Congrats and good luck Bea! |
LAST NEWS
Our heartfelt welcome to Dr. Chiara Mazzinghi, who has recently completed her PhD at ICFO and is now joining our team!
We're delighted to have her on board!
|
QUANTAMI (Quantum Atomic Mixtures: Droplets, Topological Structures, and Vortices) aims to explore novel matter phases and quantum phenomena arising in interacting multicomponent superfluids. We will exploit the K-Rb tunable quantum mixture manipulated in optical potentials to realize and study topological superfluid structures, like rings and shells, as well as exotic vortex states and rotating droplets. We will explore the complex interplay among interactions, quantum fluctuations, topological excitations and dimensionality. The project founded by MUR is a joint effort between CNR-INO (local coordinator Dr. A. Burchianti), the University of Padova (project coordinator Prof. L. Salasnich) and the University of Parma (local coordinator: Prof. S. Wimberger). Join us on this adventure! We are looking for motivated candidates for a postdoc position: further informations |
Thanks to bando Trapezio we were able to test new technical advancements on our patented laser design in collaboration with Silentsys. We could reach narrow linewidths (<<1kHz) with minimal effort. More upgrades are yet to come, so stay tuned! |
The Hall effect, which originates from the motion of charged particles in magnetic fields, has deep consequences for the description of materials, extending far beyond condensed matter. Understanding such an effect in interacting systems represents a fundamental challenge, even for small magnetic fields. In this work, we used an atomic quantum simulator in which we tracked the motion of ultracold fermions in two-leg ribbons threaded by artificial magnetic fields. Through controllable quench dynamics, we measured the Hall response for a range of synthetic tunneling and atomic interaction strengths. We unveil a universal interaction-independent behavior above an interaction threshold, in agreement with theoretical analyses. The ability to reach hard-to-compute regimes demonstrates the power of quantum simulation to describe strongly correlated topological states of matter. T.-W. Zhou et al. |