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Abstract
In this Thesis, I report on the main scientific results that I obtained during my Ph.D., carried
out at the University of Florence in the Li-Cr lab, under the supervision of Dr. Matteo
Zaccanti and Prof. Giovanni Modugno. My research activity on Li-Cr began with my Master
Thesis and seamlessly progressed into my doctoral studies. During these years, starting from
an early-stage experiment, we significantly advanced in the exploration and understanding
of such a novel system, so far uniquely available in our lab worldwide, achieving numerous
important scientific breakthroughs.

Our first major result is the realization of quantum degenerate Fermi mixtures of
ultracold 6Li alkali and 53Cr transition-metal atoms. We have devised and optimized a
simple and robust cooling strategy, based on an all-optical approach with an overall duty
cycle of about 13 s, with which we routinely produce large samples of more than 4.5×105 6Li
and 1.5× 105 53Cr atoms. Both components are quantum degenerate, at final temperatures
around 200 nK. More specifically, in our experimental sequence atoms are first collected
in a double-species magneto-optical trap (MOT), where different laser cooling stages are
applied to reach temperatures of a few hundreds of microkelvins, close to the Doppler limit.
Within an overall MOT loading time of 8 s, we produce cold clouds containing up to 109
6Li and 8 × 107 53Cr atoms, at temperatures of about 300 µK. The significant gain in
the collected 53Cr MOT atom number, relative to previous studies, is achieved by finding
an experimental configuration where light-assisted losses are drastically suppressed for
such species. Lithium and chromium atoms are then directly loaded from the MOT into a
bichromatic optical dipole trap (bODT), realized by overlapping a high-power infrared laser
beam (confining more tightly Li than Cr) with a green beam at 532 nm (tightly confining
Cr and anti-confining Li). The choice of this trap, primarily motivated by the possibility to
tune the (absolute and relative) trap depth of both species during the final evaporation
stage, is also found to be rather convenient to circumvent a known technical challenge
connected with the direct loading of chromium from the MOT into a purely infrared (IR)
optical trap: In fact, this was found problematic, due to a detrimental light shift of the Cr
cooling transition caused by the intense IR beam. However, thanks to nearby transitions at
533 nm, connecting the excited 7P4 level to 7D3,4,5 states, the green light in our bODT can be
efficiently exploited to (over)compensate for the IR-induced redshift, creating a “safe” dark
spot for chromium atoms in correspondence of the optical trap. In this way, we are able to
load the bODT with more than 4× 106 53Cr atoms, together with roughly 2× 107 6Li atoms,
at temperatures of about 250 µK. We subsequently reach the ultracold regime through
efficient evaporative cooling of the two lowest Zeeman states of lithium, performed slightly
above the broad homonuclear Feshbach resonance at 832 G, and simultaneous sympathetic
cooling of the chromium component, polarized in its lowest Zeeman sublevel. After a
5-s-long evaporation stage, only slightly longer than the optimum one for single-species
Li samples, we obtain spin-polarized Fermi mixtures comprising up to 3.5× 105 6Li and
1×105 53Cr, at ultralow temperatures of about 200 nK. In this configuration, i.e. within the
sole main bODT, lithium is deeply degenerate with TLi/TF,Li ∼ 0.2, while chromium only
features a “mild” degeneracy, with TCr/TF,Cr ∼ 0.5. We overcome this issue by exploiting
an additional bichromatic optical dipole trap, which crosses the main one from the vertical
direction, and thus allows us to significantly increase the confinement along the main bODT
axis. Such a crossed bODT enables the access to a broad parameter space, where we can
controllably vary the density and degree of degeneracy of the two components almost
independently. This allows us to reach configurations where both species show T/TF ≃ 0.25.
Remarkably, our strategy also provides an efficient pathway to produce single-species Fermi
gases, or spin mixtures, of ultracold (weakly) dipolar 53Cr atoms.
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Our progress toward quantum degeneracy was accompanied (and indeed enabled) by a
parallel, thorough investigation of the elastic and inelastic collisional properties of our novel
fermionic mixture. By performing extensive loss spectroscopy on six different scattering
channels, we discovered more than 50 interspecies 6Li-53Cr Feshbach resonances (FRs), well
isolated from each other and exhibiting a non-chaotic pattern. Our experimental data
provided the fundamental input to build a full coupled-channel model for the Li-Cr system,
which was developed by our theory collaborator Prof. A. Simoni, world-renown expert in
such calculations. Importantly, his model allowed us to connect all observed features to
well-defined LiCr molecular levels with known quantum numbers, and provides us accurate
knowledge of two-body Li-Cr interactions. In particular, we identified and characterized
a subset of high-field s-wave FRs, with magnetic-field widths of about 0.5 G, featuring a
character similar to Li-K ones but immune to two-body losses. Despite their comparatively
narrow nature, combined with their high-field location above 1.4 kG, these FRs enable
resonant control of Li-Cr interactions. In addition, exciting future prospects are offered by
the presence of peculiar p-wave resonances with anomalously large splitting of the three mℓ

components, that are thus intrinsically chiral in nature.
The existence of suitable s-wave 6Li-53Cr FRs also provides an optimal starting point

for the formation of bosonic Feshbach dimers. During the second part of my Ph.D. period,
we have successfully produced ultracold gases comprising up to 5× 104 6Li53Cr Feshbach
molecules, at temperatures around 200 nK and peak phase-space densities exceeding 0.1.
Leveraging on the immunity to two-body decay and on the good collisional stability against
three-body recombination of our fermionic mixture, we achieved efficient magneto-association
with ramp rates slower than the two-body-adiabatic regime by more than two orders of
magnitude. We directly confirmed the paramagnetic nature of LiCr molecules through
Stern-Gerlach-type experiments, and demonstrated precise control of their quantum state
via a novel optical measurement of the open-channel fraction and binding energy. Moreover,
through the characterization of the dominant loss mechanisms affecting our Feshbach dimers,
we have identified an experimental configuration where their lifetime exceeds 0.2 s.

Parallel to our experimental progress, our theory collaborator Prof. M. Tomza and his
group developed a state-of-the-art quantum chemical model for the LiCr molecule, with
which they could accurately predict the properties of its ground and excited electronic
states. In particular, their ab initio model – which is able to reproduce the experimentally
determined value of the Li-Cr octet scattering length – predicts a large electric dipole
moment (exceeding 3 D) for the rovibrational X Σ+ ground state, which adds to the sizable
magnetic one of 5 µB. Furthermore, the results of M. Tomza and colleagues suggest that
our Feshbach dimers, already created in the least bound rotationless level of the X 6Σ+

electronic ground state, could be efficiently transferred to the absolute rovibrational ground
state via stimulated Raman adiabatic passage, with optical transitions at experimentally
accessible wavelengths.

Within the very last months of my Ph.D., I have also performed a characterization of
the transport properties of lithium impurities, resonantly interacting with a surrounding,
non-degenerate gas of chromium atoms, which acts as a thermal bath for the Li component.
By exploring different temperature and density regimes of our mixture, and exploiting the
magnetic control of the interspecies interactions enabled by the same s-wave resonance
employed for the realization of LiCr dimers, we have revealed a rather unexpected and
surprising behavior, that has not found a conclusive explanation at the time of the submission
of this Thesis. Contrarily to the case of homonuclear Fermi mixtures, that in the strongly-
interacting region were found to exhibit a minimum of the diffusion coefficient of only a
few “quanta of diffusion” ℏ/mLi when approaching quantum degeneracy (T/TF ∼ 1), in
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our experiment we disclosed a low-temperature regime in which the lithium impurities
feature anomalous dynamics. Specifically, the mean square displacement of a Li cloud,
once released within the Cr gas and under resonantly-interacting conditions, was found to
grow sub-linearly in time, in contrast with the linear trend characterizing normal diffusive
transport. When this regime was accessed in the experiment, the expansion of the lithium
cloud became extremely slow, marked variations from a Gaussian density envelope were
revealed, and a sizable portion of the atomic distribution was found to be essentially
stuck over the whole observation time. These latest results share intriguing similarities
with previous experimental observation reported for matter-wave transport in disordered
media: Indeed, our findings appear consistent with a picture in which heavy Cr atoms
effectively act for the light Li impurities as a quasi-static, random potential landscape
of point-like scatterers, promoting their localization due to quantum interference effects.
While our findings lack a rigorous theoretical understanding, yet, they provide a first,
clear example of how a large mass asymmetry can profoundly impact on the many-body
dynamics of ultracold Fermi mixtures, fostering qualitatively new phenomena already in
the non-degenerate regime, with respect to their equal-mass, homonuclear counterparts.
The realization of this novel 6Li-53Cr Fermi mixture with tunable interactions, and its
first exploitation in the context of ultracold molecule formation and of quantum transport
experiments – successfully achieved during the three years of my Ph.D., pave the way to
a wealth of several future developments: From the investigation of a variety of few- and
many-body phenomena of highly-correlated fermionic matter completely unexplored, yet,
to the realization of quantum gases of paramagnetic polar molecules, and their subsequent
application as novel kinds of quantum simulators.
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Introduction
Strongly interacting quantum mixtures composed of two unequal kinds of fermionic particles,
such as quarks of different colors or electrons belonging to different lattice bands, exhibit a
great variety of exotic phenomena [1–6], qualitatively distinct from those characterizing
single-component, mass-balanced systems. The interplay between quantum statistics, mass
asymmetry, and a different response to external fields indeed provides an increased level of
complexity, with a strong impact both at the few- and many-body level. In particular, this
holds true for ultracold mixtures of chemically different atomic species: The combination
of strong and tunable inter-species interactions, enabled by the presence of Feshbach
resonances (FRs) [7], with a heavy-light mass imbalance, M > m, is predicted to promote
a variety of unconventional regimes that are hard, or even impossible to attain with their
homonuclear counterparts.

At the few-body level, notable examples are peculiar few-particle clusters predicted to
form for mass ratios in the range 8.2 ≤M/m ≤ 13.6 [8–22]. These elusive non-Efimovian
states, still lacking direct experimental detection thus far,1 are expected to exhibit universal
character and to be characterized by a distinctive p-wave orbital symmetry. Notably, they
are extremely relevant also from a many-body viewpoint, in light of their expected collisional
stability. In fact, owing to the halo nature of such non-Efimovian clusters, largely exceeding
in size the van der Waals range of the interatomic interaction potential, their existence
is expected not to trigger an increase of inelastic decay processes [14], in stark contrast
to the widely explored Efimovian case [8, 24–29]. Therefore, the presence of fermionic
trimers [9,13,17] and bosonic tetramers [15,20] – predicted to exist in three dimensions for
8.17 ≤ M/m ≤ 13.6 [9] and 8.86 ≤ M/m ≤ 13.6 [20], respectively – may uniquely allow
one to experimentally attain qualitatively new many-body regimes, within which strong
few-body correlations add to, or may even possibly overcome, the standard two-body
ones [30,31]. These new appealing scenarios, characteristic of mass-imbalanced fermionic
systems, include novel types of impurity physics [32–35] and mediated quasiparticle
interactions [36–38], which in turn may promote the emergence of elusive many-body states
featuring unconventional superfluid pairing [30,39–49] or peculiar magnetic phases [50–54].

Moreover, weakly bound (bosonic) dimers created from a mass-imbalanced Fermi
mixture – thanks to their increased collisional stability near a s-wave FR, inherited from
the fermionic statistics [55, 56] – represent an appealing starting point to realize ultracold
gases of ground-state polar molecules [57–62]. Notably, ultracold samples of molecules with
permanent electric dipole moments offer unprecedented opportunities to investigate novel
quantum chemistry and many-body physics [63–65]. In particular, doubly-polar molecules,
possessing both an electric and a magnetic dipole moment, have recently attracted great
attention, as they could offer even richer prospects: while the electric dipole gives rise to
the long-range anisotropic interactions, the magnetic one, arising from a nonzero electronic
spin, provides an additional degree of tunability in the system, compared to singly-polar
compounds. A high phase-space density gas of such doubly-polar molecules may open
up new venues in the context of quantum simulation [66–69] and computation [70,71], as
well as quantum controlled chemistry [72]. This is exemplified by the pioneering work on
excited-state NaLi dimers [73], which – despite featuring weak electric and magnetic dipole
moments – provided new insights into ultracold reactive collisions [72,74].
1Indirect few-body effects related to the existence of fermionic trimers have been disclosed in Li-K mixtures,
see Ref. [23].
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Despite tremendous progress in the field [75], realization of quantum degenerate gases of
doubly-polar molecules remains an unsurpassed challenge. To date, the only experimental
realizations of degenerate gases of ground-state singly-polar molecules [76–78] exploit ul-
tracold atomic mixtures as their starting point: Atom pairs are first converted into weakly
bound molecules by sweeping the magnetic field across a Feshbach resonance, and then
transferred to the absolute molecular ground state via stimulated Raman adiabatic passage
(STIRAP) [79]. However, this two-step method has only been demonstrated on bi-alkali
systems, whose ground state has zero electronic spin, and thus negligible magnetic moment.
Combining alkali species with closed-shell atoms, which would endow ground-state molecules
with the additional spin and magnetic moment, is currently under investigation, following the
experimental discovery of FRs in alkali–alkaline-earth systems [80–82]. Yet, the extremely
narrow character of such resonances, despite impressive technical effort [83], has so far
hindered the first association step. Another proposed pathway to realize paramagnetic
ground-state molecules relies on binding highly magnetic lanthanides with either alkali or
closed-shell elements [84], and association of ultracold KDy Feshbach dimers has indeed
been recently demonstrated [85]. Nonetheless, STIRAP transfer of such molecules to their
absolute ground state appears a formidable challenge, owing to the lack of spectroscopic
data combined with the complex electronic configuration of these elements, which makes ab
initio methods poorly reliable, if not unemployable.

During my Ph.D., carried out in the Li-Cr lab in Florence under the supervision of
Dr. Matteo Zaccanti, I addressed four different main topics: (i) The experimental realization
of a novel degenerate Fermi mixture made of 6Li alkali and 53Cr transition-metal atoms;
(ii) the extensive characterization of elastic and inelastic scattering properties of the 6Li-
53Cr system; (iii) the realization and characterization of large ultracold gases of bosonic
paramagnetic LiCr Feshbach molecules, featuring phase-space densities exceeding 0.1 and
lifetimes longer than 0.2 s; and (iv) an ongoing study of transport properties of Li impurities
embedded within a larger Cr bath, exploring different temperature and interaction regimes.

The choice to experimentally realize and explore such a novel system was originally moti-
vated by two main reasons: First, the special chromium-lithium mass ratio, MCr/mLi ≃ 8.8,
is extremely close to the aforementioned critical values above which both three- and four-
body non-Efimovian states are predicted to emerge [9, 13, 15, 17, 20], potentially making
such a bi-atomic combination an unparalleled framework to explore a different class of
elastic few-body effects and their impact at the many-body level [17, 20]: For instance, this
non-trivial and rather unusual few-body physics could lead to the emergence of novel types
of quasi-particles in the investigation of the light impurity problem [32, 35], and trigger
the emergence of exotic superfluid and normal states, such as trimer Fermi gases [30], or
so-called quartet superfluidity of shallow bosonic tetramers [31]. In addition, in the regime
of strong repulsive interactions, three-body recombination processes are predicted to be
drastically suppressed for the specific MCr/mLi mass ratio [86]. Li-Cr Fermi mixtures thus
may represent also a pristine platform to explore Stoner’s ferromagnetism [87] and related
phenomena [88–92], immune to the pairing instability.

Secondly, from a molecular perspective, binding lithium alkali with transition-metal
chromium atoms appears as an extremely promising route toward ground-state doubly-polar
molecules. In fact, the interaction between Li (2S1/2) and Cr (7S3) has only weak magnetic
anisotropy and leads to two spin multiplicities, similarly to standard bi-alkali systems. While
the latter feature a singlet (X 1Σ+) ground and a triplet (a 3Σ+) first excited state [7],
the LiCr system exhibits a sextet (X 6Σ+) and an octet (a 8Σ+) symmetry. In its absolute
ground state, the LiCr molecule is thus expected to combine a high electronic spin with a
strong Liδ+Crδ− dipolar character [93]. Most importantly, the existence of just two spin
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multiplicities, combined with the almost isotropic van der Waals interactions, makes the
creation of ground-state LiCr molecules experimentally feasible with current technology: On
the one hand, it leads to non-chaotic, bi-alkali-like Feshbach spectra, well suited for molecule
association. On the other hand, it allows for state-of-the-art molecular structure calculations
with predictive power over ground and lowest-lying electronic states, considerably simplifying
the task of finding suitable STIRAP paths. In particular, recent ab initio calculations carried
out by M. Tomza’s group [94] foresee, for the LiCr absolute ground state X 6Σ+ (first excited
state a 8Σ+), a sizable electric dipole moment exceeding 3 D (0.7 D). This, combined with
the magnetic one of 5 µB (7 µB), strongly motivates the choice of Li-Cr mixtures to realize
ultracold paramagnetic polar molecules.

This Thesis is organized as follows:

- First, in Chapter 1, I summarize a few key concepts of low-energy scattering theory,
relevant to describe pairwise collisions between neutral atoms at ultralow temperatures.
In particular, I highlight the role of Feshbach resonances, emphasizing the difference
between broad and narrow ones.

- Second, in Chapter 2, I provide an overview of the experimental protocols we devised
and optimized to produce quantum degenerate mixtures of fermionic 6Li and 53Cr
atoms. The procedures described in this Chapter represent the foundation for the
studies presented in the subsequent ones.

- In Chapter 3, I present the results of our thorough characterization of the elastic
and inelastic scattering properties of 6Li-53Cr mixtures. Our experimental effort
to unveil more than 50 interspecies FRs constituted the necessary input for a full
coupled-channel model [7], developed by our collaborator Prof. A. Simoni, that is
able to unambiguously assign the features we observed to well-defined LiCr molecular
states. In particular, we identified and characterized a set of high-field s-wave FRs,
with magnetic field widths of about 0.5 G, that provide an optimal starting point to
form (bosonic) Feshbach dimers.

- In Chapter 4, I report on our experimental findings concerning the production,
characterization, and optimization of high phase-space density gases of ultracold
bosonic LiCr Feshbach molecules, of which we directly revealed the paramagnetic
nature and demonstrated precise control over their internal quantum state. Parallel
to our progress in the lab, our collaborator Prof. M. Tomza and his group developed
a state-of-the-art ab initio quantum chemical model for the LiCr molecule, with
which they predict a sizable electric dipole moment, exceeding 3 D, in the absolute
ground state. Additionally, their model provides fundamental guidelines for the future
identification and implementation of suitable STIRAP transfer schemes.

- In Chapter 5, I present the main results of a (still partially ongoing) investigation of
transport properties in our system. By studying the expansion of a small thermal gas
of Li atoms, acting as “light impurities”, embedded within a larger Cr gas, playing the
role of a medium of “heavy fermions”, we observed a progressive transition from the
ballistic to the diffusive regime, as the collision rate was resonantly enhanced near a s-
wave FR. Furthermore, for sufficiently low temperatures, the slowest observed dynamics
showed strong signatures of sub-diffusive behavior, a feature often interpreted as a
precursor of localization effects. I personally developed a semi-classical Monte Carlo
simulator to analyze and interpret our measurements. Interestingly, the simulator
is able to describe the dynamics in the high-temperature regime remarkably well,
but it fails to reproduce the observed sub-diffusive dynamics at low temperatures.



This suggests that non-trivial, beyond-two-body quantum interference effects, not
included in my semi-classical simulation, may play an important role in this regime,
promoting anomalous transport dynamics and, possibly, fostering the emergence of an
Anderson-like localized state.

- Finally, in Chapter 6, I briefly describe the main technical upgrades to the experimental
setup that I contributed to implement during my Ph.D.
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1

Chapter 1

Elements of scattering theory
In this Chapter, I briefly recall a few key concepts of scattering theory that will be useful
through the rest of this manuscript. Specifically, I will focus on the case of ultracold
s-wave collisions near a narrow Feshbach resonance [7], which is particularly relevant for
the Li-Cr system (see Chapter 3). This introduction is by no means an exhaustive review
of the subject: rather, it has to be considered as a practical way to introduce the relevant
quantities and the adopted notation. A more detailed discussion can be found in several
textbooks, see e.g. Refs. [95–101], and partially in my Master Thesis [102].

This Chapter is organized as follows:

- In Sec. 1.1, I briefly introduce the two-body scattering problem in non-relativistic
quantum mechanics, showing the connection between the main relevant quantities
and the scattering amplitude.

- In Sec. 1.2, I focus the discussion on the low-temperature regime, relevant to describe
collisions between pairs of non-magnetic ultracold atoms.

- In Sec. 1.3, I provide a short overview of resonant scattering, remarking the connection
between the scattering length a, the effective range parameter R∗, and the intrinsic
parameters of the scattering resonance.

- In Sec. 1.4, I introduce (magnetic) Feshbach resonances (FRs), showing how the
scattering length can be effectively tuned near the resonance pole.

- In Sec. 1.5, I remark on the distinction between broad and narrow FRs, highlighting
a few key aspects of elastic scattering near a narrow resonance.

- In Sec. 1.6, I summarize the main properties of Feshbach molecules, focusing mainly
on their binding energy, magnetic moment, and on the role of the closed-channel
fraction.

- Finally, in Sec. 1.7, I briefly compare the main results summarized in this Chapter
with the case of a real physical system.

1.1 Basics of two-body scattering
Let us consider binary collisions of neutral atoms at ultra-low temperatures, interacting
via a short-ranged, central potential V (r), where r⃗ = r⃗1 − r⃗2, and r⃗1,2 are the positions
of the two atoms. The problem can be tackled in the center of mass frame, where the
Schrödinger equation reads[

p2
rel

2mred
+ V (r)

]
ψ(r⃗) = E ψ(r⃗) , (1.1)

where mred = m1m2/(m1 +m2) is the reduced mass, p⃗rel = ℏ k⃗rel = mred (v⃗1 − v⃗2) is the
relative momentum,1 and E = (ℏkrel)2/(2mred) > 0 is the scattering energy. We can
model the incoming effective single-particle wavefunction ψi with a plane wave propagating
1Note the difference between p⃗rel and p⃗1 − p⃗2 in the mass-imbalanced case m1 ̸= m2.



2 1. Elements of scattering theory

along the z-axis, and (at large distances) the scattered fraction ψs − ψi with an outgoing
spherical wave, the amplitude of which is defined as the scattering amplitude f(krel, ϑ):

ψi(r⃗) ≃ ei krel z (1.2a)

ψs(r⃗) ≃ ei krel z + f(krel, ϑ) ei krel r

r
(for large r). (1.2b)

In Eq. (1.2b) we assumed elastic scattering (i.e. krel is conserved) and cylindrical symmetry.
The scattering amplitude encodes all the information about the collision: For instance, it
can be readily shown [97] that its squared modulus directly equals the differential (elastic)
scattering cross section dσ/dΩ, such that the total one is given by

σel(krel) = 2π
∫ π

0
dϑ sin(ϑ) |f(krel, ϑ)|2 . (1.3)

One way of treating the scattering problem relies on the partial-wave expansion of the
incident and scattered waves. After some algebraic manipulations, one finds [102]:

f(krel, ϑ) =
√

4π
krel

∞∑
ℓ=0

√
2ℓ+ 1 eiδℓ(krel) sin

(
δℓ(krel)

)
Yℓ,0(ϑ) , (1.4a)

σel(krel) = 4π
k2

rel

∞∑
ℓ=0

(2ℓ+ 1) sin2 (δℓ(krel)
)

= 4π
krel

ℑm
[
f(krel, ϑ = 0)

]
, (1.4b)

where Yℓ,m(ϑ, ϕ) are the spherical harmonics, and δℓ(krel) the scattering phase shifts,
which completely determine f(krel, ϑ). In Eq. (1.4b), one can see that the maximum
contribution of each partial wave to the total cross section, the so-called unitary limit, is
set by 4π (2ℓ+1)/k2

rel, and it is reached when δℓ(krel) = π/2+nπ (n ∈ Z). Further, the last
relation in Eq. (1.4b), known as the optical theorem, essentially expresses the conservation
of the probability current [97]: In other words, the scattering cross section quantifies the
removal of particles from the incident flux.

I note here that, from Eq. (1.4a), one can conveniently define the partial scattering
amplitudes fℓ(krel) as

fℓ(krel) = 1
krel

eiδℓ(krel) sin
(
δℓ(krel)

)
= 1

krel cot
(
δℓ(krel)

)
− ikrel

. (1.5)

Importantly, I also remark that in the case of two indistinguishable particles, Eqs. (1.4)
must be modified to take into account the symmetry (antisymmetry) properties of the
pair of bosons (fermions) under particle exchange: Given that the spherical harmonics
have (−1)ℓ parity, the partial wave expansion for identical bosons (fermions) will contain
only even (odd) waves. Moreover, a factor of 2 appears in front of Eq. (1.4b) for identical
particles, arising from the (anti-)symmetrization of the wavefunction.

From the scattering cross section, assuming an ensemble of fixed scattering centers
with constant density nscatt,2 one retrieves the (elastic) scattering rate Γel, which quantifies
the number of collision events per unit time (for each incident particle):

Γel(krel) = nscatt σel(krel) vrel = 4π ℏ
mred

nscatt ℑm
[
f(krel, ϑ = 0)

]
, (1.6)

with vrel = ℏkrel/mred, and having used Eq. (1.4b). Furthermore, the scattering amplitude
f(krel, ϑ) also provides information about the energy shift h δνmf , experienced by one
2In the more general case of a inhomogeneous ensemble of thermal scatterers, in Eqs. (1.6) and (1.7) one
should average over the density and velocity distributions.



1.2 Low-energy scattering 3

particle due to its interaction with the surrounding medium. Within the framework of the
so-called impact theory of pressure broadening [103,104], one finds that

δνmf(krel) = − ℏ
mred

nscatt ℜe
[
f(krel, ϑ = 0)

]
. (1.7)

As a general result, a positive (negative) value of the real part of f(krel, ϑ = 0) corresponds
to a net attractive (repulsive) interaction energy.

1.2 Low-energy scattering
For central, short-ranged potentials, i.e. falling off as r−α with α > 3 for r →∞, at very
low collision energies the leading contribution to the sums in Eqs. (1.4) arises from s-wave
(ℓ = 0) collisions, and one can show that δ0(krel → 0) ∝ krel [7, 105]. In that case, under
non-resonant conditions, one can define a momentum-independent parameter, namely the
s-wave scattering length a:

a = − lim
krel→0

tan
(
δ0(krel)

)
krel

. (1.8)

By making use of Eq. (1.8) in Eq. (1.4b), one finds

σel(krel → 0) = 4π a2 . (1.9)

The latter is a celebrated result of scattering theory: for a central, short-ranged interaction
potential, off-resonant scattering at low energies is to first order isotropic, and the total
cross section approaches a constant value, solely determined by the s-wave scattering
length (and not by krel).

The case of low-energy scattering is indeed relevant when we consider collisions between
pairs of non-magnetic ultracold atoms, which feature a van der Waals interaction of
the kind VvdW(r) = −C6/r

6 = −EvdW · (RvdW/r)6, characterized by the range RvdW =
(2mredC6/ℏ2)1/4 and energy EvdW = ℏ2/(2mredR

2
vdW), respectively [7]. In particular (see

e.g. Refs. [102, 106] for details), the net effect of V (r) on the two-body system at large
interparticle separation, r ≫ RvdW, can be formally taken into account by imposing a
boundary condition at the origin for the log-derivative of the radial wavefunction Rℓ,m(r)
(zero-range approximation):

R′
0,0(r)

R0,0(r)

∣∣∣∣∣
r→0

= krel cot
(
δ0(krel)

)
, (1.10)

where the prime denotes differentiation with respect to r. Generally speaking, replacing
V (r) with the condition in Eq. (1.10) does not simplify the problem, as knowledge of the
phase shift δ0(krel) is still required. However, this approach becomes a useful tool in the
low-energy limit, for krelRvdW ≪ 1: In this regime, one can perform the effective range
expansion

krel cot
(
δ0(krel)

)
≃ − 1

a
− k2

relR
∗ , (1.11)

where a is the scattering length and R∗ the effective range parameter.3 The combination
of Eqs. (1.10) and (1.11) is often referred to as Bethe-Peierls boundary condition [106,107].
Note that, for R∗ = 0, Eq. (1.11) reduces to Eq. (1.8).

3Some authors, see e.g. Ref. [7], parametrize Eq. (1.11) expansion in terms of r0 = −2R∗.
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Importantly, by inserting Eq. (1.11) into Eq. (1.5), one obtains for ℓ = 0:

f0(krel) ≃ −
1

1
a + k2

relR
∗ + ikrel

. (1.12)

Thus, considering also Eq. (1.4b), the total s-wave scattering cross section is given by

σ0(krel) ≃
4π a2

(1 + k2
relR

∗ a)2 + k2
rel a

2 . (1.13)

The key point here is that the two-body scattering problem in the s-wave regime can
be solved by imposing the Bethe-Peierls boundary condition, depending only on two
momentum-independent parameters that can potentially be determined experimentally,
without requiring knowledge of the exact form of the true interaction potential. In fact, the
specific details of the short-range potential are irrelevant: All such potentials are equivalent
as long as they yield the same values for a and R∗. As a result, one can arbitrarily choose
an idealized zero-range (pseudo-)potential that reproduces Eq. (1.12).

1.3 Resonant scattering
One important feature of Eq. (1.12) is that it exhibits the well-known Breit-Wigner
resonance shape [108], relevant to describe low-energy collisions where the scattering state,
at energy E = (ℏkrel)2/(2mred), is coupled to a quasi-stationary state of energy Eres, with
a coupling amplitude γ̃. This becomes apparent by recasting Eq. (1.12) in energy units:

f0(E) ≃ −
ℏ√

2mred
γ̃

E − Eres + iγ̃
√
E
, (1.14)

with γ̃ = ℏ/(
√

2mredR
∗) and Eres = −γ̃2R∗/a. In particular, in terms of a and R∗:

a = − ℏ γ̃√
2mredEres

, (1.15a)

R∗ = ℏ√
2mred γ̃

. (1.15b)

A few important remarks should be made here. First, while a depends on both γ̃ and Eres,
R∗ is only determined by the coupling amplitude. In other words, the coupling energy
between the scattering and quasi-stationary states equals γ̃2 = ℏ2/(2mredR

∗2). Strong
(weak) couplings thus correspond to small (large) effective range values in the scattering
amplitude, and vice versa. In addition, the parameter

Γ̃d = 2 γ̃
√
E

ℏ
(1.16)

represents the decay rate of the quasi-bound state that produces the scattering resonance
[106]. Therefore, both γ̃ and R∗ are positive-defined quantities.

Second, from Eq. (1.15a) one realizes how the sign of the scattering length is determined
by the one of Eres: Namely, a > 0 for Eres < 0, i.e. the scattering length is positive only if
a real bound state exists. Vice versa, a < 0 when the quasi-stationary level is a virtual
state at Eres > 0.

Third, the magnitude of a can be arbitrarily tuned if the energy of the quasi-stationary
state can be varied around the scattering threshold. In particular, when Eres → 0, |a| → ∞
and, correspondingly, δ0 → (2n+ 1)π/2. However, it is important to realize that, while a
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may effectively diverge near a scattering resonance, the total cross section actually does
not, for any finite krel value. This was already pointed out as a comment to Eq. (1.4b),
and it can also be inferred from Eq. (1.13): The s-wave scattering cross section cannot
exceed σmax

0 (krel) = 4π/k2
rel, the so-called unitary limit, reached when k2

relR
∗ a = −1 (for

R∗ → 0, this condition becomes 1/a→ 0).

1.4 Magnetic Feshbach resonances
In most physical cases, the energy Eres appearing in Eq. (1.14) is fixed. However, for
several ultracold systems this parameter can be tuned via the Zeeman effect, giving rise
to the Feshbach resonance phenomenon [7]. This occurs when the wavefunction of two
atoms in a certain combination of hyperfine and Zeeman states (the open channel) is
coupled through a nonzero γ̃ to a nearly-degenerate molecular state, supported by an
interatomic potential asymptotically connected with a different hyperfine domain (the
closed channel). Here, “nearly-degenerate” means that the energy of such molecular
state is very close to the scattering energy. Due to a non-vanishing differential magnetic
moment δµ = µcc − µoc between closed and open channels, one thus obtains in this case
Eres = δµ (B − B0), B denoting an external magnetic-field bias, and B0 the magnetic
field value at which the bound state in the closed channel becomes degenerate with the
zero-energy scattering threshold. Consequently, near a FR, Eq. (1.15a) shows that the
scattering length is resonantly enhanced relative to its background value, with a B-field
dependence of the form

ares(B) = − ℏγ̃√
2mred δµ (B −B0) . (1.17)

Accounting also for a nonzero off-resonant contribution abg, Eq. (1.17) can be recast in
the familiar form [7]

a(B) = abg

(
1 − ∆B

B −B0

)
, (1.18)

with the magnetic-field width ∆B given by

∆B = ℏ γ̃√
2mred abg δµ

. (1.19)

By combining Eqs. (1.19) and (1.15b), we obtain a useful expression for the effective range
parameter [106]:

R∗ = ℏ2

2mred abg δµ∆B
. (1.20)

Recalling that large (small) values of γ̃ physically correspond to strong (weak) coupling
between the scattering channel and the quasi-bound level, a Feshbach resonance can
be classified as broad or narrow depending on whether the effective range parameter in
Eq. (1.20) is small or large relative to the true range of the potential: R∗ ≪ RvdW indicates
a broad resonance, while R∗ ≫ RvdW implies a narrow one. A similar classification is
presented in Ref. [7], using the dimensionless resonance strength parameter, which can be
expressed as sres ∼ RvdW/R

∗: broad (narrow) Feshbach resonances are characterized by
large (small) sres values.
Finally, I also report here the magnetic field dependence of the R∗ parameter [109,110]:

R̃∗(B) = R∗ ·
(

1− abg
a(B)

)2
. (1.21)
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1.5 Scattering near a narrow Feshbach resonance
In practical terms, the difference between broad and narrow FRs is better clarified by
inspecting how the scattering cross-section σ0(krel), obtained from Eq. (1.13), is affected
by the parameter R∗/a, in turn characterizing the “narrowness” of the resonance. To this
end, following Ref. [111], let us consider the dimensionless form

σ0(krel)
4π a2 = 1

(1 + k2
relR

∗ a)2 + k2
rel a

2 . (1.22)

Figure 1.1 shows the trend of Eq. (1.22) as a function of krel |a|, for different negative (solid
lines) and positive (dashed lines) a values. Several key features can be observed: First,
as krel → 0, all curves converge to unity, corresponding to σ0(0) = 4π a2, yielding a cross
section which solely depends on the scattering length (reflecting the broad resonance limit).
Second, for small but finite krel, when R∗/|a| ≫ 1 a noticeable asymmetry appears between
the a > 0 and a < 0 cases, which vanishes instead when R∗/|a| ≪ 1 (see magenta lines).
Specifically, for a < 0 and R∗/|a| ≫ 1, σ0(krel) exhibits a pronounced peak centered at

k̃rel = 1
R∗

√
R∗

|a|
− 1

2 , (1.23)

where the cross-section reaches its unitary value4

σ0(k̃rel) ≃ 4π/k̃2
rel ≃ 4π a2 (R∗/|a|) . (1.24)

The peak value of the scattering cross section can significantly exceed σ0(0), and the
feature persists as long as R∗/|a| > 1/2, while being entirely absent for any positive a.
Third, at low momenta, the curves for R∗/|a| ≫ 1 consistently lie above (for a < 0) or
below (for a > 0) those with R∗/|a| ≪ 1.

In conclusion, it is important to realize that, from a two-body perspective, any “broad”
resonance effectively “narrows” when the relative momentum or the magnetic-field detuning
becomes sufficiently large. Conversely, “narrow” resonances can behave like “broad” ones
when krel and δB are sufficiently small, ensuring that R∗ k2

rel ≪ 1/|a| in Eq. (1.12). However,
the distinction between “broad” and “narrow” FRs actually becomes highly relevant in
practical scenarios given that: (i) one has to deal with a finite magnetic field stability,
which limits the experimental precision required to probe the |a| ≫ R∗ regime; and (ii)
one should consider finite momentum distributions, arising either from thermal effects
at T > 0 or, for fermionic systems, from the existence of a finite Fermi momentum kF,
even at zero temperature. Focusing on the fermionic case, for broad resonances, where
R∗ ≪ 1/kF, all (relative) momenta krel will simultaneously reach the unitary condition
δ0(krel) = (2n+ 1)π/2 when 1/a→ 0. This situation has been experimentally realized in
ultracold homonuclear 6Li and 40K mixtures, see e.g. Refs. [112–115]. By contrast, in the
case of narrow resonances, for realistic particle densities n = k3

F/(6π2), one always has
R∗kF ≫ 1, causing different momenta to reach the unitary limit at different detunings, as
shown in Fig. 1.1. As a consequence, the many-body low-temperature regimes accessible
near broad and narrow resonances differ qualitatively, as discussed in Refs. [116–119].
4To be more precise, the unitary limit is nominally reached at k∗

rel = 1/
√
R∗ |a| (with a < 0), see Eq. (1.13).

For R∗/|a| ≫ 1 one has k̃rel ≃ k∗
rel, but in general k̃rel < k∗

rel. In other words, for any given combination of
R∗ > 0 and a < 0 with R∗/|a| > 1/2, the maximum possible value of the cross section at finite momentum
is set by σ0(k̃rel) = 4π R∗ 2/(R∗/|a| − 1/4), which is smaller than 4π/k̃2

rel = 4π R∗ 2/(R∗/|a| − 1/2) (and
thus nominally not unitary limited), but somewhat larger than 4π/k∗ 2

rel = 4π R∗ 2/(R∗/|a|). The difference
between k̃rel and k∗

rel becomes more striking for R∗/|a| ∼ 1, where anyway the peak of σ0(krel) is less
pronounced.
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Figure 1.1 – Normalized scattering cross section σ0(krel)/(4π a2) as a function of krel|a|, for
different values of R∗/|a|, see legend. Solid (dashed) lines refer to negative (positive) values of a.
For a > 0 (dashed lines) and R∗/a≫ 1, σ0(krel) is maximum at krel = 0, and lies systematically
below the result corresponding to the broad resonance limit R∗/a≪ 1 (see magenta curves). For
a < 0, instead, as long as R∗/|a| ≥ 1/2, the cross section exhibits a sharp, low-momentum peak
centered at k̃rel, where it reaches its unitary-limited value σmax

0 (k̃rel) = 4π/k̃2
rel, indicated by the

gray dotted line.

1.6 Feshbach molecules
Let us now consider how the finite coupling with the open channel modifies the properties
of the bound state near the FR, otherwise represented by a closed-channel molecule for
γ̃ = 0. To this end, following Refs. [106, 111], we look for a pole of f0(krel) at negative
energy. Namely, in Eq. (1.12) we replace krel → iκ (with κ > 0),5 and we impose

1
a
− R∗κ2 − κ = 0 . (1.25)

It is straightforward to verify that the solution we are seeking, only possible for a > 0, is

κ∗ = 1
2R∗

√1 + 4R∗

a
− 1

 , (1.26)

with associated dimer binding energy

Eb = − ℏ2 κ2
∗

2mred
. (1.27)

The above result interpolates between two familiar forms obtained in the limits of small
and large R∗/a values, respectively: For R∗/a≪ 1 – i.e. close to the resonance pole, or in
5With this choice, one obtains a dimer binding energy Eb = −(ℏκ)2/(2mred), with the associated wavefunc-
tion decaying as ψb(r) ∼ e−κr/r at large r ≫ RvdW.



8 1. Elements of scattering theory

the broad resonance case – one has κ∗ ∼ 1/a, so that Eq. (1.27) becomes simply

Eb

∣∣∣
R∗/a≪1

≃ − ℏ2

2mred a2 . (1.28)

In this case, the bound state energy features a typical parabolic trend Eb ∝ −1/a2 ∝
−(B −B0)2: the dimer is a halo state whose energy and wavefunction solely depend on
the scattering length a (“universal regime”).
In the opposite limit of R∗/a≫ 1, instead, κ∗ ∼ 1/

√
aR∗ and, exploiting Eqs. (1.17) and

(1.20), one finds for the dimer binding energy

Eb

∣∣∣
R∗/a≫1

≃ − ℏ2

2mred aR∗ = δµ (B −B0) . (1.29)

In this case, the bound state energy depends linearly on the magnetic field detuning
δB = B −B0, and it coincides with that of the bare closed-channel molecule.

It is important to emphasize that the dimensionless parameter R∗/a also quantifies the
closed (open) channel fraction Z (1− Z) characterizing the dressed Feshbach molecule in
the zero-range approximation. Referring the interested reader to Ref. [106] for the formal
derivation of the result, one finds

Z(δB) = 1 − 1√
1 + 4R∗

ares(δB)

, (1.30)

with R∗ and ares(δB) given by Eqs. (1.20) and (1.17), respectively. In terms of the closed
channel fraction, it can be readily shown that, for Z → 0, the dimer binding energy
follows the universal behavior of Eq. (1.28), whereas, in the opposite limit Z → 1, the
Feshbach state essentially coincides with the bare closed-channel molecule, with Eb given
by Eq. (1.29). In general, at all detunings, the magnetic moment associated with the
Feshbach dimer is given by

µd(δB) = ∂Eb

∂B
= Z(δB)µcc +

(
1− Z(δB)

)
µoc . (1.31)

Consequently, experimental measurement of the dimer magnetic moment around a FR
provides direct information about the magnetic-field dependence of the closed-channel
fraction, and thereby of R∗/a, see Secs. 4.7 and 4.8. In general, the transition from one
regime to the other will occur at magnetic field detunings that depend on the character
of the resonance considered: For broad resonances, the universal regime Eq. (1.28), with
Z ∼ 0, will extend over a B-field region of order ∆B from the resonance center B0, whereas
for narrow FRs this will only occur for detunings |B −B0| ≪ ∆B.

1.7 Zero-range approximation in a real physical system
To conclude this Chapter, I emphasize how the seemingly simple results of the zero-range
approximation summarized above can actually provide a quantitatively accurate description
of real physical systems. As an example, in Fig. 1.2 I show the magnetic-field dependence
of the scattering length a(B) [panel (a), green circles] and the effective range parameter
R̃∗(B) [panel (b), cyan circles] near one s-wave FR occurring in the 6Li-53Cr system around
1461 G, obtained by our theory collaborator Prof. A. Simoni from coupled-channel (CC)
calculations, which were optimized by fitting more than 50 FRs that we experimentally
determined (see Chapter 3). The CC data are fitted to the corresponding simple analytic
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Figure 1.2 – Modulus of the scattering length |a| [panel (a), green circles] and effective range
parameter R∗ [panel (b), cyan circles] as a function of the magnetic field detuning δB = B−B0, for
one Li-Cr FR located around 1461 G, as obtained by A. Simoni from coupled-channel calculations
(see Chapter 3). The numerical results of the coupled-channel calculations are fitted to the
corresponding simple analytical formulas provided by the zero-range approximation [Eqs. (1.18)
and (1.21), respectively], see black solid lines and best fitted values. The simple zero-range model is
able to reproduce the results of the (much more involved) CC calculations with remarkable accuracy.
The red shaded area in panel (a) marks the region where a < 0.

formulas given by the zero-range approximation [Eqs. (1.18) and (1.21), respectively],
which describe the numerical results with remarkable accuracy; see black solid lines. From
the best-fitted values abg = 41.48(4) a0, ∆B = 476.6(1) mG, and R∗

0 = 6017.7(1) a0,
using Eq. (1.20) we obtain a differential magnetic moment of δµ ≃ 2 µB. Additionally,
for the same FR, in Fig. 1.3 I show the dimer binding energy Eb (blue circles), together
with the decay rate of the virtual state (red circles), also obtained by A. Simoni with
his coupled-channel model. The CC data are compared with the corresponding trends
(black solid lines) given by the zero-range approximation – see Eqs. (1.26)-(1.27) and
Eqs. (1.15)-(1.16), respectively – inserting the above values for the best-fitted parameters.

Figure 1.3 – Dimer binding energy Eb (left, blue circles) and decay rate of the quasi-stationary
state Γ̃d (right, red circles), obtained by A. Simoni from coupled-channel calculations for one Li-Cr
FR located around 1461 G (see Chapter 3). Both are compared with the corresponding trends
(black solid lines) provided by the zero-range approximation discussed in this Chapter, see in
particular Eqs. (1.27) and (1.16). The simple zero-range model is able to reproduce the results of
the (much more involved) CC calculations with remarkable accuracy.
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Overall, one can notice how the simple analytic formulas summarized in this Chapter
provide a remarkable description of the low-energy physics obtained from (the much more
complex!) CC calculations of the real Li-Cr interaction potential. Similar agreement can
be found near isolated FRs of any other two-body system, which makes the zero-range
approximation a valuable simple tool, able to quantitatively reproduce the physics of
resonantly interacting atomic gases at ultralow temperatures [111].

Finally, I also mention here that, while analyzing the CC data of A. Simoni, I semi-
empirically found a simple analytical formula that accurately describes the energy of the
virtual (i.e. for a < 0) Feshbach dimer, relative to the atomic scattering threshold (at zero
collision energy):

E⋆ = ℏ2 κ2
⋆

2mred
, (1.32a)

where

κ⋆ = 1
2R∗

√√√√√
1 +

(4R∗

a

)2
− 1 . (1.32b)

As shown in Fig. 1.4, near the resonance pole E⋆ deviates from the simple linear trend
characterizing the purely closed-channel molecule [E⋆ ∝ δµ δB ∝ 1/(aR∗)], featuring
instead a quadratic scaling E⋆ ∝ 1/a2, similarly to the case of negative detunings [see
again Eqs. (1.28) and Eq. (1.29)].

Figure 1.4 – Resonance position at posi-
tive detunings, i.e. for a < 0, as calculated
by A. Simoni (magenta circles), compared
to the trend given by Eqs. (1.32) (black
curve).
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Chapter 2

Production of degenerate 6Li-53Cr
Fermi mixtures
In this Chapter, following the lines of our Ref. [120], I describe the experimental procedures
we devised and optimized to produce quantum degenerate mixtures of fermionic 6Li and
53Cr atoms. The experimental apparatus that we employed – apart from targeted changes
in the optical setup (summarized below), and a few key upgrades described in Chapter 6 –
was already developed before the start of my Ph.D., and has been described in depth in
previous papers and theses from our group [121–123], including my Master Thesis [102], to
which I refer the interested reader for more details.

Our strategy to produce degenerate lithium-chromium Fermi mixtures relies on an all-
optical approach, similar to the one employed in the lithium-potassium experiment in
Innsbruck [124]. The process consists of the following main steps:

(i) realization of a cold mixture in a dual-species magneto-optical trap (MOT) [121];

(ii) direct loading of the two components into an optical dipole trap (ODT);

(iii) evaporative cooling of a two-state lithium mixture and simultaneous sympathetic
cooling of chromium.

Despite its conceptual simplicity, applying this approach to Li-Cr mixtures required
overcoming several challenges, mostly connected with fermionic chromium and its somewhat
limited experimental investigation [121,125, 126]. Specifically, we encountered a few major
issues that made the production of ultracold 53Cr gases nontrivial. First, chromium suffers
from rather strong light-assisted inelastic collisions [125] which – before our investigation –
had limited the 53Cr number collected in the MOT to roughly 106 [121]. Second, direct
loading of chromium atoms from the MOT into an infrared optical dipole trap has proved
challenging, owing to detrimental light shifts affecting the Cr cooling transition [127,128].
Finally, efficient sympathetic cooling of chromium with lithium should not be taken for
granted. Although the Li-Cr background scattering length, of about 42 a0 (see Chapter 3),
is close to the Li-K one, of about 65 a0 [129,130], and thus in principle sufficient to guarantee
a good thermalization rate, efficient Li-Cr sympathetic cooling in a standard 1070 nm
optical trap is hard to achieve, given that the chromium polarizability at such wavelength
is about 1/3 of the lithium one, in contrast with a potassium-to-lithium polarizability ratio
of about 2 in the same spectral range [124].

In the following, I describe how we could overcome these challenges in the experiment,
obtaining degenerate samples comprising more than 2× 105 Li and 105 Cr atoms, polarized
in their lowest Zeeman states, at temperatures of about 200 nK, corresponding to T/TF,Li ∼
T/TF,Cr ∼ 0.25. This Chapter is organized as follows:

- In Sec. 2.1, I provide a synthetic overview of the experimental setup, with the purpose
of contextualizing the reader to the following Sections.

- In Secs. 2.2, 2.3, and 2.4, I describe our new protocol to produce a dual-species Li-Cr
MOT. In particular, in Sec. 2.3, I discuss how the 53Cr MOT atom number can be



12 2. Production of degenerate 6Li-53Cr Fermi mixtures

substantially increased with respect to previous studies [121, 125], reaching up to
8× 107 within a 2-s loading time and in the presence of a large Li MOT of about 109

atoms.
- In Sec. 2.5, I present our efficient scheme to simultaneously load Li and Cr atoms

in a bichromatic optical dipole trap (bODT) directly from the MOT, based on the
implementation of a dark spot obtained through a weak green beam at 532 nm,
superimposed onto the main trapping beam at 1070 nm.

- In Sec. 2.6, I show the evaporation trajectories followed by the two components and,
together with the more detailed analysis of Sec. 2.7, I discuss how the sympathetic
cooling efficiency at ultralow temperatures can be substantially increased by exploiting
a narrow interspecies Feshbach resonance.

- Finally, in Sec. 2.8, I describe how a crossed bichromatic beam, added to our main
bODT, allows us to greatly improve the chromium degree of degeneracy, and to
simultaneously reach deeply degenerate conditions for both atomic components.

2.1 Overview of the experimental apparatus
In this first Section I provide a concise description of the experimental apparatus available
in our lab, which is meant to be a contextualizing introduction to the following Sections.
The interested reader can find more details in previous papers and theses from our
group [121–123], including my Master Thesis [102].

