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Abstract

This thesis reports on the experimental investigation of ultracold fermionic
Ytterbium atoms in optical lattices. Ytterbium is a two-electron atom and,
due to its rich electronic structure, it allows the investigation of many dif-
ferent physical phenomena. In particular, it is characterized by a purely
nuclear spin, which is completely decoupled from the electronic degrees of
freedom. This property makes Ytterbium a valuable candidate in the con-
text of quantum simulation. I will mainly focus on how we exploited the
coherent Raman coupling between different nuclear spin states in order to
engineer an artificial magnetic field for ultracold atoms. The nuclear spin
degree of freedom acts as a synthetic dimension that, in addition to a real
one-dimensional optical lattice, gives rise to a synthetic two dimensional
lattice. Since the Raman coupling depends on the particular position of
the atoms in the real one-dimensional lattice, when a particle hops around
a closed loop in this synthetic system it acquires a non-zero phase, which
is reminiscent of the Aharonov-Bohm phase acquired by a charged particle
in a magnetic field. This technique allowed us to experimentally realize
chiral edge states within this ribbon geometry and, for the first time, to
observe skipping-type orbit dynamics, that is a hallmark of quantum Hall
physics.

The optical detection and careful manipulation of the number of spin
components allowed us to study also the behaviour of a one-dimensional
liquid of interacting fermions with a tunable number of spin components,
validating for the first time the prediction that a one-dimensional liquid of
fermions with many spins exhibits properties of a bosonic spinless liquid.

Moreover, in addition to their nuclear spin, two-electron atoms pos-
sesses an excited metastable state that can be addressed with an ultra-
narrow clock laser. Coherent control of Ytterbium clock transition 1Sy —
3Py in three-dimensional optical lattices has led to the first observation of
fast, coherent spin-exchange oscillations between two 7*Yb atoms in dif-
ferent electronic orbitals. These experiments show that Ytterbium, with its
many powerful properties, is a perfect candidate for the realization of a
novel quantum simulator of unique many-body phenomena.
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Introduction

In the last two decades, thanks to the incredible advances in atomic ma-
nipulation through laser light, it has been possible to cool down atomic
gases to the nanokelvin regime, enlighting their quantum nature and re-
alizing degenerate samples, both bosonic [1, 2] and fermionic [3]. These
achievements led to the emergence of the new branch of physics of ul-
tracold atoms, which is characterized by an unprecedented control over
the experimental parameters. In particular, ultracold atoms are perfect
candidates to practically implement the famous idea of R. Feynman [4]
regarding the possibility of engineering a quantum system to simulate,
experimentally, a specific quantum physical phenomenon or theoretical
model. Within this context, the unique development of a tuning knob of
the interactions between the atoms [5] and the realization of optical lat-
tices [6, 7], opened the door to the simulation of condensed-matter models
[8] and led to the investigation of strongly-correlated many-body systems
[9, 10]. Moreover, the realization of artificial magnetic fields for ultracold
neutral atoms [11-15] and the engineering of spin-orbit coupling [16, 17]
opened the door to the study of quantum Hall physics within a control-
lable experimental setup and to the investigation of topological properties
of some paradigmatic condensed-matter models [18-20].

This PhD thesis fits into these last frontiers of quantum simulation,
and it is mainly focused on the realization of a synthetic magnetic field
for a gas of ultracold fermions loaded in an optical lattice. Unlike pre-
vious techniques, based on laser-assisted tunneling [12, 13, 21] or lattice
shaking schemes [18, 20], we use a completely novel approach based upon
the concept of synthetic dimensions [22, 23]. The atom we use in our lab,
fermionic 7*Yb, possesses N = 6 spin components in its ground state,
that can be coherently coupled by means of Raman transitions. Inter-
estingly, the mathematical description for this coherent spin system is
completely equivalent to the one describing a particle hopping between
different sites of a one-dimensional lattice. Indeed, the spin components
can be treated as synthetic lattice sites, coherently connected by the tun-
neling given by the Raman coupling. If the atoms are then loaded in a
real one-dimensional lattice, the Raman coupling effectively gives rise to



Figure 1: 1. A synthetic gauge field in a synthetic dimension. We confine
the motion of fermionic ultracold atoms in a hybrid lattice, generated by an
optical lattice along a real direction £ with tunneling ¢, and by laser-induced
hopping between spin states along a synthetic direction 7. By inducing a
complex tunneling Qge'® along i, the atom wave function acquires a phase
@ per plaquette, mimicking the effect of a transverse magnetic field B on
effectively charged particles.

a synthetic two-dimensional lattice. In order to realize an effective mag-
netic field in this 2D hybrid lattice, it is sufficient that the phase of the
Raman coupling depends on the particular lattice site in which an atom
sits. In this way, atoms tunneling from different sites will acquire differ-
ent phases giving an effective Aharonov-Bohm phase when the trajectory
forms a closed loop, as it is depicted in Fig. 1. The generated effective
magnetic field is of the order of one flux-quantum per plaquette, corre-
sponding to unreachable magnetic field intensities of thousands of Tesla,
for experiments in solid-state physics. The synthetic dimensions approach
is straightforwardly implemented, without the need of complex super-
lattice potentials or non-trivial lattice driving schemes. Furthermore, the
chosen Raman light, leads to heating effects that are completely negligible
on the timescale of the experiments. Also, the possibility of optically de-
tecting the single spin components (by means of optical Stern-Gerlach or
spin-selective imaging) effectively realizes single-site detection along the
synthetic direction. Another important feature of this hybrid 2D lattice
is the presence of sharp edges, at the border of the spin direction. We
have indeed investigated edge-physics properties and, for the first time,
we have observed, in neutral matter, chiral edge-currents and skipping-
orbit-like trajectories [24, 25], paving the way to the study of quantum-Hall
physics within the highly controllable environment of ultracold quantum
gases.

In this PhD thesis I will also describe how it is possible to exploit
the properties of quantum degenerate Ytterbium (}73Yb) Fermi gases [26]



loaded in optical lattices to pursue the study of many other physical sys-
tems. Unlike alkalis, Ytterbium is a two-electron atom which does not
possess an electronic angular momentum (J = 0) in its ground state and,
in the case of the fermionic isotopes, only a nuclear spin exists, which is
completely decoupled from the electronic degrees of freedom. These pe-
culiar properties have two striking consequences: the first one, is the exis-
tence of a metastable excited state which is connected to the ground state
via an optical clock transition [27-31], bringing Ytterbium in the spotlight
for applications within quantum metrology [28, 32]. This state can also be
used as an additional “orbital” degree of freedom for quantum simuation
applications. This characteristic allowed us to study two-orbital physics, in
particular observing for the first time coherent inter-orbital spin-exchange
oscillations, whose nature is at the basis of some paradigmatic quantum
magnetism lattice model [33-35]. Also, we have very recently observed a
new kind of Feshbach resonance, called orbital Feshbach resonance [36] in
which the scattering properties between atoms in different electronic states
can be tuned by means of an external magnetic field. We studied the hy-
drodynamic time-of-flight expansion of a strongly interacting Fermi gas,
and used the characteristic aspect-ratio inversion to identify the position
of the Feshbach resonance [37, 38].

The second property, connected to the presence of a purely nuclear
spin, is manifested in the physics of collisions. In particular, the interac-
tion between ultracold 7*Yb atoms does not depend on the nuclear spin
orientation, giving rise to a high degree of symmetry, called SU(N) sym-
metry [34], where N is the number of nuclear spin components. This
cancels any possible collision-induced spin relaxation mechanism making
the spin component a good quantum number. This property allowed us
to study the role of spin multiplicity in the context of one-dimensional
physics, going beyond the standard solid-state, spin 1/2 case. In particu-
lar, we have investigated the correlations-induced broadening of the mo-
mentum distribution as a function of the number of spin components and
also observed, for the first-time, the predicted [39] high-spin bosonization
phenomena in a multicomponent one-dimensional liquid of fermions.

Thesis overview
This thesis is organized as follows:

e Chapter 1 describes the basic theoretical ingredients necessary to de-
scribe ultracold fermions in optical dipole potentials. Attention will
be given to the description of optical lattices, state-dependent dipole
potentials and the low-energy properties of scattering between ul-
tracold atoms. The fundamental ingredient of the coherent coupling
between internal degrees of freedom, will be introduced.



e Chapter 2 is devoted to the description of the experimental setup
and of techniques developed to reach quantum degeneracy with the
fermionic 73Yb isotope. We will describe the all-optical procedures
used to detect, manipulate and coherently couple the nuclear-spin
components. Thanks to these, three main experiments have been
performed which will be described in three independent chapters.

e Chapters 3, 4, 5 are at the heart of this PhD thesis and describe
the engineering of an artificial magnetic field in a ribbon geome-
try in which one direction is constituted by the sites of a real one-
dimensional optical lattice and the other direction is encoded in the
coherently coupled nuclear spin components, which can be inter-
preted [22, 23] as an “extra-dimensional” lattice. With this novel
technique it has been possible to observe, for the first time, paradig-
matic phenomena of quantum Hall physics such as chiral edge states
and skipping-orbit-like dynamics [24]. The theory at the basis of
these observations will be reviewed in Chapter 4, where we give a
basic description of quantum Hall physics from a lattice perspective.

These results pave the way to the study of strongly interacting fermi-
ons in a “Hall-ribbon” geometry, allowing the investigation of frac-
tional quantum Hall physics [40—42] and of exotic quantum phases
in neutral matter [43].

e Chapter 6 describes the first experiment performed on the ytterbium
setup, which constitutes the main topic of the PhD thesis of my col-
league G. Pagano [44, 45]. We studied static and dynamic properties
of a one-dimensional liquid of fermions with a tunable number of
spin components. In one dimension the Landau-Fermi liquid model
breaks down and a new description is needed, based on the famous
Tomonaga-Luttinger liquid model [46, 47]. In particular, we stud-
ied the role of spin multiplicity, going beyond the standard two-
components case typical of electrons in condensed-matter physics.

e Chapter 7 mostly regards the second experiment perfomed [48] on
the ytterbium setup, in which we coherently addressed the excited
metastable 3Py state using an ultra-narrow clock laser developed by
my colleague G. Cappellini during his PhD [49]. We studied the role
of interactions between atoms loaded in a three-dimensional optical
lattice in different nuclear-spin and electronic states. Because of the
symmetry of the two-particles wavefunction, two possibilities exist,
symmetric and anti-symmetric electronic states, which are separated
by an exchange energy. For the first time we observed inter-orbital
spin-exchange oscillations, a fundamental ingredient in the field of
quantum magnetism, in particular for the realization of the paradig-
matic Kondo lattice model [34]. The final part of the Chapter is ded-



icated to the description of some very recent results [50] regarding
the first observation of a novel kind of Feshbach resonance, called
orbital Fesbach resonance, affecting atoms in different electronic or-
bitals. We identified the position of the resonance by studying the
hydrodinamic expansion of a Fermi gas in the strongly interacting
regime. We also verified the predicted [36] scaling law of the res-
onance position as Am ~! in which Am = m — m’ is the difference
between two generic spin components out of the F = 5/2 manifold.
This scaling law is a direct manifestation of the SU(N) character of
both the 1Sy and 3P, states.
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1 Trapped Fermi gases:
basic tools

This chapter reviews some basic concepts that are common to many atomic
physics experiments. We will start from Section 1.1 where a brief reminder
of the theory of a non-interacting Fermi gas will be given. Next, in Sec-
tion 1.2, we will discuss how to trap and manipulate the atoms in optical
dipole traps. The fundamental tool of the optical lattice will be introduced,
presenting the typical description in term of Bloch bands and Bloch wave-
functions. We will describe also a method to engineer state-dependent
dipole potentials, allowing for the detection and manipulation of the spin
degree of freedom (see Sec. 2.5). On the same line, in Section 1.3, we
will illustrate how to coherently couple the internal degrees of freedom by
means of Raman transitions. Finally, Section 1.4 describes briefly the low-
energy scattering between ultracold fermions enlighting the emergence of
SU(N) symmetry which characterizes our particular atomic species.

1.1 Non interacting Fermi gases in harmonic poten-
tial

Non interacting fermionic atoms are characterized by the Fermi-Dirac dis-

tribution:

Fle)= -

1.

et +1 o
which represents the occupation probability of a single particle state with
energy € at temperature T. In Eq. (1.1) kp is the Boltzmann constant and
i is the chemical potential which is fixed by the total number of parti-
cles N. At T = 0 the chemical potential coincides with the Fermi en-
ergy, u(T = 0) = Ep. It is useful to introduce also the Fermi wavevec-
tor kr = +/2mEr/h and the Fermi temperature kgTr = Er, in which
m is the atomic mass and 7 is the reduced Planck constant. Another
quantity of interest is the fugacity z = exp(kBLT) which is a monotonic
function useful to characterize the degree of quantum degeneracy of the
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gas: for a thermal gas T > Tr, z ~ 0 and the Fermi-Dirac distribution
approaches the Boltzmann distribution, while for the deeply degener-
ate regime T < Tf, z — +oco and F(e) tends to the Heaviside function
@(E F—€ )

For a gas trapped in a three-dimensional harmonic potential

1
V(r) = E111(w§x2 + wpy’ + wiz?) (1.0)
the density of states at energy € is equal to

€2

gle) = 2(h@)3

(1.0)

where we defined the geometric mean trap frequency @ = (wy wy w;)/>.
Integrating the density of states weighted by the Fermi-Dirac distribution
at T = 0, we get the total number of atoms

N = /Ooog(e)G)(Ep —€)de = /OEF g(e)de (1.0

which defines the Fermi energy Er = h@(6N)'/3. The fugacity z(N, T)
can be obtained by inverting the following relation numerically:

N = /Ooog(e)]-"(e)de _ (’;135)113(—@ (1.0)

where Li,(x) is the polylogarithmic function of the order n. Using the
Sommerfield expansion in the low-temperature limit we can write the
chemical potential,

% T?
#(N,T) =kpTlog(z(N,T)) ~ Er <1 — 3T2> (1.0
F
—= 1F -
s | ©
g 0 £
2t ©
o o
LR :
E | 2
£ -2t . 2 qt
o “ [J] : K X X X X
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T[T T[Te]

Figure 1.1: Chemical potential (left) and energy per particle (right) for a non-
interacting trapped Fermi Gas. The dotted curves are the low-temperature
approximations.
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and the energy per particle,

(1.0)

E(N,T) _ 3kyT*Lis(—2) 3 , 27* T2
N Nit@? 4 3 T?

which are plotted in Fig. 1.1.

1.1.1 Density and momentum distribution

In order to extract the real space and momentum distributions, a semi-
classical approximation is typically used, which is quite accurate in the
limit of large atoms number N where many single-particle states are occu-
pied [51]. Within local-density approximation (LDA), the number density
in phase space is

1 1

4 - 2 1-0
PP = G (2 v (0

+1
where B = 1/kgT and from which we can obtain the density and momen-

tum distributions by integration in momentum space and position space,
respectively [52]:

n(r) = /de(frP) = —;Lis/z (—Ze_ﬁv(r))

dB

np) = [defop)= s 3Ly (—ﬁ) (10)

T 3313
m3@ /\dB

where Ayp = \/27th?/mkgT is the de-Broglie wavelength. An important
observation is that the momentum distribution for an ideal Fermi gas is
isotropic, leading to a correspondingly isotropic expansion when the gas is
released from a harmonic potential. As it is discussed in [45] the column-
integrated 3D momentum distribution is used to fit the column density in
time-of-flight absorption images, in order to extract the ratio T/Tr from
the fugacity z through the relation: T/Tr = (—6Liz(—z)) /3.

1.2 Optical Dipole Potentials

It has become experimental routine to produce ensembles of neutral atoms
in the microkelvin regime. It is thus possible to trap the atoms by means
of optical dipole traps that rely on the electric dipole interaction with far-
detuned laser light [7]. In this case the optical excitation is very low and
the radiation force due to photon scattering is negligible as compared to
the dipole force.

When a neutral particle is placed into laser light, the electric field E
induces an atomic dipole moment d proportional to the complex dynamic
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polarizability of the atom a(w), d = a(w)E, where w is the driving fre-
quency. The interaction potential of the induced dipole moment d in the
driving field E is given by:

U(r,w) = —=—Re[a(w)]I(r), (1.0

where I(r) = 2eoc|E(r)|? is the field intensity. The interaction potential is
nothing else than the light shift experienced by the atom in the laser field
and it is proportional to the real part of the polarizability, which describes
the in-phase component of the dipole oscillation [53]. From the gradient
of the interaction potential we can extract the dipole force:

Fip(r, @) = —VU(r,w) = zjocRe[a(w)}vz(r) (1.0)

which is thus a conservative force.

