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1 | Introduction

During last decades the efforts regarding the research on theoretical and experi-
mental atomic physics have been converted from a self-consistent physics branch
based on species characterization to a multi-disciplinary field, based on the pos-
sibility to easily control atoms. The transformation of the field was principally
caused by the development of pioneering experimental techniques to slow and con-
fine atomic dilute gases [1]. The possibilities offered by atoms are various, they
depend on the abundance and the variety of stable (and unstable) species and also
on the availability of laser sources and emitters capable to properly excite narrow
transitions between two nearly-stable atomic energetic levels.

Trapped atoms offer a rich framework where, by exploiting free-space inter-
actions, quantum degeneracy regimes can be achieved in both bosons [2–4] and
fermions [5]. A fundamental tool in order to employ atoms to mimic the Hamil-
tonians of ideal solid-state systems is the possibility to load atomic samples in
spatially-ordered light structures, called optical lattices. Recently, the capabili-
ties offered by atomic systems trapped in optical lattices allowed to simulate, by
following the fundamental idea proposed by R. Feynman [6], a plethora of dif-
ferent and multi-disciplinary phenomenon such solid-states systems characterized
by non-trivial topological order (induced by an effective intense magnetic field)
[7–13], where interactions between atoms are nearly neglected, and systems dom-
inated by interactions, as occur in lattice gauge theories or when the transition
from a metallic conducting phase to an insulating phase is considered [14, 15].
Such an amount of different phenomena can be simulated by tailoring the cou-
pling of the lattice Hamiltonian that is realized by the confined atoms, such as
the hopping between lattice sites and hopping between lattice sites and the onsite
interaction between atoms [16].
Moreover, by exploiting the internal atomic structure it is possible to precisely
control the interaction strength between two atoms in (meta-) stable states by
realizing experimentally the well-known Feshbach-Fano resonances [17–19]. The
possibility to set interactions by exploiting a mixing potential between an open
interacting channel and a closed scattering channel allowed the opening of a new
field, based on the production of shallow-bound molecules, both homo- and hetero-

1



1 - Introduction

nuclear [20]. The production of molecules supported by a Feshbach resonance via
photoassociation spectroscopy [21] revealed to be a fundamental tool that permit-
ted to finely characterize interactions between atoms and give rise to experimental
quantum chemistry in regimes before unexplored [22].
Possibilities offered by the control of interactions via Feshbach resonances have
been strongly characterized in elements of the first group of the periodic table of
elements as Lithium (Li), Potassium (K), Rubidium (Rb), ··· , in which the external
electronic configuration is constituted by one electron and gives rise to magnetic
couplings with an external magnetic field [23].
Recently, alkaline-earth (-like) atoms and alkaline earth metals (AEL) gained ex-
perimental and theoretical interest principally related to the possibility offered in
the metrological field by the excitation of visible and UV clock transitions [24–26].
AEL atoms, in their neutral form and in the ground state, have a null total elec-
tronic momentum, resulting in a very low sensitivity to external magnetic fields.
While the absence of magnetic coupling does not allow the interactions tuning
by exploiting Feshbach resonances as it occurs in alkaline atoms, these atoms are
characterized by highly symmetric ground states allowing the simulation of SU(N)
systems [27]. This characteristic, that can be attributed in AEL atoms to the
decoupling between electronic and nuclear atomic momenta, can be exploited to
perform quantum simulation of a wealth of novel systems and constitutes a fun-
damental property of isotopes that have a nonzero nuclear spin, as it occurs for
all the fermionic species and in particular for 173Yb and 87Sr. This feature also
ensures the absence of spin-changing collisions in ground state sublevels, implying
that nuclear-spin mixtures are observationally stable. This attribute is fundamen-
tal for the study of transitions between different nuclear-spin states, for example
by exploiting the two-photon Raman coupling [28, 29]. The degeneracy related to
the SU(N) symmetry [30] can be controllably removed by applying a two-photon
Raman coupling, allowing for the simulation of systems with broken symmetries.
Besides the possibility to induce couplings within the nuclear-spin degree of free-
dom, AEL atoms also offer the possibility to access a second, electronic degree of
freedom; the possibility to address visible doubly-forbidden transitions between
long-lived electronic clock states comprises a fantastic tool that allowed the build-
ing of optical lattice clocks improving metrological measurements and offering a
richer platform for simulating complex systems [31, 32].
The main difference between the two internal degrees of freedom offered by AEL
atoms is that the possibility to address ultranarrow optical clock transitions exists
also for AEL bosonic isotopes [33] in which the nuclear-spin degree of freedom is
not present because the total atomic momentum is absent.
The possibilities related to the excitation of long-lived metastable triplet levels,
that, referring only to the lowest lying atomic levels are 3P(0,2) (in Russell-Saunders
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1 - Introduction