The Li-Cr experimental setup comprises two separate optical tables. On the first one,
we prepare all laser lights to cool and trap lithium and chromium atoms. A detailed
description of this part of the optical setup, including all the relevant laser schemes, is
presented in my Master Thesis [102]. The second table hosts the vacuum and magnetic
coils setup, as sketched in Fig. 2.1. As one can see, two different Zeeman slower (ZS) tubes
connect the Li and Cr ovens to the main experimental chamber. This choice is motivated

Figure 2.1 – Sketch of the vacuum and magnetic coils setup in our lab. Two different Zeeman
slower tubes connect the Li and Cr ovens to the main chamber. The latter is surrounded by two
main pairs of coils, placed along the vertical direction, which are referred to as the “MOT/BIAS”
coils and the “GRAD” coils, respectively, see inset. Two smaller additional sets of coils, named
“COMP” and “AC-COMP” coils, respectively, not shown in the figure, are used on top of the main
ones to finely tune and stabilize the magnetic field, see Sec. 6.1. Figure adapted from Ref. [121].
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by the rather different sublimation temperatures employed for the two species: about
400 ◦C for lithium, and 1500 ◦C for chromium, respectively. The experimental chamber
is surrounded by two main sets of coils, namely the “MOT/BIAS” coils and the “GRAD”
coils, respectively. The former ones are used in anti-Helmholtz configuration during the
loading of the MOT, and subsequently in Helmholtz configuration to produce bias fields
up to 1.5 kG, needed to access the high-field s-wave Feshbach resonances featured by
Li-Cr (see Chapter 3). The “GRAD” coils are always used in anti-Helmholtz configuration,
producing the B-field gradient for the final part of the MOT stage (see Sec. 2.4), as well
as to compensate for the (relative) gravitational sag of the two species within our bODT,
see Sec. 2.6. Additionally, two smaller sets of coils, not shown in Fig. 2.1, referred to as
the “COMP” and “AC-COMP” coils, respectively, are employed for the fine-tuning and
stabilization of the magnetic field (see Sec. 6.1). I also mention here that both ZS fields
are matched with the MOT coils field, effectively making both Zeeman slowers end at the
MOT quadrupole center.

2.2 6Li MOT
To produce the lithium MOT, we essentially follow the scheme developed in the Lithium lab
at LENS, which is detailed in Ref. [131]. Laser cooling and trapping of fermionic Li is well
established and it requires only two laser lights addressing the D2 (2S1/2 −→ 2P3/2) atomic
line at 671 nm: the cooling light, addressing the F = 3/2 −→ F ′ = 5/2 transition, and the
repumper light, blue detuned by 228 MHz from the cooling one, nearly resonant with the
F = 1/2 −→ F ′ = 3/2 transition, see Fig. 2.2. With respect to the Li MOT performance
previously reported by our group [121], a further optimized shaping of both MOT and
Zeeman slower (ZS) beams has allowed us to increase the lithium atom number collected in
the MOT from 4× 108 to 109, after a typical loading time of 6 s. A comprehensive list of
the optimum parameters employed for the Li MOT is reported in my Master Thesis [102].

Figure 2.2 – Cooling scheme
for 6Li. Two independent mas-
ter lasers (Toptica TA Pro) pro-
vide the lights addressing the D1
and D2 transitions, respectively.
The former is employed to re-
alize the Li MOT and CMOT
stages, while the latter is ex-
ploited for a grey molasses stage
that follows the loading into the
optical dipole trap (see Sec. 2.5).
Figure taken from Ref. [121].
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2.3 53Cr MOT
For the 53Cr component, a much more substantial increase in the MOT atom number is
reported here, resulting in an improvement by almost two orders of magnitude relative to
previous studies, both by the Paris group [125,126] and by our team before the start of
my Ph.D. [121].

As described in Refs. [121, 125], laser cooling of fermionic chromium relies on the
7S3 −→ 7P4 (FS = 9/2 −→ F ′

P = 11/2) atomic line. Figure 2.3 shows a sketch of the
energy-level diagram and the relevant optical transitions. Besides the cooling light, three
blue repumpers, denoted by BR1, BR2, and BR3, respectively, are required to operate the
MOT. Furthermore, even with all blue repumpers switched on, the Cr cooling transition
remains slightly leaky, since optically excited atoms can decay from the 7P4 state onto
underlying 5D3 and 5D4 metastable states. Therefore, three additional red repumpers,
denoted by RR1, RR2, and RR3 in order of repumping efficiency, are needed to fully close
the cooling cycle. In particular, implementation of RR3, not yet accomplished in Ref. [121]
(see details in Ref. [102]), resulted in a further 10% increase in the steady-state MOT atom
number.

Figure 2.3 – Sketch of energy levels and optical transitions addressed for the laser cooling of
53Cr atoms (not to scale). For each relevant hyperfine level originating from the nonzero nuclear
spin I = 3/2, the F quantum number and the detuning ∆ in MHz, referenced to an assumed
I = 0 state, are shown. A single frequency-doubled laser at 425.5 nm delivers the light exciting
atoms from 7S3 to 7P4, addressing the main cooling transition labeled “Cooler” (solid blue), and the
repumping transitions denoted by BR1, BR2, and BR3 (dashed blue) in order of decreasing gain on
the steady-state MOT number. Metastable 5D states onto which 7P4 atoms decay by spontaneous
emission are repumped back into the cooling cycle by three additional red repumper beams labeled
as RR1, RR2, and RR3, with the same indexing used for the blue ones. These lights are delivered
by two independent master oscillators at 663 and 654 nm (see Ref. [121] for more details). Here
RR1 and RR3, detuned from each other by only 225 MHz, are obtained by two separate sets of
acousto-optic modulators. The three green transitions around 533 nm, coupling the 7P4 to the
7D3,4,5 states, are relevant for the operation of the dark spot discussed in Sec. 2.5.
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To improve our Cr MOT performance, we carefully optimized the size of all laser beams
shone onto the cloud, with the possibility of changing the power repartition between
different beams, but under the constraint of a maximum available blue power of about
500 mW. In particular, we enlarged the MOT and repumper beam waists by about a
factor of 2 relative to the setup originally developed in the lab [121], now featuring 1/e2

radii of about 6.5 mm, effectively increasing the capture volume by almost one order of
magnitude. Notably, these improvements on the chromium setup enabled us to identify a
peculiar region in the detuning-intensity plane of the MOT cooling light (not investigated
in Ref. [121]), within which light-assisted losses are drastically suppressed, as shown in the
following.

In order to understand our strategy and the experimental data presented below, it is
useful to first recall some textbook results about the loading dynamics in a MOT. Quite
generally, the atom number in a MOT follows a time evolution defined by the rate equation

dN
dt = Rload − α1bN(t) − βlac

⟨V ⟩
N2(t) , (2.1)

where Rload is the loading rate, α1b is the one-body decay rate, βlac is the rate coefficient
per unit volume for light-assisted collisions, and ⟨V ⟩ denotes the density-weighted volume
of the cloud. Since in our experiment we exploit all (blue and red) repumping lights, we
can neglect the one-body loss term and safely set α1b = 0. Equation (2.1) then yields the
asymptotic value for the collected atom number

N∞ =
√
⟨V ⟩Rload
βlac

. (2.2)

From Eq. (2.2) one can immediately see that, in order to increase N∞, one needs to
maximize Rload, enlarge ⟨V ⟩, and minimize βlac. Let us consider how these three quantities
depend upon the normalized detuning δ/γ and saturation parameter s0 = I/Isat of the MOT
(I is the intensity of a single laser beam). Note that, for the 7S3 −→ 7P4 chromium line, the
natural linewidth is γ = 2π × 5.02 MHz, with saturation intensity Isat = 8.52 mW/cm2.
First, from textbook calculations of the MOT temperature (TMOT) and trap frequency
(ωMOT) [132–134], we have

kB TMOT = ℏγ
2

1 + 6s0 + (2δ/γ)2

4 |δ|/γ , (2.3a)

MCr ω
2
MOT = 4(µ′ b kL) s0

2|δ|/γ[
1 + 6s0 + (2δ/γ)2]2 , (2.3b)

σMOT =
√

kB TMOT

MCr ω2
MOT

, (2.3c)

⟨V ⟩ = 4π3/2 σ3
MOT , (2.3d)

where kB denotes the Boltzmann constant, MCr the chromium mass, kL the laser wave
vector, b the magnetic field gradient, µ′ the effective differential magnetic moment for the
cooling transition, and σMOT the 1/

√
e size of a Gaussian-shaped cloud.

Second, the dominant light-assisted loss processes that affect a chromium MOT are known
to involve pairs of one ground S- and one excited P -state atom [121,125]. Thus, denoting
by ΠP the P -state population, on quite general grounds one expects the rate coefficient to
scale as βlac ∝ ΠP (1−ΠP ), where the standard result for ΠP for a two-level atom [132,133],
considering all six MOT beams, reads

ΠP = 1
2

6 s0
1 + 6 s0 + (2δ/γ)2 . (2.4)
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Third, the loading rate Rload depends mainly on the transverse cooling and Zeeman slowing
parameters, as long as the capture velocity vcap of the MOT is larger than the typical exit
velocity vZS of the ZS. However, at very low s0 or large |δ|/γ values, this condition may
not hold. Given the expression for vcap [135] and our typical vZS ∼ 15 m/s [121], we have

vcap =
(

32wMOT ℏk2
L

MCr

)
6 s0 |δ|/γ[

1 + 6s0 + (2δ/γ)2]2 , (2.5a)

Rload ∝
∫ vcap

0
nZS(v)dv ∝ 1

2

[
erf
(
vcap − vZS√

2σZS

)
+ erf

(
vZS√
2σZS

)]
. (2.5b)

Here wMOT = 6.5 mm is the waist of the MOT beams, and we have assumed a Gaussian
exit-velocity distribution nZS(v) from the ZS, centered around vZS with variance σ2

ZS.
Before proceeding further, it is instructive to study the result for N∞ in the limit

s0 ≪ 1 and |δ| ≫ γ:

N∞ ∝
√
Rload

(
δ/γ

)4
b3/4 s05/4 . (2.6)

From the overall trend of Eq. (2.6), one can see how, for a given loading rate Rload,
light-assisted losses can be mitigated (thereby increasing N∞) by working at low s0 values,
large detunings, and weak field gradients of the MOT, although a compromise must be
found in order to guarantee a sufficiently strong force and a high capture velocity. A
well-known system, where very strong light-assisted losses are successfully circumvented by
following these concepts, is metastable 4He∗ [133,136]: In that case, operating the MOT at
large detunings on the order of |δ| ∼ 40 γ, while keeping large s0 > 10 values to maintain a
sufficiently high capture velocity, it is possible to collect more than 109 atoms within a
few-second loading time.

However, for the 53Cr system, this strategy is challenging to follow. On the one hand,
the saturation intensity (linewidth) of chromium is more than 50 times (3 times) larger
than the one of He∗ and the limited amount of blue power available does not allow us to
reach s0 ≫ 1 without diminishing the performance of transverse cooling and hyperfine
pumping stages at the chromium oven [121], thus decreasing Rload. Moreover, contrarily
to metastable He, 53Cr features a rich and rather dense hyperfine spectrum which, in
combination with large s0 and |δ|/γ values, may allow the cooling light to address undesired
transitions. Indeed, the small optimum Zeeman slower detuning and low exit velocity
shown in Ref. [121] have already been interpreted as highly sensitive to residual Doppler
shifts during the MOT capture. Hence, we opted to follow a strategy opposite to the one
of 4He∗, based on minimizing s0 while keeping relatively small light detunings of a few γ.

In practice, to test the feasibility of the strategy discussed above, we measured the
atom number collected in the MOT after a loading time of 2 s, exploring different s0
values. For each of these values, we scanned the light detuning until the maximum number
was observed, whereas the B-field gradient was kept constant at b = 25 G/cm (along the
vertical direction). In order to better count the collected atoms, after the 2-s loading time
we performed a compressed MOT (CMOT) stage (lasting about 6 ms), with the effect of
significantly reducing the cloud size, while leaving the atom number unaffected. Finally,
we turned off both MOT gradient and lights, and we acquired an absorption image after a
2-ms time of flight, out of which we extracted the atom number through a two-dimensional
Gaussian fit.

Our results are summarized in Fig. 2.4. The atom number (black circles, left axis) is
plotted as a function of the normalized single-beam peak intensity I/Isat, together with
the corresponding optimum detuning that we experimentally identified (blue squares, right
axis). First, the behavior of the optimum |δ|/γ versus s0 can be nicely fit to a power law,
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Figure 2.4 – Characterization of the maximum chromium atom number collected in the MOT
after 2 s of loading, as a function of s0 = I/Isat (black circles, left axis). Here I = 2P/(πw2

MOT) is
the peak intensity of one single MOT beam, characterized by a 1/e2 radius wMOT = 6.5 mm. Each
data point is the average of at least five independent measurements, exhibiting a constant 10 %
uncertainty. For each value of I/Isat, the corresponding optimum detuning |δ|/γ, experimentally
determined, is shown as blue squares, right axis. The blue line shows the best fit to a power law
|δ|/γ ∝ (I/Isat)q, yielding q = 0.22(1). The red line shows instead the best fit of N∞ given by
Eq. (2.2) (see discussion in text), assuming the best-fitted power-law dependence of |δ|/γ, and
allowing σZS together with an overall multiplicative constant A∞ as free parameters. The fit returns
σZS = 2.8(8) m/s and A∞ = 2.33(8)× 104.

with exponent q = 0.22(1) (see the blue curve). Second, one can notice how, throughout
the scanned parameter space, a considerable increase in the collected Cr atoms is observed,
relative to what reported in Ref. [121], and samples ranging from 3×107 to 8×107 particles
can be obtained. The general trend of N∞ is nicely reproduced by a fit of Eq. (2.2) (red
curve), allowing σZS and an overall multiplicative constant as free parameters.

The identification of a region of MOT parameters able to substantially mitigate light-
assisted losses allowed us to greatly speed up and simplify the experimental routine to
produce a (large) 6Li-53Cr mixture in the cold regime. Since a loading time of 2 s is
sufficient to reach the steady-state N∞ for chromium, and the Cr MOT performances
summarized in Fig. 2.4 are not affected by the presence of an overlapping lithium cloud,
there is no longer a need for us to pursue accumulation of Cr atoms in magnetically trapped
D states [125] – a procedure previously tested in the lab, that required significantly longer
loading times and whose efficiency was found to be limited by the presence of a large Li
MOT [121].

As a final remark, I emphasize that, while the optimum loading conditions summarized
in Fig. 2.4 greatly reduce the Cr MOT density, they do not limit the capture efficiency of
the CMOT stage, operated at constant cooling light parameters. As a consequence, the
large increase in the MOT atom number directly turns into a significant density increase
after the CMOT, hence providing a substantial gain for the successive step of optical trap
loading within our experimental routine (see Sec. 2.5).
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2.4 Optimized loading of a dual species 6Li-53Cr MOT
The possibility to rapidly collect a large number of 53Cr atoms directly into the MOT
considerably simplified the process of devising and optimizing a sequential loading scheme
for the Li-Cr mixture in our dual-species magneto-optical trap. In this Section, I summarize
the most convenient strategy that we experimentally identified. A more detailed list of
the optimum parameters employed, including time diagrams, is reported in my Master
Thesis [102].

(i) We first load lithium atoms for about 6 s, at an optimum gradient of about b =
45 G/cm along the vertical direction. During this time, the chromium lights and ZS
field are already on, although only a little Cr atom number is collected at this stage.

(ii) We switch off the Li Zeeman slower and decrease the MOT gradient down to b =
25 G/cm, which is the optimum value found for chromium. The light detuning for
lithium is correspondingly slightly diminished to ensure a good storage of this species
during the chromium MOT loading.

(iii) We operate the Cr MOT for about 2 s with the optimum light parameters reported
in Fig. 2.4.

(iv) We then turn off the Cr Zeeman slower (light and field) and adiabatically transfer
the cold Li-Cr mixture from the quadrupole field of the “MOT” coils1 into that of
a smaller set of “GRAD” coils, yielding the same gradient but allowing for a faster
switch off.

(v) Finally, a 6-ms-long CMOT phase is applied on both species simultaneously, in order
to compress and cool the mixture. This is done without changing the field gradient,
by diminishing the intensity of the MOT lights and moving the cooling frequency
closer to resonance. Specifically, for chromium the CMOT detuning is set to about
−1.4 γ and the laser intensity is reduced to about 20 %, relative to that employed
during the loading. For lithium, the detuning is moved from about −7 to −1.7 natural
linewidths (γLi/2π = 5.87 MHz) and the light intensity is substantially reduced,
passing from more than 17 I/ILi

sat at the loading stage down to about 0.5 I/ILi
sat

(ILi
sat = 2.54 mW/cm2).

At the end of this procedure, lasting 8 s overall, we obtain cold Li-Cr mixtures comprising
109 Li and 8× 107 Cr atoms, at a temperature of about 300 µK.

2.5 Loading into a bichromatic optical dipole trap
As anticipated at the beginning of this Chapter, our experimental strategy is based on an
all-optical approach conceptually analogous to the one employed for Li-K mixtures in the
Innsbruck experiment [124]. As a crucial step, this requires an efficient loading of the cold
Li-Cr mixture, delivered by our dual-species MOT discussed in the previous sections, into a
high-power optical dipole trap. However, also in this case a few factors make the Li-Cr
system more challenging than the Li-K one. In this Section, I discuss these issues and the
methods we follow to overcome them.

First, the chromium polarizability for standard infrared (IR) laser trapping lights at
1064 or 1070 nm is only about 30% of the lithium one [see red profiles in Fig. 2.5(a)],
making the resulting IR trap not suited to guarantee an efficient sympathetic cooling of Cr.
Indeed, a 1070 nm beam, characterized by power P1070 (expressed in watts) and 1/e2 waist

1The “MOT” coils are the “BIAS” coils used in anti-Helmoltz configuration during the first part of the MOT
stage, see Sec. 6.1.
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w1070 (in microns), yields a maximum trap depth for lithium and chromium that, expressed
in millikelvin, are given by ULi

1070 ≃ −38.3 P1070/w
2
1070 and UCr

1070 ≃ −12.7 P1070/w
2
1070,

respectively. We mitigate this issue by superimposing a green beam at 532 nm onto
the IR trap. This second light is tightly confining for chromium, whereas it anticonfines
lithium [see green profiles in Fig. 2.5(a)]. Denoting the power and waist of the green
beam by P532 and w532, respectively, one finds in this case ULi

532 ≃ +39.2 P532/w
2
532 and

UCr
532 ≃ +23.5 P532/w

2
532. Therefore, by tuning the relative power of the two lights in this

bichromatic optical dipole trap, one can control the overall trap depth ratio for the two
species [see black profiles in Fig. 2.5(a)].

Experimentally, the bODT is realized by overlapping our IR trap, already discussed in
Ref. [122] and based on a multimode fiber laser module from IPG Photonics (YLR-300)
delivering up to 300 W, with a high-power laser at 532 nm. For the latter we currently
employ a Sprout-G source by Lighthouse Photonics, nominally delivering up to 15 W,
now limited to about 10 W due to aging.2 The two bODT beams, propagating in the
horizontal (x, y) plane, are recombined on a dichroic mirror and then focused onto the
center of the Li-Cr MOT clouds, with waists along the vertical (horizontal) directions of
wz,1070 = 44 µm (wy,1070 = 58 µm) and wz,532 = 48 µm (wy,532 = 45 µm) for the IR and
green light, respectively. Not surprisingly, we find that the relative alignment of these
two beams is a critical parameter for the overall performance of the experiment. For this
reason, in order to finely adjust it in a reproducible fashion (and to correct for day-to-day
fluctuations), we employ a single motorized mirror (Newport, Picomotor 8301NF) on the

Figure 2.5 – (a) Sketch of the optical potentials
experienced by Li (left) and Cr (right) atoms con-
fined in the bODT. The IR light (red curves) yields
a trapping potential about 3.3 times deeper for Li
than for Cr atoms, whereas the green beam (green
curves) anticonfines lithium and tightly confines
chromium (see the text for details). By adjusting
the parameters of these two beams, in these panels
assumed to feature equal waists and an IR-to-green
power ratio of 2, one can obtain an overall bODT
potential (black curves) deeper for the Cr than
for the Li component. (b) Schematic view of our
bODT setup. Two overlapped IR and green beams,
propagating in the horizontal plane along the x
direction and featuring waists indicated in the
figure, provide the primary trapping potential for
the atomic mixture, sketched in blue. A secondary
bichromatic trap, realized by two additional over-
lapped IR and green circular beams with waists of
about 60 and 70 µm, respectively, crosses the main
bODT at an angle of about 17◦ from the vertical
direction. The crossed bODT beam, turned on
at the end of the evaporation stage, allows us to
tune the densities of the two mixture components
independently while not modifying the trap depth
(see Sec. 2.8 for details).

2We also tested two additional green laser sources: The first (IPG Photonics GLR-50), delivering up
to 50 W, was found problematic in terms of power stability, and it even broke two times. The second
(Coherent Verdi V-5), with output power limited to 5 W, was not sufficient to achieve the desired trap
depth ratio for Li and Cr atoms, without significantly reducing its beam waist compared to the IR one.
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green laser path, placed immediately before the dichroic mirror that combines the two
bODT lights.

A second complication of Li-Cr, relative to the Li-K system, is that the direct loading
of Cr atoms from the MOT into the optical trap, contrarily to the lithium case (see, e.g.,
Ref. [131]), has been found to be challenging [127,128,137]. Besides increasing light-assisted
losses owing to an increased density of the trapped cloud, the IR light shifts both the
7S3 and the 7P4 atomic levels (connected by the main cooling transition, see Fig. 2.3) to
lower energy, with a shift for the excited state larger than the one of the ground state.
Therefore, the detuning |δ| of the MOT light, experienced by Cr atoms within the IR trap,
is effectively reduced (and it may even possibly change sign). Light-shift measurements,
performed by monitoring the resonance frequency of absorption imaging of a cold Cr cloud
in the presence of our IR beam [102], yielded a trap-averaged shift of −0.021(2) MHz/W.
This implies that the (C)MOT detuning, experienced by atoms at the center of the IR
trap with P1070 ∼ 200 W, is moved towards resonance by about +1 γ. It thus becomes
almost impossible to simultaneously guarantee a good efficiency of the CMOT stage for Cr
atoms both inside and outside the IR trap, especially given the inhomogeneous intensity
distribution of the trapping beam.

One way to circumvent this problem is to flash the IR trap only once the (C)MOT lights
are turned off. This procedure, given our large Cr MOT atom number and the high IR
power at our disposal, allows us to capture about 106 53Cr atoms within the IR beam at a
typical power of 130 W. However, such a non-adiabatic loading method considerably heats
up the sample and it is far from being optimum also for the lithium component. More
involved loading schemes, alternative to the instantaneous flash of the IR trap, have been
devised for chromium [127,128,137], and rely on the accumulation of metastable D-state
atoms in a combined magnetic and optical potential.

In our case, we found a convenient way, directly offered by our bODT setup, to suc-
cessfully overcome this major technical issue. The key point is that the 532-nm light
dramatically perturbs the cooling transition, owing to the presence of three atomic lines
that connect the 7P4 level to the 7D states (see Fig. 2.3), all centered around 533 nm and
featuring linewidths ranging from 0.9 to about 10 MHz. A relatively weak laser field near
532 nm, blue detuned from these lines by less than 1 nm, thus suffices to greatly shift
the 7S3 −→ 7P4 transition towards higher frequencies. Contrarily to the IR case discussed
above, this implies that the effective detuning of the MOT light experienced by atoms
within a 532-nm beam is strongly redshifted out of resonance. The green light of our bODT
can thus be efficiently exploited to (over)compensate for the detrimental effect of the IR
main beam on the Cr CMOT, realizing an effective dark spot in correspondence of the
dipole trap.

We tested the feasibility of this loading strategy by increasing the IR beam up to 130 W,
and simultaneously the green beam to a variable power level, through 3-ms-long linear
ramps starting 1 ms before the chromium CMOT stage. For this experiment, the laser
cooling light parameters were kept fixed at the optimum values that we experimentally
found in the absence of the optical trapping potential. We let the system evolve for 5 ms
after the end of the bODT ramps, then we switched off both MOT lights and gradient. At
this stage, turning off the cooling light 20 µs before the repumping ones ensures the Cr
component is in the FS = 9/2 hyperfine ground state. After an additional hold time of
100 ms, we turned off the bODT and recorded the number of Cr atoms collected in the
trap, through absorption imaging following a time-of-flight expansion.

The results of this characterization are summarized in Fig. 2.6, which shows the
chromium number loaded into the optical trap, normalized to its maximum value, as
a function of the power of the green light (blue circles). One can notice how, without
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the green beam being applied, almost no atoms are collected in the IR potential. By
increasing the power of the 532-nm light instead, we observed a sharp enhancement of
the atom number which, for our specific bODT beam parameters, reaches its maximum
at P532 = 0.53(2) W. A further increase of the green beam power beyond this optimum
value progressively diminishes the Cr atom number. For P532 ≥ 1.25 W, this approaches
the value obtained by instantaneously flashing the IR trap right at the end of the CMOT
stage, marked by the horizontal gray line in Fig. 2.6. This behavior can be understood by
considering that, once the green light reaches this power level, atoms falling within the
bODT volume are effectively transparent to the CMOT light and thus completely unaffected
by it. Owing to the strong inhomogeneity of the light shift experienced by the Cr CMOT
atoms throughout the bODT region at the loading, it is hard to quantify the actual light
shifts based on the method employed to characterize the IR beam at high temperature.
From a measurement performed in the ultracold regime, where the radial 1/

√
e-size of the

Cr sample (of about 8÷ 10 µm) is much smaller than the beam waist of the green laser [see
Fig. 2.5(b)], we obtained a peak shift of +38(5) MHz/W, characterized by a (positive) slope
almost 2000 times larger than the IR (negative) one. Correspondingly, at the optimum
value shown in Fig. 2.6, atoms residing at the center of the green beam experience an
effective redshift of the cooling light of about −3.6 γ.

A quantitative analysis of the observed loading dynamics is quite involved, and has
not been carried out in our lab. Anyway, a few general points should be emphasized:
First, throughout the power range explored in Fig. 2.6, the green beam has a negligible
impact on the total trap depth, which is solely set by the high-power IR beam. Second,
depending on the specific laser source employed for realizing the green bODT beam, the
optimum power may quantitatively move to higher or lower values, but the qualitative
trend remains unaffected, as long as the wavelength of the green light remains close to, but
shorter than, 532.9 nm. Namely, similar characterizations performed with two different
green laser sources previously employed in the lab (IPG Photonics GLR-50 and Coherent
Verdi V-5) yielded features completely analogous to that reported in Fig. 2.6, modulus a
rescaling of the horizontal axis. Third and most importantly, such a scheme leads to a
substantial enhancement of the optical trapping efficiency, compared to the instantaneous
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Figure 2.6 – Characterization of the
chromium atom number collected in the
bODT directly from the CMOT, as a func-
tion of the green beam power acting as a
dark spot. The Cr population (blue cir-
cles), recorded in the bODT after a hold
time of 100 ms through absorption imag-
ing following a time-of-flight expansion
of 200 µs, is normalized to the maximum
value found throughout the scan, centered
at 0.53(2) W. The horizontal dashed line
marks the value obtained by instanta-
neously flashing the IR trap at the end
of the CMOT stage. For this dataset, the
IR beam has a fixed power of 130 W and
the parameters of the CMOT stage are
kept constant at their optimum values,
obtained in the absence of the bODT. The
Sprout-G module used to realize the dark
spot has a wavelength of 532.2 nm.
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flash of the IR beam, as it yields more than a fourfold improvement in the bODT atom
number, and it does not cause any detectable excitation or heating of the atomic sample.
Under optimum conditions, this strategy allows us to store up to 4× 106 53Cr atoms in the
optical trap, at temperatures of about 250 µK, slightly lower than the typical CMOT one.
Finally, I also remark that the absolute number of atoms that can be transferred into
the bODT from the MOT with this strategy is found to scale linearly with the MOT
atom number itself, as shown in Fig. 2.7: Up to the largest MOT clouds we can produce,
no saturation effect on the optically trapped samples is observed, with a constant 5.5%
MOT-to-bODT transfer efficiency. This observation demonstrates how our strategy indeed
allows us to maintain light-assisted losses negligible up to the highest achievable densities,
thereby making the ODT loading dynamics of chromium as simple as the one of lithium
and other alkali metals.

Besides enabling the collection of a significant number of 53Cr atoms, which may be
appealing also for single-species setups dealing with cold (fermionic or bosonic) chromium,
this direct loading method is especially advantageous in our mixture experiment. Indeed,
the presence of the weak green laser field is essentially irrelevant for the loading of the
lithium component: Up to 2 × 107 6Li atoms, with temperatures of about 300 µK, are
stored in the bODT when the IR trap power is set to 130 W, with transfer efficiencies
similar to those reported in Ref. [131] for the single-species case. Since the two species
feature similar temperatures, the simultaneous loading of the Li-Cr mixture in the bODT
does not perturb too strongly the chromium performance, although the initial trap depth
ratio, uniquely set by the IR beam, yields (at 130 W) ULi

1070 ∼ 1.9 mK and UCr
1070 ∼ 0.65 mK,

thus causing a rather large asymmetry in the temperature-to-trap-depth ratio between
the two components. Indeed, while ηLi = ULi

1070/(kB TLi) ∼ 7, for chromium we obtain
ηCr = UCr

1070/(kB TCr) ∼ 3. For this reason, the chromium bODT population, after a hold
time of 100 ms, in the presence of the overlapping Li sample, is found to drop by almost a
factor of 3.

This effect is partly reduced by applying a 350-µs-long D1 molasses phase on lithium
within the bODT [131], about 3 ms after the end of the CMOT stage, once the magnetic-field
quadrupole gradient has been zeroed. This allows us to reduce the lithium temperature,
although not substantially, from 300 down to approximately 220 µK, a value slightly lower
than the chromium one. At the end of the D1 cooling, a 20-µs-long hyperfine pumping
pulse is applied [131], which transfers all lithium atoms into the F = 1/2 ground-state
manifold, see Fig. 2.2. Finally, within 20 ms the green power is linearly ramped up to its
maximum value, corresponding to a net power of 7 W on the atoms, leading to about a

Figure 2.7 – Dependence of the number of
chromium atoms collected in the bODT upon the
CMOT atom number. The latter was adjusted by
reducing the MOT loading time while not varying
the MOT parameters. The IR beam was set to a
power of 130 W and the green light was adjusted
to the optimum value shown in Fig. 2.6. Data
were recorded, after a hold time of 100 ms in the
bODT, through absorption imaging that followed
a time-of-flight expansion of 200 µs. Each point
corresponds to the average value of at least four
independent measurements, with error bars rep-
resenting the standard deviation of the mean. A
linear fit to the data (dashed line) yields an overall
MOT-to-bODT transfer efficiency of 5.5(2)%.
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11% increase (6% decrease) of the chromium (lithium) trap depth.
The application of the bODT loading method for 53Cr discussed above, and its inte-

gration within our two-species experimental cycle, allow us to store in our optical trap
cold Li-Cr mixtures at about 250 µK, composed of 2 × 107 6Li atoms populating the
two lowest Zeeman states mF = ±1/2 of the F = 1/2 manifold, coexisting with about
2× 106 53Cr atoms, asymmetrically distributed among the four lowest-lying Zeeman states
of the F = 9/2 hyperfine level. Specifically, without performing any Zeeman-selective
optical pumping stage, about 55% of the Cr sample is found in the lowest Zeeman state
mF = −9/2. The remaining Cr atoms are distributed among the three higher-lying levels
mF = −7/2, −5/2, and −3/2, with relative populations of 25%, 13%, and 7%, respectively.
This represents our starting point for the successive stages of evaporative and sympathetic
cooling, which are discussed in the next Section. For convenience, in the following I
denote the different Zeeman levels of both species by Li|i⟩ and Cr|j⟩, respectively, with
i, j = 1, 2, . . . labeling the atomic state starting from the lowest-energy one.

2.6 Evaporative and sympathetic cooling stages
In our experimental routine, once the two species are loaded into the bODT, while the
green beam is ramped up to its maximum power, within 55 ms we also linearly increase
the magnetic-field bias up to 880 G, i.e., about 50 G above the broad Feshbach resonance
occurring between the two lowest Zeeman states of lithium Li|1⟩-Li|2⟩. At this field [7], in-
traspecies lithium collisions are unitary-limited at all temperatures above T ≃ 300 nK [138],
whereas interspecies Li-Cr collisions are at their background level, characterized by a
scattering length abg ≃ 42 a0 (see Chapter 3). The magnetic-field curvature of our
coils provides an additional in-plane harmonic confinement, characterized by a lithium
(chromium) frequency of about 8.5 Hz (7.0 Hz), which adds to the bODT potential. The
initial trap depth ratio between the two components ULi

/U
Cr ∼ 3 and the comparably low

initial value of ηCr ∼ 3 are not optimal for an efficient storage of chromium atoms in the
presence of the lithium sample. For this reason, we find it experimentally convenient to
start the evaporation immediately after the green beam has been raised.

The evaporative cooling ramps, overall lasting for about 5 s, are performed by decreasing
the power of the bODT beams, hence the trap depth, through a series of exponential ramps,
shown in Fig. 2.8(a) for the IR and green lights, respectively. In the same Figure, panels (b)
and (c) show the corresponding evolution of the normalized atom number and temperature,
for the Li|1⟩ (red circles) and Cr|1⟩ (blue circles) component, respectively, extracted from
Gaussian fits to the density distributions, monitored via spin-selective absorption imaging
following time-of-flight expansion. The Li|2⟩ sample, not shown, throughout the evapora-
tion stage is found at a temperature equal to the one of Li|1⟩ and the corresponding atom
number, relative to that of Li|1⟩, is roughly constant at a value NLi|2⟩/NLi|1⟩ = 0.71(5).
Additionally, Fig. 2.8(d) displays the ratio between the chromium and lithium temperatures
throughout the evaporation stage.

During the first 400 ms, evaporative cooling of lithium is established by decreasing only
the IR beam power, from 130 W down to 28 W. This first step, sufficiently slow to allow for
intraspecies thermalization of lithium, is somewhat too fast for the chromium component,
the temperature of which is found to be about 50% higher than the lithium one. Despite
the rather poor efficiency of sympathetic cooling observed within this initial stage, such a
ramp allows us to rapidly diminish the ULi

/U
Cr ratio, from the initial value of 3 down to

about 1. In order to maintain the chromium cloud well overlapped with the lithium one
at all times, we also minimize the differential gravitational sag of the two components by
applying a magnetic-field gradient b along the vertical direction, to counterbalance the
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Figure 2.8 – (a) Evolution of the IR and green bODT powers during the evaporation ramp.
The IR power is reduced through four consecutive exponential ramps, lasting 0.2, 0.25, 0.3, and
4 s, respectively, and characterized by 1/e decay times τ1 = 30 ms, τ2 = 125 ms, τ3 = 150 ms,
and τ4 = 1.6 s. The green power is decreased through two consecutive ramps, simultaneous to
the last two IR ones and featuring the same durations and decay times. (b) Evolution of the
Li|1⟩ (red circles) and Cr|1⟩ (blue circles) atom number during the evaporation ramps. Both data
sets are normalized to the atom numbers recorded after the first 165 ms of evaporation, where
NLi|1⟩ = 5.1(1) × 106 and NCr|1⟩ = 1.05(3) × 106. Open symbols refer to the number evolution
when the Feshbach cooling stage is applied (see Sec. 2.7). (c) Same as in (b) but for Li and Cr
temperatures. For both (b) and (c), numbers and temperatures are obtained from Gaussian fits to
the atomic distributions, imaged after variable time-of-flight expansion. Note that, for the coldest
samples, the temperature extracted from the Gaussian fit overestimates the real one, owing to
Fermi degeneracy, up to about 40%. Each data point is the average of at least three independent
measurements and error bars account for the standard deviation of the mean. Open symbols
refer to the temperature evolution when the Feshbach cooling stage is applied. (d) Ratio between
chromium and lithium temperatures, without (closed squares) and with (open squares) application
of the Feshbach cooling stage.
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gravitational force. Experimentally, we found an optimum value of about 1.5 G/cm, which
corresponds to an almost perfect levitation of the chromium component and to an effective
weak “antigravity” for lithium of about −g/2.

For evaporation times longer than 0.5 s, where ULi
/U

Cr ∼ 1, the observed trajectories
signal a good interspecies thermalization and a satisfactory sympathetic cooling. The
observed decrease in atom number is indeed significantly smaller for the Cr than for the Li
component [see Fig. 2.8(b)], while the chromium temperature closely follows the lithium
one with less than 15% mismatch [see panels (c) and (d)], up to about 4 s. Here we obtain
about 3 × 105 Cr|1⟩ atoms at TCr ∼ 1.5 µK, coexisting with about 1.1 × 106 Li|1⟩ and
7.5× 105 Li|2⟩ atoms at TLi ∼ 1.35 µK, close to the onset of quantum degeneracy for both
lithium components.

By further decreasing the bODT trap depth following the trajectories shown in
Fig. 2.8(a), we observe a progressive increase of TCr/TLi [see Fig. 2.8(d)]. A convenient
way to circumvent such a limited interspecies thermalization is offered by the presence of
various s-wave Li-Cr Feshbach resonances, located at fields above 1400 G (see Chapter 3).
In particular, the Li|1⟩-Cr|1⟩ mixture possesses an approximately 0.5-G-wide Feshbach res-
onance at 1414 G and the Li|2⟩-Cr|1⟩ combination exhibits a resonance of similar character
around 1461 G. Both features are immune to two-body losses and, despite their relatively
narrow character, allow us to tune the Li-Cr scattering length a and thus to increase the
Li-Cr elastic scattering cross section well above its background value.

In order to exploit such a possibility, about 1.5 s after the start of the evaporation
stage, we linearly ramp the magnetic field from 880 G up to 2 G above the center of
one of either resonances. There, the Li-Cr scattering length is not significantly different
from its background value a ∼ abg and also the intraspecies Li|1⟩-Li|2⟩ scattering length,
of about −2500 a0, approaches its large, negative background value [138]. About 4 s
after the start of the evaporation, we then reduce the magnetic field detuning to less
than approximately 100 mG from the resonance center, correspondingly tuning the Li-Cr
scattering length to a ≲ −200 a0, yet not causing a significant enhancement of interspecies
three-body losses. While a more detailed characterization of such a Feshbach cooling
mechanism near a narrow resonance is presented in the following Sec. 2.7, the open symbols
in Figs. 2.8(b)-2.8(d) highlight its impact on the final part of the evaporation ramps. One
can see how, for fixed bODT power ramps, an increased Li-Cr scattering rate negligibly
affects the Li temperature, whereas it causes a large decrease of the Cr one, allowing us to
perfectly cancel the relative temperature mismatch [see the open squares in Fig. 2.8(d)].
The much quicker interspecies thermalization is accompanied by a more sizable atom loss
of both species, see the blue (red) open circles in Fig. 2.8(b) for the Cr (Li) component.
However, this only moderately decreases the degree of degeneracy of lithium, while for
chromium the atom loss is outweighed by the large temperature reduction, resulting in a
substantial increase in the Cr phase-space density.

This protocol, overall lasting less than 5 s, allows us to produce degenerate Li-Cr Fermi
mixtures, comprising up to 3.5 × 105 Li|1⟩ and 2.5 × 105 Li|2⟩ atoms at T/TF,Li ∼ 0.25,
coexisting with about 105 Cr|1⟩ atoms at T/TF,Cr ∼ 0.5. The corresponding degree of degen-
eracy T/TF,X (X = Li,Cr) is obtained by fitting time-of-flight images to finite-temperature
Fermi-Dirac distributions. For both species, this is compatible with the value estimated on
the basis of the measured atom number and trap frequencies,3 and given the temperature
T = 130(20) nK, obtained by fitting the low-density wings of the density distributions.

3At the end of evaporation, the trap frequencies νx,y,z provided by the combination of the bODT and the
B-field curvature are, within a 20% uncertainty: 17, 115, and 156 Hz (14, 124, and 118 Hz) for Li (Cr)
atoms, respectively.
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During the evaporation, the additional chromium minority components Cr|j > 1⟩, initially
loaded within the bODT, are selectively removed using resonant light pulses, without
affecting the Cr|1⟩ population.4

Additionally, we have tested that the evaporation trajectories summarized in Fig. 2.8(a)
can be also adapted to produce single-species samples of either species. For lithium, this is
straightforward: Without loading the chromium component, the same bODT power ramps
discussed above yield crossover superfluids of more than 4.5× 105 pairs when the bias field
is tuned towards the pole of the broad intraspecies Feshbach resonance at 832 G [138]. This
number can be further increased up to about 6× 105 when the same time evolution of the
trap depth is realized by means of the sole IR light of the bODT, resulting in performances
similar to, and even slightly better than, those reported in Ref. [131] by the Li lab at LENS.

To realize polarized Fermi gases of 53Cr, the protocols discussed above can be modified
only partially, owing to the fact that quantum degeneracy of this species relies in our setup
on its sympathetic cooling with lithium. However, a slight increase of the green-to-IR
power ratio during the evaporation allows us to obtain about 70% larger Cr samples at
220(20) nK, at the expense of a significant reduction of both Li components, which can be
eventually completely removed at the end of the evaporation stage by further increasing
the power of the green bODT arm. Sympathetic cooling of 53Cr with 6Li thus appears
as a promising route to realize large Fermi gases of this (yet poorly explored) atomic
species that, before the work summarized in this Chapter, had been produced only in
combination with its most abundant bosonic isotope 52Cr [126]. In fact, the possibility
to exploit the different Li and Cr polarizabilities to the IR and green lights of our bODT,
absent when isotopic Cr mixtures are considered, combined with our improvements of
the Cr MOT performance, have provided us an almost 200-fold increase in the 53Cr atom
number brought to TCr/TF,Cr ≤ 1, relative to previous studies [126].

2.7 Enhanced thermalization near a narrow Feshbach
resonance

In this Section, I discuss with more detail the “Feshbach cooling” stage mentioned in
Sec. 2.6, providing additional experimental characterizations of such a thermalization dy-
namics near a narrow FR. A more systematic experimental study and theoretical analysis,
which will considerably benefit from the numerical simulator I developed for the transport
measurements of Chapter 5, will be the subject of future work.

As discussed in Sec. 2.6, the background Li-Cr scattering length, of about 42 a0, suffices
to ensure inter-species thermalization during a large part of the evaporation stage, from
the initial temperature of about 250 µK down to a few µK. However, from that point on,
i.e. once lithium approaches the quantum-degenerate regime, such a background value
turns out to be somewhat too small, and the chromium-to-lithium temperature ratio,
TCr/TLi, is found to progressively grow as the bODT trap depth is further decreased, see
again Fig. 2.8(d). Rather than circumventing this issue by significantly extending the
evaporation ramps in this final stage, we opted to exploit the presence of various narrow
s-wave Li-Cr Feshbach resonances (see Chapter 3), located at fields above 1400 G, where
the Li|1⟩-Li|2⟩ scattering length is still large and negative [138].

To investigate the impact of an increased inter-species scattering rate during the final
part of the evaporative cooling stage, about 800 ms before evaporation ends – i.e. when
temperatures are on the order of 1.5 µK [see Fig. 2.8(c)] – in 550 ms we linearly decreased
the magnetic field detuning from δB = B −B0 ≃ +2 G to a target value δBhold (relatively)
4These spin-selective optical removals are performed employing light resonant with the Cr|1⟩ state at 1414 G
(see Sec. 6.2), but lowering the B field such that it becomes resonant with the desired Cr|j ≥ 2⟩ spin state.
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close to the resonance pole, without crossing it. There, while evaporation ramps were
ongoing, we held the sample for 230 ms (i.e. essentially for the remaining evaporation time),
before eventually ramping the B-field to an off-resonant value δB ∼ ∆B ∼ 0.5 G, i.e. close
to the zero-crossing. We then took absorption images of the two atomic clouds, following
time-of-flight expansion, from which we extracted atom numbers and temperatures via 2D
Gaussian fits.

In Fig. 2.9 I present the results of this study, as a function of the target detuning δBhold.
Besides atom numbers [panel (a)] and temperatures [panel (b)], I also show normalized
phase-space densities [panel (c)], estimated via the classical relation PSD ∝ N/T 3. As one
can see, for δBhold ≳ +150 mG, where the Li-Cr scattering length −90 a0 < a < 0, no signifi-
cant difference with respect to the background is observed. However, for δBhold ≲ +100 mG,
the chromium temperature exhibits a clear decrease – without dramatic losses of Cr atoms
– at the expense of a reduction in the Li population. In particular, the Cr PSD, normalized
to its background value, features a pronounced maximum around δBhold ≃ +35 mG (corre-
sponding to a ≃ −500 a0), where up to a sixfold relative increase is recorded. Parallel to
this, the Cr temperature essentially approaches the Li one, with a moderate drop of NCr of
about 30%. Further lowering δBhold with respect to the optimum point, over the selected
timescales, results in strong losses for both atomic components, ultimately causing a severe
drop of the Cr PSD.

As a second step, we characterized the temperature dependence of the optimum magnetic
field detuning that maximizes the Cr PSD. For this experiment, we truncated the evapo-
ration ramps at tevap = 4 s, deliberately introducing a controlled temperature mismatch
(with Li always being colder than Cr) by adjusting the final values of IR and green light in
our bODT. Specifically, we moved in this parameter space by keeping an approximately
constant temperature ratio TCr/TLi ∼ 3. Similarly to the procedure described above, we

Figure 2.9 – Effect of a 230-ms-
long thermalization time at the tar-
get detuning δBhold, during the fi-
nal part of evaporation. (a) Atom
numbers, (b) temperatures, and
(c) normalized PSDs are derived
from absorption imaging following
time-of-flight expansion under non-
interacting conditions. The PSD is
obtained from the classical relation
PSD ∝ N/T 3, and it is normalized
to its off-resonant value. In every
panel, red (blue) points correspond
to Li (Cr), and the line segments
connecting them are simply guides
to the eye.
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linearly decreased the magnetic field detuning to a target, variable value δBhold ≲ +100 mG,
where we allowed interspecies thermalization to occur for thold = 150 ÷ 200 ms. After
that, we quickly moved to δB ∼ ∆B, where we recorded absorption images of the two
freely-expanding clouds at long time of flight.

The results of this second characterization are summarized in Fig. 2.10, which shows the
Cr PSD versus δBhold, for a series of different temperatures (see legend in µK), normalized
for each dataset to its background, non-resonant value. First, one can notice how, for each
initial temperature, there is an optimum detuning δBopt > 0 (where the Cr PSD reaches a
maximum value) which is experimentally found to linearly decrease with the initial system
temperature, see inset of Fig. 2.10. Second, the lower is the sample temperature, the more
sizable is the gain in PSD that can be achieved. Third, by tracing the time evolution
of the chromium temperature at such δBopt (not shown), the extracted thermalization
rate is found inversely proportional to ⟨vrel⟩, i.e. to the estimated Li-Cr mean relative
velocity, obtained by averaging over the momentum distributions of the two components.
Finally, although not shown here, thermalization data taken at negative detunings, i.e. at
a > 0 values, do not exhibit any appreciable resonant enhancement as the one presented in
Fig. 2.10. Such a peculiar trend qualitatively matches the expectation from the two-body
scattering theory discussed in Sec. 1.5 for narrow FRs. Indeed, as shown already in Fig. 1.1,
for R∗/|a| ≫ 1 the cross-section becomes unitary-limited at finite a < 0 values – i.e. finite
δB > 0 in our case – when k2

relR
∗ a = −1. By equivalently expressing this relation in

terms of collision energy Ecoll = ℏ2k2
rel/(2mred), and exploiting Eqs. (1.18) and (1.20)

for a(δB) and R∗, respectively, it is straightforward to obtain that collisions at energy
Ecoll are resonantly enhanced at the magnetic-field detuning δB for which Ecoll = δB δµ:
Namely, when the collision energy equals the one of the (virtual) closed-channel molecule.
Although this result does not account for thermal averaging over all Li-Cr collision energies,
it qualitatively matches our observation of a linear dependence of δBopt upon the initial
lithium temperature, see the inset of Fig. 2.10. Additionally, when the detuning is set at
δBopt for a given (relative) momentum class ℏkrel = mred vrel, the corresponding scattering
rate Eq. (1.6) is expected to scale as Γel ∝ 1/vrel, again in agreement with our experimental
observation.

While a more quantitative theoretical analysis of this so-called “Feshbach cooling” has
not been carried out yet, I remark that the identification of this resonant thermalization
mechanism has been crucially relevant in our experimental routine to attain large, degener-
ate samples of lithium and chromium atoms, see Sec. 2.6. Besides being a key tool for the

Figure 2.10 – Main panel: Chromium
PSD, normalized to its off-resonant value,
is plotted as a function of the magnetic
field detuning δBhold, where Cr is let to
thermalize with Li for 150÷ 200 ms. Dif-
ferent datasets refer to different initial
lithium temperatures, specified in the
legend in µK units. For each measure-
ment, the initial temperature mismatch
was kept at T 0

Cr/T
0
Li ∼ 3. Inset: the opti-

mum detuning δBopt where the Cr PSD
gain is found to be maximum, is plotted
as a function of T 0

Li. The solid line is the
best-fit to the data with a power-law func-
tion, yielding an exponent α = 0.99(3).
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Li-Cr system, such a phenomenon, primarily determined by elastic scattering, may find
application also on other ultracold mixtures – Bose-Fermi, Bose-Bose, atom-ion, etc. – and
also single-species experiments, whenever narrow FRs (eventually not s-wave) are available.
For instance, we are aware that qualitatively similar observations have been obtained on
Li-K (both Fermi-Bose and Fermi-Fermi) mixtures, as well as on homonuclear Dy Bose
gases (Private communications by R. Grimm and G. Modugno’s teams, respectively).

2.8 Increasing quantum degeneracy in a crossed bODT
As discussed in Sec. 2.6, the degree of degeneracy obtained at the end of the evaporation
stage is quite different for the two components, with lithium being highly degenerate while
chromium features a “mild” degeneracy, with TCr/TF,Cr ∼ 0.5÷ 1. Further decreasing the
bODT trap depth does not lead to any substantial gain in phase-space density, a reduced
temperature being counterbalanced by a drop in the atomic densities for both species.