We have to consider also the dissipative processes associated with
light absorption and spontaneous re-emission, which are connected to the
imaginary part of the dynamic polarizability. The absorption can be in-
terpreted in terms of number of photons which are scattered in cycles of
absorption and spontaneous emission processes. The corresponding scat-
tering rate is:

Toe(r,w) = %Im[zx(w)]](r). (1.0)

€oC
In the case of a two-level atom and using the semiclassical approximation
for the atomic polarizability [7] the following expressions are derived for
the dipole potential and the scattering rate in the case of large detunings:

U(r,w) = —3”CZ< r . 1 >I(r) (1.1)

2w \wo—w  wo+w

Teoo(r,w) = 37rc2<w>3< r ., 1t >21(r) (1.2)

2hw] \ wo wy—w  wy+w

where wy is the resonant frequency of the two-level atom and I is the
spontaneous decay rate of the excited level.

These formulas can be easily generalized to the case of a multi-level
atom interacting with a far-off resonant laser light'. The dipole potential
and the scattering rate experienced by an atom in a particular electronic

IWe are still considering the case in which each level does not possess a magnetic
substructure.
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Figure 1.2: Calculation of the dipole potential experienced by the 1Sy and 3P,
Yb levels using equation (1.2). The green dot indicates the magic wavelength
for which the two light shifts are equal. This will be important in Chapter 7,
where the experiments with the clock transition are discussed.

state 1) are given by:

Un(ry) = = 1 o (L oY g

m#WZwﬁnn Wypn — W W + W

3 2

() _ 37TC2 < w > ( 1—‘mn 1—‘mn )
I's.'(r,w) = + I(r
(rw)=13, 2hr \ omm (r)

st Win = @ Wy + W

where w,,, identifies the transition frequency from level |n) to level |m)
with its respective decay rate I';;;,. In Fig. 1.2 we show the calculated
dipole potential experienced by an Yb atom in the 'Sy (blue line) and 3P,
(orange line) energy states. The green dot indicates the “magic” wave-
length (one of the many present) for which the two light shifts are equal.
This will be important in Chapter 7, in which experiments involving the
clock transition will be described.

1.2.1 Optical lattices

Optical lattices are a fundamental tool in the context of quantum simu-
lation with ultracold atoms. They permit the realization of real crystals
of light, which emulate the crystalline solid structure in which electrons
move. Such optical structures are experimentally obtained by superimpos-
ing two counter-propagating gaussian laser beams, resulting in the dipole
potential:

2

ot 1 1
Vip(r,z) = Ve 2 cos?(kpz) ~ Vycos?(krz) + Ema}frz + Emw%zz (1.2)
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where Vj is proportional to the intensity of the laser beams and to the
polarizability of the atoms, k; is the laser wavenumber and the quadratic
terms generate an additional harmonic confinement which comes from
the gaussian shape of the laser beams. The depth of an optical lattice is
naturally expressed in terms of the recoil energy Egr = hzk%/ 2m through
the dimensionless parameter s = V/Eg. The radial and axial trapping
frequencies of the additional harmonic terms are obtained by expanding
the original dipole potential to second order around r = 0 and z = 0. We
express these frequencies in terms of the lattice depth:

4V 4ER
wy =
mwo mwo
2V, 2E
w, = /=22 SR s (1.2)
mzR mzR

where wy is the beam waist of the gaussian beams and zr the Rayleigh
range defined as zg = mw3/A. By expanding the co-sinusoidal term in
Eq. (1.2.1) around z = 0, we obtain the harmonic frequency associated to
the single lattice sites created by the interference pattern along the z-axis,
namely:

2k3 2ER
= /=Ly, = =R 1.2
Wy V0 hﬁ (1.2)

Optical lattices are a versatile and manoeuvrable tool not only to build
perfect periodic potentials but also to tune the dimensionality of the sys-
tem. Indeed by superimposing many counterpropagating beams along
orthogonal directions, it is possible to realize different geometric patterns,
from one-dimensional tubes [44] to three-dimensional simple cubic lat-
tice structures [54]. If the beams intersect at specific angles, more exotic
patterns can be obtained such as triangular lattices [55] or graphene-like
lattices [56]. By neglecting the weak harmonic confinement it is possible to
analytically solve the hamiltonian of an atom in an optical lattice, finding
the energy levels and the eigenfunctions in terms of Mathieu functions.

Bloch bands and Bloch functions

The problem of a single particle in a periodic potential has been exten-
sively studied in the last century in solid state physics [57]. The hamilto-
nian we want to solve is:

2

H = zp—m + Vo cos®(kpz), (1.2)

which gives rise to a second-order differential equation that takes the form
of the famous Mathieu equation, ¥" + [a — 2g cos(2x)]ip = 0 where a =
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Figure 1.3: Energy band diagrams for various lattice depths. The dotted lines
indicates the lattice depths in recoil energy unit. Note how the energy levels
flatten out by increasing the lattice depth.

E/Er —s/2,q = s/4 and x = krz. The solutions of this equation are called
Mathieu functions, have the same periodicity of the lattice and form a
complete orthogonal set. The Bloch wavefunctions are linear combinations
of Mathieu functions and can be written as:

Pur(x) =C (E(”)(k) - % —Z, x) +iSign(k)S (E(”)(k) . % -Z, x) ,
(1.2)
where C and S denote the even and odd Mathieu functions respectively
and the coordinate x is expressed in lattice spacing units d;, = Ap /2. The
energy levels in recoil energy units can be expressed in term of the Math-
ieu characteristic values A[k, —s/4]:

EME) = A [kj:ZSign (k) <”+1 —1) ,—5} +3, (1.3)
2 4] 2

where, in the reduced zone scheme, the + sign refers to odd band index
n and the — sign refers to even band index n, whereas k € (—1,1] in
units of lattice wavenumber k;. The energy bands for different values of
s are plotted in Fig. 1.3 along with the lattice parameter s. Within this
formalism, it is possible to define a tunneling energy | associated to the
probability of a particle to hop from a site to the nearest-neighboring one.
In a tight-binding approximation [9], this quantity is related to the kinetic
energy of the particle in a given band of index n and it is proportional to
the width of the band itself:

(1.3)

In the case of a 3D lattice, formed by three orthogonal retro-reflected
beams, the hamiltonian is separable and the energy spectrum can be com-
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Figure 1.4: Band structure as a function of lattice depth. Shown are the
first three energy bands for a 1D lattice (left) and the corresponding first
three energy bands along the direction x for a 3D lattice (right). The vertical
dashed line in the 3D case denotes a lattice depth of Vj ~ 2.2Eg, where the
band gap opens.

puted simply by adding the energies along each direction:
E(emens) (k) = E0)(ky) + EM) (k) + EM=) (k). (1.4)

If the lattice depth is equal along the three directions, the first excited band
is threefold degenerate and consists of the sum of two lowest energy 1D
bands and one first-excited 1D band. While in 1D the energy gap between
the fundamental and the first excited band opens as soon as s > 0, in 3D
the band gap only opens for lattice depths larger than Vy ~ 2.2Eg. This is
illustrated in Figure 1.4.

In the experiments we will describe in the following chapters, the
atoms are loaded in the lowest band of the optical lattice. An equilibrium
state is prepared by adiabatically ramping up the intensity of the lattice
beams, using an exponential ramp, to avoid Landau-Zener tunneling pro-
cesses towards the excited bands. A fundamental observable is the lattice
momentum distribution (Fig. 1.5, see Chapter 5), directly related to the
population in the various Bloch bands. The lattice beams are switched off
adiabatically with respect to the inverse of the band gap, but faster than
the external trap period (band mapping, [54, 58]). With this technique we
map the lattice momentum onto the atomic velocity distribution, that is
directly measured by standard time of flight absorbtion imaging. For ex-
ample, in Fig. 1.5 we show the quasimomentum distribution of a Fermi gas
occupying uniformly the first Brilluoin zone corresponding to the lowest
energy Bloch band. The square shape reflects the simple cubic geometry
of our 3D optical lattice.
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Figure 1.5: False-color time-of-flight image of the lattice momentum distri-

bution of spin-polarized fermions in a 3D optical lattice at sy = s, = s; = 30.
With N = 2-10* and @ ~ 27t x 50 Hz, only the lowest band is populated.

1.2.2 Tight-binding approximation

When the lattice depth s increases, the atomic wavefunction becomes more
and more localized in a single lattice site so that the description in terms
of delocalized Bloch waves is not convenient anymore. It is useful to intro-
duce the Wannier states (see Fig. 1.6) which, in the one-dimensional case,
can be written as Fourier transform of Bloch waves [9]:

k .
wy(z—1dp) = A/ ‘ e*l(kldL+9n,k)an,k(Z)dk (1.4)
—kr

in which A is a normalization constant, / is an integer number whereas
6, comes from the fact that the Bloch waves are defined up to a phase
factor. Because of this phase factor, the definition of the Wannier functions
is not unique, but depends on the particular set 0, . The ambiguity can
be solved by choosing the phase factors that give rise to the maximally
localized Wannier functions [59] which minimize the variance

Ax? = (wa(x)[*|wn(x)) — ((wn (x)|x]wn(x)))? (1.4)

and form a complete set of localized states. Wannier functions referred to
different bands and lattice sites respect the orthogonality relation

(wn(x —1dp)|wy (x —=1'dr)) = 6,0 1. For a separable potential, the exten-
sion to the 3D case is trivial:

Wiy, (x,y,2) = wn, (x>w”y (y)wn, (z) (1.4)

which represents localized wavefunctions that collapse onto the harmonic
oscillator eigenfunctions when the lattice depth tends to infinity. However,
we note that the Wannier functions are not eigenfunctions of the lattice
Hamiltonian (1.2.1), since they are linear combinations of Bloch wavefunc-
tions.
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Figure 1.6: Wannier functions. (a) s = 5. (b) s = 30. Solid blue lines are the
absolute squared values of the Wannier functions while the green dashed
lines are the absolute square values of the harmonic oscillator eigenfunctions
with fiw = 2/sEg. The red dashed line represent the lattice potential.

The Wannier functions are very useful in the second-quantization for-
mulation of the lattice Hamiltonian. Indeed, in the tight-binding approx-
imation, it is convenient to expand the fermionic operators in terms of
Wannier states:

fru(r) = Y w(r -, (1.4)
J

where m is a spin index, é}m is the fermionic operator creating a particle
at site r; and the single band approximation has been assumed, for which
w, = w1 = w(r—r;). The Hamiltonian in second-quantization takes the
form:

hZ

H :;/drlﬁ;(r) [_mvz + Vet (1) | P (r)

1 N N o N
+3 ) /drdr’gb:;/(rl)kb;(f)uint(rrr/)Ebm(r)Ebm’(rl)

m,m'’

in which V,; and U;,; are the lattice and interaction potentials respectively.
Using the expansion of Eq. (1.2.2), the above Hamiltonian becomes:

~ PN A At oA A
H==Y tijeh Cjm+Un Y CimCim Cim! Cjm (1.3)
i

jm<m’

where t;; describes the hopping from site 1; to site r;. Since the Wannier
wavefunctions are well localized in each lattice site, we can consider hop-
ping between neighboring sites, rj — r; - u - d in which u is a unit vector.
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Figure 1.7: Tunneling and interaction energies. (a) Tunneling energy be-
tween nearest-neighbor sites as a function of the lattice depth. The green line
refers to atoms occupying the fundamental lattice band whereas the blue
lines refers to atoms occupying the first excited lattice band. (b) On-site in-
teraction as a function of the lattice depth, for two 73Yb atoms occupying
the fundamental lattice band.

The tunneling energy then becomes:

. § hZ )
t:/drw (r) —%V + Vext(r) | w(r+u-dp) (1.3)

which is plotted in Fig. 1.7a in case of a one-dimensional optical lattice at
various lattice depths. Also, since we are in the ultracold regime, we can
assume a two-body contact interaction (see Sec. 1.4) in order to obtain an
on-site interaction energy? between fermions with different spins:

4nth’a
Ui = 2 [ drfao(r) 13)
m

in which a is the s—wave scattering length. In Fig. 1.7b we plot the value
of Uy, as a function of the lattice depth in the case of two 17>Yb atoms
interacting with a scattering length a = 200 ao.

1.2.3 State dependent dipole potentials

Everything we described so far assumes that the frequency of the laser
used to generate the optical dipole potential is far-detuned from the 172Yb
atomic transitions. In particular, when this condition is satisfied, the light
shift experienced by atoms in the ground state is indipendent of the par-
ticular spin component mp (where F = 5/2 for 7*Yb in the Sy state).

2This formula is valid for weak interactions, when a < aj,, where a;, is the harmonic
oscillator length associated to a single lattice site. In the opposite limit, a new model must
be introduced [60] taking into account the modification of the lattice wavefunctions due to
the strong interactions.
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Figure 1.8: Hyperfine structure of the 1Sy — 3P; 173Yb transition.

When instead the laser frequency detuning with respect to a particu-
lar transition is comparable or even smaller than the hyperfine splitting
(10L] < Anrs), the proper excited energy level substructure must be consid-
ered. Equations (1.2),(1.2) are indeed approximate limits of the complete
expressions’:

37TC2 arpl arpT
Unlty ) = = L S Con(? (L2 4 ST

nEm 2w, Wy — W Wy + W

n 37c? w 3 &y gy Linn 2
H0,0) = 5 e () () (L2 ST ) g
mn

m#n wmn wmn —w wmn + w

in which the transition strengths, defined as the absolute square of the
Clebsch-Gordan coefficients |Cyuy(g)|?, the dependence on the light polar-
ization state g = (1,0, —1) in spherical basis, and the multiplicity factor
ajp = (2]’ +1)/(2] +1) appear [61].

The Clebsch-Gordan coefficients related to a particular transition |n) =
|yJFmp) — |m) = |v]'F'mp + q), in which |n) and |m) are two states with
well-defined electronic, hyperfine and spin-projection quantum numbers,
are given by:

Coun(q) = (—1)2HI+lme
x /(2] +1)(2F + 1)(2F' +1) (1.3)

{] J 1}< F 1 F >
F' F 1 (mp+4q) q —mp

3The term 'y, = 37?;%;1& 22]]/?1 (J||d||]')|* gives the possibility of calculating the reduced

dipole matrix element between two fine-structure states J, J'.

X
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Figure 1.9: State-dependent potential (left) and scattering rate (right) expe-
rienced by the 1Sy state in the presence of 556 nm light. The plot is made
versus the detuning 67, = w7/, — w from F = 5/2 — F' = 7/2 resonance.
The peak intensity is I = 1 mW/cm? and the polarization is ¢~ .

where the arrays enclosed in curly brackets and round brackets denote
respectively the 6j-symbol and the 3j-symbol [61]. The dependence of
Cmn(q) on mp and g results in different line strengths characterising each
of the transitions within the magnetic substructure of a dipole transition.

In this subsection we consider the specific case of a radiation whose fre-
quency is close to the 1Sy — 3Pj transition resonance. In Fig. 1.8 we report
the hyperfine structure of the 3P; energy level which splits into three sub-
levels with total angular momentum F' = 3/2,5/2,7/2. Assuming no ex-
ternal magnetic field, we can calculate the light shift and the scattering rate
experienced by each spin component mr in the 'Sy state, when exposed
to 556 nm radiation. In Figure 1.9 we plot the calculated light shift and
scattering rate as a function of the detuning from the F =5/2 — F' =7/2
cycling transition. We used ¢~ polarized light (3 = —1) and an intensity
I = 1mW/cm?. We can see that, by approaching &7, = wy/, —w = 0
from the left, the dependence of the light shift on the particular spin state
increases, in particular it is higher for the mr = —5/2 state which expe-
riences the strongest Clebsch-Gordan coefficient. In Section 2.5.2 we will
describe how to use this radiation in order to implement an “optical Stern-
Gerlach” detection technique.

