Taming, slowing and trapping atoms with light
Cold is quantum, Quantum is cool!
We shape quantum matter
Multicolored lasers for a variety of atoms
Keeping our eyes on the quantum world
Join our ultracool group!
High technology for great science

Welcome to the website of the Ultracold Quantum Gases group at the European Laboratory for Nonlinear Spectroscopy (LENS), the Department of Physics and Astronomy of the University of Florence (Italy) and the Institute of Optics of the Italian National Research Council (CNR - INO). In our labs we use lasers and magnetic fields to produce the lowest temperatures of the Universe, just a few billionths of a degree above absolute zero...

At these temperatures, atoms stop moving and we can control them for a variety of different fundamental studies and applications. We can force atoms to arrange according to a periodic structure and simulate the behavior of crystalline solids and new materials. We can use the atoms as ultra-high accurate sensors to probe forces with the power of quantum mechanics. We can study how quantum particles combine together under the action of strong interactions and how superfluidity develops. We can use these ultracold atoms to process information and develop new quantum technologies.

Dress warmly and... follow us for this ultracold journey!

LAST NEWS

We report on the formation of heteronuclear quantum droplets in an attractive bosonic mixture of 41K and 87Rb. We observe long-lived self-bound states, both in free space and in an optical waveguide. In the latter case, the dynamics under the effect of a species-dependent force confirms their bound nature. By tuning the interactions from the weakly to the strongly attractive regime, we study the transition from expanding to localized states, in both geometries. We compare the experimental results with numerical simulations and we find a good agreement in the full range of explored interactions.

C. D'Errico et al.
Observation of Quantum Droplets in a Heteronuclear Bosonic Mixture
Phys. Rev. Research 1, 033155 (2019)

The ideal quantum Zeno effect is a robust method to protect the coherent dynamics of a quantum system. In particular , in the weak quantum Zeno regime, repeated quantum projective measurements can allow the sensing of semi classical field fluctuations. We report our proposal and demonstration, both theoretical and experimental, of a novel noise sensing scheme enabled by the weak quantum Zeno regime. We experimentally tested these theoretical results on a Bose Einstein Condensate of 87Rb atoms realized on an atom chip, by sensing ad hoc introduced noisy fields.

H.–V. Do et al.,
Experimental proof of quantum Zeno-assisted noise sensing
New J. Phys. 21, 113056 (2019)

The paradoxical supersolid phase of matter has the apparently incompatible properties of crystalline order and superfluidity. A crucial feature of a one-dimensional supersolid is the occurrence of two gapless excitations reflecting the Goldstone modes associated with the spontaneous breaking of two continuous symmetries: the breaking of phase invariance, corresponding to the locking of the phase of the atomic wave functions at the origin of superfluid phenomena, and the breaking of translational invariance due to the lattice structure of the system. We demonstrate the supersolid nature of the coherent stripe regime we discovered in dipolar Bose-Einstein condensates. In our trapped system, the symmetry breaking appears as two distinct compressional oscillation modes, reflecting the gapless Goldstone excitations of the homogeneous system. We observe that the two modes have different natures, with the higher frequency mode associated with an oscillation of the periodicity of the emergent lattice and the lower one characterizing the superfluid oscillations. Our work paves the way to explore the two quantum phase transitions between the superfluid, supersolid and crystal-like configurations that can be accessed by tuning a single interaction parameter.

L. Tanzi, et al.
Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas
Nature 574, 382 (2019)

See also the Nature News and Views by S. M. Mossman:

S. M. Mossman, Sounds of a supersolid detected in dipolar atomic gases for the first time
Nature 574, 341 (2019)

and the Nature Physics research highligh by Y. Li:

Y. Li, The buried trace
Nature Physics 15, 986 (2019)

Seminars & Events

17-19.04.2023
InnFi Joint Meeting on Ultracold Atoms:
Experimental and theoretical groups from Innsbruck (Austria) and Florence (Italy) research areas will present their activities and discuss collaborations. Click here for more info.