To overcome this problem, we implemented a second bichromatic trapping beam, which
crosses the main bODT at an angle of about 17◦ from the vertical direction, see Fig. 2.5(b).
Such a secondary beam, that we only switch on once the evaporation stage has ended, is
obtained by exploiting the same laser sources, recycling part of the IR and green powers
of the main bODT, damped at the end of the evaporation procedure. Both IR and green
crossed beams are almost circular and at the atom position they feature waists of about
60 and 70 µm, respectively. Being oriented almost vertically, this second bichromatic
beam does not significantly modify the overall trap depth experienced by the two atomic
components,5 and hence their temperature, whereas it allows us to control the confinement,
and thus the density and Fermi energy, of each cloud almost independently.

In order to test this possibility, after the evaporation stage we raised up the crossed
bODT at various IR and green power levels through a 50-ms linear ramp. After about
50 ms, we then recorded time-of-flight images of both Li|1⟩ and Cr|1⟩ and obtained the
corresponding atom number and degree of degeneracy by fitting the atomic clouds to a
finite-temperature Fermi-Dirac distribution. The employed timings, although not exceeding
the typical axial ones in the sole main bODT trap, did not cause any detectable excitation
or trigger subsequent dynamics of the Li and Cr clouds. Exploitation of much longer ramps
or hold times resulted instead in a poorer collection efficiency of the lithium component
within the crossing region.

The results of this characterization are summarized in the color maps in Fig. 2.11:
Panels (a) and (c) show the chromium and lithium normalized temperatures T/TF,Cr and
T/TF,Li, respectively, as a function of green and IR powers of the crossed beam. Panel
(b) presents the corresponding trend for the Li|1⟩ atom number, normalized to 3.5× 105,
which is the value obtained without application of the crossed beam. The chromium
component, characterized by an axial size in the main bODT roughly two times smaller
than the lithium one, could be efficiently transferred into the crossed trap at all green and
IR powers that we explored, resulting in a Cr number (not shown) which varies less than
15% throughout the investigated parameter space. From Fig. 2.11, one can notice the
qualitatively different response of the two mixture components to the crossed bODT. On the
one hand, for chromium, application of either crossed beam leads to a substantial increase
in the degree of degeneracy: As shown in Fig. 2.11(a), several IR and green combinations
yield a twofold decrease of T/TF,Cr, passing from about 0.5 down to 0.25, solely caused
by the large Cr density increase within the crossed trap. On the other hand, for lithium,
application of one single (IR or green) crossed beam causes a decrease of the atom number
[see Fig. 2.11(b)] together with a reduction of the degree of degeneracy [see Fig. 2.11(c)].
5Given the beam waists of the main bODT of our setup, the trap depth is set by the vertical direction.
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Figure 2.11 – (a) Normalized chromium temperature TCr/TF,Cr monitored as a function of green
and IR powers of the crossed bODT. The degree of degeneracy is obtained as the average value
extracted from fitting at least four independent Cr images, acquired after 4.6 ms of time-of-flight.
(b) Lithium atom number, normalized to its value measured in the sole main bODT at the end of
the evaporation ramp, as a function of green and IR powers of the crossed bODT. (c) Same as in
(a) but for the reduced lithium temperature TLi/TF,Li. For lithium, a 3-ms time-of-flight expansion
was employed. In all panels, the value of each pixel is averaged over the vertical and horizontal
nearest-neighbors.

The response to the IR trap can be explained by the initially larger cloud size and mean
energy-to-trap depth ratio, compared to the Cr ones, which implies a limited collection
efficiency and a progressively increased anharmonicity of the experienced potential, leading
to a reduction of local density and degree of degeneracy. The response to the green crossed
trap can instead be explained by the anti-confining (rather than confining) effect on the Li
species: Even for low green powers, the atom-number reduction is accompanied by a drop
of local density within the crossing region, and hence of Fermi degeneracy. However, when
both IR and green lights are applied, over a quite wide range of parameters we observe
an efficient storage of lithium atoms in the crossed bODT, at an almost constant T/TF,Li

[see Fig. 2.11(c)]. As expected, this occurs roughly around the diagonal of panels (b) and
(c), where the anti-confinement of the green beam is (more than) counterbalanced by the
IR light and where anharmonicities of the experienced potential, estimated through trap
frequency measurements, appear to be negligible.

These observations highlight how the crossed bODT significantly enhances the parameter
space which can be explored with the Li-Cr mixture in our setup: By simply tuning the
(absolute and relative) powers of the two crossed lights, one can pass from the regime where
lithium is highly degenerate and chromium is an almost thermal gas, to the opposite one.
Most importantly, over a sizable range of parameters we can simultaneously achieve a high
degree of degeneracy for both 6Li and 53Cr components. As an example, in Fig. 2.12 I show
axially integrated density profiles (black circles) of lithium and chromium Fermi gases,
obtained from absorption images (see the insets), acquired after time-of-flight expansion
from the sole main bODT trap [panels (a) and (b)] and from a crossed bODT [panels
(c) and (d)]. Data are compared with best fits to a Gaussian and to a Fermi-Dirac
distribution function, shown in red and blue, respectively. In both configurations, the
lithium sample features a roughly constant and low T/TF,Li value [see panels (a) and (c)]
and a corresponding constant peak density of about 1 × 1012 cm−3. For the chromium
component, application of the crossed beam negligibly affects the gas temperature and
the atom number, constantly about 1.0× 105, while it greatly modifies the peak density,
which increases from slightly less than 2 × 1012 cm−3 in the sole main bODT to about
4×1012 cm−3 within the crossed trap. Correspondingly, the chromium degree of degeneracy
is substantially improved, with the initial T/TF,Cr = 0.45(7) being lowered to 0.26(2) [see
panels (b) and (d)].
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Figure 2.12 – Axially integrated density profiles (black circles) of (a) a lithium and (b) a chromium
Fermi gas, simultaneously prepared in the main bODT trap only. Profiles are obtained from the
average of about 20 independent absorption images, acquired after time-of-flight expansion and
shown as insets. Experimental data are compared with best fits to a Fermi-Dirac (blue line) and a
Gaussian (red line) distribution. A Gaussian fit to the low-density tails of the density distributions
(green line) accurately captures the atom temperatures, whereas it overestimates the central density
of highly degenerate samples. For each component, the reduced temperature T/TF obtained from
the former fit, together with the fit uncertainty, is specified in the panel. (c) and (d) Same as (a)
and (b) but for a Li-Cr mixture released from a crossed bODT with IR and green powers set to
(c) 0.81 and (d) 0.20 W. Application of such a crossed bODT does not alter the lithium degree of
degeneracy, whereas it allows us to greatly reduce TCr/TF,Cr and to obtain Li-Cr mixtures with
both components at one-fourth of their Fermi temperature.

2.9 Conclusive remarks
In this Chapter, I have detailed the experimental procedures, which we devised during the
first year of my Ph.D., that allowed us to produce the first quantum degenerate mixtures
of fermionic 6Li and 53Cr atoms.

In particular, we successfully addressed different issues and challenges related to the
cooling and trapping of (fermionic) chromium. Key achievements of our work include the
mitigation of light-assisted losses during the Cr MOT stage, and the implementation of
an efficient, direct loading scheme for this species into a (bichromatic) optical dipole trap.
These important advances have effectively made chromium resemble an “alkali with many
repumpers”, significantly simplifying its manipulation and control within ultracold atom
experiments. Overall, these protocols allow us to produce deeply degenerate samples with
more than 2× 105 lithium atoms and approximately 105 chromium atoms at temperatures
around 200 nK.

The procedures described in this Chapter form the foundation for the studies presented
in the subsequent ones, laying the groundwork for further exploration of the Li-Cr system.
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Chapter 3

Feshbach spectrum and collisional
properties of 6Li-53Cr mixtures
In this Chapter, I present the results of our thorough characterization of the elastic (and
inelastic) scattering properties of the 6Li-53Cr Fermi mixture, following the lines of our
Ref. [139]. Chronologically, these investigations started during the period of my Master
Thesis [102], and were finalized in the first months of my Ph.D.: In practice, at that time
the experiment was still at a somewhat earlier stage with respect to what described in
Chapter 2. Indeed, without knowledge of the interspecies Li-Cr Feshbach resonances (and
without many improvements and optimizations developed afterwards), the evaporation
stage was only able to reach temperatures on the order of a few µK. Under these conditions
we performed extensive loss spectroscopy [7], scanning magnetic fields from 0 up to 1500 G
with an average resolution of ∼ 60 mG, and exploring up to six different scattering channels.
As a result, we were able to identify more than 50 interspecies s- and p-wave Feshbach
resonances (FRs) [7], well suited for the controlled tuning of elastic Li-Cr interactions, and
arranged in nonchaotic patterns – despite the dipolar nature and complex level structure of
fermionic 53Cr (see Fig. 2.3), reminiscent of Dy and Er [140–142]. Our experimental data
constituted the fundamental input for a full coupled-channel model [7] developed by our
theory collaborator Prof. Andrea Simoni (University of Rénnes), a world-renowned expert
of multichannel calculations who has pioneered the theoretical study of collisional properties
of both 6Li [143] and 52Cr [144] atomic gases. Importantly, Andrea’s theoretical work
allowed us to obtain a quantum collisional model able to unambiguously connect the (loss)
features we observed to well-defined LiCr molecular states. Besides loss spectroscopy, we
later experimentally characterized two among such resonances, finding excellent agreement
with the model predictions. As a direct consequence, we now have accurate knowledge
of the scattering properties of our mixture, crucial for the studies reported in Chapter 5,
as well as of the nature of the relevant molecular states, which will be exploited for the
studies presented in Chapter 4.
This Chapter – essentially based on our Ref. [139], with a few targeted inclusions from our
more recent Ref. [94] – is organized as it follows:

- In Sec. 3.1, I first describe our loss spectroscopy measurements, together with the
relevant loss mechanisms. I then present our experimental data, commenting on the
fundamental insights they provide.

- In Sec. 3.2, I outline the main concepts and ideas behind the coupled-channel
model developed by our theory collaborator, Prof. A. Simoni, and highlight its most
important results. In particular, I describe the origin of the peculiar FR patterns
observed at magnetic fields below 150 G. Finally, I present a first direct experimental
validation of Andrea’s model, obtained through the study of collisionally-damped,
in-trap dipole oscillations, performed over a broad magnetic-field range around a
selected s-wave FR.

- In Sec. 3.3, I present more recent measurements, not contained in Ref. [139], essentially
analogous to those reported in Sec. 3.2.2, but performed at significantly lower
temperatures and focusing on a narrower magnetic-field region around the resonance
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pole. I summarize our methods to analyze experimental data based on a coupled
oscillator model, and discuss the transition from the collisionless to the hydrodynamic
regime.

- Lastly, in Sec. 3.4, I present a detailed study (also not contained in Ref. [139]) of
inelastic three-body losses around a selected s-wave FR, allowing us to quantify the
collisional stability of our mixture under resonantly-interacting conditions.

3.1 Feshbach loss spectroscopy
As anticipated in the introduction, our loss spectroscopy scans were performed under less-
optimal conditions compared to those reported in Chapter 2. Nonetheless, the procedures
we followed to produce ultracold samples of 6Li and 53Cr atoms in our bODT were essentially
similar. For these measurements, we employed ultracold mixtures at 10(1) µK, trapped
in the sole IR beam of the main bODT with negligible differential gravitational sag.
The samples typically comprised about 105 Cr and 1.8 × 106 Li atoms, characterized
by Cr (Li) peak densities of 1011 cm−3 (2 × 1012 cm−3). Spin-state manipulation via
radiofrequency (RF) transitions allowed us to explore different binary Li-Cr mixtures.
Lithium was prepared in either of the two lowest Zeeman levels of the electronic and
hyperfine ground-state manifold 2S1/2 |F = 1/2, mF = ±1/2⟩, hereafter labeled Li|1⟩ and
Li|2⟩, respectively. Chromium, initially produced in the lowest hyperfine and Zeeman
level |F = 9/2, mF = −9/2⟩ of its electronic ground state 7S3 (hereafter denoted Cr|1⟩),
could also be transferred to the two higher-lying Zeeman states of the F = 9/2 manifold,
labeled Cr|2⟩ and Cr|3⟩, respectively. We explored all six Li|i⟩-Cr|j⟩ mixtures with i = 1, 2
and j = 1, 2, 3, each being characterized by the total spin projection quantum number,
MF = mF,Li +mF,Cr = −i+ j − 4, thus spanning −5 ≤MF ≤ −2.

We performed loss spectroscopy through magnetic field scans with typical step size
of 60 mG. We kept the sample at a variable field for a fixed time thold (usually of 4 s),
and then monitored the remaining atoms via spin-selective absorption imaging. FRs were

dr

drdrdr

dr dr

dr

drdrdr

drdrdrdr

F

Figure 3.1 – Sketch of allowed two-body decay channels for the six lowest 6Li-53Cr spin combi-
nations. Larger (thinner) arrows labeled as ‘ex’ (‘dr’) denote spin-exchange (dipolar relaxation)
processes, see text. Three-body recombination processes affect any mixture.
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identified by enhanced atom losses, induced by different processes depending on the spin
combination investigated [7]. Any Li|i⟩-Cr|j⟩ mixture but the lowest-energy one, i = j = 1,
may undergo two-body losses, see Fig. 3.1. Inelastic spin exchange occurs whenever the
initial atom pair is coupled to an energetically lower channel with equal MF and orbital
partial wave ℓ. Such a process does not affect excited spin combinations with either Li
or Cr in the ground state (i or j = 1). Weaker dipolar relaxation processes are enabled
by spin-dipole coupling [7] for any excited mixture, that can decay to lower-lying states
with different MF or ℓ, provided that ∆ℓ = 0, ±2 and Mtot = MF +mℓ is conserved, mℓ

being the projection of ℓ along the magnetic field quantization axis [130]. Three-body
recombination processes affect any mixture. While these can in principle involve either
two light and one heavy atom or vice versa, only the former case is relevant here, given
the Li-Cr density imbalance in these experiments.

Figure 3.2 provides an overview of FR scans for four of the six Li-Cr combinations that we
explored, from which important insights can be gained. First, none of the mixtures exhibit

Figure 3.2 – Overview of 6Li-53Cr loss spectra. The remaining Cr number, recorded after an
interaction time thold with lithium and normalized to its background value, is plotted as a function
of the magnetic field for four different combinations: (a) Li|2⟩-Cr|3⟩, MF = −3; (b) Li|2⟩-Cr|2⟩,
MF = −4; (c) Li|1⟩-Cr|1⟩, MF = −4; and (d) Li|2⟩-Cr|1⟩, MF = −5. Each point is the average of
at least four independent measurements. thold = 4 s for all but the (c) panel, where thold = 5 s.
Features that A. Simoni’s model (see Sec. 3.2) links to s-, p-, and d-wave molecular levels are
colored blue, orange, and green, respectively. Numbers in brackets indicate the assigned mℓ.
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Figure 3.3 – Temperature
dependence of atom loss at
two low-field FRs of Li|2⟩-
Cr|1⟩. (a) The remaining
Cr fraction, recorded after
thold = 4 s with a Li sam-
ple at 5 µK, is plotted as
a function of the magnetic
field. (b) Same as (a) but for
24 µK. Each data point is
the average of three indepen-
dent measurements. Lines
are best fits to the model
of Eq. (3.1) for p-wave colli-
sions.

a dense FR spectrum, unlike combinations of alkalis with Er or Dy lanthanides [145,146].
Second, similarly to bi-alkali systems, see e.g., Ref. [129], none of the loss peaks is due to,
or overlapped with, Cr-Cr or Li-Li resonances. Additionally, nearly coincident FR locations
appear in different spectra, both for mixtures with equal MF values [see Figs. 3.2(b) and
3.2(c)] and for those with unequal ones. This already suggested, well before the quantitative
analysis performed by A. Simoni, that relatively few molecular states, split into different
hyperfine levels, are sufficient to explain our observations. Finally, although the high-field
spectral regions above 150 G show sparse and narrow features, all scans – except for
the Li|1⟩-Cr|1⟩ mixture – exhibit more complex patterns below 150 G. These patterns
include strong loss peaks arranged in doublet or triplet structures; see, e.g., Fig. 3.2(b).
This suggests that, in this field region, two-body losses dominate over three-body ones.
The observed FRs likely occur in ℓ > 0 partial waves, split by magnetic dipole-dipole
interactions [147,148] and possibly other couplings [149].

We could confirm this hypothesis by acquiring additional loss measurements under
different temperatures near such low-field resonances. Figures 3.3(a) and 3.3(b) show
examples of this characterization, displaying loss features measured across two Li|2⟩-Cr|1⟩
FRs in low-density samples prepared at 5 µK and 24 µK, respectively. Both features are
highly asymmetric, and they sensitively widen for increasing temperature, a behavior typical
of ℓ > 0-wave FRs [147, 148, 150]. Without aiming at a quantitative line shape analysis,
these data are well reproduced (see solid lines in Fig. 3.3) by a simple model [151] that
assumes ℓ = 1 collisions and solely accounts for two-body inelastic processes. Specifically,
each dataset is fitted assuming exponential decay of the Cr fraction NCr(B, thold)/NCr,0 =
exp(−ΓK2

(B) · thold), with loss rate given by [151]:

ΓK2
(B) = ⟨nLi⟩Cr K2(B) ∼ A (B0 −B)ℓ+1/2 exp

(
−δµ (B0 −B)

kB T

)
. (3.1)

Here ⟨nLi⟩Cr is the Li density averaged over the Cr cloud and K2(B) is the (field-dependent)
two-body loss coefficient. The amplitude A (in arb. units), the FR pole B0, and the differ-
ential magnetic moment δµ in Eq. (3.1) are fitting parameters, whereas the temperature T
is kept fixed at the experimentally measured value, and ℓ = 1.

Another peculiarity of Fig. 3.3 spectra, common to other features in the low-field region
of Fig. 3.2, is their thermal tail [147,148,150] oriented toward lower fields. This implies
that such FRs originate from “anomalous” molecular levels that lay slightly above the
atomic threshold at zero field and cross it with negative differential magnetic moments,
δµ < 0.
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3.2 Coupled-channel model
The experimental data reported in the previous Sec. 3.1 constituted the necessary experi-
mental input to build a full coupled-channel model [7], developed by our theory collaborator
Prof. A. Simoni, University of Rénnes. Following the lines of our Ref. [139], in this section
I discuss the general ideas behind Andrea’s model, and its most relevant results regarding
our experimental studies.

First, the model accounts for the atomic hyperfine and Zeeman energies [152, 153],
which define the asymptotic collision thresholds. Second, the (isotropic) electrostatic
interaction is represented by adiabatic Born-Oppenheimer potentials: These potentials
are constructed by smoothly matching the ab initio (sextet) X 6Σ+ and (octet) a 8Σ+

molecular potentials given in Ref. [154] to the typical long-range analytical form [7]

Vlr(R) = −C6
R6 −

C8
R8 ∓AR

ν e−βR , (3.2)

which comprises dispersion and the exchange interactions. Similarly to the singlet and
triplet potentials of bi-alkalis, the minus (plus) sign in Eq. (3.2), with A > 0, refers to the
deeper sextet (shallower octet) Li-Cr potential, characterized by a total electron spin of
LiCr dimers equal to S = 5/2 (S = 7/2). Such potentials are parametrized in terms of
sextet a6 and octet a8 s-wave scattering lengths, respectively. In Eq. (3.2), the amplitude
A, and the constants ν and β, solely depend on the properties of separated atoms. The fit
only weakly constrains the exchange-potential parameters, that are thus kept fixed to the
nominal values given in Ref. [154].
Besides this strong isotropic interaction, both ℓ and MF conserving, the model also
accounts for weaker anisotropic couplings originating from both the (long-range) magnetic
spin and the (short-range) second-order spin-orbit interactions. These two contributions
have significantly different radial dependences, but for Σ states they share the same spin
structure:

Vs ∝ s⃗Li · s⃗Cr − 3(s⃗Li · R̂)(s⃗Cr · R̂) . (3.3)

From Eq. (3.3), one notices that these terms can couple different partial waves and hyperfine
states, with the selection rules discussed in Sec. 3.1 for dipolar relaxation processes.

Starting from the ab initio data and long-range potential parameters of Ref. [154],
A. Simoni optimized the (initially unknown) values of a6 and a8, as well as the dispersion
coefficients C6 and C8, through least-square iterations by comparison with the experimental
data. By tentatively identifying the isolated loss peaks above 1 kG as spin-exchange s-wave
FRs associated with S = 5/2 rotationless (ℓr = 0) molecular states,1 the sextet scattering
length is strongly constrained to a6 = 15.5 a0. With such an assumption, the model
also reproduces several other features at lower fields, assigned to ℓr = 2 states of the
S = 5/2 potential, thus confirming the hypothesis. A strong constraint on a8 is instead
provided by the peculiar low-field patterns, characterized by irregularly spaced triplets
and several “anomalous” FRs (see Fig. 3.3 and features marked in yellow in Fig. 3.2). A
global least-square fit to the observed FRs yields the best-fit parameters a6 = 15.46(15) a0,
a8 = 41.48(2) a0, C6 = 922(6) a. u., and C8 = 9.8(5)× 104 a. u., where errors represent one
standard deviation obtained from the fit covariance matrix.

The quantum collisional model of A. Simoni accurately reproduces our experimental
findings, as shown in Tab. 3.1 for a subset of 20 FRs. Besides the magnetic field location,
the relevant quantum numbers for both the entrance channel and molecular state are also

1I refer to the orbital quantum number of close-channel molecules as ℓr, not to be confused with ℓ, the
orbital quantum number of the scattering atom pair.
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Table 3.1 – Selection of 6Li-53Cr Feshbach resonances immune to inelastic spin-exchange decay.
Experimental Bexp and theoretical B0 locations are compared for Li-Cr (i, j) channels. Bexp are
obtained from the zeroes of the numerically-computed first derivative of loss data. A conservative
200 mG uncertainty combines our field stability with day-by-day field drifts and systematic errors.
For incoming s-wave (p-wave) FRs, background scattering lengths a(0)

bg (volumes a(1)
bg ) and magnetic

widths ∆el are computed in the zero-energy limit (at collision energy E/kB = 10 µK). Coupled s-
and d-waves (p-wave only) are included for s-wave (p-wave) resonances. The differential magnetic
moment δµ, the electron spin Sr, and the rotational angular momentum ℓr of the molecular state
are also listed. Additional data are reported in [155].

i, j, ℓ,mℓ Bexp (G) B0 (G) Sr, ℓr a
(ℓ)
bg (a2ℓ+1

0 ) ∆el (G) δµ (µB)
1, 1, 0, 0 204.6 204.7 5/2, 2 41.3 7.0× 10−3 3.7
1, 1, 0, 0 477.6 478.1 5/2, 2 41.5 1.8× 10−3 2.0
1, 1, 0, 0 501.0 501.9 5/2, 2 41.5 3.8× 10−4 2.0
1, 1, 0, 0 687.4 687.1 5/2, 2 41.5 2.3× 10−4 4.0
1, 1, 0, 0 1414.0 1414.1 5/2, 0 41.5 0.47 2.0
2, 1, 1, 0 3.05 2.3 7/2, 1 −1.6× 105 −3.70 −0.56
2, 1, 1, 1 21.1 20.9 7/2, 1 8.2× 103 119 −0.28
2, 1, 1,−1 24.2 24.2 7/2, 1 2.5× 104 37.8 −0.24
2, 1, 1,−1 54.3 54.8 7/2, 1 1.4× 105 −4.56 0.27
2, 1, 1, 1 55.6 56.1 7/2, 1 −1.1× 105 5.08 0.31
2, 1, 0, 0 225.7 225.8 5/2, 2 41.3 7.4× 10−3 3.8
2, 1, 0, 0 457.0 456.7 5/2, 2 41.5 3.6× 10−4 2.0
2, 1, 0, 0 531.4 531.8 5/2, 2 41.5 2.3× 10−4 2.0
2, 1, 0, 0 1461.2 1461.2 5/2, 0 41.5 0.48 2.0
1, 2, 0, 0 65.0 65.9 7/2, 0 39.5 6.6× 10−3 3.1
1, 2, 0, 0 135.7 135.7 5/2, 2 40.8 3.7× 10−5 5.0
1, 2, 0, 0 139.5 140.4 7/2, 0 40.8 1.9× 10−3 3.0
1, 2, 0, 0 483.5 484.2 5/2, 2 41.5 1.7× 10−2 2.0
1, 2, 0, 0 1418.1 1417.9 5/2, 0 41.5 0.47 2.0

given, together with the associated resonance parameters: background scattering length
a

(0)
bg (or volume a(1)

bg ), magnetic width ∆B, and differential magnetic moment δµ of the
molecular state relative to the atomic threshold. I remark that the a8 value obtained by
A. Simoni agrees well with the (more recent) ab initio estimate by M. Tomza’s group, see
Sec. 4.10.

The low-field spectral region is entirely dominated by p-wave FRs, featuring mℓ splittings
much larger than those found in alkali systems [147–149], owing to the increased role
of spin-spin dipole coupling in Li-Cr mixtures and to the coincidentally small relative
magnetic moment of the molecular states involved, see Sec. 3.2.1 below.
We could also identify various s-wave FRs in different spin combinations, including the
absolute Li-Cr ground state. Owing to the relatively small values of a6 and a8 [7], similarly
to the Li-K case [129,130], these features are generally narrow. In particular, the coupled-
channel model connects all FRs above 1400 G to ℓr = 0 molecular levels of X 6Σ+ potentials,
predicting negligible two-body loss rates, magnetic-field widths ∆B ∼ 0.5 G, and associated
effective-range parameters [7, 156] of about 6000 a0. Experimental characterizations of
such high-field resonances are presented in Secs. 3.2.2, 3.3 and 3.4.

3.2.1 Origin of the low-field p-wave resonance patterns
The Feshbach spectra at low magnetic fields (below 100 G), observed in the Li|2⟩-Cr|1⟩,
Li|2⟩-Cr|2⟩, and Li|2⟩-Cr|3⟩ hyperfine combinations (see Fig. 3.2), present a peculiar pattern
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comprising a first low-field p-wave triplet of “anomalous” resonances (bound state crossing
the atomic threshold from above with increasing B) below 30 G, accompanied by a second
“standard” (bound state crossing the atomic threshold from below with increasing B)
resonance triplet, located at higher fields. On top of these six features, the low-field pattern
may include additional peaks, depending on the specific collision channel.

The origin of the main six-resonance pattern based on A. Simoni’s model is illustrated
in Fig. 3.4 for the Li|2⟩-Cr|1⟩ combination. For p-wave collisions, ℓ = 1, mℓ = 0, ±1, and
the three projections −4, −5, −6 of the exactly conserved quantum number Mtot must
be accounted for. Let us first turn artificially to zero all relativistic interactions, such
that the potential is fully isotropic (see Ref. [155] for details on the interaction potential):
With reference to the lower panel (red dashed line), one can observe a unique molecular
level crossing the atomic threshold first with negative, then with positive relative magnetic
moment, with relatively small values |δµ| ≲ 0.5 µB. The red dashed line in the upper panel
of Fig. 3.4 correspondingly shows the real part of the energy-dependent scattering volume,
that near the location where the bound state crosses threshold is tuned to large (positive
and negative) values.

In the presence of anisotropic interactions, instead, the threefold mℓ degeneracy is
lifted, and the single molecular level splits into the three components, shown as solid lines
in Fig. 3.4. This splitting creates a resonance pattern composed of two sets of triplet peaks,
which appear symmetrically around the center of the pattern. Note that, at low fields, the
splitting is generally non-perturbative, and the two resonances for mℓ = ±1 collisions are
not expected to occur at the same location. This phenomenon has been already observed
in alkalis [157], albeit in a less pronounced manner. Given its high sensitivity to small
perturbations, this fragile pattern represents an ideal testing ground for ab initio quantum
chemistry calculations, and it has been crucial for the fine adjustment of the parameters in
Andrea’s model.

Figure 3.4 – Upper panel: the real part of the energy-dependent p-wave scattering volume for
Li|2⟩-Cr|1⟩ collisions for the triplet components Mtot = −6, −5, −4. Calculation is performed at a
finite collision energy E/kB = 5 µK. Two mirror-image triplet patterns are visible with an extra
resonance near 45 G arising from an additional perturbing state. Lower panel: energies of the
corresponding resonant molecular states with quantum number Mtot below the Li|2⟩-Cr|1⟩ atomic
threshold, fixed as zero energy. Pairs of resonances are induced for each Mtot by the same molecular
level crossing twice the atomic threshold first with negative, then with positive relative magnetic
moment. In the absence of anisotropic spin dipolar and second-order spin-orbit interactions the
three components would be degenerate and reduce to the dashed lines in both panels.
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Finally, it is important to emphasize that the mℓ = −1 resonance near 24 G, shown in
Fig. 3.4 (green solid line), with Mtot = −6, is predicted to exhibit negligible two-body loss
rates. Such a feature could thus allow us, in the future, to investigate Li-Cr mixtures with
resonant p-wave interactions, intrinsically chiral in nature.

3.2.2 Testing the model on a high-field resonance
Once the theoretical results of A. Simoni’s model became available, we experimentally
tested them by characterizing the s-wave FR located at 1461 G in the Li|2⟩-Cr|1⟩ channel.
As anticipated previously, at the time this study was performed, we were working essentially
with thermal samples, especially for what concerns the Cr component. Additionally, the
magnetic field stability was not yet optimized (see Sec. 6.1), leaving us with a B-field
uncertainty of about ∼ 50 mG near the resonance locations. Under these conditions,
we conducted a somewhat preliminary investigation of inelastic and elastic scattering
properties: Our primary goal here was to measure the magnetic field width ∆B of the
selected FR, taken as the distance between the resonance pole (experimentally identified
as the loss peak) and the minimum of the scattering rate (i.e. the zero-crossing of the
scattering length). More precise and thorough characterizations of elastic and inelastic
(resonant) scattering were performed later, with colder samples and a stable magnetic field,
see Secs. 3.3 and 3.4.
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Figure 3.5 – Inelastic and elastic scattering at a Li|2⟩-Cr|1⟩ s-wave FR. (a) Magnetic-field
dependence of the remaining Cr fraction (blue circles, left axis) and final Li temperature (red
squares, right axis), recorded on a mixture at 2 µK after 150 ms interaction time. Each data point
is the average of at least three independent measurements. The loss peak corresponds to a 1/e
lifetime of 40(3) ms. (b) Field dependence of the collision-induced damping rate Γdamp of a Li
cloud at 2 µK, sloshing along the weak axis of the bODT in the presence of a Cr cloud at rest. The
experimentally determined normalized Γdamp/Γbg is compared with the thermally averaged elastic
scattering rate given by A. Simoni’s model (solid line). Error bars account for the statistical error
of the fit of the oscillation data to a damped sinusoidal function. The shaded area marks panel (a)
boundaries.
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First, to pinpoint the resonance pole, we employed a mixture initially produced at
2 µK, comprising about 5× 105 Li and 105 Cr atoms, respectively, and characterized by a
Li (Cr) peak density of about 4 × 1012 cm−3 (1012 cm−3). Through a 30 ms-long linear
ramp, we lowered the magnetic field from 1464 G to the final value, where we held the
sample for 150 ms. The observed loss feature, shown in Fig. 3.5(a) for the Cr component
(blue circles), is strongly asymmetric, as expected for narrow FRs [158]. Contrary to
the low-field FRs of Fig. 3.3, here the lithium-to-chromium loss ratio is consistent with
2 within experimental uncertainty. This points to Li-Li-Cr three-body processes that
overcome two-body ones, in agreement with A. Simoni’s model expectation of a small
dipolar relaxation rate K2 < 10−14 cm3/s at 2 µK. At the same time, we observed a
sizable temperature increase of the Li cloud [see red squares in Fig. 3.5(a)], pointing to
anti-evaporation dynamics driven by recombination processes [7].

In the second part of this experiment, we investigated the magnetic-field dependence
of the Li-Cr elastic scattering across this FR. We selectively excited a sloshing motion of
the lithium cloud along the weak axis of our bODT, and monitored the damping of the Li
oscillations caused by interspecies collisions. For each field, we traced the Li center-of-mass
motion and we fitted it to a damped sinusoidal function to extract the damping rate Γdamp.
Indeed, as detailed further in Sec. 3.3, for weak interactions, with only few scattering events
per oscillation period, Γdamp is directly proportional to the elastic scattering rate, thus
ultimately to a2. Figure 3.5(b) shows the experimentally determined Γdamp, normalized to
the background value Γbg measured far from the resonant region (circles), together with
the thermally averaged elastic scattering rate obtained from the collisional model (solid
line). The close agreement between experimental and theoretical data validates the model,
confirming the expected magnetic-field width ∆B ∼ 0.5 G.

3.3 Resonantly-interacting Li-Cr Fermi mixtures
Before proceeding to the next Chapters, I present here and in the next Sec. 3.4 further
and more recent characterizations of the elastic and inelastic scattering properties of
6Li-53Cr mixtures. These additional studies, performed on high-field s-wave FRs at lower
temperatures and with improved B-field stability (see Sec. 6.1) compared to our Ref. [139],
are also presented in our (latest) Ref. [94]. In particular, in this Section, I report a study of
the bi-atomic mixture in the resonantly-interacting, quantum degenerate regime, exploiting
protocols similar to those employed in Sec. 3.2.2, but at significantly lower temperatures
and focusing on the vicinity of the resonance pole. The selected FR is in this case the
one occurring around 1414 G in the Li|1⟩-Cr|1⟩ spin combination: In light of its high-field
location and of its narrow nature, this refined study represented for us a crucial, preliminary
step towards any subsequent experiment with s-wave resonant Li-Cr mixtures: from the
realization and characterization of ultracold LiCr dimers (see Chapter 4), to the study of
the transport properties of Li impurities in a Cr bath (see Chapter 5).

In this experiment, exploiting our improved control over magnetic fields in the setup
(details in Sec. 6.1), we accurately located the FR pole, across which we extracted both the
elastic and inelastic collision rates per minority Cr atom, denoted Γel and Γloss, respectively.
We simultaneously measured these two observables as a function of the magnetic field
detuning δB = B −B0, where B0 is the FR pole, through the study of in-trap collective-
mode dynamics, see the sketch in Fig. 3.6(a). Our probing method here was based on
the simultaneous monitoring, as a function of time, of the atom numbers NCr and NLi,
as well as of the axial sloshing of both species in terms of their center-of-mass (c.o.m.)
coordinates. We fitted exponential decays to the minority Cr atom number to obtain Γloss,
associated with the dominant three-body Li-Li-Cr recombination process, see also Sec. 3.4.
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The elastic collision rate Γel was instead extracted from the analysis of the c.o.m. evolution
of the two mixture components via a two-coupled harmonic oscillator model [159–162]; see
Fig. 3.6(b) and Sec. 3.3.1 for details about the model. By fitting the c.o.m. position of
the atomic clouds xcom as a function of time, and taking into account the observed loss in
atom number, Γel could be reliably extracted.

The measurement started by preparing a non-interacting Li-Cr mixture, within the sole
IR trapping beam of our main bODT, near the zero crossing of the selected FR, i.e. at an
initial detuning δB ∼ +0.48 G. By means of an optical kick, imparted with a quick pulse of
green light, on purpose slightly misaligned with respect to the IR beam axis, we selectively
displaced the Li cloud out of the axial potential minimum at x = 0, while leaving Cr almost
unaffected; see sketch in Fig. 3.6(a). Parallel to that, we quickly set δB to variable values
around the FR pole. We then monitored the subsequent number and c.o.m. evolution as a
function of time.
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Figure 3.6 – Elastic and inelas-
tic scattering properties of res-
onantly interacting Li-Cr Fermi
mixtures. (a) Sketch of the
experimental configuration em-
ployed to simultaneously extract
Γloss from the minority Cr num-
ber evolution, and Γel from
the Li and Cr c.o.m. dynam-
ics through the analysis devel-
oped in Refs. [159–162]; see the
text for details. (b) Examples of
the observed dynamics, recorded
at different magnetic-field de-
tunings specified in the legend,
of the chromium atom number
(left panels), and of the centers
of mass of both Cr (blue cir-
cles) and Li (red squares) com-
ponents (right panels). Lines
are best fits to the data of the
models described in the text,
through which we extract Γloss
and Γel, respectively. (c) Ex-
perimentally determined rates
for elastic (filled circles) and in-
elastic (open squares) collision
events per Cr atom, as a func-
tion of the magnetic field detun-
ing δB. Black and gray curves
are best fits of Γel and Γloss, re-
spectively, to the theoretically
expected trends; see the text for
details.
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At the initial detuning, i.e., under non-interacting conditions, atom losses were found
negligible, and lithium underwent small, undamped oscillations characterized by a single
oscillation frequency of about 17 Hz. Simultaneously, chromium, featuring a bare axial
trap frequency of 14 Hz, was found at rest at all evolution times. As the resonance was
approached, the effects of both inelastic and elastic processes became more pronounced.
Examples of the observed dynamics at various δB > 0 are presented in Fig. 3.6(b) in
order of increasing interaction strength from top to bottom. The minority chromium
number NCr (left panels) and the c.o.m. coordinates for both species (right panels)
are shown as a function of time. The Cr number evolution, always well fitted by a
single exponential decay [see the solid lines in the left panels of Fig. 3.6(b)], reveals a
progressively reduced lifetime (i.e. increased loss rate), as the resonance pole is approached
from above, δB → 0+. In parallel, the barycenters of the two mixture components exhibit
more interesting dynamics, which qualitatively change close enough to the FR pole. In
particular, for |δB| ≳ 30 mG (small interaction strength), we observed a damping of the
Li c.o.m. oscillations – accompanied by weak damped oscillations of the Cr cloud at its
bare axial frequency. This damping becomes progressively more pronounced as |δB| is
reduced, consistently with the expected behavior in the collisionless regime [159–162]. For
|δB| ≲ 30 mG, instead, the barycenters of the two clouds exhibit weakly-damped, in-phase
oscillations, characterized by one single frequency, intermediate between the unperturbed
Li and Cr ones. This observation is consistent with a collisionally hydrodynamic behavior
of our Fermi mixture near the FR center, which is expected to arise in the strongly
interacting region, once Γel greatly exceeds the axial trap frequencies [159–162]; see
Sec. 3.3.2 below for more details. Despite the c.o.m. evolution drastically changes
between the collisionless and the hydrodynamic regimes, it is well reproduced at all
detunings by the coupled oscillator model Eqs. (3.4), with Γel as the only free parameter;
see the best-fit curves in the right panels of Fig. 3.6(b).

The main results of this characterization are summarized in Fig. 3.6(c), which shows
the experimentally determined Γel (filled circles) and Γloss (open squares) as a function
of the magnetic field detuning across the resonance region. The inelastic loss rate, for
δB ≥ 0, exhibits an exponential growth [gray line in Fig. 3.6(c)] as the resonance pole
is approached, in qualitative agreement with the trend expected for the three-body
recombination rate coefficient near a narrow FR [158]; see Sec. 3.4 for a more detailed
discussion. After reaching a maximum value at δB ∼ 0, the extracted Γloss is found to
progressively drop as the field is further decreased, consistent with previous observations
on other atomic systems [158]. However, since in this δB < 0 region Feshbach dimers
can be formed and contribute to the detected atom signal (see Chapter 4), Γloss can no
longer be interpreted solely in terms of three-atom recombination processes.2

Contrarily to the inelastic case, Γel could be analyzed as an elastic Li-Cr scattering
rate across the entire region of explored detunings. We obtained the theory estimate
as Γel = ⟨nLi⟩Cr · ⟨σel(δB) vrel⟩T [see Eq. (1.6)], with σel(δB) denoting the magnetic-field-
dependent cross section for Li-Cr collisions, vrel the relative velocity, ⟨nLi⟩Cr the Li density
averaged over the Cr cloud, and ⟨ ⟩T thermal averaging; see details in Sec. 3.3.1. Since
the overlap density and temperature of the sample are directly accessible via absorption
imaging, and since σel(δB) is completely determined by the parameters of our FR, the
pole location B0 represented the only free parameter. The theory fits the experimental
Γel remarkably well across the entire FR region; see the solid black line in Fig. 3.6(c).
This characterization allowed us to pinpoint the resonance pole with ±3-mG accuracy.
2A theoretical analysis of atom losses in homonuclear (M = m) mixtures on the repulsive, molecular side
of a broad (R∗ = 0) Feshbach resonance was developed in Ref. [163]. Its extension to M/m ̸= 1 and
0 < R∗ < +∞ is generally not trivial, and – to the best of my knowledge – has not been developed so
far.



44 3. Feshbach spectrum and collisional properties of 6Li-53Cr mixtures

Finally and most importantly, the Fig. 3.6(c) data reveal the collisional stability of
the Li-Cr mixture under resonant interactions. This is signaled by the elastic rate greatly
exceeding the inelastic one over a comparably wide range of magnetic field detunings
across the Feshbach resonance, with a good-to-bad collision ratio Γel/Γloss found to reach
values up to 200. We ascribe the observed stability to the fact that, in spite of the narrow
nature of the FR used, three-body processes involving identical fermions are suppressed by
antibunching due to Fermi statistics of our mixture components [55,164], relative to the
bosonic case. As it will be shown later in Sec. 4.3, this is extremely advantageous for the
efficient magnetoassociation of LiCr dimers and, more generally, it is very promising in
light of future many-body studies of strongly interacting Li-Cr Fermi mixtures.

3.3.1 The coupled oscillator model
The c.o.m. dynamics of the lithium and chromium cloud, explored throughout different
interaction regimes, as described in Sec. 3.3, were analyzed in terms of a well-established
model of two coupled oscillators, already tested on both homo- and hetero-nuclear atomic
mixtures [159–162]. In this framework, the c.o.m. evolution of the two clouds along the
axial (x) direction is described by two coupled differential equations that we express as

MCrẍCr = −MCr ω
2
Cr xCr −

4
3 mred Γel

(
ẋCr − ẋLi

)
, (3.4a)

mLiẍLi = −mLi ω
2
Li xLi −

4NCr
3NLi

mred Γel
(
ẋLi − ẋCr

)
. (3.4b)

Here ωCr(Li) and NCr(Li) denote the Cr (Li) axial trap frequency and atom number, respec-
tively, and mred = mLi MCr/(mLi +MCr) is the Li-Cr reduced mass. The sloshing dynamics
of the two clouds are coupled through the rightmost damping terms in Eqs. (3.4). The
damping rates scale with the mean number of elastic Li-Cr collisions per unit of time
experienced by each component, and are here expressed in terms of the scattering rate per
minority Cr atom Γel. By fixing the axial frequencies and initial conditions [xi(0), ẋi(0)
for i = Li, Cr] to their experimentally determined values, and accounting for the measured
atom number evolution, we fitted Eqs. (3.4) to the recorded oscillation dynamics – see the
examples in the right panels of Fig. 3.6(b) – and thus extracted Γel as the sole free fitting
parameter. In Fig. 3.6(c), the experimentally determined Cr collision rate is compared
with the theory expectation, which we evaluated from Eq. (1.6) as:

Γel = ⟨nLi⟩Cr⟨σel(a,R∗, krel) · vrel⟩T , (3.5)

where ⟨nLi⟩Cr =
∫
nLi(r⃗)nCr(r⃗) dr⃗ /NCr denotes the lithium density averaged over the

chromium one, krel is the relative momentum for Li-Cr collisions, and vrel = ℏkrel/mred the
corresponding relative velocity. Here σel(a,R∗, krel) represents the (field- and momentum-
dependent) elastic cross section and ⟨ ⟩T indicates thermal averaging over all relative
momenta. To a good approximation, ⟨nLi⟩Cr remains constant to the experimentally
determined value of 1.2 × 1011 cm−3 at all detunings and evolution times, given the
moderate atom loss of the Li majority component. The elastic cross section is given by
Eq. (1.13), reported here for sake of clarity:

σel(a,R∗, krel) = 4π a2(
1 + k2

relR
∗ a
)2 + k2

rel a
2
, (3.6)

where R∗ ≃ 6000 a0 and a(δB) = abg (1−∆B/δB), with abg = 41.48 a0 and ∆B = 0.48 G
for our FR. For simplicity of the calculation, the thermal averaging was performed by
neglecting the Cr thermal distribution within the momentum integral. This was justified by
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Figure 3.7 – (a) Time evolution of the total energy, extracted from the fits of Eqs. (3.4) to the
data, characterized by an initial transient behavior, and a subsequent almost pure exponential
decay. Here, Etot is shown for δB = 25 mG (black solid line), corresponding to Γel = 490 Hz. The
red dashed line is the fitted exponential decay after the transient behavior. (b) Identification of
the transition from the collisionless to the collisionally hydrodynamic regime via the analysis of
the damping rate Γdamp as a function of Γel: a scaling of Γdamp ∝ Γel is visible in the collisionless
regime (blue line and shaded region), while a scaling ∝ 1/Γel characterizes the hydrodynamic
regime (red line and shaded region). Both lines are guides to the eye.

the fact that, owing to the large mass imbalance of our mixture, MCr/mLi ≃ 8.8, the Li-Cr
relative velocity is mainly set by the sole lithium one. Under this approximation, averaging
over a Fermi-Dirac distribution at TLi/TF,Li ∼ 0.3, or over a Boltzmann-gas weight at an
effective temperature of 700 nK, yields nearly identical results throughout the interaction
regime we explored.

We employed Eq. (3.5) to fit the experimental data of Fig. 3.6(c) [black filled circles],
with the resonance pole position B0 as the single free parameter implicitly entering Eq. (3.6),
while fixing all other quantities to the corresponding values experimentally determined
or given by the quantum collisional model of Sec. 3.2. It should be reminded how our
sizable R∗ parameter implies that the maximum of the cross section Eq. (3.6) – where
σel = 4π/k2

rel – is reached at a large but finite (negative) scattering length a < 0, for
which 1/a+R∗ k2

rel = 0, see again Sec. 1.5. This feature, which also persists after thermal
averaging [see Eq. (3.5)], causes the maximum of Γel to occur at a small δB > 0 value, as
visible in Fig. 3.6(c).

3.3.2 Transition from the collisionless to the collisionally hydrodynamic
regime

Previous studies [159–162] identified the transition from the collisionless to the hydro-
dynamic regimes by analyzing the scaling of the damping rate Γdamp of the coupled
oscillations with respect to the collision rate Γel. Specifically, in the collisionless regime,
Γdamp linearly grows with Γel, whereas in the hydrodynamic regime it exhibits a progressive
reduction proportional to 1/Γel. However, in our case, extracting Γdamp from a fit to the
c.o.m. dynamics was found rather challenging, owing to the concurrent oscillatory motion,
especially when considering the initial short-time evolution near the resonantly interacting
region; see the example of Fig. 3.6(b) at δB = 30 mG.

A convenient way to extract the damping rates at all detunings, given our limited
observation time over a few oscillation periods, was to employ the fitted xLi(t) and xCr(t)
to obtain the total energy Etot(t) = Ekin(t) + Epot(t), with Ekin = 1

2(mLiẋ
2
Li + MCrẋ

2
Cr)

and Epot = 1
2(mLiωLi x

2
Li + MCrωCr x

2
Cr). As shown in the example in Fig. 3.7(a), the

evolution of Etot(t) (black line) is in fact less affected by the oscillatory dynamics, such
that a damping rate can be more easily extracted. Indeed, after an initial, short transient
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Figure 3.8 – Examples of in-trap oscillations of Li (red circles) and Cr (blue circles) centers of
mass, recorded for different magnetic field detunings δB across the FR region. The solid lines, with
corresponding color code, represent the fit results of the coupled oscillator model Eqs. (3.4).

time of about 30 ms, excluded from the fit, Etot(t) exhibits a clean decay that is fitted by
an exponential function (red dashed line), from which we obtained Γdamp at all detunings.
The extracted damping rate Γdamp is shown in Fig. 3.7(b), plotted as a function of the
experimentally determined Γel. The observed non-monotonic trend is indeed found to follow
the expected transition from collisionless to collisional hydrodynamics scaling [159–162],
approximately once Γel starts exceeding the axial trapping frequencies of the two atomic
components. For our experimental conditions, this happens for magnetic field detunings
δB ≤ 30 mG, below which, as shown by the data presented in Fig. 3.8, a rapid phase
locking of the two c.o.m. dynamics was observed and, correspondingly, Γdamp was strongly
reduced. I emphasize that this observation indicates our experimental capability to access
the hydrodynamic regime not only along the weak, axial direction of our trap, but – once
Γel > ωy,z – also along the transverse ones.

3.4 Collisional stability of the atomic mixture
To further characterize the stability of the atomic mixture in the strongly interacting region,
as well as to pinpoint the (absolute) magnetic field location B0 of the FR pole, we performed
additional studies of inelastic three-body recombination processes, in addition to those
described in Sec. 3.3. While such a survey has been conducted for each of the two high-field
FRs occurring in Li|i⟩-Cr|1⟩ combinations (with i = 1, 2), in the following I summarize our
experimental procedures and findings by focusing on the absolute ground-state mixture Li|1⟩-
Cr|1⟩, and on the associated FR at 1414 G. Conceptually, this additional characterization
was based on protocols and analysis closely following those already discussed in Sec. 3.3 to
extract Γloss: After preparing a weakly-interacting mixture at a large and positive detuning
from the FR pole, we quickly ramped the magnetic field towards the resonance region
at small, variable δB values, at which we monitored the subsequent atom number decay
NCr(t) of the Cr minority component, as a function of time.
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In absence of two-body losses, NCr(t) evolves according to the rate equation

ṄCr(t) = −K3 ⟨n2
Li⟩CrNCr = −ΓlossNCr , (3.7)

where K3 is the three-body loss coefficient.
Experimentally, we carefully calibrated each investigated magnetic field bias against

the Li|1⟩←→Li|2⟩ RF transition, both before and after each decay measurement. Contrarily
to Sec. 3.3, however, here we opted to investigate steady mixtures – i.e., not exhibiting
in-trap sloshing dynamics – that were prepared within our bODT trap, rather than in the
sole IR beam. On the one hand, this allowed, at each magnetic field value, for a more
accurate determination of the mean squared Li density ⟨n2

Li⟩Cr , found to be constant over
time. This, combined with the Γloss values extracted from exponential fits to the Cr atom
number evolution, as for the measurements in Sec. 3.3, allowed us to obtain, at each bias
field, the three-body rate coefficient for the dominant Li-Li-Cr recombination processes
as K3 = Γloss/⟨n2

Li⟩Cr . On the other hand, exploitation of the green beam of our bODT,
on top of the IR one, allowed for an alternative, precise detection of the FR pole location
B0: Indeed, as I will show in Sec. 4.5, we found that even a relatively low power level of
green light induces strong photo-excitation losses once LiCr Feshbach dimers are formed.
As such, once the magnetic field is lowered below B0 on the molecular side of the FR, this
light-induced, strong decay channel is opened, and it greatly overcomes the three-body
collisional one. When this happens, the sample lifetime is markedly reduced, hence yielding
an enhanced Γloss. This experimental protocol thus allowed us to accurately determine
both the three-body recombination rate coefficient K3 for B ≥ B0, as well as to obtain an
additional measure of B0 itself – besides that obtained from the fit of Γel presented in the
previous Sec. 3.3 – solely based on the study of inelastic losses.