1.3 Raman transitions

The simplest system in which a Raman transition may be driven is the
three-level A-configuration system, illustrated in Fig. 1.10. Two long-lived
ground states are coupled via a radiative upper state which, because the
single photon detuning is sufficiently large, is never significantly popu-
lated [62]. We call |e) the excited state and |g1), |g2) the two ground states,
corresponding to the atomic resonance frequencies wp; and wp, respec-
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Figure 1.10: Three-level A—configuration scheme. |g1) and |g2) are coupled
resonantly via a two-photon process.

tively [61]. Considering a total electric field:
E(r,t) = e1Ep cos(ky - r — wyt) + e2Epp cos(kp - ¥ — wyt), (1.2)

we can write the free atomic Hamiltonian into the rotating frame of the

laser field as: ,

Aa= 2=+ tlg) (@il + Aslga) (gl 12

where A1 = wy; — wp1 and Ay = wy — wpp are the detunings with respect
to the corresponding transitions. Considering Eq. (1.3), we can write the
Hamiltonian of the three-level atom interacting with the electric field in
rotating-wave approximation (RWA) [61] as:

A h ; ; h . .
Ar = 5 [neof + Ofe ™0 | + 2 [ae™ 0] + 03e 770, (12)
where 0; = |g;)(e| is a lowering operator and 1Q); = —(e|d|g;) - Epi(r) is

the single-photon Rabi frequency. Choosing the ansatz |¥) = g, [g1) +
¥e,182) + Pele), we can impose 9y, /0t = 0 if the detunings A, Ay are
sufficiently large (adiabatic approximation), obtaining;:

Q QO
Yelt) = 530 (D) + 55 ¥ (1), (12)

where we defined A = (A1 + Az)/2 assuming |A; — Az| < A, namely that
the two frequency detunings are nearly equal, and we supposed p?/2m <
h|A|. Plugging Eq. (1.3) in the Schrodinger equation (H4 + Hj) [¥) =
ih@ leads to a two-level effective Hamiltonian with coherent couplings
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between the ground states:

2
Py MO8
Hp = | 20 e 2 , (1.2)
R ,—iqrr F__ _
2 ¢ am T2 OR
where qr = 2kg = k; — k; is the momentum acquired by the atom

that undergoes a “spin-flip” process from |g1) to |g2), o = A — Ay =
(w1 — w2) — (we — wee) is the detuning with respect to the two-photon

resonance and Q.2

0105 ON

2A 7 foan 1-2)
are respectively the effective two photon Rabi frequency and the light shift
on |g,) with « = 1,2. Assuming Qg real and choosing a reference frame
such that kg - r = kgrx, it is particularly useful to express the Raman Hamil-

tonian in terms of Pauli matrices:

Qg =

N ﬁ2 ~  hQOg ¢
Hp = %ﬂ + — [[Tx cos(2krx) — 0y Sin(Zka)} + E(Afz (1.2)

where we inserted the differential light shift in ¢’ = ég — (Uy — LI1) it is
worth noting that by applying the gauge transformation U = ¢*%% we
obtain:

(p — FlkR)z + (i/ hQR
T — (A0 = 2m 2
r = UHRU RO (p+1ke)? & (1.2)
2 2m 2
which can be rewritten in terms of the Pauli matrices as:
N (pﬁ—hkRa'z)z 5/A QRA

Hg = T, T lt 50w (1.2)
This simple Hamiltonian features a uniform time-constant vector potential
[63] along one direction gA = hkrd, and provides the same non-trivial

dispersion relation of a particle subjected to equal Rashba-Dresselhaus
spin-orbit coupling and an external magnetic field [64, 65]. Recently, it
has been implemented for both Bose-Einstein condensates [16] and de-
generate Fermi gases [17, 66]. This simple scheme, with the addition of
an external magnetic field gradient, led to the generation of an artificial
magnetic field for neutral atoms [11], which is the main topic of this PhD
thesis.

1.4 Interactions in ultracold quantum gases

Due to the low-density character of ultracold atoms samples, most of the
scattering properties are related to two-body collisions [67-69]. The inter-
atomic interaction is described by a central potential V(r), which at large
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distances takes the typical attractive form —Ces/ r® and at short distances,
on the order of a few Bohr radii ap, can be treated as an hard-core repul-
sive potential. This is only an approximation because the exact inclusion of
the interatomic potential in the description of the gas would be extremely
difficult. However, the samples we are dealing with are ultracold and ul-
tradilute, which implies that both the de Broglie wavelength A;z and the
interparticle separation n1/3 ~ 5000 — 10000 a9 are much larger than the
range of the interatomic potential ry, which is of the order of the van der
Waals length ry ~ (2uCe/h*)1/4 ~ 15049 for 73Yb. As a result, scattering
processes never explore the fine details of the short-range scattering poten-
tial and the entire collision process can be described by a single quantity,
the scattering length a.

We start from the Schrodinger equation for two colliding atoms, writ-
ten in the center of mass frame. The relative wavefunction satisfies:
_ 2pv(r)
=0

(V2 4+ 2) ¥y (r) = 0(r) ¥y (x) with &2 = 2:2}5 and o(r)

(1.2)
where y = m/2 is the reduced mass. At large distance from the scattering
potential, the relative wavefunction is given by the sum of an incoming
plane wave plus an outgoing scattered wave:
. eikr
Yi(r) ~ e+ f(I K )— forr — oo (1.2)
r

where f(k, k') is the scattering amplitude for scattering an incident plane
wave with wave vector k into the direction k’. Since we are considering
elastic collisions, |k| = |K/|.

The potential we are dealing with has spherical symmetry so we can
expand the scattered wavefunction into partial waves with angular mo-
mentum [ [69]. In the limit of ultracold collisions, it is sufficient to consider
the scattering processes at low momenta k < 1/ry and, in the absence of
resonance phenomena (e.g. shape resonances [68] or a Feshbach Reso-
nance [5]) for I # 0, s-wave scattering | = 0 dominates over all other
partial waves (in case Pauli principle allows it):

L S
F o= g =1 = rote — ik (12)

where fy and Jy are the s-wave scattering amplitude and phase shift re-
spectively. For low momenta, we may expand k cot dy to order k?:

k2

kCOt 50 ~ _E + reffE (12)
which defines the scattering length
~ Jim 200 _ (12)

k—o k ’
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and the effective range r.s of the scattering potential, which, for van der
Waals potentials, is of the order of ry [70]. We can thus rewrite the scatter-
ing amplitude f as [71]:

) = (12)

1 k2 .
2 + Veff7 — ik

In the limit k|a| < 1 and re¢ < 1/k, f becomes momentum-independent
and equals —a. For kla| > 1 and reg < 1/k, the scattering amplitude is
f = i/k and the cross section for atom-atom collisions is ¢ = 47t/k*. This
is the so-called unitarity limit in which the details of the scattering process
become completely irrelevant and the only length scale of importance is
the interparticle distance n~1/3.

At really low temperature the de Broglie wavelength of the colliding
particles is much larger than the finite range ry of the potential and it is
possible to introduce a much simpler description of the scattering event
based upon the concept of a “pseudo-potential” [72]. The idea is to in-
troduce an easy-to-treat artificial potential that still reproduces the cor-
rect s-wave scattering. It can be demonstrated that the right form for the
pseudo-potential, in the limit kreg < 1 is:

. d
D) = ga(6) = (r), (12)
r
with the coupling constant ¢ = 47tf%a/m.

1.4.1 SU(N)-symmetric interactions

The importance of SU(N) symmetry in fermionic system goes beyond the
research on ultracold gases. For instance, in particle physics the theory
of quantum chromodynamics (QCD) contains two kinds of SU(3) groups
[73]. In the field of nuclear physics, the SU(6) group has also been con-
sidered as a candidate to unify the description of baryons and mesons
into a single group [74]. The SU(N) symmetry can also have remarkable
consequences in condensed-matter physics, in particular in the context of
quantum magnetism [34, 75].

In order to understand how the SU(N) symmetry emerges at ultracold
temperatures we have to generalize the pseudo-potential (1.4) to spin-F
fermions where F = J + I is the sum of the electronic and nuclear total
angular momenta which, in the case of 173YD in the 1S, state, equals to
F = 5/2. The generalized form must be [76]:

Vi) = Y e Zir] Py, (1.2)

2F—-1 47_[;-12 o)
even Fyy;=0 m or
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where Pr, , is the projector onto two-particle states with total spin equal
to Fior = 0,2,..,2F — 1. Due to the symmetry of the relative wavefunc-
tion under the exchange of two fermionic particles, only the even Fi
values are possible in s-wave collisions. Hence it follows that |F — 1]
scattering lengths are needed to describe the interaction between spin-
F fermions. Roughly speaking, the dependence of the s-wave scattering
lengths ay, ...,a2r—1 on the total angular momentum F,; comes from the
possible arrangements the electronic shells of the colliding atoms can as-
sume. Since in the case of ytterbium and of the other Alkaline-Earth and
Alkaline-Earth-like atoms, the total electronic angular momentum is zero
in the ground state, the influence of nuclear spins on the scattering pro-
cess reduces simply to the Pauli exclusion principle, and all the scattering
lengths ar,, are equal. As a consequence, the interaction Hamiltonian
will be invariant under transformations belonging to the SU(N = 2F + 1)
group [73]. This means that the spin projection mr of each fermion is
individually conserved preventing any possible spin-relaxation mecha-
nism. A remarkable experimental consequence is that all the prepared
spin mixtures are stable against collisions. This will be important in Chap-
ter 6 where a multi-component one-dimensional liquid of fermions is de-
scribed.



2 The Ytterbium Machine

This chapter illustrates the experimental apparatus and the procedures
adopted to trap and cool atomic ytterbium down to quantum degeneracy.
We will then focus on the optical techniques used to manipulate the nu-
clear spin components, giving the emphasis to the optical Stern Gerlach
detection scheme and to the optical pumping procedures.

In section 2.1 we outline the principal chemical and physical properties
of atomic ytterbium, in particular the electronic level structure with the
experimentally relevant optical transitions and the scattering properties in
the ultracold regime. In section 2.2.1 we describe the essential features
of the vacuum apparatus, evidencing peculiarities such as the in-vacuum
Fabry-Perot cavity and the high-optical-access glass cell. In section 2.3, the
different laser setups will be briefly described, with reference to their role
in the experimental procedure. Section 2.4 is devoted to the description of
the overall experimental steps which lead to the realization of a degenerate
Fermi gas. Finally, in section 2.5, we outline the nuclear spin detection and
manipulation techniques used to initialize the atomic spin distribution.

2.1 Ytterbium: fundamental properties

Ytterbium is a rare earth metal, strongly diamagnetic and whose elec-
tronic configuration in its fundamental state is [Xe]4 f14s%. Its atomic mass
is 173.04 u. The melting and boiling points are 824 °C and 1196 °C respec-
tively. Due to the high atomic number Z = 70 it possesses many stable
isotopes [77], both bosonic and fermionic, as it is illustrated in Table 2.1.
Due to the presence of two electrons in the valence shell, the ytterbium
electronic level structure reproduces the typical structure of alkaline-earth
elements, which in turn partially resembles the one of Helium. This struc-
ture can be divided in terms of the total electronic spin, which can assume
two values: S = 0 singlet states, or S = 1 triplet states. In Figure 2.1
we report the energy level scheme, with the optical transitions used in
the experiment. The transition 6s21Sy — 6s6p ! P; is dipole allowed, has
a linewidth of I' = 27 - 29.1 MHz corresponding to a lifetime of about
5.5 ns and a saturation intensity of Iy = 60mW /cm? [78]. It is used in

25
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Table 2.1: Ytterbium isotopes properties

Isotope Relative abundance (%) Nuclear spin  Statistics

168yp 0.13 0 bosonic
170yp 3.05 0 bosonic
171yp 14.3 1/2 fermionic
172yp 21.9 0 bosonic
173Yp 16.12 5/2 fermionic
174y 31.8 0 bosonic
176Yp 12.7 0 bosonic

the Zeeman Slower cooling stage (see next Sections) and in the imaging
stage. The transitions towards the triplet states 3Py, 3Py, 3P, are called in-
tercombination transitions because they connect states with different spin
multiplicity (AS # 0) and they are forbidden in the pure LS—coupling pic-
ture. However, a significant mixing between the 1p; and the 3P; states is
caused by the spin-orbit interaction, which is a direct manifestation of the
high atomic number Z of ytterbium. The transition 6s>1Sy — 6s6p>P; has
a linewidth I' = 277 - 182.4 kHz, corresponding to a lifetime of 850 ns and
a saturation intensity of Iy = 0.14mW/cm? [78]. It is perhaps the most
important transition in the context of this thesis, since it is exploited for
the MOT cooling stage, for the spin manipulation and detection schemes
and for the engineering of the Raman coupling between the spin com-
ponents. The transition 6s?>'Sy — 6s6p3Py would be stricly forbidden
(J] = 0 — J' = 0), but the hyperfine interaction for the fermionic isotopes
between the 3P states, originating from the non-zero nuclear magnetic mo-
ment, indirectly enables a decay from the 3Py to the ground state. This
transition connects the ground state to the metastable state 3Py and has a
calculated linewidth of about I' >~ 27t - 10 mHz [79, 80], corresponding to
a lifetime of 20 s. In order to address this transition, an ultra-narrow laser
has been built [49, 81].

The s—wave scattering processes between ground state atoms have
been deeply characterized in [82]. Thanks to two-colour photoassocia-
tion spectroscopy on the 15y — 3P, transition, the scattering lengths for
all isotope combinations have been precisely determined. The measured
s—wave scattering lengths are summarized in Table 2.2, in which the large
variety of abundant isotopes and available interaction strengths highlights
how ytterbium is particularly suitable also in the context of many-body
physics with ultracold mixtures [83, 84].

In the next sections we will illustrate the experimental apparatus and
the procedures adopted to trap and cool atomic ytterbium down to quan-
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Figure 2.1: Yb energy level scheme with the relevant optical transitions.

tum degeneracy and to optically manipulate and detect the nuclear spin

components.

Table 2.2: Ytterbium scattering lengths in ag units [82]

168Yb 170Yb 171Yb 172Yb 173Yb 174Yb 176Yb
8yp 252 117 89 65 39 2 -359
170yp 64 36 2 -81  -518 209
171yp -3 -84  -578 429 142
172yp -600 418 200 106
173vp 200 139 80
174yp 105 54
176Yb 24

2.2 Experimental Setup

The experimental apparatus has been extensively described in [45, 85, 86].
With respect to the previous references, some modifications have been
introduced, especially in the locking scheme for the green transition. Here
we will briefly recap the main components of the system.
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2.2.1 Vacuum system

The vacuum apparatus is shown in Fig. 2.2. A sample of Ytterbium chunks
in natural isotopes composition is heated up in an oven at a mean tempera-
ture of 525°C (1). Its vapor pressure (about 10~2 Torr) generates an atomic
beam which is collimated thanks to a square array of 100 small tubes, 1
cm long and with internal diameter of 0.2 mm. In this region, an ion
pump 20 1/s Varian Starcell is present (3) which executes a first pumping
stage. After this, a second ion pump 20 1/s Varian Starcell (3) performs
a second pumping stage which contributes to the efficiency of differential
pumping between the oven and the MOT region. The atoms pass through
two small tubes (6) with lengths 8 and 10 cm, respectively, and with inter-
nal diameter 5 mm, placed before and after the second ion pump. Here
a compressed-air shutter (4) to block the atomic beam and a VAT-48124
UHYV gate valve (7) are present. This valve is necessary to separate the
UHYV region (10~ Torr), implemented by the 55 1/s Varian Starcell (14),
from the oven region (10~7 — 10! Torr). The atoms then travel along the
Zeeman Slower (8) where they are slowed down from thermal velocity (~
340 m/s) to a few tens of m/s (see section 2.4.1) in order to be captured
in a magneto-optical trap (MOT, see section 2.4.2). The compensation coil
(10) extinguishes the residual magnetic field of the Zeeman slower in the
MOT chamber.

The MOT is implemented with two, water-cooled, anti-Helmoltz coils
(12) (for details see Ref. [86]) mounted on a AISI 1316 stainless steel oc-
tagonal chamber (9). The chamber features seven CF40 flanges on the
horizontal plane: one is used to attach the MOT chamber to the Zeeman
slower; the four flanges at 45° degrees with respect to the atomic beam
axis are used for the horizontal MOT beams; the two flanges orthogonal
to the atomic beam axis are used respectively as input window for the op-
tical transport beam and to connect to the glass cell (11). Finally, there is a
CF63 flange on the atomic beam axis towards the cross connecting to the
551/s Varian Starcell ion pump (14). Moreover, the MOT chamber has two
CF100 flanges on the vertical direction, both with a CF40 window in the
center. The upper CF100 flange has two metallic supports to implement
an in-vacuum optical cavity (see section 2.2.2) along the axis of two of the
four CF16 windows in the horizontal plane of the MOT chamber (see Fig.
2.10). To further improve the vacuum a titanium sublimation pump (TSP)
(13) is present too. The pressure is measured with an Ion Gauge UHV-24P
Bayard-Alpert (15). The input window (17) of the Zeeman slower beam
(18) is made of sapphire and it is kept at a temperature of about 250 °C to
avoid atom deposition which could lower the transmissivity.
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Figure 2.2: 1) Oven. 2) UHV valve. 3) Ion pumps for differential pumping
(20 1/s each). 4) Compressed air shutter for atomic beam. 5) UHV valve. 6)
Differential pumping tubes (not shown). 7) VAT UHV gate-valve. 8) Zeeman
Slower. 9) MOT chamber. 10) Compensation coil. 11) Glass cell. 12) MOT
coils. 13) Titanium sublimation pump (TSP). 14) Ion pump for MOT chamber
(55 1/s). 15) UHV Gauge, mod. Bayard-Alpert, Varian UHV-24p. 16) UHV
Valve. 17) Sapphire window with bellow. 18) Slowing beam at 399 nm.

