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Abstract

In this thesis I investigate the onset and evolution of the Kelvin-Helmholtz insta-

bility in fermionic superfluids across the BEC-BCS crossover. The system involves

two counter-rotating annular superflows separated by a thin potential barrier. Each

annular superfluid holds an opposite-sign persistent current with the same number of

circulation quanta. By tuning the barrier height, we control the merging dynamics

of the superfluid, and observe how the interface deforms into an ordered array of

quantized vortices, which then loses stability and rolls up into vortex clusters. The

Kelvin-Helmholtz instability in superfluids can be seen as the instability breaking the

symmetry of the regular array of vortices. Extracting the instability growth rates

from the experimental data, we find that they obey the same scaling relations across

the different superfluid regimes, although vortex dynamics appears to be consistently

slower than predicted.

I performed the experimental results reported in this thesis, starting from the

characterization of persistent currents, observation of the vortex arrays, developing

the tracking and analysis tools to unveil the Kelvin-Helmholtz instability across the

BEC-BCS crossover. I also developed the theoretical framework describing the insta-

bility using the dissipative point-vortex model. This model describes the motion of

superfluid vortices in the presence of a mutual friction with the normal component of

the system, and offers a mechanism through which vortex dynamics can be generally

slower. Moreover, to provide more insights about the transition from the persistent

currents to vortex arrays, we made use of the Gross-Pitaevskii equation, valid for the

molecular BEC. The observed dynamics can be mapped to the ones of linear atomic

Josephson junctions, explaining the emergence of the vortices as a natural solution

to the merging problem.

These results link vortex arrays to shear flow instabilities. Our findings offer new

perspectives on the Kelvin-Helmholtz instability in quantum fluids and provide a

foundation for further studies in strongly correlated superfluids.
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Chapter 1

Introduction

1.1 Ultracold fermions as quantum simulators

The exploration of strongly interacting Fermi systems is a central endeavor in modern

physics, bridging fields from condensed matter [1–3], to nuclear physics [4], and as-

trophysics [5]. When interactions within a fermionic system reach extreme strengths,

the specific details of the system can be ignored, leading to universal behaviors that

are shared by seemingly different systems [6] such as neutron matter in neutron stars,

quark-gluon plasmas in the early universe [4]. Theoretical approaches to such systems

face considerable obstacles due to the large correlations inherent to strong interac-

tions, which challenge the conventional quasi-particle descriptions of the traditional

many-body tools [6]. The complexity from the theoretical understanding is further

compounded by the fermion sign problem, arising from the antisymmetric nature of

fermionic wavefunctions, which greatly limits computational methods such as Monte

Carlo simulations [7].

Quantum simulation offers an innovative route to addressing the challenges pre-

sented by these systems. Originally envisioned by Feynman [8], quantum simulation

leverages simple experimentally controllable quantum systems to encapsulate the

physics of much more complex systems, allowing the understanding of the physics

involved in the complex quantum behaviors, and that would be otherwise difficult

to access. Ultracold atomic gases, specifically ultracold fermions, have emerged as

exceptionally adaptable quantum simulators over the past two decades, offering a

unique level of control over the system parameters [9]. The overall potential land-

scape of these systems (dimensionality, confining potential, defects, etc...) can be
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precisely engineered through the use of optical potentials, which can be designed at

spatial resolutions close to the coherence length of the gas [10]. Additionally, atomic

Feshbach resonances allow experimentalists to tune inter-particle interactions con-

tinuously, accessing both attractive and repulsive, weakly and strongly interacting

regimes within the same system [9].

Ultracold fermions have been pivotal in realizing key theoretical models [6, 11],

including the Bose-Hubbard [12] and Fermi-Hubbard models [13], and in exploring the

crossover between Bose-Einstein condensate (BEC) and Bardeen-Cooper-Schrieffer

(BCS) superfluidity [6, 11, 14]. The control over the atomic interactions enables the

continuous transition from strong to weak interactions, allowing for direct comparison

with well established theories like for a BEC and a BCS superfluids which are based

on first principles. At the center of Feshbach resonances, ultracold Fermi gases reach

quantum limited interactions [9], offering the possibility to access experimentally a

system with universal properties that resemble phenomena seen in neutron stars and

quark-gluon plasma.

Ultracold fermions, have established themselves as a fundamental tool for uncov-

ering the intricate dynamics of strongly interacting quantum matter, illuminating

pathways toward a deeper understanding of universal phenomena across multiple do-

mains of physics.

1.2 Fermionic superfluidity

As a consequence of the strong interactions, ultracold Fermi gases behave as nearly

perfect quantum fluids, with their hydrodynamic behavior determining both the equi-

librium and the transport properties [15]. Understanding their behavior in precise

and controlled situations could open new perspectives for simulating the hydrody-

namical behavior of other strongly interacting systems. In particular, they provide

a clean test bed to understand the similarities and differences between classical and

quantum hydrodynamic behavior. One key feature that differentiates quantum from

classical fluids is that the circulation of vortices in a quantum fluid is quantized [16].

These stable topological defects have a circulation that is quantized in units of h/m,

where h is Planck’s constant and m is the mass of the superfluid particle. Since

the discovery of atomic superfluids, experiments with rotating gases across the BEC-

BCS crossover have demonstrated the superfluid behavior through the observation of
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quantized vortex lattices [17, 18].

Despite quantization of circulation, the emergence of classical phenomena from

quantum vortex dynamics might be expected provided many quantum vortices of

the same sign are bundled together, mimicking classical vortex tubes with arbitrary

circulation. Additionally, many features of more complex behavior of many vortices

systems are common to both classical and quantum fluids, such is the case for the

emergence of turbulent dynamics [19, 20]. In three-dimensional system, quantum

turbulence has been extensively studied in superfluid helium [21, 22], including the

Kolmogorov energy cascade [23, 24], the dissipation anomaly [25], and boundary

layers [26]. More recently, experimental advances in quasi two-dimensional ultracold

atomic gases [27–31] and superfluid opto-mechanical systems with thin film helium

[32] have renewed interest in turbulence and vortex dynamics in two dimensions,

where contrastingly different behavior to three dimensions is often observed [22]. In

two-dimensional quantum fluids analogues of classical phenomena such as the Von

Karman vortex street [33, 34], vortex clustering [35–38], turbulent vortex relaxation

[37, 39, 40], and negative temperature vortex equilibrium [39] have recently been

demonstrated experimentally. Such experiments focused on the behavior of weakly

interacting BEC and the mechanisms for relaxation after the injection of energy into

the system [24]. However, the spontaneous appearance of non trivial vortex dynamics

has been missing.

In classical fluids, the Kelvin-Helmholtz instability at the interface between two

fluid layers flowing at different velocities (shear flow) is known to be a precursor for

turbulent behavior, without requiring further excitation the system [20, 41–44]. Mak-

ing the Kelvin-Helmholtz instability mechanism a new avenue for the exploration of

the transition from superfluid shear flow to quantum turbulence. Experimental ev-

idence of this phenomenon have only been regarded at the interface between two

distinct superfluid phases He3 A and He3 B using indirect probes [45], lacking a

clear vortex-by-vortex experimental observation. While the observation of this phe-

nomenon in atomic gases has been attributed limited to the observation of the forma-

tion of vortices between two rotating BECs [46], a dynamical understanding of this

phenomenon is lacking. A particular interest for studying this mechanism in unitary

Fermi superfluids comes from the possibility to extrapolate some of the observed dy-

namics to rotating neutron starts, where superfluid shear flows are expected to be

present [47, 48].
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1.3 Thesis Overview

In this thesis I investigate the onset and evolution of the Kelvin-Helmholtz instabil-

ity in fermionic superfluids across the BEC-BCS crossover [49]. The system involves

two counter-rotating annular superflows separated by a thin potential barrier. Each

annular superfluid holds an opposite-sign persistent current with the same number of

circulation quanta. By tuning the barrier height, we control the merging dynamics

of the superfluid, and observe how the interface deforms into an ordered array of

quantized vortices, which then loses stability and rolls up into vortex clusters. The

Kelvin-Helmholtz instability in superfluids can be seen as the instability breaking the

symmetry of the regular array of vortices. Extracting the instability growth rates

from the experimental data, we find that they obey the same scaling relations across

the different superfluid regimes, although vortex dynamics appears to be consistently

slower than predicted. These results link vortex arrays to shear flow instabilities,

and offers new perspectives on Kelvin-Helmholtz instability in quantum fluids and

provide a foundation for further studies in strongly correlated superfluids.

This thesis is organized as it follows:

• In Chapter 2, I provide an introduction to the general theoretical framework

regarding strongly-interacting Fermi gases. After a short overview of low en-

ergy scattering and Feshbach resonances, I introduce the BEC-BCS crossover.

Then, I focus on the general superfluid properties of those systems, namely

the presence of a critical velocity below which excitations are not created in

the system; and the presence of quantum vortices, and briefly introduce their

dynamics in superfluids. Next, I introduce the two-fluid model firstly discuss

for superfluid Helium, and comment how they modify the motion of quantum

vortices in infinite and finite systems.

• In Chapter 3, I introduce the main topic of this thesis: the Kelvin-Helmholtz

instability. I start with a brief summary of the derivation of the instability both

sharp and smooth interface in classical fluids, introducing Kelvin-Helmholtz

and Rayleigh results. Next, I discuss Helmholtz results of the modeling of

the vorticity of classical fluids using point vortices, to latter derive the Kelvin-

Helmholtz instability from this perspective. Finally, I discuss the extensions of

this instability to the superfluid regime.
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• In Chapter 4, I provide a description of our experimental setup, focusing on the

methods for reaching quantum degeneracy, on the high-resolution microscope

objective, and on the Digital Micromirror Device (DMD) that are implemented

in the experimental setup, and which are fundamental to image the atomic

cloud and imprint dynamical repulsive optical potentials with a sub-micron spa-

tial resolution. Next, I present the phase imprinting protocol used for exciting

persistent currents states in annular superfluids, and the interferometric mea-

surement to detect the state of the system. Following the discussion, I describe

our approach for generating the counter-flow between two superfluids, engineer-

ing two counter-rotating annular superfluids. Finally, I comment the dynamics

occurring during the merging of both superfluids leading to the formation of a

polygonal array of quantum vortices.

• In Chapter 5, I introduce the dynamics behind the breaking dynamics of the

polygonal array of quantum vortices. I provide the experimental tools we em-

ployed to study the reliability of the system. I provide an in-depth discussion

of the linear stability analysis polygonal array of vortices, showing their corre-

spondence to the Kelvin-Helmholtz instability. Next, I show that the system

is inherently sensitive to the initial conditions and displays a positive maximal

Lyapunov exponent when analyzing the vortex trajectories. Finally, I compare

the experimental data with the available models.
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Chapter 2

Basic theory of Fermi gases

Fermions are ubiquitous in nature. They make up a significant portion of the matter

in the universe, including electrons, protons, and neutrons. Understanding their

behavior is crucial for unraveling many physical phenomena, from the properties of

ordinary matter to the behavior of exotic states of matter. Their statistical nature

leads to a variety of collective behaviors, making them a key focus in fields like

condensed matter physics and quantum mechanics. Researching fermions in different

scenarios can unlock new insights into quantum systems and their interactions.

Ultracold atomic gases offer the opportunity to study dilute systems where we have

control over the interactions through magnetic Feshbach resonances. By adjusting

the magnitude of the applied magnetic field near an atomic Feshbach resonance, the

effective interaction between atoms can be tuned smoothly from strongly attractive

to strongly repulsive.

In this chapter, I present the theoretical frame necessary for understanding the

physics behind the experimental work realized in this thesis. In the first section, I

summarize the main properties of a non-interacting Fermi gas and follow with inter-

acting fermionic systems composed of two spin components. Starting from a review

of scattering theory, I explain how interactions in the system can be manipulated

externally through Feshbach resonances, introducing the BEC-BCS crossover.

In the last section, I present an overview of superfluidity and the special behavior

of quantum vortices. Finally, I discuss the different models employed in this thesis to

describe vortex dynamics, from the Gross-Pitaevskii equation to the dissipative point

vortex model.
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2.1 Ideal Fermi gas

To describe the thermodynamic properties of a system composed by fermions, let’s

consider the description in the grand-canonical ensemble. The system is in contact

with a reservoir with which it can exchange particles and energy, the Fermi-Dirac

distribution gives the average occupation of the state i of energy εi [14]:

⟨ni⟩ =
1

e(εi−µ)/(kBT ) + 1
, (2.1)

where µ is the chemical potential of the ensemble, kB the Boltzmann constant, and T

the temperature of the ensemble. In the zero temperature limit, the density of states

is defined as unity up to the Fermi Energy, EF = µ(T = 0), and null occupation for

higher energies.

For a homogeneous Fermi gas, the average density is given by:

n =

∫
⟨ni⟩g(εi)dεi =

1

λ3T
Li3/2(e

µ/kBT ), (2.2)

where λT = ℏ/
√
2πmkBT is the thermal De Broglie wavelength, with m the mass of

the particle, and Li3/2(z) is the polylogarithmic function of order 3/2 defined as:

Liν(z) =
∞∑
k=1

zk

kν
. (2.3)

As temperature is lowered, λT increase, and it becomes of relevant importance

when it is of the order of the mean inter-particle distance n−1/3. In particular, when

nλ3T ∼ 1 quantum degenerate regime is reached and quantum statistics play a huge

role determining the properties of the system [14, 50].

Generally, ultracold gas experiments don’t work with infinite homogeneous Fermi

gas but with confined Fermi gases. In this case, the density is no longer homogeneous,

but rather follows the behavior of the trapping potential Vtrap. Assuming Vtrap vary

slowly on both the scale of the de Broglie wavelength λT , and the mean interparticle

distance n−1/3; we can take into account the inhomogeneities using the so-called local

density approximation (LDA) [16]. Here, each volume, described by its position r, is

considered an independent homogeneous system, characterized by the local chemical
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potential µ defined as

µ(r) = µ0 − Vtrap(r), (2.4)

where µ0 is the maximum chemical potential. Therefore, for trapped Fermi gases the

average density follows:

n(r) =
1

λ3T
Li3/2(e

(µ0−Vtrap(r))/kBT ). (2.5)

In the present thesis, we are going to work with a trapping potential of the form:

Vtrap(r) = Vbox(r, θ) +
1

2
Mω2

zz
2, (2.6)

where r = |r| and θ are the and azimuthal coordinates, and the box potential Vbox

is defined as V (r, θ) = 0 if r is inside the trap boundaries Ω and ∞ otherwise. In

particular, in the experiments presented in this thesis Vbox represents an annular box

with internal and external radii Ri and Re, as discussed in section 4.3.2. The vertical

confinement set by ωz is such that the system remain always in the three-dimensional

regime regarding thermodynamic quantities. Moreover, the extent in the plane is

much larger that the vertical extension of the system. Given this trapping potential,

some of the system properties can be computed analytically, such as the Fermi energy.

In the limit T → 0, the density profile can be written as:

n(r) =
1

3π2

(
2m

ℏ2

)3/2

(EF − Vtrap(r))3/2. (2.7)

Integrating the density over the configuration space, we can obtain a relation

between the Fermi energy and the total number of fermions in the system:

N =
1

3π

(
2m

ℏ

)3/2 ∫
(EF − Vtrap(r))3/2dr. (2.8)

For the specific trapping potential given by Eq. (2.6), the integral can be solved

analytically, yielding:

EF =

[
4πℏ3ωzN

mA

]1/2
, (2.9)

where, A is the area defined in the x-y plane set by the box potential Vbox(r) = 0.
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For the potentials considered, A is the area of the annular box A = nπ(R2
e −R2

i ), see

section 4.3.2. Notice the similarity of this expression of the one obtained from a 3D

harmonically confined Fermi gas [14], where EF = (3ℏ3ωxωyωzN)1/3, and to the one

of a homogeneous gas [14]: EF = ℏ2
2m

(3π2N
V
)2/3.

2.2 Interacting Fermi gases: BEC-BCS crossover

A system composed of two distinct spin fermions displays an even more exciting phase

diagram depending on their interaction [6, 14]. Indeed as I’ll discuss in the following

sections interactions play a fundamental role in the emergence of superfluid behavior.

For a non-interacting system, the ground state correspond to a two-spin Fermi Sea,

where atoms occupy all the energy states below their respective Fermi Energy. From

here on, we will only consider the case of a balanced mixture between both spin

components, creating a common Fermi energy scale, EF .

For attractive interactions, correlations within the system allow for the formation

of Cooper pairs at the surface of the Fermi Sea [14]. This phenomenon, similar to

superconductors, is at the origin of fermionic superfluidity below a certain critical

temperature. On the other hand, repulsive interactions between fermions can lead to

the formation of weakly bound molecules, which are composite bosons. As per usual

bosonic particles, below a certain critical temperature they can undergo Bose-Einstein

condensation [16, 50], displaying bosonic superfluid behavior.

In dilute gases at low temperatures, the interaction between distinguishable fermions

can be described by a small number of parameters that emerge from the description

of a two-body collision analysis. The scattering process can be solved using the

Schrödinger equation in the center-of-mass frame of reference [51]:[
− ℏ2

2m∗∇
2 + U(r)

]
Ψ(r) = EΨ(r), (2.10)

where m∗ = m1m2/(m1 + m2) is the reduced mass, r is the relative position, U(r)

describes the interatomic potential, and E = ℏ2k2
2m∗ is the collision energy. The complete

solution of the Schrödinger equation strongly depends on the interatomic potential

U(r). However, when U(r) has a finite range ru, we can obtain some insights of

the solution simply by looking at the behavior of Ψ in the far field, r ≫ ru. The

wavefunction Ψ can be decomposed in the superposition of an incoming wave, eik·r,
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and a scattered wave. For 3D systems, the outgoing scattered wave can be written as a

modulated spherical wave [51]: f(θ, ϕ) e
ik

r
, where f indicates the scattering amplitude.

The later is connected to the differential scattering cross-section by dσ
dΩ

= 4π
k2
|f(θ, ϕ)|2,

with Ω the solid angle.

By considering an isotropic inter-atomic potential, we can make use of the symme-

tries of the problem, namely the azimuthal invariance, and expand the wavefunction

into partial waves:

Ψ(r, θ, ϕ) =
∞∑
l=0

Y 0
l (θ)

ukl(r)

r
, (2.11)

where Y 0
l are the spherical harmonics of degree l and order 0, and ukl(r) the cor-

responding radial wavefunction, that depends on the incoming momentum k. For

every partial wave, with a well-defined angular momentum l, there is an independent

Schrödinger equation with a potential given by the sum of the inter-atomic potential

and the repulsive centrifugal barrier:[
− d2

dr2
− k2 + l(l + 1)

r2
+

2µ

ℏ2
U(r)

]
u(r) = 0. (2.12)

In a low-temperature regime, only the lowest angular momenta components con-

tribute to the scattering processes. The reason is that when the kinetic energy is

much lower than the height of the centrifugal barrier the incoming particle is re-

flected, ignoring the details of the potential. Moreover, for identical fermions, the

antisymmetric nature of the wavefunction allows only for odd values of l in the par-

tial wave expansion. Therefore, the lowest scattering wave contribution is given by

the p-wave l = 1, which is fully suppressed at sufficiently low temperatures [52].

In the ultra-cold regime, identical fermions behave like as the non-interacting

Fermi gas discussed previously. For this reason, we consider the problem of a mixture

of distinguishable fermions. The scattering between the same spin components is sup-

pressed, while the scattering between distinct components isn’t. In fact, for different

spin components, the interaction is uniquely characterized by the lowest scattering

l = 0 s-wave properties.

The solution to the Schrödinger equation for the s-wave scattering at large dis-
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tances, r ≫ k−1, can be approximated by:

u(r) ∼ 1

cos δ0(k)
sin (kr − δ0(k)) , (2.13)

where δ0(k) correspond to the s-wave phase shift. In the low-energy limit, the scat-

tering amplitude can be rewritten as [14]:

f(r) =
1

k cot δ0(k) + ik
∼ 1

a−1 + 1
2
rek2 + ik

, (2.14)

where we introduced the effective range re, which depends on the details of the inter-

action potential, and the scattering length a defined as:

a = − lim
k→0

tan δ0(k)

k
. (2.15)

Finally, the s-wave scattering cross-section between distinguishable fermions for

vanishing momentum is [14]:

σ =
4πa2

1 + k2a2
=

4π

a−2 + k2
. (2.16)

In this scenario, the scattering cross-section can be interpreted classically as the

collision between two spheres of radius a/
√
1 + k2a2. In the limit when a is small such

that the collision term ka≪ 1, the radius of the fictitious spheres coincides with the

scattering length, and is independent of the incoming momentum. On the contrary,

when the scattering length diverges, the cross-section is maximum σ = 4πk−2, and

strongly depends on the incoming momentum.

2.2.1 Tuning the interaction: Feshbach Resonances

The scattering length a so far can be described purely by the far field behavior of

the collision process. However, a more detailed description of a can be obtained after

considering the atomic internal structure [9, 14]. Due to the coupling between different

hyperfine states, the scattering process can couple different inter-atomic potentials for

the incoming and outgoing waves. This additional degree of freedom in the collision

gives rise to the well-known Feshbach resonances [9, 14]. The description of such

collisions resonances was first made in the context of nuclear collisions.
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For ultra-cold systems, at low energy, the magnetic Feshbach resonance appears

when considering the collision in the presence of an external bias magnetic field [9].

Due to the different magnetic moments associated to each of the possible hyperfine

pairs (∆µ = µ2−µ1 ̸= 0), the relative separation between the inter-atomic potentials

can be tuned externally ∆E ∝ ∆µB. In particular, for alkali atoms, these correspond

to the singlet and triplet configuration of the valence electron spin, see Figure 2.1a.

The scattering process can couple such hyperfine pairs when a resonant condi-

tion is met. For convention [9], let us define the open channel as the incoming

inter-atomic potential and the closed channel as the second out going inter-atomic

potential. Whenever the bound state of the closed channel is close to the collision

energy corresponding to the threshold energy of the open channel energy (see Figure

2.1a), the coupling between both channels becomes significantly greater [9]. Indeed,

the crossing of the closed channel bound states and the collision energy gives rise to

the Feshbach resonance. Close to it, the scattering length is well approximated by

[9]:

as(B) = abg

(
1− ∆

B −B0

)
, (2.17)

where ∆ is the magnetic resonance width, B0 is the magnetic field where the crossing

occurs (the center of the resonance), and abg is the off-resonance background scattering

length. The Feshbach resonances between all pairs of the three lowest hyperfine states

of 6Li are shown in Figure 2.1b. These resonances are extremely large (∆ ≈ 300G)

compared with other atomic species [9] making lithium one of the most versatile

species for tuning the interaction, without extreme stabilization of the magnetic fields.

