constant τramp = 3 s from the maximum power of 3.4 W to the final
power of 35 mW, whereas the IPG power is lowered from the maximum
power of 3.0 W to the final power of 1 W with an exponential ramp of du-
ration Tramp = 6.1 s, and decay constant τramp = 2.95 s [45]. At the end of
the evaporation we routinely obtain Fermi gases with six spin-components
with N ' 1.4 · 105 atoms at a temperature T ' 0.15 TF where TF is of the
order of 200 nK (see Fig. 2.11).

The final crossed dipole trap is characterized by the trap frequencies
reported in Table 2.3.
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Table 2.3: ODT trap frequencies after evaporation.

νx [Hz] νy [Hz] νz [Hz] ν [Hz]

(53.8± 0.5) (99.5± 0.5) (90.3± 0.6) (78.4± 0.4)

2.4.6 Optical Lattices

All the experiments described in this thesis are performed by loading the
atoms in an optical lattice potential. The laser setup is constituted by three
orthogonal retroreflected beams, one along the vertical direction ẑ (OL3)
and the other two in the horizontal plane x̂ − ŷ (OL1 and OL2). The in-
plane beams are rotated with respect to the ŷ direction defined by the IPG
beam by an angle θ = 55◦, as is shown in Fig. 2.12.

Figure 2.12: Optical lattice setup. Beam 1 (OL1) is tilted by 55◦ with respect
to the IPG-beam (ŷ direction).

The optical lattice beam powers are actively stabilized by standard feed-
back loops and the estimated beam waists and residual harmonic trapping
frequencies (along the orthogonal direction of the corresponding lattice
beam) are reported in Table 2.4:

2.5 Nuclear spins detection and manipulation

In this Section we will present the experimental techniques for the detec-
tion and manipulation of the spin degree of freedom in an ultracold gas
of fermionic 173Yb. We start with a brief recap of the absorbtion imaging



41 2.5. Nuclear spins detection and manipulation

Table 2.4: Lattice beam waists, and trap frequencies calibration. The frequen-
cies are expressed in terms of the lattice depth in recoil units s. OL1 and OL2
are in the x̂− ŷ plane, whereas OL3 is along the vertical ẑ direction.

OL1 OL2 OL3

w0 [µm] 96.1 111.3 102.3
νr(s) [Hz] 7.1

√
s 6.2

√
s 6.8

√
s

technique to then explain how the intercombination transition at 556 nm
is used, in order to separate in time of flight the different spin compo-
nents (optical Stern-Gerlach) and to prepare arbitrary spin-state mixtures
through optical pumping.

2.5.1 Imaging

In order to detect the atomic sample we use standard absorption imaging
techniques [103]. The principle of operation consists in recording on a
CCD camera the shadow cast by an atomic sample due to the absorption
of a resonant light probe. In order to reduce the interrogation time, a
strong dipole-allowed transition is preferable. In our case we use a probe
beam at λ = 399 nm acting on the cycling transition 1S0 (F = 5/2) →
1P1 (F′ = 7/2). The column density of the cloud nc(x, y) =

∫
n(x, y, z)dz

integrated along the imaging direction z is deduced from the transmitted
intensity profile It(x, y) of the imaging resonant beam:

It(x, y) = I0(x, y)e−σnc(x,y) −→ nc(x, y) = − 1
σ

log
(

It(x, y)
I0(x, y)

)
, (2.0)

where I0(x, y) is the intensity profile of the probe beam and σ = 3λ2/2π
is the resonant scattering cross section in the low intensity limit. The
discretized density on the CCD pixels is measured as:

nc(i, j) = −S
σ

log
(

Pij − Bij

Fij − Bij

)
, (2.0)

where S is the pixel area (2.68 µm× 2.68 µm) including the magnification
of the optical system (2.985x) and Pij, Fij, Bij are the recorded counts at
pixel position (i, j) corresponding respectively to the picture taken with
atoms, without the atoms and with the probed beam switched off in order
to remove the background [45].
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Figure 2.13: Principle of operation of OSG. Top left, alignment geometry:
the force experienced by the atoms is proportional to the gradient of the
optical intensity. Bottom left, line-strengths for our experimental parameters
and a typical absorption image of the OSG experiment. Top right, spin-
dependent OSG potential as a function of the detuning with respect to the
F = 5/2 → F′ = 7/2 resonance for σ− polarization. The dotted line at -566
MHz corresponds to the frequency of the OSG beam. The different colors
indicate different nuclear spin components. The beam waist is w0 = 60 µm
and the power is P = 10 mW.

2.5.2 Spin distribution detection
173Yb is a strongly diamagnetic atom which possesses only a nuclear spin
in its ground state. For this reason it is not possible to use standard mag-
netic Stern-Gerlach techniques to separate the different spin components.
To circumvent this problem we use an optical technique that is called “op-
tical Stern-Gerlach” [84, 104]. As was explained in Section 1.2.3, in the
specific case of the transition 1S0 → 3P1, the optical dipole force exerted
on atoms in the ground state with spin component mF is given by the con-
tribution of the three excited states F′ = 7/2, 5/2, 3/2 of the 3P1 manifold:

UmF(r, ω, q) =
3πc2

2ω3
0

3Γ
( |C7/2,mF(q)|2

δ7/2
+
|C5/2,mF(q)|2

δ5/2
+
|C3/2,mF(q)|2

δ3/2

)
I(r),

(2.0)
where q refers to light polarization, δF′ = ω − ωF′ are the detunings from
the F′-states, Γ = 2π × 182 kHz is the decay rate of the 3P1 state with the
proper multiplicity factor and ω0 = 2π c/λ with λ = 556 nm. In par-
ticular, a σ−-polarized laser beam with a detuning δ7/2 = −566 MHz '
−3100 Γ and waist w0 = 60 µm is used to exert a spin-dependent poten-
tial on the atoms. In Fig. 2.13 we report the principle of operation of
the optical Stern-Gerlach scheme. The beam waist center is slightly mis-
aligned with respect to the atomic sample so that the atoms experience the
maximum intensity gradient, which is proportional to the spin-dependent
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Figure 2.14: Optical scheme for OSG and OP beams. The OSG beam has
σ polarization, the sign of which depends on the particular experimental
configuration.

dipole force (Fig. (2.13), top left). For the frequency detuning and polar-
ization chosen in our setup, the maximum force is felt by the mF = −5/2
component5 (Fig. (2.13), bottom left). To perform the nuclear spin popu-
lation detection, we use a 1.25 ms square pulse with power P = 10 mW
and, after suddenly switching off the ODT, we let the cloud expand for
a tTOF = 4.5 ms. To define the quantization axis, a bias magnetic field
BOSG = 2.5 Gauss is applied along the light propagation axis. A typical
absorption image of the OSG experiment is shown in Fig. 2.13.

2.5.3 Spin distribution preparation

The 1S0 (F = 5/2) → 3P1 (F′ = 7/2) is a narrow transition (Γ = 2π ×
182 kHz) that allows us to develop optical pumping protocols capable of
realizing mixtures with arbitrary number of spin components. Indeed it
is sufficient to Zeeman-split the excited-state spin components (Zeeman
splitting ∆Z = 2π × 595 · B kHz/G between states with ∆mF = 1), in
order to address selectively a particular transition, Fig. 2.15. The 3P1 (F′ =
7/2) Zeeman sublevels are separated by a homogeneous magnetic field
of B = 23 Gauss, resulting in a Zeeman shift ∆Z = 2π × 13.7 MHz '
75 Γ. The optical pumping protocol is then carried out by two independent
circularly polarized beams OP+ and OP− (see Fig. 2.14) which address
the transitions mF → mF ± 1. By shining two series of light pulses of 5 ms
each at the right laser frequencies (green arrows in Fig. 2.15), it is possible

5Of course we can switch to σ+ polarization so that the maximum force is felt by the
mF = +5/2 component.
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Figure 2.15: Protocols for spin initialization with optical pumping performed
through σ+ and σ−-polarized beams resonant on specific Zeeman compo-
nents of the 1S0 → 3P1 transition. Green arrows indicate the transitions used
in the optical pumping procedure. Pulses from |mF| = 5/2 to |mF′ | = 7/2
are “blast” pulses for which the atoms are expelled from the trap. In red, the
spin components remained after the pumping/blasts procedure. The mix-
ture with six components, SU(6), does not need any pumping pulse. For the
sake of clarity, the spontaneous emission processes are not shown.
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to selectively pump the atoms towards a specific nuclear spin state. The
pumping procedure starts when the atoms are transported in the glass cell,
before the evaporation ramps. In this way the trap depth is high enough
to allow the atoms to scatter many photons without being kicked out off
the trap. In order to produce a spin-polarized Fermi gas an additional
“blast” pulse is needed at the end of the evaporation [45] (see Fig. 2.15)
in order to kick out the unwanted populations from the trap. With these
protocols we can prepare balanced6 mixture with an arbitrary number of
spin components.

Optical pumping and OSG setup

Two indipendent fibers mounted on a vertical breadboard deliver the opti-
cal pumping beams OP+ and OP− to the atoms, Fig. 2.16. The OP+ beam
is generated using the MOT AOM and injected in the same fiber of OSG
with orthogonal polarization with respect to it (see Fig. 2.6). The OSG and
OP+ beams are then separated by a polarizing beam splitter (PBS) placed
right after the fiber. The same PBS is also used to combine the two optical
pumping beams having linear and orthogonal polarization. Two wave-
plates turn the horizontal and vertical polarization into σ+ and σ− respec-
tively (see Fig. 2.16). In the OSG beam optical path there is a f = 400 mm
lens mounted on a translation stage, used to adjust the waist in order to
maximize the optical gradient on the atoms, and a λ/4 waveplate to de-

6The mixture are balanced at 5% tolerance and the apparent density differences in Fig.
2.15 come from the compression induced by the OSG dipole potential.
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termine the polarization of the OSG light. The two optical pumping and
OSG beams are then recombined by a 70:30 beam splitter and reflected
by a long-pass dichroic mirror Thorlabs-DMLP567 through the glass cell,
onto the atoms. The vertical lattice beam (OL3) passes through the same
dichroic mirror and the vertical imaging beam is superimposed on the OP
path using another beam splitter (see Fig. 2.16).

2.5.4 Spin-selective imaging

For the experiments we will present in Chapter 5 it is important to se-
lectively image the atoms occupying a particular spin state. In the ex-
periments we will describe, the atomic sample is characterized by a spin
population formed by the components mF = (−5/2, −1/2, +3/2) out of
the F = 5/2 manifold in the 1S0 ground state. We developed a simple
procedure with which we image each spin component selectively. The ex-
perimental routine is based on a sequence of pumping and blast pulses,
perfomed during the first 2.5 ms of time-of-flight expansion (when all the
dipole traps are completely switched off) of the atomic cloud, at a mag-
netic field intensity B = 15 G. In Figs. 2.17a, b, c we show the results of
the experimental routine, after which an OSG pulse is applied, in order
to verify that the procedure was succesful7. All the pumping and blast
pulses have a duration of 250 µs, and approximately 750 µs are needed to
change the frequencies of the pumping beams OP±. The sequences are as
follows:

• imaging of the mF = +3/2 spin component: atoms in the mF =
−1/2 spin state are pumped twice, first in the mF = −3/2 spin
component and then in the mF = −5/2 spin component. After a
final blast pulse, resonant with the transition (1S0, F = 5/2, mF =
−5/2)→ (3P1, F′ = 7/2, mF′ = −7/2), we are left with the atoms in
the desired mF = +3/2 spin state (see Fig. 2.17a);

• imaging of the mF = −1/2 spin component: atoms in the mF =
−5/2 spin state are blasted away as in the previous sequence. Atoms
in the mF = +3/2 spin state are first pumped in the mF = +5/2 spin
component. After a final blast pulse, resonant with the transition
(1S0, F = 5/2, mF = +5/2) → (3P1, F′ = 7/2, mF′ = +7/2), we are
left with the atoms in the desired mF = −1/2 spin state (see Fig.
2.17b);

• imaging of the mF = −5/2 spin component: atoms in the mF =
−1/2 spin state are pumped three times, first in the mF = +1/2
spin component, then in the mF = +3/2 spin component and finally

7Once verified that we are left with the desired spin component, the OSG pulse is not
needed anymore and the final detection is executed by standard time-of-flight imaging.
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in the mF = +5/2 spin component . After a final blast pulse, res-
onant with the transition (1S0, F = 5/2, mF = +5/2) → (3P1, F′ =
7/2, mF′ = +7/2), we are left with the atoms in the desired mF =
−5/2 spin state (see Fig. 2.17c);
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Figure 2.17: Spin selective imaging procedure. (a), (b), (c) refer to the se-
quence used to image the atoms in the mF = +3/2, −1/2, −5/2 spin states
respectively.



3 | Raman-induced coherent
coupling in 173Yb

The fundamental ingredient of this PhD thesis is the introduction of a co-
herent coupling among the different spin components. This is achieved by
means of Raman transitions, whose basic principles have been introduced
in Section 1.3. This chapter reports the experimental implementation of
the 173Yb Raman system, which is at the basis of the generation of spin-
orbit coupling and synthetic dimensions. We will start by generalizing
the Λ-configuration introduced in Section 1.3 to the more complex case of
a multi-level atom such as 173Yb. We will then illustrate the optical setup
built within this PhD thesis used to generate and characterize the coherent
coupling among the spin components.

3.1 Raman transitions in multi-level atoms

In this section we generalize the Raman process in a Λ-configuration, il-
lustrated in section 1.3, to the more complex case of a multi-level atom
such as 173Yb. This fermionic isotope has purely nuclear spin in the 1S0
ground state, so in order to induce a coherent coupling among the dif-
ferent spin components, the Raman detuning must be comparable to the
hyperfine splitting of the excited state manifold, ∆ . ∆HFS. Indeed, we
have to “talk” with the nuclear spin, passing through the electronic de-
gree of freedom. Therefore, analogously to the light shift for a multi-level
atom evaluated in Eq. (1.2.3), we consider two-photon processes relying
on the hyperfine structure of the excited state 3P1. The Raman amplitude
coherently coupling two sublevels mF, m′F in the ground state can be cal-
culated by summing over the excited state manifold, taking into account

49
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Figure 3.1: Scheme of Raman transitions in the case of σ+π (a) and σ+σ−

(b) polarizations. Typically, the Zeeman splitting is ∆Z ∼ 2π × 10 kHz. The
excited state hyperfine energy width ∆HFS (several GHz) is not to scale.

the detuning from a particular hyperfine level:

Ω(qq′)
R =

ΩqΩ∗q′
4

(
∑
F′

CF′,mF(q)CF′,m′F
(q′)

δF′

)

=
3πc2

2ω3
0

3Γ

(
∑
F′

CF′,mF(q)CF′,m′F
(q′)

δF′

)√
Iq Iq′ , (3.0)

where the polarizations of the two Raman beams satisfy m′F −mF = q− q′

and δF′ are the frequency detunings of the Raman light with respect to the
transitions 1S0 (F = 5/2) → 3P1(F′). In particular we consider δ7/2 to be
the “reference” Raman detuning (∆ in Sec. 1.3). We note that, because
of the Clebsch-Gordan coefficients in the Eq. (3.1), the Raman amplitudes
depend also on the specific mF state as can be seen in Figs. 3.3. Depending
on the polarization of the Raman beams, the two-photon process can flip
the spin by one unit of angular momentum (σ−π polarizations) or by two
units of angular momentum (σ+ − σ− polarizations), as we sketch in Fig.
3.1. This feature opens the possibility to induce a coherent dynamics in
a subset of the 1S0 manifold through σ+σ− processes just by tuning the
polarization of the Raman beams. We decided to use the narrow-line inter-
combination transition 1S0 → 3P1 at 556 nm (Γ = 2π× 182 kHz) instead of
the dipole allowed 1S0 → 1P1 transition at 399 nm (Γ′ = 2π × 29 MHz) in
order to maximize the ratio between the coherent Raman coupling, that we
generically indicate with ΩR, and the inelastic scattering rate Γsc. Infact,
for δ7/2 ∼ ∆HFS, the scaling relations Γsc ∼ Γ/δ2

7/2 and ΩR ∼ ∆HFS/δ2
7/2



51 3.1. Raman transitions in multi-level atoms

-6 -4 -2 0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

δ7/2/2π [GHz]

Ω
σ

+ π
/Γ

sc
  [

x 
1

0
3
]

(a) ∆mF = ±1

-6 -4 -2 0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

δ7/2/2π [GHz]

Ω
σ

+ σ
-/
Γ s

c 
 [x

 1
0

3
]

(b) ∆mF = ±2

Figure 3.2: Ratio of the Raman coupling ΩR (in absolute value) to the inelas-
tic scattering rate Γsc for the σ+π (a) and σ+σ− (b) processes as a function
of detuning δ7/5 with respect to the F′ = 7/2 resonance. The dashed-dotted
lines indicate the hyperfine levels F′ = 7/2, 5/2, 3/2.

yield the proportionality ΩR/Γsc ∼ ∆HFS/Γ [105], namely the ratio be-
tween the hyperfine separation and the decay rate of the excited state used
to generate the Raman couplings. The combination of a longer lifetime for
the 3P1 excited state and a larger hyperfine splitting than the 1P1, allows
us to reach a large ratio ΩR/Γsc ∼ 103 at δ7/2 ∼ 2π × 2 GHz. We chose
the value δ7/2 = 2π × 1.876 GHz for which we have a relatively high ratio
both for the ∆mF = 1 and ∆mF = 2 transitions (see Fig. 3.2). In partic-
ular we will work with the simpler configuration ∆mF = 2, reducing the
effective spin manifold to maximum three components. The cause for this
resides in the complications brought by the Raman light in terms of spin-
dependent light shifts. Indeed, without these light shifts, the only energy
difference among the nuclear spins comes from the linear Zeeman effect
(∆Z = 207 · B Hz/Gauss) which can be easily compensated by adjust-
ing the Raman beams frequencies, ensuring a resonant coupling among
all different spins. Unfortunately, the Raman light spin-dependent light
shifts, see Eqs. (1.2.3-1.3), breaks down the perfect linearity of the Zeeman
splitting introducing energy offsets that complicate dramatically the dy-
namics, especially in the presence of more than three spins. In Fig. 3.4 we
plot the state-dependent energy offsets normalized to the case of uniform
polarization (1/3 σ+ + 1/3 σ−+ 1/3 π) for the detuning δ7/2 = 1.876 GHz.
Nevertheless, by tuning the polarization and the two-photon detuning,
two and three spin components can be coherently coupled opening the
way to the study of synthetic gauge fields in synthetic dimensions. In the
next sections we will describe the Raman setup and the characterization of
the Raman coupling based upon dynamical study of the spin populations.
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Figure 3.3: Typical Raman couplings ΩR expressed in kHz for a total power
of P = 66 µW (left), P = 100 µW (right) and beam waists w0 = 150 µm.
(a) σ+π transitions and (b) σ+σ− transitions as a function of the detuning
from the F′ = 7/2 resonance. Note that for large detuning δ7/2 � ∆HFS the
coupling amplitudes go to zero.
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Figure 3.4: Spin-dependent light shift for polarization q = σ−, π, σ+ at de-
tuning δ7/2 = 1.876 GHz and B = 0. All values are normalized to the light
shift Utot induced by a “uniform” polarization ε̂ = 1/

√
3(ε̂+ + ε̂− + ε̂π)

which is independent from the specific spin state. Note that Uσ+

mF
= Uσ−

−mF
.

3.2 Raman setup

The Raman setup is constituted by two parts. The first one is formed by
a series of AOMs used to reach the desired detuning of +1.876 GHz from
the F = 5/2 → F′ = 7/2 transition. The light is then injected into an
optical fiber and brought to the glass cell region where a custom-made
breadboard is present over which all the Raman optics are mounted. In
Fig. 3.5 the AOMs table is illustrated. The radio-frequency setup amounts
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Figure 3.5: Raman AOMs setup used to generate a frequency detuning of
+1.876 GHz with respect to the F = 5/2 → F′ = 7/2 transition. The last
AOM at 200 MHz + δ/2 is PLL-driven, in order to produce the desired two-
photon Raman detuning. The 556 nm light enters the setup with a frequency
detuning of −166 MHz. Glenn-Taylor (GT) polarizer are put after the last
two AOMs in order to have stable, linear polarization.

to

• a 351 MHz AOM in double passage at first order (+702 MHz)

• a 235 MHz AOM in double passage at second order (+940 MHz)

• a 400 MHz AOM in single passage at first order (+400 MHz) (first
Raman beam).

• a PLL driven (200 MHz+δ/2) AOM in single passage at second order
(+400 MHz+δ) (second Raman beam), phase locked with the local
oscillator driving the previous AOM.

The frequency difference δ between the two beams constitute the two-
photon frequency detuning that must match the energy difference between
two spin states that one wants to coherently couple. The total frequency
shift results in 2.042 GHz that, taking into account the -166 MHz detuning
of the laser with respect to the resonance 1S0 → 3P1(F′ = 7/2) (see Fig.
2.7), leads to the desired +1.876 GHz. Before the last two AOMs, the Ra-
man beam path is split in two in order to generate the two Raman beams.
One passes through the 400 MHz AOM and it is injected into the fiber
with vertical polarization. For the second beam, horizontally polarized,
we use the 200 MHz AOM in single passage at second order, locked in
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Figure 3.6: Raman optical setup. The two Raman beams come out from the
fiber with orthogonal polarizations. They split at the polarizing beam splitter
after which two linear film polarizers (LPVISB050-Thorlabs, “pol” in figure)
are present. The beams are then focused onto the atoms at the center of the
glass cell, to a beam waist of approximately w0 = 150 µm. The dotted lines
indicate the pick-ups, taken to monitor the beating frequency δ. The angle
θ ' 19◦ determines the momentum transfer qR. The magnetic field comes
out of the plane, along the ẑ direction and defines the quantization axis.

phase with the local oscillator driving the 400 MHz AOM. The two beams
coming from the two AOMs are then recombined into a polarizing beam
splitter and injected into the same polarization-maintaining fiber in order
to reduce relative phase fluctuations. Since they have also orthogonal po-
larizations, which are injected parallel to the fiber principal axes, they can
be split at the end of the fiber by another polarizing beam splitter.

In order to induce a spin-flip, the two-photon detuning must match the
energy difference between the spin components. The two beams must thus
have frequencies that satisfy the condition h̄(ω1 −ω2) = h̄δ = EmF − Em′F

.
For this reason, the frequency of one beam is controllable with an Agilent
3320 that drives the AOM in PLL-mode (AOM at 200 MHz in Fig. 3.5).
The Agilent is phase locked with the local oscillator driving the 400 MHz
AOM that shifts the frequency of the other Raman beam.