2.2.2 In-vacuum optical cavity

Inside the MOT chamber we mounted an in-vacuum optical cavity [87]
to trap and pre-cool the atoms before being transported in the glass cell
(see section 2.2.3). The Fabry-Perot cavity is held by two metallic sup-
ports screwed down in the CF100 upper flange of the MOT. The supports
hold two spherical mirrors with a radius of curvature . = 2 m, diameter
d = 6.35 mm and thickness 2.3 mm. The outer side of the mirrors is AR
coated while the inner side has a reflectivity R = 99.8%, which results in
a theoretical finesse of /' ~ 1570. The fixed cavity length is L = 9 cm,
leading to a free spectral range FSR=1.67 GHz. The geometry chosen for
the cavity results in a wy = 300 pm waist which, along with a measured
finesse of F ~ 1850, leads to a trap depth of V;/kp ~ 800 uK = 10 Tyor
with an incident power of P, = 1.8 W.

2.2.3 The glass cell

Another crucial feature of this experimental apparatus is the presence of
a high-optical-access glass cell where the atoms are transported for a dis-
tance of 26 cm by means of an optical translation stage (see section 2.4.4).
Our glass cell is manufactured by HELMA ANALYTICS. The external di-
mensions are (60 x 60 x 18) mm (see Fig. 2.3). Each face is 5 mm thick
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Figure 2.3: 3D model of the glass cell.

leading to internal dimensions of (50 x 50 x 8) mm. The reduced thick-
ness in the vertical direction (9 mm between the center and the outer face)
comes from the future implementation of a high-numerical-aperture ob-
jective with a small working distance [88-91]. The glass cell features a
glass-metal junction which leads to a CF40 flange that is attached to the
MOT chamber.

2.3 Laser setup

All the relevant atomic transitions of Ytterbium are in the visible range
(578 nm, 556 nm, 399 nm). Unfortunately, high-power, narrow-linewidth
lasers directly emitting at these wavelengths are not commercially avail-
able, and a convenient way to produce such radiations is to use second
harmonic generation (SHG) starting from commercial infrared high-power
lasers (except for the 578 nm radiation for which a 1156 nm low-power
quantum dot is used, [81]). The scheme adopted in our lab is to use bow-
tie cavities to enhance the efficiency of the frequency-doubling process. In
this section, we first outline the laser systems necessary to address res-
onantly atomic Ytterbium transitions at 399 nm and 556 nm!. Then we
describe the implemented laser setups which generate the far-off resonant
dipole traps at 1064 nm and the optical lattices at 759 nm.

2.3.1 Laser systems at 399 nm and 556 nm

Laser radiation at 399 nm is used both to slow down the atomic beam in
the Zeeman slower and to perform absorption imaging (see [45, 85, 86])

IThe laser system at 578 nm will be extensively described in the PhD thesis of my
colleague, G. Cappellini [49, 81].
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Figure 2.4: Laser setup for SHG from 798 nm to 399 nm. The input coupler
(M1) reflectivity is 1 = 99 % at 798 nm. The other mirrors (M1, M2, M3) have
99.9 % reflectivity at 798 nm. The beam waist at the center of the crystal is
wo = 30 um. Attached to M2, a piezo stack (PZT) changes the cavity length
according to the Hansch-Couillaud error signal (PID).

addressing the 1Sy — 1 P; Yb strongest transition. A fiber-coupled tapered-
amplifier laser-diode system TOPTICA TA PRO delivers 1.1 W of 798 nm
radiation, which is used to inject a Lithium-Triborate (LBO) non-linear
crystal, 15 mm long, cut for type-I phase matching and stabilized at a
temperature of 55 °C (see Fig. 2.4). The LBO is placed in a bow-tie cavity
where the second-harmonic generation takes place. The cavity is formed
by two plane mirrors M1 and M2 and two curved mirrors M3 and M4 with
radii of curvature 7. = 60 mm and r. = 100 mm respectively. The cavity
has a free spectral range (FSR) FSR = 749 MHz and a finesse F ~ 100.
The cavity length is locked to resonance by means of the Hansch-Couillaud
technique [92], acting on a piezoelectric stack (PZT) mounted behind one
of the cavity mirrors (M2). We obtain a stable output of 550 mW of 399 nm
radiation out of 1 W of 798 nm pumping light with a conversion efficiency
of about 50 %.

The green light for the 'Sy — 3P; transition at 556 nm is generated
exploiting the same techniques described above. This radiation is perhaps
the most important one since it is used for many purposes: from magneto-
optical trapping (section 2.4.2), to optical Stern-Gerlach and optical pump-
ing schemes (section 2.5) and, last but not least, to Raman coupling of the
different spin components (Chapter 3). In this case a fiber laser at 1112 nm
(Menlo Systems mod. ORANGE ONE) pumps a bow-tie cavity in which
the non-linear medium is a 10 mm long Lithium Tantalate (LiTaOs3) crys-
tal. The crystal is periodically poled with a period of 9.12 ym to ensure
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Figure 2.5: Laser setup for SHG from 1112 nm to 556 nm. At the infrared
output an optical isolator (OI) is placed. The input coupler (M1) reflectivity is
r1 = 95% at 1112 nm. The other mirrors (M1, M2, M3) have 99.9 % reflectivity
at 1112 nm. The radius of curvature of both spherical mirrors is ¥, = 100 mm.
The beam waist at the center of the crystal is wy = 13 ym. Attached to
M2, a piezo stack (PZT) changes the cavity length according to the Hansch-
Couillaud error signal (PID).

quasi phase-matching and is AR-coated for 1112 nm light. The cavity FSR
is FSR = 567 MHz and the measured finesse is 7 = 67. When locked
using the Hansch-Couillaud method, the cavity produces 1.050 W of 556
nm light out of 2 W of 1112 nm infrared light. Both cavities are sealed
inside aluminum boxes under vacuum in order to guarantee thermal and
acoustic isolation and achieve a better lock stability.

2.3.2 Locking scheme on the intercombination transition

In order to lock the laser frequencies on the atomic transitions we use
standard fluorescence spectroscopy techniques and electronic feedback on
the lasers. Both spectroscopy setups rely on an independent atomic beam
generated in an additional oven with the same characteristics as the one
in the main setup (Fig. 2.2) at average temperature T = 535 °C. The atoms
are interrogated with transverse spectroscopy in two crosses after the oven.

In the case of the strongest transition 15, — 1P, at 399 nm, it is suf-
ficient to perform transverse spectroscopy since the linewidth I' = 27 x
29 MHz is larger than the transverse Doppler profile of the collimated
atomic beam. On the other hand, the intercombination transition 1Sy —
3P, at 556 nm has a much narrower linewidth, (I = 27 x 182 kHz) and
Doppler-free saturation spectroscopy is needed. For further details on
both spectroscopy setups and on the locking procedures we refer to Refs.
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[85, 86].

With respect to [85], a few changes have been made in the green locking
scheme for the fermionic isotope 17>Yb [45]. In particular, also in this
case, the Doppler-free signal comes from the bosonic 74Yb, which is the
most abundant isotope. Indeed when the experiments are performed with
74YDb, the high signal-to-noise ratio (SNR) allows a stable lock due to the
absence of hyperfine structure (I = 0). We use mr-polarized light which
selects only the magnetic field insensitive ] = 0,m; = 0) — [J' = 1,m} =
0) transition. After the double-passage in an acousto-optical modulator
(AOM), the effective laser frequency is red-detuned by -166 MHz with
respect to the 174Yb atomic resonance (see Fig. 2.6). In the case of the
closed F = 5/2 — F' = 7/2 transition of ”3Yb, atomic fluorescence has
a worse SNR because, in addition to a smaller natural abundance, the
I = 5/2 nuclear spin gives rise to six 7-transitions, which further reduces
the spectroscopy signal. Moreover all six Doppler-free signals are sensitive
to magnetic field fluctuations.

To overcome these difficulties, an alternative optical setup has been
designed in which the locking signal comes from the bosonic 74Yb isotope
also when operating with fermionic 7?Yb. In this scheme (see Fig. 2.6), the
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Figure 2.7: Isotope shifts for the intercombination transition 'Sy — 3Py [78].
In green we indicate the effective laser frequency when operating with the
fermionic isotope 73Yb. The isotope shift with respect to the boson 74Yb is
covered by AOMs and the EOM.

laser frequency in the spectroscopy branch is blue-detuned by +702 MHz
using a double-passage AOM and then it passes through a Qubig electro-
optical modulator (EOM) EO-T1850M3-VIS resonant at 1.85 GHz. In this
way, the effective laser frequency is red-detuned by -2552 MHz (A;) with
respect to the blue sideband of the EOM-modulated spectroscopy beam.
Since the isotope shift between the F = 5/2 — F' = 7/2 transition of 7>Yb
and the transition of 174Yb is Aq74_173 = 2386 MHz (see Fig. 2.7), when the
spectroscopy beam is resonant with 74Yb, the effective detuning between
the laser and the 173YDb resonance is A; — A174_173 = —166 MHz, as in the
case of the bosonic 7#Yb locking scheme. In this way it is possible to use
the same AOMs in the other branches (MOT, OSG, OP) for operation with
both 174Yb and 17®Yb.

It is possible to switch between the two locking schemes simply using
a removable mirror (RM in Fig. 2.6) which selects the right spectroscopy
path. It shall be noted that when we operate with the bosonic isotope
174Yb, the EOM is switched off and the lock-in frequency modulation is
executed by the AOM.

2.3.3 1064 nm Laser system

Laser radiation at 1064 nm is used both to inject the in-vacuum Fabry-
Perot cavity where the atoms are trapped (section 2.4.3) and to perform
optical transport from the MOT chamber to the glass cell (section 2.4.4).
The source is a Nd:Yag MEPHISTO MOPA 25 (Innolight/Coherent) laser
with linewidth below 100 kHz and maximum output power of 25 W. The
frequency of the laser can be tuned using a piezo for fast corrections (about
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Figure 2.8: a) Optical setup for the 1064 Mephisto laser. b) PDH locking
scheme to the resonator. See text for details.

100 kHz bandwidth) and using the laser seed temperature for slow and
large range corrections (1 Hz bandwidth, 3 GHz/°C). In Fig. 2.8a, we
show the 1064 nm optical scheme in which the radiation is split in two
optical paths that bring the laser power to the resonator and to the opti-
cal transport setup. Due to the high optical powers involved, the AOMs
are double-frequency driven [85, 93] in order not to damage the optical
fibers by thermally-induced misalignments. The frequency lock to the
in-vacuum optical cavity is performed by a standard Pound-Drever-Hall
(PDH) scheme [94]. The laser frequency is modulated at 39 MHz with a
Qubig EOM. The error signal is split in two by an active filter that sepa-
rates the high-frequency components from the low-frequency components.
The high-frequency parts go to the PID acting on the piezo controlling the
seed laser of the Mephisto in order to perform fast corrections. The low-
frequency parts (<3 Hz) are processed by a PID whose output feeds the
temperature seed of the laser. We also actively stabilize the cavity-reflected
power impinging on the PDH photodiode with an additional AOM (see
Fig. 2.8b). More specifically, we use the AC part of the error signal for
the PDH feedback loop and the DC signal of the PDH photodiode for the
PDH power-lock. In this way we obtain an error signal independent on
the in-cavity power and we avoid damages to the photodiode. The lock is
very stable and it is characterized by a broad power range spanning four
orders of magnitudes (100 uW, 2W).
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2.3.4 759 nm Laser system

To produce the optical lattices we use laser radiation at 759 nm. This
particular wavelength has been chosen because the light shift it induces is
the same both for the 1S state and for 3Py metastable excited state (“magic
wavelength”, see Chapter 7). The radiation is produced by a standard
Titanium-Sapphire laser (Coherent MBR 110) pumped by a single-mode,
532 nm, Coherent VERDI 18. We get routinely 3.5 W of 759 nm light,
which is split in three different optical paths, each featuring an AOM and
an optical fiber to implement the optical lattices along three orthogonal
directions. A small portion of the laser light is used to inject a confocal
Fabry-Perot cavity to monitor single-mode emission of the MBR.

2.4 Overview of the experimental procedure

2.4.1 Zeeman Slower (1Sq — 'P))

The experimental cycle begins by slowing down the atomic beam coming
from the oven by means of a Zeeman Slower [95]. A counter-propagating
laser beam, acting on the 1S, — 1P; transition, exerts the necessary radia-
tion pressure force, capable of slowing the atoms from an average velocity
of about 340 m/s to a few 10 m/s in a distance of 50 cm [85, 86, 96].
The atoms are kept in resonance by an inhomogeneous magnetic field
Bzs(z), whose profile Zeeman-shifts the atomic energy levels matching
the Doppler condition [97]. We use 399 nm, ¢~ polarized light [98], which
is red-detuned by -983 MHz from the cycling F = 5/2 — F' = 7/2 transi-
tion of the fermionic 73Yb isotope. In this way, light is resonant with most
of the atoms coming out from the oven and does not affect the slow ones
arrived in the center of the MOT cell?, where the Zeeman Slower residual
magnetic field is compensated by a dedicated coil (see Fig. 2.2).

2.4.2 Magneto-optical trap (1Sy — 3Py)

The magneto-optical trap (MOT) is formed with the standard configura-
tion of three pairs of orthogonal laser beams operating at 556 nm, on the
1S, — 3P, intercombination transition. For fermionic 173Yb we use the
cycling transition F = 5/2 — F' = 7/2 to avoid optical pumping towards
dark states. Due to the narrowness of the transition (I'ssg = 271 X 182 kHz),

2Ac’cually in our setup, the radiation pressure on the slow fermionic atoms is not negli-
gible since, for the atoms trapped in the MOT, the slowing beam is detuned only -216 MHz
with respect to the F = 5/2 — F/ = 5/2 transition. On the one hand, this gives us the
possibility to use the Zeeman slower light to perform a preliminary optical pumping stage
inside the MOT chamber to produce a large spin-polarized Fermi gas in the mp = —5/2
component. On the other hand this additional radiation pressure has to be taken into
account in the fermionic MOT optimization process [45, 85].
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Figure 2.9: MOT of 7#YDb bosonic atoms.

we increase the capture velocity by putting frequency sidebands on the
laser light [99]. The Ny, = 18 sidebands are all red-detuned with respect
to the carrier frequency and are separated by 600 kHz. In this way, the
uniformly “filled” spectral region explored with the frequency modula-
tion is maximized in order to capture the highest possible number of ve-
locity classes. With this method, we can routinely trap Ny ~ 1-10% 172Yb
atoms and Ny ~ 1-10° 4Yb atoms. For further details see [45, 85, 86].
The multi-frequency MOT stage lasts for 20 s after which the modulation
is switched off and the carrier frequency and intensity are optimized, in
order to minimize the sample temperature.> The temperature we get is
T ~ 25 uK for the fermionic isotope, which is low enough to reach an effi-
cient transfer inside the Fabry-Perot optical dipole trap (see section 2.4.3).

2.4.3 Resonator stage

As explained in section 2.2.2, the infra-red radiation at 1064 nm is kept
in resonance with the in-vacuum Fabry-Perot cavity by a Pound-Drever-
Hall locking scheme [94]. For the injection power we use, the obtained
maximum trap depth (Vo/kp ~ 800 uK) combined with a beam waist
wp ~ 300 ym, guarantees a transfer efficiency from the MOT of about 80%.
Before the transfer, the MOT is compressed and gently moved in the center
of the dipole trap by means of three orthogonal compensation coils that

3Indeed the Doppler temperature limit is:

AT I 261 \?
T=——|14+4— ==
8ks |51 [ +15+( r ) }
where ¢} is the detuning from resonance, I is the light intensity, I; is the saturation inten-
sity and I is the transition linewidth. We are not considering sub-doppler cooling effects,

since the lowest temperature we reach is approximately 30 times higher than the Doppler
temperature, probably due to light-assisted collision processes [45, 86].
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Figure 2.10: Sketch of the optical transport stage. By means of the air-bearing
translator, the focus of the transport beam is moved along £, towards the
center of the glass cell. Along the orthogonal direction §, the IPG beam is
used to generate the crossed dipole trap.

shift the position of the zero of the quadrupole magnetic field [45, 85].
After having completed the transfer, the MOT beams and the magnetic
fields are switched off and a first evaporation stage inside the optical cavity
starts. We exponentially lower the trap depth to approximately Vy/kp ~
60 1K obtaining Ny ~ 1-10” atoms at roughly T ~ 3 uK.