From Eq. (2.17) and Figure 2.1b, it is clear the we can exploit the magnetic

Feshbach resonances to tune from attractive to repulsive, and from weak to strongly

interacting regimes [14]. More importantly, Feshbach resonances allows us to change

the fundamental constituents of our system. Whenever, the energy of the close chan-

nel bound state is lower than the collision energy, the bound state can be populated,

forming weakly bound molecules. The binding energy is Eb = − ℏ2
ma2

[9]. The weakly

bound molecules form when the scattering length is positive, i.e. repulsive inter-

actions, and display a bosonic character. Below a critical temperature they can

condense into a Bose-Einstein condensate (BEC) of molecules [54]. Instead, when

the energy of the close channel bound state is higher than the collision energy, the

system remains behave as having attractive interactions. In this case, fermions with

opposite spin and momentum can form Cooper pairs, and the system is described by
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(a) (b)

Figure 2.1: a) Triplet (open channel) and singlet (closed channel) scattering
potential for two colliding atoms. The singlet scattering potential energy can be

shifted by applying a bias magnetic field. The Feshbach resonance occurs when the
bound state energy coincides with the collision energy (dashed line), Image taken
from [53]. b) Feshbach resonances between the three lowest hyperfine states of 6Li.

the Bardeen-Cooper-Schrieffer (BCS) theory. Finally, the regime where the scatter-

ing length diverges, the energy of the bound state is at threshold Eb → 0, and as

mentioned before, the scattering cross-section reaches a maximum with σ = 4πk−2.

In this peculiar situation, there are only two length scales in the system, the mean

inter-particle distance, or simple k−1
F and the thermal de Broglie wavelength λT . This

system, known as a Unitary Fermi gas (UFG), or unitary regime is expected to be-

have as an intermediate state having both bosonic and fermionic characteristic [6, 55],

with all the thermodynamics properties being only a function of nλ3T or equivalently

T/TF .

2.2.2 The BEC-BCS crossover

The possibility of changing the inter-atomic interaction by varying an external bias

magnetic field makes ultracold atoms the perfect system for studying many-body

physics such as superfluidity. Moreover, the BEC-BCS crossover allows the possibility

of tuning the underlying quantum statistics giving origin to the superfluid behavior.

From the BEC side, having bosonic statistics to the unitary and BCS side with

fermionic statistics.

To describe the distinct interaction regimes, it is essential to parameterize the

interaction coupling within the system using a single parameter [6, 11]. The two

main parameters describing the interaction strength are the system’s density and
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the s-wave scattering length. With these parameters, it is possible to construct the

dimensionless parameter (kFa)
−1. For temperatures below the Fermi temperature, it

is possible to distinguish between three distinct regimes:

• 1/kFa > 1: In this regime, atoms with different spin states couple together and

form tightly bound molecules. The system behaves like a bosonic one and can

undergo a phase transition into a Bose-Einstein condensate (BEC) when the

temperature is below the critical temperature. However, quantum depletion

effects modify the behavior of the condensed faction for decreasing 1/kFa. In

the limit 1/kFa → ∞, the mean-field chemical potential can be approximated

as

µBEC = − ℏ2

2ma2
+

4πℏ2aMnM

2m
, (2.18)

with aM = 0.6a the dimer-dimer scattering length [51], and nM the molecular

density. The first term represents the binding energy per fermion, while the

second reflects the bosonic two fermion mean-field repulsion.

• 1/kFa ≪ −1: In this regime, the atoms form long-range Cooper pairs-like

described by the Bardeen-Cooper-Schrieffer (BCS) theory. In principle, the

system can undergo a superfluid transition when the temperature is below the

critical temperature. In this regime, the Cooper pairs have a characteristic size

larger than the inter-particle spacing of the gas. In the limit 1/kFa → −∞,

the mean-field chemical potential becomes the Fermi energy EF , and the order

parameter is the superconducting gap, ∆, that is characterized by [14]:

∆ =
8

e2
e
− π

2kF |a| . (2.19)

• −1 < 1/kFa < 1: This regime is known as the BEC-BCS crossover, and shares

similarities with both BEC and BCS regimes. Like the BCS regime, it is char-

acterized by the formation of Cooper pairs but the pair size is comparable with

the inter-particle spacing. The mean-field chemical potential correspond to a

smooth transition from EF towards µBEC [11]. At unitarity, 1
kF a

= 0, the lo-

cal chemical potential takes the form µ = ξϵF , where ξ ≈ 0.37 is the Bertsch

parameter [6].
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2.2.3 Thermodynamic properties in the crossover

To evaluate some thermodynamic properties of the superfluids using a common frame-

work throughout the BEC-BCS crossover we exploit the polytropic approximation to

describe the chemical potential as function of the density [56, 57]. The polytropic

index γ = ∂ log µ/∂ log n defines the power-law relation µ ∝ nγ [56, 57]. For instance,

in the BEC-limit, γ = 1, while at unitarity and in the BCS-limit, γ = 2/3. The poly-

tropic approximation enables us to evaluate analytically µ and EF of the crossover

superfluids considering the vertical harmonic confinement and the hard-wall potential

in the x-y plane.

Assuming the LDA, the Thomas-Fermi density profile is given by:

n(r) =

[
max

(
0,
µ− Vbox(r)

gγ

)]1/γ
, (2.20)

where the total potential is given by Eq. (2.6). The mean-field interaction, is charac-

terized by the parameter gγ through the relation µ = gγn
γ. The total atom number

N is given by the integral of the density over space:

N =

∫
n(r)d3r =

(
µ

gγ

)1/γ ∫ [
max

(
0, 1− ˜Ubox(r)

)]1/γ
d3r. (2.21)

Where ˜Ubox(r) = Vbox(r)/µ. Integrating over the potential, we arrive to the following

expression:

N =

(
µ

gγ

)1/γ π1/2Γ( 1
γ
+ 1)

Γ( 1
γ
+ 3

2
)

ARz, (2.22)

where Γ(x) is the Gamma function, A is the area defined in the x-y plane set by

the box potential Vbox(r) = 0, Rz =
√

2µ
Mω2

z
defines the Thomas-Fermi radius of the

cloud along the vertical direction, and M = 2m the mass of the pairs. Inverting the

expression to obtain the chemical potential we get:

µ =

[
Γ( 1

γ
+ 3

2
)

π1/2Γ( 1
γ
+ 1)

√
M/2ωzNg

1/γ
γ

A

] 2γ
γ+2

. (2.23)
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Properties
BEC limit
(kFas)

−1 > 1
Unitarity
(kFas)

−1 = 0
BCS limit

(kFas)
−1 < −1

γ (in µ = gγn
γ) 1 2/3 2/3

gγ (in µ = gγn
γ) 4πℏ2aM

M
ξ ℏ2
2m

(6π2)2/3 ℏ2
2m

(6π2)2/3

ηγ =
Γ( 1

γ
+ 3

2)
π3/2Γ( 1

γ
+1)

3
4π

8
3π2

8
3π2

(2D-Homogeneous + 1D Harmonic) trap

Chemical potential µM =
[
3
2

ℏ2ωzN↑aM√
m(R2

o−R2
i )

]2/3
ξ3/4EF = ξ3/4

[
4ℏ3ωzN↑

m(R2
o−R2

i )

]1/2
EF =

[
4ℏ3ωzN↑

m(R2
o−R2

i )

]1/2
Thomas Fermi radius i-th direction RBEC,i =

√
2µM

Mω2
i

RUFG,i = ξ3/8
√

2EF

mω2
i

RBCS,i =
√

2EF

mω2
i

Density profile: n↑(r⃗)/n
peak
↑ 1− Ubox − z2

R2
BEC,z

(
1− Ubox − z2

R2
UFG,z

)3/2 (
1− Ubox − z2

R2
BCS,r

)3/2
Peak density: npeak

↑
MµM

4πℏ2aM

(
ξ−1/4EF
ℏ2
2m

(6π2)2/3

)3/2 (
EF

ℏ2
2m

(6π2)2/3

)3/2

Normalized speed of sound (cs/vF )
(

3

2
13
2
kFaM

)1/3 √
ξ3/4

3
1√
3

(3D-Harmonic) trap

Chemical potential µM = ℏω̄
2

(
15N↑aM√

ℏ/Mω̄

)2/5

ξ1/2EF = ξ1/2ℏω̄(6N↑)
1/3 EF = ℏω̄(6N↑)

1/3

Thomas Fermi radius i-th direction RBEC,i =
√

2µM

Mω2
i

RUFG,i = ξ1/4
√

2EF

mω2
i

RBCS,i =
√

2EF

mω2
i

Density profile: n↑(r⃗)/n↑(⃗0) 1− r2

R2
BEC,r

− z2

R2
BEC,z

(
1− r2

R2
UFG,r

− z2

R2
UFG,z

)3/2 (
1− r2

R2
BCS,r

− z2

R2
BCS,r

)3/2
Peak density: n↑(⃗0)

15
8π

N↑
RBEC,xRBEC,yRBEC,z

8
π2

N↑
RUFG,xRUFG,yRUFG,z

8
π2

N↑
RBCS,xRBCS,yRBCS,z

Normalized speed of sound (cs/vF )
1

23/2

(
5kF aM

2

)1/5 √
ξ1/2

3
1√
3

(3D-Homogeneous)

Chemical potential µM = 4πℏ2aM
M

n↑ ξEF = ξ ℏ2
2m

(6π2n↑)
2/3 EF = ℏ2

2m
(6π2n↑)

2/3

Normalized speed of sound (cs/vF )
√

kF aM
3π

√
ξ
3

1√
3

Table 2.1: Zero-temperature density profiles of a trapped, interacting Fermi mixture
in the BEC-BCS crossover.

To estimate the speed of sound we make use the standard definition provided by:

cs =

√
n

M

∂µ

∂n
=

√
γ
µ

M
. (2.24)

To apply the polytropic approximation to different scenarios I summarize the

relevant quantities in Table 2.1, together with a quick description to apply for each

scenario:

• In the BEC regime: the polytropic exponent is γ = 1, and the interaction

parameter is gBEC = 4πℏ2aM
M

. Where aM ≈ 0.6as is the molecular scattering

length, and M = 2m is the mass of the pairs.

• In the UFG regime: µ(n) = ξϵF (n) ∝ n2/3 hence the polytropic exponent

γ = 2/3, and the interaction parameter is gUFG = ξ ℏ2
2m

(6π2)2/3, with ξ the
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Bertsch parameter, that can be temperature dependent: ξ = ξ(T/TF ).

• In the deep-BCS regime: µ(n) = ϵF (n) ∝ n2/3 hence the polytropic exponent

γ = 2/3, and the interaction parameter is gBCS = ℏ2
2m

(6π2)2/3.

2.3 Superfluidity and quantum vortices

2.3.1 Superfluidity

Superfluidity is a unique property of fluids that emerges at extremely low tempera-

tures. This phenomenon was first observed by P. Kapitsa [58], and independently by

J. F. Allen and D. Misener [59] in two papers published side-by-side in the January

1938. Making measurements on liquid helium flowing through a narrow opening, they

found that at Tλ = 2.17K the helium flowed with incredible ease, compelling Kapitza

to make the analogy with the low resistance of superconductors, coining the term

superfluid. The discovery of superfluidity and the development of theories explaining

its remarkable behavior fundamentally changed our understanding of quantum me-

chanics. An early theoretical advance in understanding superfluidity was provided

by Tisza’s two fluid model [60], in which superfluids are modeled as two separate

components, a normal fluid carrying all the system’s entropy, and a zero entropy,

zero viscosity superfluid component. The presence of a second fluid acts as a new

collective degree of freedom, allowing the coherent movement without friction.

The ideas of Tisza were further developed by L.Landau to provide the first phe-

nomenological model of superfluidity. Landau showed that for certain dispersion

relations, excitations in a superfluid cannot be created by a moving obstacle if the

obstacle is moving below a certain velocity. This velocity, known as the critical ve-

locity vc, can be derived by considering a obstacle moving through the superfluid

at some velocity vi and momentum p. Let us consider an excitation with energy

ℏωk and momentum k created by the obstacle as it moves through the fluid. Under

conservation of energy and momentum, we have

1

2
mv2i =

1

2
Mv2f + ℏωk, pi = pf + ℏk, (2.25)

where m is the mass of the obstacle. To provide a lower limit on vi to create such an



18

excitation, we combine the above equations to find

ℏωk = ℏk · vi −
ℏ2k2

2M
(2.26)

For impurities with a large mass, the second term can be assumed sufficiently

small such that the minimum velocity required to create an excitation is bound by

the wavevector of the excitation

vi ≥
ωk

k
. (2.27)

Given that the above constraint can take different values for different k, the Landau

criterion is shown to be

vc ≥ min
ε(k)

ℏ|k|
(2.28)

Figure 2.2: a) Critical velocity vc in the BEC-BCS crossover. In the BEC side the
critical velocity is given by the speed of sound, while in the BCS limit destruction of
Cooper pairs limit the maximum velocity for the superflow. Image taken from [14]
b) Experimentally measured curve of a density excitation across the crossover (see

section 4.4).

where ε(k) is the excitation spectrum. For velocities below vc, the obstacle will

move through the superfluid without resistance, creating zero excitations as it moves.

This apparently simple calculation underpins the most fundamental property of su-

perfluidity. The condition set by vc defines whether a system’s dispersion relation can

lead to the system to be a superfluid, which only depends on the allowed excitations

from the excitation spectrum.

For the weakly interacting Bose gas, with spectrum [16]

ε(k) =

√
ℏ2k2
2m

(
ℏ2k2
2m

+ 2gn

)
, (2.29)
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the critical velocity equal the the speed of sound of the system, vc = cs =
√
gn/m.

For Cooper pairs in a BCS gas, with spectrum [14]

ε(k) =

√(
ℏ2k2
2m
− µ

)2

+∆2, (2.30)

the critical velocity can be estimated from the deep-BCS side [6]:

vc =
∆

ℏkF
. (2.31)

An object that is dragged through the superfluid faster than this velocity will

break the fermion pairs. Note that in both the BEC and BCS regimes, the critical

velocity increases together with the interactions [61, 62], see Figure 2.2.

2.3.2 Quantum vortices

The most dramatic demonstration of superfluid behavior is the presence of quantized

vortices in rotating systems [17, 18], see Figure 2.3. The same phenomenon can be

observed by considering type II superconductors in the presence of a magnetic field

[63], see Figure 2.3. More recently, quantum vortices have been experimentally obser-

vation in rotating quantum dipolar condensates and supersolids [64–66]. In general,

superfluids are described using a complex macroscopic wavefunction that must be

single-valued in real space. Using the Madelung representation of the wavefunction:

ψ(r, ) =
√
n(r, t)eiϕ(r,t), (2.32)

with n(r, t) represents the atomic density and ϕ(r, t) the phase. The superfluid ve-

locity is obtained from the quantum mechanical definition of the current, yielding:

v =
ℏ
M
∇ϕ. (2.33)

where M = 2m for fermionic superfluids. Since the velocity field of a superfluid is

derived from the gradient of ϕ, it is curl-free (∇ × v = 0), and therefore, it display

irrotational flows. And under rotation, the circulation of the superfluid is set to

follow:

Γ =

∮
vs · dl =

ℏ
M

∮
∇ϕ · dl = κn, (2.34)
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where κ = h/M is the quantum of circulation, and n an integer number. The quan-

tized vortex solution must be associated with a singularity in phase, where phase

wraps of a multiple of 2πn around the vortex core, while at the singularity the order

parameter must vanishes.

Contrary to classical vortices, increasing the vorticity of a single quantum vortex

leads instead to an energetically instability [16]. High winding number vortices carry

a energy proportional to n2. For instance, a doubly quantized vortex with n = 2 will

cost 2 times the energy cost of two single-quanta vortices with n = 1. This instability,

will eventually make multi-charged vortices to decay into single-quanta vortices [16],

see Figure 2.3. Recently many proposals are trying to understand the decay process,

eventually leading to different decay mechanisms [16, 67].

Figure 2.3: Quantized vortices in vortex lattices. The images are from liquid 4He,
left [68], in a lattice of supercurrent flow, top right [69], and atomic in BECs bottom

right [17]

The core size of a vortex is on the order of the coherence length ξ. In the BEC

regime, this corresponds to the healing length ξ =
√

ℏ2
Mgn

, with g the interaction

parameter, and n the background density. In the unitary and BCS regimes, the
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vortex core size is better described in terms of the energy gap [14]:

ξ ∼ ℏ2kF
mπ∆

, (2.35)

where vF =
√
2EF/m is the Fermi velocity. Quantum vortices in 3D systems are

typically described in terms of line vortices, along which the phase winds around it.

Such line vortices can be curves bending over space. When they form a straight line,

they are generally unstable against perturbations inhibiting them to remain straight.

These excitations, known as a Kelvin waves, correspond to helical excitations on the

vortex line path, and is among the most fundamental excitations in vortices [70].

However, Kelvin waves can be suppressed. One such scenario is the suppression in-

duced by confinement of the system along the vortex line direction [71], the limiting

case being point vortices in two dimensions [71, 72]. In the quasi-2D regime, where

vortex bending is fully suppressed, vortices have a well-defined circulation direction,

the flow rotates either clockwise or anticlockwise, and is defined by the sign of their

corresponding winding number. In this regime, the description of the vortices simpli-

fies considerably since no bending stress is to be accounted for [72].

To describe a system composed of multiple vortices it is convenient to provide

a simple description of the velocity flow around single vortices. Starting from the

definition of the circulation:

Γ =

∮
∂Ω

vs · dl =
∫
Ω

∇× vs · dS =

∫
Ω

ω⃗ · dS = κn (2.36)

we define the vorticity field as ω⃗(r) = ∇×vs. We can model the large distance flow of

vortices, ignoring the specific details inside the vortex core by considering concentric

trajectories ∂Ω centered on the vortex with radii larger than ξ. We motivate this

approximation since the mass current around the vortex dramatically change inside

the core due to the vanishing density [16]. Far from the vortex core (|r − r0| ≫ ξ),

the vorticity can be modeled as:

ω⃗(r) ≈ κnẑδ2(|r− r0|). (2.37)

Assuming concentric paths located at radius r from r0, and imposing a symmetric
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solutions of the form vs(r, θ) = vs(r), the velocity field is given by:

vs(r) ≈
κn

2π|r− r0|
θ̂. (2.38)

where θ̂ is the polar coordinate unit vector for a coordinate system centered on the

vortex core. Since the vorticity and velocity profile of a quantum vortex can be

mapped to point vortices, under the correct conditions quantum vortices should be-

have like a gas of point vortices [72]. Moreover, when the inter-vortex spacing is larger

than a few ξ, at least lvξ ≫ 2, and when vortex bending is suppressed, the superfluid

velocity can be approximated as the addition of each vortex flow [72]:

vs(r) ≈
κ

2π

Nv∑
j

nj

|r− rj|
θ̂j, where θ̂j = ẑ × r− rj

|r− rj|
. (2.39)

For typical experimental setups employing quasi two-dimensional confinement [34,

38–40, 73], or working with highly oblate potentials, this approximation is valid. Ex-

amples where this approximation is no longer valid are the vortex-antivortex annihi-

lation dynamics [73], or the splitting of a multi-changed vortex. In the former case,

the dynamics cannot be described faithfully once the vortices get closer than 10ξ [73],

the reason being that the energy in the system is concentrated in compressible energy,

and no longer kinetic energy, as provided by the point vortices.

Moreover, vortex dynamics in homogeneous superfluids, can be computed from

the force the superfluid exert on the vortices [16, 74, 75], namely the Magnus force:

Fi
M = κρs(v

∗
s − vi

L)× ẑ (2.40)

where vi
L is the velocity of the i-th vortex, and v∗

s , is the average superfluid velocity

in the vicinity of the vortex. Note that v∗
s can be expressed from the superfluid and

velocity fields [75, 76], v∗
s = vs − Vi, where Vi is the contribution to the velocity

field of the i-th vortex given by equation (2.38). The motion of the vortex is set by

the balance of forces acting on it, namely
∑

iFi = 0 (assuming massless vortices,

in the next section I discuss the scenario also considering massive vortices where∑
i Fi =

dP
dt
). Since the Magnus force is the unique force exerted by the superfluid,

the equality FM = 0 holds and fix vL = v∗
s . The vortices are advected by the

surrounding superfluid [74–76]. Additionally, since vortices are the generators of the
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velocity field itself, the dynamics of the vortices can be computed only from the

knowledge of the vortex positions, indeed, combining the last expressions we get:

vi
L =

κ

2π

Nv∑
j ̸=i

nj ẑ × (ri − rj)

|ri − rj|2
. (2.41)

This simple equation is known in the literature as the point vortex model (PVM),

and is at the basis of many applications ranging from classical to quantum fluid

dynamics in large-scale numerical simulation of turbulent systems [21, 77, 78].

2.3.3 Dynamics in a Bose-Einstein condensate

As discussed above, in the repulsive side of the Feshbach resonance, weakly bound

pairs forming composite bosons can undergo Bose-Einstein condensation [54]. In the

limit 1/kFa≫ 1, the macroscopic wavefunction can be effectively described using the

Gross-Pitaevskii equation (GPE) [16]:

iℏ
∂Ψ(r, t)

∂t
=

(
− ℏ
2M
∇2 + V (r, t) + g|Ψ(r, t)|2

)
Ψ(r, t), (2.42)

where M = 2m is the mass of the pairs, V (r, t) is the external potential felt by the

fermion pair, and g = 4πℏ2aM/M is the interaction parameter. Here, aM = 0.6a

describes the s-wave scattering length associated to the dimer-dimer process [51].

Although the GPE is an approximation of the many-body wavefunction (neglecting

thermal excited states), it captures many aspects of the condensates dynamics such

as the dynamics of vortices, solitons, sound propagation, and many other collective

behavior.

In particular, from the GPE, we can directly derive the hydrodynamic equations

by adopting the Madelung transformation. The conservation momentum can be ex-

pressed as:

M
∂v

∂t
= −M

2
∇|v|2 −∇V − 1

n
∇p+∇

(
ℏ2

2M
√
n
∇2
√
n

)
, (2.43)

where p = ∂E
∂V

is the pressure. This equation is analogous to the Euler equation from

classical fluid dynamics describing an inviscid fluid flow [79, 80]:
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m
∂v

∂t
= mv × (∇× v)− m

2
∇|v|2 −∇V − 1

n
∇p (2.44)

It is important to note that for irrotational flow ∇ × v = 0. The last term in Eq.