In Fig. 3.6 we show the second part of the Raman setup, that is the
optical setup built to bring the light onto the atomic sample. The Ra-
man beams come out from the fiber with orthogonal polarizations and
are separated at the polarizing beam splitter (PBS). Right after the out-
puts of the PBS, two linear film polarizers (LPVISB050-Thorlabs) help to
clean the polarization even further. The beams are then focused onto the
atoms in the center of the glass cell where the beam waist is approximately
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Figure 3.7: State-dependent light shifts induced by equal amounts of σ+ and
σ− light. Note how the symmetry UmF = U−mF is broken by the presence of
a magnetic field. The beam waist chosen for the calculation is w0 = 150 µm
whereas the total power is P = 1 µW.

w0 = 150 µm. Part of the light is picked up by two beam samplers and
sent to a reference photodiode, where the beat note between the Raman
beams is monitored. The optical path mismatch between the two beams is
kept at minimum, since they travel along the same fiber. In this way we
don’t need to actively stabilize the beating note.

Since the Raman beams impinge onto the atoms from different direc-
tions, there is also a momentum kick in addition to the energy and an-
gular momentum transfer. The absolute value of the momentum kick qR
depends on the angle between the Raman beams and is given by:

qR = |~k1 −~k2| = 2kR sin θ/2 (3.0)

in which kR is the linear momentum of the green radiation at 556 nm. We
will see in Chapter 5 that this is the ingredient at the basis of the creation
of an artificial gauge field in a synthetic 2D lattice.

3.3 Raman-induced spin oscillations

In order to characterize the Raman couplings, we perform spin-oscillations
measurements from which we extract the Raman amplitudes given by Eq.
(3.1). The system under study is characterized by a maximum number
of spin components equal to three (∆mF = ± 2) and also the experiments
described in Chapter 5 are performed under these conditions.
We load a fully polarized Fermi gas (Nat ∼ 3 · 104, T/TF ∼ 0.2, mF =
±5/2) in a 3D optical lattice with periodicity d = λL/2 = 380 nm and
lattice depths sx = sy = sz = 30. In this way we can neglect1 the ki-

1The atomic sample under study has a momentum spread that is given by the Fermi
momentum kF. Since the Raman coupling introduces also a momentum kick, not all
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netic energy in Eq. (1.3), since the tunneling at such high lattice depths
is completely suppressed. This restricts the dynamics to only the internal
degrees of freedom and we can forget about the momentum kick given by
the Raman process.

3.3.1 Two-level system

We start from the simplest configuration explored, the two-level case, in
which only two spin components are made to participate to the dynamics.
To select this configuration each Raman beam must have horizontal po-
larization2 which, with respect to the quantization axis, is decomposed
in equal amounts of σ+ and σ− polarizations. To separate the other-
wise degenerate spin components, we put a magnetic field ranging from
B = 50 G to B = 153 G giving a Zeeman splitting in the range ∆Z =
2π × 10− 31 kHz. This splitting is enough to suppress unwanted Raman
transitions (arising from a possible power broadening) and also makes non
resonant possible transitions to higher lattice bands [106, 107]. In Fig. 3.7
we plot the state-dependent light shifts induced by equal amounts of σ+

and σ− light. As a comparison we show also the B = 0 case, noticing that
the presence of a magnetic field breaks the symmetry3 UmF = U−mF . This
is true also for the Raman amplitudes4, as is shown in Fig. 3.8. The spin
components entering the dynamics are mF = −5/2,−1/2,+3/2. Let’s
suppose we start from the mF = −5/2 component. By choosing a two-
photon Raman detuning that matches both the Zeeman energy splitting
and the differential light shifts U−1/2 −U−5/2, the first two spin compo-
nents can be put precisely on resonance whereas the last one acquires all
the energy offset, as can be easily seen by the form of the Hamiltonian
governing the spin dynamics (from which we subtracted the Zeeman en-

the atoms will be at resonance [17, 61, 66] with the Raman light, apart from the case in
which the Raman coupling satisfies the power broadening condition h̄ΩR � EF. This is
different with respect to a Bose-Einstein condensate for which the momentum spread can
be neglected [16].

2That is, perpendicular to the magnetic field quantization axis, see Fig. 3.6.
3As we show in Appendix B, this is due to the behaviour of the excited state 3P1 mani-

fold energy levels in the presence of a magnetic field.
4Since the polarization of both beams is horizontal, the atomic sample sees both σ+

and σ− polarization components with a double frequency spectrum, giving rise to several
possible processes. Nevertheless, in the frame rotating at 2∆Z, only one transition is reso-
nant since the others are detuned at least by 2∆Z (see Fig. 3.1). These processes are then
negligible if the power broadening is lower than the level separation.
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ergy):

HR '

 U−5/2 h̄ΩR,1/2 0
h̄ΩR,1/2 U−1/2 − h̄δR h̄ΩR,2/2

0 h̄ΩR,2/2 U+3/2 − 2h̄δR

 h̄δR=U−1/2−U−5/2−−−−−−−−−−→

 0 h̄ΩR,1/2 0
h̄ΩR,1/2 0 h̄ΩR,2/2

0 h̄ΩR,2/2 U+3/2 + U−5/2 − 2U−1/2


in which δR is the two-photon Raman detuning (already including the lin-
ear Zeeman splitting 2∆Z), UmF are the spin-dependent light shifts and
ΩR,1, ΩR,2 are the Raman couplings mF = −5/2 → mF = −1/2, mF =
−1/2 → mF = +3/2 respectively. Rewriting the various terms as a func-
tion of ΩR,1, we obtain:

HR

h̄
'

 0 ΩR,1/2 0
ΩR,1/2 0 α1 ·ΩR,1/2

0 α1 ·ΩR,1/2 α2 ·ΩR,1


where the numerical coefficients5 α1, α2 come from the proportionalities
imposed by Eqs. (1.2.3) and (3.1), and weakly depend on the magnetic
field B. For B = 153 G, α1 = 1.41 and α2 = 2.65, from which wee see that
the mF = +3/2 component is out of resonance by an amount 2.65 ·ΩR,1.
This is sufficient to consider the dynamics effectively restricted to the

5The exact value of these coefficients depends on the magnetic field, which causes
corrections of the order of 6%, see Appendix B.
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Figure 3.9: Light shift characterization for the 2-level case. (a) Typical two-
photon resonance starting from mF = −5/2: the parameters are P = 85 µW,
B = 153 Gauss and τ = 800 µs. Solid lines are the fit results (see text). The
frequencies on the x-axis are rescaled in the rotating frame by subtracting
2∆Z = 2π × 63.3(2) kHz. (b) Differential light shift measured as a function
of the Raman power.

mF = −5/2,−1/2 components only. Of course we could arrive at sim-
ilar conclusions by starting from the mF = +5/2 components and obtain
a dynamics restricted to mF = +5/2,+1/2. In order to start a coherent
oscillation it is necessary to find the resonance condition, i.e. the two-
photon detuning that matches, in the rotating frame, the differential light
shift U−1/2−U−5/2. We fix the total Raman power and we perfom Raman
spectroscopy starting from the mF = −5/2 spin component. By varying
the two-photon frequency detuning, we record the spin-population distri-
bution after a certain amount of time τ of Raman evolution. This time
interval satisfies the condition ΩR,1τ < π, i.e. the spin-population does
not invert during the dynamics. This can be done for various Raman
powers in order to compare the measured differential light shifts with the
ones calculated starting from Eq. (1.2.3). In Fig. 3.9a we show a typical
resonance measurement in which the solid lines are fitted curves based
upon Eq. (3.3.1) in which U−5/2 and ΩR,1 are used as fit parameters and
U−1/2, U+3/2, ΩR,2 are fixed by the proportionality relations imposed by
the Clebsch-Gordan coefficients. In Fig. 3.9b we report the measured dif-
ferential light shift as a function of the Raman power.

Having found the resonances at a certain Raman power, we start the
Rabi dynamics which, as is shown in Fig. 3.10a, is basically confined to
only two spin components. In order to measure the system parameters,
we fit the data to the Raman evolution governed by the Hamiltonian (3.3.1)
using ΩR,1 as a free parameter6 and taking the light shift U−5/2 extracted
from the resonance fit in Fig. 3.9. In particular, we simulate numeri-

6We discard the ΩR,1 resulting from the resonance fit, since it is much more precise to
extract the Raman amplitude directly from the oscillation fit.
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Figure 3.10: Raman evolution characterization. (a) Typical Raman evolu-
tion with pure horizontal polarizations starting from the mF = −5/2 state.
Solid lines are the fitted population evolutions with parameters P = 85 µW,
U−5/2 = h× 757 Hz and ΩR,1 = 2π× 547 Hz. At B = 153 G the other param-
eters are determined by the relations U+3/2 + U−5/2 − 2U−1/2 = 2.65 · h̄ΩR,1
and ΩR,2 = 1.41 ·ΩR,1. (b) Raman coupling ΩR,1 measured as a function of
the Raman power.

cally the three-level evolution for a set of ΩR,1 and choose the one that
minimizes the mean squared error with respect to the experimental data
points. In Fig. 3.10b we show the experimentally measured Raman cou-
pling ΩR,1 as a function of power. These data and the measured light shifts
can be combined in order to extract the ratio (U−1/2 − U−5/2)/h̄ΩR,1 =
1.53± 0.03, that is in very good agreement with the theoretical expectation
∆U/h̄ΩR,1 = 1.51, see Fig. 3.11. Having studied the simple two-level case,
we are ready to move to the more complex three-level system.

3.3.2 Three-level system

In order to couple resonantly also the third state, it is necessary that the
spin-dependent energy offsets are equal. At zero magnetic field this is
achieved by using a uniform polarization7:

ε̂tot =
1√
3
(ε̂+ + ε̂− + ε̂π). (3.-2)

The Hamiltonian governing the system is the same as in Eq. (3.3.1), in
which the uniform polarizations condition determines the new spin de-
pendent light shifts UmF . By rewriting Eq. (3.3.1) in terms of ΩR,1 we

7This comes from a symmetry relation that the Clebsch-Gordan coefficients satisfy. In

particuar we have that ∑q |Cmn(q)|2 =

{
J J′ 1

F′ F I

}
(2F′ + 1)(2J + 1), independent of

the particular spin component mF.
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Figure 3.11: Measured differential light shift ∆U = (U−1/2 − U−5/2) as a
function of the Raman coupling ΩR,1. The solid line is a linear fit giving the
ratio ∆U/h̄ΩR,1 = 1.53± 0.03 in very good agreement with the theoretical
expectation ∆U/h̄ΩR,1 = 1.51.

obtain:

HR

h̄
'

 0 ΩR,1/2 0
ΩR,1/2 0 α1 ·ΩR,1/2

0 α1 ·ΩR,1/2 β2 ·ΩR,1


in which the new coefficient β2 depends on the magnetic field and on the
new polarization chosen. For B = 153 G we have α1 ' 1.41 and β2 ' 0.16,
from which we see that the third state is only slightly out of resonance and
can still be coupled in an efficient way.

If, from one side, the uniform polarization allows us to resonantly cou-
ple all the three states, from the other, it sets an additional constraint to
the validity of the three-level model (3.3.2). Indeed, given the presence of
π polarization in the Raman beams, σ±π processes have a non-zero prob-
ability and are detuned only by ∆Z. Therefore, the additional condition
Ωσ±π � ∆Z must be fulfilled to prevent power broadening to excite these
unwanted processes. For this reason, we decided to work only at magnetic
field B > 150 Gauss in order to relax the constraint on the power broaden-
ing and limit the spurious σ±π processes by increasing the Zeeman split-
ting. The presence of such a large magnetic field breaks the light shifts
symmetry and causes a linear dependence of the resonance on the Raman
power. By performing Raman spectroscopy as in the two-level system, we
can compare the measured resonance position with the one expected by
the theoretical model of Eq. (3.3.2) in which U−5/2 and ΩR,1 are used as
fit parameters. In Fig. 3.13 (left) we show a typical resonance acquisition
from which we extract the expected light shift U−5/2. This measurement
is performed as a function of the total Raman power, as is shown in Fig.
3.13 (right). The linear dependence of the light shift on the total Raman
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Figure 3.12: State-dependent light shifts induced by uniform polarization.
B = 0 G (left) and B = 153 G (right). Note how the symmetry UmF = U−mF
is broken by the presence of a magnetic field. The beam waist chosen for the
calculation is w0 = 150 µm

power is an order of magnitude smaller than the pure horizontal polariza-
tion configuration (2.8± 0.13 Hz/µW) and it is in reasonable agreement
with the expected slope of 2.52 Hz/µW.

Having found the optimal two-photon detuning, the Raman evolution
is started, as is displayed in Fig. 3.14a. All three states are involved in the
coherent dynamics and also in this case, the evolution is fitted by fixing
U−5/2 to the value measured with the resonance fit and letting ΩR,1 as a
free parameter. Especially in the three-level evolution, we observe a small
damping that we attribute to technical problems such as the inhomogene-
ity of the Raman beams profile and imperfections in the polarization. The
first one causes the atoms to experience space-dependent Rabi frequencies
and light shifts which lead to a dephasing in the global population evolu-
tion. This issue can be solved by using much bigger waists for the Raman
beams. The polarization imperfections introduce unwanted energy offsets
by modifying the spin-dependent light shifts. This causes the dynamics
to be much more complicated as can be seen in the theoretical curves in
Fig. 3.16 in which the polarization has been slightly modified with respect
to the uniform condition (10% more of σ+ and σ− polarizations). In Fig.
3.14b we plot the extracted Raman coupling ΩR,1 as a function of the total
Raman power. The measured slope8, 4.2± 0.3 Hz/µW is quite consistent
with the expected value 4.4 Hz/µW. We can combine the measured Raman
couplings and light shifts U−5/2 in a single plot that we show in Fig. 3.15.
The measured ratio U−5/2/h̄ΩR,1 = 0.68± 0.08 is 16% higher than the ex-
pected U−5/2/h̄ΩR,1 = 0.57 value. This discrepancy could come from the

8This slope is lower than the one in Fig. 3.8 by a factor of 2/3 because of the lower
fraction of σ+, σ− light on the total power in the case of uniform polarization with respect
to the case of pure horizontal polarization.
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Figure 3.13: Light shift characterization for the 3-level case. Typical two-
photon resonance (left) starting from mF = −5/2: the parameters are P =
145 µW, B = 153 Gauss and τ = 800 µs. Solid lines are the fit results (see
text). The frequencies on the x-axis are rescaled in the rotating-frame by
subtracting 2∆Z = 2π × 63.3(2) kHz. Light shift U−5/2 extracted from the
resonance fit versus the total Raman power (right).

imperfect polarization determining different energy offsets with respect to
the one expected from uniform polarization.

All the characterizations presented in these sections have been made
by loading a full polarized Fermi gas in a deep 3D optical lattice. For such
a system, the kinetic energy is completely negligible on the time-scale of
the experiment and we can forget about the momentum kick imparted to
the atoms by the Raman beams. In Chapter 5 we will relax this condi-
tion and, in particular, we will lower one of the optical lattice depths in
order to restore the tunneling between neighboring lattice sites. In this
way there will be two dynamical processes: tunneling, which is governed
by the kinetic energy of the atoms, and spin population evolution, gov-
erned by the Raman coupling. Both processes are coherent and mathe-
matically describable with the same formalism, based on a tight-binding
Hamiltonian [22]. Indeed, in both cases there is a particle hopping be-
tween neighboring sites, real 1D lattice sites and spin-lattice sites. In this
sense we can talk about an effectively two-dimensional hybrid lattice in
which one direction is formed by the real lattice wells of a 1D lattice and
the other direction is formed by the spin components, coherently coupled
by the Raman beams. Now that the kinetic energy of the atoms is not
negligible anymore, the Raman-imparted momentum kick becomes fun-
damental in determining a new type of quantum behaviour, governed by
the famous Harper-Hofstadter hamiltonian [108, 109], that has been re-
cently engineered with ultracold bosonic samples [12, 13, 21, 23] and that
describes the behaviour of electrons moving in a 2D lattice in the presence
of a uniform magnetic field. This new type of physics is at the core of this
PhD thesis and will be described in the next Chapters.
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Figure 3.14: (a) Raman evolution with uniform polarization starting from
the mF = −5/2 state for P = 145 µW. Solid lines are the fitted population
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4 | Quantum Hall physics
on a lattice: an overview

A recurring theme in condensed matter physics has been the discovery
and classification of distinctive phases of matter. Landau’s approach char-
acterizes states in terms of underlying symmetries that are spontaneously
broken, bringing a system to display a particular order. For example in a
crystal, ions are arranged periodically owing to their electrostatic interac-
tions, thereby breaking the continuous symmetry of space under rotations
and translations. In typical magnets, some of the rotational symmetry of
spin space is broken, together with time-reversal symmetry [110, 111].

A completely different, topological [112, 113], type of order was discov-
ered in the 1980s, when electrons confined to two dimensional structures
were subjected to strong magnetic fields. When placed in a magnetic field
large enough that Landau-level quantization becomes important, electrons
exhibit a quantized Hall effect, in which the Hall conductance is an integer
in units of the quantum of conductance, e2/h and the transport becomes
dissipationless along the edges of the system [114–116].

This Chapter gives a description of such phenomena from a lattice per-
spective introducing the notions that will be important for our synthetic
two-dimensional system based upon neutral ultracold fermions.

4.1 Magnetic field on a square lattice

Electrons moving in a periodic structure are typically described by the
Hubbard model, which represents a valuable approximation when the
particles occupy only the lowest energy band [57]. The non-interacting
Hamiltonian on a 2D square lattice can be written as:

Ĥ0 = −t ∑
n,m

(
ĉ†

n+1,m ĉn,m + ĉ†
n,m+1ĉn,m

)
+ h.c. (4.0)

where ĉ†
n,m, ĉn,m are the creation and annihilation operators on site (n, m)

respectively, n is the site along x̂ direction, m is the site along ŷ direction
and t is the tunneling between nearest neighboring sites which, in the

64
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Figure 4.1: Equivalence between Peierls phase and Aharonov-Bohm phase.
(a) Sketch of a 2D lattice in which the tunneling is complex. When an electron
hops around a plaquette it acquires a phase Φ = φx

n,m + φ
y
n+1,m − φx

n,m+1 −
φ

y
n,m due to the presence of a vector potential A. (b) Aharonov-Bohm effect in

which an electron moving along a closed trajectory γ in an external magnetic
field B = ∇×A, picks up a geometric phase Φ12.

tight-binding approximation, are occupied by the ions. According to the
Peierls substitution [115], when a transverse magnetic field is added to
the system, the tunneling matrix elements become complex and hopping
between sites acquires a phase φk

n,m = eAk
n,m/h̄, k = x, y, which is known

as Peierls phase (Fig. 4.1a), where e is the electron charge and A(r) is
the external vector potential. Accordingly, the tight-binding Hamiltonian
takes the form:

Ĥ = −t ∑
n,m

(
eiφx

n,m ĉ†
n+1,m ĉn,m + eiφy

n,m ĉ†
n,m+1ĉn,m

)
+ h.c. (4.0)

The Peierls phases are directly related to the Aharonov-Bohm phase ac-
quired by a charged particle when moving in a magnetic field (Fig. 4.1b):

Φ12 =
e
h̄

∮
γ

A · dr = 2π
ΦB

Φ0
(4.0)

where ΦB is the magnetic flux penetrating the area enclosed by the contour
γ and Φ0 = h/e is the magnetic flux quantum [117]. We can also define
the magnetic flux per plaquette in units of magnetic flux quantum as:

α =
Φ
2π

=
1

2π
(φx

n,m + φ
y
n+1,m − φx

n,m+1 − φ
y
n,m). (4.0)

The lattice hamiltonian (4.1) has a U(1) gauge symmetry:

ĉi → Ui ĉi, eiφi,j → Uieiφi,jU−1
j , |Ui| = 1, ∀i ∈ (n, m) (4.0)
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Figure 4.2: Single-particle energy spectrum of hamiltonian (4.1) with periodic
boundary conditions known as Hofstadter’s butterfly.

that is just a gauge transformation on A. In particular, by choosing the
Landau gauge A = (0, x Φ, 0) we can rewrite the hamiltonian (4.1) as:

Ĥ = −t ∑
n,m

(
ĉ†

n+1,m ĉn,m + eiΦn ĉ†
n,m+1ĉn,m

)
+ h.c. (4.0)

in which only the tunneling along ŷ−direction is complex, whereas the
tunneling along x̂ is real. This Hamiltonian is known as the famous
Harper-Hofstadter Hamiltonian [108, 109] and, in the case of periodic
boundary conditions, its single-particle energy spectrum exhibits a frac-
tal self-similar structure as a function of the flux α, known as Hofstadter’s
butterfly which is shown in Fig. 4.2. The fractal structure emerges from
the fact that in presence of a rational flux per plaquette α = p/q, the
fundamental energy band splits into q subbands with dispersion relations
εη(k), η = {1, ..., q} [115]. When the flux is an irrational number, the en-
ergy spectrum becomes even more complicated and splits into an infinite
number of energy levels forming a Cantor set [109].

4.2 Diagonalization of the Harper-Hofstadter Hamil-
tonian

In order to extract the Hofstadter’s butterfly we have to diagonalize Hamil-
tonian (4.1) and calculate the single-particle energy spectrum. We will start
by performing a Fourier-transform:

ĉn,m =
1

(2π)2

∫ π

−π
dkx

∫ π

−π
dkyeikxn+ikym ĉkx ,ky (4.0)

where −π ≤ kx, ky ≤ π, and require ĉkx+2πi,ky+2π j = ĉkx ,ky . The presence
of a magnetic field couples different k−sectors of the Fourier-transformed
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Hamiltonian:

Ĥ = −t
∫ π

−π

dkxdky

(2π)2

[
2 cos (kx)ĉ†

kx ,ky
ĉkx ,ky + ĉ†

kx+2πα,ky
ĉkx ,ky e−iky + h.c.

]
(4.0)

where we wrote Φ = 2πα. The Fourier transform of the Hamiltonian
mixes (kx, ky) → (kx ± 2πα, ky) and we need to find a momentum space
where the mixing is absent. If the flux is a rational number α = p/q, where
p and q are coprimes, Eq. (4.2) splits in several sectors if the Brillouin zone
is taken to be q times smaller than the initial one in the x̂−direction:

Ĥ =
1

(2π)2

∫ π/q

−π/q
dkx

∫ π

−π
dkyĤkx ,ky (4.0)

where

Ĥkx ,ky =− t
q−1

∑
n=0

[
2 cos (kx + 2παn)ĉ†

kx+2παn,ky
ĉkx+2παn,ky+

+
(

e−iky ĉ†
kx+2πα(n+1),ky

ĉkx+2παn,ky + eiky ĉ†
kx+2πα(n−1),ky

ĉkx+2παn,ky

)]
in which kx → kx + 2παn. This partition of the Brillouin zone (BZ) works
only if p and q are relatively prime, only in this case is the covering kx +
2παn able to reproduce the whole initial −π ≤ kx ≤ π [115].