The results of this characterization are summarized in Fig. 3.9, which shows the
experimentally determined K3 coefficient as a function of the magnetic field across the
resonance region. We interpret the sudden jump between the red and blue data points
as the crossing of the resonance pole, below which Feshbach dimers form and are quickly
lost due to the fast trap-induced photo-excitation process (see Sec. 4.5). The jump is
centered at B0 = 1413.886(5) G, and the error budget accounts for residual AC field noise,
calibration of the COMP coils, magnetic field inhomogeneity, and residual long-term drifts,
in order of importance. The experimental data marked in blue (δB < 0) can no longer be
interpreted as a K3 coefficient for three-atom collisions and their interpretation goes beyond
the scope of our work. On the other hand, for positive detunings (B > B0), similarly to the
Γloss trend presented in Sec. 3.3, the extracted K3 exhibits an exponential growth as the
resonance pole is approached from above (δB → 0+), in qualitative agreement with previous
observation on homonuclear Fermi mixtures near narrow Feshbach resonances [158].

Following the theoretical analysis of Ref. [158], valid for an infinitely narrow FR
(R∗ → +∞), the K3 coefficient for a thermal mixture is expected to vary, for δB ≥ 0, as

K3(δB, T ) = K0
3 (T ) exp

(
−δµ δBkB T

)
. (3.8)

Here K0
3 (T ) is the (temperature-dependent) maximum value of K3, reached at the resonance

pole, δµ is the differential magnetic moment between the open and closed channels
associated with the FR, T is the gas temperature, and kB is the Boltzmann constant.
In the case of degenerate samples, Eq. (3.8) can still be used by defining an effective
temperature Teff that is connected to the mean kinetic energy of the system. In our
case, this is essentially determined by the majority Li Fermi gas, and we evaluated Teff
by setting 3/2 kB Teff = ⟨Ekin,Li(T/TF,Li)⟩. Taking the experimentally determined value of
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T/TF,Li = 0.27(2), with TF,Li = 1.25(5) µK, and considering that, for an ideal Fermi gas,
⟨Ekin,Li(0.27)⟩ ∼ 0.55 kB TF, we obtained Teff ∼ 460 nK.

However, by fixing Teff to this value and setting the magnetic moment to δµ = 2 µB,
i.e., to the value characterizing each of the high-field FRs of Li-Cr (see Tab. 3.1), Eq. (3.8)
yielded a trend significantly steeper than that experimentally determined. Interestingly,
this mismatch arises from the fact that our resonance is indeed not infinitely narrow,
featuring instead a sizable but finite R∗ value. Extension of the theory of Ref. [158] to finite
effective-range values [D. Petrov, unpublished] yields a trend for K3 qualitatively analogous
to that of Eq. (3.8), but with an effective magnetic moment δµ∗ that is progressively
decreased for decreasing R∗ values. In particular, such an extended theory model predicts,
for the Li-Cr FRs here investigated (featuring R∗ ∼ 6000 a0), an effective δµ∗ = 0.77 δµ.
A functional fit of Eq. (3.8) to the red dataset in Fig. 3.9, where we set δµ∗ = 0.77× 2µB
while leaving both T and K0

3 as free parameters, is shown in the figure as a solid red
line. The fit, which nicely reproduces our data, returns K0

3 = 0.35(5)× 10−22 cm6/s and
T = 490(40) nK, the latter matching within uncertainty the estimated Teff value. A fit
based on the same extended theory model was employed to analyze the Γloss data shown
in Fig. 3.6(c).

I conclude this Section by mentioning that similar protocols – based on the identification
of B0 as the loss peak, with B-field calibrated against Li RF spectroscopy – were employed
to precisely pinpoint the pole of all four s-wave FRs occurring between the two lowest spin
states of Li and Cr at high fields. The results of this characterization are summarized in
Tab. 3.2.

5

Figure 3.9 – Three-body recombination rate coefficient for Li-Li-Cr collisions as a function of
magnetic field across the FR region, obtained for mixtures prepared in the bODT trap by following
the analysis described in the text. Strong photoexcitation losses, induced by the green light of our
trap for δB ≤ 0, results in a sharp increase in the derived K3, marked by the different color of the
experimental data. This enables us to pinpoint the absolute resonance pole position B0 with a
5-mG accuracy; see the text and Tab. 3.2. Red line is the best fit of the data above the FR pole to
Eq. (3.8), fixing δµ∗ = 0.77× 2µB while leaving both T and K0

3 as free parameters.
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Table 3.2 – Precise determination, through loss-spectroscopy measurements in the bODT, of the
magnetic-field location of the high-field s-wave Feshbach resonances for all Li|i⟩-Cr|j⟩ combinations
with i, j = 1, 2, already reported in Tab. 3.1 with lower accuracy. Error budget, in brackets,
accounts for residual AC field noise, calibration of the COMP coils, magnetic-field inhomogeneity
and residual long term drifts, in order of importance.

Cr|1⟩ Cr|2⟩
Li|1⟩ 1413.886(5) 1417.937(30)
Li|2⟩ 1460.933(5) 1464.159(30)

3.5 Conclusive remarks
In conclusion, in this Chapter I have discussed the first and thorough investigation of elastic
and inelastic collisional properties of ultracold 6Li-53Cr Fermi mixtures under resonantly-
interacting conditions.

From loss spectroscopy measurements, started during my Master Thesis and finalized
during the first year of my Ph.D., we found that the Li-Cr system is characterized by
isolated and nonchaotic FRs. Thanks to the theoretical analysis of our collaborator
A. Simoni, we could unambiguously connect the observed resonances to molecular states
with well-defined quantum numbers: LiCr thus combines the simplicity of bi-alkali systems
with richer molecular structures as those of alkali-lanthanide or alkali-alkaline-earth
mixtures [80,81,145,146]. In particular, we identified several strong and isolated s-wave
FRs, with widths exceeding a few 100 mG, that provide an optimal starting point to form
(bosonic) Feshbach dimers, laying the groundwork for the studies presented in Chapter 4
and, in general, for the realization of ultracold gases of ground-state paramagnetic polar
molecules.

Furthermore, it is important to remark that the s-wave FRs of 6Li-53Cr that we identified
in this joint experimental and theoretical study exhibit a character similar to the Li-K
ones [129,130], but immune to two-body losses. This, combined with the peculiar mass
ratio MCr/mLi ≃ 8.8, makes Li-Cr mixtures an unparalleled framework for the experimental
investigation of non-Efimovian few-body physics [9, 10,17,19,20].

Finally, the measured lifetimes of Li-Cr mixtures, exceeding tens of ms in the vicinity of
both s- and p-wave FRs, although significantly shorter than those observed in homonuclear
6Li mixtures near broad resonances, appear quite similar to those reported for 40K Fermi
gases [165, 166]. This appears promising also for future many-body studies with mass-
imbalanced Li-Cr Fermi mixtures with resonant (s- or p-wave) interactions.
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Chapter 4

Making, probing and understanding
LiCr Feshbach molecules
As anticipated in the Introduction, quantum gases of doubly-polar molecules represent ap-
pealing frameworks for a variety of cross-disciplinary applications, encompassing quantum
simulation and computation, controlled quantum chemistry, and precision measurements.
In this Chapter, I present our experimental results concerning the production, characteri-
zation, and optimization of large and ultracold samples of (bosonic) paramagnetic LiCr
Feshbach molecules. These topics constituted the main focus of my research activity for
essentially half of my Ph.D.: from the second half of the first year (i.e. after we finalized
the experimental procedures described in Chapter 2), to the first months of my third (and
last) year.

As for most of newly-created chemical species, knowledge of the LiCr system was rather
scarce when we started our investigation [93]. In practice, from an experimentalist point of
view, this meant that several pieces of information had to be put together before the general
picture started to be clear. One direct example is given by the different loss mechanisms
affecting LiCr Feshbach dimers, involving both inelastic collisions with unpaired atoms and
photo-excitation losses accidentally caused by our bODT lights: Initially, we considerably
struggled to understand what was the main limiting factor to the dimers lifetime – which for
long times never exceeded a few ms – as the two dominant processes (i.e. inelastic collisions
with Li atoms and photo-excitation from the 532-nm beam) were happening on very similar
timescales. On top of that, even when limiting the discussion to photo-excitation losses
alone, it was not straightforward to expect that the single-mode 532-nm light was nearly a
hundred times worse than the multi-mode, few-nm-wide IR one at 1070 nm. Parallel to all
this, an additional, hidden source of instability was originating from the magnetic-field
noise affecting our main set of coils. In this case, the subtlety – intrinsically connected
with the narrow character and high-field location of the Li-Cr s-wave FRs (see Chapter 3) –
arises from the technical challenge of measuring small (∼ mG-level) variations on top of a
≳ 1.4 kG bias field, and to identify efficient strategies to reduce the magnetic field noise.

The implementation of a few key technical upgrades to the experimental setup (see
Chapter 6), together with the devise and refinement of experimental protocols (according
to the progressively acquired knowledge), allowed us to decouple and overcome these major
issues. As a result, we could finally produce large and ultracold samples of LiCr Feshbach
molecules, purified from leftover unpaired atoms, featuring lifetimes longer than 0.2 s and
PSDs exceeding 0.1. By also developing new probing methods, we thoroughly characterized
our molecular samples, demonstrating the paramagnetic nature of LiCr dimers and the
precise control of their internal quantum state. Following this storyline, the title of this
Chapter is a lighthearted personal homage to Refs. [167] and [168], which have undoubtedly
guided and inspired me in my journey as an atomic physicist.

Parallel to our experimental efforts in the lab, the group of M. Tomza (University
of Warsaw) developed a new, ab initio quantum chemical model for the LiCr molecule.
Their findings, completely independent from our experimental work, point to a sizable
electric dipole moment (exceeding 3 D) for LiCr in its absolute ground state, i.e. the lowest
rotationless level of the sextet X 6Σ+ potential [see Fig. 4.1(a)]. Additionally, they provide
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fundamental guidelines for the future identification and implementation of STIRAP schemes,
with which Feshbach dimers will be coherently transferred to deeply-bound levels. Such
a synergetic joint experimental and theoretical study depicts Li-Cr as a very promising
candidate to realize ultracold gases of doubly-polar molecules, with significant electric
(3.3 D) and magnetic (5 µB) dipole moments.

This Chapter is organized as it follows:

- First, in Secs. 4.1 and 4.2, I summarize the typical starting conditions of all our
experiments with LiCr Feshbach molecules (recalling also the nature of the FRs
involved), and I describe our molecule detection protocols, based on either positive
or negative signals.

- Second, in Secs. 4.3 and 4.4, I present our characterization of the magneto-association
process (based on a standard Landau-Zener model), and I summarize the initial
optimization of molecule number and phase-space density.

- Third, in Sec. 4.5, I report on our study of trap-light-induced losses, which initially
represented one of the main limiting factors to the molecule lifetime. Additionally,
in Sec. 4.6, I discuss inelastic atom-dimer losses, addressing the collisional stability
of atom-molecule mixtures.

- In Sec. 4.7, I present our measurement of the magnetic dipole moment of LiCr
Feshbach molecules, which importantly testified their paramagnetic nature and
further confirmed the assignment of the molecular state yielding the FR.

- In Sec. 4.8, I describe our new optical method to fast and reliably measure the
open-channel fraction and the molecule binding energy. Then, to conclude the
experimental part of the Chapter, in Sec. 4.9 I summarize our procedure to realize
pure and long-lived samples of LiCr Feshbach molecules.

- Finally, in Sec. 4.10 I present the quantum chemical model for LiCr developed by
M. Tomza and colleagues – leaving all technicalities to Refs. [94] and [169] – focusing
on the most important implications for our (future) experimental activity, e.g., the
identification of a suitable STIRAP scheme.

4.1 Parent atomic mixture and typical initial conditions
The starting point of all experiments described in the following Sections is a weakly
interacting, spin-polarized mixture of 6Li and 53Cr atoms produced through the all-optical
protocol detailed in Chapter 2. As described there, the atomic sample is produced within
our main bichromatic optical dipole trap, combining IR (1070 nm) and green (532 nm)
lights. The gravitational sag between the two clouds is compensated upon application of
a weak, vertically-oriented magnetic field gradient b of about 1.5 G/cm. For all studies
reported in this Chapter, the axial confinement is solely provided by the magnetic field
curvature generated by our main set of coils (BIAS coils). Owing to the fact that the Cr
magnetic moment is six times larger than the Li one, the resulting axial trapping is six
times tighter for Cr than for Li,1 see sketch in Fig. 3.6(a).

Although the atom number, temperature, and degree of degeneracy of the two species
can be widely tuned by adjusting the (absolute and relative) power of the two bODT beams
(see Chapter 2), our experiments typically start with a Fermi gas of about 1.5×105 Li atoms
at TLi/TF,Li = 0.25 with TLi = 130(20) nK, coexisting with a moderately degenerate sample
of 0.8× 105 Cr atoms at TCr/TF,Cr ≳ 0.5 and TCr = 220 nK, with peak densities of about
1The magnetic field curvature of the BIAS coils is ∂2B/∂x2 ≃ 12 G/cm2 at 1414 G, resulting in axial
harmonic frequencies of ωx/(2π) ≃ 17 Hz (14 Hz) for Li|i⟩ (Cr|i⟩) atoms, with i = 1 2.
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Figure 4.1 – Doubly polar LiCr dimers. (a) Ab initio potential energy curves, as calculated by
the group of M. Tomza, for the X 6Σ+ ground state and the a 8Σ+ first excited state in Hund’s
case (a) representation. The inset shows a pictorial representation of the valence electrons for Li
and Cr, and the resulting sextet and octet molecules with nonzero electronic spin and polarized
charge density. (b) Energy of the atom pairs in the Li|1⟩-Cr|1⟩ and Li|2⟩-Cr|1⟩ channels, of pure
octet character (dashed green lines), and of the molecular sextet levels (solid black lines) inducing
the FRs relevant for this Chapter (circled). Atomic Zeeman levels are labeled in order of increasing
energy. Solid and dashed arrows indicate electronic and nuclear spins, respectively.

1012 cm−3 for both components (here TF denotes the Fermi temperature of a harmonically
trapped Fermi gas). Resonant tuning of Li-Cr interactions, as well as magneto-association
of atom pairs into LiCr dimers via magnetic field sweeps, are enabled by exploitation of
interspecies s-wave FRs, already characterized in Chapter 3. In particular, we focus on the
specific s-wave resonances that occur in the Li|1⟩-Cr|1⟩ and Li|2⟩-Cr|1⟩ scattering channels,
located at high fields around 1414 and 1461 G, respectively; see Fig. 4.1(b). Our choice
is motivated by the fact that these two features exhibit the largest magnetic field width
∆B ≃ 0.48 G available in our mixture, combined with zero or negligible two-body loss
rates. Most importantly for the studies of this Chapter, these FRs are induced by hyperfine
coupling with the least bound, rotationless vibrational level of the X 6Σ+ ground-state
Born-Oppenheimer potential; see Fig. 4.1(a) and Tab. 3.1.

4.2 Detection of LiCr dimers
Before discussing the formation and characterization of LiCr dimers in the following
Sections, I summarize here the methods that we employed for detecting them in the
experiment. Indeed, as discussed later, molecule formation through magneto-association
results in general in a mixture comprising both dimers and leftover unpaired atoms. As
such, one must employ detection protocols able to unequivocally distinguish the former
from the latter ones.

In our lab, in order to experimentally show LiCr dimer formation, count their number,
and characterize their density or momentum distribution, we use either “negative” or
“positive” signals, depending on the task at hand. By “negative” signals I denote atomic
loss signals that unambiguously determine the molecule number. This is relatively straight-
forward in our system: On the one hand, two-body losses are absent2 and three-body
recombination is much slower than typical molecule association times (see Sec. 3.4 and the
next Sec. 4.3). On the other hand, as I will show in Sec. 4.5, the green light at 532 nm
of our bODT induces strong photo-excitation losses for LiCr Feshbach dimers, limiting
2Two-body losses are totally absent in the ground-state mixture Li|1⟩-Cr|1⟩, and are negligible at the
1461 G resonance in the Li|2⟩-Cr|1⟩ spin combination, see Chapter 3 and Ref. [155].
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their lifetime to a few milliseconds for the typical powers employed. The net result is
that, for short timescales and in the presence of green light, after magneto-association all
and only atoms bound into molecules are lost. This represents a valuable tool to monitor
molecule formation through “negative” signals at short hold times thold, unaffected by
inelastic scattering (three-atom, atom-dimer, dimer-dimer) processes. The reliability of
this method is demonstrated by the data presented in Fig. 4.2(a): There, I show the
Cr loss signals measured at thold = 3 ms as a function of the final detuning, which is
reached through magnetic field ramps starting either far above (Bin > 0, blue squares) or
far below (Bin < 0, red circles) the FR pole. In the former configuration – that allows
for magneto-association of LiCr dimers – we reveal a strong drop of the Cr signal as the
FR pole is crossed. By contrast, in the latter case – for which molecule formation can
only occur via three-body recombination processes, and only collisional losses may reduce
the signal – the Cr population remains constant within experimental noise across the
entire resonance region. It is thus legitimate to attribute the observed drop of the blue
data in Fig. 4.2(a) solely to molecule formation via magneto-association, since spurious
effects due to three-body processes are negligible at short thold values. Indeed, collisional
losses, which add to those induced by photo-excitation of LiCr dimers, become sizable
only at significantly longer hold times, see again Sec. 3.4. This is further testified by
Fig. 4.2(b), where the magneto-association line shape obtained with thold = 3 ms (blue
squares), and already shown in Fig. 4.2(a), is compared with that measured after a hold
time of 25 ms (green circles). As one can see, only for such long thold values inelastic
collisions start yielding, near the resonance pole, a signal contribution comparable with
that due to molecule formation.

By “positive” signals I denote instead those that originate from previously associated
atoms, which give then rise to a measurable optical density on the atomic Li and Cr imaging
transitions; see the detailed discussion in Sec. 4.8 below. In our experiments, we employ two
different schemes to obtain such “positive” signals. The first one relies on Stern-Gerlach
separation, where the molecule cloud is spatially resolved from the atomic ones thanks
to a different acceleration and a sufficiently long time of flight (TOF). Indeed, under the
combined effect of gravity and a magnetic field gradient b along the vertical direction, the

Figure 4.2 – (a) Frac-
tional Cr loss measured in
the bODT as a function of
the magnetic field detun-
ing that is reached through
a ramp starting at a bias
field Bin either far above
(blue squares) or far below
(red circles) the FR pole.
The signal is detected af-
ter a hold time at the fi-
nal field of thold = 3 ms.
(b) Comparison of the Cr
loss line shapes, obtained
with magnetic field ramps
starting from Bin > 0, and
measured after a hold time
thold = 3 ms (blue squares)
and thold = 25 ms (green
circles).
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t.o.f.

Figure 4.3 – Absorption images of a LiCr molecular cloud in time-of-flight, acquired with imaging
light resonant with the atomic Li transition. Each frame is manually displaced along the horizontal
and vertical directions for display purposes. See Sec. 4.8 for a detailed discussion concerning
absorption imaging of Feshbach dimers on atomic transitions.

total center-of-mass acceleration is given by g + µX b/mX , where g is the gravitational
acceleration, µX is the magnetic dipole moment of species X (X = Li, Cr, LiCr), and mX

is the corresponding mass (see also the measurement of µLiCr in Sec. 4.7). Therefore, the
displacement between the cloud barycenters of different species grows quadratically in
time, and linearly with both the magnetic field gradient and the difference between the
magnetic-moment-to-mass ratios, i.e.:

|∆z12(t)| = 1
2

∣∣∣∣ µ1
m1
− µ2
m2

∣∣∣∣ b t2 . (4.1)

At the same time, after release from the optical trap, the clouds expand in time-of-flight
along the vertical direction. For non-degenerate gases in the “far-field”, the characteristic
size grows linearly in time as σz(t) ∼

√
kB TX/mX ·t, where TX is the temperature of species

X. It is clear that one must allow for a sufficiently long time of flight in order to spatially
resolve the two clouds. In our case, it is more convenient to resolve the molecule cloud from
the atomic Li one, as |µLi/mLi − µLiCr/MLiCr | > |µCr/MCr − µLiCr/MLiCr |. For our typical
temperatures TX ∼ 200 nK, and for b = 1.5 G/cm, one has |∆z(t)| ≳ σLi

z (t) + σLiCr
z (t) for

t ≳ 8 ms.
The second “positive detection” method exploits fast (few hundred microsecond-long)

RF transfers of unpaired Li and Cr atoms to dark states that do not interact with the
high-field imaging light, thereby leaving a zero-background molecular signal. Importantly,
since the dimer binding energy grows as 2.8 kHz/mG (i.e. δµ = 2 µB), a detuning of a few
milligauss on the repulsive side of the FR is enough to ensure a negligible RF transfer of
paired atoms. This allows us to probe the LiCr sample also at shorter times, and thus to
trace the entire time-of-flight trajectory of the molecular cloud, as shown in Fig. 4.3.

Finally, I remark that only positive signals allow access to further information about
the molecule sample, such as thermodynamic quantities. However, negative signals often
turn out to be quite convenient to detect molecule formation and count their number; see,
e.g., the following Sec. 4.3.

4.3 Magneto-association and two-body adiabaticity
In this Section, I describe the study of the conversion process of Li and Cr atoms into LiCr
Feshbach molecules via magneto-association. Magneto-association is an adiabatic conver-
sion of scattering atom pairs into weakly bound molecules, induced by a magnetic field
sweep across the Feshbach resonance pole, from the attractive (Bi > B0) to the repulsive
side (Bf < B0) [see Fig. 4.4(a)]. We characterized the molecule conversion efficiency as a
function of the magnetic-field sweep rate Ḃ across the FR. As already reported for bi-alkali
homo- and hetero-nuclear systems [170–175], also in our case the magneto-association
efficiency depends on the Feshbach resonance parameters, the conditions of the parent
atomic gases, and on Ḃ [176].
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Figure 4.4 – Magneto-association efficiency and two-body adiabaticity. (a) Sketch of the exper-
imental sequence: the magnetic field is swept from Bi across the FR pole B0 down to Bf < B0
with variable rate Ḃ, after which the number of created molecules is measured through either
positive or negative signals; see the text for details. (b) Normalized number of molecules formed
via magneto-association as a function of Bf across the FR for fixed 1/Ḃ = 90 ms/G. The inset is
an example of a positive signal of LiCr via direct absorption imaging with Li light after a 2-ms
TOF. (c) Association efficiency η, referenced to the Cr minority component, as a function of the
inverse ramp speed 1/Ḃ. The solid black line shows the best functional fit of Eq. (4.2) to the data,
while the dashed line represents its approximation in the fast-sweep limit.

First, we exploited “positive” molecule signals obtained from direct absorption imaging
to reveal the sensitivity of the associated molecules to the final magnetic field detuning.
As shown in Fig. 4.4(b), the number of detected molecules features a sharp rise from zero
background to saturation in a B-field region of a few tens of milligauss. Complementarily –
leveraging on the stability of our Fermi mixtures (see Sec. 3.4), and exploiting the strong
photo-excitation rate induced by the 532-nm light in our bODT (see Sec. 4.5) – a “negative”
signal was used to quantify the number of associated molecules. Indeed, as discussed in
Sec. 4.2, after a short hold time following the B-field sweep, only atoms that were converted
into dimers are (entirely) lost, and the conversion efficiency is nothing but the fractional
loss between the initial and final atom numbers.

We measured the association efficiency as the fractional loss of the Cr minority com-
ponent as a function of the inverse magnetic sweep rate 1/Ḃ; see Fig. 4.4(c). For this
specific dataset, we started the experiment by preparing the Li|1⟩-Cr|1⟩ mixture about
+100 mG above the resonance. The Li|1⟩ gas was degenerate, with TLi/TF,Li = 0.20(5)
at TLi = 170 nK and a peak density of 1.3(2) × 1012 cm−3, while Cr|1⟩ was essentially
thermal, with TCr/TF,Cr ∼ 1 at TCr = 240 nK and a peak density of 0.74(3)× 1012 cm−3.
The magnetic field was swept to δB < 0 with ramps of variable speed, after which we
measured the number of associated molecules.
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As for other experiments, our results are well captured by a Landau-Zener model [170–175].
Thus, according to Ref. [175], we fitted the following functional form to the data:

η = η0

[
1 − exp

(
− ΓLZ⟨nLi⟩Cr

η0
Ḃ−1

)]
. (4.2)

Here η0 represents the saturated efficiency, ⟨nLi⟩Cr is the density of the majority component
(Li) averaged over the density of the minority one (Cr), and ΓLZ is only a function of the
collision parameters, i.e.

ΓLZ = (2π)2 ℏ
mred

|abg ∆B| , (4.3)

where abg = 41.48(3) a0 is the background s-wave scattering length, ∆B = 0.48 G is the
magnetic field width, and mred is the reduced mass. While the adiabatic regime (η ≃ η0)
depends on the overall PSD overlap of the atomic mixture and lacks an analytical description
to date, the fast-sweep regime, where η ≃ ΓLZ⟨nLi⟩Cr/Ḃ, can be straightforwardly tested
against the experimental results.

From a functional fit of Eq. (4.2), with an observed Li|1⟩ density averaged over the Cr|1⟩
cloud of ⟨nLi⟩Cr = 0.62(5)× 1012 cm−3, we derived ΓLZ,meas = 1.1(1)× 10−12 cm3 G/ms;
see the solid line in Fig. 4.4(c). The dashed line marks the linear, fast-sweep regime.
The fitted ΓLZ,meas is in satisfactory agreement with the theoretically expected value
ΓLZ,th = 0.479× 10−12 cm3 G/ms, using the FR parameters of the coupled-channel model
of Chapter 3. The mismatch of about a factor of 2 might be due to an underestimation
of the overlap density during molecule association, where the mixture experiences strong
attractive interactions.

Importantly, I emphasize that, as expected from the extremely favorable mixture
stability shown in Secs. 3.3 and 3.4, we can perform magneto-association with field rates
slower than the two-body adiabatic criterion by more than two orders of magnitude,
without affecting the conversion efficiency nor the molecule number.

4.4 Optimization and molecule PSD
In this Section, I discuss how the number of associated LiCr dimers was found to depend
on the initial conditions (e.g. temperature, density) of the parent atomic gases. This study
was conducted primarily with the aim of maximizing the final PSD of the molecular sample.
In order to identify the best working conditions, we characterized the molecule association
efficiency as a function of the Li-Cr density overlap, deep in the two-body adiabatic regime
(1/Ḃ = 90 ms/G). This was accomplished by only varying the number of atoms initially
loaded into the bODT, with fixed evaporation and final trap parameters. In this experiment,
we spatially resolved atomic and molecular clouds thanks to Stern-Gerlach separation, and
simultaneously counted the number of Li, Cr, and LiCr.

In Fig. 4.5(a), I show the measured molecule number as a function of the pair density
⟨nLi nCr⟩ =

∫
nLi nCr dr⃗. On general grounds, neglecting atom-molecule thermalization, the

molecule number depends on the PSD overlap between the parent atomic clouds during
association [175, 177]. However, for Maxwell-Boltzmann gases at constant temperature,
this is proportional to ⟨nLi nCr⟩. Since, for this experiment, the temperatures TCr,Li were
kept fixed, with TCr/TF,Cr ≥ 0.5 and almost constant TLi/TF,Li = 0.30(5), we expect this
relation to hold to first approximation. Indeed, the experimental data are well captured
by a linear fit, as shown by the solid black line in Fig. 4.5(a).

From the same experimental data we also extracted the conversion efficiency η as a
function of ⟨nLi⟩Cr , see Fig. 4.5(b). It is important to stress that, although Cr atoms
were always lower in number compared to Li atoms [except for the leftmost point of
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Figure 4.5 – (a) Number of associated molecules Nmol as a function of the Li-Cr pair density
⟨nLi nCr⟩. The black line shows a linear fit to the data with zero intercept. (b) Magneto-association
efficiency with respect to Cr as a function of the Li density averaged over the Cr cloud ⟨nLi⟩Cr . The
black line shows a linear fit to the data with zero intercept. In both panels the same color code
indicates the corresponding imbalance between the peak densities of Cr and Li atomic clouds.

Fig. 4.5(b) with the lowest Li density], their peak density could overcome the Li one.
Hence, through this characterization, we explored different regimes in which the majority
component is locally either Cr or Li; see the color scale. Also in this case, η exhibits a linear
increase with ⟨nLi⟩Cr , showing no saturation effects up to the highest densities we explored.
Comparing Figs. 4.5(a) and 4.5(b), one can see that intermediate mixture imbalance
enables the production of the largest molecule samples, of nearly 5× 104 molecules, and a
comparatively good conversion efficiency of 40÷ 50%. These results are in line with the
values previously reported on 6Li40K Feshbach molecules [124,174], and even slightly better
than the 30% efficiency shown on 40K161Dy [85].3 However, our data also show a maximum
conversion efficiency of about 80%, at the expense of a lower but still considerable molecule
number of 2 ÷ 3 × 104. This regime is comparable with results on deeply degenerate
homonuclear spin mixtures of 40K [172], where both components shared the same degree of
degeneracy. The ability to create large molecule samples with tunable density imbalance
of the parent atomic mixture may help in the future to sympathetically cool molecules
down to degeneracy with leftover Cr atoms, which do not appear to limit the molecule
lifetime at our typical densities; see Sec. 4.6 below.

As shown in Fig. 4.5, the molecule population sensitively depends upon the Li-Cr
pair density of the initial atomic mixture. After careful optimization, we studied the
ballistic expansion of Feshbach dimers after variable time of flight via the Stern-Gerlach
separation method, comparing it with the expansion of the atomic clouds. Once the
bODT is switched off, atoms and molecules expand into the magnetic saddle potential
generated by our coils. We obtained our record PSD starting magneto-association with
atom numbers NLi = 3× 105 and NCr = 1× 105 and temperatures TLi = 0.15TF,Li = 70 nK
and TCr = 0.5TF,Cr = 180 nK. From this starting condition we obtained 36(4) × 103

molecules at 180 nK, with peak spatial density of 0.75(10) × 1012 cm−3, and peak PSD
of nLiCr λ

3
dB = 0.12(2), where λdB =

√
2πℏ2/(mkBT ) is the corresponding de Broglie

wavelength. Our result compares well with the highest reported PSDs in other mass-
imbalanced Fermi mixture experiments [56, 85], and even higher LiCr PSDs may be
obtained by adding a crossed dipole trap (see, e.g., Sec. 2.8), not employed for the studies
described in this Chapter. Although the employed magneto-association ramp was deep
in the two-body-adiabatic regime, the molecular samples we created had not reached full
thermal equilibrium. This last point, together with the possibility to further evaporate Cr,
thereby sympathetically cooling LiCr, will be the subject of a future study.
3I am aware of unpublished data on 40K161Dy molecules, where a 45% association efficiency is achieved in
a 1550-nm crossed dipole trap (priv. comm. from A. Canali).
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4.5 Trap-light-induced losses
One key question about our novel LiCr Feshbach molecules concerns their stability against
inelastic loss processes. In fact, in our setup magneto-association results typically in a mixture
of LiCr dimers with unpaired Li and Cr atoms, confined by an optical dipole trap. Therefore,
various inelastic mechanisms may contribute to limit the molecule lifetime: Quite generally,
these can arise both from off-resonant scattering of LiCr towards electronically excited levels
– accidentally induced by the trapping lights employed in the experiment – as well as from
inelastic scattering in dimer-dimer and atom-dimer collisions. In this Section, I address the
first of these two contributions, while the latter will be discussed in the next Sec. 4.6.

The bODT configuration that we exploited in Sec. 4.4 to reach optimal magneto-association
efficiency and high PSD of LiCr molecules was experimentally found to strongly limit the
molecule lifetime to the few-millisecond timescale, resulting not suitable to trap LiCr Feshbach
molecules. In order to properly characterize the detrimental effect of the bODT lights on the
LiCr sample, and to decouple it from possible atom-dimer collisional losses (see Sec. 4.6), we
purified the molecule sample right after the end of the magneto-association ramp by removing
the leftover atoms. In particular, Li|1⟩ was removed via the combination of a 0.5-ms-long
RF π-pulse resonant with the Li|1⟩←→Li|2⟩ transition, followed by an optical blast of the
Li|2⟩ component. The procedure was repeated two times consecutively to ensure a negligible
remaining population of unpaired Li|1⟩ atoms. Cr|1⟩ was instead directly spilled from the
trap (on a typical timescale of 10÷ 20 ms), which, for this species, in the presence of infrared
light only (see below) is significantly shallower than for both Li and LiCr components.4 The
purification protocol is better detailed in Sec. 4.9.

We first isolated the effect of the multimode 1070-nm ODT beam by extinguishing the green
light right before molecule association. Once the unpaired atoms were completely removed, we
ramped the IR power to a variable value, where we recorded the subsequent molecule number
drop. We extracted the loss rates from exponential fits to the decay data, similarly to what
was done in Ref. [85] for DyK molecules. The results are reported in Fig. 4.6(a) (red squares)
as a function of the laser intensity, together with a linear fit to the data (red line). Using the
fitted slope and taking into account a finite open-channel fraction 1− Z > 0 (see Sec. 1.6) at
the probe detuning δB = −100 mG, we derived Γcc = 5.9(2) Hz/(kW cm−2).

Secondly, since the 532-nm green beam is anti-trapping for our molecules, we studied its
effect by ramping it up to a (small) variable power while keeping the IR ODT power fixed.
The corresponding experimental loss rates, shown in Fig. 4.6(a) as green triangles, yield a
significantly higher slope of Γcc = 397(14) Hz/(kW cm−2). This value, about two orders of
magnitude larger than the IR one, confirms the detrimental effect of 532-nm light on LiCr
Feshbach molecules, and sets a strong constraint on the possible timescales for manipulation
of the LiCr sample in the combined bODT.5

Such a significantly higher Γcc value measured for the (single-mode) 532-nm beam, compared
to the (multi-mode) 1070-nm one, points to a stronger off-resonant photon scattering for
increasing photon energy. Following also similar observation on KDy molecules (A. Canali
and R. Grimm, priv. comm.), we decided to test the effect of a far-off-resonant trap (FORT)
at 1560 nm. We therefore implemented a new trapping beam at such wavelength, which we
overlapped to the main bODT in a counter-propagating configuration (see sketch in Fig. 6.4
and details on the setup in Sec. 6.3). For the purposes of this characterization, before creating
molecules, we transferred the atomic mixture from the bODT to the FORT, through 100-ms-
long (linear) power ramps that completely extinguished the bODT ligths. The FORT power
was initially increased to an optimum value, experimentally determined, that yielded the
4Dynamic polarizabilities of Feshbach molecules are expected to be the sum of the atomic ones. In our case:
αLiCr(532 nm) = −109 a. u., αLiCr(1070 nm) = 359 a. u., αLiCr(1560 nm) = 284 a. u., of which the last two are
consistent with our measurements.

5On the other hand, fast photo-excitation losses caused by the green light can be exploited to detect molecules
as negative signals (see Sec. 4.2), or to check the purity of the molecular sample (see Sec. 4.9).
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Figure 4.6 – (a) Loss rates as a function of light intensity for the trap wavelengths explored in this
work. Green triangles, red squares, and yellow circles show the experimental exponential loss rates for
532, 1070, and 1560 nm, respectively. Best linear fits to the data are plotted as solid lines with matching
color code. (b) Potential energy curves of the LiCr molecule in the ground and excited electronic states,
as calculated by the group of M. Tomza, see Sec. 4.10. The three vertical arrows with the same color
code as panel (a) show the energy of photons at 532, 1070, and 1560 nm, respectively. The pink arrow
shows a hypothetical transition at 2.7 µm, coupling the Feshbach dimer to the lowest excited electronic
state.

best magneto-association conditions. After molecule creation, the FORT power was quickly
lowered to start the spilling of Cr atoms. Once a pure molecular sample was obtained, the
1560-nm power was ramped to the target value for the lifetime measurement. In this case, the
analysis discussed above yields a photo-excitation rate consistent with zero within experimental
uncertainty; see the yellow circles in Fig. 4.6(a) and corresponding inset. I point out here
that, for each dataset and trapping light, the systematic error of Γcc arising from intraspecies
LiCr-LiCr inelastic collisions was negligible, since the dimer density was kept fixed at all power
levels explored, within our experimental accuracy.

In conclusion to this Section, I remark that our experimental observation qualitatively
agrees with the ab initio calculations of M. Tomza’s group, that I will present later in Sec. 4.10
(see also Refs. [94] and [169]). Their theoretical model predicts, for increasing photon energy,
progressively larger transition dipole moments and higher spontaneous decay rates of molecular
states coupled to the Feshbach dimer. For the moment, at least at a qualitative level, one could
compare our experimental findings with the theoretical results presented in Fig. 4.6(b), which
shows the potential energy curves of the LiCr molecule for the ground and first few excited
electronic states. The 532-nm light, with photon energy ≃ 18 800 cm−1, can in principle couple
the Feshbach state to a multitude of excited molecular states, lying above the Cr(7S) + Li(2P)
asymptote, and below the Cr(7P) + Li(2S) one (see green vertical arrow, falling outside the
plot range). By contrast, 1070-nm (photon energy ≃ 9 350 cm−1) and 1560-nm (photon energy
≃ 6 400 cm−1) transitions that start from the Feshbach state both fall below the Cr(7S) + Li(2P)
dissociation threshold, potentially addressing fewer levels, see red and yellow vertical arrows,
respectively. In light of these considerations, one can see that, ideally, the safest choice to
optically trap LiCr Feshbach molecules would be to employ wavelengths longer that 2.7 µm
(photon energy < 3 700 cm−1), that do not couple the Feshbach dimer to any excited molecular
level.6

6In practice, this option cannot be easily tested on our experimental setup, since the coating of our viewports,
chosen at the early build-up stage of the experiment to be optimal for the bODT lights [123], are not suitable
for such long wavelengths.
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4.6 Stability of atom-molecule mixtures
In this Section I discuss the stability of atom-molecule mixtures against inelastic collision
processes. These studies were performed before the implementation of the FORT beam
at 1560 nm, and were carried out in the sole IR trap at 1070 nm. In fact, following
the discussions in Secs. 4.4 and 4.5, we generally found advantageous to keep a small
amount of green light in the bODT up to a few milliseconds before molecule formation,
to then suddenly switching it off once LiCr dimers were created. This procedure allowed
us both to maximize the molecule number and, at our typical IR intensities, to increase
the one-body lifetime up to a few tens of milliseconds, allowing us to characterize the
stability of the molecular sample against dimer-dimer (D-D) and atom-dimer (A-D) inelastic
collisions. This investigation is relevant both in light of future implementation of optical
spectroscopy protocols, and of possible subsequent evaporative and sympathetic cooling
stages of Feshbach dimers.

As for three-atom recombination discussed in Secs. 3.3 and 3.4, leading to a good-to-bad
collision rate of about 200, Fermi-Fermi mixtures are also expected [55, 56, 111] to benefit
from Pauli suppression for D-D and A-D inelastic collisions near the FR pole – owing to
the fact that these scattering events necessarily involve at least two identical fermions
(either unpaired or paired into a shallow dimer). Specifically, the loss rate coefficients
β of such processes can be substantially decreased, with respect to their off-resonant
background value βbg, as soon as dimers acquire a sizable open-channel fraction, i.e.,
near the resonance pole. While this qualitative feature is generic to any Fermi-Fermi
mixture, the suppression factor β(R∗/a)/βbg sensitively depends upon the specific mass
ratio between the two constituents. For atom-dimer processes in heteronuclear systems,
light-light-heavy inelastic processes are predicted to dominate over the heavy-heavy-light
ones in the resonant regime [56, 111]. For our specific mixture, for instance, Jag et al. [56]
foresaw, already for R∗/a ≲ 10, a suppression for Cr-LiCr collisions more than one order of
magnitude larger than that for Li-LiCr ones. Moreover, one also expects in the off-resonant
regime that lithium-dimer collisions are dominant, given that the background value of the
A-D loss rate coefficient is theoretically given by [56]

βA−D
bg ∼ 2hRvdW

mA−D
, (4.4)

with RvdW the van der Waals length and mA−D the atom-dimer reduced mass, and that
mCr−D/mLi−D ∼ 5. Also in light of the fact that the Li density exceeds the Cr one in
our typical conditions, we observed that collisional losses of LiCr dimers were indeed
dominated by Li-D scattering. This was confirmed by a measured Li-to-Cr relative loss of
∆NLi/∆NCr = 1.93(17), and by the fact that, when unpaired Li atoms were removed from
the sample, we did not observe any detectable signature of Cr-D or D-D inelastic processes.

We characterized the magnetic field dependence of βLi-D by varying the endpoint of the
association ramp at the Li|1⟩-Cr|1⟩ resonance, and tracing the subsequent molecule decay
as a function of time. At each detuning, the fitted exponential decay rate, corrected for
the residual trap-light-induced loss contribution, yields the Li-D inelastic scattering rate.
Dividing the latter by the dimer-weighted Li density ⟨nLi⟩D, determined experimentally,
we thus extracted the inelastic rate coefficient βLi-D. The results are shown in Fig. 4.7 as a
function of δB (filled red squares). One can notice how βLi-D monotonically decreases down
from its off-resonant value as the resonance pole is approached, exhibiting a drop that
becomes progressively more pronounced as δB → 0−. To corroborate the interpretation of
our findings in terms of Pauli suppression of collisional losses [56], we repeated the same
measurement, but transferring the remaining unbound lithium atoms to the non-resonant
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Figure 4.7 – Loss rate coefficient βLi-D for inelastic Li-LiCr collisions as a function of magnetic
field detuning. The trend of βLi-D, measured for collisions between interacting Li|1⟩ atoms and
Li|1⟩Cr|1⟩ molecules (filled squares), is compared with the constant, non-resonant one, obtained by
studying Li|2⟩-dimer collisions (empty squares). The inset shows the experimentally determined
βLi-D, normalized to its background value βLi-D

bg = 7× 10−10 cm3/s, as a function of R∗/a (black
symbols), together with the theoretically predicted trend of Ref. [56]. Vertical error bars of βLi-D
combine the fit, statistical and systematic uncertainties to the decay data, and the estimated mean
density ⟨nLi⟩D. Horizontal error bars account for the uncertainty in the magnetic field detuning
from the FR pole.

spin state Li|2⟩ right after the magneto-association ramp. In this case, where three, rather
than two, distinguishable kinds of fermionic atoms were involved in the collisions, we
observed a constant rate coefficient at all detunings; see the empty squares in Fig. 4.7. The
obtained value, βLi|2⟩-D ∼ 7× 10−10 cm3/s, nicely matches the background one measured
for Li|1⟩-D collisions, and both agree within a factor of 2 with the theoretical estimate
Eq. (4.4). Notably, as shown in the inset of Fig. 4.7, the normalized experimental data
βLi-D/β

Li−D
bg (black squares) are found to be remarkably reproduced by the predicted

suppression function for Li-LiCr inelastic collisions given in Ref. [56] (solid line) as a
function of R∗/a. I emphasize here that, in spite of the narrow nature of our FR, at
the smallest detunings that we explored we observed a suppression of collisional losses of
up to a factor of 70+160

−35 – a very promising value in light of future studies of resonantly
interacting atom-dimer mixtures, and of the possible implementation of a final sympathetic
cooling stage for LiCr Feshbach molecules.

4.7 Magnetic dipole moment of LiCr Feshbach dimers
In this Section, I present our direct measurement of µd, the magnetic dipole moment of the
newly created LiCr Feshbach dimers, discussing also its dependence upon the magnetic field
detuning δB. This measurement, based on a Stern-Gerlach (SG) scheme similar to that
followed for DyK molecules [85], constituted the first clear experimental evidence of LiCr
paramagnetic nature, and it further confirmed A. Simoni’s assignment of the molecular
state inducing the FR (see again Sec. 3.2).
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Our first goal was to observe a deviation of µd both from the atomic values of Li and
Cr, which at bias fields ∼ 1.4 kG are respectively µLi = 1µB and µCr = 6µB (within a
few per mille), as well as from the expected value for purely closed-channel molecules,
µcc = 5µB. To this end, we performed a SG-type experiment at a fixed, relatively small
δB = −4 mG, where R∗/a ∼ 1 and one expects µd ̸= µcc. In particular, we prepared our
molecular sample without any removal or transfer of the unpaired atoms, having care to
switch off the bODT immediately after molecule formation. Without the optical trap, we
let the particles expand under the combination of gravity and a magnetic field gradient b
along the vertical direction, and we recorded the temporal evolution of the center-of-mass
positions zcom of Li, Cr, and LiCr. For each component, the c.o.m. acceleration is given by
g + µX b/mX , where g is the gravitational acceleration, µX is the magnetic dipole moment
of species X, and mX is the corresponding mass. The atomic trajectories provided us
a straightforward way to precisely calibrate the B-field gradient.7 With b being known,
µd was then obtained from a single-parameter fit to the LiCr trajectory; see the results
in Fig. 4.8(a). The extracted value µd = 5.85(5) µB, well resolved from both the atomic
counterparts, markedly differs also from the magnetic moment µcc of purely closed-channel
molecules, pointing to a sizable admixture with the open-channel wave function, featuring
µoc = 7 µB.

Our observation is better understood by expressing the Feshbach dimer wavefunction
as a superposition of open- and closed-channel components [7, 111,176]:

|ψd(R)⟩ =
√

1− Z ϕoc(R) |OC⟩ +
√
Z ϕcc(R) |CC⟩ , (4.5)

with the unit-normalized radial wave functions {ϕoc(R), ϕcc(R)} referring to the open- and
closed-channel components with spin states {|OC⟩ , |CC⟩}, respectively. As discussed in
Sec. 1.6, the closed-channel fraction Z, bound to be 0 ≤ Z ≤ 1, determines the character of
the Feshbach molecule: from open-channel like for Z → 0, to closed-channel like for Z → 1.
The Feshbach dimer has energy Ed and magnetic moment µd = ∂BEd. These, if referenced
to the scattering continuum, define the binding energy Eb = Eoc − Ed and the differential
magnetic moment δµ = µoc − µd, which are linked to Z via the Hellmann-Feynman
theorem [7,178], see Eq. (1.31):

µd(δB) = Z(δB)µcc +
(
1− Z(δB)

)
µoc . (4.6)

As discussed in Sec. 1.6, an analytic solution for Z(δB) is available in the effective range
expansion [106], see Eq. (1.30):

Z(δB) = 1 − 1√
1 + 4 R∗

a(δB)−abg

, (4.7)

with a(δB) the scattering length, abg its background value, and R∗ = ℏ2/(2mred abg ∆B δµ)
[see Eq. (1.20)] the effective range parameter. Equations (4.6) and (4.7) thus provide the
expected magnetic field dependence of µd, ranging for LiCr (near the investigated FR) from
µcc = 5 µB for Z → 1 (i.e. |δB| → ∞), to µoc = 7 µB for Z → 0 (|δB| → 0).

By means of experimental protocols similar to those described above, we could experi-
mentally reveal and characterize the B-field dependence of µd. In this case, after switching
off the bODT, we let the particles expand for a fixed time of flight ttof , and we recorded the
position zcom(ttof) of the LiCr cloud as a function of δB. In order to minimize temporal
and spatial variations of the magnetic field experienced by the molecules, we employed a
7The complete analysis also took into account the vertically-oriented magnetic field anti-curvature generated
by the BIAS coils, omitted from the discussion here for the sake of simplicity.
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short ttof = 3.5 ms, with a 200-µs-long RF cleaning pulse on Cr right before the imaging
pulse. Knowledge of the initial in situ position of the atoms and the B-field landscape
allowed us to directly extract µd(δB), which is shown in Fig. 4.8(b). A fit of Eq. (4.6) to
the data, with Z(δB) given by Eq. (4.7) and the location of the FR pole B0 as the single
free parameter, yields the solid black line in Fig. 4.8(b). We find good agreement with the
experimental results, and ascribe the residual discrepancy to the B-field inhomogeneity
experienced by the molecules during the time of flight expansion. These results highlight
our high degree of control over the applied magnetic field and, most importantly, the
paramagnetic nature of the LiCr closed-channel molecule. Moreover, the observed trend
of µd, asymptotically approaching µcc = 5 µB, further confirms the FR assignment of the
quantum collisional model for Li-Cr (see Sec. 3.2), and shows our ability to controllably
populate the least bound vibrational level of the X 6Σ+ ground-state potential. In par-
ticular, this is extremely convenient for future STIRAP transfer [79] to the LiCr absolute
ground state: A STIRAP scheme for LiCr only requires a change in the vibrational degrees
of freedom, circumventing the need for an optically excited state having sizable overlap
with both electronic ground-state (sextet and octet) multiplicities, in complete analogy
with the case of 6Li40K dimers of Ref. [179]; see Sec. 4.10.3 for more details.