(2.43), known as the quantum pressure term, is often negligible for most hydrody-

namic applications, as it arises from spatial variations in the wavefunction magnitude

on scales comparable to the healing length. However, this term is essential for describ-

ing quantum vortices, since vortex cores are on scales of the healing length. It is in

this regime that deviations from the Euler equation might become significant. Impor-

tantly, this shows that a dilute weakly interacting Bose gas obeys similar equations

as a classical perfect inviscid fluid.

2.3.4 Two Fluid Model

Since the discovery of superfluidity in liquid helium, the theoretical framework devel-

oped by Tisza [60] and Landau [81] has been successful in modeling the observed be-

havior. From a broad perspective, this model considers two fluids coexisting together:

a the normal fluid and superfluid, with the ratio given by the system’s temperature.

It is crucial to emphasize that while the GPE accurately describes a superfluid com-

posed of a condensate of weakly interacting bosons at T = 0, the two-fluid model is a

phenomenological framework capturing the thermodynamic and transport properties

of any superfluid at finite T . The two-fluid model considers that the superfluid does

not to carried entropy, instead the normal fluid carrying all the entropy of the sys-

tem. Then sum of the both normal and superfluid density is equal to total bulk fluid

density (ρ = ρs + ρn), and the combined total mass currents is also given by their

respective mass currents jtotal = ρv = js+jn. The difference between both fluids relies

in their dynamical behavior, that is encapsulate the two-fluid model equations[81]:

∂ρ

∂t
+∇ (ρnvn + ρsvs) = 0, (2.45)

∂

∂t
(ρs) +∇ (ρsvn) = 0, (2.46)

∂

∂t
(ρnvn + ρsvs)i +

∑
j=x,y,z

∂

∂xj
(Pδij + ρnvnivnj + ρsvsivsj) = 0, (2.47)

m
∂

∂t
vs +m(vs∇)vs = −∇µ. (2.48)
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The first equation describes the mass transport equation using the conservation

of mass. The second is the transport of entropy per particle (s = S/N) set by the

conservation of entropy in reversible processes. The third equation corresponds to

the momentum conservation or Navier-Stokes equation, where the viscous term is in-

cluded in the pressure term, and the last equation setting the motion of the superfluid

in terms of the chemical potential µ. The framework of the two-fluid model consists

of a phenomenological macroscopic theory based on macroscopic conservation laws

such as mass conservation, and the first and second law of thermodynamics. How-

ever, theoretical derivations based on the microscopic level support these equations.

Further corrections and extensions [82, 83] to this model have been proposed since

their first statement in 1941. An important consequence from the two-fluid model

is the prediction of several new types of excitations, in particular they predict the

presence of two sound modes [84–88].

The coupling between the normal fluid and the superfluid has been subject of many

research since the discovery of superfluids. This coupling is not directly evident from

the two-fluid model equations, however, they can be made evident by the transport

properties of the fluid by sound modes. On the one hand, the symmetric behavior of

the mass transport establish the origin for the propagation of (first) sound modes [89],

corresponding to density modulations. On the other hand, the asymmetry behavior in

entropy transport, enables new ways for temperature transport. This mode, strongly

couple the density of both fluids. Indeed, temperature propagation is one of the

most illustrative examples that establish the two-fluid model as a way to describe

superfluid He. In this model, temperature propagation behaves differently from that

of classical fluids alone. Temperature stops being diffusive, and propagates as a wave

[84, 90]. This phenomenon, known as second sound propagation, can be interpreted

as an exchange between the normal fluid and the superfluid, all while keeping the

total density unchanged.

2.4 Dissipative Point vortex model

Another, more subtle and indirect way for coupling both normal and superfluid phases

arises from the transport of vortical structures [75, 82]. As discussed previously, the

relative velocity of superfluid with respect to the vortex generates a Magnus force.



26

For rectilinear vortices, where bending is suppressed, this force can be written as:

Fi
M = κρs(v

∗
s − vi

L)× κ̂. (2.49)

Furthermore, the presence of a secondary fluid, the normal phase, can give ori-

gin to additional forces applied to the superfluid vortices. The normal component

can react to the moving vortex producing a frictional force which, in general, can

be decomposed into components parallel and perpendicular to the relative velocity

between the normal component, vi
n and the vortex line velocity [75, 91]:

Fi
N = D(vn − vi

L) +D′κ̂× (vn − vi
L), (2.50)

where D and D′ are the corresponding coefficients quantifying their magnitude. Sim-

ilar to the Magnus force, Fi
N depends in the average normal component velocity field

surrounding the vortex [75]. Moreover, the normal component can fill the inside of

the vortex core [75], introducing now a new force, ∂P
∂t
, due to the inertia of the now

massive vortex. P can be generally defined as P =
←→
M vL, where the mass,

←→
M , can

behave as a tensor with components parallel and perpendicular to the vortex velocity

[75]. In general, we are going to treat M as a scalar, however, for precision mea-

surements a distinction should be made for fermionic superfluids [75, 91]. Moreover,

density inhomogeneities can exert an additional force that might be considered [16,

91] Fρ ∝ ∇ log n. As such, the balance equation for the vortex dynamics is

FM + FN + Fρ =
∂P
∂t
. (2.51)

Writing the force equation in terms of the vortex velocity we get:

(v∗
s − vL)× κ̂+ d||(vn − vL) + d⊥κ̂× (vn − vL) + fρ =

∂p

∂t
(2.52)

where we defined the reduced force coefficients d|| = D/κρs and d⊥ = D′/κρs, fρ =

(κρs)
−1Fρ, and

∂p
∂t

= (κρs)
−1

(
←→
M v̇L +

←̇→
M vL

)
. To calculate the vortex dynamics

from the balance equation, similar to Eq. (2.41), it is convenient to calculate the

cross product between κ̂ and Eq. (2.52):

−(v∗
s − vL) + d||(vn − vL)× κ̂+ d⊥(vn − vL) + fρ × κ̂ =

∂p

∂t
× κ̂. (2.53)
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From the linear combination between Eq. (2.53) and Eq. (2.52) weighted by the

coefficients (1− d⊥)/(d2|| + (1− d⊥)2), and −d||/(d2|| + (1− d⊥)2) respectively, one can
obtain the equation of motion of the vortex as:

vL+α
∂p

∂t
+(1−α′)κ̂×∂p

∂t
= v∗

s+α
′(vn−v∗

s)+ακ̂×(vn−v∗
s)−αfρ−(1−α′)κ̂×fρ (2.54)

where, for convenience we have introduced the new set of coefficients known as the

Hall and Vinen coefficients [75, 76, 92, 93], defined as:

α =
d||

d2|| + (1− d⊥)2
, (2.55)

1− α′ =
1− d⊥

d2|| + (1− d⊥)2
. (2.56)

Notice that the dynamics of the vortex depends only on the relative flow between

the normal and superfluid components (vn − v∗
s) in the vicinity of the vortex. The

equation of motion for the vortex position becomes a first order differential equation

whenever the inertia term can be neglected, ∂p
∂t
̸= 0. The inertia term modify the

dynamic equation turning it into a second order differential equation, requiring an

additional initial condition.

Recent studies [94] suggest that the effect of vortex mass in finite temperature

atomic gases can be neglected. However, this effect should be considered when study-

ing binary mixtures, when one component can fill the vortex of the other component,

specially for Bose-Bose superfluid mixtures [95]. For the rest of the analysis done in

this thesis, we consider ∂p
∂t
≈ 0. Moreover, most of the experiments performed rely

on the precise preparation of an initial condition where the system remains static.

The average velocity of the normal component is considered to be null, vn = 0. This

assumptions can take us so far in the description of the quantum vortex dynamics,

and eventually must be revisited if more knowledge of the behavior of the normal

component is achievable.

2.4.1 Mapping to the complex plane

Under the assumptions of no vortex mass, and static background normal component,

the equation of motion for the point vortices simplifies:
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vL = (1− α′)v∗
s − ακ̂× v∗

s . (2.57)

As mentioned in the previous sections, the motion of the vortices is prescribed

alone from the position of the vortices, as given by Eq. (2.41):

vi
L =

κ

2π
ẑ ×

Nv∑
j ̸=i

nj
ri − rj
|ri − rj|2

. (2.58)

Equation (2.57) can be solved vectorially, considering the coupled equations for

each of the coordinates. However, an easier approach is provided by mapping Eq.

(2.57) into the complex plane [96, 97]. The two equations can the written as a function

of the complex vortex positions defined as zj = xj + iyj. Eq. (2.57) becomes:

d

dt

(
xi

yi

)
= (1− α′)

(
vsxi

vsyi

)
− αs(ni)

(
−vsyi
vsxi

)
=

(
1− α′ αs(ni)

−αs(ni) 1− α′

)(
vsxi

vsyi

)
, (2.59)

where s(x) = sign(x) is used to account for the cross-product sign with κ̂. Adopting

the expression of v∗
s in terms of the rest of vortices (Eq. (2.58)), and defining aij =

ai − aj:

d

dt

(
xi

yi

)
=

κ

2π

∑
j ̸=i

nj

|rij|2

(
1− α′ αs(ni)

−αs(ni) 1− α′

)(
−yij
xij

)
, (2.60)

d

dt

(
xi

yi

)
=

κ

2π

∑
j ̸=i

nj

|rij|2

(
−(1− α′)yij + αs(ni)xij

αs(ni)yij + (1− α′)xij

)
. (2.61)

Applying the transformation z = x+ iy, and solving for z∗a we get:

d(xa − iya)
dt

=
κ

2π

∑
b̸=a

nb
(αs(na)− i(1− α′))(xab − iyab)

x2ab + y2ab
, (2.62)
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Finally:

dz∗a
dt

=
(1− α′ + iαs(na))κ

2πi

∑
b ̸=a

nb

za − zb
, (2.63)

dz∗a
dt

=
κa
2πi

∑
b ̸=a

nb

zab
, (2.64)

where κa = κ(1−α′+iαs(na)). Writing the complex circulation κa allows us to recover

the functional of the dissipationless point vortex model in complex coordinates. The

presence of the complex circulation κa, hints at dissipative vortex dynamics. Writing

the dissipative point vortex model in this form allows us to compare one-to-one the

behavior without dissipation.

2.4.2 Point vortex model in finite systems

Equation (2.64) is valid for infinite size systems, where the only boundary condition

on the superfluid velocity is vs → 0 when |r| → ∞. However, for finite systems

boundary conditions must be taken into consideration. In this thesis, I focus on the

following boundary conditions: (i) vortices inside an outer circular boundary, (ii)

vortices outside an inner circular boundary, and (iii) vortices in an annular boundary.

In general, the boundary condition is that the there is no superfluid outflow from

the region of space where it is confined: (vs · n̂)|∂Ω = 0, where ∂Ω traces the path of

the boundary, with n̂ is the normal vector to the boundary. This boundary condition

is chosen due to the steepness of the trapping potential walls present in experimental

system. This boundary condition is not necessarily true for harmonically confined

gases, where collective trap modes, such as breading or quadrupole modes, extending

far from the cloud’s initial radius exist [50]. For circular boundaries, we can easily

use the results from the method of images commonly employed in electrostatics [98]

to derive the position of imaginary vortices.

(i) Vortices inside a circular boundary

Let us first consider the scenario of a circular boundary with radius R, with a single

vortex inside the region as shown in Figure 2.4. In this case, adding a single imaginary

vortex of opposite circulation at position r′ = R2

|r|2 r satisfy the condition (vs · n̂)|r=R =

0. A full derivation of this result can be found in Ref. [97]. The equation of motion
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Figure 2.4: Scenarios for different vortex position inside the circular boundary. The
superfluid flow is shown by the vector field with the magnitude traced by the
background color. Outside the boundary, the imaginary vortex and the general
magnitude of the flow created by the pair vortices is shown. Blue and red points

show clockwise and anti-clockwise circulation vortices, respectively.

of point vortices under this confinement is:

dz∗a
dt

=
κa
2πi

 N∑
b ̸=a

nb

za − zb
−

N∑
b=1

nb

za −
(

R2

|zb|2

)
zb

 , (2.65)

where the second term runs over all vortices indices accounting for the contribution

of each vortex to fulfill the boundary condition.

(ii) Vortices outside a circular boundary

Now, lets consider the scenario of a vortices outside a circular boundary of radius R,

with a single vortex out from the excluded region as shown in Figure 2.5. Contrary to

the previous scenario, this region of space has a different topology, hence in addition

to the hard wall boundary condition, the topological charge enclosed by the boundary

must be set. This condition depends on the tangential velocity of the superfluid, and

can be interpreted as the enclosure of a multi-quanta vortex located at the origin.

Vortices located at the origin trivially fulfill the circular boundary condition (vs ·
n̂)|r=R = 0. The enclosed quanta of circulation will be denoted by Λ.

Regardless of additional Λ vortices at the origin, for real vortices in the outer region

the procedure is similar to the previous case. Adding a single imaginary vortex of
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Figure 2.5: Scenarios for different vortex position outside a circular boundary,
plotting conventions are the same as for Figure 2.4. Blue and red points show

clockwise and anti-clockwise circulation vortices, respectively. The purple vortex at
the origin accounts for the topological change enclosed: from left to right:

Λ = 0, 2, and − 2.

opposite circulation at the position r′ = R2

|r|2 r satisfy (vs · n̂)|r=R = 0. However, since

the image vortex is located in the enclosed region, an additional located at the origin

with same charge of the real vortex is locate in order to keep the total topological

charge Λ constant. The equation of motion of point vortices under this confinement

is:

dz∗a
dt

=
κa
2πi

 N∑
b̸=a

nb

za − zb
−

N∑
b=1

nb

za −
(

R2

|zb|2

)
zb

+
κa
2πi

Λ +
∑N

b=1 nb

za
. (2.66)

(iii) Vortices inside an annular region

Finally, let’s consider the scenario of a vortices enclosed in an annular region delimited

by two concentric circular boundaries with radii Ri < Ro. Figure 2.6 shows an

example of the method of images applied to a single vortex. Contrary to the previous

scenarios, two boundary conditions must be satisfied: (vs · n̂)|r=Ri
= 0 and (vs ·

n̂)|r=Ro = 0 in addition to the degree of freedom of the topological change Λ enclosed

by the inner boundary. To satisfy both boundary conditions simultaneously an infinite

number of vortices is required [99]. The procedure to calculate the positions of each

vortex has been worked out in Ref [97]. The construction procedure is as follows:

1. Satisfy the outer boundary condition adding the image vortex at r′o1 =
R2

o

|r|2 r.
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Figure 2.6: Scenarios for different vortex position inside an annular region, plotting
conventions are the same as the previous figures. Similar to scenario (ii), The

enclosed topological from left to right are: Λ = 0, 2, and − 2.

2. Satisfy the inner boundary condition adding the image vortex of both vortices

at r and r′o1. This shall create 3 new imaginary vortices at positions r′ = 0,

r′i1 =
R2

i

|r|2 r, and r′i2 =
R2

i

|r′o1|2
r′o1 =

R2
i

R2
o

R2
o

|r|2 r.

3. Satisfy the outer boundary condition adding the corresponding image vortices

at positions: r′o2 =
R2

o

|r′i1|2
r′i1 =

R2
o

R2
i

R2
i

|r|2 r, and r′o3 =
R2

o

|r′i2|2
r′i2.

4. Repeat indefinitely.

The recursive process can be summarized in the following equation of motion of point

vortices under this confinement is:

dz∗a
dt

=
κa
2πi

Λ +
∑N

b=1 nb

za
+

κa
2πi

 N∑
b ̸=a

nb

za − zb
−

N∑
b=1

 nb

za −
(

R2
i

|zb|2

)
zb

+
nb

za −
(

R2
o

|zb|2

)
zb


+

κa
2πi

 N∑
b=1

∞∑
n=1

 nb

za −
(

Ri

Ro

)2n
zb

+
nb

za −
(

Ro

Ri

)2n
zb


−

N∑
b=1

∞∑
n=1

 nb

za −
(

Ri

Ro

)2n (
R2

i

|zb|2

)
zb

+
nb

za −
(

Ro

Ri

)2n (
R2

o

|zb|2

)
zb




Notice the first four terms, correspond to the direct contribution of the imaginary

vortices presented in the (i) and (ii) scenarios. The last two terms correspond to the
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recursion process described above. It is important to note that the infinite sequence

converges fairly quickly, and allowing the numerical simulations to be accurate using

few terms the summation. For the simulations we consider 11 vortex images.
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Chapter 3

Kelvin-Helmholtz instability: from

classical fluids to point vortex

models

3.1 Classical Kelvin-Helmholtz instability

One of the most well known instabilities in fluid mechanics is the instability at the

interface between two parallel streams having different velocities and densities (with

the heavier fluid at the bottom). This instability is known as the Kelvin–Helmholtz

instability, and was first described in the 19th century by Lord Kelvin and H. von

Helmholtz when modeling the formation of ocean wind waves [100]. Their work laid

the foundation for understanding various fluid dynamics scenarios, from atmospheric

phenomena to astrophysical processes [20, 101–103], highlighting the significance of

this instability in both theoretical and applied contexts.

3.1.1 Kelvin-Helmholtz model

The simplest flow demonstrating the Kelvin–Helmholtz instability is that of two un-

bounded two dimensional fluids [79, 80] with uniform velocities v1 for y < 0, and v2

for y > 0, see Figure 3.1. The interface defined as the site where the velocity jump,

is assumed to have no thickness. In general, the fluids can have different densities ρ1

and ρ2, and have a surface tension σ between them, however, it is not a requirement.

Nonetheless, for the this thesis I exclude the scenario with surface tension.
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Figure 3.1: Initial perturbed state in a shear-flow configuration: the
Kelvin–Helmholtz instability.

In two dimensional incompressible and irrotational fluids the velocity field can

generally be described either using a stream function Ψ (v = ∇ × Ψ ), or using a

potential function ϕ, where v = ∇ϕ [79, 80]. We’ll use the latter to describe both

the lower, ϕ1, and the upper ϕ2, fluids. The irrotational condition for the velocity

directly translate to a Laplace equation for the potential ∇× vi = ∇2ϕi = 0, where

the boundary conditions are set by:

∂ϕ1

∂x
= v1,

∂ϕ1

∂y
= 0 as y → −∞, (3.1)

∂ϕ2

∂x
= v2,

∂ϕ2

∂y
= 0 as y →∞. (3.2)

A perturbation occurring at the interface will deform it. Let us describe the

resulting curve by the relation y = η(x, t), or equivalently f(x, y, t) = y− η(x, t) = 0.

If the interface moves with a velocity V , the transport equation of the interface can

be written as [79]:

Df

Dt
=
∂f

∂t
+ V · ∇f = 0 (3.3)

where D
Dt

is also known as the material derivative [80]. The kinematic boundary

condition, which states that the interface moves up and down with a velocity equal

to the vertical component of the fluid velocity can be written as [79]:
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∂η

∂t
+ V

∂η

∂x
= vη at y = η(x, t), (3.4)

where vη is the vertical component of velocity of the interface. Combining the

Bernoulli equation for potential flows [79]: ∂ϕ
∂t

+ 1
2
(∇ϕ)2 + P/ρ + gy = C(t), in

each fluid and considering the fluids just below (described by ϕ1) and just above (de-

scribed by ϕ2) the interface, we arrive to the following equilibrium condition at the

interface [79]:

ρ1

(
∂ϕ1

∂t
+

1

2
(∇ϕ1)

2 − C1

)
= ρ2

(
∂ϕ2

∂t
+

1

2
(∇ϕ2)

2 − C2

)
, (3.5)

where we considered the equal pressure of the fluids across the interface. In this case,

the stationary solution for the flows fixing a static interface, i.e. η(x, t) = 0 is simply

given by ϕ1 = v1x, and ϕ2 = v2x.

So, by perturbing the interface with a traveling wave η(x, t) = η̂ei(kx−ωt), and per-

forming a linear stability analysis for the perturbed flows ϕ′
i = ϕi−vix = ϕ̂i(y)e

i(kx−ωt),

we arrive to the following solutions [79]:

η(x, t) = η̂ei(kx−ωt), ϕ′
1 = ϕ̂1e

kyei(kx−ωt), ϕ′
2 = ϕ̂2e

−kyei(kx−ωt). (3.6)

After substitution in Eq. (3.5), we obtain the instability dispersion relation [79]:

ω = ωr + iσ =
ρ1v1 + ρ2v2
ρ1 + ρ2

k ±

√
ρ1 − ρ2
ρ1 + ρ2

gk − ρ1ρ2
(
v1 − v2
ρ1 + ρ2

)2

k2. (3.7)

In particular, the interface can become unstable and grow exponentially in time when

σ > 0. Assuming equally dense fluids ρ1 = ρ2 = ρ, we find the system to be always

unstable regardless of the wavenumber k since the first term inside the square root

vanishes. The instability grow rate becomes:

σ =
1

2
∆vk, (3.8)

where ∆v = |v1 − v2|.

Beyond the initial growth of the interface extent η, the interface deforms dra-

matically as shown from numerical simulations of the fluid equation in Figure 3.2.

This deformations arise in the non-linear regime [79], and cannot longer be described
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Figure 3.2: Interface temporal evolution under the Kelvin–Helmholtz instability.
Image taken from [104].

as a simple traveling wave. However, more advance techniques can be use to study

the observed roll up dynamics, such as the integro-differential equation known as the

Birkhoff-Rott equation [105].

3.1.2 Rayleigh model

In common fluids, due to viscous effects, a sharp velocity discontinuity, such as in

Figure 3.1 cannot be sustained [100]. A more accurate model for the total flow

requires that the shear layer continuously and smoothly connects both regions of

uniform flow. Rayleigh in 1880 provided an analytical solution for this through a

simple piecewise-linear profile [106]. Where the velocity profile is defined as:

v = v1, if y < −δ, (3.9)

v =
v1 + v2

2
+

(
v2 − v1

2

)
y

δ
, if − δ < y < δ, (3.10)

v = v2, if y > δ. (3.11)
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An even better model of the total flow, which is more regular than the piecewise-

linear flow, is that of a hyperbolic tangent flow: v = v0 + ∆v tanh(y/δ), shown in

Figure 3.3. Using the hyperbolic tangent velocity flow the stability conditions cannot

be obtained analytically. However, numerical solving them leads to a stability curve

very close to that of the piecewise-linear profile, which can be obtained analytically

[79, 106].