With this partition for the Hamiltonian, no kx1 mixes with another kx2
when both are in the [−π/q, π/q] reduced BZ. The price paid is that the
magnetic unit cell is made up of q plaquettes in the x̂−direction and the
magnetic BZ is q times smaller than the non magnetic one. The Schrodinger
equation in a q− sector,

Ĥkx ,ky |ψ〉 = Ekx ,ky |ψ〉, (4.-1)

reduces to solving a 1D tight binding model on a 1D lattice chain in mo-
mentum space, kx + 2παn, n = 0, 1, 2 ..., q− 1. The single-particle ener-
gies are obtained by expanding into single-particle states at each momen-
tum lattice point n,

ψ =
q−1

∑
n=0

an ĉ†
kx+2παn,ky

|0〉 (4.-1)

and diagonalizing. The eigenvalue equation is:

−t
[
2 cos (kx + 2παn)an + e−iky an−1 + eiky an+1

]
= Ekx ,ky an (4.-1)

which can be numerically solved with the boundary conditions an+q =
an. This is called the Harper equation and its solutions give the famous
Hofstadter’s butterfly, Fig. 4.2.
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4.3 Chern numbers

The Harper-Hofstadter Hamiltonian is characterized by topological invari-
ants, i.e. integer numbers that classify equivalence classes of Ĥ that can
be continuosly deformed into one another without closing energy gaps. It
has been shown that the quantization of the Hall conductance is directly
related to such topological invariants known as Chern numbers [112]. In
a quantum Hall experiment, a DC current is fed into a sample and the
transverse voltage, in the presence of a strong magnetic field, is measured.
The Hall conductance σH can be extracted and, at sufficiently low temper-
atures, it is quantized according to:

σH =
e2

h ∑
q

νq (4.-1)

where νq is the Chern number of the q−th band Eq and the sum has to
be taken over all occupied energy bands below the Fermi energy EF. The
Chern number νq can be deduced from the equation:

νq =
1

2π

∫
FBZ

dkxdkyΩq(k) (4.-1)

in which:

Ωq(k) = i〈
∂uq(k)

∂kx
|
∂uq(k)

∂ky
〉 − 〈

∂uq(k)
∂ky

|
∂uq(k)

∂kx
〉 (4.-1)

is the Berry curvature of the q−th band [118], and the integral is carried
out over the fundamental magnetic BZ. The functions uq(k) are the eigen-
states determined from Eq. (4.2). The Chern number was derived by
assuming an infinite 2D system without edges. In the presence of edges,
it can be demonstrated [119] that, if there are q energy bands, each en-
ergy gap has one edge state, i.e. there are q− 1 edge states. The energies
of such edge states are given by the zero points of the Bloch function on
some Riemann surface and the Hall conductance σH is given by the wind-
ing number of the edge states around the holes of this Riemann surface
[119]. There is thus a bulk-edge correspondance that relates the topological
properties of the edge modes to the ones of the bulk.

Fortunately, a simple analytical relation exists which determines the
value of the Chern number. Indeed, consider a generic insulator and sup-
pose that we place the Fermi level in a band gap. Then, given a rational
flux α = p/q, there exist two integers sr and tr determined by the Dio-
phantine equation [115, 121]:

r = qsr + ptr, |tr| ≤
q
2

, sr, tr ∈ Z (4.-1)
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Figure 4.3: Color coded Hofstadter’s butterfly. Warm colors represent pos-
itive values of Hall conductance and cold colors represent negative values.
Zero Hall conductance is left blank. Adapted from [120].

where r denotes the r−th energy gap of the single particle energy spec-
trum. The solutions of Eq. (4.3) are uniquely defined and in particular, the
integer tr is directly related to the Hall conductivity according to:

σH = − e2

h
tr. (4.-1)

In Fig. 4.3 we plot the Hofstadter’s butterfly, in which the band gaps
have been color coded [120] according to the Hall conductance (Chern
numbers): warm colors represent positive values of Hall conductance and
cold colors represent negative values. Zero Hall conductance is left blank.

4.4 Edge states

A fundamental consequence of the topological classification of gapped
band structures is the existence of gapless conducting states at interfaces
where the topological invariant changes [110]. Indeed, bring two insu-
lators1, each with different values of the Hall conductance, close to each
other, so that they share a boundary. Because we know that the Hall con-
ductance is an integer which characterizes the phase of the system, and
we know that it cannot be changed unless a bulk band gap closes and re-
opens again, the conclusion is that the boundary region linking both the
insulators must have a gap-closing-and-reopening point somewhere on it,
i.e. it must have an edge mode crossing the Fermi level. For a quantum Hall
state, such edge mode may be understood in terms of cyclotron orbits that
are naturally truncated at the boundary of the system (skipping orbits).
Importantly, the states responsible for this motion are chiral in the sense
that they propagate in one direction only along the edge. Also, they are

1One of the insulator can also be the vacuum.
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Figure 4.4: Laughlin argument. (a) Schematic drawing of the Laughlin cylin-
der. (b) One particle per energy level jumps from one edge to the other, when
a magnetic flux quantum is injected through the cylinder, causing an energy
drop ∆E = ne∆VH which defines the Hall voltage.

insensitive to disorder because there are no states available for backscat-
tering, a fact that is at the basis of the perfect quantization of the Hall
conductance. The original argument for the presence of edge states in the
quantum Hall effect is due to Laughlin [122] in the early 1980s. We will
now review his seminal paper.

4.4.1 Laughlin’s argument

In [122], Laughlin argued that the presence of edge modes is an inescapable
consequence of transverse quantized transport in an insulator. We con-
sider a two-dimensional material (no lattice is present) with a magnetic
field perpendicular to it. We choose periodic boundary conditions along
the longitudinal direction ŷ but place edges on the sample along the trans-
versal direction x̂. Such a geometry is equivalent to the one of a cylinder,
whose axis is along x̂ and in which the magnetic field points along the
radial direction (see Fig. 4.4a). We know that, [71], the single-particle
eigenfunctions of the problem in the Landau gauge are given by the prod-
uct of a plane wave along ŷ and a harmonic oscillator wavefunction along
x̂. The harmonic oscillator wavefunction is centered around x0, which in
turn depends linearly on ky, so that the electrons centered in the proximity
of the left/right edge of the cylinder, have specific wavenumbers along ŷ.

Through the cylinder, parallel to the x̂−axis, insert a flux Φ. This flux
is different from the flux generated by the magnetic field, which is normal
to the surface of the cylinder. We wish to relate the total current I carried
around the cylinder to the voltage drop ∆VH from one edge to the other.
This current is equal to the adiabatic derivative of the total energy E of the
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system with respect to the magnetic flux Φ through the cylinder:

I =
∂E
∂Φ

=
1
L

∂E
∂Aθ

(4.-1)

in which ~A is the vector potential pointing around the cylinder, that can
be written as:

~A = (Ar, Aθ , Az) =
Φ
L

θ̂ (4.-1)

where L is the circumference of the cylinder. If the injected flux is precisely
one flux quantum Φ0 = h/e, the momentum2 along the cylinder ky of
all the occupied states changes by 2π/L, which is the momentum level
spacing in the ŷ direction.

Very close to the edge, where the open boundary conditions force the
energy bands to bend upwards (see Fig. 4.4b), every single band that raises
above the Fermi energy now has one occupied momentum state above
the Fermi level on, e.g., the right edge and one unoccupied momentum
state below the Fermi level on the left edge of the sample [115, 123]. If
n energy levels are occupied, this increase in energy ∆E corresponds to
having transferred one particle per energy level, from the left edge to the
right edge, causing a potential drop ∆VH = ∆E/ne, see Fig. 4.4b. The
current can thus be written as:

I =
∆E
∆Φ

= n
e2

h
∆VH (4.-1)

which highlights the quantization of the Hall conductance σH = ne2/h.

4.4.2 Full open boundary conditions: numerics

In order to have a better insight on the meaning of the edge states we
diagonalize the Harper Hamiltonian in real space (4.1) by imposing full
open boundary conditions. The calculation is performed for a 2D lattice
of 30× 30 sites. The flux is 2πα = 2π × p/q = 2π × 1/5 in units of flux
quantum and the tunneling is set to one along both directions. In Fig. 4.5
we plot the single particle energy spectrum as a function of the quantum
state index. We compare the energy spectrum calculated with (Fig. 4.5a)
and without (Fig. 4.5b) periodic boundary conditions. The edge states
appear in the gaps of the energy spectrum. It is instructive to consider
also the density distribution associated to each eigenstate. Indeed an edge
state appears to be localized across the boundary of the system. In Fig.
4.6 we plot the density distributions related to (a) the first edge state, (b)
the single particle ground state and (c) a Fermi sea of 160 non-interacting
particles, almost filling completely the lowest magnetic sub-level.

2In presence of a vector potential, the ŷ−momentum transforms according to p̂y →
p̂y + eÂ = h̄(k̂y + 2π e

h Â).
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Periodic boundary conditions. (b) Open boundary conditions. The gaps
close and edge states appear. The calculation is performed for 2πα = 2π ×
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Figure 4.6: Density distribution associated to the eigenstates of Hamiltonian
(4.1). (a) The first edge state, (b) single particle ground state and (c) a Fermi
sea of 160 non-interacting particles.

As a last step we numerically calculate the current associated to the
edge states in order to highlight their chiral nature. In Fig. 4.7 we plot the
vector fields j = (jx, jy) corresponding to the first edge state (Fig. 4.7a),
to the last edge state (Fig. 4.7b) and to the single particle ground state
(Fig. 4.7c) which is a bulk state. For the edge states, the current circulates
only in one sense and the verse depends on which edge state is considered
and on the sign of the magnetic flux. This type of behaviour is pictorially
described in terms of skipping orbits, cyclotron orbits that are naturally
truncated at the edges of the sample, as is depicted in Fig. 4.8. On the other
hand, by populating many bulk states such as the single particle ground
state depicted in Fig. 4.6b, the sample acquires an insulating character
in its bulk region, giving rise to a zero current circulation. In this sense,
the system we are discussing is an example of a topological insulator [110],
a material that has a bulk band gap like an ordinary insulator, but has



73 4.4. Edge states

first edge state last edge state ground state

x-sites x-sites x-sites

y-
si

te
s

y-
si

te
s

y-
si

te
s

(a) (b) (c)

Figure 4.7: Vector plot of the current for: (a) the first edge state, (b) the last
edge state, (c) the single particle ground state, of Hamiltonian (4.1). Each
edge state is chiral and the sign of the chirality depends on the magnetic
field and on which edge state is considered. The single particle ground state
displays the typical cyclotron orbits. The magnetic flux is α = 1/5 in units of
flux quantum.
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Figure 4.8: Skipping type cyclotron orbit. The circular motion of the electron
is naturally truncated at the boundary of the system

protected conducting states on its edge.
Everything we described in this chapter refers to two-dimensional lat-

tice systems. The only ingredients are coherent couplings along the sites
of both directions and a magnetic field flux. Nothing prevents one of the
directions from being the internal degree of freedom of the atoms. It is
sufficient that the sites, i.e. the spin components, are coherently coupled.
In the previous Chapter we described how to engineer this coupling, in
the next one, we will show how this coupling gives rise to an effective
magnetic field, if the atoms are loaded in a shallow, real, one-dimensional
lattice. We will thus have all the necessary ingredients to study mecha-
nisms typical of quantum Hall physics within our neutral, atomic system.
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synthetic dimensions

In Chapter 3 we discussed in detail how it is possible to coherently couple
two or three spin components by using Raman transitions. The charac-
terization relied upon loading a fully polarized Fermi gas in a deep 3D
lattice so to freeze the kinetic energy and study only the dynamics in the
internal spin space. In this Chapter we relax this constraint by lowering
one of the optical lattice to s ∈ (4, 8) in order to restore the tunneling along
one spatial direction. We will see in Section 5.2 how this condition leads
the Raman coupling to be equivalent to an effective magnetic flux, pierc-
ing the hybrid 2D lattice formed by the real one-dimensional lattice and
the “orthogonal” internal degree of freedom. This novel geometry, based
upon the concept of synthetic dimensions, allowed us, for the first time,
to directly observe chiral edge states in ultracold neutral matter. We will
describe our main results [24] in Section 5.4 and Section 5.5. Section 5.6
presents the first observation of skipping-type orbits, which are a hallmark
of quantum Hall physics. Finally, Section 5.8 describes some preliminary
results regarding the observation of a synthetic Hall drift in our hybrid 2D
geometry.

We start with Section 5.1 in which a brief review of the available tech-
niques for realizing artificial gauge fields with ultracold atoms in optical
lattices, is presented. We emphasize how our novel scheme, based upon
the concept of synthetic dimensions, opens up a simple and straightfor-
ward way to the study of quantum Hall physics with ultracold atoms.

5.1 Artificial gauge fields for ultracold atoms in opti-
cal lattices

Up to now there are essentialy three techniques to engineer a synthetic
gauge field in a system of ultracold atoms loaded in an optical lattice. The
first one, exploited by the group of Immanuel Bloch in Munich [12, 13,
19, 124] and by the group of Wolfgang Ketterle at MIT, Boston [21, 125],
is based upon the principle of laser-assisted tunneling in optical lattices

74
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[126–128]. The second one, used by the group of Klaus Sengstock [14, 55]
in Hamburg and by the group of Tillmann Esslinger [18] in Zurich, relies
upon the principle of lattice shaking. The last one, exploited by our group
in Florence and by the group of Ian Spielman at JQI, Maryland, introduces
a novel approach, based upon che concept of synthetic dimensions.

5.1.1 Gauge fields by means of laser-assisted tunneling

In Bloch’s and Ketterle’s groups, a Bose-Einstein condensate is loaded in
a two-dimensional optical lattice. Along one of the directions a magnetic
field gradient1, B′, is applied to generate a linear potential ∆ · n (n is the
lattice site index and ∆ is the energy offset between two consecutive sites),
which suppresses tunneling along the corresponding direction for ∆� tx
(where tx is the tunneling energy, and we took the gradient to be along
the x̂−direction). Resonant tunneling is then restored using a pair of far-
detuned running-wave beams having a frequency difference that matches
precisely the energy offset ∆. The two beams come from orthogonal di-
rections, so that they also imprint a spatial phase pattern to the atoms
moving around the lattice. Using Floquet analysis it can be demonstrated
[129] that such a geometric configuration yields an effective Hamiltonian
that coincides with the Harper-Hofstadter Hamiltonian.

This technique has two main limitations:

• the Harper-Hofstadter Hamiltonian appears only after (Floquet for-
malism) a time-averaging over a driving period T ∼ 1/∆ of the
complete, time-dependent Hamiltonian. This has the disadvantage
that information about the evolution within one driving period is
lost. This is the so-called micro-motion, whose impact on physical
observables (such as the atomic momentum distribution) strongly
depends on the specific implemented scheme, suggesting that the
physical description in terms of an effective Hamiltonian is in gen-
eral not sufficient to capture the full time-evolution of the system
[130]. In addition, in these experiments a substantial heating has
been observed, which is likely to be ascribed to the combination of
micro-motion and interactions;

• it is definitely not trivial to adiabatically load the lowest energy band
of the effective Harper-Hofstadter Hamiltonian [19, 129].

5.1.2 Gauge fields by means of lattice shaking

A quite different strategy consists in using time-dependent optical lattices
[65]. The Hamburg and Zurich groups exploit lattice shaking, which relies

1The Munich group has also implemented a closely related all-optical technique, which
is based on superlattice potentials to produce a uniform magnetic field.
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upon an off-resonant modulated potential that perturbs the tight-binding
Hamiltonian in such a way as to engineer complex hoppings between the
lattice sites. Also in this case, Floquet theory is necessary to derive an
effective, time-averaged Hamiltonian which displays the desired complex
tunnelings.

This technique has two main disadvantages:

• technical difficulties related to the piezoelectric stacks mounted on
the lattice beam mirrors. Also, in order to generate a complex hop-
ping, a non-trivial modulation is needed;

• the periodic force driving induces heating in the atomic sample.

5.1.3 Gauge fields in synthetic dimensions

Our group in Florence and the group of Ian Spielman in Maryland ex-
ploit the novel concept of synthetic dimensions [22, 23] in which a hybrid
2D geometry is realized by using a real one-dimensional lattice combined
to the atomic spin components coherently coupled by means of Raman
transitions.

With this techniques there are some main advantages:

• no Floquet theory is needed;

• a synthetic gauge field is easily realized without potential gradients,
complex super-lattice structures or periodic driving of the lattice
sites position;

• thanks to spin-selective imaging, synthetic single-site resolution is
effectively realized;

• it is quite easy to adiabatically load the lowest energy band of the
engineered Hamiltonian;

• due to the finite number of sites along the synthetic direction, edge
physics can be studied;

• one could think of possible ways to engineer periodic boundary con-
ditions along the synthetic direction, thus investigating bulk physics
too;

• heating effects are completely negligible;

and of course a few limitations

• the synthetic dimension is limited to the maximum number of avail-
able spin components (dim(M) = 6, for 173Yb)
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• since the Raman beams couple different spin components on the
same real lattice site, interactions have effectively an infinite range
along the synthetic direction2.

This technique is of course the topic of this Chapter and it will be described
in detail in the next sections.

5.2 Raman coupling as a synthetic gauge field

Let’s consider 173Yb atoms moving in a 1D lattice, for which a Raman
coupling among the spin components exists. We can write the Raman
coupling Hamiltonian in terms of fermionic ladders operators:

ĤR = − h̄
2 ∑

n,mF

ΩR,mF eiqR·rn ĉ†
n,mF+2ĉn,mF + h.c. (5.0)

where ĉ†
n,mF+2ĉn,mF destroys a particle at site n with spin component mF

and recreates it at the same site n but with spin component mF + 2, ΩR,mF

is the Raman amplitude for the transition mF → mF + 2 and eiqR·rn is the
phase term of the Raman electric field, calculated at the atom position rn
and containing the Raman wavevector qR. We have omitted, for now, the
Raman-induced spin-dependent light shifts. Since we are considering a
one-dimensional lattice, we can rewrite the position of an atom in terms of
the lattice site index n, rn = ndL in which dL = λL/2 is the lattice spacing.
The Raman phase now becomes:

qR · rn = qR,xdLn = qR,x
λL

2
n =

qR,x

2kL
2πn = Φn (5.0)

where we supposed the lattice to be oriented along the x̂-direction, kL is
the lattice wavevector and we defined the new parameter Φ:

Φ = 2π × qR,x

2kL
(5.0)

which is the ratio between the Raman momentum kick along the lattice
direction qR,x and the one-dimensional lattice momentum kick 2kL. Now
consider also the Hamiltonian describing the motion of the atoms along
the one dimensional lattice:

ĤL = −t ∑
n,mF

ĉ†
n+1,mF

ĉn,mF + h.c. (5.0)

2This is not necessarily a disadvantage, it could also become the source of new exciting
studies.
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where t is the tunneling energy and ĉ†
n+1,mF

ĉn,mF describes the particle hop-
ping between neighboring sites without changing the spin. The complete,
non-interacting, Hamiltonian Ĥ = ĤL + ĤR becomes:

Ĥ = −∑
n,m

(
t ĉ†

n+1,m ĉn,m +
h̄
2

ΩR,meiΦn ĉ†
n,m+1ĉn,m

)
+ h.c. (5.0)

where we omitted the label F from the spin component and we intro-
duced the subset m̂ = (−5/2,−1/2,+3/2). This is precisely the Harper-
Hofstadter Hamiltonian (4.1) that we wrote in the previous Chapter. In-
deed we can demonstrate that the parameter Φ acts as a magnetic flux,
when considering a particle hopping around a plaquette of the hybrid lat-
tice, as it is sketched in Fig. 5.1.
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Figure 5.1: Hybrid 2D lattice scheme. The x̂−direction is defined by the real
one-dimensional lattice and the m̂−direction is defined by the atomic spin
components. When a particle hops around a plaquette it acquires a phase Φ.

We note also that the we can change the sign of the artificial magnetic field
simply by inverting the Raman momentum kick: qR → −qR. This can be
done by swapping the frequencies of the two Raman beams (see Fig. 3.6).

Because of the low number of sites along the synthetic direction m̂, we
call this hybrid 2D geometry, a Hall ribbon. The ribbon is made by two legs,
in the case of only two spin components, thus constituting a two-leg ladder,
or by three legs, forming a three-leg ladder. We note that, even in this latter
small system, chiral currents circulating along the edges are predicted to
exist, as can be seen from the numerical simulations (see Fig. 5.2) made
for a hybrid 2D lattice of 30× 3 lattice sites and a magnetic field flux α =
1/5. With such a low number of sites along m̂ is more difficult to identify
properly the magnetic sub-bands and in particular the corresponding edge
state. Nevertheless, also in this simple case, populating many bulk states
brings the system to display an insulating character in the bulk region,
which is constituted by only a single leg. This simple geometry can thus
be exploited as a toy-model in order to study fundamental phenomena
typical of larger quantum Hall systems. Since experimentally we have
access to the momentum distribution and to the spin composition of the
atomic sample, it is useful to consider the spatial Fourier-transform of
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edge state Fermi sea

(a) (b)

Figure 5.2: Three-leg case vector plots. (a) Density distribution and current
vector plots corresponding to the first edge state of Hamiltonian 4.1. (b)
Density distribution and current vector plots corresponding to a Fermi sea,
filling completely the “first” magnetic sub-band. In both situation the system
displays current circulating only along the edges.

Hamiltonian (5.2). Considering a total of L sites along x̂ and introducing
the operators:

b̂†
q,m =

1√
L

n=L

∑
n=1

ĉ†
n,me−i(q+Φm)n, (5.0)

the Hamiltonian can be written as a sum over momentum states Ĥ =

∑q Ĥq,

Ĥq = ∑
m

εq+mΦb̂†
q,mb̂q,m −

h̄
2

ΩR,m

(
b̂†

q,m+1b̂q,m + b̂†
q,mb̂q,m+1

)
+ Umb̂†

q,mb̂q,m

(5.0)
where εk = −2t cos (k), q ≡ 2π j/L with j = 1, 2, ..., L, [23] and we consid-
ered also the spin-dependent light shifts Um acting as additional energy
offsets along the diagonal of the Hamiltonian. Fig. 5.3 shows the resulting
band structure for the two and three-level system in the case of a one-
dimensional lattice of depth s = 6.5 (t ' h× 90 Hz) and a magnetic flux
Φ = 0.37π, corresponding to our experimental parameters. Fig. 5.3a, Fig.
5.3b are the band structure calculations for the two-level case whereas Fig.
5.3c, Fig. 5.3d refer to the three-level case. The energy bands are color-
coded according to the spin population compositions. In both situations,
away from the avoided crossings, the lowest band describes the propaga-
tion of currents along the legs corresponding to m = (−5/2,−1/2) (two-
level system3) and m = (−5/2,+3/2) (three-level system): these currents
propagate along x̂ in opposite directions. In the physical system, these
give rise to a spin current js(x) = j↑ − j↓. When the number of participat-
ing spin states increases, dim(M) � 1 this behaviour becomes analogous
to the one in quantum Hall systems described in the previous chapter. We
note that, with respect to Fig. 4.6 we are effectively making horizontal
cuts of the 2D lattice in order to study the current carried by each row
separately. In Fig. 5.4 we plot the calculated spin composition of the low-
est energy band of Hamiltonian (5.2) as a function of the couplings ratio

3We are considering the case h̄ΩR,1 > t for which the two level-approximation is valid.
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Figure 5.3: Band-structure calculation of Hamiltonian (5.2). Colors specify
the spin state. The magnetic flux chosen is Φ = 0.37π. (a), (b) Two-level case.
(c), (d) Three-level case.