approximation they result doubly forbidden with respect to the electric dipole oper-
ator), are multiple. If bosonic atoms are considered, the metrological applications
based on the clock transition at the state of the art have performances comparable
to optical lattice clocks realized with fermionic isotopes [34]. Bosonic isotopes,
requiring external fields in order to excite transitions from the ground state to
long-lived states, have been proposed as good candidates in order to build a reli-
able and fast system in which controllable qu-bits could be realized [35]. Most of
these applications, and in particular the possibility to create quantum computers
with neutral atoms, crucially rely on the control of the scattering properties of
atoms in different electronic states.
Regarding fermionic isotopes, the clock transitions recently allowed for the demon-
stration of spin-orbit coupling and quantum simulation via the synthetic dimension
approach [36–38].As recently discovered, the clock transitions from the ground to
the 3P(0,2) states give rise to rich interactions between atoms in the ground and
in the metastable states. The spin-exchange interaction that has been observed
between ground and meta-stable states, supports also a new kind of Feshbach reso-
nance, called Orbital Feshbach Resonance (OrbFR) [39, 40]. As occurs in magnetic
Feshbach resonances for alkali atoms, also the OrbFR, that occurs in AEL atoms,
supports the existence of extremely shallow homo-nuclear molecules. After con-
sidering the (s-wave) scattering parameters of all the AEL atoms that have been
characterized experimentally, 173Yb is the only isotope in which the production and
manipulation of Orbital Feshbach molecules (produced e.g. with photoassociation)
is experimentally viable. Molecules generated by employing this atom, may lead
to the investigation of fermionic superfluidity in still-unexplored regimes [41–43].

This thesis work fits in these last arguments, in particular with the charac-
terization of interactions in bosonic 174Yb isotope by probing the clock transition
between the singlet 1S0 ground state and the triplet 3P0 metastable excited state.
Interactions and inelastic losses between ground-state and excited metastable-state
atoms have been experimentally determined with high accuracy, resulting consis-
tent with an independent evaluation realized in the same period by another group
[44, 45]. The obtained values for the interactions among ground and metastable
atoms for the specified nuclide constitute a first step in order to design an experi-
mental system in which a quantum information platform can be realized by means
of exploiting the clock transition of bosonic Yb atoms.
This work, by exploiting the internal degrees of freedom of 173Yb atoms, reports on
a study of Orbital Feshbach molecules, showing experimentally the possibility to
employ the nuclear degree of freedom in 173Yb atoms to manipulate and precisely
detect homo-nuclear photoassociated molecules. This first result regarding this
new kind of shallow-bound molecules allowed the characterization of interactions
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between ground-state and metastable-state 173Yb atoms. This first intensive study
of orbital Feshbach molecules is a fundamental step for future studies of the pos-
sibilities offered by these homo-nuclear molecules.
Finally, we exploited the ground state SU(N) symmetry and its controlled break-
ing via Raman coupling (in 173Yb N = 1···6) to simulate the physical processes
that are supposed to be driven by the hybridation of d-orbitals of iron atoms in
iron based-superconductors, in which orbital-selective Mott insulating phases have
been experimentally observed and are suspected to be the fundamental ingredient
to achieve high-temperature superconductivity in these compounds.

This thesis has been organized as follows:

• Chapter 2 is dedicated to the theoretical description of the fundamental tools
employed in this thesis work. After a textbook introduction about scattering
and partial-wave description of collision processes, a fast review is devoted
to the description of free-space interactions between neutral atoms. After
stressing the principal results regarding ultracold neutral-atom interactions
and s-wave scattering in free space, we introduce the optical lattices and the
Hubbard model when the lattice depth allows the treating of the system by
following the second-quantization approach; in this condition we describe the
hopping term and the atomic interactions in deep optical lattices, highlight-
ing the differences related to the atomic statistical behaviours;

• Chapter 3 is divided in two main topics, each related to alkaline earth atoms.
The first section, that concerns two-electrons atoms (except Helium (He)),
and in particular Alkaline-Earth, Alkaline Earth Metals and Alkaline Earth-
Like atoms, is devoted to the description of general properties and transitions
that can occur in these atoms, focusing on the possibility to address inter-
combination transitions in bosonic and fermionic isotopes. Also properties
related to these transitions are analyzed, in particular describing the effect of
external magnetic fields. The second section, that is devoted to the descrip-
tion of the Ytterbium (Yb) atom, in the first part describes the chemical and
physical main properties and reactions, highlighting, in the following part,
the experimental techniques and laser sources employed to slow and trap Yb
gas from chuncks of this pure metal to reach degenerate regimes both for
bosonic and fermionic isotopes;