For simplicity, let us consider the case of equal densities above and below the

interface. To approach this problem it is convenient to return to the description of

the velocity field through the stream function v = ∇×Ψ. As for the potential function

ϕ, the stream function also solve the Laplace equation ∇2Ψ = 0.

Figure 3.3: Initial perturbed state in a smoothly varying velocity profile shear-flow
configuration: Rayleigh version of describing the Kelvin–Helmholtz instability.

Following a similar approach as before, the boundary conditions for both lower

and upper stream functions are given by [79]:

∂Ψ1

∂x
= 0,

∂Ψ1

∂y
= v1 as y → −∞, (3.12)

∂Ψ2

∂x
= 0,

∂Ψ2

∂y
= v2 as y →∞. (3.13)

Near the interface located at the modulated interface at y = η(x, t), we can

consider the description of the fluids just below and just above the interface, and

arrive to the interface transport equation:

∂η

∂t
= v1

∂η

∂x
+
∂Ψ1

∂x
= v2

∂η

∂x
+
∂Ψ2

∂x
(3.14)
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By considering traveling decaying perturbation modes of the form:

η(x, t) = η̂ei(kx−ωt), (3.15)

Ψ′
1 = Ψ̂1e

kyei(kx−ωt), if y < −δ, (3.16)

Ψ′
0 = (Ψ̂0e

ky + Ψ̃0e
−ky)ei(kx−ωt), if − δ < y < δ, (3.17)

Ψ′
2 = Ψ̂2e

−kyei(kx−ωt), if y > δ, (3.18)

and substituting them into the interface transport equation we obtain the Rayleigh

formula for their dispersion relation [79]:

ω = ωr + iσ =
v1 + v2

2
k ±

(
∆v

4δ

)√
(2kδ − 1)2 − e−4kδ. (3.19)

Figure 3.4: Comparison between the rate initially calculated by Kelvin and
Helmholtz given by Eq. 3.20, and the one for a smooth interface given by Eq. 3.19.

In the limit δ → 0, we recover the relation we get from Eq (3.7) for equal densities:

ω → v1 + v2
2

k ± iv1 − v2
2

k. (3.20)

The behavior of the growth rate between sharp and smooth velocity transitions

are strikingly different, as shown in Figure 3.4. For large wavelength perturbations,

kδ → 0, we recover the limit of the sharp interface model initially proposed by Kelvin

and Helmholtz given by Eq. (3.8). However, for perturbation wavelengths in the
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order of the interface width, kδ ≥ kcδ ≈ 0.6392, the instability is suppress, and the

perturbation is neither amplified nor attenuated. The maximum growth rate occurs

for k∗δ ∼ 0.398 with a maximum value of σ ∼ 0.1006∆v/δ.

3.2 From the continuum to the discrete: Helmholtz’s

results

In classical hydrodynamics, incompressible fluid flow can be described in two main

ways: based on the velocity and pressure, or in terms of the velocity and vorticity

[80]. The velocity-vorticity description has advantages when there are no boundaries,

because vorticity inside a fluid cannot be created or destroyed, as prescribed by

Helmholtz theorem [80]. The vorticity field also connects directly to physical flow

structures, like line or ring vortices. For instance the vorticity in fluid dynamics can

be written as:

Dω⃗

Dt
=
∂ω⃗

∂t
+ (v · ∇)ω⃗ = (ω⃗ · ∇)v + ν∇2ω⃗, (3.21)

where ω⃗ = ∇× v is the vorticity of the velocity flow v.

In two dimensions, the vorticity field has an extra benefit: it reduces to a scalar:

ω⃗ = ωẑ. An alternative representation of two-dimensional flows in terms of moving

point vortices was developed by Kirchhoff [107] and Von Helmholtz [108] in the mid

1800’s. While the Helmholtz–Kirchhoff point vortex model captures many physical

phenomena observed in two-dimensional rotational flows in classical fluids, experi-

ments with simple vortex configurations exhibit complications beyond the point vor-

tex predictions. Extensions of the model include viscous corrections and finite vortex

core sizes [109].

Despite the deviations observed in viscous fluids, this description is suitable for

describing superfluids since no viscous effects should be neglectable [76]. Finite vortex

core effects can be indeed be addressed even for superfluids improving the available

models [76], however, when considering low vortex density systems[73], the direct

representation introduced by Kirchhoff and Helmholtz should be applicable. Follow-

ing this line of thought, let us consider the Kelvin-Helmholtz instability from the

perspective of point vortices.

The problem stated above, of two different fluids having different velocities across
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a sharp interface, can be mapped to point vortices in the follow way. At the interface,

where there is a jump in the tangential velocity, the vorticity of the fluid is given by

ω = ∂vx
∂y

= ω0δ(y), where ω0 is the vorticity per unit length, and δ(y) corresponding

to the Dirac delta. The continuous line of constant vorticity must then be split

into multiple point vortices, each caring the same circulation κ, and which must

be equally separated a distance dv following the line of constant vorticity. For this

scenario, the value of κ, and dv are linked to the relation [96] ∆v = κ
dv
. The problem

of the unstable continuous interface, can therefore be mapped to the problem of the

stability of a linear array of equidistant point vortices.

3.3 Instability of point vortex arrays

3.3.1 Instability of a row vortex array

Figure 3.5: Temporal evolution of the Kelvin–Helmholtz instability from point
vortices. Image compiled from simulations performed in [110].

The problem of a row of vortices has been approached in various ways over the

years [96]. On one hand, we may think of a row of vortices as a discretization version

of a continuous vortex sheet, such as many numerical approached to study of vortex

sheet roll-up [96], as seen in Figure 3.5. Considering the continuum limit, we should

recover from the stability problem for the vortex row the dispersion relation for the
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inviscid Kelvin-Helmholtz instability for equal densities we derived in section 3.1.1,

namely σ = 1
2
k∆v.

Figure 3.6: Ideal (left) and initial perturbed (right) states in a superfluid shear-flow
configuration. Perspective of the the Kelvin–Helmholtz instability in superfluids.

To start the analysis of the vortex motion, let us recover the point model from

Eq. (2.41), where for classical fluids the circulation κj can take arbitrary values.

vi =
1

2π

Nv∑
j ̸=i

κj ẑ × (ri − rj)

|ri − rj|2
. (3.22)

Fixing the linear array of vortices equispaced a distance dv along the x-axis, we

can write their locations as (xj, yj) = (jdv, 0), and by mapping the problem to the

complex plane za = adv. Moreover, Let’s consider the scenario where all vortices have

the same arbitrary circulation κ around them. The equation of motion for the a-th

vortex is given by:

dz∗a
dt

=
κ

2πi

N∑
b ̸=a

1

za − zb
=

κ

2πdvi

∞∑
b=−∞,̸=a

1

a− b
= 0. (3.23)

which vanishes due to symmetry arguments: the contribution of the vortices on the

left cancel exactly those of the right side of each vortex. The solution, za = adv,

is therefore a stationary equilibrium state, as it is the case of a planar interface for

continuous classical fluids. Let us now perturb the system, so the positions of the

vortices become za = adv + ηa. Here, the linear approximation of the equation of

motion for the perturbation on the a-th vortex is:

dη∗a
dt

=
κi

2πd2v

∞∑
b=−∞,̸=a

ηa − ηb
(a− b)2

. (3.24)
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Considering a periodic perturbation of the form ηa = η̂(t)eiakdv , where the wavenum-

ber k may be chosen to satisfy |k|dv < π, we get:

dη̂∗

dt
e−iakdv =

κi

2πd2v

∞∑
b=−∞, ̸=a

eiakdv − eibkdv
(a− b)2

=
κi

2πd2v
eiakdv

∞∑
b=−∞,̸=a

1− ei(b−a)kdv

(b− b)2
. (3.25)

which can be further simplied by noting that the sum term does not depend on the

index a, and can be rewritten as [96]:

∞∑
b=−∞, ̸=a

1− ei(b−a)kdv

(b− b)2
= 2

∞∑
β=1

1− cos(kdvβ)

β2
= π|k|dv

(
1− |k|dv

2π

)
= A|k|. (3.26)

Reducing to:
dη̂∗

dt
e−iakdv =

κi

2πd2v
A|k|η̂e

iakdv (3.27)

Now, let us consider the superposition of two traveling waves, having the same

wavenumber k, as ηa = η̂(t)(eiakdv + e−iakdv). After substitution in the previous

relation we obtain:
dη̂∗

dt
=

κi

2πd2v
A|k|η̂, (3.28)

which can be easily solved by considering the second temporal derivative:

d2η̂

dt2
= −

(
κA|k|

2πd2v

)2

η̂ → η̂ = e
κA|k|
2πd2v

t
η̂0, (3.29)

resulting in the dispersion relation for the vortex row:

ω = ωr + iσ = i
κA|k|

2πd2v
= i

κ|k|
2dv

(
1− |k|dv

2π

)
. (3.30)

Similarly to Rayleigh’s model, the growth rate of the instability has a maximum,

whenever k∗ = π
dv
, yielding the maximum instability growth rate:

σmax =
κ|k|
4dv

=
κπ

4d2v
. (3.31)
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3.3.2 Thickness of the interface layer

An interesting fact regarding the velocity field generated by the row of vortices is the

smooth profile generated far for the positions of the vortices, as seen in Figure 3.7. In

fact, the tangential velocity profile can be analytically obtained and is given by [49,

72]:

vx(x, y) =
κ

2dv

sinh (2πy/dv)

cosh (2πy/dv) + cos (2πx/dv)
. (3.32)

From this result, we can see that the velocity profile near the interface at y = 0

can be approximated by a hyperbolic tangent function vx = v0 tanh
(

y
δ(x)

)
, where the

width δ(x) is position dependent, as shown in Figure 3.7 c.

Figure 3.7: a) Tangential velocity profile generated by a row of vortices. b)
Tangential velocity as a function of the distance between vortices, color denote the
horizontal position in panel a. c) Width of a hyperbolic tangent fit as a function of

the z-axis.

From a coarse-grained perspective, we can treat the varying widths of the tangen-

tial profiles as a single, average value. In particular, the average width can be neatly

expressed as:

δ =
dv
2π
, (3.33)

as it is also anticipated by Eq. (3.32). Moreover, in the limit y/dv →∞, we recover

the scenario of infinitely close vortices, where κ and dv are no longer proper quantities,

with rather ∆v = κ/dv defining properly the mapping to the continuous fluids. As

such, in this limit, the growth rate obtained from Eq. (3.30) is σ = κ
2dv
k = 1

2
k∆v,

the same results as obtained by Kelvin and Helmholtz.

As shown in Figure 3.8, the behavior of the point vortex model and Rayleigh’s

formula follow the same trend. However, they show different maxima growth rate

at different values of kδ. The discrepancy between both models could be due to the

coarse-grained procedure, which could be corrected on the mapping of the average
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Figure 3.8: Comparison between the growth rate of all models. Orange: Sharp
interface, blue: Rayleigh smooth interface, green: point vortex model, black dashed:
smooth interface matching width to correspond to the point vortex model most

unstable wavenumber.

interface width choosing δ̃ ≡ ηδ, where η is a constant of order 1. To get the value of

η, we fix the most unstable wavenumbers between both models to be same, namely

k∗δ = π
dv

dv
2π

= 1
2
for the point vortex approach, and k∗δ ∼ 0.6392. The relative factor

between both give us η ≈ 0.80465. More formally, this number can be obtained

from solving the equation
(√

e−2η − (η − 1)2
)
/η = 1

2
. It is worth considering the

comparison between the local widths δ(x), and the coarse grained values δ = dv
2π

and

δ̃ = 0.8 dv
2π

shown in Fig. 3.7c. Starting from the vortex positions (x = 0, x = 1), δ(x)

increases linearly until reaching δ̃, after which a sudden rise changes the curvature of

δ(x). The change in behavior may act as a stricter condition for the coarse-grained

effective width, rather than relying solely on the simple average width.

Evaluating Rayleigh’s formula (Eq. (3.19)) using this correction, we obtain the

black dashed curve in Figure 3.8, matching perfectly the behavior of the point vortex

model up to the maximum valid wavenumber, |k∗| = π
dv
. The unexpected overlap

between the models, when applying the correction factor, highlights the intriguing

link between the instability of a vortex array and that of a classical fluid with a

smooth velocity profile at the interface.

3.4 Kelvin-Helmholtz instability in superfluids

Theoretical investigations of the Kelvin-Helmholtz instability in quantum fluids have

been mostly focused on the stability of the interface between distinct sliding fluid
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components in Helium systems, concentrating in the interfaces formed by the super-

fluid and normal phases [111–113], or between two different superfluids phases such

as the A and B phases of He3 [45]. Additionally, the Kelvin-Helmholtz instability

has been studied for the free surface of a liquid including both superfluid and normal

components [113]. Experimental observations in liquid Helium remain limited to the

interface between the A and B phases of 3He in a rotating cryostat [45, 114], where

they measured the onset on the instability as a function of the rotation speed of the

containers, rather than probing the imaginary part of the dispersion relation.

More recently, the Kelvin-Helmholtz instability has been studied in the context

of binary mixtures of Bose-Einstein condensates [115–118] in different inter species

interaction regimes, from immiscibility to miscible mixtures. For immiscible mixtures,

the Kelvin-Helmholtz instability appears as the modulation of the interface between

both superfluids, in complete analogy to classical fluids. In the non linear regime,

instead of rolling up the interface, depending on the system parameters, additional

effects can occur, such as the expulsion of islands of one condensate into the on the

forming the so called skyrmion structures [115], which was verified experimentally by

[119]. Similarly to classical fluids, the Kelvin-Helmholtz instabilities[120] in binary

BECs has been linked as a precursor to turbulent behavior.

Recently, a theoretical proposal by A. Baggaley [121], showed that the Kelvin-

Helmholtz instability can be observed in a single-component atomic superfluid by

solving the GPE. Later, [122] showed that similar dynamics could be observed in

single-component superfluids in the transition from small velocities to close to super-

sonic velocities at the interface by directly solving the Bogoliubov equations. Both of

these results are key for the observation of shear flow dynamics in a single-component

atomic superfluid. When a shear flow appears in a superfluid, the density and velocity

of the superfluid must adjust accordingly. Contrary to binary mixtures [115–118], the

lines of non-zero vorticity are unstable and decay into arrays of vortices. The latter

being a consequence of the irrotationality of single superfluids and the quantization

of the circulation. Therefore, the velocity interface between both fluid layers of a

same-species superfluid is no longer smooth but rather present modulations due to

the presence of the single quantum vortices. Thus, the description of the Kelvin-

Helmholtz instability in a single-component atomic superfluid is well encapsulated by

the instability of point vortices in the Helmholtz–Kirchhoff point vortex model.
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Chapter 4

From persistent currents to vortex

arrays in superfluids

In this chapter, I describe the protocol used in our experiments to produce a fermionic

superfluid flowing in a ring-shaped trap with quantized circulation.

Firstly, I briefly discuss the experimental sequence used for cooling down the

atomic gas and for the creation of fermionic superfluids across the BEC-BCS crossover.

Secondly, I present how through the combination of a high-resolution objective and a

Digital Micromirror Device (DMD) we are able to generate on-demand static and dy-

namical optical potentials, allowing us to precisely manipulate the potential landscape

of the atoms. Next, I describe the procedure employed to excite persistent currents

in ring-shaped superfluids. Moreover, their stability and robustness are discussed.

Finally, I present the creation of the prototypical scenario required for the ob-

servation of the Kelvin-Helmholtz Instability (KHI) in superfluids: two concentric

ring-shaped superfluids in counter-rotating motion. By dynamically controlling their

overlap through the separating optical barrier we generate the initial configuration

for the observation of the KHI from the vortex array instabilities perspective.
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4.1 Preparation of a superfluid gas 6Li

4.1.1 Ultra-high vacuum system

Cold atoms experiments need to be performed under vacuum. Our setup, illustrated

in Figure 4.1, consists of four main sections: the oven, the differential pumping, the

Zeeman slower, and the science chamber. Inside the oven, an artificially enriched 6Li

sample is heated to 400◦C, generating sufficient vapor pressure to form an atomic

beam, which is then collimated by the combination of a nozzle at the exit of the oven

and a copper cold finger. Subsequently, the atomic beam passes through a differential

pumping stage that enables the decoupling between the high pressure from the oven

(10−10 - 10−8 Torr) and the science chamber (10−11 Torr). Next, the atomic beam then

enters the Zeeman slower, where the atoms are decelerated to approximately 60 m/s.

Finally, the slowed atoms enter the science chamber, where they are captured in a

3D magneto-optical trap (MOT). The science chamber is an octagonal stainless-steel

cell, featuring two large re-entrant viewports along its vertical axis to accommodate

a high-resolution imaging system. A detailed description of the ultra-high vacuum

system is provided in Ref [123].

Figure 4.1: Experimental vacuum system used for the production of ultracold
fermionic gases. A metallic lithium sample is placed in the oven (a), where it is
heated to 400◦C, generating sufficient vapor pressure to produce an atomic beam
expelled through a nozzle. The atomic beam is subsequently decelerated using a
Zeeman slower (b) before being captured and trapped in the science chamber (c).

Image from [124].
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4.1.2 Lithium in the presence of magnetic fields

The fermionic isotope of lithium has in its ground state, 22S1/2, a single valence

electron with total angular momentum Ĵ = L̂ + Ŝ = 0 + 1/2 = 1/2. The first

two exited states corresponds to the 22P1/2 and 22P3/2 states, with Ĵ = 1/2 and

Ĵ = 3/2 respectively. The optical transitions between the 22S1/2 state to the 22P1/2

and 22P3/2 states are respectively known as D1 and D2 lines. Figure 4.2 sketches the

fine structure of the 6Li atom, along with the relevant optical transitions [125].

Figure 4.2: 6Li fine and hyperfine structure at zero external magnetic field. The two
relevant optical transitions used in the experiment are the D1 and D2 lines. Both
optical transitions have similar linewidths Γ = 2π × 5.87 MHz [125]. The fine

splitting of the 22P3/2 level is not resolved.

To model the effect of both the hyperfine splitting and the external magnetic we

consider the Hamiltonian [126]:

H = H0 +HHF +HB = H0 + AI · J− (µBgJJ+ µNgII) ·B, (4.1)

where H0 describe the fine structure Hamiltonian of an atom, HFH the hyperfine

Hamiltonian, and HB the magnetic interaction Hamiltonian. The constants gJ and

gI are the electronic and nuclear Landé factors respectively. Table 4.1 shows the

specific values of the Landé g-factors for the different electronic and nuclear states of
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fermionic lithium. The hyperfine structure of the atom is describe by the total angular

momentum of the outermost electron J and the nuclear spin I. The hyperfine shift

as a function of the external magnetic field is given by [126]:

1

h
∆E = aI · J− 1

h
(µBgJJ+ µNgII) ·B, (4.2)

where a is the hyperfine constant expressed in units of Hz. Considering a constant

bias magnetic field of the form B = Bz ẑ, then the energy shift is given by:

Symbol Value a[MHz]
gI -0.0004476540

gJ(2
2S1/2) 2.0023010 152.1368407

gJ(2
2P1/2) 0.6668 17.4

gJ(2
2P3/2) 1.335 -1.1

Table 4.1: Landé factors for 6Li [125].

1

h
∆E = aIzJz +

a

2
(J+I− + J−I+) +

(µBgJ
h

Jz +
µNgI
h

Iz

)
Bz, (4.3)

where J± are the raising and lowering operators respectively. The hamiltonian contri-

bution shown in (4.3) can be solved analytically for J = 1/2, known as the Breit-Rabi

solution. The energy splitting is given by [126, 127]:

1

h
∆EF=I± 1

2
= −(I + 1/2)

2(2I + 1)
a+

µNgImFB

h
± (I + 1/2)

2
a

√
1 +

2mF

I + 1/2
x+ x2, (4.4)

where x =
(

µBgJ−µNgI
ah(I+1/2)

)
B. For the J ̸= 1/2 the solution to (4.3) must be obtained

numerically. Figure 4.3 show the energy shifts of the 22S1/2, 2
2P1/2 and 22P3/2 states

of 6Li as a function of the external magnetic field.

At zero external magnetic field, the ground state 22S1/2 splits in two hyperfine

levels:
∣∣22S1/2, F = 1/2

〉
and

∣∣22S1/2, F = 3/2
〉
separated by 228.2 MHz. The state

22P3/2 hyperfine splitting is unresolved, meaning the separation between the states

with F = 1/2 and F = 5/2 is less than the transition natural linewidth, as shown in

Figure 4.2.

For low magnetic fields (B ≲ 30 G for 6Li) the Zeeman effect is a weak perturbation

to the hyperfine structure, producing the expected linear Zeeman effect. In this

regime, the description using the |F,mF ⟩ is still valid. For higher magnetic fields,
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Figure 4.3: Hyperfine splitting as a function of the external magnetic field for the
states 22S1/2, 2

2P1/2 and 22P3/2 of 6Li. For the former two states, we use the
Breit-Rabi formula (4.4), meanwhile for the state 22P3/2 we must solve numerically

(4.3).

this is not the case [126]. At higher fields, the Zeeman effect dominates over the

hyperfine structure, causing the electron and nuclear spin to decouple. This regime is

also known as the Paschen-Back regime. In this regime, the F description is no longer

valid requiring the electronic and nuclear spin projections, mJ andmI , to describe the

states correctly. In the Paschen-Back regime, the hyperfine splitting between states

with the same mJ quantum number remains almost constant, as shown in Figure 4.3.

4.1.3 Laser sources

For all experiments reported in this thesis, we employed different laser sources to

manipulate the atomic samples. Two red lasers near 671 nm were used for the initial

cooling stages and imaging (D1 and D2 lines of 6Li), two infrared lasers at 1064 nm

and 1073 nm for creating a crossed optical dipole trap (cODT), and finally, a 532 nm

green laser beam to engineer the final dark potential, where all the experiments are

carried out.