ΩR,1/t, both for the two-leg case and for the three-leg case. The popula-
tions have been averaged over the lattice Brillouin zone [−kL, kL], in order
to consider the fermionic statistics of our sample having a fermi wavevec-
tor of the order kF ∼ kL.

Our next step will be to load the atoms in the lowest energy band
of Hamiltonian (5.2) in order to directly observe the chiral nature of the
current, carried by each spin state.
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Figure 5.4: Calculated spin composition of the lowest dressed band. (a) Two-
leg case. (b) Three-leg case. The populations have been averaged over the
lattice Brillouin zone [−kL, kL].
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5.3 Experimental realization of a synthetic magnetic
field in synthetic dimensions

We can now proceed in describing how we experimentally realize an arti-
ficial magnetic field within our system. In Fig. 5.5 we show the geomet-
rical configuration of the Raman beams with respect to the optical lattice
beams. The second optical lattice (OL2) is lowered at s . 6.5 while the

θ

ω1+δ, ε2, k2 ω1, ε1, k1

B

OL1      s=30

OL2      s=6.5      

qRx=2kR Sin(θ/2)Cos(35°)

35°

B

OL1      s=30

OL2      s=6.5      

x

(a) (b)

Figure 5.5: Raman beams geometric configuration. The Raman momentum
kick makes an angle of 35◦ with the optical lattice OL2, whose direction is
taken as x̂−axis. The lattices OL1 and OL3 (vertical direction, out of the page)
are kept at s = 30 so that the atomic kinetic energy along these directions is
frozen.

others (OL1, OL3) are kept at a lattice depth of s = 30. We can thus con-
sider the atomic kinetic energy to be frozen along directions 1̂ and 3̂ and
keep only the projection of the Raman momentum kick along the direction
of OL2, taken to be the x̂−axis. Considering the angle θ ' 19◦ between
the Raman beams, the transfered momentum becomes:

qR,x = 2kR sin
(

θ

2

)
cos (35◦) = 3.06 · 106 µm−1 (5.0)

corresponding to a magnetic flux per plaquette

Φ = 2π × qR,x

2kL
' 0.37π. (5.0)

We have to note that the chosen arrangement for the optical lattice, effec-
tively realizes many independent one-dimensional tubes (∼ 1000), along
which the shallow OL2 is superimposed. Therefore, the system under
study is composed by many independent 2D hybrid lattices contributing
on their own to the measured signals. By considering also the Raman-
induced state-dependent light shifts and the residual harmonic confine-
ment along OL2 due to the presence of OL1 and OL3, the Hamiltonian
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describing a single hybrid lattice becomes:

Ĥ = −∑
n,m

(
t ĉ†

n+1,m ĉn,m + µnn̂n,m +
h̄
2

ΩR,meiΦn ĉ†
n,m+1ĉn,m + Umn̂n,m

)
+ h.c.

(5.0)
in which t ' h× 90 Hz, µn = 1/2 M ω2

xd2
L n2 is the residual harmonic trap-

ping potential, ωx = 2π× 55 Hz4 and Um are the state-dependent light
shifts that depend on the particular polarization chosen for the Raman
beams as discussed in Chapter 3. Exploiting the state-dependent light
shifts it is possibile to choose between two configurations: a two-leg lad-
der, in which only two spin states are coherently coupled and a three-leg
ladder, in which three spin states participate to the dynamics.

In the next sections we will study both the configurations, presenting
the experimental results and comparing them with the theoretical pre-
dictions made by our collaborators in Innsbruck, Marie Rider, Marcello
Dalmonte and Peter Zoller [24].

5.4 Two-leg ladder: equilibrium properties

The first thing we need to do, which is valid also in the case of the three-
leg ladder, is to adiabatically load the lowest energy band of Hamiltonian
(5.2). We first consider the case of a two-leg ladder (see Sec. 3.3.1) consti-
tuted by the nuclear spin states m = −5/2 and m = −1/2. A quantum
degenerate 173Yb Fermi gas with 1.6 · 104 atoms and an initial temperature
T ' 0.2 TF is first spin-polarized in m = −5/2. By slowly turning on
(Tramp = 150 ms) the intensity of the optical lattice OL2 along x̂ (and of the
additional strong lattices OL1 and OL3), we prepare a system of ladders in
which all atoms occupy the m = −5/2 leg with less than one atom per site
(maximum filling fraction η ' 0.8). During the lattice ramp we switch off
the optical dipole trap in 40 ms in order to decompress the atomic cloud
and reduce the overall harmonic confinement to ωx/2π ' 55 Hz. After
5 ms, we turn on the Raman beams with an initial two-photon detuning
δR,in ' −25 ΩR,1(we have subtracted the Zeeman energy splitting 2∆Z) and
perform an exponential frequency sweep of the form:

δR(t) = δR,in + (δR, f − δR,in)

(
1− e−t/τ

1− e−Tadiab/τ

)
(5.0)

where δR, f = U−5/2 − U−1/2 (see Hamiltonian (3.3.1)). The ramp dura-
tion Tadiab ranges from 20 to 80 ms depending on the particular Raman

4In order to take into account repulsive interactions at the mean-field level, we con-
sidered, in the numerical simulations, a slightly less harmonic frequency ωx/2π ' 40
Hz.
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Figure 5.6: Typical adiabatic loading of the two-leg ladder lowest-energy
band. (a) OSG detection of the spin population during the loading and un-
loading procedure. (b) Gaussian fits of the integrated density profiles, for
extracting the spin relative populations. (c) Barcharts showing the experi-
mental spin populations. The uncertainty in the spin populations is around
3%. The grey percentages are the theoretical expectations obtained by diag-
onalizing Hamiltonian (5.2) and averaging over the range [−kL, kL]. Experi-
mental parameters: h̄ΩR,1/t ' 4, B = 153 G, Nat ' 2.5 · 104.
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Figure 5.7: Sketch of the two-leg ladder configuration. The arrows are a
pictorial representation of the chiral currents.

coupling5 ΩR,1, with τ ranging from 5 to 25 ms accordingly. The adia-
baticity of the whole process is verified experimentally by reversing the
whole procedure to recover approximately6 a spin-polarized Fermi gas, as
can be seen in Fig. 5.6.

Despite the absence of a real bulk region, this two-leg configuration is
expected to support chiral currents with atoms flowing in opposite direc-
tions along the legs (Fig. 5.7), as investigated recently in bosonic systems
[124]. To observe this, we measured the relative motion of the atoms in the
two legs by spin-selective imaging of the lattice momentum distribution,
obtained by switching off the synthetic coupling and releasing the atoms
from the lattice through a band mapping procedure (see 1.2.1). The single-
site imaging along the synthetic direction is perfomed by using a sequence
of spin-selective laser pulses, in resonance with different components of
the narrow intercombination transition 1S0 →3 P1(F′ = 7/2), to remove
atoms in all spin states but one (see Sec. 2.5.4). The sequence is carried out
during the first 2.5 ms of ballistic expansion. At this time the (real) mag-
netic field is Bblast = 15 G, leading to a Zeeman shift ∆Z ' 50Γ between
adjacent spin components in the 3P1 manifold. After ballistic expansion,
absorption imaging is perfomed on the dipole-allowed 399 nm transition.
In Fig. 5.8 (upper panel), we show two time-of-flight images correspond-
ing to the m = −5/2 and m = −1/2 legs for ΩR,1 = 2π × 489 Hz and
t = h× 134 Hz (h̄ΩR,1/t = 3.65). Here we are interested only in direction
x̂, which reflects the distribution of the lattice momenta k along the legs
(in units of the real-lattice wave vector kL). The lattice momentum distri-

5In choosing the ramp profile we must be adiabatic with respect to the band gap be-
tween the lowest and the first excited energy band in order to avoid Landau-Zener tunnel-

ing processes. As a general rule we try to satisfy dδR
dt <

Ω2
R,1
2 .

6The imperfect adiabaticity is more pronounced at low lattice depth (s < 10) of the
real one-dimensional lattice probably because of the higher mobility of the atoms. Indeed,
even if we start from a non-interacting fully polarized Fermi gas, when we turn on the
momentum-dependent Raman coupling, atoms in different spin states become effectively
distinguishable, opening the way to possible interactions that could introduce decoherence
mechanisms. Also, a possible relative phase noise, between the Raman electric field an
the optical lattice electric field, could lead to fluctuations in the synthetic magnetic field,
introducing heating effects.
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Figure 5.8: Chiral dynamics in two-leg ladders. (Top) False-color time-of-
flight images of the atoms in the m = −5/2 and m = −1/2 legs. (Middle) In-
tegrated lattice momentum distribution n(k). (Bottom) h(k) = n(k)− n(−k).
Experimental parameters: ΩR,1 = 2π × 489 Hz, t = h × 134 Hz, h̄ΩR,1/t =
3.65, and Φ = 0.37π. In this figure we have taken kL = 1.

bution along the orthogonal spatial direction ŷ is a uniform square due
to the presence of the strong optical lattice along the transverse (frozen)
directions. We take at least 30 images for each spin state and in order
to remove residual gradients or fringes due to imperfections in the imag-
ing setup, also background images are acquired, averaged and subtracted
from those with atoms.

The central panel of Fig. 5.8 shows the lattice momentum distribution
n(k) after integration of the images along ŷ (orthogonal direction with
respect to x̂ in the figure) and normalization according to

∫
n(k)dk = 1.

We observe a clear asymmetry in n(k), similar to what was reported in
experiments with spin-orbit coupling in harmonically trapped gases [17,
66]. We characterize the asymmetry by defining the function

h(k) = n(k)− n(−k) (5.0)
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Figure 5.9: Time-of-flight images and h(k) of the m = −1/2 leg for opposite
directions of the effective magnetic field. Experimental parameters: ΩR,1 =
2π × 394 Hz, t = h× 87 Hz, h̄ΩR,1/t = 4.53, and Φ = ±0.37π.

which is plotted in the lower panel of Fig. 5.8. The expression

J =
∫ 1

0
h(k)dk (5.0)

provides a measurement of the lattice momentum unbalance and quanti-
fies the strength of the chiral motion of the particles along the two legs.
The values J = +0.056(3) for m = −5/2 and J = −0.060(7) for m = −1/2
are approximately equal in intensity and opposite in sign, providing di-
rect evidence for the presence of chirality in the system. The small value
of J is attributable to the fact that, in addition to states exhibiting chiral
currents, fermions occupy other states at the bottom of the band, which
do not display chiral features (see Fig. 4.6). We also perfomed the same
experiment with reversed direction of the synthetic magnetic field B (Fig.
5.9, observing a change of sign in J, corresponding to currents circulating
in the opposite direction. This behavior confirms the interpretation of our
data in terms of chiral currents induced by a synthetic magnetic field in a
sythetic 2D lattice.

The stability of chiral edge states in fermionic systems is of key im-
portance, for example, for quantum information applications [131]. In our
system, the appearence of a chiral behavior is governed by several key pa-
rameters, including the ratio h̄ΩR,1/t, the Fermi energy EF, and the flux
Φ. These parameters are easy to adjust, so they can be used to investi-
gate the rise and fall of the edge currents as a function of the Hamiltonian
parameters [124], as well as to identify which regimes exhibit stronger chi-
ral features. By varying the tunneling rates along x̂ and m̂, we observe a
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crossover between a chiral behavior and a nonchiral regime. The lattice
momentum distribution is measured as a function of h̄ΩR,1/t without af-
fecting other relevant parameters, such as EF and T. Fig. 5.10 illustrates
the measurement of |J| as a function of h̄ΩR,1/t (circles). As expected,
no chirality is observed for vanishing ΩR,1, when the legs are decoupled.
Chirality is also suppressed for large inter-edge coupling ΩR,1 � t. In the
latter regime, the largest energy scale in the system is the effective kinetic
energy along the synthetic direction: this contribution is minimized when
the fermions occupy the lowest energy state on each rung, which does not
exhibit any chiral behavior. The measured values of |J| compare well with
the results of a numerical simulation7 that includes thermal fluctuations.
(shaded area in Fig. 5.10).

|J
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Figure 5.10: Chiral current vs Hamiltonian couplings. Circles show experi-
mental values of |J| for the m = −1/2 leg as a function of h̄ΩR,1/t (averages
of data sets taken for Φ = ±0.37π). The error bars are obtained with a
bootstrapping method [132] applied on ∼ 30 different measurements. The
shaded area depicts the result of a numerical simulation that includes ther-
mal fluctuations, see Sec. 5.7.

5.5 Three-leg ladder: equilibrium properties

We next consider a three-leg ladder (see Sec. 3.3.2), which is the mini-
mal configuration for which chiral currents at the edges can be sharply
distinguished from the behavior of the bulk, Fig. 5.12. The adiabatic load-
ing procedure of the lowest energy band is similar to the one previously
described for the two-leg case. In Fig. 5.11 we show the loading and un-
loading of the lowest dressed state for typical experimental parameters,
h̄ΩR,1/t ' 4, B = 153 G, Nat ' 2.8 · 104.

Fig. 5.13 shows the measured n(k) and h(k) for each of the three legs
for ΩR,1 = 2π × 620 Hz and t = h × 94 Hz (h̄ΩR,1/t = 6.6). We observe
strong chiral currents in the upper and lower-edge chains, showing val-
ues of J with opposite sign, similar to the two-leg case (J = +0.079(6) for

7See Sec. 5.7.
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Figure 5.11: Typical adiabatic loading of the three-leg ladder lowest energy
state. (a) OSG detection of the spin population during the loading and un-
loading procedure. (b) Gaussian fits of the integrated density distributions
for extracting the spin relative populations. (c) Barcharts showing the exper-
imental spin populations. The uncertainty in the spin populations is around
3%. The grey percentages are the theoretical expectations obtained by diago-
nalizing Hamiltonian 5.2 and averaging over the range [−kL, kL]. Experimen-
tal parameters: h̄ΩR,1/t ' 4, B = 153 G, Nat ' 2.8 · 104.
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Figure 5.12: Sketch of the three-leg ladder configuration.

m = −5/2 and J = −0.062(4) for m = +3/2). In contrast, the central
leg shows a much reduced asymmetry in n(k) (J = +0.018(5)), signaling
a suppressed net current in the bulk. This is a direct evidence of the ex-
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Figure 5.13: Chiral edge currents in a three-leg ladder. Experimental time-
of-flight images (top). n(k) (center), and h(k) = n(k)− n(−k) (bottom) for
each of the three legs m = −5/2, m = −1/2, m = +3/2 constituting the
ladder, respectively. Experimental parameters: ΩR,1 = 2π × 620 Hz, t =
h × 94 Hz, h̄ΩR,1/t = 6.6, and Φ = 0.37π. In this figure we have taken
kL = 1.

istence of chiral states propagating along the edges of the system, which
leave the bulk mostly decoupled from the edges (Fig. 5.14). This behavior
is akin to what is expected for a fermionic system in a Harper-Hofstadter
Hamiltonian (see Sec. 4.4). Bulk states exhibit only local circulation of cur-
rent, which averages to zero when all of the different states enclosed by
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Figure 5.14: Chiral currents vs Hamiltonian couplings. Circles show exper-
imental values of the net momentum unbalance J for each leg as a function
of h̄ΩR,1/t. The error bars are obtained with a bootstrapping method ap-
plied on ∼ 30 different measurements. The shaded area depicts the result
of a numerical simulation taking into account temperature fluctuations (see
Sec. 5.7). For both experimental and simulation data, red, green and blue
correspond to m = −5/2, m = −1/2, m = +3/2, respectively.

the Fermi surface are considered. Only the edges of the system experience
a nonzero current, because there the chiral nature of the states prevents
this cancellation effect from occurring. In the ribbon geometry of the ex-
periment, the bulk reduces to just a single central line. Nevertheless, the
behavior discussed above is clearly present and detectable in the exper-
imental signal. The small width of the ribbon favors the observations of
edge states, given the large boundary-to-surface ratio of the system, which
is reflected in a substantial population of states with edge character. Fig.
5.14 shows the values of J as a function of h̄ΩR,1/t for the three different
legs of the ladder. The results illustrate the role of the bulk-edge coupling:
similar to the two-leg case, chirality is very weak for small coupling and
increases as h̄ΩR,1/t approaches ∼ 3. The theoretical curves show that
further increasing h̄ΩR,1/t eventually leads to attenuation of the signal be-
cause of the effective coupling between edges, which smoothens the chiral
features of the system. We observe a substantial agreement between ex-
periment and theory for the range of h̄ΩR,1/t that can be explored in our
experimental setup8. The nonzero current in the bulk (J < 0.035) can be
ascribed to the different couplings ΩR,1, ΩR,2, as well as to a residual light
shift that breaks the symmetry between the two edges (see Sec. 3.3.2).

8For h̄ΩR,1/t� 1 the adiabatic loading procedure of the lowest dressed state is spoiled
by the presence of σ+π Raman transitions that populate unwanted spin states when the
two-photon frequency sweep starts from nearby a mF → mF + 1 resonance. This problem
is not present in the two-leg case because there the polarization is purely σ+/sigma−.
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Figure 5.15: Quench dynamics. (a) Time dependence of the average position
in the synthetic direction 〈m〉 after a quench of the synthetic tunneling. (b)
Time dependence of the average lattice momentum 〈k〉 along the x̂ direction.
In both the figures the circles represent experimental data, the thin lines
connect the points, and the thick lines illustrate the theoretical predictions.
Experimental parameters ΩR,1 = 2π × 490 Hz and t = h× 94 Hz.

5.6 Three-leg ladder: skipping orbits

In the previous sections we discussed equilibrium properties of the ex-
perimentally realized hybrid 2D lattice. Now we want to discuss another
experiment performed on the three-leg ladder configuration regarding the
study of quench dynamics, that provides direct evidence of chiral trans-
port properties along the edges. We prepared a system of lattice fermions
in an initial state with zero average momentum on the lower m = −5/2
leg of the three-leg ladder. We then perfomed a quench by suddenly acti-
vating the complex tunneling in the synthetic direction. Fig. 5.15a shows
the time dependence of the average position in the synthetic direction 〈m〉,
measured by optical Stern Gerlach detection. Fig. 5.15b shows the time
dependence of the average lattice momentum 〈k〉 along x̂, measured by
time-of-flight imaging of the whole cloud. We observe clear in-phase oscil-
lations demonstrating the spin-momentum locking of the atom dynamics.

The data can be combined in order to study the average orbits in the
x̂ − m̂ plane. We first determined the average position 〈x〉 of the atomic
cloud assuming the validity of the semiclassical equation of motion along
the real lattice [57]. In this framework, considering the lowest band dis-
persion as ε(k) = 2t [1− cos (kd)], the velocity of the k−component of the
Fermi sea is:

vk =
1
h̄

∂ε(k)
∂k

=
2td
h̄

sin (kd). (5.0)

Then, knowing the tunneling t, we can measure the average velocity of the
whole cloud at a given time τ from the experimental lattice momentum
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Figure 5.16: Edge-cyclotron orbits. (a) Average position in m̂− x̂ space. The
circles represent experimental data, the thin lines connect the points, and
the thick lines illustrate the theoretical prediction. Experimental parameters
ΩR,1 = 2π × 490 Hz and t = h× 94 Hz. (b) Schematics of the edge-cyclotron
orbit commonly called skipping-orbit.

distribution n(k, τ):

〈v(τ)〉 = 2td
h̄

∫
n(k, τ) sin (kd)dk. (5.0)

Finally, to obtain the average position at a given time τ, we integrate the
interpolated average velocity over time:

〈x(τ)〉 =
∫ τ

0

〈
v(τ′)

〉
dτ′. (5.0)

In order to estimate the error bars of the edge-cyclotron orbits we perform
a bootstrap analysis [132] over a set of different 〈x(τ)〉 reconstructed from
a random sampling of the experimental images. As can be seen in Fig.
5.16a, the error bars increases during the time evolution. This is due to
the accumulated error coming from the numerical integration in Eq. (5.6).
Fig. 5.16b shows an experimental reconstruction of the average orbit on
the ribbon surface as a plot of 〈m〉 versus the average position in real space
〈x〉. The dynamics displays a strong chiral character, demonstrated by the
in-phase oscillations in Fig. 5.15a, and b and the orbits in Fig. 5.16b. Un-
der the effect of the synthetic magnetic field, the fermions move according
to cyclotron-type dynamics, which is naturally truncated by the synthetic
edge, giving rise to a skipping-type orbit, as expected for a quantum Hall
system [110, 133]. Furthermore, the experimental data are in reasonable
agreement with the theoretical predictions (see Sec. 5.7), represented by
the thick lines in Fig. 5.15a, b and Fig. 5.16b. The theoretical simulations
have been perfomed by solving numerically the time-evolution of systems
at different densities. Indeed, it turned out that assuming a single value
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for the density is usually not sufficient to capture the full time-dependent
dynamics at the edge. As a matter of fact, in the different ladders of the
system, each with a different density, there is a very different fraction of
particles participating in the edge dynamics. Whilst not affecting drasti-
cally the behavior of J, this inhomogeneity has strong effects on the single
edge-dynamics probed by a quench. In order to take into account the
inhomogeneity effect, we have simulated systems at various sizes up to
L = 55 lattice rungs and different densities. For the data shown in Fig.
5.16b, we considered a system of L = 35 rungs and averaged over a set
of different densities n = (0.2, 0.4, 0.6, 0.8) equally weighted. We notice
that, when taken singularly, none of these density realizations captures
the system dynamics correctly, while the average gives a good quantita-
tive agreement with the experimental results.

These dynamics are effectively damped, even in the idealized case de-
scribed by theory, as a result of averaging over many different fermionic
trajectories, which also causes a reduction of the average orbit radius to
less than one real lattice site, Fig. 5.16b. This is markedly different from
the behavior of a non-interacting Bose gas, which would occupy a single
condensed wave packet undergoing undamped oscillations [25].

5.7 Temperature effects

5.7.1 Thermal fluctuations

In order to include finite temperature effects in the calculation of the chi-
ral currents J plotted in Figs. 5.10, 5.14, two methods can be used. The
first one relies upon considering the partition function of the system and
calculating the thermal average of the quantity of interest, such as the
momentum distribution:

〈n(k)〉T = ∑
j

〈j|n(k)|j〉
eβ(ε j−µ) + 1

(5.0)

in which β = 1/kBT, |j〉 are the eigenstates of the Hamiltonian (5.3) with
energies ε j and µ is the chemical potential, fixed by the total number of
particles.