• Chapter 4 is devoted to the description of the main results obtained during
this thesis regarding the characterization of interaction and scattering pa-
rameters of 174Yb atoms. This chapter introduces the possibility to perform
ultranarrow spectroscopy in an optical lattice without changing the atomic
external degrees of freedom. This type of spectroscopy is therefore employed
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to detect interaction parameters of a bosonic atomic sample loaded in a deep
3D cubic optical lattice. The last part of this chapter describes the char-
acterization of inelastic losses between ground and metastable states; these
measurements are realized by observing the lifetime of excited atoms in dif-
ferent optical lattice geometries after an interaction-dependent excitation;

• Chapter 5 reports the theoretical and the experimental results regarding the
production and manipulation of orbital Feshbach molecules by photoassoci-
ation of an atomic sample constituted by fermionic 173Yb atoms confined in
a deep 3D cubic optical lattice. The first part of this chapter is devoted to
the description of the peculiar characteristic of 173Yb, as the emergence of
SU(N) symmetry in states characterized by absent total electronic momen-
tum (J=0), the rich scattering collisions allowed by the spin-exchange inter-
action, and the subsequent orbital Feshbach resonance. The second part is
instead devoted to the production, by means of photoassociation in a deep
optical lattice, of orbital Feshbach molecules and their coherent control. In
the last section of the chapter the nuclear-spin degree of freedom is exploited
in order to efficiently detect orbital Feshbach molecules in a sample in which
the number of un-bound atoms after the photoassociation pulse dominates
over the molecules population. Moreover, we demonstrate the long lifetime
of isolated molecules and provide first measurements on the lifetime of the
molecular states in a many-body setting;

• Chapter 6 is dedicated to the description of the preliminar experimental re-
sults regarding the possibility to quantum simulate, by exploiting the inter-
nal degree of freedom of fermionic 173Yb atoms, the physics emerging from
hybridation of the d orbitals of iron atoms in iron-based superconductor ma-
terials. In particular, as a first result, the transition from metallic-phase to
Mott-insulating behaviour is characterized by observing the mean number
of doubly occupied sites in a SU(3) sample. The same technique is there-
fore exploited to determine an enhancement of localization in a system in
which the SU(N) symmetry is controllably broken via the Raman coupling.
State-dependent properties of the system are then probed by performing a
spin-selective detection of doubly occupied sites;

• Chapter 7 is dedicated to the discussion of final consideration and future
perspectives.
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2 | Scattering processes and atom-atom
interactions

In this chapter we review the fundamental concepts regarding the scattering theory
and its application in the framework of ultracold atoms.
The chapter is organized as follows: in section 2.1 we discuss the scattering theory
and the case of central potential in the low-energy limit.
Section 2.2 is devoted to the description of optical lattices as a crucial tool to
control interactions between atoms.
Section 2.3 is dedicated to the description of the possibilities offered by atomic
systems (both bosonic and fermionic) confined in optical lattices.
Concepts and quantities introduced in this chapter will be essential in order to
describe the experimental results that will be presented in the following chapters.

2.1 Elementary concepts concerning collisional
problems

The initial interest to understand microscopically the process of diffusion, or
scattering, between colliding particles probably derives from the first experiments
performed in the environment of nuclear physics. There, an incident beam con-
stituted by particles having mass m and a mean momentum 〈~p〉 and propagating
along a certain direction, can interact with a stuck target as also shown in figure
2.1.1. In the laboratory frame, in which the mean velocity of the target is zero, it

is possible, for those particles, to define the mean flux by the relation 〈~J〉 = #
〈~p〉
m

where # represents the number of particles per unit volume in the incident beam.
To simplify the notation let us suppose to consider now a one-dimensional motion
along the x̂ axis of a chosen reference frame. Let us also suppose to consider an
ideal mono-energetic beam constituted by all identical particles characterized by
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2 - Scattering processes and atom-atom interactions

the same mass and the same momentum.
Without losing generality let us suppose to consider only beams in which the mean
number of particles per unit volume # is so small that we can completely neglect
mutual interactions between incident particles. In that way each particle can be
considered as an isolated system and each interaction can be analyzed separately
from a microscopic point of view. We also suppose to consider a thin target; this
hypothesis ensures that we can neglect multiple scattering processes.
After the interaction has occurred, if we are interested to understand the nature of
the collisional process, we can measure the number of particles N that scatter into
the infinitesimal solid angle dΩ located in the direction Ω = (φ, ϑ). Under the hy-
pothesis introduced above, that are well respected in our experimental conditions
(as we will see in the following chapters), N results to be directly proportional to
the incident current and then

N = J #b σ (Ω) dΩ, (2.1.1)

where #b is the number of interacting scattering centers in the target. σ (Ω) has
the dimension of a surface and it is called differential scattering cross section and is
a characteristic parameter of the collision of the incident particle with the target
in the direction determined by Ω.
The total number of particles scattered per unit time is obtained by multiplying
J, #b, and the total scattering cross section defined by:

σtot =

∫
Ω

σ (Ω′) dΩ′. (2.1.2)