Figure 4.8 – Measurements of magnetic dipole moment. (a) Vertical center-of-mass trajectories
for atoms and molecules in time of flight. The red, blue, and green circles show the evolution
of the c.o.m. in the vertical direction as a function of the TOF for Li, Cr, and LiCr, respectively.
The corresponding lines with matching color code show the fitted theory curves. The black line
represents the expected trajectory for a purely closed-channel molecule (Z = 1). (b) Magnetic
dipole moment µd of LiCr Feshbach molecules as a function of the absolute B field detuning from
the FR pole. The black curve represents the theory prediction based on Eqs. (4.6) and (4.7) with
only the resonance position B0 as the fitting parameter. The dotted and dashed lines respectively
mark the magnetic moments of the scattering atom pair µoc (Z = 0) and of the closed-channel
molecule µcc (Z = 1).



4.8 New optical measurement of open-channel fraction and binding energy 65

4.8 New optical measurement of open-channel fraction and
binding energy

As discussed in Sec. 1.6, the closed-channel fraction Z represents an essential feature of
the Feshbach dimer. Besides determining the behavior of µd, experimentally characterized
in the previous Sec. 4.7, Z also affects the collisional stability of Feshbach molecules, as
well as the outcome of future STIRAP transfer schemes to deeply bound states: While the
former is longest for Z → 0, the latter is optimal for Z → 1. An accurate measurement of
Z(δB) close to a narrow FR at high B field is technically challenging. Indeed, wiggle spec-
troscopy [180] has limited temporal resolution, RF spectroscopy [143,171] requires high RF
power, potentially perturbing the B-field stabilization, photo-association techniques [181]
require an optically excited molecule level and laser light to address it, and, finally, magnetic
moment spectroscopy (see Sec. 4.7 and Ref. [85]) suffers from field inhomogeneity and
temporal constraints.

In our case, we managed to overcome these issues by developing a convenient and
rather general optical method, which exploits absorption imaging of Feshbach dimers with
laser light addressing transitions of the parent atomic species. Our method is based on the
analysis of the systematic reduction of the molecule signal, recorded as a function of δB,
a rather generic trend already reported for various systems; see, e.g., Ref. [175]. Such a
seeming drop of the dimer population is illustrated for LiCr in Fig. 4.9(a), where I show
the measured number Nmeas normalized to the real one Nreal as a function of δB, both for
Li (red circles) and Cr (blue circles) imaging lights. For Li, we further compared a long
(filled circles) with a short (open circles) pulse duration. One can notice how, despite quan-
titative differences, in all cases Nmeas/Nreal monotonically decreases with increasing |δB|.

Figure 4.9 – (a) Counted molecule number Nmeas, normalized to the real one Nreal, derived from
in situ absorption pictures taken on the Li (red circles) and Cr (blue circles) imaging transitions on
pure molecular samples. I show a comparison between a longer (filled circles) and shorter (open
circles) pulse time with the same laser intensity within 10 %. The red filled circles are taken with
τp = 40 µs and I0 = 0.24 mW/cm2, the red open circles with τp = 11 µs and I0 = 0.2 mW/cm2,
and the blue circles with τp = 21 µs and I0 = 0.76 mW/cm2. The solid lines show Alessio’s model
prediction Eq. (4.12) with only a common field offset as the fitting parameter and Z given by
Eq. (4.7). (b) Sketch illustrating Alessio’s model, explained in the main text. The top-left panel
shows the dissociation mechanism at rate γd induced by the imaging laser resonant at δB = 0 with
the lithium atomic transition of natural width Γa: a detuning of δd = δa + Eb/h is acquired for
finite δB < 0. The bottom-left panel shows the optical cycles Li atoms undergo after molecule
dissociation at rate γa. The right panels show (from top to bottom) the pulse shape of duration τp,
the time-dependent OD of the initial molecule sample, and, as a comparison, the constant OD of an
atomic sample.
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While this effect was previously interpreted in terms of an effective imaging cross section,
in the present case the particle number sensitivity on the imaging parameters confutes
such an interpretation, and I present here a different one, based on a simple theoretical
model developed by my colleague Alessio Ciamei. The main idea, graphically sketched in
Fig. 4.9(b), is that the absorption signal of dimers results from the optical density of the
atoms, into which molecules are dissociated during the imaging pulse at a rate γd, given
by the bare atomic scattering rate γa weighted by the dimer open-channel fraction (1−Z).
Building on such an intuition, Alessio developed his model, described in more detail below,
allowing us to establish a univocal link between Nmeas/Nreal on one side, and (1 − Z)
and the binding energy (Eb) on the other. Hence, this simple theory can be employed to
either predict Nmeas/Nreal once Z and Eb are known [see the lines in Fig. 4.9(a) based on
Eq. (4.7)], or vice versa to obtain those quantities from the experimentally recorded dimer
signal [see Figs. 4.10(a) and 4.10(b)] without relying on any a priori knowledge. In the
following, I describe Alessio’s theoretical model and our experimental results in more detail.

The model holds under three main assumptions [see also the sketch in Fig. 4.9(b)]:

(i) closed-channel molecules do not directly interact with the atomic imaging light;
(ii) Feshbach dimers are dissociated by the imaging light at a rate given by Fermi’s

golden rule γd = γa |⟨ψd|OC⟩|2 = γa (1− Z), with γa denoting the atomic scattering
rate;

(iii) low-intensity atomic imaging is performed on a cycling transition with atomic scat-
tering rate γa(sa,Γa, δa) dependent on the saturation parameter sa ≪ 1, the natural
width of the transition Γa, and detuning δa.

Assumptions (i) and (ii) imply that during the imaging pulse the dimer (column) density
decreases as

n2D
d (t) = n2D

d,0 e−γd t , (4.8a)

while the free-atom one grows as

n2D
a (t) = n2D

d,0 ·
(
1 − e−γd t) . (4.8b)

Since (iii) implies that the dissociation products decay back to the same open channel of
the FR, and that the addressed atomic species undergoes cycling transitions until the end
of the imaging pulse, from Eq. (4.8b) we derive the instantaneous optical density (OD)

OD(t) = σa · n2D
d,0 ·

(
1 − e−γd t) , (4.9)

where σa is the detuning-dependent, atomic absorption cross section. This is in contrast
with the standard case of an atomic sample at the same (column) density, that would
feature a constant optical density ODa = σa · n2D

a,0 [see the sketch in Fig. 4.9(b)]. For
δB = 0, the molecules are dissociated, the imaging light is resonant with cross section
σa = σa,0, and the optical density is constant and equal to ODa = ODa,0.

Let us derive the observed optical density after an absorption imaging pulse of duration
τp from the instantaneous time-dependent optical density OD(t) above. The temporal
variation of photon counts Np on the camera during the probe pulse shining onto the
Feshbach molecule sample follows the relation

∂tNp,d = ηq · I0 · e−OD(t) , (4.10)
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where ηq is the overall quantum efficiency of the imaging system and I0 is the laser intensity.
At the end of the pulse, then, one has

Np,d(τp) = ηq I0 e−ODa ·
∫ τp

0
exp

(
ODa e−γd t) dt , (4.11a)

in contrast with the case of a pure atomic sample, for which

Np,a(τp) = ηq I0 τp e−ODa . (4.11b)

In both cases, the reference image, with neither dimers nor atoms, yields Np,0(τp) = ηq I0 τp

counts. Using the definition of optical density OD = − ln(Np/Np,0), taking as reference
the atomic optical density at resonance ODa,0, we derive the suppression factor

OD(τp)
ODa,0

= γa

γa,0

[
1 − 1

ODa
ln
(

1
τp

∫ τp

0
exp

(
ODa e−γd t) dt

)]
, (4.12)

with

γa,0 = γ(sa, Γa, 0) , (4.13a)
γd = γa(sa, Γa, δa + Eb/h) (1− Z) , (4.13b)

where the B-field dependence of Z, δa, and Eb is implicit. In our case we have δa(δB) =
µB δB for the Zeeman shifts of the imaging transitions of both Li and Cr. In the limit of
low optical density, ODa,0 ≪ 1, Eq. (4.12) simplifies to

OD(τp)
ODa,0

≃ 1
1 +

(
2 δa/Γa

)2
[

1 − 1− e−γd τp

γd τp

]
. (4.14)

As the right-hand side of Eq. (4.12) [or the simplified Eq. (4.14)] is independent of ODa,0,
it coincides with the relative suppression of the detected number of Feshbach molecules,
Nmeas/Nreal = OD/ODa,0.

As anticipated, Alessio’s model Eq. (4.12) allows us to retrieve both the open-channel
fraction 1−Z(δB) and the binding energy Eb(δB) of the Feshbach dimers (at all detunings
δB) from the ratio Nmeas/Nreal measured through absorption images, without any a priori
knowledge of their functional forms. As long as the binding energy of the Feshbach molecule
is negligible with respect to the linewidth, Eb/h≪ Γa, Eq. (4.12) only has Z(δB) as the
unknown quantity and can easily be inverted, Ni(δBi) −→ Zi(δBi) (i is an index labeling
each data point). If this condition does not hold, we are left, at each experimentally probed
δBi value, with two unknown quantities Zi and Eb,i that cannot be uniquely inferred
from Ni. To circumvent this limitation, and without loss of generality, we make use of
the properties of the Feshbach state summarized by the Hellman-Feynman theorem [see
Eq. (4.6)] and the limiting behavior for δB → 0 of the magnetic moment and binding energy,
δµ → 0 and Eb → 0, respectively. Thus, instead of extracting from each measurement
point Ni(δBi) −→ Zi(δBi), we iteratively run over consecutive measurement points starting
from the largest positive detuning max(δBi) and moving down to min(δBi). The algorithm
estimates the binding energy at δBi as Eb,i = Eb,i−1 + Zi−1 δµ(δBi−1 − δBi) and extracts a
new open-channel fraction {Ni, Eb,i} −→ Zi. The algorithm is initialized with (Zi0 = 0,
Eb,i0 = 0) and forces (Zi = 0, Eb,i = 0) for all δBi > 0.

In Figs. 4.10(a) and 4.10(b) I show the results of our analysis, plotting the experimentally
determined open-channel fraction and binding energy as a function of R∗/a. Notably,
extraction of 1−Z and Eb from the three datasets of Fig. 4.9(a) yields consistent results over
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a wide range of detunings, from the resonant regime to the background limit, despite the
different pulse parameters and atomic species employed for the imaging. Both observables
are found to vary over a few orders of magnitude, in excellent agreement with the theory
predictions based on Eqs. (4.7) and (4.15), respectively (solid black lines). In particular,
one can notice how the nonzero open-channel fraction is reflected in the dimer binding
energy that deviates, near the resonance pole for R∗/a→ 0, from that of the bare closed-
channel molecule 2µd δB; see the dashed line in Fig. 4.10(b). It is important to emphasize
that this probing method works remarkably well even at very small detunings from the
FR pole. Finally, similarly to Fig. 4.8(b), Figs. 4.10(a) and 4.10(b) data demonstrate
our experimental capability to access the resonant regime with high accuracy, despite
the narrow FR at our disposal, a key point for future many-body investigation of Li-Cr
mixtures; see, e.g., Chapter 5.

Given the univocal link given by Eq. (4.12) between the measured molecule signal and
(1− Z) and Eb, Alessio’s model can equally be exploited to predict Nmeas assuming Z(δB)
and Eb(δB) to be known. In particular, the solid lines in Fig. 4.9(a) were obtained by
assuming Z to be given by Eq. (4.7), and the corresponding binding energy Eb(δB) =
ℏ2κ2

∗/(2mred), with κ∗ given by [see Eq. (1.26)]:

κ∗(δB) =

√
1 + 4R∗/

[
a(δB)− abg

]
− 1

2R∗ , (4.15)

where now the B-field dependence is made explicit. Note that Eq. (4.15) can also be
obtained by integrating Eq. (4.6). In this case, all parameters appearing in the model were
known, and we only allowed for a precision fit of the resonance location B0 common to all
datasets in Fig. 4.9(a). The best-fit results of the model (see solid lines) reproduce our
experimental observation remarkably well, regardless of the imaged species and employed
pulse parameters. From this viewpoint, Alessio’s model can be exploited for molecule
number calibration with no need for dissociation prior to the imaging pulse, which may
introduce systematic heating and excitation of the clouds [182, 183]. In particular, the
saturation parameter can be conveniently derived from the reference imaging pulse after
calibration of the camera.

Figure 4.10 – Optically determined open-channel fraction as a function of detuning from the
resonance. (a) Open-channel fraction and (b) binding energy as a function of R∗/a, extracted with
Alessio’s model Eq. (4.12) from the three datasets in Fig. 4.9(a) (with the same symbol choice),
together with the theory predictions given by Eqs. (4.7) and (4.15), respectively (solid black lines).
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4.9 Realization of pure, long-lived molecular samples
From the studies presented in Secs. 4.5 and 4.6, we learnt that 1560 nm is the most suited
wavelength at our disposal to trap LiCr Feshbach molecules, and that the presence of
leftover unpaired atoms generally limits the molecule lifetime, except in the close proximity
of the FR pole. Thus, to obtain longer dimer lifetimes under robust working conditions, and
to perform more precise measurements and characterization of LiCr molecules,8 we carefully
optimized a procedure to purify the molecule sample right after magneto-association.

In particular, the (usually large) remaining Li|1⟩ component is quickly removed by
driving a 0.5-ms-long π-pulse on the Li|1⟩←→Li|2⟩ RF transition, which is followed by
a spin-selective optical blast of the Li|2⟩ state. The procedure is repeated two times
consecutively to ensure a negligible remaining population of unpaired Li|1⟩ atoms. The
duration of the RF pulse is optimized to be as short as possible without introducing any
detectable perturbation to the magnetic field stability discussed in Sec. 6.1. Conversely,
owing to a technical limitation of our Cr high-field imaging setup (namely, the absence
of Cr|2⟩ resonant light, see Sec. 6.2), we cannot exploit an analogous scheme to remove
unpaired Cr atoms from the mixture. Instead, we find it convenient to rapidly lower the
power in the IR optical trap right after molecule formation, such that the resulting trap
depth is still sufficient to confine dimers, but too shallow to hold Cr atoms. In fact, at
1070 nm (1560 nm) the Cr polarizability is about a factor 4.0 (3.4) lower than for LiCr.
As a result, Cr|1⟩ is gradually spilled out from the trapping region, on a typical timescale
of 10÷ 20 ms.

To obtain the longest molecule lifetime, substantially increased at all detunings com-
pared to what reported so far in this Chapter, we directly created molecules in the far-off
resonant trap (FORT) at 1560 nm, whose wavelength is found to cause negligible light-
induced losses (see Sec. 4.5). We first transferred the atomic mixture from the bODT into
the FORT following a 100-ms-long linear ramp, throughout which a constant trap depth
for the Cr atoms was maintained. We then performed the magneto-association ramp, at
the end of which we purified the molecule sample from the atomic components with the
methods described above. This overall procedure reduced the initial molecule number by
about a factor of 2, but it allowed for a dramatic gain in lifetime even in the off-resonant
regime. This is shown in Fig. 4.11, where the molecule number is plotted as a function of
the hold time at a final, large detuning δB = −100 mG. After an initial loss – ascribable
to excitation of collective modes in the LiCr cloud during the magneto-association and
atom purification stages (see the inset) – we observed a clean exponential decay of the
molecule number, characterized by a time constant of 0.24(1) s. This lifetime, much longer
than those measured in our system without purification nor FORT trap (limited to a few
tens of milliseconds), exceeds by more than one order of magnitude that reported for LiK
molecules [174] at similar peak densities, of a few 1011 cm−3. The slow exponential decay
of LiCr shown in Fig. 4.11 is consistent with residual evaporation dynamics within the
relatively low-density molecule cloud, and it appears incompatible with intraspecies LiCr
collisional losses, which will be the subject of future studies. The present measurement and
analogous ones carried out without the removal of Cr atoms yield in all cases upper-bound
estimates for the background values of the recombination rate coefficients, βD−D

bg and
βCr−D

bg , of about 1 × 10−10 cm3/s. This, together with the Pauli suppression of these
inelastic processes [56] – expected to be even stronger than that unveiled in Li-D collisions,
shown in Fig. 4.7 – is very promising for future implementation of collisional cooling of
LiCr Feshbach dimers.
8Purity of the molecular sample is a fundamental requirement for the measurements described in Secs. 4.5
and 4.8.
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Figure 4.11 – Long-lived pure
LiCr samples in the 1560 nm
trap at δB = −100 mG. The
main panel shows the molecule
number (on a log scale) as a
function of the hold time, to-
gether with an exponential fit
of the long-time decay yielding
a time constant of 0.24(1) s.
For hold times shorter than
50 ms, we observe a faster loss
dynamics, which we ascribe to
the initial excitation of collec-
tive modes of the LiCr sample
(see the inset) induced by the
magneto-association and purifi-
cation stages.

4.9.1 Probing the purity of molecular samples: experimental protocols
To conclude the experimental part of this Chapter, I emphasize here how the knowledge
acquired from the studies in Secs. 4.5 and 4.8 can be employed to devise clear experimental
protocols to check the purity of the molecular sample. A first, robust method exploits once
more the strong photo-excitation rate induced by the 532-nm light, that causes fast molecule
losses happening on a few-ms timescale, even for relatively low powers. After purifying the
sample, we intentionally switch on the green light in our bODT at a small but nonzero
power level, such that the overall trap depth is only slightly perturbed, but a significant
one-body loss rate Γ532 is introduced (solely) for LiCr dimers; see sketch in Fig. 4.12(a).
Following a hold time thold ≳ 5/Γ532, i.e. long enough to ensure photo-excitation losses
of nearly all molecules, we quickly ramp the magnetic field above the FR pole, and then
take an absorption image on each of the two atomic lines. Any detected signal represents
a leftover atomic population of the corresponding species, while the simultaneous absence
of signal on both images testifies the purity of the molecular sample.

The second method leverages instead on a direct consequence of the (ii) assumption in
the model of Sec. 4.8 – i.e., that the first absorbed optical photon effectively dissociates the
Feshbach dimer – and on the corresponding momentum and energy transfer to the outgoing
atom pair. By generically referring to the interchangeable role of Li and Cr as species
A and B, suppose that we wish to check for the presence of possible residual B atoms
after the purification procedure. In this case, as sketched in Figs. 4.12(b) and 4.12(c),
we deliberately apply a strong, resonant light pulse on the A atomic transition: This
breaks the (fragile) dimers apart, and completely expels any A particle from the optical
trap, as they scatter a large number of photons. Our interest here is in what happens
to the B component. We apply this procedure at intermediate (negative) detunings on
the molecular side of the FR: On the one hand, this ensures a still sizeable absorption
of atomic light from Feshbach dimers, see Sec. 4.8. On the other hand, it minimizes
the possible cross-talk effects of the optical removal of one species onto the other, via
elastic or inelastic collisions. In other words, the idea is that any leftover unpaired B atom
should be essentially unaffected by the optical blast applied on the A transition, whereas
Feshbach dimers should experience a sizable effect. Indeed, without aiming at a completely
rigorous treatment, if a diatomic molecule is dissociated due to absorption of a photon with
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wavenumber kL, followed by subsequent spontaneous emission, the average momentum
acquired by each outgoing atom is on the order of ∼ ℏkL. Accordingly, if species A is
chromium, Li atoms resulting from molecule photo-dissociation acquire a kinetic energy
on the order of (ℏk425 nm)2/(2mLi) ∼ 9 µK, far exceeding our typical trap depths. When
the roles are reversed, i.e. if A = Li, the average kinetic energy transferred to Cr atoms is
instead about (ℏk671 nm)2/(2MCr) ∼ 400 nK: this value does not exceed the trap depth,
but it is nearly twice our typical dimer temperature. Similarly to the previous case, after
the optical removal of species A, we hold the sample for thold ∼ 10 ms, then we quickly
ramp the magnetic field above the FR pole, and take an absorption image on each of
the two atomic transitions, following time-of-flight expansion. In this case, if the optical

Figure 4.12 – Sketch of the experimental protocols that I developed to probe the purity of our
molecular samples, see text for details. For each protocol, the right panels show qualitative examples
of the typical expected signals.
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removal is working properly, one always expects an empty image for species A. At the same
time, when B = Li, owing to the large momentum transfer, all atoms that were previously
associated into molecules are lost from the trap. Therefore, in this case, purity of the
molecular sample against unpaired Li atoms is testified by an empty Li image; see right
panels in Fig. 4.12(b). On the other hand, when B = Cr, the interpretation of this check is
more subtle, as the momentum transfer only results in heating of the previously-associated
Cr atoms. We thus compare long time-of-flight images acquired with and without the
application of the optical removal on Li. Although in this case less striking, the presence
of a “cold” fraction of Cr atoms (i.e. not affected by the Li blast) points to the presence of
leftover unpaired Cr within the molecular sample, see Fig. 4.12(c).

Lastly, our third method relies on driving RF transitions that only address unpaired
atoms, looking then at the transferred fraction. Indeed, since the dimer binding energy grows
as ∼ 2.8 kHz/mG, and since we can drive RF transitions with π-pulse times τp ∼ 0.2÷1 ms
(corresponding to Fourier-limited spectral width on the order of a few kHz) for both Li and
Cr atoms, a detuning of a few tens of mG suffices to shift the molecular spectrum completely
out of resonance with respect to the bare atomic transitions. Therefore, application of a
RF π-pulse, resonant with the bare atomic frequency, at intermediate (negative) detunings,
where also interaction effects are negligible, should transfer all and only atoms that are
not associated into Feshbach molecules. After that, one ramps the magnetic field above
B0 and takes a spin-selective absorption image of the arrival atomic state(s). Once again,
the absence of signal indicates the purity of the molecular sample, see Fig. 4.12(d).
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4.10 Quantum chemical model of LiCr: Summary of LiCr
properties from ab initio calculations

The ultracold samples of 6Li53Cr Feshbach dimers, thoroughly characterized in the previous
sections, represent an excellent starting point for the production of a high phase-space
density gas of deeply bound, paramagnetic polar molecules. Yet, LiCr is an almost
unexplored species, for which spectroscopic data are completely lacking thus far, except
for pioneering electron spin resonance data on thermal samples [93]. Its theoretical study,
through advanced quantum chemical calculations, is thus crucial for two reasons: first,
to gain information about the ground and electronically excited state properties of the
LiCr molecule; second, to identify suitable pathways to coherently transfer LiCr Feshbach
dimers to the absolute ground state [176]. In the following, I report on the main results of
a quantum chemical model for LiCr, developed by our theory collaborator Prof. M. Tomza
(University of Warsav) and his group, as they are presented in our Ref. [94]. In short,
leaving all technical details to Sec. VI-A of our Ref. [94], they employed state-of-the-art
ab initio quantum chemical methods to build a complete theoretical model for LiCr. By
extending (for the first time) the computational strategies already applied to alkali-metal or
alkaline-earth-metal dimers to ultracold molecules containing transition-metal atoms, they
obtained quantitatively accurate information on both ground and excited electronic states,
transition moments, and resulting rovibrational structure and spectra, as summarized
below.

4.10.1 Ground state properties
Through their model, M. Tomza and collegues predicted the well depths De of the ground
X 6Σ+ and first-excited a 8Σ+ states to be 8769(140) and 553(11) cm−1, at equilibrium
distances Re of 4.87(1) a0 and 6.50(2) a0, respectively; see the ab initio potential curves
shown in Fig. 4.1(a). As shown in Fig. 4.13, a large permanent electric dipole moment
of 3.3(2) D is expected for 6Li53Cr in the rovibrational ground state (v = 0), with even
slightly larger values for excited vibrational levels of X 6Σ+, up to 3.4(2) D for v = 14.
Additionally, it should be remarked how sizable electric dipole moment values, exceeding
1 D, are already expected for comparably high vibrational states (v ≲ 37) of the X 6Σ+

potential; see Fig. 4.13. At the same time, the high-spin a 8Σ+ state also exhibits a
significant permanent electric dipole moment of 0.67(3) D in its v = 0 level (see Fig. 4.13),
a value exceeding the largest one found for spin-triplet bialkali molecules [184].

For 6Li53Cr, the ground electronic state supports 46(1) vibrational levels and the
dissociation energy of the v = 0, j = 0 level is D0 = 8599(140) cm−1. The high-spin state

Figure 4.13 – Permanent electric dipole
moments of the LiCr molecule in the
X 6Σ+ and a 8Σ+ electronic states, as
calculated by the group of M. Tomza. The
solid lines present them as a function of
the internuclear distance. The open cir-
cles mark their values at equilibrium dis-
tances, and the filled circles present vibra-
tionally averaged moments dv calculated
for all vibrational levels v supported by
the considered electronic states placed at
the corresponding vibrationally averaged
internuclear distances Rv (last two points
for both states are beyond the plot range).
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supports exactly 16 vibrational levels with D0 = 512(11) cm−1. The rotational constants
B0 for v = 0 levels of the X 6Σ+ and a 8Σ+ states are 14.02(4) and 7.67(3) GHz. The
bound vibrational levels exist up to jmax = 146(2) for X 6Σ+ and jmax = 46(1) for a 8Σ+.
Precise knowledge of the number of vibrational states allows, via mass scaling, to infer
the scattering properties of all Li-Cr isotopic combinations from the accurate experimental
data obtained for 6Li53Cr (see Chapter 3 and Refs. [139,169]).

4.10.2 Excited electronic states
As anticipated, coherent two-photon optical transfer of LiCr Feshbach dimers to the rovibra-
tional ground state requires detailed knowledge of the intermediate, electronically excited
levels of the associated transition dipole moments, and of the resulting molecular spectra –
completely lacking experimental investigation so far. In the following, I summarize the
predictions of the model of M. Tomza and colleagues concerning the properties of excited
electronic states of LiCr, which are fundamental to identify suitable transitions for the
efficient conversion of Feshbach dimers into tightly bound states, and more generally for
the optical manipulation of LiCr.

Figure 4.14 shows the spectrum in Hund’s case (a) representation of all molecular
excited electronic states of LiCr up to the Cr(7S) + Li(2P) asymptote. States of Σ, Π, and
∆ spatial symmetries with total electronic spin S = 3/2, 5/2, 7/2 exist. The higher-lying
energy asymptote, Cr(7P) + Li(2S), is above 20 000 cm−1, and it will not be discussed here.
Two families of excited electronic states can be seen in Fig. 4.14: a first set dissociating
into metastable, excited-state Cr (5S or 5D) and ground-state Li (2S), and another set
that dissociates into ground-state Cr (7S) and excited-state Li (2P). The former ones are
relatively shallow, especially those associated with Cr in the 5D state with the closed 4s2

shell screening interactions with the open 3d4 shell. The states belonging to the second
family, and connected to the Cr(7S) + Li(2P) asymptote, are deeper. Despite the large
number of states, an avoided crossing is visible only between those with 6Π symmetry.

Figure 4.14 – Poten-
tial energy curves of
the LiCr molecule in
the ground and ex-
cited electronic states
[in Hund’s case (a)
representation], as cal-
culated by the group
of M. Tomza. The
arrows show the pro-
posed pump and Stokes
STIRAP transitions at
λP ≈ 720 nm and λS ≈
445 nm, respectively.
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The spin-orbit interaction can couple excited electronic states of different spin and spa-
tial symmetries. Its largest strength is expected for states dissociating into Cr(5D) + Li(2S),
which is asymptotically split by hundreds of cm−1. Coupling of crossing states leads to
avoided crossings and to enhanced mixing of different spin components. The spin-orbit
coupling between electronic states dissociating into Cr(7S) + Li(2P) should be smaller
because of its negligible asymptotic value, although it might be enhanced at small inter-
nuclear distances by the presence of Cr. Although this will be discussed in more detail
in Sec. 4.10.3, I remark here how the energy landscape of LiCr, shown in Fig. 4.14, is
significantly richer than the more familiar one of bialkali systems, and it originates from
the involvement of d-shell electrons of Cr. While this results in a more complex scenario,
the existence of metastable excited states such as 4∆ – with large angular momenta and a
potentially long lifetime – opens the way for applications of LiCr, primarily in the context
of precision measurements [185–187], unattainable with alkali-metal dimers.

4.10.3 Prospects for STIRAP
Having provided an overview of both ground and electronically excited states of LiCr in the
previous sections, I now move to discuss possible pathways for the efficient optical transfer of
our Feshbach dimers towards deeply bound levels via stimulated Raman adiabatic passage
(STIRAP) [79]. This method was successfully employed for a large number of alkali-metal
diatomic molecules, and it involves two laser pulses that transfer coherently a molecular
population between the initial and final states through an intermediate electronically
excited state in a Λ configuration, while never populating it. Accurate knowledge of the
energies and dipole moments of the most favorable transitions is needed to execute STIRAP
successfully. While such properties can be obtained experimentally through tedious and
time-consuming spectroscopic measurements, identification of suitable STIRAP pathways
can be highly accelerated when guided by state-of-the-art molecular calculations.

Efficient STIRAP transfer of Feshbach dimers to the absolute ground state necessarily
requires pinpointing an intermediate, electronically excited vibrational state that exhibits a
significant overlap with both the initial (weakly bound, long-ranged) and the final (deeply
bound, short-ranged) levels. In their theoretical search, M. Tomza and colleagues focused
on STIRAP paths involving sextet electronic states only. Restricting the survey to this
subclass is motivated by the fact that our Feshbach dimers have pure sextet character (see
Sec. 4.7), as that of the LiCr rovibrational ground state. This greatly simplified the task,
and the corresponding STIRAP scheme is conceptually equivalent to the singlet-to-singlet

Figure 4.15 – Franck-Condon factors |⟨v|v′⟩|2 between vibrational levels of the LiCr molecule
in the X 6Σ+ ground electronic state v and (4) 6Σ+ and (2) 6Π excited electronic states v′ as a
function of their energies Ev,v′ : (a) X 6Σ+ −→ (4) 6Σ+ and (b) X 6Σ+ −→ (2) 6Π.
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optical transfer of bialkali dimers, recently successfully employed to produce ground-state
6Li40K molecules [179].

The (4) 6Σ+ and (2) 6Π electronic states dissociating into Cr(7S) + Li(2P) are the most
promising ones for providing suitable intermediate levels because they are relatively well
separated from other states and should be accessible at convenient optical wavelengths by
strong transition dipole moments borrowed from the strong atomic transition 2S −→ 2P in
Li [169]. According to the calculations of M. Tomza’s group [94], they support 54(5) and
48(4) vibrational levels, respectively, while their dissociation energies are around 5700 and
6800 cm−1. Franck-Condon factors (FCFs), |⟨v|v′⟩|2, between vibrational levels supported
by the ground (v) and excited (v′) electronic states give the initial insight into possible
optical transitions. They are presented in Fig. 4.15 for the relevant sextet states. The
overview of the FCFs suggests the X 6Σ+ −→ (4) 6Σ+ transitions [see Fig. 4.15(a)] as the
most promising ones for the STIRAP implementation. Similar to alkali-metal dimers, the
characteristic bent shape of the largest FCFs indeed reveals the existence of intermediate
levels of the excited (4) 6Σ+ state having noticeable overlap with both weakly and deeply
bound levels of the ground X 6Σ+ state. In contrast, the FCFs for the X 6Σ+ −→ (2) 6Π
transitions [see Fig. 4.15(b)] are visibly diagonal, which is not a preferable pattern for an
efficient STIRAP transfer.

Figure 4.16 presents the FCFs for transitions from the least bound (denoted here as
v = −1) and ground (v = 0) levels of the X 6Σ+ electronic ground state to intermediate
levels v′ supported by the (4) 6Σ+ excited electronic state. The largest FCFs for the “pump”
transition v = −1 −→ v′ (red symbols) are expected to connect to the most weakly bound
excited-state levels just below the Cr(7S) + Li(2P) atomic threshold, but values above
10−4 are predicted up to binding energies Ev′ of almost 3000 cm−1. These FCFs also give
the shape of a photoassociation spectrum. The largest FCFs for the “Stokes” transition
v′ −→ v = 0 (blue symbols) are found to connect to levels in the middle of the interaction
potential well, with values above 10−2 for binding energies between 1400 and 4400 cm−1.
Strong Stokes transitions result from the alignment of the equilibrium distance of the
X 6Σ+ electronic ground state and the inner classical turning point of the (4) 6Σ+ excited
electronic state (see Fig. 4.14). The combination of the pump and Stokes FCFs governs the
STIRAP. The largest two-photon FCF,

∣∣⟨−1|v′⟩ ⟨v′|0⟩
∣∣, of 6× 10−3, is found for the v′ = 20

intermediate level with a binding energy around 2400 cm−1. Yet, FCFs exceeding 10−3 are
expected for most vibrational levels with binding energies up to 3100 cm−1. Thus, to avoid
a large power imbalance of the pump and Stokes laser fields, intermediate v′ levels with

Figure 4.16 – Franck-
Condon factors |⟨v|v′⟩|2
between the initial weakly
bound v = −1 and final
ground v = 0 vibrational
levels of the X 6Σ+ ground
electronic state and the
intermediate vibrational levels
v′ with energies Ev′ of the
(4) 6Σ+ excited electronic
state and their combination√∣∣⟨−1|v′⟩

∣∣2 ∣∣⟨0|v′⟩
∣∣2 =∣∣⟨−1|v′⟩⟨v′|0⟩

∣∣ for two-photon
transition between the v = −1
and v = 0 levels.
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smaller binding energies around 1000 cm−1 can be addressed with convenient wavelengths
of λP ≈ 720 nm and λS ≈ 445 nm, respectively; see Fig. 4.14.

The predicted FCFs for the X 6Σ+ −→ (4) 6Σ+ transitions are similar to, or even
more favorable than, those found for alkali-metal diatomic molecules, where a STIRAP
transfer efficiency as large as 90% was achieved. The theory predictions are robust against
the uncertainty of calculated excited electronic states [169], and favorable conditions are
persistent, assuming 10 ÷ 20% errors for the well depth and 0.2 ÷ 0.5 a0 errors for the
equilibrium distance. Including the R dependence of the transition dipole moments also
does not affect the presented findings [169]. Also, spin-orbit coupling – neglected in Tomza’s
group calculations and that could perturb some levels accidentally close to other ones of
different symmetry – is expected, overall, to negligibly affect the theoretical results.

The detailed analysis of the X 6Σ+ −→ (2) 6Π transitions, see Fig. 4.15(b), confirms
that they are less suited for STIRAP, as they exhibit two-photon FCFs smaller by several
orders of magnitude than those for X 6Σ+ −→ (4) 6Σ+ transitions [169]. The pump FCFs
are smaller because the (2) 6Π potential is shallower than the (4) 6Σ+ one at intermediate
and large distances (see Fig. 4.14). The FCFs noticeably exhibit a diagonal structure
that results from the accidental alignment of the equilibrium distances of the X 6Σ+ and
(2) 6Π states. This peculiar feature, inconvenient for STIRAP, may instead allow for direct
imaging, and possibly even laser cooling, of ground-state LiCr molecules. While the exact
values of diagonal FCFs are very sensitive to the accuracy of underlying electronic states,
our collaborators’ model yields FCFs robustly above 0.5 [169], sufficiently large to enable
direct optical imaging of ground-state LiCr, e.g., in optical tweezers. Additionally, for
their current PECs, the FCFs for v′ = 0 −→ v = 0, 1, 2 transitions are predicted to be
0.94, 0.056, and 0.0007, respectively. Such a set of values is comparable to those of CaF
and similar molecules, and, if experimentally confirmed, could even allow for direct laser
cooling of LiCr.
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4.11 Conclusive remarks
In summary, in this Chapter I have described the first, extensive exploration of LiCr
dimers, that I performed during the central part of my Ph.D. The first result of our study
is represented by the experimental ability to produce ultracold gases of up to 50 × 103

bosonic 6Li53Cr Feshbach molecules from atomic Fermi mixtures, reaching phase-space
densities exceeding 0.1 at about 200 nK. Thanks to the immunity to two-body decay and
the comparably good stability against three-body recombination of our mixture, we could
perform magneto-association with B-field rates slower than the two-body adiabatic regime
by orders of magnitude. We have directly revealed the paramagnetic nature of the LiCr
electronic ground state, and demonstrated precise control of the Feshbach state via a novel
optical measurement of the open-channel fraction and binding energy. Further, through
the characterization of the relevant loss mechanisms affecting Feshbach dimers, we have
identified an experimental configuration where their lifetime exceeds 0.2 s.

In parallel, our theory collaborators developed a quantum chemical model for LiCr
employing state-of-the-art ab initio methods, with which they determined the fundamental
properties of this new molecular species. In particular, for the rovibrational X 6Σ+ ground
state, a large electric dipole moment of 3.3(2) D is predicted, on top of a sizable magnetic
one (5 µB). Additionally, our Feshbach dimers, already created in the least bound X 6Σ+

vibrational level, are expected to be efficiently transferrable, at convenient wavelengths,
via STIRAP through a (4) 6Σ+ level, to the absolute ground state. There, direct imaging
and cooling schemes may be enabled by X 6Σ+ −→ (2) 6Π optical transitions.

My experimental investigation, together with the theoretical studies by M. Tomza’s
group, let LiCr emerge as an appealing and promising system for a wealth of fundamental
studies and future applications. For instance, our findings suggest that the realization of
quantum gases of doubly polar 6Li53Cr bosonic molecules, with large electric and magnetic
dipole moments, is within reach. Clearly, identification of the optimal STIRAP transfer
will require extensive laser spectroscopy, but this will be greatly facilitated by the ab
initio model predictions and by the long lifetime of Feshbach dimers, already achieved.
Interestingly, electric dipole moments as high as 1 D can already be obtained in relatively
shallow vibrational levels of LiCr with v ≃ 37 and a binding energy as low as 190 cm−1;
see Fig. 4.13. Given the relatively simple spectroscopic survey needed to find these states,
this possibility represents an appealing intermediate, short-term step. In particular, such
vibrationally excited molecules offer high sensitivity to the electron-to-proton mass ratio
me/mp [169], overcoming that of alkali and alkaline-earth dimers, and they could be
employed to detect possible variations of me/mp in precision measurements, providing new
insight into fundamental physics.
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Chapter 5

Anomalous diffusion of light
impurities in a heavy fermion gas
In this Chapter, concluding the main scientific achievements of my Ph.D., I present the
results – and our current understanding – of a very recent investigation of the transport
properties of our fermionic mixture, which started in the last months of my doctorate and
is currently being finalized during the writing of this Thesis. This study originated from
preliminary, exploratory measurements aimed at observing diffusion phenomena in our
system, motivated and inspired by the attendance of my supervisor Matteo Zaccanti at
the EMMI workshop “Deciphering many-body dynamics in mesoscopic quantum gases”
in Heidelberg in spring 2024. Our initial interest was to examine diffusive processes of
strongly-interacting Fermi gases in the high temperature limit, and to investigate whether
and how a comparably large mass imbalance MCr/mLi, combined with the narrow character
of Li-Cr Feshbach resonances, could indeed affect the transport properties of our system,
compared to the widely explored case of homonuclear 6Li mixtures [90,188–190]. In partic-
ular, the main objective was to inspect if, as in the homonuclear (and broad resonance)
case [190], a minimum value for the diffusion coefficient D could be identified, in the
strongly-interacting regime, as the temperature was lowered. In what follows, I describe
how we “successfully failed” in determining such a minimum D value in our system, and
how a seemingly simple experiment surprisingly turned into something more exciting.

Following the procedures described in Sec. 5.2, we prepared a small lithium cloud embedded
in a larger, cigar-shaped chromium thermal bath, in turn prepared in a non-interacting spin
state; see sketch in Fig. 5.1(a). For both species, the radial (ŷ, ẑ) confinement was provided
by a single-beam IR ODT (i.e., our main bODT with no green light), propagating along
the x̂ axis, and a weak axial confinement resulted from the magnetic-field curvature of our
BIAS coils (∼ 12 G/cm2). Moreover, as for Chapter 4 experiments on LiCr dimers, the
relative gravitational sag was minimized by applying a vertical magnetic field gradient of
about 1.5 G/cm. On top of that, the lithium sample was initially squeezed by the presence
of an additional (vertical) 1560-nm ODT beam, which considerably compressed the Li cloud
along the x̂ axis while negligibly affecting Cr, owing to the large difference in the atomic
polarizabilities. Our measurements started by abruptly switching off the vertical beam,
thereby allowing Li to expand along the axial direction, while simultaneously activating
(tunable) Li-Cr interactions, as discussed below in details. We subsequently traced the
dynamics of the expanding Li gas [see illustrative example in Fig. 5.1(b)], for different
temperatures and interaction strengths, with the mean squared displacement s2

x = ⟨x2⟩
(i.e., the second moment of the spatial density distribution) as our main observable, directly
accessible via absorption imaging.

Before discussing our observations, it is important to remark that – in the absence
of interactions – after the vertical beam is switched off, Li atoms expand “ballistically”
within the Cr bath, which in this case opposes no friction at all. To be more precise, here
“ballistic” is used with a slightly unconventional meaning: In fact, due to the presence of
the residual weak (magnetic) axial confinement, the sudden removal of the crossed trap
actually triggers a breathing mode of the Li cloud, which “releases” its excess kinetic energy
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Figure 5.1 – (a) Sketch of our experimental configuration for the transport measurements. A small
Li cloud (red ellipsoid) is prepared within a larger cigar-shaped Cr gas (green ellipsoid), initially
in a non-interacting state. Both species are radially confined by the 1070-nm beam of our main
(b)ODT (horizontal tube), and a weak axial confinement is provided by the B-field curvature of
the BIAS coils (black parabolic curve). Additionally, Li atoms are axially compressed by a vertical
1560-nm beam (vertical tube), which only marginally perturbs Cr due to its lower polarizability
at that wavelength, compared to the Li one. The experiment starts at t = 0, when the vertical
beam is abruptly switched off, and Cr is simultaneously RF-transferred to an interacting spin
state (sketched in blue). (b) Integrated axial profiles of an expanding Li cloud interacting with the
surrounding Cr bath (not shown). To avoid finite-size effects, we typically select a time window
corresponding to the first 20 ms, see the discussion at the end of Sec. 5.2.

by oscillating in size in the “new” weaker axial trap, while maintaining a fixed barycenter.
This is indeed the expected behavior of a non-interacting ultracold cloud released from a
tighter to a weaker harmonic trap, nicely reproducing the trend given in Ref. [168] [and
reported here in Eq. (5.7)], see Fig. 5.2. For sufficiently weak final trap frequencies, the
initial expansion is well approximated by the free-space result ⟨x2(t)⟩ = s2

0 + v2
th t

2 (with
initial size s0 =

√
⟨x2(0)⟩ and thermal velocity vth =

√
kB T/m ), from which the term

“ballistic” is borrowed.
On the other hand, when Li-Cr interactions were turned on, we generally observed a

considerable slowdown of the expansion of the lithium gas. In particular, focusing on the
initial time dynamics, at high temperatures (T ∼ 0.5÷ 1 µK) we observed a progressive
transition from a ballistic (⟨x2⟩ ∝ t2) to a diffusive (⟨x2⟩ ∝ t) expansion, as the interaction
strength was resonantly increased close to a s-wave FR. This was perfectly consistent with
what we expected to happen, and we could indeed extract a diffusion coefficient from
the slowest-expanding datasets, not too far from the minimum value of D reported in
Ref. [190] for a unitary 6Li Fermi gas, of only a few (< 10) “diffusion quanta” ℏ/m. This
already promising scenario surprisingly turned into something even more intriguing when
we lowered the temperature of both Li and Cr atoms, yet without crossing T/TF = 1.
In fact, besides “strange features” at intermediate interaction strengths, for sufficiently
low temperatures and strong interactions we observed distinct signatures of subdiffusive
behavior, i.e. a somewhat slower-than-diffusion kind of dynamics, not expected within the
framework of the standard Fermi liquid theory in ultracold gases [191], and indeed not
reported in any homonuclear fermionic mixture so far.

In order to try to understand this phenomenology, in parallel to data acquisition and
analysis, I developed a simple semi-classical Monte Carlo simulator that numerically “mim-
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Figure 5.2 – Example of free breathing oscillations of a Li cloud released from a tighter (ω0)
to a weaker (ω < ω0) axial trap. The red circles represent the experimentally measured root-
mean-squared displacement sx(t) =

√
⟨x2(t)⟩ , obtained from two-dimensional Gaussian fits on the

recorded absorption images [see Eq. (5.14)]. The black curve is the theory expectation Eq. (5.7),
according to Ref. [168]. The cloud size oscillates between the equilibrium values in the tighter
and in the weaker trap, marked by horizontal gray dashed lines. The cyan dashed line represents
the purely ballistic case, i.e. the limit ω → 0. Finally, the shaded area highlights our typical
observation-time window when Li-Cr interactions are switched on.

ics” our experimental measurements. In particular, leveraging on the precise knowledge of
two-body elastic 6Li-53Cr interactions (see Sec. 1.7), the main purpose of the simulator was
to gain insights into the possible role of a relatively large mass imbalance MCr/mLi, a large
but finite effective range parameter R∗, the inhomogeneous density distribution of the
Cr bath, and, last but not least, the external magnetic trap. Interestingly, my numerical
simulator – which accounts for the aforementioned effects and incorporates the nature of
elastic s-wave collisions (see Sec. 5.3) – has turned out perfectly capable to capture most
of our experimental observations, quantitatively reproducing our data, except for the low
temperature ones exhibiting strong subdiffusion. In this respect, tentative inclusion of
“first-order quantum corrections”, such as retardation effects and mean-field interactions,
has not changed qualitatively the simulator predictions. This suggests that more complex
phenomena, such as quantum interference effects or non-trivial few-body correlations,
could possibly play a significant role in our system at such low temperatures, where the
thermal de Broglie wavelength of Li atoms starts to exceed the mean Cr interparticle spacing.

This rest of this Chapter is organized as follows:

- In Sec. 5.1, I briefly introduce a few different models that are typically used to
describe normal or anomalous diffusion processes, considering also the case of an
external harmonic trapping potential. In the final part, I discuss and motivate our
choice among those.

- In Sec. 5.2, I detail the experimental procedures we follow to prepare the initial
sample, and I present two complementary ways of acquiring data.

- In Sec. 5.3, I describe in detail the semi-classical Monte Carlo simulator that I
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developed to support the interpretation and understanding of our observations.

- In Sec. 5.4, I present the results of our measurements in the high temperature regime,
comparing them with the outcome of the simulation. In particular, this represented
the first meaningful benchmark of my model, which reproduced our experimental
data with remarkable accuracy throughout all interaction regimes experimentally
explored.

- In Sec. 5.5, I present a set of measurement in the low temperature regime, which
notably showed clear signatures of subdiffusive behavior for sufficiently strong in-
teractions. Moreover, a seemingly faster-than-“ballistic” expansion was observed
at intermediate magnetic-field detunings from the FR pole. In this case, the semi-
classical Monte Carlo simulation is able to satisfactorily capture both the background
and the intermediate-interactions dynamics, yet evidently failing in reproducing the
observed subdiffusive expansion in the strongly-interacting region.

- Finally, in Sec. 5.6, I present our characterization of the slowest expansion dynamics
across different temperature regimes, which is currently still ongoing during the
writing of this Thesis.
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5.1 Normal and anomalous diffusion
In this introductory Section to our transport measurements, I provide a short overview of
a few simple analytical models available in literature that can be used to describe either
normal or anomalous diffusion, including the case of particles confined in a harmonic trap.
In particular, the main focus will be on the predicted time evolution of the mean square
displacement (MSD) ⟨x2(t)⟩, a key quantity that offers valuable insights into the underlying
diffusion dynamics. For the sake of simplicity, I will not provide any mathematical
derivation of the results reported below, most of which can be found in standard statistical
mechanics textbooks or reviews (see, e.g., Refs. [192–194]). Rather, the main purpose of this
introduction is to summarize the most relevant expressions (and physical interpretations)
to understand our measurements and analyze our data.

The first model I consider is based on Einstein’s statistical theory of normal diffusion
[195], which laid the groundwork for understanding Brownian motion by linking the
random motion of Brownian particles to (measurable) macroscopic observables, such as
temperature and viscosity, ultimately leading to the confirmation of Dalton’s atomic theory.
Importantly, Einstein showed that the mean square displacement ⟨x2(t)⟩ of a diffusing
particle grows linearly with time (see plot in Fig. 5.3, red line):

⟨x2(t)⟩ = s2
0 + 2dD1 t , (5.1)

a trend nowadays regarded as a hallmark of normal diffusion. In Eq. (5.1), s2
0 = ⟨x2(0)⟩ is

the initial spatial variance of the ensemble of diffusing particles, d is the dimensionality of
the system, and D1, measured in m2/s, is the normal diffusion coefficient (the meaning
of the subscript will become clear in the following). For simplicity, and in light of our
experimental protocol, hereinafter the discussion will be restricted to the one-dimensional
case d = 1.

Einstein himself was aware that his stochastic description of the interactions with the
surrounding medium resulting in Eq. (5.1) would have failed at very short timescales,
where the effect of the particle’s inertia becomes significant [196, 197]. In other words,
loosely speaking, a certain “minimum number” of collisions of the Brownian particle with
the (typically much lighter) surrounding fluid molecules is needed in order to appreciably
change the particle’s velocity. Therefore, for very short times, the motion is essentially
ballistic. A few years after Einstein’s paper, Langevin introduced a stochastic differential
equation that described the dynamics of a particle under the influence of damping and
random forces [192, 198]. His result for the time evolution of the MSD reads [192, 193,198]
(see Fig. 5.3, blue line):

⟨x2(t)⟩ = s2
0 + 2 kBT

mΓ2

(
Γt − 1 + e−Γt

)
, (5.2)

where kB is the Boltzmann constant, m the mass of the diffusing particle(s), and Γ, with
units s−1, is a parameter connected to the viscosity of the medium [192]. In this form,
Eq. (5.2) naturally introduces the dimensionless parameter τB = Γt, typically referred
to as Brownian time, which represents the proper “temporal” scale of the process. In
fact, notably, Langevin’s model captures the expected progressive transition from ballistic
to diffusive motion. This can be easily shown by taking the short time limit τB ≪ 1 of
Eq. (5.2), which returns a quadratic growth of the MSD with time:

〈
x2(t≪ Γ−1)

〉
≃ s2

0 + kBT

m
t2 = s2

0 + v2
th t

2 , (5.3a)
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characterized by the thermal velocity vth =
√

kBT
m . On the other hand, in the long time

limit τB ≫ 1 one finds

〈
x2(t≫ Γ−1)

〉
≃ s2

0 + 2 kBT

mΓ t = s2
0 + 2 v

2
th

Γ t , (5.3b)

i.e. a result analogous to Eq. (5.1), with diffusion coefficient given by

D1 = kB T

mΓ = v2
th

Γ . (5.4)

It is important to keep in mind that both Einstein’s and Langevin’s models describe normal
diffusion processes of an ensemble of particles within a homogeneous medium, and in the
absence of any external force.