The second method, which is computationally more efficient, relies
upon adding “by hand” a fraction of random thermal excitations. The
procedure is as follows:

• one calculates the full spectrum of the Hamiltonian (5.3);

• given a certain number of particles N, one populates the lowest N
states up to the Fermi energy EF and extracts the zero-temperature
momentum distribution n(k);
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• one introduces particle-hole excitations by hand. Formally, we eval-
uate a set of momentum distributions, where a certain random frac-
tion x/|µ| of excited states is populated (and the corresponding
x/|µ| holes are left behind). In each of this realizations f , one con-
siders M states with energy ε < EF and N − M states with energy
ε > EF, so that

n f (k) =
M

∑
m=1

nm(k) +
N−M

∑
l=1

nl(k) (5.0)

where the index m, l is a state index;

• finally, one sums up all the realizations f , for example F realizations,
and obtains the result:

n(k, T) =
F

∑
f=1

n f (k). (5.0)

We note that this procedure does not produce an exact thermal average,
but rather a very good approximation of a thermal state. The calculations
in Figs. 5.10, 5.14 are performed by simulating a system 9 with an aver-
age x/|µ| of 20% thermal excitations above the Fermi sea (both the 2-leg
and 3-leg case) and performed averages over up to F = 200 configura-
tions. These results are approximately recovered by investigating a finite-
temperature partition function with temperature kBT ∼ 0.4 t. The width
of the theoretical curves, representing the effect of thermal excitations, has
been evaluated as the 68.27% percentile interval centered around the mean
value of the statistical distribution obtained with a bootstrapping analysis
of 100 realizations of the simulation.

5.8 Synthetic Hall drift

In this Section we describe some preliminary results regarding the obser-
vation of Hall-drift like dynamics in the synthetic dimension. By super-
imposing a linear potential to the real one-dimensional lattice, a Bloch
oscillation is induced, corresponding to an AC-current [134, 135]. Due to
the presence of the synthetic magnetic field, this current translates in a mo-
tion along the “orthogonal” synthetic direction, similar to what happens
in a Hall bar.

9We considered a single ribbon of 25 sites along the real dimension, and 2 or 3 sites
along the synthetic dimensions. The number of particles is taken to correspond to an
average filling n ∼ 0.8 with respect to the real one-dimensional lattice.
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Figure 5.17: Calculated Bloch oscillations in a 1D optical lattice. (a) Quasi-
momentum evolution. (b) Spatial position evolution. Numerical parameters:
νB = 500 Hz, t = h× 100 Hz L = 30.

5.8.1 Bloch oscillations in ultracold Fermi gases

We consider a fully polarized Fermi gas loaded in an homogeneous 1D op-
tical lattice. By applying a linear gradient, the single particle Hamiltonian
describing the system becomes:

Ĥ =
p̂2

2m
+ sER sin2 (kLx)− F0x (5.0)

where F0 is a constant force, applied to the atoms along the direction of
the lattice. In the limit of weak perturbation (single-band approximation),
the semiclassical equation of motion [57] are given by:

dx(t)
dt

=
1
h̄

∂ε(k)
∂k

dk(t)
dt

=
F0

h̄

from which we see that the quasi-momentum k sweeps across the first-
Brillouin zone at a frequency:

νB =
Fd

2πh̄
(5.0)

where d = λL/2 is the lattice spacing. In Fig. 5.17 we plot the calculated
single-particle dynamics for a one-dimensional lattice of 30 sites, Bloch
frequency νB = 500 Hz and tunneling energy t = h × 100 Hz. Note that
the maximum excursion along the x̂ direction is given by Amax = 4t/hνB.
If we consider a one-dimensional Fermi sea of width kF ≤ kL along the x̂
direction, we have to average over all the momentum states, obtaining a
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Figure 5.18: Experimental configuration for the optical gradient generation.
(a) A 1064 nm laser beam is focused onto the atoms, slightly dislocated from
the atomic cloud center. (b) Calculated Bloch frequency as a function of the
distance from the beam spot center. The inset shows a zoom around the
maximum Bloch frequency achievable. The beam waist assumed is w0 =
100 µm whereas the laser power is P = 1 W.

zero-amplitude Bloch oscillation in case the Brillouin zone is completely
filled. It is thus preferable to work with a low number of atoms (. 1.5 ·
104) in order to keep the average filling 0.5 ≤ n ≤ 0.8.

In order to experimentally perform Bloch oscillations with our 173Yb
fully polarized Fermi gas, we exploit an optical gradient, generated with a
laser beam at 1064 nm slightly misaligned with respect to the atomic cloud
(see Fig. 5.18a) center, as in the optical Stern-Gerlach configuration (see
Sec. 2.5.2). The laser beam is shone onto the atoms along an orthogonal
direction with respect to the real 1D optical lattice (along OL1 direction of
Fig. 5.5). If the laser beam waist is sufficiently large, the optical gradient
can be considered approximately linear in the region of the atomic sample.
In Fig. 5.18b we show the calculated Bloch frequency for a measured beam
waist w0 ' 100 µm as a function of the distance from the beam spot center.
By choosing w0 & 10RF (where RF ' 10 µm is the typical Fermi radius)
the Bloch frequency is approximately constant all over the sample (3.5%
of variation around the maximum).

Another important aspect that we need to consider, in order to see
long-lived Bloch oscillations, is the effect of a residual harmonic trapping
potential along the gradient direction. Indeed, if the Bloch frequency is
comparable to the harmonic trapping frequency, dephasing caused by the
atomic motion will completely wash out the Bloch oscillations. We thus
decided to keep the optical lattice depth along direction OL1 and OL3 at a
lower level in order to reduce the harmonic trapping potential. Unfortu-
nately, the lattice depth is not a high-range turning knob, since the residual
trapping frequency scale as

√
s. In Fig. 5.19 we show a measurement of
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Figure 5.19: Bloch oscillation with a fully polarized Fermi gas. (a) Quasimo-
mentum distribution used to extract the peak position. (b) Bloch oscillations
in an optical gradient. The points are the experimentally determined max-
imum peak position and the solid line is a fit to the data with a sawtooth-
like function. Experimental parameters: s1 = s3 ' 22, s2 ' 5, t ' 130 Hz,
Pgrad ' 2.9 Watt, Nat ' 1.5 · 104.

the Bloch oscillation for a spin polarized Fermi gas loaded in an optical
lattice, with parameters s1 = s3 ' 22, s2 ' 5, t ' 130 Hz, giving a residual
trapping frequency along OL2 direction of νx ' 46 Hz. The atoms are adi-
abatically loaded in the optical lattice, and after 10 ms, the optical gradient
beam is suddenly turned on in less then 10 µs. After a variable holding
time in the force field, we perform the band mapping procedure in order
to map the quasimomentum distribution within the lattice to the free parti-
cle momentum states. The cloud is then imaged after a time-of-flight of 23
ms. We fit the evolution of the lattice momentum distribution peak with a
sawtooth-like function, and extract the Bloch period. The measured Bloch
frequency is νB = 523 Hz for a beam power Pgrad ' 2.9 Watt, 10% less then
the expected value, probably due to an imperfect alignment of the optical
gradient beam. We note that, due to fermionic statistics, the amplitude of
the oscillation is less than kL. Unfortunately, the alignment of the optical
gradient beam is very critical, and it has to be checked on a daily basis.
Also, due to the residual harmonic confinement, we are not able to see any
complete Bloch oscillation below approximately 200 Hz. This is a limita-
tion since we are interested in the regime t ∼ ΩR/2 ∼ νB and in particular,
we would like to avoid the Bragg reflection at the boundary of the Bril-
louin zone in order to have a current along the real dimension x̂ always in
the same direction (first half-period of the Bloch oscillation). This would
be more similar to what happens in real quatum Hall solid state devices,
in which a DC-current is applied to the sample (and not an AC-current).
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Figure 5.20: Synthetic Hall drift. (a) Spin population evolution caused by the
optical gradient applied along the real direction x̂. The red, green and blue
points refer to the m = −5/2 − 1/2 + 3/2 spin populations respectively.
(b) Numerical simulation perfomed over a single hybrid 2D lattice of 30× 3
sites. A filling of n = 0.7 (with respect to the one-dimensional lattice sites,
i.e. 30) and a temperature of T = 0.3 TF have been considered.

5.8.2 Hall dynamics in the synthetic dimension

In this section we perform the Bloch oscillation experiment in the pres-
ence of a Raman coupling in the three-leg ladder configuration (see Sec.
5.5). We thus study the dynamics in the synthetic dimension in the pres-
ence of an applied current along the real direction. We prepare the system
in the lowest equilibrium state as in the previous sections, we suddenly
turn on the optical gradient beam and we monitor the spin population
distribution by OSG detection after a variable holding time. In Fig. 5.20a
we report a synthetic Hall drift measurement for the following parame-
ters: s1 = s3 = 23, s2 = 4, t ' 172 Hz, νB ' 207 Hz, Nat ∼ 1.2 · 104. The
agreement with the numerical simulation, 5.20b, is rather good. There, we
considered a single hybrid 2D lattice of 30× 3 sites and a filling n = 0.7
with respect to the one-dimensional lattice available sites, i.e. 30. Within
the first quarter of the Bloch period (∼ 1.25 ms), the population of the
−5/2 (+3/2) edge decreases (increases), giving rise to a positive “Hall
voltage drop”∆VH = Pop(+3/2)− Pop(−5/2), (see Fig. 5.21). The volt-
age drop then decreases and changes sign, mainly due to the low number
of sites along the synthetic direction and to the AC-character of the Bloch
oscillation.

Discrepancies between theory and experiment can be ascribed to the
imperfect initial preparation of the lowest dressed band, and also to the
possible inhomogeneities in the optical gradient. From the theoretical
point of view, we are considering only a single tube (out of approximately
1000 thousands tubes generated by the optical lattice potential), and an
average over many different filling factors should be included. We post-
pone further investigation both experimentally and theoretically, to future
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Figure 5.21: Measured “synthetic Hall voltage” defined as ∆VH =
Pop(+3/2)− Pop(−5/2).

studies. Nevertheless, these preliminary data are very promising and it
would be very interesting to perform experiments with a larger system,
for example by coupling all the six spin states.

5.9 Conclusions and perspectives

In this chapter we reported the first observation of chiral edge states in
a system of neutral fermions subjected to a synthetic magnetic field and
some very preliminary results regarding the visualization of a synthetic
Hall drift with measurement of a Hall voltage in an atomic system with
edges. We exploited the high level of control in our system to investi-
gate the emergence of chirality as a function of the Hamiltonian couplings.
These results have been enabled by a completely innovative approach, pro-
posed in [22, 23], where an internal degree of freedom of the atoms is used
to encode a lattice structure lying in an extra-dimension, providing direct
access to edge physics. Our approach can be extended to wide ladder sys-
tems with as many as 2I + 1 legs (up to a maximum of 6 in 173Yb, see Fig.
5.22a), providing a setting for the investigation of both edge and bulk 2D
topological matter, complementary to recent works on Chern insulators
[18]. This would allow a controlled study of the combined effect of inter-
actions and synthetic gauge fields, crucial for the realization of fractional
quantum Hall physics, potentially leading to exotic states of matter in lad-
der systems. Indeed, in Ref. [43], analytical and numerical studies have
predicted the existence of a full hierarchy of gapped and gapless phases
with unusual properties. The simultaneuous presence of interactions and
gauge potentials, leads the system to displays different behaviours ranging
from magnetic crystals to helical phases.

Moreover, the flexibility offered by the present scheme allows the en-
gineering of arbitrary lattice patterns, including disorder and constriction,
in ladder systems. Indeed, it would be very interesting to study the ro-
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bustness of the observed chiral currents, in presence of localized impuri-
ties. Also, the possibility to engineer periodic boundary conditions (Fig.
5.22b) along the synthetic dimension [136], opens the door to the study of
the topological properties of bulk physics, focusing on the observation of
the fractal structure of the Hofstadter spectrum, see Fig. (Fig. 5.23), for
example by exploiting the ultranarrow clock transition of Ytterbium (see
Chapter 7), to perform precise spectroscopy of the magnetic subbands.
Last but not least, thanks to the periodic boundary conditions, it would be
possible to realize the famous topological Laughlin pump [122], measure
the quantization of the Hall conductivity and extract the corresponding
Chern number. Combining periodic boundary conditions and interactions
[43], allows the system to reach the thin torus limit [137, 138], in which
the fractional quantum Hall states are density waves, with features that
respect the conditions for observing the Laughling series in the quantum
Hall effect.

-5/2 -3/2 -1/2 1/2 3/2 5/2

(a) (b)

ΦΦ

Figure 5.22: Designing the synthetic dimension. By using laser light pro-
ducing state-dependent light shifts and selective Raman couplings with ap-
propriate polarization/frequencies, it is possible to engineer different con-
nectivities in the synthetic direction. From ladders with up to six legs (a)
(with sharp synthetic edges) to a cylinder geometry with periodic boundary
conditions (b).
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Figure 5.23: Detecting the Hofstadter’s butterfly. The ultranarrow Yb
578 nm 1S0 → 3P0 clock transition could be used, in combination with
state-dependent potentials, to perform a spectroscopic measurement of the
Harper-Hofstadter spectrum, exhibiting the fractal butterfly structure.



6 | A multicomponent
1D liquid of fermions

Correlations in systems with spin degree of freedom are at the heart of fun-
damental phenomena, ranging from magnetism to superconductivity. The
effects of correlations depend strongly on dimensionality, a striking ex-
ample being one-dimensional electronic systems, extensively studied the-
oretically over the past fifty years [139–142]. However, the experimental
investigation of the role of spin multiplicity in 1D fermions, and especially
for more than two spin components, was lacking. In this Chapter, we
report the first realization and experimental study of 1D, strongly corre-
lated liquids of ultracold fermions interacting repulsively within SU(N)
symmetry, with a tunable number N of spin components.

We will proceed as follows. Section 6.1 introduces some basic aspects
of the Tomonaga-Luttinger model [139], a successful theoretical frame-
work for the description of fermions confined to one-dimensional geome-
tries. Section 6.2 describes the experiments performed in order to investi-
gate a one-dimensional liquid of fermions with a tunable number of spin
components. In particular we will focus on the behavior of the momentum
distribution of the atomic sample as a function of the spin multiplicity, on
the measurement of the low energy excitations with Bragg spectroscopy
techniques and finally, on the role of the number of spin components in
determining the frequencies of the lowest collective mode of excitation.

6.1 Basic principles of 1D liquid of fermions

One-dimensional quantum systems show specific, sometimes counterin-
tuitive behaviours that are absent in the 3D world. These behaviours,
predicted by many-body models of interacting bosons [143] and fermions
[140, 141], include the “fermionization” of bosons [144] and the separation
of spin and density (most commonly referred to as “charge”) branches in
the excitation spectrum of interacting fermions. The last phenomenon is
predicted within the celebrated Luttinger liquid model [139], which de-
scribes the low-energy excitations of interacting spin-1/2 fermions.

102
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Figure 6.1: Pictorial representation of the failure of the Fermi liquid model.
(a) In high dimensions, nearly free quasi-particle excitations exist. (b) In a
one-dimensional interacting system, only collective excitations can exist.

In this Section we will give a brief review of that model with emphasis
on its application to a system of ultracold atoms.

6.1.1 Failure of the Fermi liquid paradigm

At T = 0 all states up to the Fermi energy are occupied in a 3D gas
of free fermions. The excitations of the system, relative to the ground
state, have a particle-hole character, having a well defined momentum q
and energy ε(q). To characterize these excitations one can introduce the
probability fo find a state with frequency ω and momentum q, which is
described by the spectral function A(q, ω) [139]. The remarkable result of
the Landau’s approach to the Fermi liquid theory is that turning on the
interactions doesn’t change much, in the sense that the properties of the
system remain essentially similar to those of free fermionic particles. The
elementary particles are now fermionic quasi-particles, fermions dressed
by the density fluctuations around them. These new characters behave as
they were essentially free, apart from a few changes in the effective mass
m∗ or in some quantities like susceptibilities [145].

In one dimension, instead, interactions have drastic effects compared
to higher dimension, where nearly free quasiparticle excitations exist. Let
us consider the case of repulsive interactions. Naively, in one dimension,
a fermion that tries to propagate has to push the other particles because of
the repulsive interactions, see Fig. 6.1. Any single-particle excitation now
becomes a collective one. This characteristic clearly makes any attempt
to describe the situation within the Fermi liquid framework, unsuccesful.
For fermions with spin things get even worse1, because a single fermionic
excitation has to split into a collective mode carrying charge and a collec-
tive mode carrying spin. This is the famous phenomenon of spin-charge
separation, because in general the two excitations have different velocities.

1Or more exciting.
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Figure 6.2: Particle-hole excitation spectrum in high dimensions (a) and one
dimension (b). The energy gap between q = 0 and q = 2kF is a peculiarity of
the one-dimensional geometry.

Another difference between one and higher dimensions is the particle-
hole continuum, namely the region of the (h̄q, h̄ω) plane (with h̄q and
h̄ω(q) being the momentum and excitation energy respectively) where it
is possible to create a number-conserving particle-hole excitation. In high
dimensions, for |q| < 2kF it is possible to create an excitation of arbitrar-
ily low-energy by annihilating a particle just below the Fermi surface and
recreating it just above. In one dimension the situation is different because
the Fermi surface is constituted by just two points at ±kF and therefore
the excitations of vanishing energy are only possible at q = 0, 2kF as is
depicted in Fig. 6.2. All these properties, quite different from the ones of
a Fermi liquid, are the essence of the Tomonaga-Luttinger liquid, that we
will now briefly describe in the context of ultracold Fermi gases.

6.1.2 Luttinger liquid approach to 1D Fermi gases

Following Refs. [146, 147], we briefly discuss the properties of one-dimensional
fermionic atoms using the Luttinger liquid theory. One dimensional, har-
monically trapped, Fermi gases can be efficiently described by the follow-
ing Hamiltonian:

Ĥ =∑
σ

∫
dx Ψ̂†

σ(x)

[
− h̄2

2m
∂2

x + Vext(x)

]
Ψ̂σ(x)

+ g1D

∫
dx Ψ̂†

↑(x)Ψ̂†
↓(x)Ψ̂↓(x)Ψ̂↑(x)
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where Vext(x) is the external harmonic potential, Ψ̂†
σ(x) and Ψ̂σ(x) are

fermionic creation and annihilation operators in real space and the quan-
tity g1D represents the strength of the repulsive zero-range interaction
given by the formula [148]:

g1D = − 2h̄2

ma1D
=

2h̄2a3D

ma2
⊥

1
1− 1.033a3D/a⊥

(6.-1)

in which a3D is the 3D scattering length and a⊥ is the harmonic oscillator
length associated to the confinement in the transverse (frozen) directions.
We can introduce a dimensionless parameter γ, [149]

γ =
mg1D

h̄2n1D
= − 2

n1Da1D
(6.-1)

giving the (approximate) ratio between the interaction energy g1Dn1D and
the kinetic energy of an ideal homogeneous Fermi gas ε = h̄2π2n2

1D/8m.
From Eq. (6.1.2) we observe that, counterintuitively, the role of interactions
increases by decreasing the density of the sample.

In the homogeneous case (Vext = 0), the Hamiltonian can be written in
momentum space as:

Ĥ = ∑ εk ĉ†
k,σ ĉk,σ +

g1D

L ∑
kk′q

ĉ†
k+q,↑ ĉ

†
k′−q↓ ĉk′↓ ĉk↑ (6.-1)

where εk = (h̄2k2/2m− µ) and ĉ†
k,σ, ĉk,σ are creation and destruction fer-

mionic operators at momentum k and spin state σ. Eq. (6.1.2) can be
further manipulated by introducing left-moving (around −kF) and right-
moving (around kF) fermionic annihilation (creation) operators ĉ†

r,σ(k),
where r = R, L, and the respective densities fluctuations operators ρ̂r,σ(q) =
∑k ĉ†

r,σ(k + q)ĉr,σ(k). In the model, the four particle species (R ↑, R ↓, L ↑
, L ↓) have unbounded free dispersion relation εr(q) = ar h̄vFq, where vF
is the Fermi velocity and aR(L) = +(−). All states up to the Fermi energy
are occupied and one has two branches of particles with boundless energy
and momentum, and the densities obey Bose-type commutation relations
[146]. One can then introduce four new boson fields φ̂ν, Π̂ν, with ν = c, s,
related to the fluctuations of the total density ρ̂c = ∂xφ̂c/

√
π, of the spin-

density ρ̂s = ∂xφ̂s/
√

π, of the current density jc = −Π̂c/
√

π and of the
spin current density js = −Π̂s/

√
π. With these new fields, we can write

the Luttinger Hamiltonian in the bosonized form [146]:

Ĥ = ∑
ν=c,s

uν

2

∫
dx
[

KνΠ̂2
ν +

1
Kν

(∂xφ̂)2
]

(6.-1)

which represents two independent elastic strings with the eigenmodes cor-
responding to the collective density and spin-density fluctuation of the
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Figure 6.3: (a) Charge (blue) and spin (red) velocities in unit of the Fermi
velocity vF as a function of the interaction parameter ξ. The solid lines are
uc, us in the strong and weak coupling regime. The dashed lines are an
interpolation between the two limits. The points correspond to the value of
ξ obtained for our experimental parameters. (b) Luttinger parameter as a
function of ξ. The point correspond to the value K ' 0.7 obtained for our
experimental parameters.

fermion liquid respectively. The parameters uν are the “sound” velocities,
while Kν are called Luttinger parameters and completely characterize the
low energy physics. In a spin rotationally invariant Fermi gas the quantity
Ks = 1 so that the only independent parameters are Kc and uν. The sound
velocities can be expressed as a function of the interaction parameter in
the weak coupling limit as:

uc = vF
√

1 + ξ,

us = vF
√

1− ξ

in which ξ = 2γ/π2, and in the strong coupling limit as [140]:

us =
2πh̄n1D

3mξ
,

uc =
πh̄n1D

m
(1− 8 ln(2)/π2ξ),

In Fig. 6.3a, we plot the interpolated velocities as a function of the inter-
action parameter ξ = 2γ/π2. The behavior of the velocities in the strong
coupling regime ξ → ∞ confirms the physical intuition that when the
atoms repel each other so strongly, some properties of the gas are sim-
ilar to those of an ideal full-polarized gas of indistinguishable particles.
This phenomenon is called “fermionization” [139], because the infinite re-
pulsion mimics the effects of a Pauli repulsion between distinguishable
particles. In this limit, the spin velocity becomes us = 0 and the charge
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x

y

Figure 6.4: Typical false color, averaged absorption image (the x̂ axis denotes
the direction of the wires) of the released one-dimensional tubes.

velocity becomes uc = 2vF, that is the Fermi velocity of a non-interacting
Fermi gas with twice the number of atoms.