All the physics in the interaction process between an incident particle and a target
particle is contained in the differential scattering cross section that can be con-
nected to the interaction potential V (~r). In this thesis we will treat neutral atoms
so we can avoid the complicancies that are associated to the long-range character
of the Coulomb potential. We will consider only elastic collisions, that means that
the energy of the incoming particles is conserved after the interaction with the
target. To describe properly the physics that underlies the diffusion process and
link the potential to the differential scattering section, let us consider an incoming
wave packet that at time t0 = 0 is propagating through a surface Σ perpendicular
to the incident beam and passing through the target. Let us specify the initial
position of the wavepacket center as ~b; particles will have a velocity ~v so the center
of the incident wavepacket before the collision will follow the law

〈~r〉 = ~b +~v(t− t0). (2.1.3)

Following the scattering theory developed in refs. [46–48], in order to describe
faithfully the scattering process we introduce the parameters (see figure 2.1.1)
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Scatterer

Detector

d

v

l

ab

Figure 2.1.1. Schematic drawing of a finite wavepacket colliding with a single scattering
center inside the target. In figure all the parameters used to mathematically represent
the physical phenomenon are reported.

• d, l that are transverse and longitudinal dimensions of the incident wavepacket;

• at that represent the extension of the scattering region;

• λ ≡ h

m|~v|
that is the mean wavelength of the beam.

If the dimensions l, d of the incident beam are well defined, namely

λ� d λ� l,

and the collision process will not depend critically on the shape of the wavepacket,

at � d, l,

it is possible to assume that each particle can be described by the same ~b and the
same t0.
In order to describe the time evolution of a realistic wavepacket when a collision
occurs, it can be useful to introduce the Fourier transform of the spatial incident
beam profile A(~x), that describes the spatial evolution of the incident wavepacket
in momentum space

A(~p) =

∫
A(~x)ei~x·~pd~x. (2.1.4)

When t = t0 the wavepacket of the incident beam φb (~r, t) can be described as a
free-particle wavepacket,

φb (~r, 0) =

∫
A (k′ − k) ei

~k
′
·(~r−~b)d~r. (2.1.5)

9



2 - Scattering processes and atom-atom interactions

After the collision with the target, the scattered wavepacket, Ψb (~r, t) can now
be obtained by substituting in eq. 2.1.5 the so-called stationary scattering wave
ψ~k′(~r), so, neglecting the spread of the incident wave packet during its propagation
until the target, can be written :

Ψ~b (~r, t) '
∫
A
(
~k
′
−~k
)
e−i

~k·~bψ~k′(~r)e
−iE

′t
~ d~k

′
. (2.1.6)

This equation describes the behaviour of incident particles after the interaction
with the target. By substituing the asymptotic behaviour for the stationary scat-
tering wave

ψ~k′(~r) ' ei
~k
′
·~r + f~k′(Ω)

eik
′r

r
(2.1.7)

where f~k′(Ω) is named scattering amplitude function, we obtain the general rela-
tion for the scattered wavefunction. The general form acquired by the scattered
wavefunction can be expressed in the form:

Ψ~b (~r, t) = φ~b (~r, t) + Ψscat
~b

(~r, t) (2.1.8)

where only Ψscat
~b

contains the scattering amplitude function and therefore con-
tributes to the probability to observe a scattered particle in a certain direction1

identified by Ω. By evaluating the probability to detect a scattered particle in the
solid angle (Ω, Ω + δΩ) per time unit and unit flux it is possible to obtain [48, 49]

σ (Ω) = |f~k (Ω)|2 (2.1.9)

that directly link the differential cross section introduced in eq. 2.1.2 with the
single-particle scattering amplitude function f~k (Ω). This result can be obtained
also taking into account a realistic wavepacket with a finite spatial extension.

In this last part of this section we will clarify if the theory presented above
can be used in the case of ultracold atoms. The atomic sample obtained exper-
imentally can be treated as an interacting dilute gas that is confined, as we will
see in the following chapters, in a harmonic potential or in a superposition of a
harmonic potential and other spatially-dependant potentials. Therefore, this text-
book description of the scattering, realized for a finite wavepacket that propagates
in free space, in absence of any kind of other potentials except for the interaction
term V (~r), has to be adapted properly to describe our framework. First of all, the
presented model can be used to describe atom-atom interactions if we consider,
instead of the laboratory frame, the center-of-mass frame in which the target and

1In any case, experimentally, it is not possible to detect a forward-scattered wave (ϑ = 0, ∀φ)
and distinguish those particles from the trasmitted part of the incident beam.
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the incident wavepacket have opposite mean momenta. It can be verified [48]
that, by performing a frame transformation from the laboratory system to the
center-of-mass frame, the total scattering cross section does not change:

σlab.tot = σcomtot , (2.1.10)

from which we can directly obtain the relation

σcom(Ωcom) dΩcom = σlab(Ωlab) dΩlab, (2.1.11)

that allows us to describe the collisions between atoms using the relations shown
in this section. The condition of thin target, that has been used to impose the
direct proportionality between N and the number of scattering centers #b, or in
other words, that excludes the possibility to have multiple interactions between
the incident beam and the target, can be adapted as follows: as we will see in the
following sections of this chapter, the scattering between two neutral atoms can be
described by a short-range interaction that becomes negligible after a characteristic
length scale r0. The atomic sample that we realize experimentally has a numeric
density #atoms so low and the mean particle separation (#−1/3

atoms) is so larger than
the characteristic length scale, that the probability to find more than two atoms
in a sphere of radius r0 can be neglected

(
r0 � #

−1/3
atoms

)
. When a gas verifies this

condition we call it dilute.
It can happen that, also if the density is drastically low, the mean velocity of

the gas is so high that by chance, the probability to find more than two particles
in a sphere of radius r0 can not be neglected so, to ensure the condition of thin
target, we also have to impose that the thermal wavelength, that describes the
mean distance between two particles at a certain temperature and that can be
directly connected to the particle energy by the relation [50, 51]

Λth =
h√
π

(
a

kBT

)1

s

Γ
(n

2
+ 1
)

Γ
(n
s

+ 1
)


1

n

, (2.1.12)

(where the dispersion relation E = aps in n dimensions has been assumed and Γ is
the Euler special function) has to be much larger than the characteristic interaction
length r0 (Λth � r0).
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2.1.1 Scattering by a central potential V(r) and
low-energy limit

As mentioned above, it is always possible to change the reference frame to
describe interaction processes between two particles; in the frame of the center of
mass, as expressed by equation 2.1.10, the total scattering cross section σcomtot is a
conserved quantity.
In the center-of-mass frame the Schrödinger equation describing two colliding par-
ticles can be separated in two simple equations, one for the center of mass and one
for the representative point of the system described by the relative coordinates.
The Schrödinger equation for the representative point of the system, considering
a potential with spherical symmetry, namely V (~r) ≡ V (r), can be written [52] as:p̂2

r +
~̂L2

r2
− 2m (ε− V (r))

Ψ = 0 (2.1.13)

where Lc = εabcrapb and εabc is the Levi-Civita symbol. Considering the diffusion
problem shown in figure 2.1.1 it is possible to note that the wavevector ~k ‖ ~v
generates a rotational symmetry of the problem; if we choose a reference frame in
which k̂ is the polar axis, the collision phenomenon has to happen in the plane
completely determined by the distance from the collision point r and the polar
angle θ. In this case it is possible to expand the wavefunction and the scattering
amplitude in a series of Legendre polynomials2 as follow:

Ψ(r, θ) =
∑
l

ψl
r
Pl(cos θ) f(θ) =

∑
l

flPl(cos θ) (2.1.15)

where ψl is the regular solution of the radial part of equation 2.1.13 and

~̂L2Pl(cos θ) = ~2l(l + 1)Pl(cos θ).

2Let us consider a function F (x) and consider also −1 < x < 1, then it is possible to
expand this function in a series of Legendre polynomials as follows [53]

F (x) =

∞∑
n=0

anPn(x) (2.1.14)

where the coefficients an can be evaluated [54] taking into account the orthogonality of the
polynomials Pn with respect to the product

∫ 1

−1 Pn(x)Pm(x)dx.

12



2 - Scattering processes and atom-atom interactions

The solution of the radial equation, by considering the asymptotic form, namely

r →∞, can be written as ψl ∼ sin

(
kr − lπ

2
+ δl

)
while the asympotic scattered

wave can be recasted as a sum over the l partial waves of incoming and outgoing
waves3

ei
~k·~r + f(θ)

eikr

r
∼
∑
i

[
i2(l+1) 2l + 1

2ik
e−ikr +

(
2l + 1

2ik
+ fl

)
eikr
]
Pl(cos θ) (2.1.16)

hence it is possible, by direct comparison, to obtain the explicit expression for the
partial scattering amplitude fl:

fl =
2l + 1

k
eiδl sin δl ≡

2l + 1

2ik

(
e2iδl − 1

)
(2.1.17)

where δl is called phase shift and describes the effect of the scattering potential
V (r) on the l-th outgoing partial wave.

If we consider now the low-energy limit, that implies k → 0 and that is a
condition always valid when we consider collisions between ultracold atoms, we
can note that only the l = 0 term has a non negligible contribute to the total
scattering cross section.
By considering the argument exposed in appendix A, it can be shown that, if we
consider a short-range potential, the phase shift can be expressed by the simple
relation

k cot δ ' −1

a
+

1

2
k2reff (2.1.18)

where a is the scattering length and the reff is the effective range. An interpretation
of the role of the scattering length a can be easily obtained if we evaluate, in the

low-energy limit, the total cross section σtot because
4π

k

∑
l (2l + 1) sin δl reduces

to
σtot = 4πa2.