By contrast, diffusion in harmonic traps introduces additional complexities compared
to free space, as particles experience a restoring elastic force toward the trap center. The
confinement somehow alters the nature of diffusion, and ultimately leads to saturation of
the MSD at long times. The first description of a particle undergoing normal diffusion
within a harmonic trap was provided by Smoluchowski [199]. His result for the MSD can
be written as [193]:

⟨x2(t)⟩ = s2
∞ +

(
s2

0 − s2
∞
)

e−2( ω
Γ )2 Γ t , (5.5)

where ω is the trap frequency, and s2
∞ = kBT/(mω2) is the final variance reached at

thermal equilibrium. It can be readily shown that, in the force-free limit ω → 0, Eq. (5.5)
reduces to Einstein’s result Eq. (5.1), see Fig. 5.3. However, as pointed out in Ref. [193],
Smoluchowski’s Eq. (5.5) is only valid for Γt ≫ 1 [similarly to Eq. (5.1)] and Γ ≫ ω,
i.e. for sufficiently long (Brownian) times and when the particle’s oscillatory motion is
overdamped. Uhlenbeck and Ornstein [193] provided generalization to Eq. (5.5), valid at
all observation times and under any interaction strength:

⟨x2(t)⟩ud = s2
∞ +

(
s2

0 − s2
∞
)

e−Γt
[

cos(Ωudt) + Γ
2Ωud

sin(Ωudt)
]2

, (5.6a)

⟨x2(t)⟩cd = s2
∞ +

(
s2

0 − s2
∞
)

e−Γt
(

1 + Γt
2

)2
, (5.6b)

⟨x2(t)⟩od = s2
∞ +

(
s2

0 − s2
∞
)

e−Γt
[

cosh(Ωodt) + Γ
2Ωod

sinh(Ωodt)
]2

, (5.6c)

Figure 5.3 – Time evolution of the
mean square displacement for different
models of normal diffusion, see legend
and axes. With respect to Einstein’s
model Eq. (5.1), the Langevin Eq. (5.2)
captures the progressive transition from
ballistic to diffusive dynamics. Smolu-
chowski’s model Eq. (5.5) includes the
effects of an external harmonic confine-
ment, which causes the MSD to saturate
at long times. Finally, the more general
Uhlenbeck-Ornstein Eq. (5.6c) extends
Smoluchowski’s model and captures the
ballistic-to-diffusive crossover.
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with Ω2
ud = ω2 − Γ2/4 = −Ω2

od. Eqs. (5.6a), (5.6b), and (5.6c) hold for underdamped,
critically-damped, and overdamped motion, respectively. In particular, it is worth noting
that, for Γ→ 0, Eq. (5.6a) simplifies to

⟨x2(t)⟩ = s2
0

[
cos2(ωt) + s2

∞
s2

0
sin2(ωt)

]
, (5.7)

which precisely coincides with the result reported (e.g.) by Ketterle and Zwierlein in
Ref. [168], describing the breathing mode triggered by releasing an ultracold atomic cloud
from a tighter (ω0) to a weaker (ω < ω0) harmonic trap, see again Fig. 5.2. If the sample
is initially at equilibrium in the tighter trap, i.e. with initial size s2

0 = kBT/(mω2
0), the

relative amplitude of the oscillation is set by the ratio of the trap frequencies, A2 =
s2

∞/s
2
0 = ω2

0/ω
2.

The motion of particles in complex disordered systems is generally no longer Brownian,
exhibiting instead a so-called anomalous diffusion behavior [194,200,201]. Broadly speaking,
anomalous diffusion describes any departure from the standard linear relation between
mean square displacement and time. Unlike normal diffusion, anomalous processes are
characterized by a MSD scaling as ∝ tα, indicating either enhanced (α > 1) or suppressed
(α < 1) transport. This phenomenon often arises in systems with obstacles, complex
interactions, or spatial heterogeneity. In the absence of external forces, anomalous diffusion
processes are typically described in terms of a generalized power law of the form [194,200,
201]:

⟨x2(t)⟩ = s2
0 + 2Dα t

α , (5.8)
where Dα is a generalized diffusion coefficient (in units m2/sα), and the exponent α, as
anticipated, characterizes the nature of the anomalous process: α > 1 indicates a faster-
than-diffusion dynamics (superdiffusion), whereas α < 1 is a signature of subdiffusion.
Additionally, α = 2 (α > 2) represents (super-)ballistic motion, and the extreme case α = 0
can be interpreted as perfect localization.

Eq. (5.8) can be derived starting from the fractional Fokker-Planck equation, see
Refs. [194,201] for details. Without diving into the heavy mathematical machinery needed
to tackle the problem, it can be shown that the generalized diffusion coefficient is given
by [194,201]:

Dα = kB T

mηα γ(1 + α) , (5.9)

where γ(x) is the gamma function, and ηα (units sα−2) is a generalized friction.
Furthermore, in Ref. [194] the authors also discuss the case of a particle undergoing
anomalous diffusion within a harmonic trap. In this case, the MSD reads

⟨x2(t)⟩ = s2
∞ +

(
s2

0 − s2
∞
)
EML

α

(
−2ω

2

ηα
tα
)
, (5.10)

where EML
α (x) is the Mittag-Leffler function, defined as

EML
α (x) =

∞∑
n=0

xn

γ(1 + nα) . (5.11)

From the properties of the gamma function [202], it can be shown that

EML
2 (x) = cosh

(√
x
)
, (5.12a)

EML
1 (x) = ex , (5.12b)

EML
1/2 (x) = ex2 (1 + erf(x)

)
. (5.12c)
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Figure 5.4 – Time evolution of the
mean-squared displacement in the case of
anomalous diffusion, for different expo-
nents α, see legend. Solid lines represent
the generalized power law Eq. (5.8), while
dashed lines are obtained from Eq. (5.10),
with matching color code for the anoma-
lous exponent α. The case of α = 1 (red
color) corresponds to normal diffusion,
equivalently described by Eq. (5.1) (for
ω = 0) and Eq. (5.5) (ω ≠ 0), respec-
tively. None of the curves captures the
short-time ballistic crossover.

Therefore, for α = 1, Eq. (5.10) reduces to Smoluchowski’s result Eq. (5.5), with η1 = Γ.
Moreover, in the force-free limit ω → 0, Eq. (5.10) (truncating the sum at n = 1) reduces
to the generalized power law Eq. (5.8), with Dα given by Eq. (5.9). I also explicitly remark
here that, for α = 1, Eq. (5.9) simplifies to Eq. (5.4).

In Fig. 5.4, I show illustrative plots of Eq. (5.9) (solid lines) and Eq. (5.10) (dashed
lines), for different values of the anomalous exponent α (see legend). I stress the fact
that, compared to the curves shown Fig. 5.3 for normal diffusion, none of those plotted
in Fig. 5.4 exhibits the crossover with the ballistic regime at short times. In other words,
Eq. (5.10) generalizes Smoluchowski’s result Eq. (5.5) to anomalous diffusion, but it does
not provide a generalization to the Uhlenbeck-Ornstein Eqs. (5.6), which (to the best of
our knowledge) does not exist in the (incredibly vast) literature on the topic.

I anticipate here that, in our data analysis, we have tested all models discussed above
against the experimentally measured MSD of our expanding lithium cloud. However, it
should be reminded that none of these models accounts for the case of a non-homogeneous
medium, which is instead the scenario corresponding to our experiments, due to the
Gaussian spatial density distribution of the chromium bath. Therefore, in general, we
decided to limit our fitting region to the data points for which ⟨x2(t)⟩Li ≤ ⟨x2⟩Cr.

Another complication arises from the presence of the external magnetic confinement,
which, despite being relatively weak, could in principle affect the expansion dynamics of
the Li cloud, as it surely does for t→∞. In this regard, the Uhlenbeck-Ornstein Eqs. (5.6)
should be valid – at all times and for any interaction strength – for particles undergoing
normal diffusion within a harmonic trap. In fact, we found that they provided a satisfactory
description of the high temperature data (see Sec. 5.4), although some care is needed to
determine the asymptotic value s2

∞ from the short-time dynamics, especially for weak
interactions. However, Eqs. (5.6) yielded unsatisfactory results when fitted to the low
temperature datasets exhibiting strong subdiffusion (α ≲ 0.7). For these latter, the Metzler-
Klafter Eq. (5.10) should be applicable, and we indeed obtained fairly good fits, provided
that s2

∞ was fixed to kBTCr/(mLiω
2
Li), i.e. to the value estimated by (reasonably) assuming

plain asymptotic thermalization with the Cr bath. Yet, in the fitting region we considered,
the results obtained by employing Eq. (5.10) were, within error bars, indistinguishable
from those retrieved from the (much simpler) fit with the generalized power law Eq. (5.8).

Indeed, the main limitation of Eq. (5.8), besides not accounting for the inhomogeneous
medium, is to ignore the external confinement. Nonetheless, for short times t≪ 1/ω, the
effect of the trapping potential can be safely neglected, as it can be proved mathematically
by taking the force-free limit of Eq. (5.10). Moreover, a more careful thinking of the
physical effects of an external trapping potential provides further insights into its possible
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impact on the dynamics of the diffusing particles: The key point is that the external trap,
in practice, acts by “subtracting” kinetic energy from the particles moving away from the
trap center, as they climb up the potential hill. Therefore, in general, one should expect
a (non-negligible) slowdown of the expansion due to the trap to take place only after a
certain spatial extension of the cloud has been reached – rather than after a certain time
evolution, regardless of the cloud size. In other words, in the strongly-interacting regime,
where the observed expansion is significantly slower than the non-interacting case, one can
arguably neglect the effects of the external trap even for relatively long times t > 1/ω,
provided that the cloud size remains sufficiently small.

On top of that, as I will show later, under strong interactions the mean collision rate
per Li atom is found to be considerably large, with values exceeding 20 kHz. Since typically
∼ 10 collisions are needed to thermalize, i.e. to reach thermal equilibrium between the
Li and Cr velocity distributions (mLi v

2
th,Li = MCr v

2
th,Cr),1 this implies that, for strong

interactions, the mean kinetic energy per Li atom is always at equilibrium with that of Cr.
In other words, as lithium atoms lose kinetic energy by climbing the potential hill, they
rapidly reacquire it by collisions with the surrounding chromium gas. Consequently, for
sufficiently large collision rates, the effects of our weak magnetic confinement are potentially
negligible for the entire observation time.

By contrast, in the opposite regime of weak interactions, where the above considerations
do not apply, Eq. (5.8) can be used to fit the data only for short times t≪ 1/ω, and as
long as ⟨x2(t)⟩Li ≤ ⟨x2⟩Cr. This is the case of datasets taken far from the resonant region,
where the MSD of the Li cloud scales essentially as in Eq. (5.7) [or, more generally, as in
Eq. (5.6a) for small but non-negligible interactions]. For these datasets, we impose an
additional constraint on the selected fitting region: namely, for |δB| ≳ 50 mG, we only
consider points at t < 6 ms.

Overall, we found that the generalized power law Eq. (5.8), with the prescriptions
discussed above, can be effectively used to describe the entire set of our measurements,
while also minimizing the number of free parameters. This allowed us to apply the same
fitting procedure to every dataset, greatly simplifying the comparison between the different
temperature and interaction regimes experimentally explored. The simple functional form
of Eq. (5.8) is indeed quite convenient, as it turns into a purely linear fit, once the initial
value is subtracted and the double log scale is taken, namely:

log
[
⟨x2(t)⟩ − s2

0

]
= log

(
2Dα

)
+ α log(t) =⇒ Y (X) = q + αX , (5.13)

with linear coefficient α and y-intercept connected to Dα. For these reasons, Eq. (5.13)
represents a first, rather robust method to analyze our experimental data.

To conclude this Section, I briefly describe how we extracted the MSD ⟨x2(t)⟩ of our
atomic clouds from absorption images.2 In general, our main interest concerns the axial (x̂)
direction, as the radial ones do not exhibit any significant dynamics. For the measurements
at high temperatures, the effects of quantum degeneracy are essentially negligible, and the
cloud profiles are well fitted by Maxwell-Boltzmann distributions. In this case, we simply
performed 2D Gaussian fits on the recorded column density profiles nOD(x, z), over the
entire clouds. More explicitly, to clarify the notation used for the parameters, the fitting

1This statement is supported by the numerical simulator of Sec. 5.3.
2Our absorption imaging beam propagates in the horizontal x̂, ŷ plane, forming an angle of about 22.5◦

with the ŷ direction. As such, the recorded axial (x̂) size of the atomic clouds appears smaller than the
real one by a factor 1/ cos(22.5◦) ≃ 1.08. This systematic error is taken into account in our analysis.



88 5. Anomalous diffusion of light impurities in a heavy fermion gas

function, when “projected” onto the x̂ axis, has the form:

G(x) = A · exp
[
−1

2

(
x− x0
sx

)2
]
, (5.14)

with amplitude A, cloud barycenter x0, and 1/
√

e -size sx as free parameters. In this case,
the MSD of the atomic cloud is directly given by ⟨x2⟩ = s2

x.
On the other hand, for the low-temperature measurements exhibiting subdiffusive behavior,
we found that Gaussian fits were not able to properly capture the Li density profiles. This
was particularly clear when restricting the vertical fitting boundaries to the high-density,
central region of the clouds. In this case, we found satisfactory results by employing a
“generalized” Gaussian function of the form

Gβ(x) = B · exp
[
− 1

2

∣∣∣∣x− x0
σx

∣∣∣∣β
]
, (5.15)

with amplitude B, cloud barycenter x0, 1/
√

e -size σx, and exponent β as free parameters.
In this case, the MSD is given by the generalized formula

〈
x2〉

β
= 41/β γ(3/β)

γ(1/β) σ
2
x , (5.16)

where γ(x) is the gamma function. Finally, for the measurements of Sec. 5.6, we also
employed the fitting function

F (x) = C ·
{

(1 − floc)√
2π sx

· exp
[
−1

2

(
x− x0
sx

)2
]

+ floc
4σx

· exp
[
− 1

2

∣∣∣∣x− x0
σx

∣∣∣∣ ]
}
, (5.17)

see the discussion there for details.

5.2 Sample preparation
As anticipated in the introduction of this Chapter, our transport experiments consist in
studying the (one-dimensional) axial expansion of a small lithium cloud surrounded by a
larger thermal bath of Cr atoms, see sketch in Fig. 5.1(a). In this Section, I describe our
experimental protocol to prepare the initial sample, underlining its possible subtleties, and
I present two different data acquisition methods.

The starting point of our transport experiments is represented by the ultracold 6Li-
53Cr mixture that we obtain at the end of the evaporation stage in the sole main bODT
(see Sec. 2.6). As such, initially the sample is composed by Li|1⟩, Li|2⟩, and Cr|1⟩ atoms,
prepared at high-fields above 1.4 kG at temperatures around 200 nK. The axial confinement
is provided by the magnetic-field curvature of the BIAS coils, of about 12 G/cm2 at 1.4 kG,
resulting in a trap frequency ωx,Li = 2π × 17 Hz (ωx,Cr = 2π × 14 Hz) for Li (Cr) atoms.
On top of that, a magnetic-field gradient of 1.5 G/cm is employed to cancel the relative
gravitational sag of the two clouds. As discussed in Sec. 2.6, under these typical conditions
the Li gas is deeply degenerate, with TLi/TF,Li ∼ 0.2, while the Cr component only features
a mild degeneracy, with reduced temperatures of about TCr/TF,Cr ∼ 0.5 ÷ 1. The final
temperatures TLi and TCr can be adjusted, to some extent independently, by modifying the
endpoint of the evaporation ramps and/or the sympathetic cooling efficiency of the Feshbach
cooling stage (see Sec. 2.7). In particular, we started to explore transport phenomena in
our system at relatively high temperatures of about 0.5÷ 1 µK, in order to intentionally
avoid possible effects of fermionic quantum degeneracy. This choice seemed particularly
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convenient also for what concerns the chromium bath: On the one hand, a higher Cr
temperature results in a larger axial extent of the Cr cloud, which ideally enlarges the
observation time window where ⟨x2(t)⟩Li ≲ ⟨x2⟩Cr. On the other hand, more energetic Cr
atoms are less perturbed by the application of the vertical 1560-nm beam that squeezes
the Li cloud (see below), thus minimizing possible excitations of the chromium gas.

In the initial trap provided by the combination of main bODT and magnetic-field
curvature, the Li axial (x̂) size typically exceeds the Cr one by about a factor of 2 [see, e.g.,
the sketch in Fig. 3.6(a)], while radially the two clouds have similar extensions. To shrink
the lithium cloud along the x̂ direction, i.e. in order to make it significantly smaller than
the Cr one, we introduced an additional, almost species-selective axial confinement. This
is realized by means of a (nearly) vertical ODT beam at 1560 nm with a circular beam
waist of about 100 µm, which crosses the main bODT with an angle of about 17◦ from
the ẑ direction,3 see again Fig. 5.1(a) [and Sec. 6.3 for details about the optical setup].
At such wavelength, the Cr polarizability is about 2.4 times lower than the Li one: This
asymmetry between the two species, combined with the typically higher temperatures of
the Cr bath, compared to TLi, has allowed us to find an experimental protocol, detailed
below, with which we manage to load a small number of lithium atoms in the crossed trap,
without causing significant perturbations of the chromium density profile.

Before detailing our preparation procedure, it is important to remind that, besides
squeezing the Li cloud in the axial direction, we also desire to control the Li-Cr scattering
length, in order to explore different interaction regimes. This can be done by exploiting
a set of high-field s-wave FRs, as shown previously in Sec. 3.3. In particular, for the
measurements discussed in this Chapter, we selected the Li|1⟩-Cr|1⟩ FR at about 1414 G.
Clearly, however, some care must be taken in order to safely approach the target magnetic-
field detuning: First, since we typically prepare our samples on the attractive (“BCS”) side
of the FR (corresponding to δB = B − B0 > 0 in our case), ramping the field below the
resonance pole (“BEC” side) with an interacting mixture would unavoidably cause molecule
formation, as discussed in Sec. 4.3. Second, employing fast ramp rates – which would
somewhat decrease the molecule conversion efficiency – may trigger collective excitations
in both the Li and Cr clouds, due to the rapid (non-adiabatic) change of the interactions.
Third, due to three-body recombination processes, close to the resonance pole the lifetime
of our samples is limited to a few tens of ms at our typical densities (see Sec. 3.4). This
implies that our measurements must necessarily start shortly after (strong) interactions are
switched on. Finally, our COMP coils, with which we accurately tune the magnetic field
around the FR, have an overshoot issue with magnetic field ramps exceeding 100÷ 200 mG
of span. While these overshoots can be partially mitigated by optimizing the parameters
of the PID controller employed for the COMP coils stabilization (see Sec. 6.1), we found
it rather challenging to completely eliminate them, without considerably losing in the
capability to perform fast ramps. To circumvent these problems, in our protocol we use a
combination of RF transfers and spin-selective optical blasts, with which we safely reach
the target magnetic field detuning with a spin-polarized, non-interacting mixture.

More specifically, with general reference to the three panels of Fig. 5.5, we first set δB
to an off-resonant value of about +150 mG, where Li and Cr are essentially not interacting
over the preparation timescales. At such field, through a 20-ms-long linear ramp, we
increase the power of the 1560-nm cross beam up to a variable value of typically 0.5÷ 2 W,
adjusted day-by-day in order to optimize the final lithium sample. Indeed, this causes
a (first) loss in the Li atom number, similarly to what shown in Fig. 2.11(b) for the

3This is the same optical path of the bichromatic crossed trap exploited in Sec. 2.8 to tune the relative
density and degree of degeneracy of Li and Cr atoms.
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bichromatic crossed (see first column at P532 = 0). At the end of the cross ramp, we apply
a π-pulse on the Cr|1⟩←→Cr|2⟩ RF transition, transferring Cr atoms to a non-interacting
state (the actual timing of this pulse is irrelevant, as long as it is performed at the initial
detuning of ∼ +150 mG). The RF pulse is followed by an optical blast with Cr|1⟩ resonant
light to remove any remaining non-transferred atom. After a hold time of 50 ms, during
which the Li component – via intraspecies collisions characterized by a scattering length of
about −2500 a0 [138] – is allowed to thermalize and reorganize itself within the new trap
configuration, we optically remove Li|2⟩ atoms, obtaining a polarized, non-interacting Li|1⟩-
Cr|2⟩ mixture (see Fig. 5.5(c)). I anticipate here that the removal of the Li|2⟩ component
has two main consequences: First, a fraction of Li|1⟩ atoms is lost from the sample, owing to
collisions with relatively hot Li|2⟩ atoms in the process of leaving the trap, after excitation
by the resonant optical pulse. This is not necessarily a drawback – provided a sufficiently
large signal-to-noise ratio for absorption imaging is preserved – since, as anticipated, our
goal is to realize a small cloud of Li impurities embedded within a Cr bath. Indeed, the
condition NLi ≪ NCr allows us to neglect any effect of the Li cloud onto the Cr one, at
least to a first approximation. In particular, as I will discuss in Sec. 5.3, this assumption
greatly simplifies the computational effort needed for the Monte Carlo simulation. The
second consequence is the fact that, after removal of Li|2⟩, Li|1⟩ atoms represent an ideal,
non-interacting Fermi gas, since also chromium is already prepared in the spin state Cr|2⟩
at this stage. Therefore, lithium loses its ability to thermalize, and subsequent changes
in the trap configuration may result in plain spilling of most-energetic atoms, and more

Figure 5.5 – Sketch of the
experimental sequence we
follow to prepare the initial
sample for the transport
measurements, see text for
details. (a) Optical power
in the trap beams at 1070
(red), 532 (green), and
1560 nm (yellow), respec-
tively. (b) Magnetic field
steps to approach the tar-
get detuning. (c) Popula-
tion of the Zeeman states
Li|1⟩ (red), Li|2⟩ (orange),
and Cr|1, 2⟩ (blue). In pan-
els (a) and (b), vertical
double-headed arrows in-
dicate values that are ad-
justed either to access dif-
ferent temperature and in-
teraction regimes, or dur-
ing day-by-day optimiza-
tions of the final sample.
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Table 5.1 – Typical starting conditions for the transport measurements, obtained after the proce-
dures detailed in the main text, encompassing both the regimes of “high” and “low” temperatures.
Atom numbers and cloud sizes are extracted from in situ absorption images by fitting the density
profiles with 2D Gaussian functions. The parameters are defined similarly to Eq. (5.14). For
the “blind” ŷ direction, we use estimates obtained from knowledge of the trapping frequencies.
Effective temperatures are instead obtained from time-of-flight measurements. Strictly speaking,
these should be intended as estimates of the width of the corresponding velocity distribution. The
unequal values measured along the axial and radial directions are a consequence of the preparation
protocol, in the final part of which atoms cannot thermalize.

Species N (103) sx (µm) sy,z (µm) Tx (nK) Ty,z (nK)
Li 20÷ 40 15÷ 40 5÷ 7 50÷ 700 300÷ 400
Cr 100÷ 150 80÷ 150 8÷ 10 350÷ 1000 200÷ 400

generally in strongly out-of-equilibrium velocity distributions, characterized by unequal
“effective temperatures” along the three directions. As I will discuss in Sec. 5.5, this
“cross-dimensional non-thermalization”, combined with a general temperature mismatch
between Li and Cr, causes “strange features” to appear in some of our measurements.

Once the non-interacting Li|1⟩-Cr|2⟩ mixture is prepared, we start to ramp down the
power in the cross arm, in order to reach the target value for the measurement. As discussed
later, this value essentially determines both the Li initial size and its release energy. This
is accomplished by a 120-ms-long exponential ramp with characteristic time constant of
60 ms, see Fig. 5.5(a). Roughly simultaneously, we extinguish the green light in our bODT,
and increase the 1070-nm power accordingly to maintain the same trap depth for Cr atoms.
This passage from a bichromatic to a purely IR optical dipole trap improves the radial
overlap of the atomic clouds, with Li experiencing a stronger confinement than Cr. Parallel
to that, as shown in Fig. 5.5(b), we progressively bring the magnetic field detuning to the
final target value for the measurement, allowing for a sufficiently long waiting time after
each step in order to extinguish the transient overshoot of the COMP coils.

At the end of the preparation sequence, lasting about 250 ms overall, we obtain a
small Li|1⟩ cloud confined at the center of a larger Cr|2⟩ gas [see the sketch in Fig. 5.1(a)
for t < 0], with typical parameters reported in Tab. 5.1. The actual experiment then
starts by applying a 0.9-ms-long RF π-pulse on Cr, transferring its population to the
interacting Cr|1⟩ state, at the end of which we abruptly switch off the vertical cross beam,
thereby allowing Li to expand along the x direction; see sketch of Fig. 5.1(a) for t > 0. We
subsequently monitor the expansion of the Li gas through in situ absorption imaging, with
a typical observation time of 20 ms.

Data acquisition
To conclude the introduction to our transport measurements, I briefly discuss here two
complementary approaches to data acquisition that, while being absolutely equivalent in
the “ideal world”, result in fact distinct when applied to practical scenarios, where one
has to deal with medium- and long-term instabilities and drifts, which make prolonged
measurements technically challenging in our setup.

To be more specific, in order to obtain a comprehensive picture of the transport
dynamics in a given temperature regime, we decided to characterize the expansion of the
Li cloud for different interaction strengths, i.e. for different magnetic field detunings. A
first, “brute-force” approach consists then in acquiring a time trace of ⟨x2(t)⟩ for each
selected δB value, as pictorially represented in Fig. 5.6(a) [horizontal blue arrows]. This is
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the preferred approach to perform any quantitative data analysis, and thus to precisely
extract physical quantities (α, Dα) from the experimental traces. However, it results rather
time consuming, and the outcome of the measurement generally starts to be clear only
after the analysis has been carried out, and when the entire dataset is considered. An
example of experimental data obtained with this first method is shown in Fig. 5.6(b) [and
in Fig. 5.6(d) from a different perspective].

The second approach is, conceptually, “orthogonal” to the first one: In this case, for
different fixed evolution times tfix, we acquire a “spectrum” of ⟨x2(tfix, δB)⟩ by scanning
the magnetic field detuning, see Fig. 5.6(a) [vertical green arrows]. This allows us to obtain
a clear qualitative picture more rapidly, see example in Fig. 5.6(c), although we found it
not trivial to reliably extract the time evolutions at each field with this method, which are
required for quantitative data analysis. Despite this limitation, this second method results

Figure 5.6 – (a) Illustrative sketch of the expansion dynamics of the Li cloud (red ellipses) within
the Cr bath (not shown), for different evolution times and magnetic field detunings. Blue and green
arrows represent the two “conceptually orthogonal” approaches to data sampling and acquisition,
see text. (b) Example of a (high-temperature) transport dataset obtained with the “brute-force”
approach: for each selected detuning value (see color scale), a time trace of sx(t) is recorded. This
time-consuming method allows for quantitative data analysis, but it is not optimum for exploratory
surveys. (c) Example of transport dataset analogous to that of panel (b), but obtained the “fixed
times” sampling method: In this case, for a set of fixed hold times, we acquire a “spectrum” of the
Li axial size by scanning δB. This approach offers an immediate way to pinpoint the magnetic field
detuning that yields the slowest expansion (e.g., by looking directly at long evolution times), but it
results not suitable for quantitative data analysis. (d) Same data as in panel (b), but plotted as a
pixelated heat/color map. This perspective offers a qualitative overview of the entire dataset.
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quite convenient for exploratory measurements, or to quickly pinpoint the optimum δB
value that yields the slowest expansion, in a given temperature regime. Moreover, as shown
later, it can also be used as a first direct comparison either between experimental datasets
at different temperatures or between experiments and numerical simulations, with no strict
need for data analysis, thereby considerably shortening and simplifying the exploration of
parameter spaces (both in terms of experiments and simulations).

Finally, I also mention that, similarly to what was done in the experiment to determine
the K3 coefficient [see Sec. 3.4], also here we monitor the magnetic field, before and after
each measurement, by performing RF spectroscopy on the Li|1⟩←→Li|2⟩ transition. The
location of the FR pole is pinpointed through a sharp molecular loss signal, similar to those
shown in Fig. 4.2(a), to which all the other fields are referenced. We decided to discard
measurements showing a B-field drift larger than 4 mG.
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5.3 Semi-classical Monte Carlo simulator
As already anticipated, in order to help and support the understanding of our experimental
observations, I developed a conceptually simple (yet to some extent physically accurate)
semi-classical Monte Carlo simulator, which attempts to replicate numerically the micro-
scopic mechanisms at play within our experimental setup. Honestly, this started as a
somewhat playful side project of mine, in a moment while we were still trying to figure out
how to properly (and quantitatively) analyze our data in the lab. However, already the
first results of the simulations were quite promising and encouraging, strongly motivating
me to invest more time in the development of the code.

In general, from a physical point of view, several factors possibly concur to make the
diffusion of ultracold Li impurities in a Cr bath a rather non-trivial phenomenon: First, the
comparably large mass asymmetry MCr/mLi ≃ 8.8 could play a significant role here, with
respect to the widely-investigated homonuclear case [90, 188–190]. Roughly speaking, even
a single collision with a (nearly ten times heavier) Cr atom can significantly impact the
trajectory of a Li impurity.4 Second, compared to homonuclear 6Li mixtures near broad
Feshbach resonances, the narrow character of 6Li-53Cr FRs could also affect the transport
properties of our system, since, as discussed in Sec. 1.5, for large R∗ values the various
(relative) momentum classes reach the unitary-limited condition at different magnetic field
detunings. Third, in contrast with the basic assumptions of most theoretical models, in
our experiment the density of the “medium” (i.e. the chromium bath) is not homogeneous,
but features a Gaussian envelope due to the nature of harmonically trapped (thermal)
gases. Finally, the effects of the magnetic trap itself – which also confines Li atoms, albeit
weakly – should be taken into account as well.

As I pointed out in Sec. 5.1, none of the (most common) analytical models existing in
the literature incorporates all these effects, in particular the last two, potentially making
the interpretation of our experimental observations unclear, and surely not straightforward.
In this Section, I describe how they are instead taken into account in my simulations,
providing a summary of the algorithm and of the most relevant equations employed. The
code, written in Python, is available at the link in Ref. [203].

5.3.1 Numerical simulator: basic form
A first, fundamental approximation of the simulator is based on the fact that, for the
transport experiments of this Chapter, the condition NLi ≪ NCr generally holds: Namely,
the lithium cloud is considered as a statistical ensemble of thermal impurities, which
do not cause any (macroscopic) effect on the larger chromium bath. This assumption
considerably reduces the computational effort required for the simulation, as only the
trajectories of (a few 103 ÷ 104) Li particles have to be computed, whereas the Cr gas is
treated within a sort of local-density approximation. Secondly, the external confinement is
incorporated through the harmonic approximation: This implies that, in the absence of
collisions, the unperturbed motion of lithium atoms within the trap has an exact analytical
solution, which does not require numerical integration of the equations of motion. Thirdly,
as shown in Sec. 1.7, the coupled-channel model of A. Simoni (see Sec. 3.2) provides us
with essentially complete knowledge of the two-body collisional properties of our mixture,
which can be described – with remarkable accuracy – in terms of the simple analytic
formulae of the zero-range approximation. This allows for a physically accurate modeling
of (low-energy and pairwise) elastic s-wave collisions, including the effects of the mass
imbalance, by employing the parameters characterizing the selected Li|1⟩-Cr|1⟩ Feshbach

4Note that this is also in stark contrast to the “historical” standard scenario of Brownian motion, where
the diffusing particle is typically orders of magnitude heavier than the surrounding fluid molecules.
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resonance. Lastly, both Li and Cr atoms are always assumed to be classical particles,
with well-defined positions and velocities, neglecting any effect of fermionic statistics nor
quantum interference.

Before discussing the practical implementation of the program, an important remark
should be made: The algorithm is essentially a discrete-time simulation, where the temporal
axis is broken up into small time slices of equal length dtstep, and the state of the system
is updated only after each step, according to the events happening in that time slice.
Intuitively, the choice of dtstep may play an important role, and one generally expects a
requirement for dtstep to be “sufficiently small”, although a compromise must be found in
order to avoid exceedingly long computation times. This holds true also for my program
(which is rather naive in terms of computational efficiency), albeit in a slightly subtle way:
In fact, in most discrete-time physical simulations, the concerns about the optimal time
step are mainly due to possible energy-conservation issues, especially when performing
numerical integration of the equations of motion. However, the analytic solution of the
harmonic oscillator, used in the basic form of the simulator (see below), ensures energy
conservation (and exact results for the unperturbed motion) regardless of the choice of
dtstep.

The main issue is instead connected with the evaluation of collision events: As better
detailed in the following, in each time slice the probability that a given Li atom undergoes
a collision is estimated from a local elastic scattering rate, evaluated from Eq. (1.6) as

Γel(x, y, z, krel) = nCr(x, y, z) · σel(krel) ·
ℏ krel
mred

, (5.18)

where nCr(x, y, z) is the local density of the chromium gas at the position of the Li atom,
and krel = mredvrel/ℏ is computed by randomly sampling a Cr atom from its velocity
distribution. In the simulation, the dimensionless product Γel(x, y, z, krel) · dtstep quantifies
then the collision probability for a Li atom during a given time slice. Importantly, to avoid
underestimation of the number of collision events, the condition Γel(x, y, z, krel) · dtstep ≤ 1
must always be satisfied. This turns out to be the most stringent constraint on the choice
of dtstep, which – for simulations at low temperatures and small magnetic field detunings,
where the average Γel can reach 50÷100 kHz – may need to be as small as 1÷2 µs. On the
other hand, for higher temperatures and relatively large |δB| ≳ 20÷ 30 mG (i.e. generally
lower Γel values), satisfying the condition Γel(x, y, z, krel) · dtstep ≤ 1 results in much less
stringent requirements, with suitable dtstep values of even 50 ÷ 100 µs. In practice, to
optimize the computation time, the program employs different time steps depending on
the selected magnetic field detuning, with smaller dtstep for smaller |δB|, and vice versa.

Initialization
The program accepts as input the main parameters characterizing the initial atomic samples
(see, e.g., those reported in Tab. 5.1), such as atom numbers, axial and radial in situ sizes of
the two clouds, trap frequencies, and effective temperatures (where the latter are intended
as measurements of the variance of the corresponding velocity distributions, σ2

v = kB T/m ).
As anticipated, Li and Cr atoms are generally treated as classical particles, characterized
by Maxwell-Boltzmann (i.e. Gaussian) distributions both in position and in momentum
space. Further, only the trajectories of Li impurities are effectively computed, with the Cr
gas essentially acting as an unperturbed thermal reservoir of particles.

The first step consists in generating the initial position and velocity distributions of
the Li atoms. This is accomplished by exploiting an internal random-number generator
(RNG) that directly returns Gaussian-distributed (pseudo-)random numbers. Specifically,
for each simulated atom, six (pseudo-)random numbers are generated (based on the
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sample parameters given in input), representing the initial values of the spatial coordinates
(x0; y0; z0) and velocities (v0,x; v0,y; v0,z), respectively. These numbers are stored in arrays
and then passed to the subsequent stage of the program, where they are used as the initial
conditions to determine the solutions for the harmonic motion.

Unperturbed harmonic motion
The external (optical and magnetic) confinement is taken into account in the program
within the harmonic approximation, with knowledge of the trap frequencies from previous
experimental characterization. This implies that, without collisions, the particles move as
harmonic oscillators, according to the laws of motion (e.g., for the x̂ direction):

x(t) = Ax sin(ωx t+ ϕx) , (5.19a)
vx(t) = Ax ωx cos(ωx t+ ϕx) , (5.19b)

where ωx is the trap frequency (in rad/s). In Eqs. (5.19), the constants Ax and ϕx are
initially determined from the boundary conditions at t = 0, namely:

ϕx = arctan
(
ωx x0
v0,x

)
, (5.20a)

Ax = 1
ωx

√
v2

0,x + ω2
x x

2
0 . (5.20b)

The temporal axis is divided into small slices of equal length dtstep. At each time step, the
positions and velocities of the lithium atoms are updated according to Eqs. (5.19), with
analogous equations for the radial ŷ and ẑ directions.

The program keeps internal memory of the previously evaluated coordinates and
velocities, and saves them (with a sampling of 0.5 ms) in a set of output files. However,
it should be stressed that the propagation given by Eqs. (5.19) does not strictly rely on
the knowledge of the coordinates at the previous step(s): Once Ax and ϕx are known, x(t)
and vx(t) can be evaluated for any t (assuming no collisions). In this sense, the choice of
dtstep does not affect the “free” propagation. The previous coordinates (and velocities) are
instead kept in memory for subsequent statistical analysis, such as evaluation of mean free
path, mean free time, and autocorrelation functions.

In Fig. 5.7 I show the outcome of two different numerical simulations performed with
collisions artificially disabled. For each dataset, the output files containing the x coordinates
of all simulated Li atoms (sampled every 0.5 ms), are used to build histograms, out of which
the cloud size sx is extracted through Gaussian fits [with same conventions as in Eq. (5.14)].
The resulting time evolutions sx(t) show purely undamped breathing oscillations, perfectly
described by the theory expectations of Eq. (5.7), given the relevant input parameters of
each simulation (see caption), with no need for a fit. This excellent agreement between
numerical simulations and theory represents a first, preliminary benchmark of the program,
testifying that the unperturbed harmonic motion in the trapping potential is properly
taken into account.
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Figure 5.7 – Outcome of numerical simu-
lations with collisions artificially disabled.
The trajectory of each Li atom is com-
puted according to Eqs. (5.19). Overall,
the Li cloud undergoes purely undamped
breathing oscillations, perfectly described
by Eq. (5.7). Red (blue) points are ob-
tained for s0,x = 17 µm, T0,x = 430 nK
(s0,x = 35 µm, T0,x = 130 nK), and
ωx = 2π × 17 Hz. The black curves are
simply plots of Eq. (5.7), with the nominal
parameters of each dataset and no fitting
performed. The excellent agreement be-
tween simulation and theory testifies that
the unperturbed harmonic motion in the
trap is properly taken into account.

Collision probability
For each time step, and for each simulated atom, after the “free” propagation given by
Eqs. (5.19) has been carried out, the program checks for the probability of a collision to
occur. As anticipated [see Eq. (5.18)], the algorithm first computes a local scattering rate

Γel(x, y, z, krel, δB) = nCr(x, y, z) · σel(krel, δB) · ℏ krel
mred

, (5.21)

at the current position (x, y, z) of the selected Li atom. Specifically, in Eq. (5.21), the
density profile of the chromium gas is described by the Gaussian envelope

nCr(x, y, z) = NCr
(2π)3/2 sx,Cr sy,Cr sz,Cr

· exp
[
− x2

2 s2
x,Cr
− y2

2 s2
y,Cr
− z2

2 s2
z,Cr

]
, (5.22)

with atom number NCr and 1/
√

e-radii s{x,y,z},Cr taken from the input parameters.
The s-wave elastic scattering cross section σel(krel, δB) is evaluated from Eq. (1.13) as

σel(krel, δB) = 4π a2(δB)[
1 + k2

relR
∗(δB) a(δB)

]2
+ k2

rel a
2(δB)

, (5.23)

with a(δB) and R∗(δB) given by Eqs. (1.18) and (1.21), respectively, and using the best-
fitted parameters reported in Sec. 1.7.
Finally, the relative velocity vrel, which determines the relative momentum krel = mred vrel/ℏ,
is computed by randomly sampling a Cr atom from its thermal velocity distribution: In
practice, the program generates three Gaussian-distributed (pseudo-)random numbers
vi,Cr (with i = x, y, z), centered around zero and with variance σ2

vi,Cr = kB Ti,Cr/MCr

given by the input (effective) temperatures Ti,Cr. The relative velocity is then obtained as
vrel = |v⃗Li − v⃗Cr|.
Given the local scattering rate from Eq. (5.21), the collision probability is evaluated as
Pcoll = Γel(x, y, z, krel, δB) · dtstep, which is a dimensionless positive number. In practice,
the program generates a uniformly-distributed (pseudo-)random number Rcoll ∈ [0, 1], and
compares it with Pcoll: if Rcoll ≤ Pcoll the collision takes place, otherwise the algorithm
goes directly to the next iteration.

Before discussing how the nature of s-wave collisions is taken into account, I stress the
fact that, in order not to underestimate the number of scattering events, the time increment
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dtstep must be chosen small enough to ensure that Pcoll – each time is evaluated – is always
less than 1, and thus it can be effectively used as a probability. In fact, if, during a given
iteration, it happens that Pcoll > 1, a collision will surely happen in that time step, since by
definition Rcoll ≤ 1. However, the “excess probability” ∆Pcoll = max[(Pcoll − 1), 0], in the
current implementation, is not taken into account, ultimately resulting in (possibly large
numbers of) missed collisions. While different solutions can in principle be conceived (e.g.,
carrying the excess probability to the next iteration step, or allowing for the possibility of
consecutive collisions with probability given by ∆Pcoll), I opted for the “brutal” strategy
of reducing dtstep when needed, as it seemed to me the least ambiguous one.

The resulting requirement of Pcoll ≤ 1 to hold under any circumstance actually repre-
sents the most stringent constraint on the choice of dtstep. To clarify, Pcoll also depends
on the magnetic field detuning, which is known and fixed for every simulation, and – in a
somewhat uncontrolled way – on the relative momentum krel, which is essentially a random
quantity. Therefore, in principle, no predictions can be made a priori for the optimum
dtstep, and one has to rely on a trial-and-error approach. In practice, the program keeps
track of all the computed Pcoll values and, for each magnetic field detuning, at the end
of the simulation provides the maximum value Pcoll,max, the average value Pcoll,avg, and
the number of occurrences in which the condition Pcoll ≥ 1 has been encountered (Nflags).
From these values, one can optimize the choice of the time step for each simulated δB.
Namely, dtstep is reduced until Pcoll,max < 1 (and thus Nflags = 0). Moreover, a general
rule of the thumb for a “safe” dtstep choice is to keep also Pcoll,avg ≲ 0.1. Typical values
range from dtstep = 50÷ 100 µs (far from resonance), down to dtstep = 1÷ 2 µs (very close
to resonance and for low temperatures).

Modeling of s-wave collisions
If the condition Rcoll ≤ Pcoll is satisfied, a collision event occurs. Collisions are modeled as
elastic s-wave scattering, conserving the modulus of the relative momentum krel (i.e. of
the relative velocity vrel), while changing its spatial orientation with uniform probability
across the solid angle. This is accomplished by generating two random angles θ∗ and ϕ∗

according to:

θ∗ = arccos (Rand[−1, 1]) , (5.24a)
ϕ∗ = Rand[0, 2π] , (5.24b)

which in turn determine the new components of the relative velocity

v′
rel,x = vrel · sin(θ∗) cos(ϕ∗) , (5.25a)
v′

rel,y = vrel · sin(θ∗) sin(ϕ∗) , (5.25b)
v′

rel,z = vrel · cos(θ∗) , (5.25c)

with the prime used hereinafter to denote quantities evaluated after the collision. In
Eqs. (5.24), the function Rand[a, b] returns a uniformly-distributed (pseudo-)random
number in the range [a, b]. It is important to realize that, since the element of solid angle
is dΩ = d cos θ dϕ, the correct way of generating the polar angle θ∗ is indeed that given by
(5.24a). By contrast, writing θ∗ = Rand[0, π] would result instead in a non-spherically-
symmetric distribution of the outgoing v⃗ ′

rel directions, even in the center-of-mass frame.
By requiring (three-dimensional) momentum conservation in the lab frame, i.e.

mLiv⃗Li +MCrv⃗Cr = mLiv⃗
′

Li +MCrv⃗
′

Cr , (5.26)
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with v⃗ ′
Cr = v⃗

′
Li − v⃗

′
rel and knowledge of v⃗ ′

rel from Eq. (5.25), one finds that the exit velocity
v⃗

′
Li of the Li atom is given by (e.g. for the x direction):

v′
Li,x =

M̃ (v′
rel,x + vCr,x) + vLi,x

1 + M̃
, (5.27)

where M̃ = MCr/mLi. From Eq. (5.27), one realizes that, even in the lab frame, the
outgoing velocity of the lithium atom is essentially set by v⃗ ′

rel + v⃗Cr, with “memory” of the
previous v⃗Li nearly entirely lost already after one collision.

Finally, before moving to the propagation for the next time step, the constants of
motion Ax and ϕx are updated according to (and analogous for ŷ and ẑ):

ϕ′
x = arctan

(
ωx x

′

v′
Li,x

)
− ωx t

∗ , (5.28a)

A′
x = 1

ωx

√
v′

Li,x
2 + ω2

x x
′2 , (5.28b)

where t∗ is the time at which the collision happened, and x′ = x. In other words, collisions
are treated as local and instantaneous events that do not change the coordinates of the
particles, but only their velocities.
The new values of A′

x and ϕ′
x (as well as those obtained for the other two directions) are

then used in Eqs. (5.19) for the subsequent propagation, until a new collision occurs.

5.3.2 Wigner’s retardation time
Besides properly accounting for the unperturbed oscillatory motion (see again Fig. 5.7),
the numerical simulator in its basic form (i.e., as described in the previous Sec. 5.3.1),
reproduces our high-temperature experimental data almost perfectly, as I will show in
Sec. 5.4. However, when tested against low-temperature datasets, the agreement becomes
poorer, especially close to the resonance pole: In particular, the simulator never yields
anomalous exponents α < 1, i.e. it does not account for the experimentally observed
subdiffusive behavior. This discrepancy motivated me to attempt the implementation of
new features, mainly trying to introduce some “quantumness” in my (otherwise basically
classical) program. Following a suggestion from D. Petrov, the first implemented “quantum
correction” was Wigner’s retardation time [204]. In this Section, I briefly recall this concept,
and discuss its implementation within my code.

Following Eisenbud’s idea [204], a nonzero energy derivative of the scattering phase
shift can be interpreted as a time delay. Building on this concept, Wigner described the
retardation time experienced by a free particle scattering off a fixed scattering center [204].
If the particle moves with velocity v (momentum ℏk), and undergoes elastic scattering, its
trajectory after the collision is “delayed” by a quantity [205]

∆tret = 1
v

dδ(k)
dk , (5.29)

where δ(k) is the scattering phase shift. Note that ∆tret can take either positive or negative
values: The former case represents situations in which the particle gets “trapped” by
the scatterer, whereas the latter one describes scenarios where the particle hardly enters
the scattering region. There is no upper bound for ∆tret (i.e. the trapping time can be
arbitrarily long), however, since causality must hold, there exists a lower bound set by the
“effective radius” Ra of the scatterer: ∆tret ≥ −2Ra/v.



100 5. Anomalous diffusion of light impurities in a heavy fermion gas

In the case of a narrow s-wave Feshbach resonance, for low-energy collisions one has [see
Eq. (1.11)]:

cot
(
δ0(krel)

)
= − 1

krel a
− krelR

∗ , (5.30a)

dδ0(krel)
dkrel

= a
(k2

relR
∗a − 1)

(1 + k2
relR

∗a)2 + k2
rela

2 . (5.30b)

By generally defining the scatterer “effective radius” from the elastic cross section as [see
Eq. (1.13)]:5

Ra =
√
σel
4π = |a|√

(1 + k2
relR

∗a)2 + k2
rela

2
, (5.31)

one can see that causality is automatically never violated. Figure 5.8 shows a two-
dimensional plot of ∆tret, obtained by inserting Eq. (5.30b) in Eq. (5.29) and using the
parameters characterizing the selected Li|1⟩-Cr|1⟩ FR. As one can notice, for low relative
momenta, |∆tret| can assume fairly large values exceeding 100 µs. In general, the retardation
time is positive (∆tret > 0) when either a < 0 or a > 1/(k2

relR
∗), and negative (∆tret < 0)

for 0 < a < 1/(k2
relR

∗); see the black curve in Fig. 5.8.
Given Eqs. (5.29) and (5.30b), the implementation of the retardation time for a free

particle bouncing off a fixed scatterer is rather straightforward. However, in my numerical
simulator the particles (i.e. Li atoms) are trapped in a harmonic potential, and the scattering
centers (i.e. Cr atoms) are generally moving, thus more careful considerations are required.
My approach to include retardation effects starts from the fact that scattering theory, by
construction, provides meaningful information solely in the “far-field” (i.e., for r →∞),
absorbing all the short-range dynamics in the phase shift(s). From this viewpoint, Wigner’s
retardation effects are equivalent to a model where the particle, undergoing the scattering
event at t = t∗, is destroyed, and a new particle is created somewhere in the vicinity of
the scattering center, such that the new particle’s trajectory passes from the scatterer’s
position at t′ = t∗ + ∆tret; see the sketches in Figs. 5.9(a) and 5.9(b).

In the simpler case of a harmonically-trapped Li atom colliding with a fixed Cr scatterer
(i.e. not moving and not recoiling), it is immediate to see that, after having computed the

Figure 5.8 – 2D plot of
the retardation time ∆tret,
as a function of krel and
δB. The plot is obtained
by using Eq. (5.30b) in
Eq. (5.29), with the spe-
cific a(δB) and R∗ charac-
terizing the selected Li-Cr
FR, and an average density
of 1012 cm−3. The black
curve represents the con-
dition k2

rel R
∗ a = 1, and

separates positive (above)
from negative (below) val-
ues of ∆tret.

5Note that, far from resonance, one retrieves the textbook result Ra ≃ |a|.
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constants A′
x and ϕ′

x according to Eqs. (5.28) (i.e. without the effect of the retardation
time), one can simply use

ϕ′
x,ret = ϕ′

x − ωx ∆tret (5.32)

in place of ϕ′
x to obtain the desired far-field effect of ∆tret. Interestingly, in this case a

“retarded” collision causes a phase shift of the phase-space trajectory, see Fig. 5.9(c) and
Fig. 5.9(d).