2.4.4 Optical Transport and Crossed Dipole Trap

In order to move the atomic sample from the MOT cell to the center of the
glass cell we use an air-bearing translation stage AEROTECH ABL 1500b
[100]. A laser beam at 1064 nm is tightly focused (P = 3.5W, wy = 30 um,
Wo/kp >~ 90 uK) onto the atoms by a lens mounted on the stage, thus pro-
viding a movable transport dipole trap. The Fabry-Perot injection power
is adiabatically lowered to an idle value* and the atoms are transfered
with 30 % efficiency to the transport dipole trap. The beam focus, initially
coincident with the center of the optical resonator trap, is then moved in
T = 2.5 s by a distance Ax = 26.4 cm towards the center of the glass cell
[45, 101, 102], transporting approximately 66 % of the initial atomic pop-
ulation (see Fig. 2.10). Once arrived at the final position, an additional

“Which is approximately 100 uW. This power is low enough not to trap the atoms
anymore, but high enough to keep the laser locked to the cavity for the next experimental
cycle.
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Figure 2.11: Degenerate Fermi gas of 7>Yb with six spin components. (a)
False color image of the momentum distribution detected after a 23 ms time
of flight. (b) One dimensional integrated (along #) density together with the
result of a two-dimensional Fermi distribution and Gaussian fits to the data.
N denotes the total atom number in the cloud. For such a low temperature
T = 0.15Tf, the deviation of the data from the Gaussian profile is clearly
visible.

beam (wp = 60 yum, P = 3 W) is focused onto the atoms, along a direc-
tion which is orthogonal with respect to the transport beam, see Fig. 2.10.
The source is an IPG FIBERTECH multimode laser at 1070 nm, which is
used to create a crossed dipole trap where the final evaporation towards
quantum degeneracy takes place.

2.4.5 '7>Yb Degenerate Fermi Gas

Quantum degeneracy is reached by means of optical evaporation inside
the crossed dipole trap. The optimal condition to obtain colder and larger
samples of quantum degenerate Fermi gases is to use two different expo-
nential ramps for the transport beam and for the IPG beam. The transport
power is lowered with an exponential ramp of duration Tyzmp = 3.55, and
decay constant Tyz,p = 3 s from the maximum power of 3.4 W to the final
power of 35 mW, whereas the IPG power is lowered from the maximum
power of 3.0 W to the final power of 1 W with an exponential ramp of du-
ration Tygmp = 6.1s, and decay constant Trgmp = 2.95 s [45]. At the end of
the evaporation we routinely obtain Fermi gases with six spin-components
with N ~ 1.4-10° atoms at a temperature T ~ 0.15 Tr where T is of the
order of 200 nK (see Fig. 2.11).

The final crossed dipole trap is characterized by the trap frequencies
reported in Table 2.3.



2. The Ytterbium Machine 40

Table 2.3: ODT trap frequencies after evaporation.

vy [Hz] vy [Hz] v, [Hz] v [Hz]
(53.8+£0.5) (99.5+0.5) (90.3+0.6) (784+04)

2.4.6 Optical Lattices

All the experiments described in this thesis are performed by loading the
atoms in an optical lattice potential. The laser setup is constituted by three
orthogonal retroreflected beams, one along the vertical direction Z (OL3)
and the other two in the horizontal plane £ — § (OL; and OL,). The in-
plane beams are rotated with respect to the i direction defined by the IPG
beam by an angle § = 55°, as is shown in Fig. 2.12.

Figure 2.12: Optical lattice setup. Beam 1 (OL,) is tilted by 55° with respect
to the IPG-beam (i direction).

The optical lattice beam powers are actively stabilized by standard feed-
back loops and the estimated beam waists and residual harmonic trapping
frequencies (along the orthogonal direction of the corresponding lattice
beam) are reported in Table 2.4:

2.5 Nuclear spins detection and manipulation

In this Section we will present the experimental techniques for the detec-
tion and manipulation of the spin degree of freedom in an ultracold gas
of fermionic 73Yb. We start with a brief recap of the absorbtion imaging
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Table 2.4: Lattice beam waists, and trap frequencies calibration. The frequen-
cies are expressed in terms of the lattice depth in recoil units s. OL; and OL;
are in the £ — § plane, whereas OL3 is along the vertical Z direction.

OL; OL, OL;

wopm] 961 1113 1023
v(s)[Hz] 715 62v5 685

technique to then explain how the intercombination transition at 556 nm
is used, in order to separate in time of flight the different spin compo-
nents (optical Stern-Gerlach) and to prepare arbitrary spin-state mixtures
through optical pumping.

2,51 Imaging

In order to detect the atomic sample we use standard absorption imaging
techniques [103]. The principle of operation consists in recording on a
CCD camera the shadow cast by an atomic sample due to the absorption
of a resonant light probe. In order to reduce the interrogation time, a
strong dipole-allowed transition is preferable. In our case we use a probe
beam at A = 399 nm acting on the cycling transition 'Sy (F = 5/2) —
Ip, (F/ = 7/2). The column density of the cloud n.(x,y) = [n(x,y,z)dz
integrated along the imaging direction z is deduced from the transmitted
intensity profile I;(x,y) of the imaging resonant beam:

1 Ii(x,
() = o )e ™0 — () = —tog (120), - 20)

where Iy(x,y) is the intensity profile of the probe beam and ¢ = 3A%/27
is the resonant scattering cross section in the low intensity limit. The
discretized density on the CCD pixels is measured as:

. S P; — B;;
ne(i,j) = ——log <P;—BZ> (2.0)

where S is the pixel area (2.68 ym x 2.68 ym) including the magnification
of the optical system (2.985x) and Pj;, Fjj, Bjj are the recorded counts at
pixel position (i, j) corresponding respectively to the picture taken with
atoms, without the atoms and with the probed beam switched off in order
to remove the background [45].
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Figure 2.13: Principle of operation of OSG. Top left, alignment geometry:
the force experienced by the atoms is proportional to the gradient of the
optical intensity. Bottom left, line-strengths for our experimental parameters
and a typical absorption image of the OSG experiment. Top right, spin-
dependent OSG potential as a function of the detuning with respect to the
F =5/2 — F' = 7/2 resonance for o~ polarization. The dotted line at -566
MHz corresponds to the frequency of the OSG beam. The different colors
indicate different nuclear spin components. The beam waist is wy = 60 ym
and the power is P = 10 mW.

2.5.2 Spin distribution detection

173Yb is a strongly diamagnetic atom which possesses only a nuclear spin
in its ground state. For this reason it is not possible to use standard mag-
netic Stern-Gerlach techniques to separate the different spin components.
To circumvent this problem we use an optical technique that is called “op-
tical Stern-Gerlach” [84, 104]. As was explained in Section 1.2.3, in the
specific case of the transition 'Sy — 3P;, the optical dipole force exerted
on atoms in the ground state with spin component mr is given by the con-
tribution of the three excited states F/ = 7/2,5/2,3/2 of the >P; manifold:

o o (om0l | om0 | s @FY g
2“70 57/2 55/2 53/2

Une (1,0, ) =

(2.0)
where g refers to light polarization, dp = w — wp are the detunings from
the F'-states, I = 27t x 182kHz is the decay rate of the 3P, state with the
proper multiplicity factor and wy = 2mwc/A with A = 556 nm. In par-
ticular, a ¢~ -polarized laser beam with a detuning J;,, = —566 MHz ~
—3100T and waist wy = 60 um is used to exert a spin-dependent poten-
tial on the atoms. In Fig. 2.13 we report the principle of operation of
the optical Stern-Gerlach scheme. The beam waist center is slightly mis-
aligned with respect to the atomic sample so that the atoms experience the
maximum intensity gradient, which is proportional to the spin-dependent
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IPG beam

Figure 2.14: Optical scheme for OSG and OP beams. The OSG beam has
o polarization, the sign of which depends on the particular experimental
configuration.

dipole force (Fig. (2.13), top left). For the frequency detuning and polar-
ization chosen in our setup, the maximum force is felt by the mp = —5/2
component® (Fig. (2.13), bottom left). To perform the nuclear spin popu-
lation detection, we use a 1.25 ms square pulse with power P = 10 mW
and, after suddenly switching off the ODT, we let the cloud expand for
a tror = 4.5 ms. To define the quantization axis, a bias magnetic field
Bosg = 2.5 Gauss is applied along the light propagation axis. A typical
absorption image of the OSG experiment is shown in Fig. 2.13.

2.5.3 Spin distribution preparation

The 1Sy (F = 5/2) — 3Py (F' = 7/2) is a narrow transition (I' = 271 x
182 kHz) that allows us to develop optical pumping protocols capable of
realizing mixtures with arbitrary number of spin components. Indeed it
is sufficient to Zeeman-split the excited-state spin components (Zeeman
splitting Az = 2m x 595 - B kHz/G between states with Amr = 1), in
order to address selectively a particular transition, Fig. 2.15. The *P; (F' =
7/2) Zeeman sublevels are separated by a homogeneous magnetic field
of B = 23 Gauss, resulting in a Zeeman shift Ay = 27t x 13.7 MHz ~
75 I'. The optical pumping protocol is then carried out by two independent
circularly polarized beams OP* and OP~ (see Fig. 2.14) which address
the transitions mr — mp £ 1. By shining two series of light pulses of 5 ms
each at the right laser frequencies (green arrows in Fig. 2.15), it is possible

50f course we can switch to ¢ polarization so that the maximum force is felt by the
mp = +5/2 component.
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Figure 2.15: Protocols for spin initialization with optical pumping performed
through ¢ and ¢~ -polarized beams resonant on specific Zeeman compo-
nents of the 1Sy — 3P, transition. Green arrows indicate the transitions used
in the optical pumping procedure. Pulses from |mp| = 5/2 to |mp| = 7/2
are “blast” pulses for which the atoms are expelled from the trap. In red, the
spin components remained after the pumping/blasts procedure. The mix-
ture with six components, SU(6), does not need any pumping pulse. For the
sake of clarity, the spontaneous emission processes are not shown.
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Figure 2.16: Optical scheme for vertical imaging, optical Stern-Gerlach (OSG,
green solid line), optical pumping beams (OP*, green dashed line) and ver-
tical optical lattice (OL3). DM: long-pass dichroic mirror. BS: beam splitter.
PD: OLj3 power stabilization photodiode.

to selectively pump the atoms towards a specific nuclear spin state. The
pumping procedure starts when the atoms are transported in the glass cell,
before the evaporation ramps. In this way the trap depth is high enough
to allow the atoms to scatter many photons without being kicked out off
the trap. In order to produce a spin-polarized Fermi gas an additional
“blast” pulse is needed at the end of the evaporation [45] (see Fig. 2.15)
in order to kick out the unwanted populations from the trap. With these
protocols we can prepare balanced® mixture with an arbitrary number of
spin components.

Optical pumping and OSG setup

Two indipendent fibers mounted on a vertical breadboard deliver the opti-
cal pumping beams OP" and OP~ to the atoms, Fig. 2.16. The OP* beam
is generated using the MOT AOM and injected in the same fiber of OSG
with orthogonal polarization with respect to it (see Fig. 2.6). The OSG and
OP" beams are then separated by a polarizing beam splitter (PBS) placed
right after the fiber. The same PBS is also used to combine the two optical
pumping beams having linear and orthogonal polarization. Two wave-
plates turn the horizontal and vertical polarization into ¢ and ¢~ respec-
tively (see Fig. 2.16). In the OSG beam optical path there is a f = 400 mm
lens mounted on a translation stage, used to adjust the waist in order to
maximize the optical gradient on the atoms, and a A/4 waveplate to de-

The mixture are balanced at 5% tolerance and the apparent density differences in Fig.
2.15 come from the compression induced by the OSG dipole potential.



2. The Ytterbium Machine 46

termine the polarization of the OSG light. The two optical pumping and
OSG beams are then recombined by a 70:30 beam splitter and reflected
by a long-pass dichroic mirror Thorlabs-DMLP567 through the glass cell,
onto the atoms. The vertical lattice beam (OL3) passes through the same
dichroic mirror and the vertical imaging beam is superimposed on the OP
path using another beam splitter (see Fig. 2.16).

2.5.4 Spin-selective imaging

For the experiments we will present in Chapter 5 it is important to se-
lectively image the atoms occupying a particular spin state. In the ex-
periments we will describe, the atomic sample is characterized by a spin
population formed by the components mr = (—5/2, —1/2, +3/2) out of
the F = 5/2 manifold in the 'Sy ground state. We developed a simple
procedure with which we image each spin component selectively. The ex-
perimental routine is based on a sequence of pumping and blast pulses,
perfomed during the first 2.5 ms of time-of-flight expansion (when all the
dipole traps are completely switched off) of the atomic cloud, at a mag-
netic field intensity B = 15 G. In Figs. 2.17a, b, ¢ we show the results of
the experimental routine, after which an OSG pulse is applied, in order
to verify that the procedure was succesful’. All the pumping and blast
pulses have a duration of 250 us, and approximately 750 us are needed to
change the frequencies of the pumping beams OP*. The sequences are as
follows:

e imaging of the mr = +3/2 spin component: atoms in the mp =
—1/2 spin state are pumped twice, first in the mp = —3/2 spin
component and then in the mr = —5/2 spin component. After a
final blast pulse, resonant with the transition (1So,F = 5/2, mp =
—5/2) — (3P, F' =7/2, mp = —7/2), we are left with the atoms in
the desired mr = +3/2 spin state (see Fig. 2.17a);

e imaging of the mr = —1/2 spin component: atoms in the mr =
—5/2 spin state are blasted away as in the previous sequence. Atoms
in the mp = +3/2 spin state are first pumped in the mr = +5/2 spin
component. After a final blast pulse, resonant with the transition
(1So,F =5/2, mp = +5/2) — (3P, F' =7/2, mp = +7/2), we are

left with the atoms in the desired mr = —1/2 spin state (see Fig.
2.17b);
e imaging of the mr = —5/2 spin component: atoms in the mp =

—1/2 spin state are pumped three times, first in the mpr = +1/2
spin component, then in the mr = +3/2 spin component and finally

7Once verified that we are left with the desired spin component, the OSG pulse is not
needed anymore and the final detection is executed by standard time-of-flight imaging.
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in the mr = +5/2 spin component . After a final blast pulse, res-
onant with the transition (1Sy,F = 5/2, mp = +5/2) — (3P, F' =
7/2, mp = 47/2), we are left with the atoms in the desired mp =
—5/2 spin state (see Fig. 2.17¢c);
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(b)

(c)

Figure 2.17: Spin selective imaging procedure. (a), (b), (c) refer to the se-
quence used to image the atoms in the mp = +3/2, —1/2, —5/2 spin states
respectively.



3 Raman-induced coherent
coupling in 173Yb

The fundamental ingredient of this PhD thesis is the introduction of a co-
herent coupling among the different spin components. This is achieved by
means of Raman transitions, whose basic principles have been introduced
in Section 1.3. This chapter reports the experimental implementation of
the 1Yb Raman system, which is at the basis of the generation of spin-
orbit coupling and synthetic dimensions. We will start by generalizing
the A-configuration introduced in Section 1.3 to the more complex case of
a multi-level atom such as 73Yb. We will then illustrate the optical setup
built within this PhD thesis used to generate and characterize the coherent
coupling among the spin components.