The regime explored in the experiment is that of intermediate coupling
with ξ ' 1, as shown by the points in Fig. 6.3a. Analogously, the Luttinger
parameter in our system is Kc ' 0.7, an intermediate value between the
non-interacting case Kc = 1 and the case of infinite repulsion Kc = 0.5 (see
Fig. 6.3b). In order to estimate the Luttinger parameters of the experi-
mental system, the inhomogeneity due to the harmonic trapping potential
has been taken into account by performing a local density approximation
(LDA) [45].

6.2 Experimental realization of a 1D liquid of fermions
with tunable spin

In this Section we report the experiments performed during the beginning
of my PhD, which are the main topics of my colleague’s G. Pagano PhD
thesis [44, 45]. In particular, we investigated the properties of a multi-
component one dimensional liquid of fermions realized by loading 173Yb
atoms in a two-dimensional optical lattice. Such a geometry creates an
array of approximately 1000 thousands independent tubes of which we
studied the average properties.

First of all, we characterized the role of correlations in the one-dimensio-
nal fermionic tubes by studying the interactions-induced broadening of
the momentum distribution with increasing number of spin components.
Secondly, the technique of Bragg spectroscopy has been exploited in order
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Figure 6.5: Momentum distribution n(k) measured after time-of-flight for
polarized fermions loaded in 1D tubes. The dashed line is the theoretical
curve calculated taking ωx = 2π × 103 Hz, T/TF = 0.3, s = 40, Nat = 6500.
The experimental curve is obtained as an average over 35 images.

to investigate the low momentum density-excitation spectrum (q � kF)
as a function of the number of spin components. From these data, the
“charge” velocity for a two-component Fermi gas can be extracted. Finally,
we characterized the system by measuring the lowest collective mode fre-
quency (breathing mode) as a function of the spin multiplicity. For the first
time, we confirmed the large-spin bosonization prediction of Ref. [39], for
which a one-dimensional liquid of fermions with a high number of spin
components, exhibits properties of an interacting, bosonic, spinless liquid.

6.2.1 Momentum distribution

The system consists in a 173Yb degenerate Fermi gas trapped in a harmonic
potential at T < 0.3TF and with Nat ' 6500 atoms per spin component.
The spin population distribution is initialized thanks to the optical pump-
ing techniques described in Sec. 2.5.3. After loading the Fermi gas in a
two-dimensional optical lattice at s = 40, we wait 10 ms and then sud-
denly switch off the trap in less then 10 µs. After a ballistic expansion of
tTOF = 23 ms, the sample is detected by means of absorbtion imaging, as
done in previous works to measure the momentum distribution n(k) of a
Tonks-Girardeu gas [150]. In Fig. 6.4, we report a typical false-color image
of the atomic cloud, in which the direction of the tubes is x̂. Due to the
tighter confinement induced by the optical lattices, the cloud is elongated
along the orthogonal direction ŷ. To obtain the curves plotted in Fig. 6.5
and 6.6, we integrate over ŷ and normalize the resulting n(k) in such a
way as to have

∫
n(k) dk = 1, being k the momentum along x̂. Increasing

the number of spin components N, we observe a clear monotonic broad-
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Figure 6.6: Momentum distribution n(k) measured with time-of-flight ab-
sorption imaging for different N and the same atom number Nat per spin
component. Each curve results from the average of 30-50 experimental im-
ages. The inset represents the theoretical n(k) for the N = 2 system derived
from different models: ideal Fermi gas at T = 0 (dashed), mean-field treat-
ment of finite interactions at T = 0 (dotted), full many-body problem for infi-
nite interactions both for T = 0 (light solid from ref. [151]) and Ts � T � TF
(dark solid from ref. [152]). Only the many-body curves account for the
observed broadening.

ening of n(k), with a reduction of the weight at low k and a slower decay
of the large-k tails (see Fig. 6.6). We rule out a possible explanation of the
observed changes in n(k) in terms of different temperatures for different
N. Indeed, we have verified that, after slowly ramping down the lattices
to recover a 3D Fermi gas, the temperature measured for the different spin
mixtures has the same value T = 0.3 TF for all N within the experimental
uncertainties. In this 3D regime the effects of interactions are very weak.
As a matter of fact, for 3D Fermi gases we have not detected any signi-
ficative change in n(k) as a function of N. This observation both makes
the temperature measurement in 3D reliable and demonstrates that the
observed increase in width comes from the increased correlations in the
interacting 1D systems2.

We start by analysing the non interacting case N = 1, for which a
theoretical prediction can be easily formulated. Indeed, the momentum

2Since the number of atoms per spin components is kept constant for all the spin mix-
tures, if interactions were absent, the width of n(k) would be the same for all curves.
Indeed the Fermi momentum would be equal for all spin mixtures.
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distribution of a trapped 1D Fermi gas is:

n1D(k) = −
√

kBT
2πmh̄2ω2

x
Li1/2

(
−ze−

h̄2k2
2mkBT

)
, (6.-3)

in which ωx = 2π × 103(1) Hz is the measured trapping frequency along
the tubes axis x̂, z is the fugacity and Li1/2 is the Polylogarithmic function
of order 1/2. Since many independent tubes are present, we have to take
into account the contribution of each one to the total signal. Infact, the
number of atoms per tube decreases from a maximum of 20 (per spin
component) in the central tube, to a vanishing occupation of the more
peripheral tubes [44]. The number of fermions in the tube ij is calculated
in the ideal case by minimizing the total energy of the system imposing
Fermi statistics (for T = 0) and the constraint on the total number of atom
Nat = ∑ij Nij. The expression to be minimized is:

E
[
{Nij}

]
= ∑

ij
Nij

(
1
2

mω2
yd2i2 +

1
2

mω2
z d2 j2

)
+

Nij−1

∑
nx=0

h̄ωx

(
nx +

1
2

)
(6.-3)

in which ωy,z = (2π × 93 Hz, 2π × 96 Hz) are the angular frequencies of
the slowly varying harmonic trapping potentials in the direction orthogo-
nal to the tubes, and d = λL/2 is the lattice spacing. Through the relation
kBTF(i, j) = Nijh̄ωx, the local Fermi temperature is calculated, which is
then used for extracting the local fugacity zij:

Li1(−zij)−
TF(ij)

T
. (6.-3)

Using Eq. (6.2.1) it is possible to calculate the momentum distribution for
each tube and then to take the weighted avarage over all tubes:

n(k) =
1

Nat
∑
ij

Nijnij(k). (6.-3)

This procedure works very well as can be seen by the agreement between
the experimental data and the calculated momentum distribution in Fig.
6.5.

The observed n(k) broadening in Fig. 6.6 arises from a pure many-
body effect not accounted for by standard mean-field physics [44]. To our
knowledge, no theoretical calculations have been performed for finite in-
teraction strength and finite temperature, neither for the N = 2 case nor
for N > 2. Nevertheless we can give a qualitative explanation for the
detected broadening in the N = 2 case and observe that, for N > 2, the
effect is amplified. Indeed, if we consider a mixture of spin-1/2 fermions
in the limit of infinite repulsive interaction, the density-density correlation
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function G↑↓)(d) =
〈
n̂↑(x + d)n̂↓(x)

〉
(where n̂↑(x) and n̂↓(x) are the den-

sity operators for the two spin components) falls to zero for d → ∞ as
G↑↑(d) does in the case of a spin polarized gas, thus mimicking the effects
of Pauli repulsion between distinguishable particles. This fermionization,
restricting the effective space which is available to the particles, causes
them to populate states with larger momentum [151, 152]. We note that
an opposite behaviour would be predicted by a mean-field treatment of
interactions: the effectively weaker confinement along x̂ induced by the
atom-atom repulsion would lead to more extended single-particle wave-
functions, hence to a decreased width of n(k). For N = 2 the interaction
regime of our 1D samples is described by the parameters γ ' 4.8 and
Kc ' 0.73.

The details of n(k) depend nontrivially on the temperature, owing to
the thermal population of spin excitations. Infact, one can define a spin
temperature [153] Ts = (8 log 2)TF/3γ, which corresponds to the maxi-
mum energy difference between different spin configurations. This en-
ergy scale separates two different regimes: at T � Ts we have the pure
Luttinger liquid model (see inset of Fig. 6.6) whereas at T > Ts we have
an intermediate regime where the spin degree of freedom is strongly dis-
ordered. The latter regime is generally called “spin-incoherent Luttinger
liquid” [142]. For our experimental parameters we obtain Ts ' 0.4TF, so
that T . Ts, in the crossover between the spin-ordered regime and that of
a spin-incoherent Luttinger liquid. In the inset of Fig. 6.6 we show the the-
oretical n(k) for N = 2 and infinite repulsion in the limiting regimes T = 0
and T � Ts. Although both curves show an evident n(k) broadening, in
accordance with our observations, their shape is different and, in the finite
temperature case, can be explained in terms of a modified effective Fermi
momentum [154].

6.2.2 Probing Excitations

A distinctive feature of 1D fermions is the existence of a well-resolved exci-
tation spectrum at low momenta q � kF. Number conserving excitations
in the ideal 1D Fermi gas correspond to particle-hole pairs with energy
h̄ω = vF h̄q, where vF is the Fermi velocity. According to the Luttinger
theory, interactions make excitations acquire a purely collective character.
The spectrum of phononic excitations is still described by a linear disper-
sion ω = cq, where c = vF/Kc is a renormalized sound velocity which, in
a two-component mixture, depends on the Luttinger liquid parameter Kc.
Since 0.5 < Kc < 1, the sound velocity is larger than the Fermi velocity
(see Sec. 6.1).

We characterized the excitation spectrum of the fermionic tubes by
performing Bragg spectroscopy with 759 nm light. This technique, rely-
ing on inelastic light scattering, allows the selective excitation of density
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Figure 6.7: Sketch of the experimental configuration for probing the excita-
tion spectrum. The Bragg spectroscopy technique that we have implemented,
relies on the inelastic scattering of light at 759 nm. The momentum trans-
ferred to the atoms depend on the angle θ between the Bragg beams and the
energy is given by h̄(ω2 −ω1) [45].

waves with energy h̄ω and momentum h̄q [44, 155]. Note that, since the
light used is far-detuned with respect to any atomic transition, the Bragg
excitation acts equally on each spin components, i.e. we are only excit-
ing charge modes. In Fig. 6.7 we sketch the experimental setup used to
impart momentum and energy to the 1D tubes3. The angle between the
Bragg beams is small enough to guarantee that the transferred momentum
is much lower than the Fermi momentum, q � kF, so that we can study
the phononic part of the excitation spectrum. Also, Bragg pulse length
and intensity are chosen in such a way to result in a combined interaction-
time and power broadening < 100 Hz, much less than the width of the
measured spectra. In order to both minimize the effect of laser phase fluc-
tuations and increase the signal, the spectrum of each of the two Bragg
beams contains both the frequencies ω1 and ω2, resulting in both left-
moving and right-moving excitations. The transferred momentum to the
cloud, measured by time-of-flight imaging, is directly proportional to the
imaginary part of the response function χ(q, ω) [156], which is directly
related to the dynamic structure factor S(q, ω) by the relation:

Im[χ(q, ω)] = −π

h̄
[S(q, ω)− S(−q, ω)] (6.-3)

Fig. 6.8 shows the measured increase of the atomic momentum for N = 1
at low momentum transfer q ' 0.2k0

F ( with k0
F being the peak Fermi wave

3The setup is very similar to the one exploited in the previous Chapter, with the differ-
ence that the polarizations of both beams are vertical with respect to the quantization axis
(π polarizations). Also, the light used is far-detuned so that spin-flip mechanisms are not
possible.



113 6.2. Experimental realization of a 1D liquid of fermions with tunable spin

0.0

0.5

1.0

1.5

q

ω

N

vFq

=1

ex
ci

ta
ti

o
n

 (
a.

u
.)

0 500 1000 1500 2000 2500

frequency ω/2π (Hz)

 ωpeak/2π 

Figure 6.8: Excitation spectrum of 1D non-interacting fermions. The points
show the measured increase in atomic momentum after a Bragg excitation
with energy h̄ω and momentum q ' 0.2k0

F for N = 1. The solid line is the
calculated response function for the ideal Fermi gas.

vector in the central tube). A clear resonance is observed, in excellent
agreement with the calculated response for ideal fermions (solid line, with
no free parameters). For N = 2 the resonance is clearly shifted towards
higher frequencies (Fig. 6.9a), as expected from the Luttinger theory. The
measured shift (+15± 4)% agrees with the expected (+10± 2)% shift in
the sound velocity predicted on the basis of the Luttinger theory for a
trapped system [149]. For N = 6 the spectrum shows a much larger shift
(+33 ± 4)% (Fig. 6.9b), which disagrees with the predictions for N =
2, signalling an increased effect of interactions, in qualitative accordance
with the n(k) broadening. We also plot the calculated spectra for trapped
fermions with infinite interactions (Fig. 6.9a,b dotted lines), which show
how the measured spectra lie between the response of the ideal Fermi gas
(solid lines) and that of a fermionized system.

6.2.3 Collective mode frequencies

More insight into the physics of multicomponent 1D fermions can be
gained by studying the low-energy breathing oscillations in which the
cloud radius oscillates in time. We measure the frequency of this collective
mode by suddenly changing the trap frequency and measuring the time
evolution of the radius. In Fig. 6.10a, we plot the measured squared ratio
β = (ωB/ωx)2 of the breathing frequency ωB to the trap frequency ωx as
a function of N (squares). For N = 1 the measured value is in good agree-
ment with the expected value β = 4 for ideal fermions (upper horizontal
line). With increasing N our data clearly show a monotonic decrease of
β, induced by the repulsive interactions in the spin mixture. The depen-
dence of β on the interaction strength is remarkably non trivial already for
N = 2, as first predicted in [149]. Indeed, β = 4 in both the limiting cases
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Figure 6.9: Excitation spectra of 1D interacting spinful fermions. (a) N = 2
and (b) N = 6. The dashed lines are Gaussian fits to the experimental points
to extract the peak excitation frequency. The dotted lines show the calculation
in the limit of infinite repulsion. Both experimental and theoretical spectra
have been normalized to unit area. The graph in the inset show a sketch
of the excitation spectrum at low q for the two-component Luttinger liquid
with repulsive interactions. The red arrows indicate the shift in the excitation
resonance with respect to the peak of the non-interacting case (grey solid
lines).

of an ideal gas (γ = 0) and a fermionized (γ = ∞) system, whereas for
finite repulsion it is expected to exhibit a nonmonotonic behaviour, with
a minimum at finite interaction strength. The theoretical curves in Fig.
6.10b show the expected dependence of β on the interaction parameter
η = N1

at(a1D/ax)2 in which N1
at is the number of atoms per tube, a1D is the

1D scattering length and ax is the trap oscillator length. These results have
been derived by our collaborators at the Swinburne University, H. Hu and
X.-J. Liu, by combining a Bethe Ansatz approach with the exact solution
of the hydrodynamic equations describing a 1D fermionic liquid with N
components [45, 157]. As N is increased, the curves exhibit an increas-
ingly larger redshift of β, and for N → ∞ they asymptotically approach
the curve for 1D spinless bosons. The circles indicate the theoretical values
for the average η = 0.44 in our experiment. The agreement between ex-
periment and theory is excellent, as shown in Fig. 6.10a. The experimental
data, accompanied by the theoretical curve, clearly show that changing N
causes markedly different effects from those induced by simply changing
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Figure 6.10: Breathing oscillations. The quantity that is plotted in the graph is
β = (ωB/ωx)2. (a) The squares show the experimental data, as a function of
N, obtained as the weighted mean over sets of up to nine repeated measure-
ments. The circles show the theoretical predictions for the average interac-
tion parameter η = 0.44 for our experiment. The dashed line is a guide to the
eye, while the height of the violet shaded area indicates the uncertainty on
the theoretical values resulting from the experimental uncertainty ∆η = 0.08
coming from the measured atom number and trapping frequencies. The up-
per horizontal line shows the theoretical value for the non-interacting Fermi
gas while the lower line shows the result for 1D spinless bosons. (b) The
lines show the theoretical dependence of β on the interaction parameter η.
The circles show the predicted values for our average interaction parameter
(also shown in (a)). In both panels the height of the grey region shows the
range of β for N = 2 and any possible value of the repulsion strength.

the interaction strength in an N = 2 mixture. In fact, by increasing N, the
constraints of the Pauli principle become less stringent and the number of
binary-collisional partners increases, causing the system to acquire a more
“bosonic” character. Our experimental value at N = 6 clearly falls out of
the range of β expected for an N = 2 liquid (grey regions in Fig. 6.10),
and already approaches the value expected for 1D spinless bosons. This
bosonic limit for N → ∞ is called “high spin bosonization” and is a re-
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markable property of multi-component 1D fermions that has been pointed
out theoretically only very recently by C.N. Yang [39].

6.3 Conclusions and perspectives

In this set of experiments we provided the first experimental characteri-
zation of multi-component Luttinger liquids with tunable SU(N) symme-
try. The possibility of tuning the number of spin components allows us
to study different regimes of interplay between Fermi statistics and de-
gree of distinguishability in this novel 1D tunable system. In a quantum
simulation perspective, the controlled realization of 1D multi-component
fermions represents a powerful test bench for large-spin models and opens
to the investigation of fundamental effects, such as spin-charge separation,
first predicted for a N = 2 fermionic system. Indeed, the work carried out
so far concerns exclusively charge (density) collective modes, since the
excitations studied are all spin-independent. In particular we observed
a blue shift in the resonance of the charge dynamical structure factor in
the case of two-component Fermi gas. Differently, given two spin species
| ↑〉 and | ↓〉, a spin-selective Bragg excitation [158, 159] should in prin-
ciple allow the comparison between charge and spin velocity through the
measurement of the charge and spin dynamical structure factors, defined
as:

Sc,s(q, ω) = 2
[
S↑↑(q, ω)± S↑↓(q, ω)

]
, (6.-3)

where plus and minus signs refer respectively to charge and spin sub-
scripts. Alternatively, a redshift of the spin dipole frequency is predicted
to be observed [146] as a consequence of a spin-selective excitation. In
Section 1.2.3 it is explained in detail how to generate the spin-dependent
light shifts necessary to access collective spin excitations.



7 | Two-orbital physics with
fermionic 173Yb

As already mentioned in the Introduction, another important property
of Ytterbium, common to all alkaline-earth and alkaline-earth-like atoms,
is the existence of a metastable excited state which is connected to the
ground state through an ultranarrow clock transition [28, 30, 160]. In this
Chapter we report experiments performed exciting the clock transition
1S0 → 3P0 in 173Yb. The atoms are loaded in a dipole potential generated
by light at 759 nm. The light shift experienced at this “magic wavelength”
is the same both for the 1S0 state and for the 3P0, so that the clock transition
frequency is indipendent from the dipole potential depth [79, 161]. The re-
alization of mixtures of 1S0 and 3P0 atoms allows the investigation of novel
experimental implementations of multi-orbital Hubbard models, where
each atom is characterized by both spin and orbital (electronic) degree
of freedom. Indeed the main focus of this Chapter is to study two-body
collisions between atoms in two different orbitals in a three-dimensional
optical lattice. We evidenced the effects of a strong spin-exchange interac-
tion between atoms in the two different states, proving for the first time
fast, coherent, orbital magnetization oscillations. Also, we present some
very recent results [50] regarding the first observation of an orbital Fesh-
bach resonance, first predicted in [36]. In this case, two-body collisions
between atoms in two different orbitals are studied in a typical dipole
trap, generated by laser beams at 759 nm. We evidenced the effects of
strong interactions, tunable by means of a magnetic field, by studying the
anistropic expansion of a two-orbital mixture of atoms in differents spin
components.

This Chapter is organized as follows. Section 7.1 describes briefly
the laser system built my coworker G. Cappellini [49, 81] to address the
ultra-narrow optical transition towards the metastable state. Section 7.2
introduces the theoretical model developed to quantitatively describe the
strongly-repulsive interaction between two atoms in a lattice site. Sec-
tion 7.3 describes spectroscopic measurements performed on a two-spin
mixture, loaded in a deep 3D optical lattice. We will illustrate how the an-
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tisymmetric character of the two-particle wavefunction, imposed by the
Fermi statistics, affects inter-orbital binary collisions. Section 7.4 con-
cerns the direct observation of inter-orbital spin-exchange oscillations that
allowed us to extract some important properties such as the scattering
lengths characterizing binary collisions between 1S0 and 3P0 atoms. Fi-
nally, Section 7.5 presents briefly some very recent results concerning the
first observation of a novel kind of Feshbach resonance called orbital Fes-
hbach resonance, appearing between atoms occupying different electronic
orbitals.

7.1 The 1S0 → 3P0 ultra-narrow clock transition

In the last years, alkaline-earth-like atoms such as Yb [27, 28] or Sr [29–
31] have become the main characters in the field of frequency metrology
thanks to the realization of optical lattice clocks that could improve the
current frequency standards. Indeed, these two-electron atoms exhibit an
ultranarrow transition 1S0 → 3P0, which would be stricly forbidden by
the selection rule J = 0 9 J′ = 0. In the case of fermionic Ytterbium, the
hyperfine interaction between the 3P states originating from the non-zero
nuclear magnetic moment, indirectly enables a decay from the 3P0 to the
ground state. This transition has a calculated linewidth of about Γ ' 2π ·
10 mHz [79, 80] corresponding to a lifetime of 20 s. The exact excitation
frequency for the 173Yb isotope 518 294 576 847.6± 4.4 kHz, corresponding
to λC = 578.4 nm, has been measured in Ref. [27].