More generally, if the Cr scatterer is allowed to move, all the above considerations
should instead be applied to the relative particle, which should pass from the center of mass
(c.o.m.) position at time t′ = t∗ + ∆tret. In this case, assuming that the c.o.m. motion is
not affected by the collision,6 the program first computes the Li and Cr outgoing trajectories
without the effect of the retardation time, i.e. using Eqs. (5.28) and analogue ones for Cr.
From these, one obtains the c.o.m. position and velocity at time t′:

xcom(t′) = mLix
′
Li(t′) + MCrx

′
Cr(t′)

mLi + MCr
, (5.33a)

vcom,x(t′) =
mLiv

′
Li,x(t′) + MCrv

′
Cr,x(t′)

mLi + MCr
=

mLiv
ret
Li,x(t′) + MCrv

ret
Cr,x(t′)

mLi + MCr
. (5.33b)

Then, by further assuming that – at the time t′ = t∗ + ∆tret – the relative particle emerges
from the c.o.m. position with the same (relative) velocity v⃗ ′

rel it would have had (at the time

Figure 5.9 – Implementation of Wigner’s retardation time in the numerical simulation. (a) Sketch
of a “retarded” collision in free space (with ∆tret > 0), according to Wigner’s picture. The particle
remains “trapped” around the scattering center for a finite time ∆tret and then leaves, following its
“unretarded” trajectory but carrying an overall delay. (b) In the far-field, the above situation is
equivalent to a process in which the initial red particle is destroyed by the collision, and a new
particle is created at a different position near the scattering center, such that the new particle’s
trajectory reproduces the delay effect. (c) Representation of a basic (“unretarded”) s-wave collision
in the phase-space cut (x̂, v̂x). As discussed in Sec. 5.3.1, standard collision events are assumed
to be instantaneous, and to leave the position of the particles unchanged. In the c.o.m. frame,
the modulus of the relative velocity is conserved. In the lab frame, the velocities of the colliding
particles generally change. This is represented by the “jump” of the red particle from one orbit to
another, in this case increasing the vx component of its velocity. (d) Phase-space representation of
the implementation of a “retarded” s-wave collision, in the simpler case in which the scattering
center is fixed. The red particle first jumps to a different orbit similarly to panel (c), but its new
trajectory is delayed by a phase ωx ∆tret, in analogy with the sketch of panel (b).
6An important remark should be made here: Strictly speaking, in the two-body scattering problem,
separation of center of mass and relative motion is only valid in free space, or for ω1 = ω2 in a harmonic
trap. Here ω1 and ω2 are the trap frequencies of the two particles. In the general case ω1 ̸= ω2, c.o.m. and
relative degrees of freedom are coupled, see e.g. Refs. [206,207]. In particular, this holds true also in our
system, as generally ωLi ̸= ωCr. However, the effects of the coupling between c.o.m. and relative motion
are typically relevant only for extremely tight traps, such as optical lattice sites or tweezers. In our case,
instead, both ωLi and ωCr, as well as their difference, are typically less than 2π × 500 Hz, and thus for
simplicity I decided to neglect any coupling effect between c.o.m. and relative particle. This was implicit
also in the “basic” implementation of s-wave collisions described in the previous Sec. 5.3.1.
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t∗ of the collision) without the effect of the retardation time [i.e., as given by Eqs. (5.25)],
one finds that the outgoing “retarded” trajectory of the Li atom should satisfy:

xret
Li (t′) = xcom(t′) , (5.34a)

vret
Li,x(t′) = vcom,x(t′) + M̃

1 + M̃
v′

rel,x . (5.34b)

From these two conditions, in complete analogy to Eqs. (5.28), one obtains the new
constants of motion

ϕret
x = arctan

(
ωx x

ret
Li (t′)

vret
Li,x(t′)

)
− ωx t

′ , (5.35a)

Aret
x = 1

ωx

√(
vret

Li,x(t′)
)2 +

(
ωx xret

Li (t′)
)2
. (5.35b)

In summary, according to this receipt, the Li atom – which undergoes a collision event
at time t∗, happening at position xLi, with initial velocity vLi,x – emerges instantaneously
from the collision (i.e. at the same time t = t∗), but with new position and velocity given
by

xret
Li (t∗) = Aret

x sin(ωx t
∗ + ϕret

x ) , (5.36a)
vret

Li,x(t∗) = Aret
x ωx cos(ωx t

∗ + ϕret
x ) ; (5.36b)

i.e., those obtained by using Eqs. (5.35) in the laws of motion Eqs. (5.19). Note that,
contrarily to the case of fixed scattering centers [see again Eq. (5.32)], here the effect of
the retardation time is not a simple delay of the new phase-space trajectory (although this
remains true for the relative particle), since generally also the amplitude Ax changes.

Evaluation of Eqs. (5.35) essentially concludes the procedure to implement retardation
effects, and also the part of the code related to collisions in general. From this point on, the
program goes to the next iteration, i.e. the propagation of the harmonic motion given by
Eqs. (5.19) for the subsequent dtstep, using the new constants Aret

x and ϕret
x and analogous

ones for the other two directions.
I conclude this Section by briefly mentioning that retardation effects can be enabled or

disabled with a global option found in the initial settings. Moreover, a slightly different
implementation is available: In the case of positive retardation times ∆tret > 0, one can
choose to disable further collisions for the entire duration of the “trapping time”, i.e. in
the time interval t∗ < t < t∗ + ∆tret. This variation was proposed as an attempt to
“mimic” the formation of a temporary, metastable dimer state [see qualitative sketch in
Fig. 5.9(a)], forcing the complete blocking of atom-dimer collisions for simplicity. The two
implementations differ only slightly in terms of the resulting evolution of the MSD, but
the second one (by construction) causes a noticeable decrease of the number of collision
events.
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5.4 The “high-temperature” regime
As anticipated in the introduction, our transport experiments were initially aimed at
measuring the diffusion coefficient D1 by focusing, in particular, on the regime of high
temperatures (and strong interactions). This seemed a reasonable starting point for the
investigation of transport phenomena in our system: First, the thermal regime appears
intuitively easier to understand than the quantum-degenerate one, as fermionic statistics
is expected to play a minor role and the atomic clouds are well described by Maxwell-
Boltzmann distributions. Second, from a practical point of view, one desires to maximize
the observation time, in order to get more reliable information on the transport coefficients.
In our experimental configuration, the effective observation time is limited by the finite
axial extension of the chromium cloud, which acts as a medium for the “diffusing” (broadly
speaking) lithium atoms. Indeed, once these latter reach the tails of the Cr density
distribution, they are essentially free to escape along the axial direction, subsequently
moving ballistically within the external trapping potential. Consequently, to extend the
observation time window, we decided both to enlarge the size of the chromium cloud,
finding a compromise with the corresponding density drop, and to significantly compress
the initial Li gas along the axial direction, employing high optical powers in the 1560-nm
vertical beam.

In practice, to obtain larger axial sizes of the Cr cloud, we lowered the efficiency of
the “Feshbach cooling” stage (see Sec. 2.7). This can be easily done by increasing the
magnetic field detuning with respect to the optimum one that yields the maximum Cr
PSD, see Fig. 2.9(c). As shown in Figs. 2.9(a) and 2.9(b), a decreased sympathetic cooling
efficiency results in higher final temperatures of the Cr gas (and thus larger axial extensions
of the Cr cloud, albeit not shown there), but also in larger atom numbers. In terms of
particle density, these two effects nearly compensate each other, such that the average
nCr remains roughly constant. Such a non-optimal sympathetic cooling stage generates
(non-fully-thermalized) chromium samples that exhibit different velocity distributions along
the radial and the axial directions, with typical “effective axial temperatures” of about
Tx,Cr ∼ 0.7÷ 1 µK.

On the other hand, to better clarify the meaning of “high temperatures” for what
concerns the Li component – as well as the effects of an increased initial axial confinement
on the subsequent dynamics – it is instructive to have a closer inspection of Eq. (5.7),
i.e. the formula that describes the undamped breathing mode triggered by the sudden
switch off of the vertical beam, which for convenience I report here in the form

sx(t) = s0 ·
√

cos2(ωxt) + A2 sin2(ωxt) , (5.37)

with A = ω0/ωx, where ω0 and ωx are the initial and final trap frequencies, respectively. In
our case, for Li atoms, ωx ≃ 2π×17 Hz (from the magnetic confinement) and ω2

0 = ω2
x+ω2

1560,
with ω1560 being the trap frequency induced by the vertical beam. In the limit ωxt≪ 1,
we can approximate Eq. (5.37) with

sx(t) ≃
√
s2

0 + s2
0 ω

2
x (A2 − 1) t2 , (5.38)

which has the familiar form of ballistic time of flight, where the quantity s2
0 ω

2
x (A2 − 1) =

s2
0 (ω2

0 −ω2
x) plays the role of the variance of the velocity distribution, with a corresponding

“release temperature”

Tx,rel = mLi

kB
s2

0
(
ω2

0 − ω2
x

)
. (5.39a)
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At the same time, for Maxwell-Boltzmann gases, the “real” temperature T0 of the system
is connected to the initial size and trap frequency by s2

0 = kB T0/(mLi ω
2
0), implying that

Tx,rel = T0 ·
(

1 − ω2
x

ω2
0

)
. (5.39b)

Note that, from Eqs. (5.39), for ω0 ≫ ωx (strong trap frequency mismatch) one has
Tx,rel ≃ T0, whereas in the opposite limit ω0 ≃ ωx (negligible mismatch) one finds
Tx,rel ≃ 0, regardless of T0. In other words, in the absence of Li-Cr interactions, 1/2 kB Tx,rel
quantifies the “release energy” of the Li gas, which drives the axial breathing mode caused
by the sudden change in the trap frequency. This can be easily realized by backward
reasoning, noticing that, for ω0 = ωx (i.e. A = 1), Eq. (5.37) yields a steady sx(t) = s0,
i.e. no dynamics.7 For the “high-temperature” dataset discussed in this Section, the initial
Li axial trap frequency (size) was around ω0 ≃ 2π × 220 Hz (s0 ≃ 17 µm), yielding a
release temperature of about Tx,rel ≃ 400 nK. By contrast, for the “low-temperature”
dataset of the next Sec. 5.5, with initial axial trap frequency ω0 ≃ 2π × 60 Hz and in situ
size s0 ≃ 30 ÷ 35 µm, the release temperature was on the order of Tx,rel ≃ 100(20) nK,
i.e. about three-to-four times lower.8 Importantly, however, I anticipate here that, somehow
contrarily to what we originally expected, the initial temperature of the lithium gas was
found to play only a minor (if not negligible) role in our transport experiments, especially
in the “interesting” (i.e. strongly-interacting) region close to the FR pole. The reason is
that, for very small detunings, the average elastic scattering rate per Li atom can reach
values on the order of tens of kHz, implying a nearly instantaneous thermalization with the
surrounding Cr particles. The large number imbalance NCr ≫ NLi ensures that the Cr bath
remains essentially unaffected by the energy exchanged with the Li impurities, and thus the
equilibrium temperature of the system is entirely set by TCr. In this sense, for the “high
temperature” dataset of this Section, the mean Cr temperature TCr = 1/3(Tx,Cr+Ty,Cr+Tz,Cr)
was around 600 nK, with a density-averaged density ⟨nCr⟩Li ≃ 0.4×1012 cm−3. For the “low
temperature” dataset presented in the next Sec. 5.5, instead, the Cr bath was characterized
by TCr ∼ 400 nK and ⟨nCr⟩Li ≃ 0.6×1012 cm−3. While at first glance the difference may not
appear substantial, in the next Sections I will discuss its importance more quantitatively.

After this premise on the meaning of “low” and “high” temperatures in the context of
our transport measurement, I now move to present our experimental observations for the
high-T dataset. We prepared our samples following the procedure detailed in Sec. 5.2, and
we subsequently monitored the first 20 ms of the lithium expansion for different magnetic
field detunings. We mainly focused on the root-mean-square displacement of the Li cloud,
sx =

√
⟨x2⟩, extracted from the absorption images through two-dimensional Gaussian

fits with the conventions of Eq. (5.14). For this dataset, we tested and employed both
the data acquisition approaches sketched in Fig. 5.6(a). First, to give an overall picture,
in Fig. 5.10 I show the “spectra” of sx(δB) recorded at fixed evolution times tfix (filled
circles). For |δB| ≳ 50 mG, i.e. far from resonance, the MSD grows ballistically in time,
showing no significant trend with the magnetic field detuning. By contrast, for smaller
detunings |δB| ≲ 30 mG, we observe a considerable slowdown of the Li expansion, with
7An alternative and more rigorous approach, not reported here for sake of conciseness, is based on the
comparison between the total mechanical energies before and after the instantaneous change of the trap
frequency. Basically, when this happens, the sample is (possibly strongly) out of equilibrium in the new
trap configuration. This can be seen as an excess kinetic energy ∆Ekin (even though energy is effectively
subtracted from the system!), and it can be easily shown that ∆Ekin = 1/2 kB Tx,rel, with Tx,rel given by
Eqs. (5.39).

8Note that, given the functional form of Eq. (5.37), the initial trap frequency ω0 – and thus the “release
temperature” Tx,rel – can be readily derived from a measurement of s0 and sx(t = π/2ωx) = s0 A, provided
ωx is already known.
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sx(δB) exhibiting a pronounced minimum at a small, positive detuning of about +7(2) mG.
As discussed in Sec. 1.5, this owes to the narrow character of the s-wave FRs at our
disposal, which (for all finite relative momenta) shifts the peak of the elastic scattering
cross section to the attractive side of the resonance [see Eq. (1.22) and Fig. 1.1], in our
case corresponding to δB > 0. Remarkably, our observation matches the theoretical results
of Sec. 1.5 quantitatively well: For a narrow resonance, a (relative) momentum class krel
reaches the unitary-limited condition when k2

rel = −1/(aR∗). Given the trend of a(δB)
[see Eq. (1.18)], for small detunings δB ≪ ∆B we have k2

rel ≃ δB/(R∗ abg ∆B) [or, in other
terms, ℏ2k2

rel/(2mred) = δµ δB, using Eq. (1.20)]. This means that, for atom pairs colliding
with relative momentum krel, the “optimum” detuning that yields the maximum scattering

Figure 5.10 – High-temperature dataset: Axial root-mean-square size sx of the Li cloud as a
function of the magnetic field detuning, for different (fixed) evolution times tfix, see the color scale.
The filled circles are the experimental results. Each point represents the average of at least three
independent measurements, with the error bars indicating the standard deviation of the mean. The
red dashed arrow marks the position of the optimum detuning δBopt, estimated from Eqs. (5.40)
and (5.41b) with TCr = 600 nK, which quantitatively matches our experimental observation. The
solid lines represent instead the outcome of my simulation, run with the sole “basic ingredients”
described in Sec. 5.3.1, with the input parameters reported in Tab. 5.2. Here inclusion of retardation
effects and mean-field interactions does not change appreciably the simulation results. Importantly,
the almost perfect agreement between simulation and experiment constitutes the first meaningful
benchmark for my numerical model, and indicates that our experimental observations in this
temperature regime can be explained and understood in terms of elastic two-body s-wave collisions
only.
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cross section is
δBopt ≃ R∗ abg ∆B k

2
rel . (5.40)

At the same time, for a (thermal) heteronuclear mixture in a harmonic trap, the thermally-
averaged modulus of relative velocity is given by [208]

⟨vrel⟩ =
√

8 kB
π

(
T1
m1

+ T2
m2

)
, (5.41a)

where Ti and mi are, respectively, the temperatures and masses of species 1 and 2. In our
case, as discussed above, at small detunings the fast thermalization rates and large number
imbalance imply that TLi = TCr essentially already from the start of the measurement,
regardless of the initial TLi. Therefore we have

⟨vrel⟩ =
√

8 kB
π

(
TCr

mLi
+ TCr

MCr

)
. (5.41b)

For TCr = TCr = 600 nK, from Eq. (5.41b) one finds ⟨krel⟩ = mred ⟨vrel⟩/ℏ ≃ 4 µm−1.
Inserting this value in Eq. (5.40), together with the parameters characterizing the selected
Li|1⟩-Cr|1⟩ FR (abg = 41.5 a0, R∗ = 6020 a0, ∆B = 477 mG), one obtains δBopt ≃ +6 mG,
nicely matching the position of the observed minimum of sx(δB), see the red dashed line
in Fig. 5.10.

I anticipate here that, as it can be noticed in Fig. 5.10 (solid lines, with same color
code as the experimental points), the numerical simulator I developed – with the sole basic
ingredients described in Sec. 5.3.1, and with input parameters fixed to those measured on
the atomic clouds (see Tab. 5.2) – is able to reproduce quantitatively our experimental
results in this temperature regime, with an almost perfect agreement at all times and
magnetic field detunings explored. This already suggests that, at these temperatures, the
sole mechanism of two-body elastic s-wave collisions (at a narrow resonance) suffices to
account for our experimental observations.

A more quantitative analysis of the experimental data acquired as in Fig. 5.10 is difficult
to obtain. In fact, as discussed in Sec. 5.1, diffusion processes are better characterized
in the time domain, i.e. from the temporal evolution of the MSD. However, we found it
rather challenging to extract s2

x(t) from the spectra of Fig. 5.10, owing to the extreme
sensitivity of the outcome to small (∼ mG level) relative shifts of the horizontal axes
between different datasets, in particular in the region where sx(δB) is steeply decreasing.
We therefore acquired another set of measurements in this temperature regime, following
the “brute-force” approach depicted in Fig. 5.6(a). The experimentally measured time
traces sx(t) are shown in Fig. 5.11(a) for various δB values (see color scale). As one
can notice, the slowest expansions are observed for small positive detunings (darker blue
circles), in complete analogy to the data of Fig. 5.10. Moreover, small negative detunings
(darker red triangles) generally feature significantly higher expansion rates compared to
positive ones. Finally, time evolutions acquired at large detunings (gray symbols), either
positive or negative, show a decrease of sx(t) for t > 15 ms, which is the expected behavior
for vanishing interactions, according to Eq. (5.37) or, more generally, to Eq. (5.6a). Indeed,
in the absence of collisions, sx(t) reaches its maximum value for τ = π/(2ωx) (and any
other odd multiple of τ), corresponding in our case to 14.7 ms.

In order to better characterize the observed dynamics, as well as to obtain quantitative
estimates of the transport coefficients, we fitted the data of Fig. 5.11(a) with the generalized
power law model Eq. (5.8). Examples of best fits are shown in Fig. 5.11(c), plotted in
double log scale after subtraction of the initial size to emphasize their temporal scaling
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Figure 5.11 – Experimental and numerical results for the high-temperature dataset. (a) Experi-
mental time evolutions of the Li axial size sx(t), acquired for different magnetic field detunings (see
color scale). The lines connecting the points here are merely guides to the eye. (c) Examples of best
fits with the generalized power law model Eq. (5.8), with the anomalous exponent α setting the
color scale. The data show the transition from the ballistic (α ≃ 2) to the diffusive (α ≃ 1) regime.
Each trace is arbitrarily displaced on the vertical direction for display purposes. The gray dashed
lines are guides to the eye showing the expected slopes for α = 1 and α = 2. (e) Same data of
panel (a), but plotted as a 2D heat map (“spectrogram”) to provide an alternative visualization of
the temporal evolution sx(t, δB) for different detunings. Panels (b), (d), and (f) are the analogous
of panels (a), (c), and (e), respectively, but for the numerical data obtained with my simulator.
The input parameters, reported in Tab. 5.2, correspond to those measured on the atomic samples,
within experimental uncertainty. As for the spectra shown in Fig. 5.10, the remarkable agreement
between simulation and experiment let us conclude that, in this regime, our observations can be
understood on the basis of the sole “basic ingredients” described in Sec. 5.3.1. The numerical data
shown here are obtained from the same simulation run that yielded those presented previously in
Fig. 5.10.
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(set by the anomalous exponent α, see color scale). Notably, Eq. (5.8) provides fairly good
fits to our experimental data, in particular when α ≲ 1.5. Time traces featuring α > 1.5
(obtained for large |δB| values) show instead deviations from the trend of Eq. (5.8) at
long observation times [t > 8 ms, corresponding to abscissa values x > 3 in Fig. 5.11(c)].
For these latter, we restricted the fitting region to t ≤ 8 ms. Moreover, a vertical limit
was also applied to exclude points where the root-mean-square axial size of the Li cloud
exceeded that of the Cr one, which for this high-temperature dataset was constantly around
sx,Cr ≃ 130 µm.

According to the characterization provided by Eq. (5.8), in the time window of our
measurements and in terms of the anomalous exponent α, we observe a progressive transition
from a ballistic (α ≃ 2) to a diffusive (α ≃ 1) dynamics, signaled in Fig. 5.11(c) by the
logarithmic slope gradually changing between these two boundaries (see gray dashed lines).
The complete results of the fits with the generalized power law Eq. (5.8), in terms of the
exponent α and the generalized diffusion coefficient Dα, are shown in Figs. 5.12 and 5.12,
respectively, where they are plotted as a function of the magnetic field detuning (colored
circles). Qualitatively, both trends strongly resemble those obtained for the “spectra” of
Fig. 5.10: As the resonance region is approached, and thus the Li-Cr scattering rate is
enhanced, the early-time evolution of the MSD gradually changes from ballistic to diffusive,
as quantified by the anomalous exponent α. In parallel, at first glance surprisingly, the
generalized diffusion coefficient is found to drop by more than two orders of magnitude.
Such a large dynamic range is strictly related to the unconventional units of Dα: In fact,
as one can notice from Eq. (5.8), the SI units of the generalized diffusion coefficient are
[Dα] = m2/sα. In our experiments, we measure the MSD in µm2 and the evolution time
in ms, such that [Dα,exp] = µm2/msα. However, in the literature [209], Dα is typically
normalized to the “quantum of diffusion” ℏ/m, where m is the mass of the particle, and
thus expressed in [D̃α] = [Dα/(ℏ/m)] = s1−α. Note that, for α = 1 (normal diffusion), D̃1
is a dimensionless quantity. In our case, the conversion from µm2/msα to s1−α reads

D̃α [s1−α] = Dα [m2/sα]
ℏ/mLi

= 103α · 10−12Dα,exp [µm2/msα]
ℏ/mLi

. (5.42)

The multiplicative factor 103α, arising from the “fractional units” of Dα, is indeed the
fundamental reason behind the huge dynamical range: For instance, a change in the
anomalous exponent of ∆α = 1 (i.e., as in the ballistic-to-diffusive crossover) generates a
factor 103 in the unit conversion given by Eq. (5.42). In this respect, it is important to
realize that Fig. 5.12(b) constitutes a rather “strange” and unusual plot, since nominally
each point has a different unit of measurement from the others, according to the respective
values of α: this is the reason why each data point is represented with a different color.9

Importantly, however, for the slowest expansion dynamics recorded in this high-T
dataset, which features α = 1.15(5) (i.e. close to normal diffusion), the (generalized)
diffusion coefficient is found to be D1.15 = 30(10) s−0.15 ℏ/mLi. Albeit, for the reasons
just discussed, a direct quantitative comparison is somehow questionable, the low value
of Dα measured in this experiment is “not too far” from the value of D1 measured for
homonuclear 6Li unitary Fermi gases around broad Feshbach resonances [190], of about
D1 ≃ 6 ℏ/mLi. The seeming proximity of our minimum Dα to the “universal” value of
Ref. [190] strongly encouraged and motivated us to perform analogous measurements at
lower temperatures.

9The color scale in Fig. 5.12(a), instead, does not carry the same meaning, as α is anyway a dimensionless
quantity, i.e. a (positive) number. It is introduced mainly to facilitate the comparison between the two
panels.
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Figure 5.12 – Fit results of the generalized power-law model Eq. (5.8). (a) Fitted exponent α,
as a function of the magnetic field detuning δB. The color scale encodes the generalized diffusion
coefficient Dα, normalized to ℏ/mLi. (b) Fitted Dα, normalized to ℏ/mLi, as a function of δB. Note
that the units of Dα depend on the associated exponent α, encoded in the color scale. In both
panels, points with error bars refer to the fits performed on experimental data, while solid lines
show the results of the same analysis conducted on the numerical data, which also in these terms
reproduces our observations remarkably well. Finally, the horizontal dashed lines represent the
experimental values obtained in the non-interacting regime, setting δB ≃ 0.5 G, i.e. close to the
zero crossing of the scattering length.

Before moving to the (more interesting) regime of lower temperatures, a few impor-
tant remarks should be made. The right panels in Fig. 5.11 are the equivalent of the
corresponding left ones, but for the numerical data obtained with my simulator. The
simulation run that produced these figures is exactly the same from which the spectra of
Fig. 5.10 were obtained, i.e. with the sole core ingredients described in Sec. 5.3.1, and input
parameters fixed to the experimentally measured values, see Tab. 5.2. Also in this case,
the simple numerical “s-wave collider” reproduces the experimental observations almost
perfectly. The slightly larger values of sx obtained by the simulation for long observation
times and intermediate-to-large detunings, compared to the experimentally measured ones
[see the red lobes in Figs. 5.11(f) and 5.11(e), respectively], could be ascribed to possible
underestimation of sx in the experiment, when the signal-to-noise ratio is considerably
lowered by the fast expansion of the Li cloud. A more quantitative comparison between
experimental and numerical results is represented by the solid lines in Figs. 5.12(a) and
5.12(b), which show the fit results of the power law model Eq. (5.8) obtained from the
simulated data, following the same procedures adopted for the analysis of the experimental
ones. Once again, I stress the excellent agreement between my simple simulator and the
real-world experiment, letting us conclude that, at least in this regime, the numerical
model effectively embodies all relevant microscopic processes at play in our system.

Finally, I remark that the “superdiffusive” dynamics, encoded in 1 < α < 2 values
should not be interpreted as a persistent feature of the system, which is expected to become
normally diffusive if the observation time was sufficiently long.10

10This statement is supported both by theoretical arguments [see, e.g., Eq. (5.2)], and by numerical
simulations run with long final times and infinitively-extended chromium bath.
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Table 5.2 – Input parameters for high-temperature simulation. A part from the number of
simulated Li atoms – which only affects the “noise” in the simulation, and was chosen to be 104 in
order to keep reasonable computation times (here about 40 minutes on my laptop) – all the other
values are fixed to those experimentally measured for the high-temperature dataset presented in
this Section. The real number of Li atoms in the experiment was NLi = 20(5)× 103. The effective
temperatures and the trap frequencies have a common relative error of about 15% (besides the two
νx, which are known precisely), while the in situ radii share an error of less than 5%. Day-to-day
fluctuations of the experimental parameters are on the order of these uncertainties at maximum.

Species N Tx; Ty; Tz (nK) sx; sy; sz (µm) νx; νy; νz (Hz)
Li 1× 104 400; 400; 400 17; 7.5; 6.5 17; 450; 580
Cr 1.3× 105 1000; 370; 370 110; 11.0; 10.0 14; 88; 112
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5.5 The “low-temperature” regime
Following the promising results of the previous Sec. 5.4, we decided to lower the tempera-
ture of the system and repeat the same kind of measurements. According to our initial
expectations, this should have allowed us to observe more clearly the diffusive regime, i.e. a
purely α = 1 temporal scaling of the MSD (compared to the minimum α value measured
at high temperatures, of about 1.15), and thus to obtain a more straightforward estimate
of the diffusion coefficient D1. Experimentally, we lowered the effective temperatures
of both Cr and Li atoms: For chromium, we increased the efficiency of the “Feshbach
cooling” stage, obtaining final samples with TCr ≃ 400 nK and a density-averaged density
⟨nCr⟩Li ≃ 0.6 × 1012 cm−3. For lithium, we decreased the optical power in the vertical
beam, i.e. the initial trap frequency and release energy, which for this dataset were about
ω0 ≃ 2π × 60 Hz and Tx,rel ≃ 80 nK, respectively. Correspondingly, the initial (average)
axial size of the Li (Cr) cloud was around ∼ 30 µm (∼ 100 µm). However, due to the
small lithium atom number, and the generally low (axial) trap frequencies of both species
(especially after removal of the vertical beam), neither Li nor Cr was below T/TF = 1.

Also for this dataset, we acquired complementary measurements following the two
schemes of Fig. 5.6. The “spectra” of sx(δB) recorded at fixed evolution times are shown
in Fig. 5.13 (colored circles). For large detunings (|δB| → 100 mG), the expansion of
the Li cloud tends to the ballistic one, measured for vanishing interactions close to the
zero-crossing of the scattering length (out of scale in Fig. 5.13). Close to the FR pole
(−20 ≲ δB ≲ +30), instead, sx(δB) features a pronounced “dip” that signals a considerably
slower expansion, similarly to the high-T data shown in Fig. 5.10, but with an apprecia-
bly lower minimum value (here around 50 µm at tfix = 15 ms, see the yellow points) –
still found on the a < 0 side of the FR [see red dashed arrow with prediction based on
Eqs. (5.40) and (5.41b)]. However, for intermediate (positive and negative) detunings
around |δB| ∼ 30÷ 50 mG, a “faster-than-ballistic” dynamics seemingly appears, signaled
by the peculiar “shoulders” exhibited by the spectra acquired at long evolution times.

On the basis of the data shown in Fig. 5.13, my numerical simulator seems (at first) to
perform decently well also in this temperature regime, see the colored lines. In particular,
it is able to qualitatively (and semi-quantitatively) capture the “strange shoulders” ob-
served at intermediate detunings, which – just to provide some context – were initially
causing some puzzlement in the interpretation of our measurements. I anticipate here
that, according to my simulations, these features basically originate from the temperature
mismatch between Li and Cr atoms.11 More specifically, this occurs whenever the effective
“axial temperature” Tx,Li of lithium, essentially set by its initial axial trap frequency [see
Eqs. (5.39)], is considerably lower than the average TCr (and/or of the average T Li). In
this case, there exists an intermediate “few-collision regime”, where the average scattering
rate per Li atom is on the order of 100÷ 200 Hz, corresponding to ∼ 2÷ 4 collisions in
20 ms of evolution time: Such a low number of collision events is somewhat too small to
effectively slow down the axial expansion of the lithium cloud, but, at the same time, it
causes a partial inter-species thermalization and, loosely speaking, a general “scrambling”
of the initial 3D velocity of each Li atom that underwent (even a few) scattering events,
owing to the nature of s-wave collisions; see, e.g., Eq. (5.27). Consequently, under these
conditions, on average the x̂ component of the Li atoms velocity is effectively increased in
modulus compared to the initial one, yielding an overall axial expansion of the cloud which
“overtakes” that observed in the background, i.e. for ∼ 0 collisions per atom. However,
the experimental data in Fig. 5.13 show an asymmetry between the “left” and the “right”
11And, partially, from the “internal cross-dimensional mismatch” of the effective temperatures Tx, Ty,z of

Li atoms after the preparation with the protocol of Sec. 5.2, see the parameters in Tab. 5.3.
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Figure 5.13 – Low-temperature dataset: Axial root-mean-square size sx of the Li cloud as a
function of the magnetic field detuning, for different (fixed) evolution times tfix, see the color scale.
The filled circles are the experimental results. Each point represents the average of at least three
independent measurements, with the error bars indicating the standard deviation of the mean. The
solid lines represent instead the outcome of my simulation, run with the sole “basic ingredients”
described in Sec. 5.3.1, with the input parameters reported in Tab. 5.3.

shoulder, respectively corresponding to positive and negative (weak) interactions, which is
not captured by the semi-classical simulation with the basic ingredients of Sec. 5.3.1, nor
with the inclusion of retardation effects (see Sec. 5.3.2), not shown in Fig. 5.13. A possible
origin could be ascribed to the effect of mean-field interactions, see Eq. (1.7). These
are generally not straightforward to include in my simulation, owing to their non-trivial
dependence on the relative momentum krel in the case of a narrow FR [see Eq. (1.12)]. I
briefly mention here that a tentative, preliminary approach to incorporate these effects
(not discussed in Sec. 5.3 because not fully rigorous), which starts from a mean-field
Hamiltonian and numerically integrates the equations of motion with the Runge-Kutta
method, indeed provides an asymmetry between left and right shoulders, not too far from
the observed one.

As for the previous dataset, further insights into the expansion dynamics is gained from
a quantitative analysis of the time evolution of the MSD, obtained from the time traces sx(t)
acquired for different detunings (i.e., the first method of Fig. 5.6). The raw experimental
data are shown in Fig. 5.14(a), and the corresponding outcome of the numerical simulation
in Fig. 5.14(b). Qualitatively, the general trend appears similar to that observed for higher
temperatures (cf. Fig. 5.11): The slowest expansion rates are observed for small positive
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Figure 5.14 – Experimental (left) and numerical (right) results for the low-temperature dataset.
(a),(b) Time evolutions of the Li axial size sx(t), for different magnetic field detunings (see color
scale). Here the lines connecting the points are merely guides to the eye. Note that the lowest traces
in panel (a) [experiment] appear “flatter” than the corresponding ones in panel (b) [simulation].
(c),(d) Examples of best fits with the generalized power law model Eq. (5.8), with the anomalous
exponent α setting the color scale. Here, besides observing the full crossover from ballistic-to-
diffusive dynamics, the experimental data in panel (c) show strong signatures of subdiffusive
dynamics, with α values as low as 0.6. In stark contrast, the numerical data of panel (d) show a
minimum value of α = 1. In other words, the observed subdiffusive-like expansion is not accounted
for by the simulation. In both panels, each trace was arbitrarily displaced on the vertical direction
for display purposes, and the gray dashed lines are guides to the eye showing the expected slopes
for α = 1 and α = 2. (e),(f) Same data of panels (a) and (b), respectively, but plotted as a 2D heat
map (“spectrogram”) to provide a simultaneous visualization of the temporal evolution sx(t, δB)
for different detunings. In both panels, the red regions correspond to the “shoulders” in the spectra
of Fig. 5.13.
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Figure 5.15 – Fit results of the generalized power-law model Eq. (5.8) for the low-T dataset.
(a) Fitted exponent α, as a function of the magnetic field detuning δB, with color scale set by
Dα/(ℏ/mLi). (b) Fitted coefficient Dα/(ℏ/mLi) as a function of δB. Note that the units of Dα

depend on the associated exponent α, encoded in the color scale. In both panels, points with error
bars refer to the fits performed on experimental data, while solid lines show the results of the same
analysis conducted on the numerical data. Error bars represent the error returned from the fit.
Horizontal dashed lines represent the experimental values obtained in the non-interacting regime,
setting δB ≃ 0.5 G, i.e. close to the zero crossing of the scattering length. Compared to the high-T
results shown previously in Fig. 5.12, here the agreement between simulation and experiment is
less satisfying. In particular, this is true in the interesting region of small positive detunings, where
the semi-classical simulation clearly fails to reproduce the experimentally observed α < 1 values.

detunings (darker blue), small negative detunings (darker red) generally feature faster
expansions, and for large detunings (grayish) the Li cloud expands nearly ballistically. This
holds true for both experimental and the numerical data, and one can also appreciate that
points at intermediate detunings feature sx values that exceed the background ones at
long evolution times, corresponding to the “shoulders” in the data of Fig. 5.13. However, a
closer inspection already reveals a key difference between experiments and (semi-classical)
simulations: In fact, the slowest measured expansions in Fig. 5.14(a) appear somewhat
“flatter” than the corresponding simulated ones in Fig. 5.14(b). The distinction is subtle
at first because, somehow deceptively, the final values of sx obtained at long times are
quantitatively similar, but the temporal evolutions with which they are reached are in fact
qualitatively different. This discrepancy is better quantified in terms of the anomalous
exponent α, obtained by fitting our data with the power law model Eq. (5.8); see examples
in Figs. 5.14(c) [experiment] and 5.14(d) [simulation]. Here, the striking feature is the
presence, in panel (c), of time traces that are well described by power laws with exponents
α significantly lower than the diffusive one (α = 1) – which lack instead in the simulated
data shown in panel (d), where the minimum obtained α is indeed 1.

The complete fit results in terms of the parameters α and Dα are shown in Figs. 5.15(a)
and 5.15(b), respectively, with the usual convention that filled colored circles represent
the experimentally obtained ones, while solid colored lines are extracted from the simu-
lations. Compared to the high-temperature dataset shown previously in Fig. 5.12, here
the agreement between (semi-classical) numerical simulations and experimental results is
generally less satisfying. In particular, while at large and intermediate detunings the minor
discrepancies are perfectly acceptable within (more) reasonable error bars (i.e., slightly
larger that those displayed in the figure, obtained from the fit algorithm) and uncertainties
on the experimental parameters, the simulation clearly fails (out of error bars) to repro-
duce the (many) experimental observations of 0.5 ≲ α < 1 in the magnetic field region
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Table 5.3 – Input parameters for low-temperature simulation. The values reported here correspond
to those measured experimentally for the dataset presented in this Section, a part from the number
of simulated Li atoms (which is irrelevant in this sense, as in the simulation they are treated
as independent particles). Anyway, the real NLi in these experiments was not too different,
NLi = 15(5)× 103. The effective temperatures and the trap frequencies have a common relative
error of about 20% (besides the two νx, which are known precisely), while the in situ radii share
an error of less than 5%. Day-to-day fluctuations of the experimental parameters are on the order
of these uncertainties.

Species N Tx; Ty; Tz (nK) sx; sy; sz (µm) νx; νy; νz (Hz)
Li 1× 104 75; 300; 300 30; 7.5; 6.0 17; 530; 680
Cr 1.5× 105 700; 240; 240 100; 11.0; 9.0 14; 88; 112

0 < δB < +20 mG, i.e. for strong attractive interactions.12 Such a discrepancy between
numerical and experimental results was not resolved by switching on retardation effects in
my simulator. Interestingly, these affect the outcome of the simulation at small positive
detunings, but solely in terms of a reduced value of the root-mean-square displacement
sx(t) reached at long times. However, the slowest dynamics in the simulations remain
always characterized by α = 1, even by (artificially) lowering further the temperature of
the system, within reasonable physical ranges. I also mention here that none of the other
models discussed in Sec. 5.1 seemed to provide acceptable fits to our data showing α≪ 1,
besides the (quite involved) one of Eq. (5.10), which anyway returned results completely
analogous to those obtained with Eq. (5.8) (see again the plots in Fig. 5.4), at the expense
of a more complicated (and more susceptible) data analysis.

By also confronting ourselves with our theory collaborators for these transport measure-
ments, namely Dr. Dmitry Petrov (LPTMS, University of Paris-Saclay) and Prof. Tilman
Enss (University of Heidelberg), we experimentally addressed the possibility that our ob-
servations could have been ascribed to “trivial” thermalization dynamics: In fact, since for
thermal gases the diffusion coefficient is generally T -dependent, a strong initial temperature
mismatch between Li and Cr atoms could indeed yield an effective time-dependent D(t)
during our (not infinitely long) observation time. For instance, this is essentially what
happens in the “few-collision regime” that yields the shoulders in the spectra of Fig. 5.13.
In this regard, before discussing our experimental test, I note here that, for the temperature
regime investigated in this Section, at small positive detunings my numerical simulator
returns average scattering rates on the order of 10÷ 20 kHz (per Li atom). Moreover, by
keeping track in the simulations of the mean kinetic energies, one sees that an average
number of 10÷ 20 collisions is sufficient for the two species to thermalize, i.e. to reach the
condition mLi v

2
th,Li = MCr v

2
th,Cr,13 even for strong temperature mismatches. In other words,

this means that, according to the simulations, after 1 ms from the start of the experiment
(at maximum), the average kinetic energy of Li atoms has equilibrated with that of Cr
atoms, which remains unaffected due to the experimental condition NCr ≫ NLi. As such,
unlike the seeming super-diffusion obtained at intermediate detunings, fully ascribable to
the transient early-time dynamics accessed in the experiment, the sub-diffusive dynamics re-
vealed near the resonance pole does not appear reconcilable with such “out-of-equilibrium”,
transient effects.

12Note that, in correspondence of 0.5 ≲ α < 1, the experimentally extracted (normalized) generalized
diffusion coefficient also reaches particularly low values.

13The distinction is subtle but important: what is reached rapidly is thermal equilibrium in terms of kinetic
energy, but the spatial extent of the Li cloud remains much smaller than its equilibrium one, as shown
below in Fig. 5.16, see text.
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In order to exclude possible thermalization-induced transients in our measurements
at low detunings (|δB| < 10 mG), we performed the following experiment: We prepared
the lithium cloud with Tx,rel ≃ 60 nK, and the chromium bath with TCr ≃ 270 nK, i.e. a
more-than-fourfold mismatch between the axial release temperature of Li and the average
effective temperature of Cr. First, we traced the undamped breathing oscillations obtained
by releasing Li into a non-interacting gas of Cr|2⟩ atoms, obtained simply by not perform-
ing the final RF transfer in the protocol of Sec. 5.2. The recorded dynamics is shown
in Fig. 5.16, gray squares, and follows the expected oscillatory trend given by Eq. (5.37)
(not shown). In the absence of collisions, the maximum value of sx(t) is related to the
width of the initial velocity distribution (i.e. to the initial effective temperature) through
Eqs. (5.39), and it is firstly reached after an evolution time τ = π/(2ωx) (≃ 15 ms in our
setup) from the release into the (weaker) final trap. In this case, we obtain sx(τ) ≃ 80 µm
(with initial size s0 ≃ 27 µm), corresponding to Tx,rel ≃ 60 nK,14 see gray dashed line.
Secondly, we repeated the same measurement, but switching on strong Li-Cr interactions,
i.e. applying the final RF transfer of our standard preparation scheme at a small positive
detuning of a few mG. We traced the time evolution of sx(t) for 30 ms, out of which we
extracted an exponent α = 0.67(7) from the fit to Eq. (5.8), see blue circles in Fig. 5.16.
This passage was done to check that our experimental conditions were indeed within the
range that yields subdiffusive-like expansions, although the value of the exponent was not
the lowest-recorded one. As a third step, we acquired a trace that started under the same
strongly-interacting conditions of the blue data, but after 8 ms of evolution we applied a
strong π-pulse on the Li|1⟩←→Li|2⟩ RF transition – thereby effectively switching off Li-Cr
interactions – and we subsequently followed the dynamics of the transferred Li|2⟩ atoms.
The resulting overall trace is shown by the red points in Fig. 5.16, and it should be read in
the following way: In the first 8 ms, the red points show a subdiffusive expansion of the
Li|1⟩ cloud that is entirely equivalent to that of the blue points. At 8 ms, interactions are
switched off (see red dashed arrow), and from that point on the non-interacting Li|2⟩ cloud
starts an oscillatory dynamics totally analogous to that of the (non-interacting) gray data,
but with a significantly larger amplitude, corresponding to a higher temperature of about
250(20) nK. In other words: this is a measurement of the axial momentum distribution of
the blue data at t = 8 ms, which shows that Li and Cr were essentially thermalized. In the
last (and most important) step, we acquired a measurement similar to the previous one, but
applying the Li|1⟩−→Li|2⟩ π-pulse after just 1 ms of (strongly-interacting) evolution time.
The outcome, shown by the green points in Fig. 5.16, is at this point clear to interpret:
Since the maximum reached sx(t) value during the free breathing oscillations is essentially
the same for the red and green data points, lithium atoms were already thermalized after
1 ms during the measurement that yielded the (subdiffusive) blue data.

To summarize, the overall characterization shown in Fig. 5.16 is a strong experimental
evidence against possible thermalization-induced transients for our low-T measurements in
the strongly-interacting regime. The thermalization rate, although not precisely quantified
here, is compatible at least in order of magnitude with the expectations from the numerical
simulations. Furthermore, another important remark should be made: On the one hand, it
is undoubted that a thermalization timescale similar to the observation time would lead
to a time-dependent diffusion coefficient D1(t). On the other hand, however, since for
thermal gases one has D1(T ) ∝ T 3/2 [210], a subdiffusive-like trend could only originate
from a temperature effectively decreasing during the evolution. This is surely not the case
in our experimental configuration, where Li atoms, initially, are typically much colder than
Cr ones.

14This is essentially the way in which we measure the axial velocity distribution of Li.
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Figure 5.16 – Experimental checks to exclude thermalization-induced transients for the experimen-
tal data showing subdiffusive-like expansion. Gray squares are obtained by releasing a cold Li cloud
within a non-interacting Cr|2⟩ bath. The maximum axial size is connected to the width of the initial
velocity distribution, here around 60 nK (see gray dashed line). Blue circles are instead obtained by
switching on interactions, and show a subdiffusive-like expansion characterized by α = 0.67(7). Red
circles are obtained from a measurement that started under the same conditions of the blue data, but
at t = 8 ms interactions were switched off, allowing Li atoms to perform breathing oscillations. The
maximum sx value corresponds to an axial temperature of about 250(20) nK, which coincides with
the average Cr temperature TCr, thereby indicating that thermal equilibrium (in terms of velocity
distributions) was reached at the time interactions were turned off. Finally, and most importantly,
green data are obtained similarly to red ones, but switching off Li-Cr interactions after just 1 ms of
evolution time. The maximum sx value, entirely compatible with that measured for red points,
testifies that thermal equilibrium was already reached essentially from the start of the measurement.
This represents a strong experimental evidence against possible thermalization-induced, transients
effects affecting the blue data and, more generally, our measurements that exhibit subdiffusive-like
behavior.

Before moving to the next Section, I remark that, although not shown in Fig. 5.16 for
sake of clarity, we have also checked that the observed dynamics is not trivially originated
by “classical trapping” of the lithium atoms binding chromium into LiCr molecules: Indeed,
if present, these could be revealed by the atomic imaging lights (see Sec. 4.8), and thus
contribute to the cloud density profiles. Owing to their ten-fold enhanced mass, relative to
the Li one, the possible presence of LiCr dimers could indeed result in an anomalous be-
havior and a considerable slowing down of the whole cloud expansion within the resonance
region. However, while near narrow resonances metastable “closed-channel” molecules
could in principle be created also for a < 0 (δB > 0 in our case), where the anomalous
dynamics is revealed in our system, from the studies of Chapter 4 we have no experimental
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evidence that dimer formation plays a role in our system on the attractive side of the
FR. Moreover, a dimer cloud would exhibit an equilibrium axial size nearly identical to
the chromium one (of about 90 µm in the measurements of Fig. 5.16), thus much larger
than the observed one reached by the Li cloud at our longest expansion times. Finally,
if this “trapping” mechanism was at play, we would expect it to be more prominent for
δB < 0 values, rather than for δB > 0 ones, where real Feshbach dimers could be efficiently
created by three-body recombination processes. In any case, to unambiguously exclude
their presence, we acquired a further measurement under the same conditions of the blue
data in Fig. 5.16, but adding a small amount of green light in our main bODT. The green
power employed, of about 30 mW, was not dramatically perturbing the overall trap depth,
essentially set by 330 mW of IR light. Nonetheless, owing to the fast photo-excitation
loss rate induced by 532-nm light on our Feshbach dimers (see Sec. 4.5) it was sufficient
to introduce a species-dependent loss rate of about 300 Hz solely for LiCr. The observed
dynamics was also in this case compatible with that exhibited by the blue data in Fig. 5.16,
and we could thus definitively rule out that the observed sub-diffusive dynamics trivially
originated from dimer formation.

5.6 Temperature dependence of the subdiffusive dynamics
The failure of the semi-classical simulator and, most importantly, our experimental ruling-
out of possible thermalization effects and dimer formation (and, to the best of our pos-
sibilities, of systematic errors), led us toward the conclusion that, for sufficiently low
temperatures and strong interactions, some additional physical mechanism could be at play
in our system – ultimately resulting in an anomalous slowing down of the lithium expansion,
and causing the departure from (slow but) normal diffusive transport. We therefore decided
to characterize systematically how the emergence of the anomalous dynamics depends
upon the mixture temperature. In practice, we focused on the “interesting” region of
small positive detunings and, once the optimum δB value leading the slowest dynamics
was identified under several different temperature regimes, we investigated the lithium
expansion.

Before presenting and discussing our observations, however, an important premise
should be made: Even among ourselves, it was initially not entirely clear how to prop-
erly compare results obtained from our analysis for datasets corresponding to (rather)
different experimental conditions. In fact, changing the temperature of the harmonically
trapped mixture, and in particular of the chromium component, also causes a variation
of particle densities (and density-averaged densities), which at some point could become
significant. Moreover, in our investigation we also included exploratory measurements
where we probed regions of the parameter space that differed considerably from one another.
The characterization of the expansion dynamics in terms of Eq. (5.8) was always found
satisfying across all the various explored regimes, and we could indeed obtain for each
dataset the corresponding α and Dα parameters, as shown in the following. However, a
rather practical question soon arose in the lab, in particular when discussing and presenting
our experimental findings to our theory collaborators. Simply put: “What is the most
proper ‘x axis’ to present (and understand) our results?”.

A key point, that was realized while discussing our anomalous transport data with
D. Petrov, is the strong similarity between our observation and those reported in a variety
of studies on matter-wave transport in disordered potentials close to a metal-to-insulator
transition, see e.g. [211–214]. Also there, anomalously slow expansion and subdiffusive
dynamics were experimentally unveiled, arising from quantum interference effects and
multiple scattering events in collisionally dense media: either precursing a localized regime



5.6 Temperature dependence of the subdiffusive dynamics 119

approached from the “metallic” phase, or arising from the competition between disorder
and non-linear interactions. This strong similarity suggested us to consider the anomalous
behavior of our system from the viewpoint of quantum interference effects originating
from multiple scattering of lithium atoms in the “disordered landscape” constituted by the
chromium bath. In this picture, the Cr gas should be viewed as a random potential land-
scape of point-like scatterers for the lithium impurities. Indeed, if chromium was perfectly
static, our setup would realize the so-called random Lorentz gas of point-like resonant
scatterers [215]. Interestingly, a scalar matter wave propagating in such a three-dimensional
disordered medium is predicted to exhibit a transition from a delocalized metallic state
(for weak interactions and/or high energy) to an Anderson-like localized state [216], for
sufficiently strong interactions and low enough energies [215,217]. On the other hand, if
the point-like scatterers exhibit a sufficiently fast thermal motion, the disruptive quantum
interference leading to particle localization could be rapidly washed out due to decoherence
induced by thermal fluctuations – thus re-establishing normal diffusion. These two opposite
regimes should somehow connect when the disorder potential is moving only very slowly.