671 nm laser sources

We use the optical transitions between 22S1/2 and 22P1/2 and 22P3/2 states to perform

the initial stages of cooling. The 22P1/2 and 22P3/2 states are separated by 10 GHz,

requiring two distinct laser sources. We employed two Toptica TA-Pro lasers: one

locked to the D1 transition using standard saturated absorption spectroscopy, the
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other one is locked to the D2 transition using a frequency modulation spectroscopy

[123]. To address the ground state manifold (22S1/2) sublevels, instead, we use a

single laser for both cooling and repumping frequencies required for the MOT, and

the D1 cooling stage, since the hyperfine splitting is only 228 MHz. The frequency

separation between cooling and repumping is achieved through a series of Acousto-

Optical Modulators (AOMs). To increase the available power, we employed two TA-

Boost amplifiers. For imaging, we employ the D2 laser to drive the transition from

one of the mj = −1/2 (|1⟩, |2⟩, |3⟩) states to the mj = −3/2 excited manifold. To

compensate the energy shift of the D2 transition in the presence of a large magnetic

field ( 690-900 G ), that is of the order of 1 GHz, we employ a combination of AOMs,

staring from the cooling and repumping frequencies at 0 field [123].

Optical dipole traps

To reach quantum degeneracy, we confine the atoms in optical dipole traps using far

off-resonance laser light, which exerts a conservative force on the atoms. This force

arises from the interaction between the laser’s electric field and the induced atomic

dipole moment [126, 127]. The electric field E induces a dipole moment p = αE,

where α is the scalar the complex polarizability of the atomic medium [126, 127].

More generally α can be described as a tensor [10], which off-diagonal components

can be used in many scenarios such as off-resonant Faraday imaging [128]. The

induced dipole moment, interacts with the external electric field, and gives rise to the

dipole potential:

Udip = −1

2
⟨p · E⟩ = −Re(α)

2
|E|2. (4.5)

From a semiclassical approach considering the interaction between a two-level

atom with the classical radiation field the dipole potential can be written as [10, 126]:

Udip(r) ≈
3πc2

2ω3
0

Γ

∆
I(r), (4.6)

where ω0 is the two-level atom resonant frequency, Γ the linewidth, and ∆ = ω−ω0 is

the detuning of the laser light from the transition. Additionally from the conservative

potential Eq (4.6), the light-atom interaction considers a dissipative scattering which

depends on Im(α) ∼ 1/∆2, making it negligible for far-off resonant beam. The

dipole potential depends on the light intensity, and it is either attractive or repulsive

according to the frequency of the laser light. With red detuned laser frequencies,
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the potential attracts has a minimum at the maximum of intensity, while for blue

detuned light the minimum of intensity provides the minimum of the potential.

To manipulate the atoms in the experiment we make use of such optical potentials.

We use two (red-detuned) high-power infrared (IR) beams: an IPG laser: 1073 nm

multi-mode ytterbium fiber laser with a maximum power of 200 W, and a Mephisto

laser: a 1064 nm Nd:YAG laser with a maximum output power of 50 W. The power of

arriving to the atoms is stabilized using AOMs controlled via a feedback loop compris-

ing a photodiode that measures a fraction of the light arriving to the atoms from the

transmission leak of one of the mirrors in the laser path, and a commercial analog PID

controller. Both IR beams are focused at the center of the science chamber, crossing

at an angle of approximately 14◦, see Figure 4.4, with similar waists around 40 µm.

To increase the trapping volume, the position of the IPG waist was rapidly varied

along the x-axis by modulating the amplitude and frequency of the AOM driving

signal out of phase, effectively increasing the beam waist to 80 µm [123].

Figure 4.4: Schematic representation of the laser beams viewed a) from above and
b) from the side. Image taken from [129].

The final confining trap, consist of two blue-detuned laser beams derived from a

Verdi V8 laser at 532 nm. The first beam has a TEM0,1 mode spatial profile [129],

characterized by a vertical waist (along the z-axis) of σz = 8.73µm and a horizontal

waist of σx,y = 400µm. The TEM0,1 beam intercepts the cODT at ∼ 45◦ along the

horizontal plane of the experiment, see Figure 4.4, compressing the atomic cloud in the

z-direction, trapping them in the low-intensity region. A more detailed description of

the optical path and design of the optical potential can be found in [129]. The second

532 nm beam is used to create arbitrary optical potentials using a digital micromirror
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device (DMD). This beam propagates along the vertical axis of the experiment (see

Figure 4.4), and allows the control over the system’s geometry in the horizontal

plane. Similar to the IR laser beams, both 532 nm beams are independently intensity

stabilized using the combination of AOMs and photodiodes [129].

4.1.4 Reaching quantum degeneracy

To reach quantum degeneracy in the final dark-box potential, we follow the experi-

mental sequence.

A first stage of slowing down the atomic beam originating in the oven is performed

using the standard 1D cooling scheme in a Zeeman Slower [126, 127]. In this section

of the experiment, the atoms are decelerated from velocities on the order of 800 m/s

to approximately 60 m/s [123]. The terminal velocity of the atoms is enough for them

to remain confined in a 3D Magneto-optical trap (MOT) located in the center of the

science chamber. We typically load the MOT for 6 s. The temperature of the atoms

in the MOT is on the order of a few mK. Next, the temperature is reduced closer

to the Doppler limit (TD = 141µK) by applying the standard D2 optical molasses.

The non-resolved excited manifold structure of the 22P3/2 impede the efficient cooling

of the technique, eventually reaching temperatures ∼ 3 − 4TD. Contrary to other

atomic species, processes like the Sisyphus cooling are not performed during the D2

optical molasses for similar reasons. To further cool the atomic cloud, we employ a

D1 gray molasses stage [130, 131] to achieve sub-Doppler temperatures in the order

of 40 µK. During the gray molasses stage, most of the atoms are optically pumped to

the F = 1/2 state, allowing for the natural preparation of the spin mixture of states

|1⟩ and |2⟩ in the presence of a biased magnetic field.

Following the D1 gray molasses stage, we turn on the IR laser beams creating a

conservative potential where the atoms get confined through the optical dipole force

[10]. The initial trap depth of this potential is ∼ 5 mK. After capturing the atoms

in the ODT, we ramp up a bias magnetic field toward the center of the Feshbach

resonance between the states |1⟩ and |2⟩ at 832 G [132]. We take advantage of the

resonant interaction (see section 2.2.1) and fast thermalization rates [9] at unitarity to

perform runaway evaporative cooling by lowering the power of both IR laser beams.

During the evaporation ramps, the atomic cloud, initially dominated by the high-

power IPG beam profile, slowly moves towards the crossing position between the

IPG and Mephisto beams. There the atomic cloud reaches quantum degeneracy, see
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Figure 4.5: Atomic sample imaged along the vertical axis: trapped by the
combination of the a) IPG and Mephisto. b) IPG, Mephisto, and TEM0,1 laser

beams (left) in the unitary regime at 832G, and (right) in the BEC regime at 702G.
Atomic sample imaged along the horizontal axis: in the c) IR cigar, and in the d)
TEM0,1 alone. e) DMD and TEM0,1 laser beams in the mBEC. Engraving ”Thank

You!” is employed to focus the DMD laser beam. f-g) Examples of trapping
potentials in the final dark-box potential.

Figure 4.5 a). Finally, by tuning the magnetic field, we modify the atomic interaction

through the Feshbach resonance, allowing us to create the molecular Bose-Einstein

condensate of tightly bound atoms, a strongly interacting Fermi gas, or a Bardeen-

Cooper-Schiffer gas of Cooper-pairs-like states.

After the creation of the desired superfluid regime, we transfer the atoms into the

final dark-box potential. We slowly ramp up the power of the TEM0,1 laser beam

creating a combined optical potential where the vertical direction if compressed, see

Figure 4.5 b-d). Due to the focus requirements of the high-NA objective, the vertical

position of the TEM0,1 must always remain in the same position to provide stability

of the experiments over multiple days. Such deviations may arise from thermal or

mechanical drifts that are difficult to suppress. To overcome this constraint, we

employ a screw driven by a picomotor controller located on the last mirror of the

optical path of the TEM0,1 beam. This controller allows us to fine-tune the position

of the TEM0,1 potential up to the resolution provided by our imaging system along
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the horizontal axis of ∼ 6µm, see Figure 4.5 d).

After turning on the TEM0,1 laser beam, we ramp up the DMD laser beam to

confine the atoms in the horizontal plane. Subsequently, we ramp down the power

of the IR laser beam such that the atoms remain confined within the low-intensity

region set by the 532 nm TEM0,1 + DMD optical potential, see Figure 4.5 f-g). After

realizing the atoms TEM0,1 + DMD optical potential we align the focus position of

the DMD beam to the atomic plane. For this, we evaluate the sharpness of the density

profile after shining a ”Thank you!” pattern onto the atoms, by adjusting the vertical

position of the high-resolution objective.

In the final trapping configuration set by the TEM0,1 + DMD optical potential

we remain with approximately N ∼ 30 · 103 atoms per spin, for traps with maximum

extension radial extension of 45 µm, and vertically extended ∼ 6 µm due to the

harmonic confinement, however the latter might change depending on the interacting

regime.

4.2 High-resolution imaging

4.2.1 Absorption imaging

To acquire images the density distribution of the atomic sample (such as Figure 4.5),

we use absorption imaging. A resonant pulse of light is directed onto the atoms, and

the resulting intensity profile is captured by a CCD camera. The presence of atoms

is indicated by the presence of a shadow in the acquired light pattern, caused by the

absorption of light by the atoms. This behavior is encapsulated by the Lambert-Beer

law stating:

dI

dz
(x, y) = −n(x, y)σ, (4.7)

where I is the light intensity propagating along the z direction and illuminating the

atomic cloud of density n, and σ is the atom-photon interaction cross-section [126].

In general σ is a function of the intensity making the absorption profile depends on

the intensity regime. In the low intensity regime, the measured absorption profile

doesn’t depend on the intensity [126] since σ → σ0 in this regime. The value σ0 =
3λ2

2π

is known as the resonant cross-section of the transition.
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When dealing with optically dense clouds, the number of transmitted photons in

the low-intensity regime becomes very low, reducing the signal-to-noise ratio (SNR).

To increase the SNR we require entering the limit of high-intensity imaging, where sat-

uration effects cannot be neglected [133], modifying the cross-section in the Lambert-

Beer law [126] as:

dI

dz
(x, y) = −n(x, y, z) σeffI

1 + I/Ieff
, (4.8)

where σeff = σ0/α and Ieff = βIsat are the effective cross-section and effective

saturation intensity, respectively. The complex multilevel structure of the atomic

transition and imperfections in the alignment of the imaging beam polarization with

the quantization axis might affect the ideal values of cross-section σ0 and saturation

intensity Isat for the two-level system. The shadow profile of the atomic cloud that we

acquire with absorption imaging, provides a measurement of the local optical density

OD, which can be obtained by integrating the previous equation along the z-imaging

direction:

OD(x, y) = σeffn2d(x, y) = − log
Iin
Iout
− Iout − Iin

Ieff
, (4.9)

where Iin and Iout are the incident and transmitted intensity, respectively. When

I ≪ Ieff , the linear term can be neglected recovering the simple Lambert-Beer law

that is independent of the imaging intensity. The integrated atomic density n2d is

thus given by:

n2d(x, y) = −
α

σ0
log

Iin
Iout
− α

βσ0

Iout − Iin
Ieff

. (4.10)

To have a reliable measurement of the atomic density, the coefficients α and β

parameters must be calibrated. The techniques employed for the calibration are ex-

plained in Refs. [53, 133]. In summary, we prepare an atomic cloud with a stable

number of atoms and we measure its atom number with reliable low-intensity horizon-

tal imaging. We then image the same cloud with the vertical setup, and calibrate the

value of β such that the OD profiles acquired with different light intensities show the

same profile. The value of α is instead obtained by constraining the number of atoms

measured with the vertical imaging to be the same as measured with the horizontal

one [133].
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4.2.2 Vertical imaging setup

Figure 4.6: Schematic representation of optical path for the high-resolution imaging
along the vertical direction. Image taken from [129].

The vertical imaging system consists of a high-resolution microscope objective

designed to be achromatic for 671 nm and 532 nm. Allowing for the simultaneous

imaging of the atomic cloud and the projection of arbitrary optical potentials using

the DMD. The resolution of the imaging system is measured to be below 1 µm for

both wavelengths [129]. The imaging light is focused using a lens with a focal length

of f = 1000 mm onto an Andor iXon3 EMCCD camera with 13µm × 13µm pixels.

The total magnification of the vertical imaging system is M = 21.8. More detailed

information on the vertical imaging setup and the high-resolution objective can be

found in [129]. The Andor camera is operated on the Fast Kinetic Series (FKS)

acquisition mode: we acquire the sequence of 3 images required for the absorption

imaging with a short delay time of the order of 200 µs, by reducing the portion of

the camera chip illuminated by the light [133]. Moreover, to reach the high spatial

resolution of our vertical imaging system, it is essential to minimize the atomic motion

caused by the recoil from scattered photons during the imaging pulse. To this end,

we use short imaging pulses of 4 µs with an intensity of ∼ 3Isat.
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4.3 Arbitrary optical potentials with DMD

Ultracold atom experiments offer the remarkable possibility of shaping the potential

landscape experienced by the atoms by controlling the spatial intensity profile of a

far-off-resonance laser beam. Different potential landscapes can be maid by the inter-

ference of two or more laser beams, creating a perfect or disordered lattice. Similar

optical potentials can created through the projection of certain phase, or intensity

masks. However, recently, the integration of Spatial Light Modulators (SLMs) into

atomic physics experiments have open the way to flexible static and dynamic optical

potentials with unprecedented control. In particular, in our experiment we make use

of a Digital Micromirror Devices (DMDs) to achieve the control over the potential

landscape.

Figure 4.7: The Digital Micromirror Device (DMD). (a) Picture of the DMD
mounted displaying a smile image. (b) Sketch of the states of the DMD

micro-mirrors: when the DMD is off all micro-mirrors occupy the rest position tilted
at 0°, when a voltage is applied to a mirror it tilts either by +12° or -12°, labeled as

ON and OFF state. Image taken from [129].

DMDs are well-suited for such applications due to their capacity to generate

high-resolution static images and offer dynamic control on timescales comparable

to atomic response times. In our experimental setup, we employ a Vialux V-7000

High-Speed Module DMD, which features the Texas Instruments Discovery 4100 0.7”

XGA 2xLVDS (DLP7000) chip. This chip contains an array of 1024× 768 micromir-

rors, each with a pitch of 13.68, µm. Each micromirror can tilt by +12◦ (ON) or −12◦

(OFF), reflecting light in different directions depending on its state. By loading a

binary image onto the DMD, the micromirrors align according to their ON or OFF

states, effectively acting as a programmable light mask. For example, as shown in

Figure 4.7 a), a smile pattern is displayed on the DMD. The reflected light can then
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be projected onto the atomic cloud. While any off-resonant light can be used to

impose a desired potential, blue-detuned light allows the design of repulsive regions

within the atomic potential landscape. The design of homogeneous potential regions

in space is achieved with minimal effort, simply by not shining light into those re-

gions. This is not the case, when trying to design optical potentials using red-detuned

light, where the consideration of the smoothness/roughness and sharpness of the im-

printed potential are crucial things to consider. In Fig. 4.7 c), we show examples

of DMD-generated arbitrary optical potentials projected onto our quasi-2D atomic

cloud.

4.3.1 DMD optical path

We project the DMD-generated optical potentials onto the atomic cloud using the

high-resolution microscope objective system used for imaging, achieving sub-micron

resolution at 532 nm [129]. The optical setup combines the imaging system shown in

Figure 4.6 with the optical setup shown in Figure 4.7 b). At the output of a fiber,

a Gaussian beam with a waist of ∼ 7 mm, effectively illuminating the 1 × 1.5 cm

DMD screen. This beam is directed to the DMD through a mirror, and the leakage

is monitored by a photodiode to stabilize the beam intensity through a PID feedback

loop. The PID adjusts the amplitude of an AOM before the input to the optical fiber,

regulating its output intensity. The co-linear configuration with an incident angle of

θi = 12◦ is used, and the reflected and incident beams are recombined through a

polarizing beam splitter (PBS). A telescope demagnifies the DMD pattern a factor of

2.52. An adjustable iris positioned in the focal plane of the first lens acts as a spatial

filter to smooth the DMD image profile.

The DMD projection is combined with the imaging path in a 2” PBS, and then

focused onto the atomic cloud by the objective system, resulting in an overall de-

magnification factor of 55. This reduces a single DMD mirror to ∼ 0.25µm in the

atomic plane [129]. A flip mirror after the first telescope focuses the DMD image

onto a Thorlabs CMOS camera, enabling pattern checks, calibration, and running

the feedback routine required for the creation of smooth intensity profiles.
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4.3.2 Controlling the DMD

To control the optical potentials, i.e the images displayed in the micro-mirror array,

we interface the DMD device with a control software. The control software is capable

of loading, changing, and running any desired sequence of images. The software is

based on the ALP4lib open-source Python module by Sebastien Popoff [134], which

allows for the loading of long sequences of images onto the device, as well as setting

the configuration properties of the sequence. Both the feedback program and the one

used for producing dynamic optical potentials employ ALP4lib to interface with the

DMD.

The algorithm employed for the feedback process is explained in detail in Ref.

[129]. The idea behind this algorithm is to run a feedback process comparing the image

generated by the DMD, measured by the Thorlabs CMOS camera shown in Figure 4.7,

and the binary image reproduced by the mirror array. Using this procedure, we can

arbitrarily create smooth intensity profiles. Examples of use consist of transforming

the input gaussian beam into flat-top homogeneous profiles with different gray levels.

Or equivalently, linearly varying intensity profiles, such Figure 4.12. After running

the feedback profiles, the mirror ON-OFF image is stored, and can be used to generate

the final optical potentials.

The dynamic potentials instead are created using a list of matrices that define

the different patterns the DMD will project. After the design of the sequence of

images, the dynamic program loads the matrices onto the V-7000 Vialux board. The

board is configured such that every time a trigger pulse arrives to the V-7000, the

mirror pattern change to next pattern. The minimum time a pattern can be shown

is 44µs, allowing the device to reach its maximum frame rate of 22 kHz. However,

we constrain all experimental sequences to a minimum of 60µs to avoid any trigger

skipping on the DMD board. Additionally, the process of switching images takes

about 10µs, during which all mirrors return to their rest position before tilting to

the new state, no light is projected onto the cloud during this 10µs window [129].

In general, the flickering can lead to heating of the cloud. This effect can be crucial

when the reaction time of the atomic system, set by the chemical potential µ, is of

the same order of timescales. However, in the experiment the typical energy scale,

set by the Fermi energy, are below µ ≤ EF ≲ 2π × 20kHz. Making negligible the

heating mechanism.
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4.4 Density excitations

As we mentioned in section 2.3.1, a fundamental property of superfluids is the exis-

tence of excitations which do not destroy the superfluid state. The maximum velocity

an obstacle can go in a superfluid without perturbing it is in principle the critical

velocity [61, 62]. Further corrections must be made when considering a real obstacle,

such as considering the local values for the critical velocity [135]. For weakly interact-

ing BEC’s, the critical velocity coincides with the speed of sound, while in the BCS

regime it corresponds to the pair breaking velocity.

Figure 4.8: a) Protocol for the measurement of the speed of sound using the density
depletion method. The height of the obstacle is shown below each panel. We

measure the atomic density profile along the red line vs time. b) Experimentally
obtained profiles as a function of time. From left to right: an obstacle of size 5, 7.5,
and 10 µm is removed, a subtle wavefront propagates in time traveling at the speed
of sound. b) Propagation trajectory of the density dip. For all obstacle sizes the

wavefront propagates at the same speed seen by the linear fits.

Many experiments have measured this behavior with great accuracy [61, 62]. They

achieved this my superimposing a moving lattice inside the superfluid, and measur-

ing the effect it caused to the superfluid density. Another method performed, mainly

motivated by numerical simulations, is measuring the restoring dynamics of the su-

perfluid after removing a static obstacle. To test the capabilities of our system, we
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probed the response of the mBEC to such protocol. Initially, we start by creating a

homogeneous BEC in a squared shape trap designed using the DMD. Then, we slowly

ramp up the height of an obstacle potential, until the obstacle potential height is well

above the chemical potential of the BEC, see see Figure 4.8 a). Suddenly, we remove

the obstacle, and observe the propagation of the density depletion as a function of

time. In Figure 4.8 b), the observe the behavior of the average density profile (out of

5 repetitions) along the one axis (red line of panel a). We observe that the density

depletion propagates at the same speed independently from the size of the obstacle,

giving a clear measurement of the speed of sound.

Although we provide a possible protocol for measuring the speed of sound, the

signal-to-noise ratio is low, making the measurement noisy and unreliable. Perform-

ing azimuthal averaging could improve the signal to noise. However, in addition to

modifying the superfluid quantum statistics across the BEC-BCS crossover, one of

the most striking differences between these regimes is the compressibility of the sys-

tem [6, 136]. This behavior is a consequence of the underlying statistics governing

the superfluid. Fermionic superfluids tend to be less compressible due to the Fermi

pressure, while bosonic superfluids are much more compressible. Moreover, the con-

trast of density excitations is intrinsically related to the compressibility of the system

(κ = n−2 dn
dµ
→ 1

n
dn
dx

= κndµ
dx
). Hence, we can expect the signal-to-noise ratio of the

subtle decompression to be further reduced in the UFG and BCS superfluids.

To increase the signal-to-noise ratio of the density excitations, we opted for the

compression protocol shown in Figure 4.9 a-c). Using the walls defined by the DMD

potential, we move the a boundary of the system at a constant rate for a small

extension. We used a box of length 35 µm. We compress one direction by an amount

∆x = 1.25, 2.5, and 3.75 µm the constant rate of ∼ 2.5µm/ms. As shown in Figure

4.9 d-e-f), we observe the propagation of a density wave in all three d) BEC, e) UFG,

and f) BCS superfluids with a significant larger signal-to-noise ratio.

The observed dynamics are quite interesting and deserve a detailed study on its

own. A first compression wave leads the propagation, with a rarefaction pulse(s)

behind it. In all interaction regimes, we observe the compression pulse to be initially

compact and spreading over time. This behavior is expected due to the population of

many k-modes in the initial compression. In homogeneous systems, sound propaga-

tion is expected to be damped over time. The damping coefficient Γ strongly depend

on the wavenumber k, and the sound diffusivity coefficient D, as Γ ≈ Dk2. Recent
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Figure 4.9: a-c) Compression protocol for exciting a density wave. The average
density profile as a function of time is shown for a d) BEC, e) UFG, and f) BCS
superfluids. We compress three different amounts: ∆x = 1.25, 2.5, and 3.75 µm.

experiments have investigated the sound diffusivity coefficients across the different

superfluids [89, 137–139]. At unitarity, the diffusivity coefficient D ≈ 1.5 ℏ
m

is almost

independent on the temperature (for T < Tc) [89]. In the weakly interacting BEC

regime, instead, it was measured that D ≈ 3.0 ℏ
m
, and was found to be independent of

the interaction regime [137]. Finally, the emergence of sound in the deep BCS regime

was measured, and found that for weak interactions, quasiparticle transport the ex-

citations of the Fermi system evolve from broad particle-hole excitations to a narrow

collective sound mode, yielding an almost Heisenberg limited sound attenuation [138].

