Taming, slowing and trapping atoms with light
Cold is quantum, Quantum is cool!
We shape quantum matter
Multicolored lasers for a variety of atoms
Keeping our eyes on the quantum world
Join our ultracool group!
High technology for great science

Welcome to the website of the Ultracold Quantum Gases group at the European Laboratory for Nonlinear Spectroscopy (LENS), the Department of Physics and Astronomy of the University of Florence (Italy) and the Institute of Optics of the Italian National Research Council (CNR - INO). In our labs we use lasers and magnetic fields to produce the lowest temperatures of the Universe, just a few billionths of a degree above absolute zero...

At these temperatures, atoms stop moving and we can control them for a variety of different fundamental studies and applications. We can force atoms to arrange according to a periodic structure and simulate the behavior of crystalline solids and new materials. We can use the atoms as ultra-high accurate sensors to probe forces with the power of quantum mechanics. We can study how quantum particles combine together under the action of strong interactions and how superfluidity develops. We can use these ultracold atoms to process information and develop new quantum technologies.

Dress warmly and... follow us for this ultracold journey!

LAST NEWS

On 17th-19th April we were in Innsbruck for a joint meeting with the research groups on Ultracold Atoms at IQOQI and University of Innsbruck. Great to be there discussing ultracold physics with old friends of ours and so many young researchers!

Many thanks for the perfect organization and warm hospitality in Innsbruck. See you in Florence next year!

Vladislav Gavryusev has received a grant for his project MicroSpinEnergy funded by the Italian Ministry of University and Research (MUR) and has become a fixed-term researcher in Physics of Matter at the Department of Physics and Astronomy. In the next three years he will translate advanced microscopy methods to investigate quantum spin models and energy transport in finely engineered systems of Sr atoms in optical tweezers with single particle control.

We have reached simultaneous quantum degeneracy for fermionic Li and Cr atoms for the first time. In this work, we explain our all-optical strategy to realize large samples of more than 2x105 6Li and 105 53Cr atoms with T/TF as low as 0.25 in less than 13 s. Moreover, by use of a crossed bichromatic optical dipole trap, we are able to control the relative density and degree of degeneracy of the mixture components. This novel mass-imbalanced Fermi mixture, which we already proved to possess suitable Feshbach resonances in a previous work [Phys. Rev. Lett. 129, 093402 (2022)], opens the way to the observation of novel exotic few- and many-body phenomena, as well as the creation of ultracold polar paramagnetic LiCr molecules. Finally, our experimental methods can be exploited to realize large Fermi gases or homonuclear spin-mixtures of 53Cr, which will enable us to investigate the effects of weak dipolar interactions on BEC-BCS crossover physics.

Our results have been recently published in Physical Review A:

A. Ciamei et al.
Double-degenerate Fermi mixtures of 6Li and 53Cr atoms
Phys. Rev. A 106, 053318 (2022)

Seminars & Events

17-19.04.2023
InnFi Joint Meeting on Ultracold Atoms:
Experimental and theoretical groups from Innsbruck (Austria) and Florence (Italy) research areas will present their activities and discuss collaborations. Click here for more info.