In order to optically reach the 3P0 state, we developed an ultra-stable
laser source starting from the 1156 nm light emitted by a quantum dot
laser in a 15-cm long external-cavity configuration with an intra-cavity
electro-optical modulator (Qubig GmbH, DC-coupled, broadband, Brews-
ter-cut facets) for high-bandwidth frequency stabilization. The laser ra-
diation at 578 nm is then produced by second-harmonic generation in a
bow-tie cavity, similarly to the laser systems for 399 and 556 nm wave-
lengths, described in Section 2.3.1. We obtain up to 50 mW of 578 nm
light, a small part of which is coupled to a 10 cm long ULE (Ultra-Low Ex-
pansion) glass cavity to which the laser frequency is locked. The feedback
is performed by both the piezo moving the grating of the external cavity
and the EOM inside the external cavity. The former is used to correct in
the low-frequency range up to 200 Hz, whereas the latter is used in the
high-frequency domain obtaining an overall bandwidth of 500 kHz. The
ULE cavity, surrounded by a thermally-stabilized copper shield, is located
in a 10−7 mbar vacuum chamber to greatly reduce its mechanical and ther-
mal sensitivity. The whole system is placed on an anti-vibration platform
to further reduce seismic noise, and is enclosed in an isolation box to de-
couple the system from the lab environment. The long-term drift of the



119 7.1. The 1S0 → 3P0 ultra-narrow clock transition

frequency7offset7[Hz]

n
o

rm
al

iz
ed

7a
to

m
7n

u
m

b
er

100 50 0 50 100
0.5

0.6

0.7

0.8

0.9

1.0

1.1

307HzFWHM

Figure 7.1: Narrow resonance showing the linewidth of our laser on the time
scale of 5 minutes. The main limitation is the mid-term drift of the ULE
cavity.

cavity has been characterized to be 3.5 Hz/s and is corrected using a dig-
ital feed-forward loop. However, erratic fluctuations of some Hz/s, that
we ascribe to an imperfect thermal stabilization of the ULE cavity, limit
the mid-term stability of our laser. More details about the laser system
and the characterization of the ULE drift can be found in Ref. [81] and
in the PhD thesis of my colleague Giacomo Cappellini [49]. In order to
address coherently atoms in the metastable state, it is important to trap
them in an optical potential that generates a light shift which is the same
both for the 1S0 state and for the 3P0 state. In this way all the atoms expe-
rience the same clock transition frequency since the broadening due to the
inhomogeneity of the harmonc confinement is avoided. There are several
optical magic wavelengths [161], but the most convenient experimentally
is λL = 759.35 nm [32], which is used in this experiment (see Fig. 1.2).

Beside being subjected to the same light shift in the ground and excited
states, to observe narrow lines, it is crucial to “eliminate” the Doppler
broadening induced by the atomic motion. Atoms are thus loaded in a
deep 3D optical lattice so that the “Lamb-Dicke” regime is well reached.
We define the Lamb-Dicke parameter as:

η =
kCaho√

2
=

λL

λC

1
s1/4
√

2
(7.0)

in which kC is the clock laser wavenumber, aho is the harmonic oscillator
length along the direction of excitation and s is the optical lattice trap
depth in recoil units. The Lamb-Dicke regime is reached when η < 1,
meaning that the atomic wave-packet is smaller than the wavelength of
the interrogation beam. For our experimental parameters, s ∈ (30, 40), the
Lamb-Dicke parameter varies in the range (0.37, 0.4).

In order to observe the transition 1S0 → 3P0 we load a fully polarized
Fermi gas in a 3D optical lattice at s = 30. During the lattice loading, the
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1064 nm dipole trap is switched off adiabatically in 50 ms in order to avoid
spurious differential light shifts between 1S0 and 3P0 states that would af-
fect the resonance frequency. Then, after 10 ms, we shine a 100 ms 578 nm
laser pulse and we switch off the lattice beams. After ballistic expansion,
we detect the atoms remained in the ground state by absorption imaging
on the 1S0 → 1P1 transition. This detection method is reliable as the life-
time of the excited state is much longer than the typical time of flight.
Since the saturation intensity is extremely low (Is = 0.26 nW/cm2), the
transition is always saturated by the laser light and by tuning the intensity
we can decide at will the resonance power-broadened width. The narrow-
est resonance we managed to observe, compatibly with the mid-term drift
of the ULE cavity, has a linewidth of 30 Hz, as shown in Fig. 7.1.

7.2 Two cold atoms in a lattice site

Before describing in Sec. 7.3 the more complicated spectrum of a two-spin
mixture in a 3D optical lattice, here we discuss the interaction energy shift
for two strongly interacting trapped particles.

Following Ref. [60, 162] we developed a simple model describing two
interacting particles confined in a lattice well of a 3D optical lattice. At
large interaction strength (and we will see in the next Section, that this
is indeed the case), the two-particle wavefunction cannot be expressed
in terms of lowest-band Wannier functions since, in the limit of infinite
repulsion, the phenomenon of “fermionization” intervenes, causing the
probability of finding two particles at the same position to drop to zero.
For a system of two particles in a harmonic potential it has been shown
that, for a scattering length as significantly larger than the harmonic oscil-
lator length aho, the interaction energy saturates at the energy of the first
excited harmonic oscillator state [60]. We want to improve the model in
[60] in order to take into account the anharmonicities caused by the real
lattice potential. The Hamiltonian describing two atoms interacting in a
lattice potential well is

Ĥ =
p̂2

1
2m

+
p̂2

2
2m

+ V̂lat(r1) + V̂lat(r2) + V̂int(r1 − r2), (7.0)

in which V̂lat(r) = V0 ∑i=x,y,z sin2(kLri) is the 3D lattice potential expe-

rienced by each atom and V̂int(r) = 4πh̄2

m as δ(r) ∂
∂r r· is the interaction po-

tential, already introduced in Sec. 1.4. In order to take into account the
anharmonic corrections induced by the lattice potential, we expand V̂lat(r)
up to the 10th order, isolating the harmonic terms from the non-harmonic
ones:

V̂lat(r) = V0 ∑
i=x,y,z

(k2r2
i −

1
3

k4r4
i +

2
45

k6r6
i + ...). (7.0)
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This order of expansion is sufficiently high to describe well the shape of
each lattice site. In order to take into accounts also the effects of tunneling,
which are important only at low lattice depth, the potential should be
expanded to a higher order, at least to the 20th, making the problem much
more computationally expensive. Recalling that ωho = 2ER/h̄

√
s and s =

V0/ER (Eq. 1.2.1) we can rewrite the Hamiltonian as:

Ĥ =
p̂2

1
2m

+
p̂2

2
2m

+
1
2

mω2
hor2

1 +
1
2

mω2
hor2

2 + V̂int(r1 − r2) + V̂anh(r1, r2), (7.0)

where V̂anh(r1, r2) contains only the anharmonic terms coming from the
expansion of the lattice potential. By making the substitution1 R = r1+r2√

2
and r = r1−r2√

2
, we can write the Hamiltonian in terms of “center-of-mass”

{R, P} and “relative” {r, p} coordinates:

Ĥ =
P̂2

2m
+

1
2

mω2
hoR2︸ ︷︷ ︸

ĤCM

+
p̂2

2m
+

1
2

mω2
hor2 + V̂int(r)︸ ︷︷ ︸

ĤBusch

+V̂anh(R, r). (7.0)

where the first part refers to the center-of-mass motion, while the second
part refers to the relative motion + interaction potential, a problem which
has already been solved analytically by T. Busch et al. in Ref. [60] finding
the following eigenfunctions:

ψB(r) = A exp

(
− r2

2a2
⊥

)
Γ
(
− E

2h̄ωho
+

3
4

)
U
(
− E

2h̄ωho
+

3
4

,
3
2

,
r2

a2
⊥

)
,

(7.0)
where Γ is the Euler function, U (n, m, x) are the confluent hypergeometric
functions, A is a normalization factor, a⊥ =

√
h̄/mω⊥ is the harmonic

oscillator length and E is the total energy of the relative coordinate, given
by the solution of the equation:

√
2

Γ
(
− E

2h̄ωho
+ 3

4

)
Γ
(
− E

2h̄ωho
+ 1

4

) =
a⊥
as

. (7.0)

However, the anharmonic terms V̂anh(R, r) couple the relative and center-
of-mass motion, making the problem solvable only with numerical meth-
ods. We thus diagonalize numerically the full Hamiltonian in Eq. (7.2)
written on the basis of the eigenfunctions of ĤCM + ĤBusch, namely

Φα,β(r, R) = Ψα(R)ψβ(r), (7.0)

1This unusual change of variables is used to write the center-of-mass and the relative
motion contribution with the atomic mass instead of the total and reduced mass, respec-
tively.



7. Two-orbital physics with fermionic 173Yb 122

0 1000 2000 3000 4000 5000
0

5

10

15

20

Bin
te

ra
ct

io
n

Be
ne

rg
yB

[h
BBB

kH
z]

BscatteringBlengthB[a0]

UB(ourBmodel)
UBusch
UHub

sB=B11 sB=B30

sB=B30

sB=B11

0

5

10

15

20

Bin
te

ra
ct

io
n

Be
ne

rg
yB

[h
BBB

kH
z]

0 20000 40000 60000 80000 100000

BscatteringBlengthB[a0]

sB=B30

sB=B11

UB(ourBmodel)
UBusch
UHub

sB=B11 sB=B30

(a) (b)

Figure 7.2: (a) Interaction energies for two particles in a lattice site, calculated
for two lattice depths s = 11 and s = 30 according to three different models
(see text). The interaction energy U calculated using our model is well ap-
proximated by the usual Hubbard relation UHub at small scattering length.
(b) The same results are plotted up to larger values of as. For large as the
interaction energy U saturates at the energy difference between the ground
and the first-excited lattice band, here represented by the grey regions (the
width of these regions reflects the finite width of the energy bands caused
by tunnelling).

where α = {N, L, M} and β = {n, `, m} represent sets of quantum num-
bers of the 3D isotropic harmonic oscillator in spherical coordinates for
the center-of-mass and the relative motion respectively. Ψα(R) are the
center-of-mass 3D harmonic oscillator eigenfunctions, while ψβ(r) are the
eigenfunctions for the relative motion which: for ` 6= 0, correspond to the
non-interacting harmonic oscillator eigenfunctions φn,`,m(r), that are not
affected by the δ-like interaction potential, having a node in the origin,
whereas for ` = 0, correspond to the Busch eigenfunctions defined in Eq.
(7.2), which are linear combinations of harmonic oscillators wavefunctions
with ` = 0.

By evaluating the matrix elements of the anharmonic terms on this
complete basis and by numerical diagonalization of the total Hamiltonian,
we derive the dependence of the interaction energy in the motional ground
state U (s, as) = E(s, as)− E(s, 0) as a function of the scattering length as
and of the lattice depth s. We found that taking Nmax = nmax = 4 (cor-
responding to 196 states forming the basis) is sufficient to ensure con-
vergence in the calculation of the ground-state energy. In Fig. 7.2 we
plot the results for the interaction energy (defined as the total energy of
the relative motion minus the total energy in the non interacting case) as
a function of the scattering length as for two values of the lattice depth
s = 11 and s = 30. The curves are based on three different models: 1)
our model, containing anharmonic terms and the coupling between rel-
ative and center-of-mass motion (U , solid lines); 2) the model containing
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Figure 7.3: Franck-Condon factor 〈ψ(as1)|ψ(as2)〉 describing the overlap of
the ground-state wavefunctions for two different scattering lengths as1 and
as2 at s = 30.

only the harmonic part of the potential [60] (UBusch, dotted lines); 3) the
usual expression for the interaction energy in the Hubbard model [8] (see
Sec. 1.2.2), which takes into account the full lattice potential and depends
linearly on as (UHub, dashed lines). In addition, the first band gaps for
s = 11 and for s = 30 are shown. The interaction energy derived from our
model saturates at the first excited band of the lattice for large values of
the scattering length, as expected, and, for low as, it is well approximated
by the usual Hubbard expression UHub. Instead, the UBusch curves saturate
at a higher energy, coincident with h̄ωho = 2

√
sER.

By numerical diagonalization we obtain also the eigenfunctions of the
expanded Hamiltonian (7.2). It is thus possible to calculate the overlap
between two eigenfunctions corresponding to different scattering lengths.
This is the so called Franck-Condon factor F :

F =
∫ ∫

dr1dr2ψ∗as1
(r1, r2)ψas2(r1, r2) (7.0)

and it is depicted in Fig. 7.3. As expected, F = 1 along the diagonal
(where as1 = as2), since the two states coincide, while goes to ∼ 0.6 for the
maximal difference in scattering lengths.

7.3 Clock spectroscopy of a two-component Fermi gas

This section describes the spectroscopy performed over a two-component
Fermi gas in a deep three-dimensional optical lattice. We will focus on
the role played by the Fermi statistics and by the interaction shifts in de-
termining the shape of the spectrum [163]. First of all we give a simple
theoretical recipe that takes into account collisional channels associated to
different electronic states, the interaction with the spectroscopy laser and
the effect of magnetic fields on the atomic system. Secondly we focus on
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the experimental spectrum at finite magnetic field, identifying the differ-
ent peaks with the help of the introduced model.

7.3.1 Direct and exchange interactions

We consider two atoms in different nuclear spin states | ↑〉 and | ↓〉, where
the arrows are placeholders for two arbitrary nuclear spin states, occupy-
ing the same lattice site and interacting via a delta-like repulsive potential
[60]. Let us assume that the clock laser light is π-polarized so that the
optical excitation does not flip the nuclear spin, and that the two particles
occupy the same motional state. Due to the Fermi statistics, the complete
Hilbert space consists in the following anti-symmetrized states:

{
|gg〉 ⊗ |s〉, |eg〉+ |ge〉√

2
⊗ |s〉, |eg〉 − |ge〉√

2
⊗ |t〉, |ee〉 ⊗ |s〉

}
, (7.0)

where we defined |g〉 ≡ |1S0〉, |e〉 ≡ |3P0〉 and |t〉 and |s〉 stand for the
symmetric (triplet) and antisymmetric (singlet) two-particle nuclear spin
states:

|s〉 = | ↑↓〉 − | ↓↑〉√
2

,

|t〉 = | ↑↓〉+ | ↓↑〉√
2

.

The collisional channel through which the two atoms interact, is deter-
mined by the orbital part of the wavefunction. In particular we focus on
the two-particle collisions in which the atoms occupy different electronic
states namely:

|eg+〉 ≡ |s〉 |eg〉+ |ge〉√
2

=
1√
2

[
|g ↑, e ↓〉 − |g ↓, e ↑〉

]
,

|eg−〉 ≡ |t〉 |eg〉 − |ge〉√
2

=
1√
2

[
|g ↑, e ↓〉+ |g ↓, e ↑〉

]
.

in which the antisymmetrization of the states |g ↑, e ↓〉 and |g ↓, e ↑〉 is
implied. We can use these last expressions to derive the form of the two-
body interaction potential in the center-of-mass reference frame, see Eq.
(1.4.1):

V̂(r) =
(

gggP̂gg + g+egP̂eg+ + g−egP̂eg− + geeP̂ee

)
δ(r)

∂

∂r
[r·] (7.-2)

with (ggg, g±eg, gee) = 4πh̄2(agg, a±eg, aee)/m and P̂nm are the projector oper-
ators onto the state |n m〉. In particular, by decomposing the projection
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operators P̂eg± on the states defined in Eq. (7.3.1), we obtain:

P̂eg± =
1
2

[(
|g ↓, e ↑〉〈e ↑, g ↓ |+ |g ↑, e ↓〉〈e ↓, g ↑ |

)
±
(
|g ↓, e ↑〉〈e ↓, g ↑ |+ |g ↑, e ↓〉〈e ↑, g ↓ |

)]
where the first term represents the direct interaction operator V̂dir, which
takes into account those processes that conserve the individual nuclear
spin, whereas the second term represents the exchange interaction operator
V̂ex, which describes collisions involving a nuclear spin-flip. We can thus
rewrite the interaction Hamiltonian corresponding to atoms in different
electronic states as:

V̂eg(r) =
[( geg+ + geg−

2

)
V̂dir +

( geg+ − geg−

2

)
V̂ex

]
δ(r)

∂

∂r
[r·]. (7.-3)

The exchange energy term is effectively an on-site magnetic interaction
between nuclear spins in different electronic orbitals: the difference in the
symmetric and antisymmetric inter-orbital interaction energies Ueg+ and
Ueg− , owing to fermionic statistics, lifts the degeneracy between singlet
and triplet spin states. This energy lifting is directly proportional to the
difference in the scattering length aeg+ − aeg− and is responsible for the
inter-orbital spin-exchange oscillations that we will describe in Section 7.4.

7.3.2 Laser excitation of two-particle states

Following Ref. [164, 165], the interaction Hamiltonian of a pair of atoms
with coherent laser light can be written as the sum of two operators acting
on each atom individually:

ĤL = ĤL,1 + ĤL,2, (7.-3)

where ĤL,1(2) describes the interaction between atom 1(2) and the laser
field. We assume the atoms to occupy the same position and we consider
two spin states (↑, ↓) that could be whatever spin projection states out of
an arbitrarily large spin manifold. Since the phase of the electric field is
the same for the two atoms we can write:

ĤL,i = |ei〉〈gi| ⊗
h̄
2
(Ω↑Pi↑ + Ω↓Pi↓) + h.c. , (7.-3)

where P̂iσ = |σ〉i〈σ|i is the projection operator on the σ spin projection
state of the i atom and Ωσ is the Rabi frequency taking into account the
appropriate Clebsch-Gordan coefficient. We note that, because of the de-
pendence on the Clebsch-Gordan coefficients2, the interaction Hamilto-
nian does operate on the spin sector via the projection operators in Eq.

2In the case of the transition 1S0 → 3P0, the 3P0 inherits the 3P1 Clebsch-Gordan coef-
ficients due to the mixing.
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(7.3.2). As a matter of fact, by introducing the identity operator 1̂ and
the Pauli matrix σ̂z acting on the spin component of the wavefunction, Eq.
(7.3.2) can be recast as:

ĤL,i = |ei〉〈gi| ⊗
h̄
2
(Ω+1i + Ω−σ̂z,i) + h.c. , (7.-3)

with Ω± = (Ω↑ ± Ω↓)/2. In the case Ω↑ = Ω↓ the Hamiltonian does
not operate on the spin sector, while in all the other cases, it does. This
formulation is convenient to highlight the optical transitions between the
states defined in Eq. (7.3.1). In particular, starting from the lowest energy
state |gg〉|s〉 we have:

HL|gg〉|s〉 = h̄
2

[√
2Ω+|eg+〉+

√
2Ω−|eg−〉

]
(7.-3)

In the special case Ω↑ = −Ω↓, which only occurs in the spin-symmetric
mixtures m = ±5/2,±3/2,±1/2 (see Appendix A), only the transition to
the |eg−〉 state is allowed and, counterintuitively, the symmetry of the nu-
clear spin wavefunction is changed from a singlet to a triplet by an optical
excitation. In all the remaining spin mixtures there is a finite probability
of exciting both the |eg+〉 and the |eg−〉 states. Moreover, starting from
the states |eg±〉, there is a finite probability of populating the state |ee〉|s〉,
proportional to the following matrix elements:

〈s|〈ee|HL|eg+〉 = h̄
2

√
2Ω+,

〈s|〈ee|HL|eg−〉 = h̄
2

√
2Ω−.

It shall be noted that the Hilbert space basis (7.3.1) is made of eigenstates
of the two-body interaction Hamiltonian, as they are all defined by the
collisional channels. We will see in the next section how a magnetic field
mixes these states defining a new eigenstate basis.

7.3.3 Magnetic field mixing

In a similar fashion, we can model the interaction with a magnetic field
with the Hamiltonian:

ĤZ = ĤZ,1 + ĤZ,2 (7.-4)

in which:

ĤZ,i = gαµB
F̂zi

h̄
B (7.-4)

where gα is the Landè g-factor of the state α = (g, e), µB is the Bohr mag-
neton, F̂z,i denotes the projection along the quantization axis of the total
angular momentum of atom i = 1, 2 and B = B ẑ. It shall be noted that
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the hyperfine mixing with higher 2S+1P1 states causes the 3P0 state to have
a different Landè g-factor with respect to the 1S0 state, giving rise to a
differential Zeeman splitting δgµB/h̄ = 113 Hz/G. As for the case of laser
fields, the Hamiltonian ĤZ,i acts only on the atom i with orbital state α and
magnetic momentum projection m as ĤZ,i|α, m〉i = gαµBmB |α, m〉i. By us-
ing the former simple relation, we can calculate the matrix elements of ĤZ
on the interaction eigenstates introduced in Eq. (7.3.1):

〈gg|ĤZ|gg〉 = gg(m + m′)
µB

h̄
B,

〈ee|ĤZ|ee〉 = ge(m + m′)
µB

h̄
B,

〈eg±|ĤZ|eg∓〉 = 1
2
(m−m′)δg

µB

h̄
B · F ,

〈eg±|ĤZ|eg±〉 = 1
2
(m + m′)(ge + gg)

µB

h̄
B.

In these equations we have also considered the Franck-Condon factor F ,
describing the overlap integral between the spatial wave functions3 ψeg± of
the two atoms interacting in the two different channels (see Sec. 7.4). In-
terestingly, the magnetic field mixes the two interaction eigenstates |eg±〉.
Therefore, considering only the sub-space {|eg−〉, |eg+〉} and combining
the Zeeman Hamiltonian ĤZ and the onsite interaction Hamiltonian:

Ĥ0 =

(U+
eg 0
0 U−eg

)
, (7.-7)

we can write the global Hamiltonian of the two-particle system Ĥeg =

Ĥ0 + ĤZ as:

Ĥeg =

U+
eg + g (m + m′)

µB

h̄
B

1
2
(m−m′)δg

µB

h̄
B · F

1
2
(m−m′)δg

µB

h̄
B · F U−eg + g (m + m′)

µB

h̄
B

 , (7.-7)

in which we defined g = (gg + ge)/2 and where the interaction energy
Ugg is taken as the zero-point energy, which is more closely related to
the spectroscopic measurements. Therefore, the presence of the external
magnetic field generates two energy branches:

UH,L
eg (B) = (m + m′)g µBB + V ±

√
V2

ex +

(
1
2
(m−m′)δg µBB · F

)2

(7.-7)

3That is, we are considering the states |eg±〉 = 1√
2

[
|g ↑, e ↓〉 ∓ |g ↓, e ↑〉

]
⊗ |ψeg± 〉. The

two wavefunctions ψeg± may differ in the presence of different scattering lengths aeg+ , aeg− ,
because of the mechanisms discussed in Sec. 7.2.
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Figure 7.4: Eigenenergies of Ĥeg as a function of the magnetic field B in the
case of a symmetric mixture m = −m′ = 5/2.

where H, L correspond to the high and low-energy branches (see Fig. 7.4).
As shown by spectroscopic studies [81, 163], the exchange energy Vex is
measured to be positive and therefore the high-(low-) energy branches are
adiabatically connected to the a+eg(a−eg) collisional channels (see also Eq.
(7.3.1)). In general, the two eigenstates as a function of magnetic field are:

|egL〉 = γ(B)|eg−〉+ δ(B)|eg+〉
|egH〉 = −δ(B)|eg−〉+ γ(B)|eg+〉

where the coefficients γ(B) and δ(B) depend on the magnetic field and
satisfy γ2(B) + δ2(B) = 1 and γ(0) = 1, δ(0) = 0. The qualitative depen-
dence of the energy on the magnetic field is shown in Fig. 7.4 in the par-
ticular case of the symmetric mixture (−5/2,+5/2). We are now ready
to investigate the spectrum of such a system and identify the different
spectroscopic peaks.