The same relation holds for two rigid spheres that can interact only by contact,
i.e. V (r) = ∞∀r ≤ r0 where r0 is the sphere radius. Hence, we can interpret
the scattering length a as the radius of a disc inside which scattering from a
determinate potential can happen.

3To obtain equation 2.1.16 the sperical-harmonics expansion in plane waves has been used:

ei
~k·~r = 4π

∑
l

l∑
m=−l

iljl(kr)Y
m∗

l (k̂)Y ml (r̂)

where jl is the Bessel special function of l-th order. This relation can be simplified if we consider
also the addition theorem of spherical harmonics that links these special functions to Legendre
polynomials [55].

13



2 - Scattering processes and atom-atom interactions

rr

Figure 2.1.2. The sketch shows the scattered wavefunction for a square negative potential
V = V0 ∀r ≤ rpot. In the case of positive scattering length (red) the related bound state
has negative energy εrb and the interaction cross section related to a can be visualized by
looking at the red arc with radius r = arb. In case of negative scattering length (green)
the bound state has the positive energy εvb.

The other figurative interpretation of the scattering length a is linked to the
asymptotic behaviour of the total wavefunction4 and its pictorial representation is
sketched in figure 2.1.2. By considering only the s-wave scattering (l = 0) it can be
demonstrated that the wavefunction Ψ, in the asymptotic limit, can be expressed
as:

Ψ k→0
r→∞

(r) ∼ 1− a

r
.

This relation shows that if a > 0 it is possible to find a solution that has a node in
the real space while if a < 0 the node in the solution is in the virtual space (neg-
ative distances). In this case, from the mathematical description of Ψ a physical
interpretation of the scattering length can be extracted, because the distance of the
node, in which r = a, can be interpreted as the range over which the interaction
potential can modify the total wavefunction. Moreover, the sign of a determines
the nature of the least-bound state of the system considered. If the node is in
the real space a > 0, the bound state is also real (εbound < 0) while if a < 0 the
resulting bound state is virtual [49].
The effective range reff cannot be related to a simple semi-classical or heuristic
argument that should link the behaviour of the scattering cross section to the
wavefunction of the representative point of the system. A simple argumentation

4In the limit of low energy the total wavefunction, that in general can be separated into
radial and angular terms by employing the Legendre expansion (as shown in equation 2.1.14),
is isotropic because it is independent from the polar angle θ. This property derives from the
fact that the Legendre polynomial for l = 0 is a constant (P0(cos θ) = const) with respect to the
polar angle.
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2 - Scattering processes and atom-atom interactions

on the nature of this term can be obtained if we consider that it is derived by an
expansion near k ' 0 of the phase shift δ, as it has been shown in appendix A. This
quantity can be interpreted as a moderate correction to the effective area that char-
acterizes the collision process when the energy cannot be considered completely
negligible.

2.1.2 Free-space atom-atom interaction

Figure 2.1.3. In this plot the van der Waals radial potentials V (r) are reported for l = 0
and l = 1; they describe the interaction between two atoms as a function of the relative
distance r. When r < rcrit. the potential becomes highly repulsive and its modulus can
be approximated as infinitely extended because it represents the atomic incomprimibily
at short distances due to interaction between the two electron clouds.

The interaction between two neutral atoms, considering s-wave scattering5,
can be described by imposing l = 0 and neglecting all the other contributes due
to higher momentum in which l 6= 0. This argumentation has been used in section
2.1.1 to simplify the equations and to describe easily the collision dynamic. In
this section we will show why this hypothesis is justified when atomic interactions
are considered. Moreover we will cite some important results that in the next
chapters will allow us to derive experimentally the scattering length, that, as we
will highlight in section 5.3.1, is connected to the possibility to produce biatomic
homonuclear molecules.

Let us suppose, as the lowest approximation order possible, to consider an
atom as composed by only two static charges (±q) that are in an electrostatic

5As shown in section 2.1.1, if this hypothesis holds, neglecting the contribution to the scattered
wavefunction due to high order expasion with respect to relative momentum k, the whole collision
process can be described simply by the scattering length a.
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2 - Scattering processes and atom-atom interactions

equilibrium. In this condition, the static field measured by an external positive
infinitesimal charge can be expressed as [55]

~E(~r) = −∇φd(~r) = − q

4πε0
∇
~d ·~r
r3

(2.1.19)

where ~d =~r+q −~r−q.
In order to describe the potential that underlies the phenomenon of the collision
between two neutral atoms we can consider an induced dipole-dipole6 interaction
that in first approximation can be described by an isotropic function of the relative
distance r.
At short distances (r ≤ rcrit) atoms cannot permeate each other because the re-
pulsive interaction between electron clouds dominates. Thus we can describe a
total effective potential as constituted by an infinite barrier when the relative dis-
tance approaches the rcrit value and by a induced dipole-dipole interaction when
the distance between atoms in bigger than rcrit:

V (r) =

{
∞ r ≤ rcrit

−C6

r6
r > rcrit

(2.1.20)

where C6 is called van der Waals coefficient and it is defined by

C6 = 2~2 π2

mλ2
crit

r6
crit

where κcrit = 2π/λcrit is related to the depth of the potential [49].
The potential V (r) introduced in equation 2.1.20 has to be added to the angular
momentum contribution reported in equation 2.1.13 that was derived from the
partial-wave expansion.
Figure 2.1.3 shows the van der Waals potential introduced by equation 2.1.3. We
observe that, if l 6= 0, atoms can reach the attractive interaction part of the total
potential at r < rbarrier only if they tunnel through the centrifugal barrier. In this
sense, if the atomic momentum k is lower than the maximum value assumed by the
centrifugal potential, the contribution to the scattering cross section that comes
from partial waves characterized by l 6= 0 should be negligible7, as assumed in
section 2.1.1.

6An exception is constituted by the dysprosium atom where an anisotropic pseudopotential
due to dipole-dipole interaction can describe properly the long range interaction between two
atoms. This is mainly due to the dysprosium atomic electric dipole momentum arising from
J = 10 [56, 57].

7As we will see in the following sections the possibility to couple an accessible scattering
channel to an unaccessible channel will change significantly the interaction dynamic [17].

16



2 - Scattering processes and atom-atom interactions

The total potential for l = 0 can be neglected when r > r(l=0) where r(l=0) is
usually called van der Waals length and identifies the radius at which the zero point
energy ~2

2m
exceeds the potential energy. The interatomic distance at which the

potential becomes negligible can be related to the potential depth of the attractive
interaction by employing the equation [49]

r(l=0) =
1

2
4

√
2m C6

~2
. (2.1.21)

The argumentation used to explain the interaction between two neutral par-
ticles constituted by positive and negative charges in equilibrium can be treated
less heuristically by introducing the multipole expansion [55] to describe, at each
order, the potential generated by charges in electrostatic equilibium. By following
this procedure it is possible [58] to reach a less intuitive but complete expression
that describes the real radial potential V (r):

V (r) =
∞∑

,` =0

V,`
r+`+1

(2.1.22)

where V,` is related to the -th multipole term for the first atom and to the `-th mul-
tipole term for the second atom. Applying the formalism of perturbation theory
to the second order and keeping the terms up to induced quadrupole-quadrupole
interaction it is possible to approximate the equation 2.1.22 as follows8

V (r) ≈ −
(
C3/r

3︸ ︷︷ ︸
Dipole

+ C6/r
6︸ ︷︷ ︸

Dipole−dipole

+ C8/r
8︸ ︷︷ ︸

Quadrupole−quadrupole

)
. (2.1.23)

This expression has been exploited to evaluate, considering only the lowest lying
energy levels, the static and dynamic polarizabilities for the ytterbium atom [59].
To simplify the following discussion, we will consider only the induced dipole-dipole
potential because it approximates the most substantial contribution of 2.1.23 in
almost all the interaction cases.

The existence9 of real bound states for the specified potential has been inten-
sively studied [62, 63] also exploiting the quantum defect theory [64–72] and the

8As specified before, the dipole term expressed in equation 2.1.23 has a non negligible contri-
bution in special cases in which the molecular potential supported by the potential asymptotically
connects two states having non null dipole momentum.

9In 1981 [60], the virial theorem has been used to argue that potentials of the form −V0
(r0
r

)n
have no bound states of negative energy, or using the same terminology proposed in the last
section, a real bound state for n > 2.
A more accurate analysis of the same problem can be found in reference [61]. The authors found
out that the virial theorem cannot be used to describe this kind of potentials because basically
the quantities 〈T̂ 〉 and 〈V̂ 〉 are not well defined.
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2 - Scattering processes and atom-atom interactions

semiclassical approach by means of the WKB approximation [73–75].
By following the semiclassical approach, described in [74, 75] and considering the
van der Waals potential limiting our analysis only to the induced dipole-dipole
interaction, it can be found that the s-wave scattering length can be expressed as

a = a

[
1− tan

(
π

n− 2

)
tan (Φ− ζ)

] ∣∣∣∣∣
n=6

= a
[
1− tan

(
Φ− π

8

)]
(2.1.24)

where

a = cos

(
π

n− 2

)( √
2mCn

~ (n− 2)

) 2
n−2 Γ

(
n−3
n−2

)
Γ
(
n−1
n−2

)∣∣∣∣∣
n=6

=
1√
2

Γ
(

3
4

)
Γ
(

5
4

)r(l=0)

is the background or mean scattering length and it is determined only by the
asymptotical behaviour of the potential, Φ is the semiclassical phase calculated at
zero energy