Moreover, the propagation speed of the compression wave is similar for the differ-

ent compression lengths, see Figure 4.10 a). Normalizing the measured velocity of the

compression wave to the Fermi velocity, vF , we obtain the plot shown in Figure 4.10 b).

We also show the expected normalized speed of sound obtain from the polytropic mean

field model developed in section 2.2.3. In our 2D homogeneous system with transverse

harmonic confinement, the normalized speed of sound is cs/vF =
(
3 · 2− 13

2 kFaM

)1/3
in the BEC limit, while cs/vF =

√
ξ3/4/3 in the crossover regime. An effective

ξ = ξ(kFa) can be extracted from MonteCarlo simulations [140], allowing us to ex-

tend the behavior across the full crossover. In the deep BCS limit the speed is instead



65

Figure 4.10: a) Trajectory of the compression pulse central position over time for
different compression lengths in the BEC superfluid. b) Normalized speed of sound
across the BEC-BCS crossover. Lines denote the speed of sound (blue), see Table

2.1, and the pair breaking velocity, see Figure 2.2.

fixed to cs/vF = 1/
√
3. The measured values align precisely with the expected be-

havior in the BEC regime. However, in the unitary and BCS regimes, they deviate

slightly from the speed of sound calculations. Nonetheless, when comparing the data

to the pair-breaking velocity [62], we find them to be in agreement.

The compression mode we excited not only encodes the dynamics of the critical

velocity of excitations in the superfluid but also opens the way to study compression

waves in the system. A noticeable feature of Figure 4.9 d-f) is the presence of a de-

pletion region behind the compression, consisting of the rarefaction of the superfluid.

Surprisingly, the behavior of the rarefaction region differs significantly between the

interaction regimes and across different compression lengths. For instance, in the

BEC case (Figure 4.9 d)), as we increase the compression of the condensate, the rar-

efaction splits into two rarefaction waves. Moreover, each wave seems to propagate

at increasingly slower velocities.

The physics behind rarefaction waves in superfluids is quite interesting and well

understood in the case of liquid He [141], where rarefaction waves are typically as-

sociated with heating waves. Only recently have studies been conducted on the dis-

sipative shock waves generated by a quantum mechanical piston [142], where it was

found that many aspects of the dynamics follow the predictions of classical dissipative

shock theory rather than superfluid dispersive shock theory. Nonetheless, the study

of the propagation of these waves in strongly interacting systems remains an active

area of research [142, 143].
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4.5 Excitation of persistent current states

Persistent currents in annular geometries have played an important role in revealing

the quantum phase coherence of superconductors and mesoscopic electronic systems.

Ultracold atomic gases in multiply connected traps also exhibit long-lived supercur-

rents, attracting significant interest both for fundamental studies of superfluid dy-

namics and as prototypes for atomtronics circuits [144, 145]. Such persistent currents

in a toroidal superfluid have been observed in both bosonic [146–148] and fermionic

[135, 149, 150] atomic gases.

Over the years, different techniques to excite persistent flows in ring-shaped su-

perfluids have been successfully implemented [135, 146, 149, 150]: from two-photon

transitions to transfer angular momentum, stirring an obstacle along the ring, and

more recently, using a phase-imprinting protocol. In our experiment, we follow the

latter approach, demonstrating the validity of this technique for fermionic superfluids

across the crossover.

Figure 4.11: Sequence of steps employed for the creation of a static superfluid in the
annular + disk configuration potential.

To excite persistent currents in our fermionic superfluids, we first need to engineer

the transition from the cigar-shaped gas to the final ring-shaped trap. One of the key

considerations during this transfer is the potential excitation of angular modes or the

unintentional imprinting of velocity along the azimuthal direction, which can induce
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spontaneous persistent flow. This is undesirable because we would lose precise control

over the final state. For this reason, we designed [151, 152] the sequence of steps

illustrated in Figure 4.11. We begin by transferring the gas from the cigar-shaped

cloud into a circular trap, similar to Figure 4.5. To avoid azimuthal excitations, we

raise a barrier that separates the trap into two semi-disks, with a height above the

chemical potential. Next, a circular barrier with a radius of 10 µm is raised. Finally,

the line barrier is removed by gradually decreasing the amount of light reflected by

the DMD.

The final trap configuration consists of two distinct superfluids: one in a disk

geometry and the other in an annulus. This particular geometry allows us to use

the central superfluid as a phase reference when measuring the relative phase of the

annular superfluid.

As mentioned above, we aim to excite persistent currents in the ring using a phase-

imprinting protocol. This method is based on the fact that rapidly varying potentials

tend to modify the local phase [135, 150]. To understand the relationship between

phase and potentials, it is useful to analyze the case of a Bose-Einstein Condensate

(BEC), where the Gross-Pitaevskii Equation (GPE) applies. Starting from the GPE,

let us consider the wavefunction solution for a static potential Vstatic, with the solution

given by ψ(r, t). Then, for a short duration, we flash a potential Vflash, and consider

the new solution as Ψ(r, t) = ψ(r)e−iϕ(r,t). After substitution, we obtain:

ℏ
∂ϕ(r, t)

∂t
= Vflash(r, t) +

ℏ
2M

(
∇2ϕ+ 2i

∇ψ · ∇ϕ
ψ

)
, (4.11)

In the limit of short imprinting time, such that there is no motion of the atoms,

and considering a homogeneous BEC distribution, this relation reduces to the phase

imprinting relation [150, 153]:

ℏ
∂ϕ(r, t)

∂t
≈ Vflash(r, t)→ ϕ(r, t) =

∆t

ℏ
Vflash(r, t), (4.12)

where ∆t is the total time the potential is flashed. Therefore, the phase imprinted to

the condensate is given by the flashing potential Vflash. Using the off-resonant laser

light out of the DMD with a intensity pattern I(x, y), the atoms will experience a spa-

tially varying light-shift potential U(x, y) ∝ I(x, y), hence acquiring the correspond-

ing phase ϕ(x, y) ∝ ∆tI(x, y). This imprinting protocol has recently been analyzed

for fermionic superfluids [154], by performing direct simulations of the Bogoliubov-
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de-Gennes equations. Interestingly, they show the imprinting protocol is indeed able

to set the phase of the order parameter.

Persistent current flows in ring shape superfluids can be identified with clear and

distinct wavefunction states which are characterized by their flow around the enclosed

region. We know the superfluid velocity is given by v⃗ = ℏ
M
∇ϕ, and, the circulation

around a closed loop is quantized: Γ = wκ with w an integer number (see section

2.3.2). Hence, for our annular superfluid, the velocity flow is also quantized, and it

must be given by v⃗ = κ
2π

w
r
θ̂. The distinct wave functions characterizing the persistent

current states are all of the form Ψ(r, θ) = ψ(r)e−iwθ, with ψ(r) taking care of the

radial density profile of the ring potential.

Figure 4.12: a) a) Light pattern with linearly increasing intensity along the
azimuthal direction. (b) Light pattern used for the excitation of persistent current

in the ring. Image taken from [151].

For accessing the persistent current states from the initially static superfluids

created following the protocol of Figure 4.11, we require to imprint the corresponding

phase profile ϕ = wθ. We achieve this by engineering an optical potential having

the same functional form, as shown in Figure 4.12. We first feedback the intensity

profile to match the intensity I(r, θ) ∝ θ, and then we superimpose the resulting

image into the ring mask as shown in Figure 4.12 b). Additional patterns with

I(r, θ) ∝ (Nθ) modulo 2π, with N > 1 were also tried and implemented in the

following measurements when necessary.

The persistent current states are topological in nature, and hence are topologically

protected by the system’s geometry. However, their stability is not absolute since the

ground state is static (w = 0). Indeed, the persistent currents can decay into lower
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order states with the additional cost of emitting a quantum vortex into the background

superfluid [135, 147, 155]. In Ref. [135], we studied in great detail the stability of

such persistent states in the presence of an obstacle in the annular channel. For what

concerns the experiments presented in this thesis, we only consider persistent states

which are stable given our trap geometry and interaction regime.

Figure 4.13: Example of interferograms for increasing winding number showcasing
the spiral behavior of the interference between a persistent current state with a

homogeneous phase reference. Image taken from [151].

To measure the presence of the persistent current states, i.e. a wavefunction of

the form Ψ(r, θ) = ψ(r)e−iwθ, we take advantage of atom interferometry [156]. By

letting the system evolve in time-of-flight, we allow for the central disk superfluid

interfere with the annular one. The interference signal measured after time-of-flight

can be written as:

n(r, θ) ≈ |Ψdisk +Ψannular|2 = |Ψdisk|2 + |Ψannular|2 + 2Re[ΨdiskΨ
∗
annular]. (4.13)
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Assuming the disk wavefunction has a uniform phase, Ψdisk(r, θ) = ψdiske
iϕ0 , the

interference term Re[ΨdiskΨ
∗
annular] ∝ cos(wθ − ϕ0 + 2πr/λ), where λ characterize

the radial interference wavelength and depends on the initial separation between the

disk and annular condensates, and the time-of-flight given for the measurement [156].

A notable feature of the interference term is its angular dependence. The resulting

density profile exhibits a periodic modulation that cycles w times around the angular

direction, indicating the presence of the associated persistent currents with winding

number w. Examples of such interference patterns for increasing winding number are

shown in Figure 4.13.

Figure 4.14: Measurement of the average winding number over 30 repetitions for
different imprinted phases across the BEC-BCS crossover. Dashed line correspond

to GPE simulations of the imprinting procedure. Image taken from [135].

To excite the persistent current states, we shine the intensity profile of Figure 4.12

for a short period of time ∆t, and measure using the interferometric measurement

we final state after 300 ms of holding time. We define the imprinted phase ∆ϕ =

α∆I = α(I0
+ − I0−), with I0± characterizing the intensity jump at θ = 0, and α a

constant quantifying the height of the optical potential. We calibrate the value of α

by measuring the equation of state of a partially condensed cloud in the BEC regime

in a cigar shaped trap [157]. After determination of the intensity I coinciding with

the chemical potential µ, we obtain the calibration constant from the equality µ = αI.

A more detail analysis of it is given the supplementary material of Ref. [135].

As shown in Figure 4.14, the average winding number for different imprinted

phases display the characteristic step-like behavior of the transition to distinct states

with quantized winding number. Note that the behavior is similar in all superfluid
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regimes, except of the initial shift of the transition to the w = 1. This behavior,

is an artificial effect due to secondary excitations populated during the imprinting

procedure. A more detail analysis of it is given Ref. [135, 152].

4.6 Counter-rotating superfluids: emergence of a

vortex necklace

4.6.1 Concentric persistent currents

To realize a scenario where two superfluids are in counter-propagating motion and

we have full control of the velocity state of each superfluid it is convenient to use

persistent current states. As we have shown in the previous section, persistent states

in annular superfluids offer a pristine control over the initial state of the system. The

persistent states have a well define velocity profile v⃗ = κ
2π

w
r
θ̂, that can be tuned exper-

imentally by changing the winding number w. Moreover, the fidelity characterizing

the initial preparation is well above 80%. Using the phase imprinting protocol, we

are able to populate up to w = 8 for a the given inner radius of 10 µm, and even

higher numbers for larger inner radius [151]. For theses reasons we consider a system

of two concentric annular superfluids, see Figure 4.15.

Figure 4.15: In situ image of the atomic cloud besides the optical potential designed
with the DMD.

To realize the double ring potential using the DMD, we use the light pattern

shown in Figure 4.15. The most internal radius has dimensions Rin = 10µm, the



72

most external Rout = 45µm, and the barrier is located in the middle of these two

radius, Rb = 27.5µm, and is well described by a Gaussian shape with waist σ =

1.1 ± 0.1 µm. We followed a similar protocol as shown in Figure 4.11 for reaching

the final configuration of the potential, simply adding the additional step for creating

the barrier separating the two ring regions. The separating barrier is set much higher

that the chemical potential (V0 ≈ 3µ), and allows for the preparation of independent

persistent currents in each of the two rings superfluids, see Figure 4.15.

At this point of the procedure, we typically contain 3 · 104 atoms per spin com-

ponent. The in-plane atomic density is 4.96(2)µ−1 remaining constant for all the

interaction regimes explored. The trapping frequency along the vertical direction

have frequencies ωz = 2π × 400Hz. For the BEC regime, the molecular scattering

length is typically aM = 1010a0, where a0 is Bohr radius, with the chemical potential

is around µ/h ≈ 900 Hz. For the fermionic superfluids, at unitarity and BCS, the

corresponding energy scale is EF/h ≈ 10 kHz.

Figure 4.16: Phase profiles of the superfluids when win = −wout = 4. The relative
phase at the interface, ∆ϕ = ϕin − ϕout, is shown in blue-to-red colors. The abrupt
change of sign suggest an abrupt change of flow (arrows) from inwards flow to

outward flow, and vise versa.

To generate the DMD image used for the phase imprinting procedure, we selec-

tively chose the corresponding gradient profile (see Figure 4.12) for the clockwise

circulation of the inner ring and the anti-clockwise circulation of the outer ring. We

projected the DMD pattern onto the atoms according to the calibration curve shown

in Figure 4.14. Since we chose to project the pattern for the same duration in both

ring superfluids, both will share the same absolute value of the winding number but

in opposite directions, i.e., win = −wout = w. For all the experiments performed in
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the following sections, we start from a situation where w = 0 before the phase im-

printing procedure. In this case, the time-of-flight imaging of the interference pattern

between the two superfluids provides us with the relative winding number between

both superfluid phases. An example of the phase profiles of the superfluids is shown

in Figure 4.16 for the case where the winding number of each ring is w = ±4. The

relative phase, ∆ϕ = ϕin − ϕout, changes sign ∆w = win − wout = 8 times along the

azimuthal direction. The abrupt change of sign suggests an abrupt change of flow

from inward flow to outward flow, and vice versa, at each of the ∆w = 8 points.

4.6.2 Merging of concentric superfluids

While the superfluids remain independent of each other, the relative phase between

them can only be accessed through interferometric measurements. However, reducing

the height of the separating barrier allows the superfluids to merge. Depending on

the speed at which we lower the separating barrier, different dynamics can occur.

Instantaneous merging dynamics

The merging dynamics of different superfluids is a very physics-rich problem. A

clear example of these merging dynamics is the Kibble-Zurek mechanism [31, 158]

that occurs when crossing the superfluid transition. During this transition, different

superfluid patches form, each with a local phase. However, upon merging, the phases

of the superfluid patches must be glued together in a continuous way. In most cases,

this cannot be done properly, and the creation of phase singularities (vortices) is

inevitable.

An even simpler system, where the merging dynamics are not straightforward,

takes inspiration on the first experiments studying soliton creation [159, 160]. In

cigar-shaped condensates with a separating barrier, solitons can be prepared by phase

imprinting a constant phase difference between both reservoirs [161, 162]. After the

imprinting, and removing the barrier, the system develops a soliton excitation. The

fate of the created soliton strongly depends on the geometrical constraints imposed

by the system. In 1D channels, the soliton is a stable solution and can propagate in

the trap [163]. In 2D and 3D systems, the soliton is unstable and eventually decays.

Depending on the geometry, the soliton can decay into 3D vortex rings [164] or into

a series of vortex-antivortex pairs in 2D [165]. An interesting question that arises
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Figure 4.17: Decay of a ring soliton into quantum vortices in a BEC gas. We phase
imprint a homogeneous phase ∆ϕ = π in the outer ring, and remove the circular

barrier instantaneously.

is which are the differences between the BEC, UFG, and BCS superfluids regarding

the solitonic decay. In recent works [166–169], it was shown that, concerning the

snake instability, the main difference lies in the most unstable wavelength at which

the instability occurs.

As a stating point for studying the dynamics of merging our concentric ring su-

perfluids, we first study the dynamics of a ring soliton in the BEC regime. We start

by phase imprinting a homogeneous phase in the outer ring, ∆ϕ = π, and then re-

moving the circular barrier instantaneously. Figure 4.17, shows the time evolution of

the system after removing the barrier. Removing the barrier instantaneously, doesn’t

allow the phase of the global wavefunction to reach an equilibrium in a continuous

way. At t = 0, we observe the interference pattern between both annular superfluids

in time-of-flight. Starting with no persistent current (win = wout = 0) the interference

pattern is concentric. However, after few tens of milliseconds, the interference pattern

disappears, and a higher contrast ring depletion appear. This depletion corresponds

to a solitonic excitation which is not a stable configuration, and eventually decays

through the well-known snake instability. The continuous soliton eventually vanishes,

and a series of localized density depletion’s, quantum vortices, appear. As time in-

crease, the array of vortex-antivortex pairs get closer to the edge of the trap. The

observed dynamics are well captured by numerical simulations based on the GPE, see

Figure 4.18.

An even richer scenario occurs when trying to merge two persistent current states
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Figure 4.18: Decay of a ring soliton into quantum vortices. Density and phase
profiles of the numerical solution of the GPE under similar conditions as Figure
4.17. At t=0, the outer ring has an homogeneous phase different ∆ϕ = π with
respect to the inner condensate. The phase profile confirm the presence of the

vortex-antivortex pairs.

by instantaneous removing the barrier separating them. This kind of merging dynam-

ics has been previously studied theoretically in BECs in the context of circular and

annular geometries [159]. In this scenario, a spiral-like soliton excitation is created.

The spiral soliton has a phase structure which along it extension the phase difference

across the soliton varies from 0 to 2π. Following the phase analysis of Figure 4.16,

we expect to have ∆w of these excitations for our geometry and initial persistent

states. To prove this regime, we performed numerical simulations of the GPE shown

in Figure 4.19.

The behavior of the soliton is quite complex. Initially, as expected ∆w spirals

appear between both condensates. The spiral-soliton eventually decays when reaching

the edges of the system. The complex dynamics nucleates and destroys vortices,

filling the background of the condensate with sound waves and additional vortices.

Interestingly, the ∆w of spirals eventually lead to the formation of ∆w vortices nearly
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Figure 4.19: Decay of spiral solitons. Density and phase profiles of the numerical
solution of the GPE under similar conditions as Figure 4.17. At t=0, each ring

condensate is characterized by a persistent current with win = −wout = 4.

located at the same positions where the spirals were nucleated.

Controlled merging dynamics

To minimize the uncontrolled creation of sound waves and vortices in the cloud, we

consider a slower pace for the ramp down of the barrier. We consider time scales

much longer than the characteristic chemical potential timescale ℏ/µ, in particular
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Figure 4.20: Dynamics of the density (top) and phase (bottom) over time, when the
barrier is ramped down at a slow rate (28 ms).

we choose the total ramp time to be 28 ms ≳ 20h/µ. To contrast the behavior

of ramping speed, in Figure 4.19 and 4.20 I shown the temporal evolution of the

system. As clearly demonstrated, ramping down the barrier slowly doesn’t introduce

excitation such as sound waves or solitons into the system. Instead, the the system

evolve smoothly between two independent annular superfluid with a barrier between

them, to the scenario of a single condensate in presence of quantum vortices. The slow

ramp speed allow for an adiabatic nucleation of vortices along the circular barrier.

The circulation (or sign) around each vortex is the same, set by the outer superfluid

rotation, forming a polygonal array of equal sign vortices [121, 122].

Figure 4.21: Time-of-flight images showing the interferogram between both annular
superfluids during the barrier removal. When V0/µ≫ 1, we observe ∆w = 8 spiral
arms. When V0/µ ≲ 1, the interference pattern disappears and rather the emergence

of localized defects appear at the same radial position as the initial interface.

We probe this behavior in the experiment by performing a time-of-fight measure-

ment during the barrier removal, see Figure 4.21. As long as the barrier is larger than

the chemical potential (V0/µ ≫ 1), the time-of-fight reveal the interference fringes
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characteristic of two fully independent superfluids with persistent currents, see Figure

4.13. However, as the barrier height becomes comparable with the chemical potential,

V0/µ ∼ 1, we appreciate the superposition of the spiral behavior with the presence

of point-like depletions in the density profile, signaling the formation of the quantum

vortices. Finally, as the barrier is completely removed, we observe the time-of-flight

density profile of a single superfluid together with the polygonal array of vortices.

Figure 4.22: Dynamics of the density (top), radial mass current (middle), and
current-phase relation (bottom) over time when the barrier is ramped down at a
slow rate (T = 28 ms). In the current-phase relation plot, a sinusoidal fit describes
the observed behavior. The color in the radial mass current indicate the direction of

the flow: red is outwards, blue as inwards.

To understand the process of vortex formation, let turn to the behavior of the
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currents in the system. In Figure 4.22, we show the behavior of the density, and

the radial mass current. For convenience, we defined the normalized current as J̃ =

|J|/(n0κ) = n|v|/(n0κ). In it interesting that even when the barrier is above the the

chemical potential, there exist a minuscule current passing through the barrier. The

reason behind this can be understood in terms of atomic Josephson currents where the

circular barrier acts as the Josephson junction. Instead of the junction being driven

by a difference of chemical potential between the reservoirs, the current is driven by

the difference of phase across the barrier. From the phase profile, Figure 4.16, we

can have the intuitive direction of the Josephson currents that is corroborated in

the middle panels of Figure 4.22, where the color indicate the direction of the flow.

The symmetry of the observed currents suggests that no chemical potential built

up is going to occur over time, contrary to linear Josephson Junctions [170–172].

Furthermore, as the barrier is lowered down the overlap between both reservoirs

increases, hence the maximum current able to pass through the junction. To further

highlight the analogy with atomic Josephson junctions, the current-phase relation of

the junction is also shown in Figure 4.22. The maximum current of the Josephson

junction clearly follows a sinusoidal relation of the form: I = −Imax sinφ, where

φ(r) = ⟨ϕ(r)⟩out− ⟨ϕ(r)⟩in, and the minus sign accounts for the direction of the flow.