3.1 Raman transitions in multi-level atoms

In this section we generalize the Raman process in a A-configuration, il-
lustrated in section 1.3, to the more complex case of a multi-level atom
such as 73Yb. This fermionic isotope has purely nuclear spin in the Sy
ground state, so in order to induce a coherent coupling among the dif-
ferent spin components, the Raman detuning must be comparable to the
hyperfine splitting of the excited state manifold, A < Agrs. Indeed, we
have to “talk” with the nuclear spin, passing through the electronic de-
gree of freedom. Therefore, analogously to the light shift for a multi-level
atom evaluated in Eq. (1.2.3), we consider two-photon processes relying
on the hyperfine structure of the excited state >P;. The Raman amplitude
coherently coupling two sublevels mp, m} in the ground state can be cal-
culated by summing over the excited state manifold, taking into account

49
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Figure 3.1: Scheme of Raman transitions in the case of o 7 (a) and oo™
(b) polarizations. Typically, the Zeeman splitting is Ay ~ 27t x 10 kHz. The
excited state hyperfine energy width Aprs (several GHz) is not to scale.

the detuning from a particular hyperfine level:
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where the polarizations of the two Raman beams satisfy my —mp = g — g’
and Jp: are the frequency detunings of the Raman light with respect to the
transitions 'Sy (F = 5/2) — 3P;(F'). In particular we consider &;,, to be
the “reference” Raman detuning (A in Sec. 1.3). We note that, because
of the Clebsch-Gordan coefficients in the Eq. (3.1), the Raman amplitudes
depend also on the specific mF state as can be seen in Figs. 3.3. Depending
on the polarization of the Raman beams, the two-photon process can flip
the spin by one unit of angular momentum (¢ — 7t polarizations) or by two
units of angular momentum (¢ — ¢~ polarizations), as we sketch in Fig.
3.1. This feature opens the possibility to induce a coherent dynamics in
a subset of the 'Sy manifold through o+ o~ processes just by tuning the
polarization of the Raman beams. We decided to use the narrow-line inter-
combination transition 'Sy — 3Py at 556 nm (T’ = 27t x 182 kHz) instead of
the dipole allowed 'Sy — !P; transition at 399 nm (I” = 27t x 29 MHz) in
order to maximize the ratio between the coherent Raman coupling, that we
generically indicate with (O, and the inelastic scattering rate I's.. Infact,
for 67,5, ~ Apnrs, the scaling relations I's; ~ 1"/(5%/2 and Qg ~ AHps/ég/z
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Figure 3.2: Ratio of the Raman coupling Qr (in absolute value) to the inelas-
tic scattering rate I's; for the o7t (a) and oo~ (b) processes as a function
of detuning 87,5 with respect to the F’ = 7/2 resonance. The dashed-dotted
lines indicate the hyperfine levels F' =7/2,5/2,3/2.

yield the proportionality Qr/I'sc ~ Agps/I' [105], namely the ratio be-
tween the hyperfine separation and the decay rate of the excited state used
to generate the Raman couplings. The combination of a longer lifetime for
the 3P; excited state and a larger hyperfine splitting than the 'P;, allows
us to reach a large ratio Qr/I'sc ~ 103 at 07,2 ~ 21 x 2 GHz. We chose
the value 67/, = 27 x 1.876 GHz for which we have a relatively high ratio
both for the Amr = 1 and Amp = 2 transitions (see Fig. 3.2). In partic-
ular we will work with the simpler configuration Amr = 2, reducing the
effective spin manifold to maximum three components. The cause for this
resides in the complications brought by the Raman light in terms of spin-
dependent light shifts. Indeed, without these light shifts, the only energy
difference among the nuclear spins comes from the linear Zeeman effect
(Az = 207 - BHz/Gauss) which can be easily compensated by adjust-
ing the Raman beams frequencies, ensuring a resonant coupling among
all different spins. Unfortunately, the Raman light spin-dependent light
shifts, see Egs. (1.2.3-1.3), breaks down the perfect linearity of the Zeeman
splitting introducing energy offsets that complicate dramatically the dy-
namics, especially in the presence of more than three spins. In Fig. 3.4 we
plot the state-dependent energy offsets normalized to the case of uniform
polarization (1/3¢" 4+1/30~ +1/3 ) for the detuning J;,, = 1.876 GHz.
Nevertheless, by tuning the polarization and the two-photon detuning,
two and three spin components can be coherently coupled opening the
way to the study of synthetic gauge fields in synthetic dimensions. In the
next sections we will describe the Raman setup and the characterization of
the Raman coupling based upon dynamical study of the spin populations.
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Figure 3.3: Typical Raman couplings Qg expressed in kHz for a total power
of P = 66 uW (left), P = 100 uW (right) and beam waists wy = 150 ym.
(@ o7t transitions and (b) oo~ transitions as a function of the detuning
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coupling amplitudes go to zero.
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Figure 3.4: Spin-dependent light shift for polarization § = ¢~, 7,0t at de-
tuning J7,, = 1.876 GHz and B = 0. All values are normalized to the light
shift Uy induced by a “uniform” polarization é = 1/ V3(&L + &+ &)
which is independent from the specific spin state. Note that ug;; =Us,,.

3.2 Raman setup

The Raman setup is constituted by two parts. The first one is formed by
a series of AOMs used to reach the desired detuning of +1.876 GHz from
the F = 5/2 — F' = 7/2 transition. The light is then injected into an
optical fiber and brought to the glass cell region where a custom-made
breadboard is present over which all the Raman optics are mounted. In
Fig. 3.5 the AOMs table is illustrated. The radio-frequency setup amounts
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Figure 3.5: Raman AOMs setup used to generate a frequency detuning of
+1.876 GHz with respect to the F = 5/2 — F' = 7/2 transition. The last
AOM at 200MHz + 6/2 is PLL-driven, in order to produce the desired two-
photon Raman detuning. The 556 nm light enters the setup with a frequency
detuning of —166 MHz. Glenn-Taylor (GT) polarizer are put after the last
two AOM:s in order to have stable, linear polarization.

to
e a 351 MHz AOM in double passage at first order (+702 MHz)
e a 235 MHz AOM in double passage at second order (+940 MHz)

e a 400 MHz AOM in single passage at first order (+400 MHz) (first
Raman beam).

e a PLL driven (200 MHz+4/2) AOM in single passage at second order
(+400 MHz+6) (second Raman beam), phase locked with the local
oscillator driving the previous AOM.

The frequency difference J between the two beams constitute the two-
photon frequency detuning that must match the energy difference between
two spin states that one wants to coherently couple. The total frequency
shift results in 2.042 GHz that, taking into account the -166 MHz detuning
of the laser with respect to the resonance 1Sy — 3P (F' =7/ 2) (see Fig.
2.7), leads to the desired +1.876 GHz. Before the last two AOMSs, the Ra-
man beam path is split in two in order to generate the two Raman beams.
One passes through the 400 MHz AOM and it is injected into the fiber
with vertical polarization. For the second beam, horizontally polarized,
we use the 200 MHz AOM in single passage at second order, locked in
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Figure 3.6: Raman optical setup. The two Raman beams come out from the
fiber with orthogonal polarizations. They split at the polarizing beam splitter
after which two linear film polarizers (LPVISB050-Thorlabs, “pol” in figure)
are present. The beams are then focused onto the atoms at the center of the
glass cell, to a beam waist of approximately wy = 150 yum. The dotted lines
indicate the pick-ups, taken to monitor the beating frequency J. The angle
6 ~ 19° determines the momentum transfer gr. The magnetic field comes
out of the plane, along the Z direction and defines the quantization axis.

phase with the local oscillator driving the 400 MHz AOM. The two beams
coming from the two AOMs are then recombined into a polarizing beam
splitter and injected into the same polarization-maintaining fiber in order
to reduce relative phase fluctuations. Since they have also orthogonal po-
larizations, which are injected parallel to the fiber principal axes, they can
be split at the end of the fiber by another polarizing beam splitter.

In order to induce a spin-flip, the two-photon detuning must match the
energy difference between the spin components. The two beams must thus
have frequencies that satisfy the condition (w1 — wz) = 16 = Ep, — E,y.
For this reason, the frequency of one beam is controllable with an Agilent
3320 that drives the AOM in PLL-mode (AOM at 200 MHz in Fig. 3.5).
The Agilent is phase locked with the local oscillator driving the 400 MHz
AOM that shifts the frequency of the other Raman beam.

In Fig. 3.6 we show the second part of the Raman setup, that is the
optical setup built to bring the light onto the atomic sample. The Ra-
man beams come out from the fiber with orthogonal polarizations and
are separated at the polarizing beam splitter (PBS). Right after the out-
puts of the PBS, two linear film polarizers (LPVISB050-Thorlabs) help to
clean the polarization even further. The beams are then focused onto the
atoms in the center of the glass cell where the beam waist is approximately
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Figure 3.7: State-dependent light shifts induced by equal amounts of ¢ and
o~ light. Note how the symmetry U,,, = U_,,r is broken by the presence of
a magnetic field. The beam waist chosen for the calculation is wg = 150 ym
whereas the total power is P =1 yW.

wo = 150 ym. Part of the light is picked up by two beam samplers and
sent to a reference photodiode, where the beat note between the Raman
beams is monitored. The optical path mismatch between the two beams is
kept at minimum, since they travel along the same fiber. In this way we
don’t need to actively stabilize the beating note.

Since the Raman beams impinge onto the atoms from different direc-
tions, there is also a momentum kick in addition to the energy and an-
gular momentum transfer. The absolute value of the momentum kick gr
depends on the angle between the Raman beams and is given by:

qr = |E1 — EZ‘ = 2kR sin0/2 (30)

in which kg is the linear momentum of the green radiation at 556 nm. We
will see in Chapter 5 that this is the ingredient at the basis of the creation
of an artificial gauge field in a synthetic 2D lattice.

3.3 Raman-induced spin oscillations

In order to characterize the Raman couplings, we perform spin-oscillations
measurements from which we extract the Raman amplitudes given by Eq.
(3.1). The system under study is characterized by a maximum number
of spin components equal to three (Amr = £2) and also the experiments
described in Chapter 5 are performed under these conditions.

We load a fully polarized Fermi gas (N ~ 3 - 104, T/Tr ~ 0.2, mp =
£5/2) in a 3D optical lattice with periodicity d = A1 /2 = 380 nm and
lattice depths sy = s, = s. = 30. In this way we can neglect' the ki-

IThe atomic sample under study has a momentum spread that is given by the Fermi
momentum kp. Since the Raman coupling introduces also a momentum kick, not all
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netic energy in Eq. (1.3), since the tunneling at such high lattice depths
is completely suppressed. This restricts the dynamics to only the internal
degrees of freedom and we can forget about the momentum kick given by
the Raman process.

3.3.1 Two-level system

We start from the simplest configuration explored, the two-level case, in
which only two spin components are made to participate to the dynamics.
To select this configuration each Raman beam must have horizontal po-
larization? which, with respect to the quantization axis, is decomposed
in equal amounts of ¢ and ¢~ polarizations. To separate the other-
wise degenerate spin components, we put a magnetic field ranging from
B = 50G to B = 153G giving a Zeeman splitting in the range Az =
27 x 10 — 31kHz. This splitting is enough to suppress unwanted Raman
transitions (arising from a possible power broadening) and also makes non
resonant possible transitions to higher lattice bands [106, 107]. In Fig. 3.7
we plot the state-dependent light shifts induced by equal amounts of o
and o~ light. As a comparison we show also the B = 0 case, noticing that
the presence of a magnetic field breaks the symmetry® U,,, = U_y,,. This
is true also for the Raman amplitudes®, as is shown in Fig. 3.8. The spin
components entering the dynamics are mr = —5/2,-1/2,+43/2. Let’s
suppose we start from the mr = —5/2 component. By choosing a two-
photon Raman detuning that matches both the Zeeman energy splitting
and the differential light shifts U_1,, — U_5/5, the first two spin compo-
nents can be put precisely on resonance whereas the last one acquires all
the energy offset, as can be easily seen by the form of the Hamiltonian
governing the spin dynamics (from which we subtracted the Zeeman en-

the atoms will be at resonance [17, 61, 66] with the Raman light, apart from the case in
which the Raman coupling satisfies the power broadening condition 7Qg > Er. This is
different with respect to a Bose-Einstein condensate for which the momentum spread can
be neglected [16].

2That is, perpendicular to the magnetic field quantization axis, see Fig. 3.6.

3 As we show in Appendix B, this is due to the behaviour of the excited state 3P; mani-
fold energy levels in the presence of a magnetic field.

4Gince the polarization of both beams is horizontal, the atomic sample sees both o+
and ¢~ polarization components with a double frequency spectrum, giving rise to several
possible processes. Nevertheless, in the frame rotating at 2Az, only one transition is reso-
nant since the others are detuned at least by 2A; (see Fig. 3.1). These processes are then
negligible if the power broadening is lower than the level separation.
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Figure 3.8: Raman couplings Q‘,jfp‘f in case of complete horizontal polariza-

tion. Note how the symmetry Q%‘f =07 tn‘f is broken by the presence of
a magnetic field. The beam waist chosen for the calculation is wy = 150 ym
whereas the total power is P =1 yW

ergy):
U_5/2 hQR’l /2 0 hér=U_1/2—U 5,2
Hg ~ hQR,1/2 U_1/2 — h(SR hQR,Z/Z ’
0 hQrp/2  Uizjp —2h6R
0 hQg1/2 0
hQRJ /2 0 hQR,Z /2

0 hQR,Z/z u+3/2 + u75/2 — 2u,1/2

in which Jr is the two-photon Raman detuning (already including the lin-
ear Zeeman splitting 2Az), U, are the spin-dependent light shifts and
Or1, Qrp are the Raman couplings mr = —=5/2 — mpr = —1/2, mp =
—1/2 — mrp = +3/2 respectively. Rewriting the various terms as a func-
tion of (g 1, we obtain:

0 Or1/2 0

71{2 QOr1/2 0 a1 - Qr1/2
0 a1-Qr1/2 a2 Qg

where the numerical coefficients® a1, a; come from the proportionalities
imposed by Egs. (1.2.3) and (3.1), and weakly depend on the magnetic
field B. For B = 153G, a1 = 1.41 and ap = 2.65, from which wee see that
the mr = +3/2 component is out of resonance by an amount 2.65 - Qg 1.
This is sufficient to consider the dynamics effectively restricted to the

5The exact value of these coefficients depends on the magnetic field, which causes
corrections of the order of 6%, see Appendix B.
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Figure 3.9: Light shift characterization for the 2-level case. (a) Typical two-
photon resonance starting from mp = —5/2: the parameters are P = 85 uW,
B = 153 Gauss and T = 800 us. Solid lines are the fit results (see text). The
frequencies on the x-axis are rescaled in the rotating frame by subtracting
2Az = 27t x 63.3(2) kHz. (b) Differential light shift measured as a function
of the Raman power.

mp = —5/2,—1/2 components only. Of course we could arrive at sim-
ilar conclusions by starting from the mr = +5/2 components and obtain
a dynamics restricted to mr = +5/2,+1/2. In order to start a coherent
oscillation it is necessary to find the resonance condition, i.e. the two-
photon detuning that matches, in the rotating frame, the differential light
shift U_q,, — U_5/5. We fix the total Raman power and we perfom Raman
spectroscopy starting from the mr = —5/2 spin component. By varying
the two-photon frequency detuning, we record the spin-population distri-
bution after a certain amount of time T of Raman evolution. This time
interval satisfies the condition Oz T < 7, i.e. the spin-population does
not invert during the dynamics. This can be done for various Raman
powers in order to compare the measured differential light shifts with the
ones calculated starting from Eq. (1.2.3). In Fig. 3.9a we show a typical
resonance measurement in which the solid lines are fitted curves based
upon Eq. (3.3.1) in which U_5,; and Qg are used as fit parameters and
U_1,2, Uy3/2, Qry are fixed by the proportionality relations imposed by
the Clebsch-Gordan coefficients. In Fig. 3.9b we report the measured dif-
ferential light shift as a function of the Raman power.

Having found the resonances at a certain Raman power, we start the
Rabi dynamics which, as is shown in Fig. 3.10a, is basically confined to
only two spin components. In order to measure the system parameters,
we fit the data to the Raman evolution governed by the Hamiltonian (3.3.1)
using Qg1 as a free parameter6 and taking the light shift U_s5,, extracted
from the resonance fit in Fig. 3.9. In particular, we simulate numeri-

%We discard the Qg 1 resulting from the resonance fit, since it is much more precise to
extract the Raman amplitude directly from the oscillation fit.
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Figure 3.10: Raman evolution characterization. (a) Typical Raman evolu-
tion with pure horizontal polarizations starting from the mr = —5/2 state.
Solid lines are the fitted population evolutions with parameters P = 85 uW,
U_5/, = hx757 Hzand Qg1 = 27 x 547 Hz. At B = 153 G the other param-
eters are determined by the relations U, 3,5 +U_5/, —2U_1 /5 = 2.65 - 1R
and Qgy = 1.41- Qg 4. (b) Raman coupling (O ; measured as a function of
the Raman power.

cally the three-level evolution for a set of (g1 and choose the one that
minimizes the mean squared error with respect to the experimental data
points. In Fig. 3.10b we show the experimentally measured Raman cou-
pling Qg ;1 as a function of power. These data and the measured light shifts
can be combined in order to extract the ratio (U_1/, — U_5/2)/hQr1 =
1.53 £ 0.03, that is in very good agreement with the theoretical expectation
AU /hQgr1 = 1.51, see Fig. 3.11. Having studied the simple two-level case,
we are ready to move to the more complex three-level system.