Building on this idea (that would make little sense in case of homonuclear Fermi
mixtures, but that sounds reasonable in our mass-imbalanced system), we tentatively
considered a Ioffe-Regel-like criterion for our system, neglecting for the moment the thermal
motion of Cr atoms. Roughly speaking, for a quantum particle propagating with momentum
ℏk through a static random medium, according to this criterion one should expect (strong)
localization effects to occur whenever the mean free path λfree becomes smaller than the
wavelength of the scattered wave. Namely, this happens when k λfree < 1 [215]. To make
a rough estimate, a particle that moves with velocity v in a medium of density n has an
average scattering rate Γ ∼ nσ v, corresponding to a mean free time τfree ∼ 1/Γ, and to a
mean free path λfree ∼ v/Γ ∼ 1/(nσ). Moreover, for unitary-limited (s-wave) collisions
one has σ = 4π/k2, and thus λfree ∼ k2/(4π n). Therefore, the Ioffe-Regel criterion in such
resonant regime would be given by the condition k3/(4πn) ≤ 1.

Inspired by this simple consideration, we tentatively identified the quantity kLi/n
1/3
Cr

as a reasonable x axis for our data. To test if this could indeed be a good dimensionless
control parameter in our system, let us consider the typical parameters of the two datasets
presented in Secs. 5.4 and 5.5. We estimate k from the thermal momentum of Li assuming
instantaneous thermal equilibrium with Cr, i.e. k ∼

√
mLi kB TCr/ℏ, and we take n to be

the density-averaged density ⟨nCr⟩Li . For the high-T dataset we get k3/(4π n) ∼ 4, whereas
for the low-T one we obtain k3/(4π n) ∼ 1.5. Besides numerical factors, the important
point here is that the dimensionless quantity ∼ k3

Li(TCr)/nCr seems indeed to provide a
quantitative distinction between “high” and “low” temperatures regimes, and it has the
advantage of encoding, together with the temperature change, the corresponding one in
the (density-weighted) Cr density of our trapped samples.

After this premise, I now move to present our experimental results, together with
our current interpretation and understanding, which is still ongoing at the time of the
submission of my Thesis. As anticipated, in order to gain more insights into the anomalous
behavior observed at low temperatures, we performed a systematic study of the system
evolution for varying T , focusing each time on the optimum δB > 0 value where the slowest
dynamics was observed. For each investigated experimental condition, we recorded the time
trace of sx(t), and extracted the parameters α and Dα through fits with the generalized
power law Eq. (5.8). Our results are presented in Figs. 5.17(a) and 5.17(b) [filled colored
circles] as a function of the parameter χ = kLi

(
TCr

)/
3
√
⟨nCr⟩Li . As discussed above, this

dimensionless quantity essentially combines information on both the characteristic thermal
wave-vector and the Cr average density. In practice, for each acquired trace we estimated
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the corresponding χ value, obtained on the basis of the measured TCr and the estimated
⟨nCr⟩Li , by averaging over the whole time window experimentally explored (typically 20 ms).
From Fig. 5.17(a), one can notice how the expansion dynamics gradually changes character:
From weakly super-diffusive at high temperatures (large χ values), to normal diffusion in
an intermediate range (χ ∼ 3.5), to a sub-diffusive one at the lowest temperatures, where
α exponents as low as 0.3 are detected. Parallel to a decreasing α, we also observed a
monotonous drop of the (generalized) diffusion constant Dα, see Fig. 5.17(b). The empty

Figure 5.17 – Characterization of the slowest dynamics across different temperature regimes,
expressed in terms of the dimensionless quantity χ = kLi(TCr)/ 3

√
⟨nCr⟩Li , obtained by averaging

over the entire observation time. (a) Exponent α extracted from the power law model Eq. (5.8).
Filled green circles represent the experimental values, while empty gray circles are obtained from the
semi-classical simulation. (b) Same as above, but for the generalized diffusion coefficient Dα, plotted
in normalized fractional units. Here the experimental values are colored red. (c) Exponent β of the
“generalized Gaussian” Eq. (5.15) (FIT A) used to describe the experimentally observed density
profiles. Each value is obtained by averaging over the entire recorded dynamics. (d) Exponential
weight floc obtained from fitting the density profiles to Eq. (5.17) (FIT B). Each value is obtained
by averaging over the entire recorded dynamics. The gray shaded area is obtained by tentatively
applying the Ioffe-Regel-like criterion while considering the finite momentum distributions, see text
for details. The profiles obtained from the semi-classical Monte Carlo simulation do not exhibit
deviations from the Gaussian shape, i.e. β ≃ 2 and floc ≃ 0.
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gray circles in Figs. 5.17(a) and 5.17(b) show instead the corresponding α and Dα values
obtained from the semi-classical simulations, with parameters tuned to those measured
on the atomic samples. As one can notice, they also show a progressive and monotonous
decrease of α and Dα as χ is lowered, but the diffusive threshold α = 1 (interestingly,
with a corresponding D1 ∼ 1 ℏ/mLi) is essentially never crossed. It is also interesting
to note how the data exhibiting the slowest subdiffusive dynamics are found at χ values
below (4π)1/3 ≃ 2.32, see dashed vertical line in Fig. 5.17 panels. Namely, in that regime,
the Ioffe-Regel criterion for unitary-limited scattering, discussed at the beginning of this
section, appears to be satisfied by the Li thermal wave-vector: k3

Li(TCr)/⟨nCr⟩Li < 4π.
Besides α < 1 values, another feature exhibited by the low-T experimental data –

and not accounted for by the simulator – is represented by non-Gaussian density profiles
of the Li cloud, which appear to be strongly connected with the subdiffusive expansion
of sx(t). Deviations from a standard Gaussian distribution, which is the expected one
for both ballistic and diffusive thermal clouds, are unveiled by the two complementary
fitting functions Eqs. (5.15) and (5.17), respectively. The former one (denoted “FIT A”)
is a generalized “stretched” Gaussian that interpolates between the standard Gaussian
function (β = 2), which characterizes density distributions under normal diffusion, and an
exponential decaying envelope (β = 1), characteristic of Anderson-localized single-particle
states. The latter one (“FIT B”) has a similar purpose, but the interpolation between these
two distinct regimes is obtained by means of mutually dependent amplitudes: floc → 0
returns a Gaussian, while floc → 1 gives an exponentially-decaying density profile.

It is interesting to see how both the generalized Gaussian exponent β and the exponen-
tial weight floc, averaged over the entire observation time, gradually evolve as a function
of χ, see Figs. 5.17(c) and 5.17(d), respectively. One can also notice a strong correlation
between the trends of these parameters and those featured by α and Dα in Figs. 5.17(a)
and 5.17(b), a decrease of the diffusion parameters being reflected both by a decreased
β (FIT A) and by an increased floc (FIT B). Yet, as long as α ≳ 1, the profiles obtained
with FIT A and FIT B appear compatible with a single Gaussian envelope, signaled by
β ∼ 0 and floc ∼ 0, respectively. The slightly-above-Gaussian values of β obtained for the
largest χ values (highest temperatures) can be ascribed to the time averaging over the
ballistic-to-diffusive transient dynamics in that regime.

When FIT B is applied to the experimental profiles, we also reveal a rather distinct
dynamics for the Gaussian and exponential components of the density envelopes. This
is illustrated in Fig. 5.18, where I show radially-integrated density profiles (gray circles)
recorded at short (2 ms, left panels) and long (19 ms, right panels) evolution times in
the diffusive [(a) and (b)] and deep sub-diffusive [(c) and (d)] regimes, respectively. Blue
solid lines in the figures are best fits of Eq. (5.15) to the data. Magenta and dashed gray
lines are instead the best-fitted exponential and Gaussian contributions from the FIT B
analysis. One can see that, in the diffusive case, a single Gaussian nicely reproduces the
distributions both at short and long times, as signaled by the small (and unphysically
negative) exponential weight, and by the fact that the Gaussian contribution of Eq. (5.17)
is indistinguishable from the generalized one based on Eq. (5.15), implying that β ≃ 2. In
the sub-diffusive case, instead, FIT B reveals a sizable exponential component (floc ∼ 0.3)
that does not exhibit any appreciable drop nor expansion over time, whereas the Gaus-
sian component exhibits a subdiffusive expansion, leading to α and Dα values essentially
identical to those extracted when FIT A was employed to evaluate the second moment
of the density distributions. Correspondingly, in such regime strong deviations from the
Gaussian envelope are signaled by FIT A results, yielding stretched Gaussian exponents as
low as β =1.5.
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Figure 5.18 – Radially-integrated
density profiles of expanding Li
clouds. Panels (a) and (b) show
a comparison of the cloud shape
at short (2ms) and long (19ms)
observation times, in the case of
a slightly-super-diffusive expansion
(α ≳ 1). In both cases, the pro-
files are well described by a stan-
dard Gaussian function. Note also
the difference in the cloud size be-
tween long and short times. Panels
(c) and (d) are the analogous of
the former two, but for a strongly-
subdiffusive expansion with α ≃
0.5. Here, in both cases, the den-
sity profiles deviate from purely
Gaussian ones, as it can be no-
ticed by the comparably longer
tails. This is signaled by an ex-
ponent β < 2 (FIT A), or by
a nonzero exponential weight floc
(FIT B). Importantly, note that,
from the FIT B analysis, we obtain
an exponentially-decaying compo-
nent that does not evolve within
the observation time window (see
magenta lines). By contrast, the
Gaussian component (gray dashed
line) exhibits a subdiffusive growth.

Finally, it is interesting to compare the experimentally-determined behavior of floc
versus χ, with the localized fraction that one would expect for a thermal distribution
in case of purely static (three-dimensional) disorder. A rigorous determination of such
quantity is still missing for our specific system, and calculations are currently being pursued
by our collaborator D. Petrov. Nonetheless, we can easily make a rough estimate of floc by
assuming that the Ioffe-Regel criterion kc · λfree(kc) = 1 determines the critical wave-vector
kc that separates localized states (k < kc) from delocalized ones (k > kc). This assumption
appears indeed to be rather accurate in the case of a low-density gas of resonant point-like
scatterers, based on the numerical study reported in Ref. [215]. We thus attempted
to evaluate floc as it follows: For a given bath density ⟨nCr⟩Li and different magnetic
field detunings, i.e. scattering cross sections, we determined the kc(δB) that satisfies the
Ioffe-Regel criterion. Subsequently, assuming that Li atoms feature a thermal momentum
distribution at temperature TCr, we estimated the fraction of localized particles as:

floc = 4π
∫ kc

0
nLi(k) k2 dk . (5.43)

This results in a trend of floc as a function of the B-field detuning, i.e. as a function of
R∗/a, as the one shown in Fig. 5.19 below. For this specific example, we assumed a bath
temperature of TCr = 280 nK, and evaluated floc for two density values of 1.45×1012 cm−3

(black line) and 0.9× 1012 cm−3 (blue line), respectively. In both cases, one can see how
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a clear optimum value of detuning exists, where floc is maximized. By thus assuming
that we indeed performed the measurement at such optimum point, we can build up a
theoretical estimate for floc, expected for the case of static disorder, under the various
χ values explored in the experiment. The result of such simple theoretical analysis is
shown in Fig. 5.17(d) as the gray shaded region, the extremes of which correspond to
the estimated floc assuming either the peak chromium density (upper gray curve) or its
value averaged over the Li distribution (lower gray curve). One can notice how this simple
estimate qualitatively matches the trend of floc revealed experimentally. In particular, it
is interesting to see how the theoretical curves systematically lay above the experimental
values, with a theory-experiment mismatch that is gradually reduced when the system
temperature is lowered, i.e. for lower χ values in Fig. 5.17(d). This is somewhat reasonable,
in light of the fact that our Cr atoms have in reality a finite thermal motion: At high
temperatures, this may act as a source of rapid decoherence – reasonably destroying any
quantum interference effect, thus impeding the emergence of any localized regime. In
contrast, as the thermal motion of the heavy chromium scatterers is reduced by lowering
the system temperature, a non-zero localized fraction of the Li sample can emerge.

While this first attempt of a theory-experiment comparison is somewhat hand-waving,
and it cannot be at all considered as a conclusive explanation of our findings, the semi-
quantitative agreement shown in Fig. 5.17(d) strongly suggests that the anomalous dynamics
of our system is indeed connected to the physics of matter waves propagating in random
media. The rigorous establishment of such a link, and a clear understanding of the
interplay between disorder-induced localization and thermal-induced decoherence, are to
date missing, and they represent our current main task, in collaboration with D. Petrov.
If our current interpretation of the anomalous transport dynamics will be confirmed, a
wealth of exciting further experiments awaits to be performed in our setup. For instance,
a rather simple upgrade of the Li-Cr machine could enable us to investigate the effect of a
reduced system dimensionality, which is known to have a strong impact on localization
phenomena. Thanks to the rather distinct polarizabilities of our mixture components over

Figure 5.19 – Estimation of floc
based on Eq. (5.43), as a function
of the dimensionless quantity R∗/a
(which, close to resonance, is pro-
portional to the magnetic-field de-
tuning). The calculation is per-
formed by taking an average bath
temperature TCr = 280 nK, for
two different values of the (density-
averaged) density ⟨nCr⟩Li : 1.45 ×
1012 cm−3 (black line) and 0.9 ×
1012 cm−3 (blue line), respectively.
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a wide spectral range, species-selective optical lattices could be devised and employed
to control the relative mobility of lithium and chromium atoms. Finally, an appealing
measurement already planned for the next future in our lab, which can be performed
almost straightforwardly with the current setup, consists in the inverting the role of heavy
and light particles – namely the investigation of heavy impurity transport within a Fermi
gas of light atoms.
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Chapter 6

Technical upgrades of the
experimental setup
As anticipated in the introduction of Chapter 2, the build-up of the Li-Cr machine was
essentially finalized, at least in its core parts, during my Master Thesis, i.e. before the
start of my Ph.D.; see Refs. [102,121–123]. Yet, the subsequent knowledge acquired over
the Li-Cr system stimulated us to further optimize and upgrade the existing setup.
In particular, the narrow character of the Li-Cr s-wave FRs, combined with their high-field
location above 1.4 kG (see Chapter 3), required us to significantly improve our magnetic
field stability, and to implement optical schemes to prepare the lights for (spin-selective)
high-field absorption imaging.
Further, the realization that LiCr Feshbach dimers suffered from sizeable photo-excitation
losses induced by the lights in our bODT motivated us to test a different (more infrared)
trapping wavelength, viz. 1560 nm, following promising results from the Dy-K experiment
in Innsbruck.
Additionally, I briefly discuss a recent upgrade of the experimental routine, namely the
simultaneous loading of two independent optical dipole traps, that allows us to perform a
double-loading of the Li component. Such a simple trick is in principle exploitable in any
ultracold atom experiment, especially single-species ones, to boost the final atom number.

The Chapter is organized as it follows:

- In Sec. 6.1, I describe our setup to generate very stable magnetic fields on the order
of ∼ 1.5 kG, with residual B-field noise on the few-mG level;

- In Sec. 6.2, I illustrate our new high-field imaging setups for Li and Cr atoms, with
which we produce the absorption imaging beams resonant either at 1414 G or at
1461 G;

- In Sec. 6.3, I outline the optical setup for the far-off-resonant trap (FORT) at 1560 nm,
with which we realize two additional ODT beams; one counter-propagating with the
main bODT, the other employed as a vertical cross arm;

- In Sec. 6.4, I present our recently developed double-loading scheme for Li, with which
we load a secondary IR dipole trap simultaneously to the main bODT. This secondary
trap can be used either to improve final sample, or as a reference for magnetic-field
sensitive measurements.

6.1 Magnetic field stabilization
Most of the experimental studies conducted in this Thesis, in particular those reported in
Chapters 4 and 5, require excellent stability of the magnetic field bias, and an accurate
dynamic tuning of it within the experimental cycle, in light of the comparably narrow
width of the available Li-Cr FRs, combined with their high-field location exceeding 1.4 kG.
In our setup, a highly stable B field along the vertical direction is produced by means of
four different sets of coils, denoted BIAS, GRAD, COMP, and AC-COMP coils, respectively.
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The main BIAS coils can produce magnetic fields of up to 1.5 kG, corresponding to a
DC current of about 200 A. This is generated by a 15-kW programmable power supply
(TDK-Lambda GSP-80-195). The BIAS current, measured with a current transducer (LEM
ITN 600-S ULTRASTAB), is actively stabilized via a proportional-integral controller acting
on the voltage programming input of the power supply. This ensures reproducibility and
medium-term stability of the applied bias field. The (smaller) GRAD coils, powered by a
Delta Elektronika SM 30-200 power supply, can in principle produce fields up to ∼ 1 kG
with a 200 A current. However, in our experiments these coils are usually employed in
anti-Helmholtz configuration, generating the magnetic field gradients both for the (C)MOT
and for the gravitational sag compensation in the bODT (see Chapter 2). For this latter
purpose, we typically work with levitating gradients of about 1.5 G/cm, obtained with
1.5 A of current. In this configuration, the intrinsic stability of the GRAD coils power
supply, of a few parts in 105, suffices to guarantee a negligible noise contribution to the
overall bias field. The (much smaller) COMP coils can produce fields of about 2.5 G at the
maximum employed current of 5 A. They are used, in combination with the BIAS ones,
to finely tune the magnetic field around a FR. The COMP coils current is also actively
stabilized by means of a setup analogous to the BIAS coils one, with a second controller
and current transducer set of the same type.

As the COMP setup is concerned, active stabilization of the current allows us to reduce
the noise of the generated magnetic field well below 1 mG. The BIAS coils, instead, that
are driven with a significantly higher current, exhibit a larger residual closed-loop noise
synchronous with the 50-Hz mains. This is characterized by a peak-to-peak amplitude of
about 40 mG at 1.4 kG, and by Fourier components at 50 Hz and a few higher harmonics; see
the blue squares and the blue curve in Fig. 6.1(a). This behavior is revealed by synchronizing
the experimental sequence with the 50-Hz mains. Since the line carrier frequency can
vary appreciably within the duration of the experiment, we not only synchronize the
start of the experiment with the AC line, but also before the execution of field-sensitive
measurements. This allows us to trace the magnetic field fluctuations via RF spectroscopy
on the Cr|1⟩←→Cr|2⟩ Zeeman transition, more sensitive than the Li|1⟩←→Li|2⟩ one by
a factor ∼ 8 at 1414 G.1 Specifically, we adjust the RF power and pulse duration to
achieve a π-pulse on resonance, and then detune the frequency to yield a 50 % transferred
fraction. This side-of-fringe configuration yields the maximum sensitivity to magnetic field
variations and, for Fourier-limited pulse widths exceeding noise-induced frequency shifts, it
can be used to unambiguously retrieve the time evolution of the B field from the transfer
efficiency.

In order to do so, we initially employ a 1.8-ms-long pulse to characterize the noise of
our coil setup, and only at a later stage we extend it to 3.6 ms to gain in sensitivity at the
expense of a reduced bandwidth. A typical magnetic field trace obtained with the initial
1.8-ms-long pulse is presented in Fig. 6.1(a) (blue squares). As anticipated, the observed
trend is well fitted by a sum of sinusoidal functions with a main 50-Hz component and a
few higher harmonics (mainly the odd ones, in particular 150 and 250 Hz) of progressively
smaller amplitudes; see the solid blue line. The best-fit function to the experimental data
is then reversed and used to drive the additional AC-COMP coils setup to implement the
feed forward to compensate field fluctuations. A second iteration with the 3.6-ms-long
pulse allows us to further refine the signal sent to the AC-COMP coils.
Through this active compensation procedure, we are finally left with residual 5-mG peak-
to-peak fluctuations synchronous with the 50-Hz mains; see the green circles in Fig. 6.1(a).

1At this field, the differential magnetic moment δµ12 that characterizes the Li|1⟩←→Li|2⟩ (Cr|1⟩←→Cr|2⟩)
RF transition equals 0.78 kHz/G (6.05 kHz/G).
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Such a stability, once achieved, is found to be maintained over several weeks, with no need
for a day-to-day optimization of the signal sent to the AC-COMP coils.

In order to determine the shot-to-shot noise of the magnetic field, which constitutes
the main source for field fluctuations asynchronous with the 50-Hz mains, we acquire
statistics of the observed transfer efficiency for variable spectral resolution (i.e. variable
pulse lengths) at fixed time of the pulse during the sequence. Figure 6.1(b) shows an
example of such a characterization, performed via RF spectroscopy over the Li|1⟩←→Li|2⟩
transition exploiting the same side-of-fringe configuration described above, once the stability
shown in Fig. 6.1(a) was achieved. The standard deviation of the transfer efficiency σte
appears linearly correlated with the π-pulse time τπ over a relatively wide range. The slope
is directly connected to the standard deviation of the shot-to-shot noise of the B-field.
The nonzero offset extrapolated for τπ → 0 suggests instead the presence of an additional,
constant noise contribution in our measurements, likely independent from magnetic field
fluctuations, that we ascribe to imaging noise. Accordingly, we fit our data with a sum of
two uncorrelated contributions:

σte(τπ) =
√
σ2

img + (K δµrf σδB τπ)2 , (6.1)

with δµrf = 0.78 kHz/G for the employed Li transition, and K = 1.897 a numerical factor
characteristic of the side-of-fringe scheme. The fit returns a shot-to-shot standard deviation
σδB = 2.4(2) mG.

Finally, slow thermal effects on the whole coil setup are strongly mitigated by stabilizing
the temperature of the sensing resistor in the BIAS coils system. The residual drifts of
the bias field, on the order of 5 ÷ 10 mG/hour, are manually compensated for by finely
adjusting the COMP coils current.

Figure 6.1 – Stability of the bias magnetic field at 1.4 kG. (a) Blue squares show a typical
magnetic field trace, obtained through the spectroscopic technique described in the text after
synchronizing the experimental sequence with the 50-Hz mains, once the sole active stabilization of
the current of the BIAS and COMP coils setups is implemented. The observed trace, synchronous
with the mains and characterized by a peak-to-peak amplitude of about 40 mG, is well fitted to a
sum of sinusoidal functions with a main Fourier component at 50 Hz plus a few higher harmonics of
decreasing amplitude (blue line). Employing the (reversed) fitted trace to drive the AC-COMP coils
setup, we strongly mitigate the main noise contribution, being left with a residual (synchronous)
noise (green circles) of about 5 mG peak-to-peak. (b) Characterization of the (asynchronous)
shot-to-shot noise of the magnetic field. Black circles show the standard deviation of the transfer
efficiency as a function of the π-pulse time. Taking into account also an independent constant
noise source in our measurements (see text), we extract a shot-to-shot noise standard deviation of
2.4(2) mG.
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6.2 High-field imaging setups
The lithium and chromium high-field imaging setups have been modified and upgraded
compared to those reported in my Master Thesis [102]. After the identification and assign-
ment of 6Li-53Cr Feshbach resonances (see Chapter 3), our interest has been focused on
the two magnetic field regions around 1414 and 1461 G, where two among such features –
occurring in the Li|1⟩-Cr|1⟩ and Li|2⟩-Cr|1⟩ spin combinations, respectively – were found.
We therefore implemented new imaging setups for both Li and Cr atoms, able to deliver
resonant light addressing the relevant optical transitions at such high fields, as well as at
zero field – which is required to image the MOT clouds, and thus rather helpful to debug
and optimize the first stages of the experiment.

Lithium
The new Li high-field imaging setup, sketched in Fig. 6.2, can produce the light frequencies
for both the two lowest Zeeman states (Li|1⟩ and Li|2⟩), either at 1414 or at 1461 G. In
this new scheme, light is initially taken directly from the D2 master laser, which is locked
at about −308 MHz from the repumper transition of the MOT [123], 2S1/2 |F = 1/2⟩ −→
2P3/2 |F ′ = 3/2⟩ (see Fig. 2.2). A series of three double-pass acousto-optic modulators

(AOMs) in a cascade configuration is employed to redshift the laser light to the desired
frequency. The former two AOMs, driven by a shared controllable driver, are carefully
aligned to yield equal diffraction efficiencies for two different frequencies, separated by
∼ 18 MHz, thereby introducing the Li|1⟩-Li|2⟩ frequency shift of about 72 MHz after the
double-pass through both of them. Specifically, to produce the two lights resonant at
1414 G, AOM1 and AOM2 are both driven either at 191 MHz (for Li|1⟩) or at 209 MHz
(Li|2⟩). Alternatively, when we desire to work at 1461 G, the first two AOMs are both
driven either at 207 MHz (for Li|1⟩) or at 225 MHz (Li|2⟩). In both cases, the third AOM
operates instead constantly at 392 MHz. The three double-pass stages are all realized in
cat-eye configuration, such that the optical paths of Li|1⟩ and Li|2⟩ lights are spatially
overlapped at the end of the cascade. These are then further combined on a polarizing
beam-splitter with the zero-field imaging path (not shown in Fig. 6.2), and then injected
into the imaging fiber, which finally delivers light to the atoms.
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Figure 6.2 – Sketch of the new op-
tical setup to prepare the lights for
high-field absorption imaging of Li.
Light is initially taken from the out-
put of the D2 master laser, and then
downshifted by about ∼ 1.5 GHz via
three double-pass AOMs in cascade
configuration. The first two AOMs
can be controllably adjusted in fre-
quency to address either Li|1⟩ or Li|2⟩
atoms on demand. At the end of
the cascade, the high-field path is
combined with the zero-field one (not
shown), before being injected into the
imaging fiber.
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Chromium
The new high-field imaging setup for Cr, sketched in Fig. 6.3, can deliver resonant light
only for the lowest Cr spin state (Cr|1⟩) either at 1414 or at 1461 G. Initially, light is
taken from the transverse cooling (TC) AOM path (see details in Ref. [102]): either from
the non-diffracted order (for high fields), or from a pickup of the double-pass output
(for zero field). These two beams, having orthogonal polarizations, are combined on a
polarizing beam-splitter (PBS) and injected into a first fiber, that brings them to the
imaging breadboard, sketched in Fig. 6.3. As shown there, at the fiber output they are
split by a PBS into two different paths: The former one, transmitted from the PBS, first
passes through two consecutive AOMs in a retro-reflected cat-eye configuration. A third
single-pass AOM further downshifts the frequency to the desired value. When the first two
AOMs are driven at 387 MHz (394 MHz) and the third one at 192 MHz (228 MHz), light at
the output of this stage is resonant with Cr|1⟩ atoms at 1414 G (1461 G).
The second path, realizing the zero-field imaging, does not require any additional frequency
shifts besides those inherited from the TC AOM. High- and zero-field lights are ultimately
combined on a PBS, and coupled to a common fiber which brings them onto the experimental
table. Whenever one of the two is not needed, a safety block is placed on its path.

Compared to the Li imaging setup, a limitation of the Cr one is the lack of Cr|2⟩
resonant light, which is further redshifted by about 190 MHz with respect to the Cr|1⟩
imaging frequency at the fields of interest. While different schemes can be thought and
implemented in the future on the setup, a simple and practical way to image Cr|1⟩ and Cr|2⟩
atoms in the same experimental shot – using only Cr|1⟩ light – is offered by the possibility
to drive fast Cr|1⟩←→Cr|2⟩ RF transitions. In practice, one first takes an absorption image
of the Cr|1⟩ state, then applies a fast π-pulse, and finally takes a second image of the Cr|1⟩
state, which is now populated by atoms that were in Cr|2⟩ before the RF pulse. We employ
this “RF-assisted” imaging protocol whenever we perform RF spectroscopy on Cr atoms
(see, e.g., Sec. 6.1), or when we wish to check the polarization degree of Cr. Indeed, the
protocol can also be extended to image higher Zeeman states (Cr|j ≥ 3⟩), provided the RF
antenna is able to address the corresponding transitions; see Ref. [218] for technical details
on the antenna.
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6.3 FORT optical setup
As discussed in Chapter 4, Sec. 4.5, by studying the trap-light-induced photoassociation
rates of LiCr Feshbach dimers, we found that the two lights in our bODT (1070 and 532 nm)
constituted a limiting factor to the molecule lifetime, featuring intensity-dependent loss
rates of Γcc,1070 = 5.9(2) Hz/(kW cm−2) and Γcc,532 = 397(14) Hz/(kW cm−2), respectively.
Namely, given the beam waists of these two trap beams (see Fig. 2.5), such numbers
translate into Γcc,1070 = 131(5) Hz/W and Γcc,532 = 10.4(4) kHz/W. The (much stronger)
effect of the green light is detrimental for the lifetime of LiCr Feshbach dimers, even for
relatively low powers of a few tens of mW. On the other hand, the (weaker) photo-excitation
rate induced by 1070-nm light, for typical employed powers of about P1070 ∼ 200÷300 mW,
still allows for a sufficiently long lifetime (tens of ms) for several measurements to be
performed, albeit it arguably prevents beforehand any possibility to obtain long-lived
samples of Feshbach molecules, and to realize a final sympathetic cooling stage of LiCr
with either lithium or chromium atoms. For these reasons, borrowing knowledge from the
K-Dy experiment in Innsbruck (data still unpublished at the moment of this writing), we
decided to test a new trapping wavelength for LiCr dimers, i.e. 1560 nm, with considerably
lower energy per photon compared to the 1070-nm one, implementing two new trap beams
(“main” and “cross”, see below) on the setup. In particular, the “main” trap at 1560 nm,
collinear with the main bODT, has allowed us to obtain long-lived, pure molecular samples
with lifetimes exceeding 0.2 s, see Secs. 4.5 and 4.9.

The optical setup implemented for the far-off-resonant trap (FORT) is sketched in
Fig. 6.4. Laser light is delivered by an erbium fiber amplifier (Keopsys-CEFA-CBO-HP),
seeded by a single-mode master laser (RockTM, NP Photonics), with a total output power
of about 16 W. As sketched in Fig. 6.4(a) [to be read from the right to the left], at the
amplifier output an optical isolator is employed to avoid back reflections that could damage
the laser. The beam is then sent to a first, power-tunable AOM: the first negative diffracted
order is employed to realize the “main” 1560-nm trap, and it is directly injected into a
high-power photonic-crystal fiber. The non-diffracted order is instead directed toward
a second AOM, analogous to the former one, the first positive diffracted order of which
realizes the “cross” 1560-nm trap.

Figure 6.4(b) shows instead how the main FORT is overlapped with our bODT, and
hence focused on the atomic clouds. At the output of the main fiber, a telescope is used to
adjust the waist and divergence of the 1560-nm beam.2 A controllable flip mirror directs
the main bODT toward a beam dump during the entire evaporation stage (see Sec. 2.6),
i.e. when the high optical power of the main bODT could damage the photonic-crystal fiber
of the FORT. At the end of evaporation, when we desire to transfer the atoms from the
main (b)ODT to the FORT [see, e.g., Sec. 4.9], the flip mirror is opened, and the 1560-nm
light is switched on by activating the AOM.
A good starting point to overlap the two beams at the atoms position is found when
the 1070-nm light is coupled to the output of the photonic-crystal fiber. From there, to
compensate for the residual shifts due to refraction within the optics, we carefully optimize
the final alignment by maximizing the transferred atom number in the FORT, reaching
nearly 100% efficiency for both species.

The vertical cross beam at 1560 nm, not shown in Fig. 6.4(b), replaces the 1070-nm
one in our crossed bODT, see Sec. 2.8. It features a (circular) beam waist of about 100 µm
(at the atoms/molecules position). In this Thesis, it is employed mainly for the preparation
of the Li cloud in the transport measurements of Chapter 5.
2We tested two different (circular) beam waists: 55 µm and 29 µm (at the atoms/molecules position). The
long-lived dimer samples of Sec. 4.9 were obtained with the former beam configuration.
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Figure 6.4 – Sketch of the optical setup for the new FORTs at 1560 nm. (a) Laser table: preparation
of “main” and “cross” beams. (b) Science table: overlap between the main FORT and the main
bODT. See text for description and details.

6.4 Double-loading scheme for lithium
As a very recent development, during the last months of my Ph.D. we implemented a
double-loading scheme for lithium, which allows us to significantly increase the number of
Li atoms loaded in the bODT (cf. Sec. 2.5). This, in turn, also improves the sympathetic
cooling efficiency, ultimately resulting in a sizable gain for both species at the end of the
evaporation stage. The idea is to recycle some power from the IR laser source in order
to shine a secondary, horizontal ODT beam on the CMOT clouds, thereby simultaneously
loading lithium in two different optical traps. Such a secondary beam, containing IR light
only, is generated from the non-diffracted order of the main IR AOM,3 and shone on the
atoms after passing through an additional, vertically-mounted AOM: this allows us to
controllably adjust the vertical displacement from the main bODT, as explained in the
following.

To realize two different optical traps, during the loading stage the overall optical power
of the IR laser is ramped up to 300 W, while the RF power sent to the main AOM is reduced
accordingly in order to still have 130 W on the main beam realizing the bODT, thereby
not affecting the loading dynamics of the main optical trap (see Sec. 2.5). With this
configuration, considering the secondary AOM peak-efficiency of about 70%, the maximum
power available on the additional IR trap is around 120 W. The strategy that we follow
consists in carefully aligning the secondary IR beam below the main bODT, performing a
simultaneous loading of the two traps during the CMOT stage. Clearly, due to the absence
of green light in the secondary IR ODT, the Cr component is not loaded into it with this
procedure (see Fig. 2.6), resulting in a pure Li sample in the two lowest Zeeman states.

After the double loading, one could perform an evaporative cooling stage in the
secondary trap that follows the one of the main bODT (described in Sec. 2.6). In this way,
degenerate samples of about 5× 105 Li atoms (per spin state) at TLi/TF,Li ≃ 0.15 (with
TLi ≃ 200 nK) can be produced in the additional trap, without affecting the evaporation
dynamics of the main one. Figure 6.5 shows a typical absorption image obtained by
following this procedure. Naively thinking, an overall improvement of the final Li-Cr
sample in the main bODT could then be obtained by merging the two traps after this
separate evaporation. As anticipated, the possibility to merge the two beams is offered by
the vertically-mounted AOM, which can be controllably tuned in frequency, resulting in
a vertical displacement of the secondary beam. In principle, a perfect merge with 100%

3This is the beam that we used for the vertical bichromatic cross of Sec. 2.8, now replaced in that role by
the 1560-nm cross beam, see Sec. 6.3.
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transfer efficiency would constitute a significant gain in the Li atom number, possibly
allowing for further evaporation of the Li-Cr mixture.

However, when tested experimentally, such a scheme did not yield any positive effect,
regardless of the “gentleness” of the merging frequency-ramp: In fact, in general, we
observed a substantial heating of the atoms, accompanied by significant trap losses. We
interpret this observation as a direct consequence of the Fermi-Dirac statistics and the
Pauli principle: Since the Li samples in both the main and the secondary trap at the end of
the evaporation sequence are deeply degenerate, and thus most of the single-particle levels
are already occupied, the merging procedure actually promotes many atoms to high-energy
states, resulting in overall heating of the final sample, which causes atom losses.

A more efficient scheme to exploit the secondary trap, developed after noticing that the
one discussed above was not successful, is based on an adiabatic merge performed shortly
after the start of the evaporation stage, when the atoms are still in the thermal regime.
Looking at the final sample, we carefully optimized the merging time, the duration of
the merging (frequency) ramp, and the duration of the subsequent power ramp employed
to extinguish the secondary trap, once overlapped with the main one. We found an
optimum in this parameter space when the merging was performed about 1.5 s from the
start of the evaporation (when the temperature is around 15 µK), exploiting a 50-ms-long
radiofrequency ramp with the shape of the “minimum-jerk function” [219], followed by a
250-ms-long exponential ramp to remove the secondary IR beam.

Compared to the numbers reported at the end of Sec. 2.6, without the green beam in the
main dipole trap (and thus without loading the Cr component), the scheme described above
results in a significant gain in the final Li atom number, which increases from 1.9× 106 up

Figure 6.5 – Typical absorption image of a Li sample held in the double trap. The upper cloud is
trapped in the main bODT and the bottom one in the secondary IR trap. The image was obtained
by following the double-loading scheme described in the text, in the absence of Cr atoms and
without merging the two traps. Following an evaporation trajectory analogous to that of the main
bODT, we obtain in the secondary trap deeply degenerate Li samples comprising up to 5 × 105

atoms per spin state, with TLi/TF,Li ≃ 0.15 and TLi ≃ 200 nK. In this picture, the centers of the
two clouds are separated by 125 µm.
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to 3× 106 per spin state.4 In the presence of the green beam in the main bODT, but still
in the absence of Cr atoms, the relative gain is further increased, with NLi passing from
0.5× 106 to 1× 106, per spin state. Most importantly, when the double-loading scheme is
applied under our standard evaporation conditions, i.e. also in the presence of chromium,
the net gain in NLi results also in an improvement of the Cr component, both in terms of
atom number and temperature. Specifically, without applying the “Feshbach cooling” stage
in the final part of the evaporation (see Sec. 2.7), we observe NLi (NCr) increasing from
4×105 (2×105) up to 6×105 (2.5×105), with the Cr temperature decreasing from 600 nK
down to about 400 nK, thereby reducing the gap displayed in Fig. 2.8(d). Furthermore,
when the “Feshbach cooling” stage is performed, the Li|1⟩ (Cr|1⟩) atom number grows
from 3.5 × 105 (1 × 105) up to 4.5 × 105 (1.5 × 105), with both species thermalized at
about 200 nK. This boost in the atom numbers has allowed us to increase the number
of associated 6Li53Cr Feshbach molecules, as well as the density of the Cr bath for the
transport measurements of Chapter 5.

As a final remark, I discuss another possible employment of the secondary trap, not
tested in the experiment yet. If the merge is not performed, at the end of the evaporation
stage one obtains two independent samples, i.e. a Li-Cr mixture and a pure Li cloud,
trapped in the main bODT and in the secondary IR beam, respectively, with a vertical
displacement of about 125 µm (see Fig. 6.5). The secondary Li sample could then be
used as an effective co-magnetometer, in order to measure the real magnetic field, on
top of drifts and fluctuations, within the very same experimental cycle that performs a
field-sensitive measurement on the Li-Cr mixture. For instance, one could carefully block
part of the Li imaging beam with a knife-edge, in such a way that the secondary Li sample
is not affected by the (destructive) absorption image used to acquire the measurement on
the main one. After that, by means of RF spectroscopy schemes, the magnetic field at the
position of the secondary trap can be measured, and – knowing the magnetic-field gradient
– the field at the position of the main trap can be readily derived. Alternatively, with an
imaging beam that only addresses the secondary sample, the actual magnetic field could
be even probed before performing the field-sensitive measurement on the main (bi)atomic
or molecular cloud, and the result could be sent to an active feedback loop that corrects
the magnetic field accordingly. For instance, if the main trap contains only Li|1⟩ and Cr|1⟩
atoms (or LiCr molecules formed starting from this parent mixture), the secondary sample
could be prepared in the Li|2⟩ state, with RF spectroscopy performed on the Li|2⟩←→Li|3⟩
transition, thereby not affecting atoms or molecules in the main trap.

4To be more precise, the numbers reported here refer to the Li|1⟩ spin state. Under any circumstances, the
Li|2⟩ atom number is found to be constantly about 30% lower, as discussed in Sec. 2.6.
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Conclusions and outlook
In conclusion, in this Thesis I described the experimental studies and reported on the main
scientific achievements that I obtained during my Ph.D. Starting from an existing setup
delivering cold lithium-chromium mixtures in a dual-species magneto-optical trap [121],
during the four and a half years from the beginning of my Master Thesis [102] to the
end of my doctorate, I contributed to the further development of the Li-Cr machine in
terms of key technical upgrades, implementation and refinement of experimental proto-
cols, and, most importantly, general advances in the investigation and understanding of
such a novel system. In particular, our main research achievements encompass the first
realization of doubly-degenerate mass-imbalanced 6Li-53Cr Fermi mixtures, the exhaustive
characterization of their elastic and inelastic scattering properties, the production of high
phase-space density gases of bosonic LiCr Feshbach molecules, and the investigation of
transport properties of Li impurities embedded in a thermal Cr bath. Our efforts make
Li-Cr Fermi mixtures an appealing playground with which to investigate a plethora of
yet unexplored phenomena, spanning from the few- and many-body physics of strongly
interacting fermionic matter to the formation of ground-state paramagnetic polar molecules
in the quantum degenerate regime.

In fact, owing to the special chromium-lithium mass ratio, MCr/mLi ≃ 8.8, extremely
close to the critical values above which non-Efimovian cluster states are predicted to
emerge [9,11,13,15,20,22], our mixture may provide an exemplary benchmark for a wealth
of theoretical predictions, lacking direct experimental observation in any physical system so
far. Moreover, the collisional stability predicted for such exotic few-body states [14, 20, 30]
makes them appealing also from a many-body perspective. For instance, novel types of
quasiparticles could emerge in the light impurity problem: Besides Fermi polarons and
dressed dimers [33], lithium impurities embedded in a deeply degenerate Cr Fermi gas may
indeed exhibit more complex quasiparticles [30, 32, 35], connected with the existence of
higher-order few-body states in the vacuum. In this respect, the ability to widely tune
both the degree of degeneracy and the relative densities of the Li and Cr components in
our crossed bODT (see Fig. 2.11) offers a compelling opportunity to investigate, with the
same experimental setup, both heavy and light impurity problems within fermionic media.

Our progress toward double Fermi degeneracy was accompanied by extensive surveys
of 6Li-53Cr Feshbach resonances, which allowed us to identify more than 50 of such fea-
tures, well separated one from the other and displaying a nonchaotic pattern. Through
a coupled-channel model, our collaborator Prof. A. Simoni was able to unambiguously
connect each of these FRs to a LiCr molecular level with well-defined quantum numbers.
His task was somewhat simplified by the fact that the interaction between Li (2S1/2) and
Cr (7S3) atoms, besides featuring only weak magnetic anisotropy, leads to two sole spin
multiplicities (sextet and octet), similarly to standard bi-alkali case of singlet and triplet.
In particular, we identified and experimentally characterized a pair of strong and isolated
high-field s-wave FRs, featuring magnetic-field widths of about 0.5 G, with character similar
to Li-K ones [129,130] but immune to two-body losses. Despite their comparatively narrow
nature, combined with their high-field location above 1.4 kG, these features allow for the
resonant control of Li-Cr interactions in our experiment.

As a direct example, the experiments that I have described in Chapter 5 represent a
relevant step forward in the exploitation of our mixture to investigate transport phenomena
within mass-asymmetric fermionic matter, and they indeed demonstrate the possibility
to employ such Li-Cr FRs to controllably realize strongly-interacting mixtures in the



136 6. Conclusions and outlook

experiment, despite their rather “scary” magnetic field locations and comparably small
B-field widths. As already mentioned in the conclusions of Chapter 5, a wealth of possible
extensions of the transport studies presented therein can be envisioned, and rather straight-
forwardly implemented on our setup. For instance, in the future it will be interesting to
investigate how the anomalous transport, and eventually the complete halt of diffusion
due to the system localization, may be affected by the trap geometry, or by a reduced
dimensionality. It is indeed known that, for static disorder, localization is greatly favored
in two- and one- dimensions, with respect to the three-dimensional case. Additionally,
the implementation of a species-selective optical lattice could allow for a systematic study
of the subtle interplay between the system tendency to localize (for sufficient point-like
disorder strength) and the delocalizing effects induced by a slow, incoherent motion of
the scatterer centers: By tuning the effective mass of the chromium atoms, one could
sizably reduce their mobility, thus enhancing possible quantum interference effects. In
this regard, I remark the interesting, yet not fully established, connection between three-
(and four-) body universal clusters, expected for the Li-Cr mass ratio to emerge on the
molecular side of a FR, and the so-called quantum proximity resonances [220], predicted on
the a < 0 side of a narrow resonance, in the case of one impurity atom colliding with two
fixed scatterer centers via a short range interaction. Another interesting aspect we could
address with our setup in the future concerns the investigation of the role played by Pauli
blocking and Fermi degeneracy on the anomalous dynamics that we observed, so far, with
both impurities and bath particles in the thermal regime. While we expect that a further
reduction of the mixture temperature will help enhancing the coherence of the system,
once a Fermi gas (or a doubly-degenerate mixture) would emerge, Pauli suppression of
scattering events could have a non-trivial impact on the transport and/or localization
properties of our system. Finally, an appealing investigation, complementary to those
reported in Chapter 5 of this Thesis, is represented by exchanging the impurity-bath roles
played by our mixture components, i.e. embedding a few heavy Cr particles within a light
Li Fermi gas. In this case, the Li-Cr mixture could be regarded as a “finite mass-imbalance
version” of the archetypal system of the so-called Anderson orthogonality catastrophe,
realized by an infinitely heavy impurity within an ideal Fermi gas.

The existence of suitable, isolated s-wave Li-Cr FRs provides also an optimal starting
point to form bosonic Feshbach dimers. We have successfully produced ultracold gases
comprising up to 5× 104 6Li53Cr Feshbach molecules, at temperatures around 200 nK and
peak phase-space densities exceeding 0.1. Thanks to the immunity to two-body decay and
the good stability against three-body recombination of our fermionic mixture, we could
perform magneto-association with ramp rates slower than the two-body-adiabatic regime
by orders of magnitude. We directly revealed the paramagnetic nature of the LiCr molecule,
and demonstrated precise control of the Feshbach state via a novel optical measurement
of the open-channel fraction and binding energy. Moreover, through the characterization
of the dominant loss mechanisms affecting our Feshbach dimers, we have identified an
experimental configuration where their lifetime exceeds 0.2 s.

Parallel to our efforts in the lab, our theory collaborator Prof. M. Tomza and his group
developed a cutting-edge, ab initio quantum chemical model for LiCr, with which they
determined the fundamental properties of this new molecular species. In particular, for
the rovibrational X 6Σ+ ground state, their model predicts a large electric dipole moment
of 3.3(2) D, on top of the sizable magnetic one of 5 µB. Additionally, M. Tomza and
colleagues foresee that our Feshbach dimers – which notably are already created in the
least bound X 6Σ+ rotationless vibrational level – can be efficiently transferred to the
absolute ground state, via STIRAP through an excited (4) 6Σ+ level, with transitions at
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experimentally accessible wavelengths. Conveniently, direct imaging (and possibly even
laser cooling schemes!) of ground-state LiCr may be enabled by the presence of strong
X 6Σ+ −→ (2) 6Π optical transitions.

Our experimental and theoretical results combine synergistically to make ultracold LiCr
emerge as an extremely appealing system for a wealth of fundamental studies and future ap-
plications. In fact, a high phase-space density sample of 6Li53Cr Feshbach dimers, which we
have already realized in the lab, opens exciting new routes for the investigation of strongly
correlated fermionic matter. For instance, extending the protocols we have developed so
far may allow us to Bose-condense our Feshbach dimers, thereby paving the way to studies
of the BCS-BEC crossover in the presence of a large mass asymmetry [45,46,49]. Moreover,
the creation of long-lived LiCr dimers in the presence of a controlled amount of Cr atoms
is a fundamental step towards the aforementioned exotic few- and many-body phenomena
that are uniquely enabled by the “magic” mass ratio of our atomic Fermi mixture [111].
Besides LiCr2 fermionic trimers [9, 11, 13], LiCr3 bosonic tetramers [15, 21, 22], and the
related new kinds of quasiparticles within the light-impurity problem [32,33,35], exciting
prospects are given by the possible emergence of many-body regimes beyond the BCS-BEC
crossover scenario, such as trimer Fermi gases [30] or quartet superfluid states [31].

Additionally, from the viewpoint of doubly-polar molecules, the combination of our
experimental achievements with the theoretical work of M. Tomza and colleagues suggests
that the realization of ground-state 6Li53Cr bosonic molecules, with large electric and
magnetic dipole moments, is within reach. Clearly, identification of the optimal STIRAP
pathway will require extensive laser spectroscopy. However, this task will be greatly facili-
tated by the predictions of the theoretical ab initio model, and also by the long lifetime of
Feshbach dimers that we already demonstrated. Interestingly, electric dipole moments as
high as 1 D can already be obtained in relatively shallow vibrational levels of LiCr with
v ≃ 37 and a binding energy as low as 190 cm−1, see Fig. 4.13. Given the relatively simple
spectroscopic survey needed to find these states, this possibility represents an attractive,
intermediate short-term step. In particular, such vibrationally excited molecules offer
high sensitivity to the electron-to-proton mass ratio me/mp [169], surpassing that of alkali
and alkaline-earth dimers. This sensitivity could enable precision measurements to detect
potential variations of me/mp, providing new insights into fundamental physics.

Ground-state LiCr molecules, pinned in optical lattices or tweezers, will find immediate
application in the context of quantum simulation of spin Hamiltonians [66–69] and high-
dimensional quantum computing [70, 71], exploiting their internal spin degree of freedom,
absent in ground-state bi-alkali dimers. Moreover, bulk gases will be ideal test beds
for quantum controlled chemistry: Although ground-state LiCr molecules are chemically
unstable against atom-exchange reactions 2 LiCr −→ Li2 + Cr2, in their spin-stretched state
resulting from STIRAP they are expected to be stabilized, owing to the fact that the decay
to deep Cr2 levels becomes spin-forbidden. The predicted rotational constant and electric
dipole moment, incidentally close to those of CaF [221], suggest that collision shielding,
via microwave [222] or static electric fields [223, 224], could be applied to stabilize bulk
samples and perform evaporative cooling. Additionally, resonant tuning of magnetic [74]
and field-linked resonances [225] may be investigated in LiCr. Prospects for precision mea-
surements also appear promising: on top of the measurement of me/mp already mentioned,
the observation of the electron’s electric dipole moment may be facilitated by the internal
co-magnetometer states offered by long-lived 4∆ metastable levels [185], unavailable in
bi-alkali dimers. Finally, it is worth noting that fermionic isotopologues 7Li53Cr and 6Li52Cr
could also be formed via magneto-association across suitable FRs on our experimental
setup. In particular, the first experimental evidence of 6Li52Cr molecule formation was
obtained in the lab by my colleagues Alessio Ciamei and Beatrice Restivo while this Thesis
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was being written. Correspondingly, the magnetic field location of two high-field s-wave
6Li-52Cr has been measured. Interestingly, such a measurement precisely fixes the number
of bound states in the ground-state sextet potential to N6 = 46, in perfect agreement with
the prediction of M. Tomza and colleagues (see Sec. 4.10.1).
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