The system composed of two concentric annular superfluids, offer then the pos-

sibility to study models such as the linear long Josephson junction with periodic

boundary conditions. Here, the azimuthal direction, plays the role of periodic coordi-

nate. From this perspective, the dynamics of the phase difference across the barrier

can be described using a sine Gordon equation for the relative phase [170]. The

sine-Gordon equation appears in a variety of physical systems and models, particu-

larly where the nonlinear dynamics and phase transitions or topological defects are

present. From topological defects in field theory, nonlinear optics, particle physics to

the dynamics in long Josephson junctions [170]. In the sine Gordon equation, there

exists well-known stable phase-profile solutions known as kink and anti-kink solitons.

The phase profile they follow is given by:

φ(θ) = 4 arctan [exp (δ + γm(x− vt))] , (4.14)

∂2φ

∂t2
− ∂2φ

∂x2
+m2 sinφ = 0. (4.15)

where m determines the nonlinear coupling, v the velocity of the kink solution
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Figure 4.23: Phase difference across the barrier as a function of the angular
direction, for the case with ∆w = 2. Orange curve is the 2 kink-solitons solution of

the sine-Gordon equation.

together with the associated Lorentz factor γ = 1√
1−v2

. Interestingly, the phase

difference profiles and the solution of the sine-Gordon equation resemble each other,

see in Figure 4.23. In particular, in the regime where V0 > µ, the mapping to

the Josephson junction is valid. In the context of superconducting linear Josephson

junctions, the kink solution is typically associated to Josephson vortices [173], which

are an active area of research especially for quantum computing. While in this thesis

we don’t study the particular mapping to the long Josephson junction in presence of

Josephson vortices (since we remove the barrier completely), we make emphasis on

the general application of ultra cold atoms as a platform for quantum simulation.

Controlling the vortex polygon array

Figure 4.24: By engineering the persistent current states before the merging, we
control the number of vortices in the vortex array. Examples of ∆w =, 2, 6, 8, and

12 are provided.
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The number of vortices appearing in the vortex polygon depends exclusively on

the difference of winding number between both persistent currents, see Figure 4.24.

The equality N = ∆w ideal holds. The final number of vortices can be therefore

controlled meaning we can tune the difference of velocity at which the superfluids

merge. The velocity difference at the interface is simply given by:

∆v =
ℏ
M

∆w

R0

=
ℏ
M

N

R0

. (4.16)

However, imperfections in the phase imprinting protocol leading to the excitation

of unwanted vortices in the system can occur [135]. Additionally, when the persistent

currents decay, they do so by the emission of vortices out of the central region [135].

Moreover, as seen in Figure 4.19, speeding up the dynamics of the ramping down

and generate more undesirable vortices, making the equality N = ∆w not to be

experimentally trivial to achieve. In Ref. [135, 151], we found that letting the system

relaxes for 100-300ms before removing the circular barrier reduces the amount of

perturbations, and let off-barrier vortices leave the system leaving the superfluid

background more uniform. Unfortunately, some spurious vortex can remain in the

system even after such a long relaxation times. These, appear as density depletion

out of the barrier region when stating the vortex dynamics as shown in Figure 4.25.

Figure 4.25: Image of a spurious vortex created as a consequence of an imperfect
phase imprinting. The vortex lies away from the ideal vortex polygon.

We characterized the fidelity of the initial state preparation by repeating over 100

times the preparation of the states with win = −wout = w = 3 and w = 6, as shown

in Figure 4.26. The first panel characterizes the probability of observing the desired

persistent states, before removing the barrier. We performed this measurement by

looking at the interference pattern between the two rings superfluids, and counting

the number of observed spirals. We clearly see that we are able to prepare the initial
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circulation states ∆wT = 2w with an error of ±1 for 95% of the realizations.

Figure 4.26: a) Infidelity in creating the target circulation state state,
⟨∆w⟩M −∆wT . b) Number of spurious vortices observed before removing the

optical barrier, and c), Deviation of the total number of vortices from the target
state, ⟨Nv⟩M −∆wT . d), Total number of vortices detected after removing the

barrier, t = 0 of vortex dynamics, as a function of the imprinted winding number
difference ∆wT .

In the second panel, we show the number of spurious vortices introduced by the

phase-imprinting protocol, as measured from the time-of-flight (TOF) expansion of

the two rings prior to the removal of the barrier. The third panel shows the distribu-

tion of the total number of vortices in the superfluid, detected in the TOF expansion

following the barrier’s removal. Although our method demonstrates a high reliability

in producing the desired circulation states in the two rings, we observe that the total

vortex distribution detected after barrier removal is both augmented and broadened

due to the presence of spurious vortices. This phenomenon results in residual fluc-

tuations in the initial configurations of the vortex polygon, which contributes to the

experimental uncertainty in the initial relative velocity, denoted as ∆v.
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Chapter 5

Kelvin-Helmholtz Instability in

atomic superfluids

In this chapter, I investigate the onset and evolution of the Kelvin-Helmholtz instabil-

ity in fermionic superfluids across the BEC-BCS crossover. Starting from the ordered

polygonal array of quantized vortices formed after the merging of two counter-rotating

annular superfluids, I first describe the observed behavior following the formation of

the vortex polygon, where the system can be characterized as a single superfluid.

I discuss the method for tracking vortex positions and the reproducibility of these

measurements.

Next, I address the linear stability analysis of the vortex polygon using the dissipa-

tive point-vortex model in the various geometrical arrangements outlined in Chapter

2. This analysis allows us to compute the growth rate of the instability’s disper-

sion relation for vortex polygons. By numerically solving the dissipative point-vortex

model, we gain insight into the instability, including factors contributing to the irre-

producibility of measurements.

Finally, following the point-vortex modeling discussion, I examine the experimen-

tally measured growth rates and their comparison to theoretical models.
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5.1 Vortex array temporal evolution

5.1.1 Breaking of the vortex array

In the previous section, I discussed the possibility of deterministically create a perfect

polygonal array for vortices as a result of the controlled merging between tow counter-

rotating superfluids. As we discussed in section 3.3.1, a linear array of vortices is

always unstable with the characteristic wavevector k∗ = π/dv being the most unstable

mode in the system. The characteristic wavelength correspond to the one associated

to the motion of nearby vortices moving towards each other with opposite orthogonal

velocities. We expect the subsequent dynamics of the linear array will show pairing

between nearby vortices [121, 122].

Figure 5.1: Temporal evolution of the vortex polygon for the BEC at 1/kFa = 4.1
with N = 6 vortices, UFG at 1/kFa = 0, and BCS at 1/kFa = 0.3 with N = 10

vortices.

As seen in Figure 5.1, the vortex polygon configuration is not stable. We ob-

served the polygonal array breaking itself after a few tens of ms, depending in the

interaction regime and number of vortices. Similarly to the linear vortex array, the
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Figure 5.2: Temporal evolution of the vortex polygon for the BEC at 1/kFa = 4.1
with N = 6 vortices. We show different vortex configuration showing different forms

of the breaking to occur.

polygonal array also tend to break with nearby vortices pairing together. Ideally, the

paring should occur simultaneously in all the chain, corresponding to the process of

spontaneous symmetry breaking. For small number of vortices, as we show in Figure

5.2, some experimental images show different ways the vortices can pair over all the

polygon. However, for longer vortex chains the simultaneous breaking is less likely.

Instead, the vortex array breaks locally, pairing nearby vortices in a small section of

the polygon and spreading the pairing in the chain over time, as seen for N = 10 in

the UFG and BCS regimes, and for N = 6 in in Figure 5.2. As we let the system

evolve in time, we observe a clustering of vortices with increasing size. For N = 6, we

see the presence of two large clusters with three vortices each, while for large number

of vortices, clusters of different sizes appear, see Figure 5.1 and 5.3.

Figure 5.3: Temporal evolution from the GPE simulations for a system of N = 10
vortices.

To further corroborate the observed vortex dynamics agree qualitatively with the-

oretical models, I solve the GPE beyond the vortex polygon creation, as shown in
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Figure 5.3. From the numerical results, we recover the local breaking of the vortex

array due to small fluctuations in the system as pairing of nearby vortices starts in

the lower section of the polygon.

Figure 5.4: Temporal evolution of the vortex polygon for the BEC at 1/kFa = 4.1
with N = 8 vortices. We show different vortex configuration showing different forms

of the breaking to occur.

In Figures 5.2 and 5.4, we can appreciate different realizations showing the dif-

ferent breaking configurations, where two nearby vortices can pair together. The

different vortex configurations are originated from slightly different initial positions

of the vortices when the barrier is completely removed. Which arise from small fluc-

tuations in the system, either from imperfections of the phase imprinting protocol,

reminiscent density waves in background, imperfections occurring during the removal

of the optical barrier, etc... Due to the spontaneous symmetry breaking of the system,

we should fine the correct tools for reconstructing the dynamics of the vortices from

the extraction of single shot images as done in the experiment.

5.2 Linear Stability analysis of a vortex necklace

To understand the stability of the vortex polygon array and the subsequent expected

growth rate, we need to perform a linear stability analysis around the array equilib-

rium position, similarly as was performed in section 3.3.1. We start by stating which

is the stationary configuration, and which conditions must be fulfilled in order for the

polygonal configuration to be unstable. The polygonal vortex array can be described

by the following position in the complex mapping (see section 2.4.1):
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z0a = R0e
2πia/N (5.1)

with R0 the radial positions of the vortices.

5.2.1 Stability of the vortices polygon inside a circular bound-

ary

As a first example, let us recover let known results from Havelock [97] about the

stability of the polygonal array inside a circular boundary. Let us start from the

point vortex model equation with the correct boundary conditions:

dz∗a
dt

=
κd
2πi

 N∑
b ̸=a

1

za − zb
−

N∑
b=1

1

za −
(

R2

|zb|2

)
zb

 . (5.2)

where κd = κ(1−α′+iα) is the complex circulation. Substituting the polygon starting

solution of the form z0a(t) = R0e
iωte2πia/N , with ω the given the temporal evolution of

the solution. Substituting we get:

2πω∗R2
0

κd
=

N∑
b ̸=a

1

1− e2πi(b−a)/N
−

N∑
b=1

1

1−
(

R2

R2
0

)
e2πi(b−a)/N

. (5.3)

Both terms in the right hand side should be independent of the index a, therefore we

can re-index the expression:

2πω∗R2
0

κd
=

N∑
µ=1

1

1− e2πiµ/N
−

N∑
µ=1

1

1−
(

R2

R2
0

)
e2πiµ/N

. (5.4)

We can simplify the expression by considering the following equalities:

N∑
µ=1

1

1− e2πiµ/N
=
N − 1

2
, and

N∑
µ=1

1

1− Ae2πiµ/N
=

N

1− AN
. (5.5)
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Therefore:

ω =
κ∗d

2πR2
0

N − 1

2
− N

1−
(

R2

R2
0

)N
 = (1− α′ + iα)ω0 = Ω+ iγ (5.6)

In addition to an angular rotation Ω of the vortex polygon (which preserve the

symmetry of the problem), when α ̸= 0 the polygon decrease size with a rate γ given

by:

Ω = Im[iω] = (1− α′)ω0, γ = −Re[iω] = αω0. (5.7)

To study the stability around this trajectories, let us perturb the initial condition

with a term of the form za(t) = z0a(t)(1 + ηa(t)), and let’s define ρ = (R/R0)
2. The

equations for ηa(t) are:

(
dη∗a
dt
− iω∗η∗a

)
z0∗a =

iκd
2π

(
N∑
b ̸=a

z0aηa − z0bηb
(z0a − z0b )2

−
N∑
b=1

z0aηa − ρz0bηb
(z0a − ρz0b )2

)
(5.8)

dη∗a
dt
− iω∗η∗a =

iκd
2πR2

0

z0a

(
N∑
b̸=a

z0aηa − z0bηb
(z0a − z0b )2

−
N∑
b=1

z0aηa − ρz0bηb
(z0a − ρz0b )

2

)
(5.9)

dη∗a
dt
− iω∗η∗a =

iκd
2πR2

0

 N∑
b ̸=a

ηa −
z0b
z0a
ηb

(1− z0b
z0a
)2
−

N∑
b=1

ηa − ρ
z0b
z0a
ηb(

1− ρ z0b
z0a

)2
 (5.10)

Defining t̃ = κd

8πR2
0
t, ω̃∗ =

8πR2
0

κd
ω∗, and expressing the ratio

z0b
z0a

= e2πi(b−a)/N we get:

dη∗a
dt̃
− iω̃∗η∗a = 4i

(
N∑
b ̸=a

ηa − e2πi(b−a)/Nηb
(1− e2πi(b−a)/N)2

−
N∑
b=1

ηa − ρe2πi(b−a)/Nηb
(1− ρe2πi(b−a)/N)2

)
(5.11)

This expression can the be written as

dη⃗∗

dt̃
− iω̃∗η⃗∗ = −iAη⃗ (5.12)

where the vector η⃗ is an N-dimensional vector with entries η⃗ = (η⃗a), and the

matrix A entries are defined as:
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Aab = −4δab

[
N−1∑
µ=1

(1− e2πiµ/N)−2 − (1− ρe2πiµ/N)−2

]

+4(1− δab)
(

e2πi(b−a)/N

(1− e2πi(b−a)/N)2

)
− 4

ρe2πi(b−a)/N

(1− ρe2πi(b−a)/N)2

where δab is the Kronecker delta. Considering η⃗ = ν⃗ + iλ⃗, and ω̃ = ω̃R + iω̃I , we

obtain:

d

dt̃

(
ν⃗

λ⃗

)
=

(
ω̃I1− ImA ω̃R1− ReA

−ω̃R1− ImA ω̃I1+ ImA

)(
ν⃗

λ⃗

)
(5.13)

Taking the second time derivative:

d2

dt̃2

(
ν⃗

λ⃗

)
=

(
(ReA)2 + (ω̃I1− ImA)2 − ω̃2

R1 2ω̃I(ω̃R1− ReA)

−2ω̃I(ω̃R1+ReA) (ReA)2 + (ω̃I1+ ImA)2 − ω̃2
R1

)(
ν⃗

λ⃗

)
(5.14)

To solve for the different stability conditions for the different modes of the polygon,

we write explicitly the temporal and spatial dependency of η⃗ as: (η⃗a) ∼ eσ̃m t̃(e2πi
ma
N ),

and we obtain:

σ̃2
m

(
ν⃗

λ⃗

)
m

=

(
(ReA)2 + (ω̃I1− ImA)2 − ω̃2

R1 2ω̃I(ω̃R1− ReA)

−2ω̃I(ω̃R1+ReA) (ReA)2 + (ω̃I1+ ImA)2 − ω̃2
R1

)(
ν⃗

λ⃗

)
m

(5.15)

σ̃2
m =

[
|A|2 + (ω̃2

I − ω̃2
R)1± 2ω̃I

√
|A|2 − ω̃2

R1

]
m

(5.16)

where the subscript m denotes the evaluation the matrix A applied to the vector

(η⃗a) ∼ (e2πi
ma
N ), following the operation:

[Ô]m = (e−2πima
N )T Ô(e2πi

ma
N ) (5.17)

The previous derivation allows us to get the growth rate of the (un)stable modes

with angular wavenumber m. Fortunately, for dissipationless dynamics where α = 0

this results simplifies dramatically:
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ω̃ =
8πR2

0ω0

κ
= 4

(
N − 1

2
− N

1− ρN

)
(5.18)

σ̃2
m =

[
|A|2

]
m
− ω̃2 (5.19)

To obtain the growth rate σm = κ(1−α′)
8πR2

0
σ̃m of each angular mode, we require to

solve numerically the above equation. As shown in Figure 5.5, in the limit N →∞,

or equivalently dv → 0, the curvature of the polygonal array locally vanishes, and

we recover the result of the linear array of vortices studied in section 3.3.1, which is

given by Eq. (3.30).

Figure 5.5: Growth rate of the unstable modes with periodicity m for different
number of vortices. The black curve correspond to the linear array result Eq. (3.30).

5.2.2 Stability of the vortices polygon outside a circular bound-

ary

Following the ideas presented so far, let us continue the analysis with the scenario of

the vortices polygon outside an inner circular boundary. The equation of motion of

the vortices is given by:

dz∗a
dt

=
κd
2πi

 N∑
b̸=a

1

za − zb
−

N∑
b=1

1

za −
(

R2

|zb|2

)
zb

+
κd
2πi

Λ +N

za
. (5.20)
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where we recall Λ is circulation of the internal ring superfluid, or equivalently the

number of vortices located at the origin. Substituting the polygon solution of the

form z0a(t) = R0e
iωte2πia/N , we get temporal factor:

ω =
κ∗d

2πR2
0

N − 1

2
− N

1−
(

R2

R2
0

)N + (Λ +N)

 = (1− α′ + iα)ω0 = Ω+ iγ (5.21)

Figure 5.6: Growth rate of the unstable modes with periodicity m for different
number of vortices, different topological charges enclosed in the inner region. The

black curve correspond to the linear array result Eq. (3.30).

The growth rate remains defined in the same manner:

σ̃2
m =

[
|A|2 + (ω̃2

I − ω̃2
R)1± 2ω̃I

√
|A|2 − ω̃2

R1

]
m

(5.22)

where we set ρ = (R/R0)
2, the matrix A is defined as:
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Aab = −4δab

[
Λ +N +

N−1∑
µ=1

(
(1− e2πiµ/N)−2 − (1− ρe2πiµ/N)−2

)]

+4(1− δab)
(

e2πi(b−a)/N

(1− e2πi(b−a)/N)2

)
− 4

ρe2πi(b−a)/N

(1− ρe2πi(b−a)/N)2

Similarly to the previous scenario, Figure 5.6 shows the growth rate σm = κ(1−α′)
8πR2

0
σ̃m

obtained from the numerical solution setting α = 0, and for different values of Λ.

As shown in Figure 5.6, increasing values of Λ stabilize the vortex polygons, re-

quiring higher number of vortices for the system to be unstable. On the contrary,

when Λ < 0 we appreciate the system becoming unstable for any number of vortices

N > 2. Moreover, regardless of the specific value of Λ, in the limit N → ∞, we

recover the result of the linear array of vortices given by Eq. (3.30).

5.2.3 Vortices inside an annular boundary

Taking the previous examples for vortices in either an outer or inner boundary, we can

tackle the problem of the vortices in the annular geometry we have in the experiment.

To start, let us consider the scenario with Λ arbitrary, and then we’ll replace and

analyze the behavior for the experimental configuration with where we set Λ = −N/2.

We start by recalling the point vortex model equation considering this set of

boundary conditions:

dz∗a
dt

=
κd
2πi

Λ +N

za
+

κd
2πi

[
N∑
b̸=a

1

za − zb

−
N∑
b=1

 1

za −
(

R2
i

|zb|2

)
zb

+
1

za −
(

R2
o

|zb|2

)
zb


+

κd
2πi

 N∑
b=1

∞∑
n=1

 1

za −
(

Ri

Ro

)2n
zb

+
1

za −
(

Ro

Ri

)2n
zb


−

N∑
b=1

∞∑
n=1

 1

za −
(

Ri

Ro

)2n (
R2

i

|zb|2

)
zb

+
1

za −
(

Ro

Ri

)2n (
R2

o

|zb|2

)
zb



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Substituting the polygon solution of the form z0a(t) = R0e
iωte2πia/N , and defining

ρ = (Ri/Ro)
2, ρi = R2

i /R
2
0, and ρo = R2

o/R
2
0, we get temporal factor:

ω =
κ∗d

2πR2
0

[
N − 1

2
− N

1− ρNi
− N

1− ρNo
+ (Λ +N) (5.23)

+N
∞∑
n=1

(
1

1− ρnN
− 1

1− ρNi ρnN
+

1

1− ρ−nN
− 1

1− ρNo ρ−nN

)]
(5.24)

Where we recognize the terms of the first two scenarios, and the contribution of the

infinite number of vortices. The convergence of the infinite sum is exponentially fast

with increasing number of terms, see Figure 5.7 for the comparison between the first

16 terms. For the experimental values of the inner and outer radii we see that taking

0 terms in the expansion approximates the real value with 10−14 precision. Since the

imaginary vortices are already very far from the polygon radii. On the contrary when

considering very thin rings, the addition of 16 terms from the imaginary vortices are

necessary to reach the same level of convergence.

Figure 5.7: Calculation of the angular frequency of Eq. (5.23), using
R0 = (Ri +Ro)/2, as would be for the experimental ratios, and where α = α′ = 0

for simplicity.
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In this case, the matrix A can be decomposed as:

A = A0 +
∞∑
n=1

Bn, (5.25)

with

A0ab = −4 (S1 + (Λ +N)− S2 − S3) δab + 4(1− δab)
e2πi(b−a)/N

(1− e2πi(b−a)/N)2

− 4
ρoe

2πi(b−a)/N

(1− ρoe2πi(b−a)/N)2
− 4

ρie
2πi(b−a)/N

(1− ρie2πi(b−a)/N)2
,

Bnab
= 4

(
ρne2πi(b−a)/N

(1− ρne2πi(b−a)/N)2
+

ρ−ne2πi(b−a)/N

(1− ρ−ne2πi(b−a)/N)2

− ρiρ
ne2πi(b−a)/N

(1− ρiρne2πi(b−a)/N)2
− ρoρ

−ne2πi(b−a)/N

(1− ρoρ−ne2πi(b−a)/N)2

)
where we defined for convenience the sums:

S1 =
N−1∑
γ=1

1

(1− e2πiγ/N)2
, S2 =

N∑
γ=1

1

(1− ρie2πiγ/N)2
, S3 =

N∑
γ=1

1

(1− ρoe2πiγ/N)2

The growth rate remains defined in the same manner:

σ̃2
m =

[
|A|2 + (ω̃2

I − ω̃2
R)1± 2ω̃I

√
|A|2 − ω̃2

R1

]
m

(5.26)

Similarly to the previous scenarios, Figure 5.8 shows the growth rate σm =
κ(1−α′)
8πR2

0
σ̃m obtained from the numerical solution setting α = 0, and for different values

of Λ.

5.2.4 Finite α correction

As we obtained from the previous sections,when no dissipation is present, that is

when α = 0, the growth rates can be easily computed by:

σm =
κ(1− α′)

8πR2
0

√
[|A|2]m − ω̃2 (5.27)
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Figure 5.8: Growth rate of the unstable modes with periodicity m for different
number of vortices, different topological charges enclosed in the inner region. The

black curve correspond to the linear array result Eq. (3.30).

However, when α ̸= 0 we can still obtain an approximate solution. For these, let

us consider the limit, when N → ∞. In this case, we know we always return to the

linear array limit discussed in section 3.3.1. The growth rate, with α = α′ = 0, is

given by:

σ =
κ|k|
2dv

(
1− |k|dv

2π

)
. (5.28)

We can extend the analysis conducted in Section 3.3.1 to the case where α, α′ ̸= 0.