3.3.2 Three-level system

In order to couple resonantly also the third state, it is necessary that the
spin-dependent energy offsets are equal. At zero magnetic field this is
achieved by using a uniform polarization”:

étot - %(é_i- + é_ + én—) (3-2)
The Hamiltonian governing the system is the same as in Eq. (3.3.1), in
which the uniform polarizations condition determines the new spin de-
pendent light shifts U,,.. By rewriting Eq. (3.3.1) in terms of Qg we

7This comes from a symmetry relation that the Clebsch-Gordan coefficients satisfy. In

!
particuar we have that ), |Coun(q)|? = { 1_[, ; } } (2F' +1)(2] + 1), independent of

the particular spin component mp.
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Figure 3.11: Measured differential light shift AU = (U_1/, —U_5/7) as a
function of the Raman coupling Qg 1. The solid line is a linear fit giving the
ratio AU/hQpry = 1.53 £ 0.03 in very good agreement with the theoretical
expectation AU/mQgr; = 1.51.

obtain:

0 Or1/2 0
— =~ | OQr1/2 0 a1 - Qg1/2
0 a1-QOr1/2 P2 Qra

in which the new coefficient B, depends on the magnetic field and on the
new polarization chosen. For B = 153 G we have a7 ~ 1.41 and B, ~ 0.16,
from which we see that the third state is only slightly out of resonance and
can still be coupled in an efficient way.

If, from one side, the uniform polarization allows us to resonantly cou-
ple all the three states, from the other, it sets an additional constraint to
the validity of the three-level model (3.3.2). Indeed, given the presence of
7T polarization in the Raman beams, o7t processes have a non-zero prob-
ability and are detuned only by Az. Therefore, the additional condition
Q7" < Az must be fulfilled to prevent power broadening to excite these
unwanted processes. For this reason, we decided to work only at magnetic
tield B > 150 Gauss in order to relax the constraint on the power broaden-
ing and limit the spurious ¢ 7t processes by increasing the Zeeman split-
ting. The presence of such a large magnetic field breaks the light shifts
symmetry and causes a linear dependence of the resonance on the Raman
power. By performing Raman spectroscopy as in the two-level system, we
can compare the measured resonance position with the one expected by
the theoretical model of Eq. (3.3.2) in which U_5/, and Qg are used as
tit parameters. In Fig. 3.13 (left) we show a typical resonance acquisition
from which we extract the expected light shift U_5,,. This measurement
is performed as a function of the total Raman power, as is shown in Fig.
3.13 (right). The linear dependence of the light shift on the total Raman
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Figure 3.12: State-dependent light shifts induced by uniform polarization.
B = 0G (left) and B = 153 G (right). Note how the symmetry U, = U_,r
is broken by the presence of a magnetic field. The beam waist chosen for the
calculation is wg = 150 ym

power is an order of magnitude smaller than the pure horizontal polariza-
tion configuration (2.8 = 0.13 Hz/uW) and it is in reasonable agreement
with the expected slope of 2.52 Hz/uW.

Having found the optimal two-photon detuning, the Raman evolution
is started, as is displayed in Fig. 3.14a. All three states are involved in the
coherent dynamics and also in this case, the evolution is fitted by fixing
U_5/, to the value measured with the resonance fit and letting Qg as a
free parameter. Especially in the three-level evolution, we observe a small
damping that we attribute to technical problems such as the inhomogene-
ity of the Raman beams profile and imperfections in the polarization. The
first one causes the atoms to experience space-dependent Rabi frequencies
and light shifts which lead to a dephasing in the global population evolu-
tion. This issue can be solved by using much bigger waists for the Raman
beams. The polarization imperfections introduce unwanted energy offsets
by modifying the spin-dependent light shifts. This causes the dynamics
to be much more complicated as can be seen in the theoretical curves in
Fig. 3.16 in which the polarization has been slightly modified with respect
to the uniform condition (10% more of o+ and o~ polarizations). In Fig.
3.14b we plot the extracted Raman coupling (g ; as a function of the total
Raman power. The measured slope®, 4.2 + 0.3 Hz/uW is quite consistent
with the expected value 4.4 Hz/uW. We can combine the measured Raman
couplings and light shifts U_5/, in a single plot that we show in Fig. 3.15.
The measured ratio U_5,,/7Qg 1 = 0.68 = 0.08 is 16% higher than the ex-
pected U_5,,/hQr 1 = 0.57 value. This discrepancy could come from the

8This slope is lower than the one in Fig. 3.8 by a factor of 2/3 because of the lower
fraction of ¢, 0~ light on the total power in the case of uniform polarization with respect
to the case of pure horizontal polarization.
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Figure 3.13: Light shift characterization for the 3-level case. Typical two-
photon resonance (left) starting from mp = —5/2: the parameters are P =
145 yW, B = 153 Gauss and T = 800 us. Solid lines are the fit results (see
text). The frequencies on the x-axis are rescaled in the rotating-frame by
subtracting 2Az = 27 x 63.3(2) kHz. Light shift U_5,, extracted from the
resonance fit versus the total Raman power (right).

imperfect polarization determining different energy offsets with respect to
the one expected from uniform polarization.

All the characterizations presented in these sections have been made
by loading a full polarized Fermi gas in a deep 3D optical lattice. For such
a system, the kinetic energy is completely negligible on the time-scale of
the experiment and we can forget about the momentum kick imparted to
the atoms by the Raman beams. In Chapter 5 we will relax this condi-
tion and, in particular, we will lower one of the optical lattice depths in
order to restore the tunneling between neighboring lattice sites. In this
way there will be two dynamical processes: tunneling, which is governed
by the kinetic energy of the atoms, and spin population evolution, gov-
erned by the Raman coupling. Both processes are coherent and mathe-
matically describable with the same formalism, based on a tight-binding
Hamiltonian [22]. Indeed, in both cases there is a particle hopping be-
tween neighboring sites, real 1D lattice sites and spin-lattice sites. In this
sense we can talk about an effectively two-dimensional hybrid lattice in
which one direction is formed by the real lattice wells of a 1D lattice and
the other direction is formed by the spin components, coherently coupled
by the Raman beams. Now that the kinetic energy of the atoms is not
negligible anymore, the Raman-imparted momentum kick becomes fun-
damental in determining a new type of quantum behaviour, governed by
the famous Harper-Hofstadter hamiltonian [108, 109], that has been re-
cently engineered with ultracold bosonic samples [12, 13, 21, 23] and that
describes the behaviour of electrons moving in a 2D lattice in the presence
of a uniform magnetic field. This new type of physics is at the core of this
PhD thesis and will be described in the next Chapters.
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Figure 3.14: (a) Raman evolution with uniform polarization starting from
the mp = —5/2 state for P = 145 yW. Solid lines are the fitted population
evolutions with U_5,, = h x 341.5 Hz and Qg = 271 x 590 Hz. At B =
153 G the other parameters are determined by the relations U, 3,, +U_5/5 —
2U_1/ =0.16- Qg1 and OQro = 1.41- Qg 1. (b) Raman coupling Qg ;1 versus
total Raman power.
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Qg 1. The solid line is a linear fit giving the ratio U_5,,/7Qr 1 = 0.68 &= 0.08
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Figure 3.16: Theoretical evolution for the 3-level system in case of uniform
polarization (left) or non-uniform polarization (right) in which the fraction
of ¢ and ¢~ light is 10% higher than in the uniform case. Parameters:
P =145 uW, wy = 150 yum and g = U_15(€t0t) — U_5,2(€t0t) in both cases.



4 Quantum Hall physics
on a lattice: an overview

A recurring theme in condensed matter physics has been the discovery
and classification of distinctive phases of matter. Landau’s approach char-
acterizes states in terms of underlying symmetries that are spontaneously
broken, bringing a system to display a particular order. For example in a
crystal, ions are arranged periodically owing to their electrostatic interac-
tions, thereby breaking the continuous symmetry of space under rotations
and translations. In typical magnets, some of the rotational symmetry of
spin space is broken, together with time-reversal symmetry [110, 111].

A completely different, topological [112, 113], type of order was discov-
ered in the 1980s, when electrons confined to two dimensional structures
were subjected to strong magnetic fields. When placed in a magnetic field
large enough that Landau-level quantization becomes important, electrons
exhibit a quantized Hall effect, in which the Hall conductance is an integer
in units of the quantum of conductance, ¢?/h and the transport becomes
dissipationless along the edges of the system [114-116].

This Chapter gives a description of such phenomena from a lattice per-
spective introducing the notions that will be important for our synthetic
two-dimensional system based upon neutral ultracold fermions.

4.1 Magnetic field on a square lattice

Electrons moving in a periodic structure are typically described by the
Hubbard model, which represents a valuable approximation when the
particles occupy only the lowest energy band [57]. The non-interacting
Hamiltonian on a 2D square lattice can be written as:

Ao = —t Y (& o + i) + hic, (4.0)
n,m

where &}, ¢, are the creation and annihilation operators on site (1, )
respectively, n is the site along £ direction, m is the site along § direction
and t is the tunneling between nearest neighboring sites which, in the

64
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Figure 4.1: Equivalence between Peierls phase and Aharonov-Bohm phase.
(a) Sketch of a 2D lattice in which the tunneling is complex. When an electron
hops around a plaquette it acquires a phase ® = ¢y, + cpz i~ Pomsr —
¢7, m due to the presence of a vector potential A. (b) Aharonov-Bohm effect in
which an electron moving along a closed trajectory 7 in an external magnetic
field B =V X A, picks up a geometric phase ®1,.

tight-binding approximation, are occupied by the ions. According to the
Peierls substitution [115], when a transverse magnetic field is added to
the system, the tunneling matrix elements become complex and hopping
between sites acquires a phase ¢t = eAX | /h, k = x,y, which is known
as Peierls phase (Fig. 4.1a), where e is the electron charge and A(r) is
the external vector potential. Accordingly, the tight-binding Hamiltonian
takes the form:

A i0F At ~ 1 J At A
H = —t Z (e (Pn’mci’l-i-l,mcn,m +e ¢il/mcn,m+1cn,m> + ]’l.C. (40)

n,m

The Peierls phases are directly related to the Aharonov-Bohm phase ac-
quired by a charged particle when moving in a magnetic field (Fig. 4.1b):

e CI)B
Dr=— ¢ A-dr=21— 4.
12 hﬁ r 7T(D0 (4.0)

where @3 is the magnetic flux penetrating the area enclosed by the contour
v and ®¢ = h/e is the magnetic flux quantum [117]. We can also define
the magnetic flux per plaquette in units of magnetic flux quantum as:

P 1 y y
o= E - E(Qbﬁ,m + ¢n+1,m - 4)131(,711—&-1 - 4)n,m)- (40)

The lattice hamiltonian (4.1) has a U(1) gauge symmetry:
G Uigi, &M= WU, U =1, Vi€ (n,m) (4.0)
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Figure 4.2: Single-particle energy spectrum of hamiltonian (4.1) with periodic
boundary conditions known as Hofstadter’s butterfly.

that is just a gauge transformation on A. In particular, by choosing the
Landau gauge A = (0, x ®,0) we can rewrite the hamiltonian (4.1) as:

A=ty (ézﬂrmén,m + et Hén,m) +hc. (4.0)
n,m

in which only the tunneling along §—direction is complex, whereas the
tunneling along £ is real. This Hamiltonian is known as the famous
Harper-Hofstadter Hamiltonian [108, 109] and, in the case of periodic
boundary conditions, its single-particle energy spectrum exhibits a frac-
tal self-similar structure as a function of the flux «, known as Hofstadter’s
butterfly which is shown in Fig. 4.2. The fractal structure emerges from
the fact that in presence of a rational flux per plaquette « = p/g, the
fundamental energy band splits into g subbands with dispersion relations
ey(k), 7 = {1,...,q} [115]. When the flux is an irrational number, the en-
ergy spectrum becomes even more complicated and splits into an infinite
number of energy levels forming a Cantor set [109].

4.2 Diagonalization of the Harper-Hofstadter Hamil-
tonian

In order to extract the Hofstadter’s butterfly we have to diagonalize Hamil-
tonian (4.1) and calculate the single-particle energy spectrum. We will start
by performing a Fourier-transform:

. 1 T T Kuntikom A
i = gy /_ ks /_ ke (4.0)

where —7t < ky, k, < 7, and require 6kx+2m',ky+2nj = 5kx,ky- The presence
of a magnetic field couples different k—sectors of the Fourier-transformed
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Hamiltonian:

a 7 dkxdky At A At A —ik
H= —i,‘/_7I ) [2 c0s (kx) &, k, Ciuky T Ckpr2ma i, Chiky€ Y+ hec.| (4.0)
where we wrote ® = 27ta. The Fourier transform of the Hamiltonian
mixes (ky, ky) — (ky £ 270, ky) and we need to find a momentum space
where the mixing is absent. If the flux is a rational number « = p/gq, where
p and g are coprimes, Eq. (4.2) splits in several sectors if the Brillouin zone
is taken to be g times smaller than the initial one in the £—direction:

= 2 ([ ak 40
= @ Ly | s o
where

q—1
Hkx/ky = —t Z |:2 COSs (kx + 27-(0‘”)éltx+2nan,kyékx+2ﬂaﬂ,ky+

n=0

—ik, At A ik, At A
+ (e Y Ch ot 2ma(n+1) ky Chet2mank, T €77 Ckx+2mx(n—l),kyckx+27mn,ky)}

in which k, — ky + 27an. This partition of the Brillouin zone (BZ) works
only if p and g are relatively prime, only in this case is the covering k, +
27mtan able to reproduce the whole initial —7r < k, < 7 [115].

With this partition for the Hamiltonian, no k,; mixes with another k»
when both are in the [—7t/g, 1/g] reduced BZ. The price paid is that the
magnetic unit cell is made up of q plaquettes in the £—direction and the
magnetic BZ is q times smaller than the non magnetic one. The Schrodinger
equation in a g— sector,

Hi i, [$) = Ex i, |9), (4.-1)

reduces to solving a 1D tight binding model on a 1D lattice chain in mo-
mentum space, ky +2man, n = 0,1, 2...,, ¢ — 1. The single-particle ener-
gies are obtained by expanding into single-particle states at each momen-
tum lattice point n,

-1
p= qZOanéZX+zmky|0> (4-1)
n—
and diagonalizing. The eigenvalue equation is:
—t [2 cos (ky + 2mtan)a, + e *va, 1+ eikyanH] = E,k,n (4.-1)
which can be numerically solved with the boundary conditions a,; =

ay. This is called the Harper equation and its solutions give the famous
Hofstadter’s butterfly, Fig. 4.2.
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4.3 Chern numbers

The Harper-Hofstadter Hamiltonian is characterized by topological invari-
ants, i.e. integer numbers that classify equivalence classes of H that can
be continuosly deformed into one another without closing energy gaps. It
has been shown that the quantization of the Hall conductance is directly
related to such topological invariants known as Chern numbers [112]. In
a quantum Hall experiment, a DC current is fed into a sample and the
transverse voltage, in the presence of a strong magnetic field, is measured.
The Hall conductance oy can be extracted and, at sufficiently low temper-
atures, it is quantized according to:

o = n qu (4.-1)

where v, is the Chern number of the g—th band E; and the sum has to
be taken over all occupied energy bands below the Fermi energy Er. The
Chern number v, can be deduced from the equation:

1
in which:
Ju, (k) ou,(k ou, (k) ou,(k
0yli) = i "5 P - (PR )

is the Berry curvature of the g—th band [118], and the integral is carried
out over the fundamental magnetic BZ. The functions u,(k) are the eigen-
states determined from Eq. (4.2). The Chern number was derived by
assuming an infinite 2D system without edges. In the presence of edges,
it can be demonstrated [119] that, if there are g energy bands, each en-
ergy gap has one edge state, i.e. there are g — 1 edge states. The energies
of such edge states are given by the zero points of the Bloch function on
some Riemann surface and the Hall conductance oy is given by the wind-
ing number of the edge states around the holes of this Riemann surface
[119]. There is thus a bulk-edge correspondance that relates the topological
properties of the edge modes to the ones of the bulk.