7.3.4 Spectroscopic measurements

Spectroscopy is perfomed by loading a balanced mixture of (−5/2,+5/2)
atoms at an initial temperature T ' 0.15 TF into a 3D optical lattice at s =
30. In our experimental conditions [81], the site occupancy in the center of
the trap is n ' 1 for each spin state. A typical spectrum for long excitation
time (Texc = 100 ms) is reported in Fig. 7.5. The external peaks correspond
to the single particle excitations and are indeed separated by the Zeeman
energy. Since the differential magnetic factor is positive δg = 113.4 Hz/G,
we can assign the lowest energy peak to m = −5/2. The spectrum features
other three additional peaks which refer to doubly occupied lattice sites. In
Ref. [163] the identification of each peak has been determined by studying
their dependence on the magnetic field. The one we are interested in is
the central peak, which can be identified as the transition from |gg〉 →
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Figure 7.5: Spectroscopic measurement for a two-spin mixture. Atoms in
m = ±5/2 are trapped in a s = 30 3D lattice at B = 28 G. The vertical
axis shows the number of residual |g〉 atoms after the excitation, while the
horizontal axis shows the offset with respect to the clock transition frequency.
The labels below the plot identify the different features of the spectrum. The
dependence of the peak centers on the magnetic field B allows us to attribute
them to the excitation of one atom in either singly-occupied sites (|e ↓〉 and
|e ↑〉) or in doubly-occupied sites (|egL〉, |ee〉, and |egL∗〉) [163]. The peak
|egL∗〉 corresponds to having one of the two particles in the first excited
lattice band.
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Figure 7.6: Magnetic field dependence of the energy of the |egL〉 state de-
duced from spectroscopic measurements. The solid line is a fit to the data
based upon Hamiltonian 7.3.3

|egL〉. Its dependence on the magnetic field is illustrated in Fig. 7.6
from which we can infer that the sign of Vex is positive. Indeed, this state
is adiabatically connected with |eg−〉 at B = 0 (see Sec. 7.3.2) and its
energy decreases by increasing the magnetic field: from this behavior, we
can infer that the |eg−〉 state has a lower energy than the |eg+〉 state and
therefore the sign of Vex = (U+

eg − U−eg)/2 is positive. In the next Section
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Figure 7.7: Experimental sequence used to induce inter-orbital spin-exchange
oscillation dynamics.

we will see that these data can be combined with the measurement of the
spin-exchange oscillation frequencies in order to extract the values of the
scattering length aeg+ , aeg− .

7.4 Inter-orbital spin-exchange oscillations

In this Section we report the first observation of spin-exchange oscilla-
tions between atoms in different orbitals, which is a direct demonstration
of the coherent nature of the interaction between atoms in different elec-
tronic energy levels. Indeed, the spin-exchange [166–170] dynamics arises
because of the different interaction energies U+

eg, U−eg in the two possible
collisional channels |eg+〉, |eg−〉. Preparing the two atoms in the initial
state |ψ0〉 = 1/

√
2 (|eg+〉+ |eg−〉) results in a spin-exchange dynamics in

which the spins of the |g〉 and |e〉 atoms are periodically flipped at a fre-
quency 2Vex/h, with the probability of finding a ground-state atom in the
|g ↑〉 state being given by:

P(|g ↑〉)(t) = 1
2

[
1 + cos

(
2Vex

h̄
t
)]

. (7.-8)

In order to prepare a superposition state of both |eg+〉 and |eg−〉 we pro-
ceed as follows (see Fig. 7.7): we load a balanced mixture of atoms in
the m = ±5/2 spin components (Nat ' 2 · 104/spin, T/TF ' 0.15) in a
3D optical lattice at s = 30. While loading the lattice, the dipole trap is
adiabatically turned off in 50 ms. For these experimental parameters the
number of atoms in the excited bands of the lattice are minimized and the
average filling is 0.5 ≤ n ≤ 1 atoms per lattice site and per spin compo-
nent. We then apply a resonant 578 nm π-pulse exciting the |gg〉 → |egL〉



131 7.4. Inter-orbital spin-exchange oscillations

Figure 7.8: Time-resolved detection of two-orbital spin-exchange oscillations
at a lattice depth s = 30.8 after quenching the magnetic field from 60 G to
a bias field of 3.5 G. The points show the difference in fractional population
between |g ↑〉 and |g ↓〉 atoms. The points are averages over 5 repeated
measurements and the line is the result of a fit using a damped sinusoidal
function (a global error bar based on the fit residuals has been assigned to
the points).

transition at a magnetic field of 60 G, in order to have a sufficient su-
perposition of spin-singlet and spin-triplet states into |egL〉 (|γ|2 ' 0.75,
|δ|2 ' 0.25). The lattice depth is then quickly lowered in 700 µs to the
desired value s and right afterwards the magnetic field is quenched to a
low bias field of 3.5 G in tramp = 25 µs. This time interval is sufficiently
fast to induce a population in the |eg+〉 state via Landau-Zener tunneling.
The formation of a superposition of |eg−〉 and |eg+〉 states allows us to
start the spin-exchange dynamics, which is monitored via OSG detection,
by counting the relative number of atoms in the different spin compo-
nents ±5/2 of the 1S0 ground state. Figure 7.8 shows clear oscillations
of the ground-state magnetization [N(g ↑)− N(g ↓)] / [N(g ↑) + N(g ↓)],
which are driven by the spin-exchange process. The experimental points
have been offset by a constant value (' 5%) to take into account a slight
unbalance of the spin mixture resulting from an imperfect preparation of
the initial state. These oscillations are a direct evidence of the coherent
nature of this inter-orbital spin-exchange interaction. The measurement of
their frequency provides a straightforward, model-independent determi-
nation of the interaction strength, which is 2Vex = h× (13.87± 0.17) kHz
for the data in Fig. 7.8. The finite bias magnetic field B ' 3.5 G used for
the measurement yields a slightly faster oscillation frequency than 2Vex/h
(by ∼ 100 Hz). In order to show the zero-field oscillation frequency the
datapoints in Fig. 7.8 have been corrected by using the finite-B model
described in section 7.3.3. The measured value for the spin-exchange fre-
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Figure 7.9: Spin exchange oscillations taken at s = 35 with longer hold times
to evaluate the damping (see text for details).

quency highlights the strongly interacting character of the two-body sys-
tem, being much higher than the typical energy scales such as the Fermi
energy EF and the thermal energy kBT.

We note that the amplitude of the oscillation in Fig. 7.8 is relatively
small. This can be ascribed to three different causes:

• at 60 G the fraction of |eg+〉 into |egL〉 is only of |γ(B)|2 = 25%
leading to the more general time-dependent probability amplitude:

P(|g ↑〉)(t) = 1
2

[
1 + 2γ

√
1− |γ|2 cos

(
2Vex

h̄
t
)]

; (7.-8)

• the magnetic field is quenched to low values in 25 µs, which makes
the projection onto the new eigenstates only partially diabatic;

• atoms in singly-occupied lattice sites do not participate to the dy-
namics but still contribute to the background signal.

We also have checked that these spin oscillations disappear if no laser ex-
citation pulse is performed: collisions between |g〉 atoms can only take
place in the spin-singlet channel, and the SU(N) interaction symmetry
prevents spin-relaxation mechanisms. It shall be noted that there is a
residual damping, Fig. 7.9, on the spin-exchange oscillations on the or-
der of τ ∼ 2 ms. We ascribed this finite lifetime of the oscillations to an
imperfect quenching of the magnetic field that is slighlty different from
run to run. This causes the dynamics to begin at each experimental cycle
with slightly different initial conditions causing a dephasing of the overall
oscillation data [81].

7.4.1 Lattice depth dependence

We measured the dependence of the spin-exchange oscillation frequency
as a function of the lattice depth s. The optical excitation is perfomed at a
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Figure 7.10: a) The points show the measured spin-exchange frequency as
a function of the lattice depth s. The data have been corrected for the small
bias magnetic field B = 3.5 G in order to show the zero-field spin-exchange
frequency. Each point is the average of at least 3 different measurements
and the error bar shows the statistical error. The line is a fit based on the
model described in the main text. b) The points show the interaction energy
of the |eg+〉 state, calculated as the sum of the experimentally measured 2Vex
and U−eg calculated by using a−eg = 219.5 a0 [163]. The shaded area shows the
energy difference between ground and first excited lattice band.

lattice depth sin ≥ 30 and subsequently the lattice is ramped to the desired
s in ∼ 700 µs. The magnetic field is then quenched in 25 µs to initiate the
spin dynamics (see Fig. 7.7). The measured values of 2Vex are ≈ 5 times
larger than the Hubbard interaction energy of two ground-state atoms
trapped in the lattice sites, and approach from below the energy separa-
tion between the ground and first excited band of the three-dimensional
lattice, as expected from the model we developed in Sec. 7.2 for strong
interactions. We fit the experimental data of Fig. 7.10a with the expected
energy difference

[
U (a+eg, s)−U (a−eg, s)

]
/h (solid line) assuming the value

a−eg = 219.5 a0 for the spin-triplet scattering length measured in Ref. [163].
The fit results in a spin-singlet scattering length a+eg = (3300 ± 300) a0.
This scattering length is remarkably large and, as shown in the inset of
Fig. 7.10, causes the energy of the |eg+〉 state to almost saturate to the
energy gap between the first two lattice bands (grey curve of Fig. 7.10b).

7.4.2 Magnetic field dependence

At a finite magnetic field, the spin-exchange oscillation shows a faster
frequency, as the Zeeman energy increasingly contributes to the energy
difference between |egL〉 and |egH〉 (see Fig. 7.4). From the model of
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Figure 7.11: Circles: measured spin-exchange frequency (UH
eg − U L

eg)/h at
s = 30 as a function of the magnetic field. Squares: measured energy of the
|egL〉 state derived from the spectroscopic measurements (Fig. 7.6). The solid
lines show the predicted values according to Eq. (7.3.3) in which F = 0.77
derived from the fit of Fig. 7.10. The dashed lines show a fit of the points to
the same model leaving a−eg as free parameter (see main text for more details).

Sec. 7.3.3 we know that the energy difference between the two interaction
channels depends on the magnetic field as:

UH
eg(B)−UL

eg(B) = 2
√
V2

ex + (F∆B)2. (7.-8)

where ∆B = 5
2 δg µBB and the Frank-Condon factor is F = 0.77 for the

scattering lengths deduced in the previous section. We thus measure the
spin-exchange oscillation frequency as a function of the final bias mag-
netic field (see Fig. 7.7). The circles in Fig. 7.11 show the measured spin-
oscillation frequency (UH

eg −U L
eg)/h at lattice depth s = 30 as a function of

B, while the squares indicate the energy of the |egL〉 state determined by
fitting the position of the peaks in the spectroscopic measurements (Fig.
7.6). The solid lines in Fig. 7.11 show the predictions of this model by us-
ing a−eg = 219.5 a0, a+eg = 3300 a0 (from the fit in Fig. 7.10) and the Franck-
Condon factor F = 0.77 calculated by using the interacting wavefunctions
obtained previously. The agreement with the experimental data is quite
good, showing the substantial validity of the model in Eq. (7.3.3) as long as
the overlap factor F between the interacting wavefunctions is considered.
Alternatively, we have performed a simultaneous fit of the two datasets in
Fig. 7.11 using the fitting function (7.4.2) and taking U+

eg and F as func-
tions of the free parameter a+eg while considering a−eg = 219.5 a0. The result
(dashed lines) is a+eg = (4400± 600) a0, which is ∼ 2σ away from the more
precise determination coming from the fit of the data shown in Fig. 7.10.
We note that a precise determination of a+eg is complicated by the fact that,
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in this regime of strong interactions, the dependence of U+
eg on a+eg is ex-

tremely weak and small effects coming e.g. from calibration uncertainties
or from higher-order contributions in the theory could yield significant
changes. We also note that, in the presence of a tight trapping, the inter-
pretation of the results in terms of an effective scattering length should be
considered [171]. However, we stress that, differently from a+eg, our deter-
mination of Vex is free from any assumption or modeling and represents
an accurate measurement of the spin-exchange coherent coupling in an
actual experimental configuration.

7.5 Observation of an orbital Feshbach resonance

In this Section we present some very recent results [50] regarding the ob-
servation of a novel kind of Feshbach resonance, called orbital Feshbach
resonance, affecting the scattering between 173Yb atoms in different elec-
tronic states. We observe a hydrodynamic expansion of the Fermi gas in
the strongly interacting regime and use it to identify the resonance posi-
tion.

The determination, shown in the previous Section, of such a high scat-
tering length aeg+ in the triplet channel, has triggered a recent theoretical
work [36] in which the orbital Feshbach resonance has been predicted. In-
deed, the orbital-symmetric potential features a shallow bound state with
|Ec| in the tens of kHz range, which corresponds to a large background
scattering length aeg+ . The physical idea behind an orbital Feshbach res-
onance is that the orbital degree of freedom plays the same role as the
spin degree of freedom in the typical magnetic Feshbach resonance. A
coupling between an “open”-channel (|o〉 = |e ↓, g ↑〉) and the bound
state of a “closed”-channel (|c〉 = |g ↓, e ↑〉) induces a resonance in the
scattering process. These two states are nothing else then the |eqL〉, |eqH〉
states introduced before for B � Vex (see Eq. 7.3.3). Due to the presence
of a differential Landè factor δg, the energy separation between the two
channels, ∆µB = δgµB∆mB, can be tuned, as in a typical magnetic Fes-
hbach resonance. As the interatomic distance decreases, the appropriate
basis for the description of the scattering is given by the orbital symmetric
|eg+〉 = (|c〉 − |o〉)/

√
2 and antisymmetric states |eg−〉 = (|c〉+ |o〉)/

√
2,

which are associated to two distinct molecular potentials. The difference
between them determines an effective coupling between open and closed
channels, which becomes resonant when the differential Zeeman energy
∆µB equals the binding energy |Ec| of the least bound state in the closed
channel (see Fig. 7.12).

Since in the 3D optical lattice we have measured a really high Vex ∼
10 kHz, magnetic fields above 1000 G would be necessary, to well define
the collision channels. For this reason we perform the experiments in a
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Figure 7.12: Scheme of the 173Yb orbital Feshbach resonance affecting the
scattering between one |g〉 =1 S0 atom and one |e〉 =3 P0 atom in two dif-
ferent spin states (see text for details). The inset shows the behavior of the
scattering length for ∆m = 5 as modeled in Ref. [36], with the center of the
resonance adjusted to match our experimental observations in Fig. 7.13b (the
circle identifies the predicted position of the zero crossing).

typical dipole trap, constituted by a 759 nm gaussian laser beam (along
the same direction as OL1, see Fig. 2.12) with beam waist w0 ' 30 µm and
the orthogonal, vertical lattice beam in which the retroreflection has been
blocked. With this trapping potential, Vex is estimated to be at least one
order of magnitude lower (∼ 100 Hz) thus giving us the possibility to use
more feasibile magnetic fields values, B ∼ 100 G.

The experiment starts by loading an atomic spin mixture (−5/2, +5/2)
in the |g〉 = 1S0 state in the “magic” dipole trap and promoting all the
m = −5/2 atoms to the metastable 3P0 state thus preparing the open-
channel state. The excitation is perfomed with a π−pulse of duration
Tpulse = 400 µs at a magnetic field B ∼ 150 G so that the collision chan-
nels |o〉, |c〉 are well defined. Then, we change the magnetic field intensity
to the desired value B in about 2 ms. The trap is suddenly switched off
and, after a time of flight tTOF , the atoms remaining in the ground state
|g〉 are imaged with typical absorption imaging. During the first 5 ms of
the expansion the magnetic field is kept at the B value, thus allowing the
atoms to release their interaction energy into kinetic energy. Fig. 7.13a
shows the evolution of the aspect ratio of the Fermi gas after the release
from the trap as a function of the time of flight. The aspect ratio is defined
as the ratio Ry/Rx of the expanded atomic cloud size along ŷ to the size
along x̂. In the case of a noninteracting Fermi gas (long-dashed lines) the
expansion is ballistic, eventually resulting in a spherical shape and in an
aspect ratio value of 1 for sufficiently long expansion times (much larger
than the inverse trap frequencies). The experimental circles, showing the
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Figure 7.13: Observation of an orbital Feshbach resonance. (a) Aspect ratio of
the atomic cloud after a time of flight tTOF = 28 ms as a function of the mag-
netic field. The maximum determines the position of the orbital Feshbach
resonance. (b) Anisotropic expansion of a strongly interacting 173Yb Fermi
gas, initially prepared in the open channel of a spin mixture of m = ±5/2,
at a magnetic field B = 41 G. (Top) The circles show the aspect ratio of the
expanded |g〉 atomic cloud as a function of the time of flight. The long-
dashed grey line shows the behavior expected for an ideal Fermi gas. The
short-dashed black line indicates the unit limit above which the experimen-
tal aspect ratio gets inverted because of hydrodynamic expansion. (1)-(3).
False-color absorption images of the |g〉 component of the atomic cloud after
excitation in the open channel for increasing time of flight ((1) 7 ms (2) 16 ms
(3) 28 ms).

behavior of the interacting spin mixture at a magnetic field B = 41 G,
clearly show an inversion of the cloud shape from prolate to oblate, with
an aspect ratio exceeding 1 after a tTOF ' 18 ms. Figs. 7.13a(1,2,3) show
false-color absorption images of the atomic cloud for different times of
flight, as specified in Fig. 7.13a. The observation of the aspect ratio in-
version is a hallmark of hydrodynamic expansion of the Fermi gas, which
occurs in the regime of strong interactions, as observed for alkali fermionic
gases close to magnetic Feshbach resonances [37, 38].

In Fig. 7.13b we show the difference in the aspect ratio between the
open channel and the closed channel as a function of the magnetic field
at tTOF = 28 ms. In the open channel a clear resonant behavior is ob-
served, with a maximum that is located at a magnetic field B = (41± 1)
G, signalling the enhancement of the elastic collisional rate at the Feshbach
resonance.

We have repeated the measurements for smaller ∆m = m′ − m, ev-
idencing similar resonances at significantly larger magnetic fields. The
data are plotted in Fig. 7.14 versus a rescaled magnetic field B = B∆m/5.
The different datasets clearly show a very similar dependence on B, which
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Figure 7.14: Comparison between open-channel mixtures with different
∆m = m−m′, plotted as a fuction of a rescaled magnetic field B = B∆m/5.
Different colors refer to different spin states, as explained in the legend. The
collapse of the different datasets onto the same curve is a verifcation of the
orbital feshbach resonance scaling law, which is in turn a direct consequence
of the SU(N) symmetry of two-electron atoms.

is a distinctive feature of the orbital Feshbach resonance mechanism. As
a matter of fact, the magnetic field at which the resonance is located is
expected to scale as ∆m −1 [36]. This scaling law directly follows from the
SU(N) invariance of scattering in 173Yb, which determines |Ec| to be inde-
pendent of ∆m. The collapse of the experimental data onto the same curve
is, therefore, a verification of the orbital Feshbach scaling law, which is in
turn a strong evidence for the SU(N) symmetry of two-electron atoms.

7.6 Conclusions and perspectives

To conclude, in this Chapter we have described experiments perfomed by
exploiting the ultranarrow clock transition of 173Yb. In the first part of the
Chapter we presented the first observation of fast, long-lived inter-orbital
spin-exchange oscillations in a system of 173Yb atoms trapped in a 3D
optical lattice. We were able to measure directly the exchange interaction
strength, which turns out to be much larger than the other energy scales
in the system such as the Fermi energy EF and the thermal energy kBT.
This is different with respect to other atomic systems, in which the spin
dynamics arises from a small difference between the scattering lengths
[166, 169, 170]. The direct measurement of Vex has also allowed us to
extract important collisional parameters such as the scattering length a+eg
in the spin-singlet channel, which exceeds the spin-triplet a−eg one by ∼ 10
times. We note that such a measurement would be more challenging with
Strontium because the scattering lengths have been determined to be very
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|e

|g
Vex

Figure 7.15: Illustration of the Kondo lattice model (KLM) implementation
with Ytterbium atoms in a state-dependent optical lattice. The onsite ex-
change interaction Vex between mobile particles and localised spins competes
with the tunnelling t of mobile atoms.

similar [172].
These findings make 173Yb a perfect candidate for the observation of

quantum magnetism in a two-orbital system with SU(N) interaction sym-
metry [34]. Furthermore, by exploiting a state dependent lattice [173] (for
example at 655 nm) it would be possible to tightly trap the fermions in
the metastable state while keeping the 1S0 atoms in a metallic state. With
this arrangement we could investigate basic properties of the Kondo lat-
tice model in which localized, magnetic impurities (3P0 atoms) interact
via spin-exchange with a bath of conductive electrons (1S0 atoms) [33, 34],
inducing the formation of a strongly correlated state, Fig. 7.15.

The discovery of a Feshbach resonance between 1S0 and 3P0 state may
open new exciting possibilities, such as the investigation of the two-order
parameters BEC-BCS crossover [36], or the study of topological superfluid-
ity [174–176]. Regarding the latter, we could engineer spin-orbit coupling
in a mixture of 1S0 and 3P0 states simply by noticing that when an atom
absorbs a 578 nm photon, it also acquires a momentum kick, thus creating
a link between orbital excitation and momentum transfer. Furthermore, if
spin-orbit coupling is induced in a mixture of of 1S0 and 3P0 states with
different nuclear spin components, one could exploit the orbital Feshbach
resonance and tune the interactions with a magnetic field, exploring the
superfluid regime in presence of spin-orbit coupling [174, 177, 178], Fig.
7.16.
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Figure 7.16: Schematic illustration of a strongly interacting mixture of 1S0
and 3P0 atoms in presence of spin-orbit coupling. If the scattering length is
tuned across the orbital Feshbach resonance, one could in principle explore
the topological superfluid regime.
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A | Clebsch-Gordan coefficients
of 173Yb

Table A.1: Clebsch-Gordan coefficient for (1S0 → 2S+1P1) π transition
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Table A.2: Clebsch-Gordan coefficient for (1S0 → 2S+1P1) σ+ transition
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B | State dependent potentials:
magnetic field dependence

Due to the non-zero angular momentum J, the 3P1 state has a magnetic
field dependence which is depicted in Fig. B.3. This dependence must
be included in the Eqs. (2.5.2,3.1) describing the light shifts and Raman
amplitudes respectively. In particular, each Zeeman sublevel mF′ belong-
ing to the 3P1 manifold with F′ = 7/2, 5/2, 3/2 acquires an energy shift,
depending on the value of the magnetic field. In Fig. B.1 we show the cal-
culated magnetic field dependence of the state dependent light shift in the
two-leg case (left) and in the three-leg case (right), assuming the +1.876
GHz as the frequency detuning with respect to the F = 5/2 → F′ = 7/2
transition. Especially in the case of uniform polarization, the magnetic
field increases the degree of complexity of the system, since it becomes
more difficult to coherently couple more than two spin states. In Fig. B.2
we plot the magnetic field dependence of the Raman couplings in case of
mF → mF + 2 transitions, that are fortunately, only weakly perturbed.
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