By substituting κ with κd, we achieve the same result, with |κd| replacing κ:

σd =
|κd||k|
2dv

(
1− |k|dv

2π

)
=
√
(1− α′)2 + α2σ0. (5.29)

Due to the small second order correction of α to the growth rate, we find

σm =
κ
√

(1− α′)2 + α2

8πR2
0

√
[|A|2]m − ω̃2 =

√
(1− α′)2 + α2σ0

m (5.30)

represents a good approximation to the real result for values of α ≪ 1, which is the

limit we typically encounter in the experiments.
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5.3 Vortex ensemble trajectories

5.3.1 Deterministic of trajectories

Although the equation of motion of the vortices is deterministic, in the sense that an

equation of motion describing their dynamics can be properly defined, the temporal

evolution of these vortices may still exhibit highly sensitive dependence on the initial

conditions. This sensitivity is one of the hallmarks of chaotic systems, where even

infinitesimal differences in starting points can lead to exponentially diverging trajec-

tories over time, see Figure 5.9a. On way to characterize the rate of divergence of

the trajectories is through the concept of Lyapunov exponent [174]. This exponent

describes the average rate at which nearby trajectories in phase space diverge over

time. Quantitatively, if Z(t) represents and ensemble of trajectories in phase space,

the Lyapunov exponent λ is therefore defined as:

|δZ(t)| = eλt|δZ0|. (5.31)

(a) (b)

Figure 5.9: a) Method for determining the divergence exponent of a given ensemble
of trajectories starting from similar initial conditions. b) Ensemble of trajectories

obtained from 40 different simulations using the point vortex model.

A positive Lyapunov exponent indicates that trajectories initially close together

will separate exponentially, illustrating why predicting long-term behavior in these

systems becomes practically impossible after an initial period. On the contrary, a

negative or zero exponent suggests stable or periodic dynamics where trajectories

converge or remain at a constant distance. Depending on the phase space explored by
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Z0, different Lyapunov exponents can exist [174]. In fact, for our vortex system there

are 2N degrees of freedom (two for each vortex), and hence 2N different Lyapunov

exponents, with the largest one is known as the maximal Lyapunov exponent. It

is worth noting that having a positive maximal Lyapunov exponent is usually an

indication that the system is chaotic, however, other requirements must be fulfill to

assert the system display chaotic behavior. Although, we’ll see that the dynamics we

probe seem to be chaotic, I don’t provide the sufficient evidence for it.

Figure 5.10: Temporal evolution of a system with 10 vortices, 100 simulations under
slightly different initial conditions. First and second row: each vortex ensemble is
colored differently. Third and Fourth rows: We focus on the dynamics of a vortex
single ensemble. The area corresponds to the best concave area describing the

ensemble.

Due to the symmetry of our system, we can provide three contrastingly different,

but illustrative examples of ensembles Z(t) which produce a Lyapunov exponents

either positive or null. To show the richness of ensemble of trajectories we solved

numerically the point vortex model using a Runge-Kutta of 4th order for different

ensembles Z(t) in the different degrees of freedom in the system.

The first case I consider is the one, most probable to be representative of the

experimental protocol. Here, I took the position of the vortices to be close to the

ideal ones zj = R0e
2πij/N + η where η = ξ + iζ are two gaussian random numbers

with standard deviation given by the healing length of the vortices if the BEC regime,

that is ∆ξ = ∆ζ = 0.5µm. I considered an ensemble of 100 random initial positions

which are then evolved numerically in time. The results are shown in the first two

rows of Figure 5.10. On the first row, single vortex ensembles are colored differently

so we can track their dynamics over time. On the first row, I isolate the dynamics of

a single vortex ensemble. We can appreciate for short timescales, the vortices spread

in a line and very fast, after 60 ms, the shape of the ensemble no longer keep a defined
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Figure 5.11: Measurement of the average distance between the point vortices in the
ensemble for different number of vortices in the system.

shape.

Simulating this type of ensembles and changing the number of vortices we can

estimate the rate of divergence of the single-vortex ensemble computing |δZ(t)|. In

Figure 5.11, we compare the results for different number of vortices from N=10 to

N=20. As shown, the behavior of |δZ(t)| growths exponentially in time at the begin-

ning of the dynamics, saturating for longer timescales to the average distance between

two points is the annulus. It is important to note, that by probing using gaussian

noise in all the vortices, we are effectively probing all the phase space nearby the ideal

stationary point where zj = R0e
2πij/N . Therefore, the rate λ provides us information

about the maximal Lyapunov exponent, which in each case corresponds to the one

expected from the analysis performed in the previous section, which is given by Eq.

(5.26). Moreover, depending on the number of vortices in the system, the final phase

space explored by the system is different. The dynamics for N = 2 (Figure 5.12) and

N = 4 (Figure 5.13) vortices.

A second example of ensemble where the Lyapunov exponent is null is shown in

Figure 5.14. The simulation parameters are identical to those of Figure 5.10, with

the only difference being the phase space explored by the different realizations. As

we show in the previous section, the polygon is a stable configuration which rotate

in time. Therefore selecting the axis in phase-space along which the polygon appears
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Figure 5.12: Temporal evolution of a system with 2 vortices, 500 simulations under
slightly different initial conditions. First and second row: each vortex ensemble is
colored differently. Third and Fourth rows: We focus on the dynamics of a vortex
single ensemble. The area corresponds to the best concave area describing the

ensemble.

slightly rotated, that is zj = R0e
2πij/N× η̂, with η̂ = eiξ with a single gaussian random

number with standard deviation given by the angular extent of the healing length,

∆ξ = 2π × 0.5/27.5 rad. As seen in Figure 5.14, the initial spread of the ensemble

|δZ0| is kept constant in time, the trajectories rotate lock in phase between them.

A third example of ensemble where the Lyapunov exponent is positive but the

dynamics can be clearly be distinguished is shown in Figure 5.15. In this scenario

we considered a region of phase space where vortices preserve their relative angle

∆θj,j+1 =
2π
N
, but they alternate radial positions, of the form: zj = R0e

2πij/N×η̂j, with
η̂j = 1+(−1)jξ with a single gaussian random number in each numerical experiment,

where the standard deviation is given by ∆ξ =
√
2 × 0.5 µm. In this scenario, the

trajectories seem to follow a clear star shape around the central region, for a long

period of time without spreading to much. However, after a close look at the dynamics

nearby the ideal position reveal a deeper structure, as shown in Figure 5.16. For initial
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Figure 5.13: Temporal evolution of a system with 4 vortices, 500 simulations under
slightly different initial conditions. First and second row: each vortex ensemble is
colored differently. Third and Fourth rows: We focus on the dynamics of a vortex
single ensemble. The area corresponds to the best concave area describing the

ensemble.

Figure 5.14: Temporal evolution of a system with 10 vortices, 50 simulations under
slightly different initial conditions. First and second row: each vortex ensemble is
colored differently. Third and Fourth rows: We focus on the dynamics of a vortex
single ensemble. The area corresponds to the best concave area describing the

ensemble.

positions with radii below R0 (colored in blue tones), the trajectories seem to follow

each other, the same happens for positions with radii above R0 (colored in red tones).
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Figure 5.15: Temporal evolution of a system with 10 vortices, 100 simulations under
slightly different initial conditions. First and second row: each vortex ensemble is
colored differently. Third and Fourth rows: We focus on the dynamics of a vortex
single ensemble. The area corresponds to the best concave area describing the

ensemble.

Figure 5.16: Temporal evolution of a system with 10 vortices, 100 simulations under
slightly different initial conditions. For clarity, we set even position vortices on the

left panel, and odd positions on the right.

However, between them the trajectories clearly diverges.

5.3.2 Effect of vortex dissipation

To quantify the effects of vortex dissipation, namely by the introduction of the mutual

friction coefficient α, we repeated the simulations of Figure 5.13 setting α = 0.1. The

effect of dissipation is clear, the trajectories differ significantly from those without

dissipation. Vortices tend to leave the system, either by collapsing into the inner

region, removing part of the enclosed topological charge, or by leaving through the

outer boundary. The phase space covered becomes a spiral whose shape depends on
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the value of α. The inclusion of dissipation into the system suppressed the chaotic

behavior observed in the previous section for dissipation-less dynamics. In fact, we

can intuitively recover the spiral behavior due to the real and imaginary components

of the angular frequency obtained from Eq. (5.23).

Figure 5.17: Temporal evolution of a system with 4 vortices, 400 simulations under
slightly different initial conditions, introducing the dissipation coefficient α = 0.1.

First and second row: each vortex ensemble is colored differently. Third and Fourth
rows: We focus on the dynamics of a vortex single ensemble. The area corresponds

to the best concave area describing the ensemble.

5.4 Growth rate and dispersion relation

5.4.1 Vortex structure factor

Although by looking at the trajectories of individual vortices we can reconstruct the

maximal growth rate of the vortex array instability, we cannot follow the same pro-

tocol from the experimental images. As mentioned, we perform absorption imaging,

meaning we destroy the sample in every shot we take, both because we perform a



103

short time of flight to enhance the contrast of vortices, and because of the destruc-

tive resonant imagining. Moreover, as we explored in the previous section considering

small fluctuations in the initial position of the vortices can lead to full different tempo-

ral evolutions. As we learn from the point vortex simulations, the instability growth

rate associated to the Kelvin-Helmholtz instability can be obtained from the very

first temporal evolution, where the vortex polygon breaks. The only tools we have

available to study the ensemble dynamics of our system is looking to the correlations

between vortices as a function of time.

One way to study the correlations in our vortex polygon is by thinking of it as a

linear array of vortices in a periodic direction, namely the angular one. To study the

small deviations from the perfect polygon array, we take advantage of the structure

factor of the vortex array [46, 49, 175] defined as:

S(m, t) =
1

Nv

Nv∑
j,l

eim(θj(t)−θl(t)) (5.32)

where θj corresponds to the angular coordinate of the j-th vortex, and m is an integer

corresponding to the angular mode associated to a perturbation with wavenumber k

such that m = kR0. The structure factor encodes the positions of the vortices which,

at t = 0, should provide a spectral peak at m = ∆w = Nv.

In order to compute the structure factor S(m, t) we need to retrieve from the

experimental images the positions of the vortices in each realization. To pin point

the vortices, I developed a program which allows the user to click in the position

of the vortices, saving their coordinates in a txt file. Initially, this program did

not had any built-in protocol to locate the positions of the vortices. Since, we care

about the precise positions of the vortices, we had to manually go through the 200000

images of the full experimental dataset locating the positions of each vortex. On a

newer version, the inclusion of machine learning approach to detect the vortices was

implemented, which acts as an initial guess of the positions. In either case, a manual

inspection of the data is required.

From the data collected as a function of time we can compute S(m, t) for different

number of vortices. Figure 5.19 shows an example for N = 14 for a BEC and UFG

superfluids. At t = 0 we notice the spectral peak at m = ∆w = Nv, which for

latter times, tend to move towards lower angular modes. Moreover, if we look at the

temporal evolution of the S(m, t) fixing the angular mode m, lower panels of Figure
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Figure 5.18: Example of images and positions of the vortices pin pointed by the
software.

5.19, we observe this quantity grows exponentially with different rates depending on

m.

Figure 5.19: Measured structure factor for all modes m in a a) BEC, and b) UFG
superfluids. Examples of the exponential growth dependence in time for different
modes for the c) BEC, and d) UFG cases. The data points correspond to the

dashed horzontal lines of panels a) and b) respectively.

As the instability starts to grow, the vortices start to move from their original

positions θ0j = 2πj/N . Considering infinitesimal movements of the vortices, such

that θj = θ0j + δθ. In crystals, small fluctuations (δθ ≪ 2π/Nv) are considered as



105

a disorder of the first kind [175], and they modify the structure factor as S(m, t) ≈
Sd(m)−m2⟨δθ2⟩(t)Sd(m), where Sd(m) correspond to the structure factor of a given

realization, and in general Sd(m) ̸= 0, for different m. In the limit case, taking the

average over many realizations, Sd(m) → S0(m). Here, the temporal dependence of

S(m, t) is entirely provided by the term ⟨δθ2⟩(t).

Mapping the problem from the point vortex model [96, 97], the deviation from

their initial position grows as δθ ∼ eσmt, where σm is given by Eq. (5.26). Therefore,

the temporal evolution of the structure factor to be S(m, t) ∼ e2σmt. Fitting the

exponential behavior of S(m, t) for the different modes m will therefore allow us

to reconstruct the imaginary part of the dispersion relation governing the vortex

instability.

5.4.2 Measured instability growth rate

In this last section, I discuss the main result of this thesis: the measured dispersion

relation of the Kelvin-Helmholtz instability in single-component superfluids.

Figure 5.20 shows the results we get for the imaginary part of the dispersion rela-

tion for different interaction regimes: BEC, UFG, and BCS superfluids, together with

the comparison with all the different models: the low-wavenumber limit, 1
2
k∆v nor-

malized to σ∗
PVM, while solid lines show the rates predicted by the point vortex model

in Eq. (3.30) and by Rayleigh’s Eq. (3.19) using δ = 0.8ℏ/M∆v for the thickness of

the interface layer.

To obtain the maximum growth rate σ∗ experimentally, we fitted the dispersion

relation of the measured rates, Fig. 5.20 c-e, using the following function f(x, σ∗) =

σ∗
√

e−4ηx−(2ηx−1)2

A
, with x = m/∆w, andA = max

[√
e−4ηx − (2ηx− 1)2

]
= (W (e−1)+

1)/(2η) ≈ 0.639/η, where W (x) is the Lambert W-function and η = 0.8. The func-

tion f(x, 1) corresponds to Eq. (3.19) normalized to the maximum value shown as the

magenta line in Fig. 5.20a-c. We perform the fit of the dispersion relation letting σ∗

as the only free parameter. It is worth noting that for the behavior of σm/σ
∗ appears

to be independent on the number of vortices in the vortex polygon, as shown by the

different symbols in Fig. 5.20a-c. Highlighting the origin of a common behavior for

all differential velocities ∆v at the interface between the superfluids.

In Fig. 5.20 d, the extracted σ∗ for different superfluid regimes is plotted as a

function of the relative velocity, displaying a quadratic behavior which is compatible
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Figure 5.20: a-c) Normalized dispersion relations for the a) BEC at 1/kFa = 4.1, b)
UFG at 1/kFa = 0, c) BCS at 1/kFa = 0.3. We show the comparison we all the

different models. d) Scaling of σ∗ against ∆v in different interaction regimes. Filled
symbols correspond to BCS (1/kFa = −0.5(1), red diamonds), (1/kFa = −0.3(1),

orange diamonds); UFG (1/kFa = 0.0(1), blue triangles); and BEC (1/kFa = 4.3(1),
dark green stars), (1/kFa = 8.3(3), light green circles). Open symbols refer to GP
simulations at T = 0 (open green squares) and cZNG simulations at T/Tc = 0.4

(open red circles) for 1/kFa = 4.3(1). Solid lines refer to Rayleigh’s (magenta) and
the point vortex model (black) predictions. Dashed lines denote fits with

σ∗ = A∆vα. As insets, as a function of 1/kFa: (top) fitted scaling exponents α;
(bottom) adimensional factor ν defined as σ∗ = ν σ∗

PVM. Image adapted from [49].

with the calculations of the point vortex model maximum growth rate:

σ∗ =
κπ

4d2v
=

κπ

4 (2πR0/N)2
=

2πℏ
M
π(∆v)2

4
(
2π ℏ

M

)2 =
M

8ℏ
(∆v)2. (5.33)

These scaling properties, together with the normalized dispersion relations in

Fig. 5.20a-c provide clear evidence of the Kelvin-Helmholtz instability dynamics in

superfluids and of its universality across the BEC-BCS crossover.

The data in Fig. 5.20 d are compared with Eqs. (3.30) and (3.19), and with nu-

merical simulations obtained from GPE and the collisionless Zaremba-Nikuni-Griffin

(cZNG) model [49, 176]. The latter model simulations where performed by K. Xhani

using a self-consistent finite-temperature kinetic model coupling the evolution of a

condensate (following a GPE equation), with the evolution of a Boltzmann equa-
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tion given by a thermal cloud on non-condensed atoms [177]. The latter term, can

account for different couplings between the condensate and thermal cloud from the

collision terms of the Boltzmann equation. The cZNG considers the scenario where

the condensate and thermal cloud only interact via a mean-field energy shift, with-

out allowing the exchange of particles from the condensate to the thermal cloud. To

directly compare the numerical simulations with the experimental data we performed

the same extrapolation of the growth rate using the structure factor definition. All

theoretically obtained rates – analytical and numerical – agree quantitatively with

each other, while the measured ones show systematically lower values. In particular,

since we observe that the experimental data follows the same scaling law with the

differential velocity ∆v, namely (∆v)2 as the theoretical models, we can quantified

the mismatch by the ratio ν = σ∗/σ∗
PVM, presented as an inset of Figure 5.20.

In classical fluids, dissipation effects typically stabilize the system, leading to lower

growth rates [79, 80]. In our system, we expect a finite temperature to introduce

dissipation effects in the form of scattering processes between normal excitations

and vortices, through the presence of the mutual friction coefficients. These are

ubiquitous sources of dissipation in any superfluid and strongly depend on the vortex

core structure [75, 76].

The growth rate in the presence of mutual friction coefficients can be adjusted

through the correction factor mentioned in the previous section, namely:

σm =
√
(1− α′)2 + α2σ0

m ≈ (1− α′ +
1

2
α2)σ0

m, (5.34)

where it is clear there exist the possibility of the dynamics to be slower than the

idealized superfluids by considering an α′ > 0. Moreover, the effect of the dissipative

coefficient α is quadratic in nature and can be neglected to first order. The most

plausible reason we observe slower rates as the ones expected from non-dissipative

theories could be due to mutual friction.

It is important to note that mutual friction strongly depends on the nature of the

superfluids [75, 91]. For bosonic 4He, the dissipative coefficient α′ is considered al-

most 0 (α′ ≈ α2 ∼ 10−4) for temperatures below 0.8Tc. On the other hand, fermionic

superfluid 3He displays values of α′ above 0.2 for temperatures above 0.3Tc, eventually

reaching 1 for close to Tc, ultimately dominating over α in a large range of tempera-

tures. From these known results, we could speculate the role of mutual friction across

the BEC-BCS crossover to be more similar to the one observed in fermionic superfluid
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3He due to the structure of the vortex core [75]. Hence, one would expect models such

as ZNG to fail in the description of mutual friction for strongly interacting BEC’s

near the crossover regime. Providing a measurement of the these coefficients requires

to precisely compare the theoretical models with the experimental data to provide

quantitative comparison.

5.4.3 Geometrical instability suppression

Figure 5.21: Geometrical suppression of the instability, simply by modifying the
width of the system, leaving the radii of the vortex polygon constant.

Figure 5.22: Geometrical suppression of the instability, simply by modifying the
width of the system, leaving the radii of the vortex polygon constant.

Mutual friction is no the only effect that can help suppress the instability growth

rates. Indeed, we can modify the geometric arrangement of the system by considering

the dynamics of vortices in thinner annular superfluids [94], as shown in Figure 5.21.

On the lower panels I show the structure factor associated to the dynamics of the

vortices in the annular traps shown in the panels above. We considered the case for

N = 16, and we keep constant the radius of the vortex polygon. In Figure 5.22,
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we confirm this behavior by computing the theoretical values of the growth rate for

different geometries, where in general, we observe a suppression of the instability rate.

However, we note that geometrical restrictions are not the reason of the mismatch

between the observed growth rate shown in Figure 5.20 since these are taken into

account in the theoretical models already.
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Chapter 6

Conclusions and Outlook

In this thesis I investigated the onset and evolution of the Kelvin-Helmholtz instability

in fermionic superfluids across the BEC-BCS crossover [49]. The system involved two

counter-rotating annular superflows separated by a thin potential barrier. I presented

the protocol employed for the generation of the persistent currents necessary in each

annular superfluid. I characterized the creation of the initial condition of the counter-

rotating persistent currents, each with the same number of circulation quanta. By

tuning the barrier height, we controlled the merging dynamics of the superfluid. I

explored the regime of fast and slow removal dynamics showing the two distinct

behaviors from spiral soliton behavior to the ordered array of quantized vortices. I

analyzed the dynamics behind the transition from a barrier interface into an ordered

array of quantized vortices. Moreover, to provide more insights about this, I solved

the Gross-Pitaevskii equation, and proposed that the formation dynamics can be

mapped to the one of linear atomic Josephson junction, explaining the emergence

of the vortices as a natural solution to the phase-induced tunneling dynamics. A

possible extension for future work could be to perform a more in-depth study of the

linear atomic Josephson junction dynamics, working in the presence of the tunneling

barrier, specially in the limit of thin annular superfluids in both the bosonic and

fermionic sides of the Feshbach resonance.

I observed how the polygonal array loses stability and rolls up into vortex clusters.

The Kelvin-Helmholtz Instability in this scenario appears as the instability breaking

the regular array of vortices. Extracting the instability growth rates from the exper-

imental data, we find that they obey the same scaling relations across the different

superfluid regimes, although vortex dynamics appears to be consistently slower than
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predicted by theoretical models. I developed the theoretical framework describing

the instability using the dissipative point-vortex model. This model describes the

motion of superfluid vortices in the presence of a mutual friction with the normal

component of the system, and offers a mechanism through which vortex dynamics

can be generally slower. A natural extension of this work is to analyze the behavior

of the mutual friction as a function of the temperature of the system and the inter-

action regime. The mechanisms behind the origin of the mutual friction rely on the

microscopic nature and structure of the vortices [75, 76, 91]. Across the BEC-BCS

crossover the vortex structure changes dramatically [178], and altering dramatically

the propagation of vortices.

These new results offer new perspectives of the behavior of vortex turbulence in

fermionic superfluids, with the KHI being a precursor of a possible first observation of

such dynamics in strongly correlated superfluids. Our work opens new ways to study

non-equilibrium phenomena in strongly correlated quantum matter, whose implica-

tion can be extended from rapidly rotating quantum gases [179] to pulsar glitches

[180] and neutron star mergers [181]. An exciting direction for future experiments

consist of studying the cascade of secondary instabilities, in longer timescales, to-

wards the spontaneous onset of quantum vortex turbulence [114, 120, 121], exploring

a different route which is complementary to external forcing [24, 182] to probe its

underlying microscopic mechanisms from the few- to the many-vortex perspective.
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