Fortunately, a simple analytical relation exists which determines the
value of the Chern number. Indeed, consider a generic insulator and sup-
pose that we place the Fermi level in a band gap. Then, given a rational
flux « = p/q, there exist two integers s, and t, determined by the Dio-
phantine equation [115, 121]:

r = qs, + pty, |t | < g, Sy, tr €Z 4.-1)
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Figure 4.3: Color coded Hofstadter’s butterfly. Warm colors represent pos-
itive values of Hall conductance and cold colors represent negative values.
Zero Hall conductance is left blank. Adapted from [120].

where 7 denotes the r—th energy gap of the single particle energy spec-
trum. The solutions of Eq. (4.3) are uniquely defined and in particular, the
integer t, is directly related to the Hall conductivity according to:

‘. (4.-1)

U’H:—h

In Fig. 4.3 we plot the Hofstadter’s butterfly, in which the band gaps
have been color coded [120] according to the Hall conductance (Chern
numbers): warm colors represent positive values of Hall conductance and
cold colors represent negative values. Zero Hall conductance is left blank.

4.4 Edge states

A fundamental consequence of the topological classification of gapped
band structures is the existence of gapless conducting states at interfaces
where the topological invariant changes [110]. Indeed, bring two insu-
lators!, each with different values of the Hall conductance, close to each
other, so that they share a boundary. Because we know that the Hall con-
ductance is an integer which characterizes the phase of the system, and
we know that it cannot be changed unless a bulk band gap closes and re-
opens again, the conclusion is that the boundary region linking both the
insulators must have a gap-closing-and-reopening point somewhere on it,
i.e. it must have an edge mode crossing the Fermi level. For a quantum Hall
state, such edge mode may be understood in terms of cyclotron orbits that
are naturally truncated at the boundary of the system (skipping orbits).
Importantly, the states responsible for this motion are chiral in the sense
that they propagate in one direction only along the edge. Also, they are

10ne of the insulator can also be the vacuum.
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Figure 4.4: Laughlin argument. (a) Schematic drawing of the Laughlin cylin-
der. (b) One particle per energy level jumps from one edge to the other, when
a magnetic flux quantum is injected through the cylinder, causing an energy
drop AE = neAVy which defines the Hall voltage.

insensitive to disorder because there are no states available for backscat-
tering, a fact that is at the basis of the perfect quantization of the Hall
conductance. The original argument for the presence of edge states in the
quantum Hall effect is due to Laughlin [122] in the early 1980s. We will
now review his seminal paper.

4.4.1 Laughlin’s argument

In [122], Laughlin argued that the presence of edge modes is an inescapable
consequence of transverse quantized transport in an insulator. We con-
sider a two-dimensional material (no lattice is present) with a magnetic
field perpendicular to it. We choose periodic boundary conditions along
the longitudinal direction i but place edges on the sample along the trans-
versal direction £. Such a geometry is equivalent to the one of a cylinder,
whose axis is along £ and in which the magnetic field points along the
radial direction (see Fig. 4.4a). We know that, [71], the single-particle
eigenfunctions of the problem in the Landau gauge are given by the prod-
uct of a plane wave along i and a harmonic oscillator wavefunction along
%. The harmonic oscillator wavefunction is centered around xy, which in
turn depends linearly on k,, so that the electrons centered in the proximity
of the left/right edge of the cylinder, have specific wavenumbers along 7.

Through the cylinder, parallel to the £—axis, insert a flux ®. This flux
is different from the flux generated by the magnetic field, which is normal
to the surface of the cylinder. We wish to relate the total current I carried
around the cylinder to the voltage drop AVp from one edge to the other.
This current is equal to the adiabatic derivative of the total energy E of the
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system with respect to the magnetic flux ® through the cylinder:

OE 1 3E

I=3 = Loa,

(4.-1)
in which A is the vector potential pointing around the cylinder, that can
be written as: ®

A= (A, Ag, A,) = fé (4.-1)
where L is the circumference of the cylinder. If the injected flux is precisely
one flux quantum ®; = h/e, the momentum? along the cylinder k, of
all the occupied states changes by 27/L, which is the momentum level
spacing in the # direction.

Very close to the edge, where the open boundary conditions force the
energy bands to bend upwards (see Fig. 4.4b), every single band that raises
above the Fermi energy now has one occupied momentum state above
the Fermi level on, e.g., the right edge and one unoccupied momentum
state below the Fermi level on the left edge of the sample [115, 123]. If
n energy levels are occupied, this increase in energy AE corresponds to
having transferred one particle per energy level, from the left edge to the
right edge, causing a potential drop AVy = AE/ne, see Fig. 4.4b. The
current can thus be written as:

AE 2

e

which highlights the quantization of the Hall conductance oy = ne?/h.

4.4.2 Full open boundary conditions: numerics

In order to have a better insight on the meaning of the edge states we
diagonalize the Harper Hamiltonian in real space (4.1) by imposing full
open boundary conditions. The calculation is performed for a 2D lattice
of 30 x 30 sites. The flux is 2ta = 271 X p/q = 27t x 1/5 in units of flux
quantum and the tunneling is set to one along both directions. In Fig. 4.5
we plot the single particle energy spectrum as a function of the quantum
state index. We compare the energy spectrum calculated with (Fig. 4.5a)
and without (Fig. 4.5b) periodic boundary conditions. The edge states
appear in the gaps of the energy spectrum. It is instructive to consider
also the density distribution associated to each eigenstate. Indeed an edge
state appears to be localized across the boundary of the system. In Fig.
4.6 we plot the density distributions related to (a) the first edge state, (b)
the single particle ground state and (c) a Fermi sea of 160 non-interacting
particles, almost filling completely the lowest magnetic sub-level.

%In presence of a vector potential, the )—momentum transforms according to py —
py +eA =n(k, + 27 A).
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Figure 4.5: Single particle energy spectrum of hamiltonian Eq. (4.1). (a)
Periodic boundary conditions. (b) Open boundary conditions. The gaps
close and edge states appear. The calculation is performed for 2ma = 27 X
p/q =2m x 1/5 on a 2D lattice of 30 x 30 sites.

edge state ground state fermi sea
30 30 30
- -
wn 20 " 20 7 20
g E o eees . U
(%] (%] (%]
1 1 - F E - 1
> 10 > 10 “ ’ > 10
- L
1 1 1
1 10 . 20 30 1 10 . 20 30 1 10 . 20 30
x-sites x-sites x-sites

(@) (b) (©

Figure 4.6: Density distribution associated to the eigenstates of Hamiltonian
(4.1). (a) The first edge state, (b) single particle ground state and (c) a Fermi
sea of 160 non-interacting particles.

As a last step we numerically calculate the current associated to the
edge states in order to highlight their chiral nature. In Fig. 4.7 we plot the
vector fields j = (jx,jy) corresponding to the first edge state (Fig. 4.7a),
to the last edge state (Fig. 4.7b) and to the single particle ground state
(Fig. 4.7c) which is a bulk state. For the edge states, the current circulates
only in one sense and the verse depends on which edge state is considered
and on the sign of the magnetic flux. This type of behaviour is pictorially
described in terms of skipping orbits, cyclotron orbits that are naturally
truncated at the edges of the sample, as is depicted in Fig. 4.8. On the other
hand, by populating many bulk states such as the single particle ground
state depicted in Fig. 4.6b, the sample acquires an insulating character
in its bulk region, giving rise to a zero current circulation. In this sense,
the system we are discussing is an example of a topological insulator [110],
a material that has a bulk band gap like an ordinary insulator, but has
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Figure 4.7: Vector plot of the current for: (a) the first edge state, (b) the last
edge state, (c) the single particle ground state, of Hamiltonian (4.1). Each
edge state is chiral and the sign of the chirality depends on the magnetic
field and on which edge state is considered. The single particle ground state
displays the typical cyclotron orbits. The magnetic flux is « = 1/5 in units of
flux quantum.

Figure 4.8: Skipping type cyclotron orbit. The circular motion of the electron
is naturally truncated at the boundary of the system

protected conducting states on its edge.

Everything we described in this chapter refers to two-dimensional lat-
tice systems. The only ingredients are coherent couplings along the sites
of both directions and a magnetic field flux. Nothing prevents one of the
directions from being the internal degree of freedom of the atoms. It is
sufficient that the sites, i.e. the spin components, are coherently coupled.
In the previous Chapter we described how to engineer this coupling, in
the next one, we will show how this coupling gives rise to an effective
magnetic field, if the atoms are loaded in a shallow, real, one-dimensional
lattice. We will thus have all the necessary ingredients to study mecha-
nisms typical of quantum Hall physics within our neutral, atomic system.



5 Chiral edge states in
synthetic dimensions

In Chapter 3 we discussed in detail how it is possible to coherently couple
two or three spin components by using Raman transitions. The charac-
terization relied upon loading a fully polarized Fermi gas in a deep 3D
lattice so to freeze the kinetic energy and study only the dynamics in the
internal spin space. In this Chapter we relax this constraint by lowering
one of the optical lattice to s € (4, 8) in order to restore the tunneling along
one spatial direction. We will see in Section 5.2 how this condition leads
the Raman coupling to be equivalent to an effective magnetic flux, pierc-
ing the hybrid 2D lattice formed by the real one-dimensional lattice and
the “orthogonal” internal degree of freedom. This novel geometry, based
upon the concept of synthetic dimensions, allowed us, for the first time,
to directly observe chiral edge states in ultracold neutral matter. We will
describe our main results [24] in Section 5.4 and Section 5.5. Section 5.6
presents the first observation of skipping-type orbits, which are a hallmark
of quantum Hall physics. Finally, Section 5.8 describes some preliminary
results regarding the observation of a synthetic Hall drift in our hybrid 2D
geometry.

We start with Section 5.1 in which a brief review of the available tech-
niques for realizing artificial gauge fields with ultracold atoms in optical
lattices, is presented. We emphasize how our novel scheme, based upon
the concept of synthetic dimensions, opens up a simple and straightfor-
ward way to the study of quantum Hall physics with ultracold atoms.

5.1 Artificial gauge fields for ultracold atoms in opti-
cal lattices

Up to now there are essentialy three techniques to engineer a synthetic
gauge field in a system of ultracold atoms loaded in an optical lattice. The
first one, exploited by the group of Immanuel Bloch in Munich [12, 13,
19, 124] and by the group of Wolfgang Ketterle at MIT, Boston [21, 125],
is based upon the principle of laser-assisted tunneling in optical lattices
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[126-128]. The second one, used by the group of Klaus Sengstock [14, 55]
in Hamburg and by the group of Tillmann Esslinger [18] in Zurich, relies
upon the principle of lattice shaking. The last one, exploited by our group
in Florence and by the group of lan Spielman at JQI, Maryland, introduces
a novel approach, based upon che concept of synthetic dimensions.

5.1.1 Gauge fields by means of laser-assisted tunneling

In Bloch’s and Ketterle’s groups, a Bose-Einstein condensate is loaded in
a two-dimensional optical lattice. Along one of the directions a magnetic
field gradient!, B/, is applied to generate a linear potential A - 1 (n is the
lattice site index and A is the energy offset between two consecutive sites),
which suppresses tunneling along the corresponding direction for A > ¢,
(where t, is the tunneling energy, and we took the gradient to be along
the £—direction). Resonant tunneling is then restored using a pair of far-
detuned running-wave beams having a frequency difference that matches
precisely the energy offset A. The two beams come from orthogonal di-
rections, so that they also imprint a spatial phase pattern to the atoms
moving around the lattice. Using Floquet analysis it can be demonstrated
[129] that such a geometric configuration yields an effective Hamiltonian
that coincides with the Harper-Hofstadter Hamiltonian.
This technique has two main limitations:

e the Harper-Hofstadter Hamiltonian appears only after (Floquet for-
malism) a time-averaging over a driving period T ~ 1/A of the
complete, time-dependent Hamiltonian. This has the disadvantage
that information about the evolution within one driving period is
lost. This is the so-called micro-motion, whose impact on physical
observables (such as the atomic momentum distribution) strongly
depends on the specific implemented scheme, suggesting that the
physical description in terms of an effective Hamiltonian is in gen-
eral not sufficient to capture the full time-evolution of the system
[130]. In addition, in these experiments a substantial heating has
been observed, which is likely to be ascribed to the combination of
micro-motion and interactions;

e it is definitely not trivial to adiabatically load the lowest energy band

of the effective Harper-Hofstadter Hamiltonian [19, 129].

5.1.2 Gauge fields by means of lattice shaking

A quite different strategy consists in using time-dependent optical lattices
[65]. The Hamburg and Zurich groups exploit lattice shaking, which relies

IThe Munich group has also implemented a closely related all-optical technique, which
is based on superlattice potentials to produce a uniform magnetic field.
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upon an off-resonant modulated potential that perturbs the tight-binding
Hamiltonian in such a way as to engineer complex hoppings between the
lattice sites. Also in this case, Floquet theory is necessary to derive an
effective, time-averaged Hamiltonian which displays the desired complex
tunnelings.

This technique has two main disadvantages:

e technical difficulties related to the piezoelectric stacks mounted on
the lattice beam mirrors. Also, in order to generate a complex hop-
ping, a non-trivial modulation is needed;

e the periodic force driving induces heating in the atomic sample.

5.1.3 Gauge fields in synthetic dimensions

Our group in Florence and the group of Ian Spielman in Maryland ex-
ploit the novel concept of synthetic dimensions [22, 23] in which a hybrid
2D geometry is realized by using a real one-dimensional lattice combined
to the atomic spin components coherently coupled by means of Raman
transitions.

With this techniques there are some main advantages:

¢ no Floquet theory is needed;

¢ a synthetic gauge field is easily realized without potential gradients,
complex super-lattice structures or periodic driving of the lattice
sites position;

e thanks to spin-selective imaging, synthetic single-site resolution is
effectively realized;

e it is quite easy to adiabatically load the lowest energy band of the
engineered Hamiltonian;

e due to the finite number of sites along the synthetic direction, edge
physics can be studied;

e one could think of possible ways to engineer periodic boundary con-
ditions along the synthetic direction, thus investigating bulk physics
too;

e heating effects are completely negligible;
and of course a few limitations

e the synthetic dimension is limited to the maximum number of avail-
able spin components (dim(M) = 6, for 173Yb)
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e since the Raman beams couple different spin components on the
same real lattice site, interactions have effectively an infinite range
along the synthetic direction?.

This technique is of course the topic of this Chapter and it will be described
in detail in the next sections.

5.2 Raman coupling as a synthetic gauge field

Let's consider '7>Yb atoms moving in a 1D lattice, for which a Raman
coupling among the spin components exists. We can write the Raman
coupling Hamiltonian in terms of fermionic ladders operators:

h QT A R
HR __" Z QR,meflqR rnczlmp-i-ZCn/mF —+ h,C, (5.0)

n,mpg

where cA:;,mF 42Cnmp destroys a particle at site n with spin component mF
and recreates it at the same site n but with spin component mr + 2, Qg ;.
is the Raman amplitude for the transition mr — mr + 2 and e'9R T ig the
phase term of the Raman electric field, calculated at the atom position r,
and containing the Raman wavevector qr. We have omitted, for now, the
Raman-induced spin-dependent light shifts. Since we are considering a
one-dimensional lattice, we can rewrite the position of an atom in terms of
the lattice site index n, r, = ndy, in which d;, = Ar /2 is the lattice spacing.
The Raman phase now becomes:

qr Ty = Gradin = g ﬁn:C’lR’x
R " In Rx“L R,x2 ZkL

27tn = dn (5.0)

where we supposed the lattice to be oriented along the £-direction, k;, is
the lattice wavevector and we defined the new parameter ®:

. qR,x
O =2 X 2%, (5.0)

which is the ratio between the Raman momentum kick along the lattice
direction gr » and the one-dimensional lattice momentum kick 2k;. Now
consider also the Hamiltonian describing the motion of the atoms along
the one dimensional lattice:

Hy=-t) @;H,mpanm +hec. (5.0)

n,mg

2This is not necessarily a disadvantage, it could also become the source of new exciting
studies.
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where t is the tunneling energy and ¢! +1,mpCnmy describes the particle hop-
ping between neighboring sites without changing the spin. The complete,
non-interacting, Hamiltonian H = Hj + Hg becomes:

N h .
A=-Y (t i mCnm + 5 Qg e ™" é;,mHan,m) + h.c. (5.0)

n,m 2

where we omitted the label F from the spin component and we intro-
duced the subset it = (—5/2,—1/2,43/2). This is precisely the Harper-
Hofstadter Hamiltonian (4.1) that we wrote in the previous Chapter. In-
deed we can demonstrate that the parameter ® acts as a magnetic flux,
when considering a particle hopping around a plaquette of the hybrid lat-
tice, as it is s