Φ =
1

~

∫ ∞
rcrit

√
−2mV (r)dr

and ζ = π
2(n−2)

∣∣
n=6

=
π

8
is determined by the boundary conditions at the turning

point rcrit. Equation 2.1.24 expresses the behaviour of the scattering length as a
function of the semiclassical phase Φ; this function has a divergence every time
the relation

Φ− π

8
=

1

2
π + πn ∀ n ∈ Z

is satisfied. When this condition is valid and the scattering length a diverges a
bound state can be supported by the potential. These resonances are usually called
shape resonances.
Let us consider the energy of the last bound state supported by the van der Waals
potential. If nf is the last integer that allows a real bound state10, we can write
(nf − 1/2) < Φ−π/8 < (nf + 1/2). It can be demonstrated [49] that, by comparing
the relation that links the phase shift to the scattering length (2.1.18) and the
general relation that allows to obtain the effective range (A.5), in particular by
evaluating this relation for k → 0 and κcrit rcrit � 1, it is possible to express the
scattering length as a function of κcrit by the relation:

− 1

a
' −κcrit +

1

2
(κcrit)

2 reff. (2.1.25)

10The knowledge of the phase shift Φ allows to determine the maximum number of the bound
states. By following reference [74], the number of bound states is determined by

nf = pΦ/π − (n− 1)/(2n− 4)q
∣∣
n=6

+ 1

where pq indicates the integer part.
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2 - Scattering processes and atom-atom interactions

The energy of the least-bound state εb can therefore be expressed as:

εb = − ~2

2m
(κcrit)

2 '
λcrit →∞

− ~2

2ma2
(2.1.26)

that means that the real least-bound state, that corresponds to a negative energy,
occurs when the interaction is repulsive. If the least-bound state is virtual thus
the scattering length has to be negative and it implies an attractive interaction.
Equation 2.1.26 can be considered valid only when the scattering length can be
approximated by the potential depth parameter κcrit introduced in equation 2.1.20
and then results bigger than the mean scattering length a. To generalize this
expression including also the conditions in which the scattering length a is compa-
rable to a, we present now a result obtained by performing quantum defect theory
(AQDT) in order to determine the energy of highly-excited molecular states sup-
ported by the interacting potential [68]. It is possible to obtain:

εb = − ~2

2m (a− a)2

[
1 + c1

a

(a− a)
+ c2

a2

(a− a)2

]
(2.1.27)

where11 c1 = 3
Γ (5/4)2

Γ (7/4)2 − 2 and c2 =
5

4
c12 − 2. Also the effective range can be

calculated exactly by evaluating the quantum defect theory for a 1/r6 potential,
and the result, reported in reference [70], is consistent with the expansion of reff
in term of the ratio (a/a) [75]:

reff =
a

3

Γ(1/4)2

Γ(3/4)2

(
1− 2

a

a
+ 2

(
a

a

)2
)
. (2.1.28)

This relation ensures the positivity of the effective range as requested by the general
theory.

11Reference [68] exploits the well-known identity
2π

Γ(1/4)2
≡ 1

2
√

2

Γ(3/4)

Γ(5/4)
to express all the

physical quantities presented in this work.
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2 - Scattering processes and atom-atom interactions

2.2 Optical lattices

In the previous sections we have analyzed the dynamics that underlies the
interaction between atoms in free space, obtaining the fundamental relations to
mathematically describe isotropic atomic collisions. As we will show in the next
chapters, the introduced concepts will allow us to obtain explicitly the effective
range and the scattering length for two physically promising and nearly unexplored
atomic systems. The fundamental tool that, for any system studied in this thesis,
allowed us to understand the interaction phenomena is the possibility to load atoms
in a spatially-periodic potential of light, named optical lattice.

Atoms loaded in optical lattices represent a unique platform by which it is pos-
sible to mimic a large variety of physical system, from one-dimensional interacting
systems to three-dimensional electrons in crystals. During the last years, this tool
permitted the development of a high number of innovative techniques to simulate
physical systems in which the experimental conditions for the observation of in-
teresting quantum effects would have been otherwise unexplorable.
A remarkable example, recently achieved in the laboratory where the results re-
ported in this thesis have been obtained, is the possibility to observe experimentally
the behaviour of the electron in crystals permeated by an intense magnetic field
(about 104 T)[12].

An optical lattice is a spatially-periodic potential generated by a standing wave
of far-off resonant light. To describe simply the effect of this kind of radiation let
us schematise an atom as an ideal two-level system, in particular we will call the
ground state |g〉 and the excited state |e〉. In this case the mean force experi-
enced by the ideal two-level atom, when monochromatic light is considered, can
be expressed [76] as:

~F =
1

2
~

[
~kLΓ

Ω2

2

δ2 + Γ2

4
+ Ω2

2

− δ
∇Ω2

2

δ2 + Γ2

4
+ Ω2

2

]
(2.2.1)

where kL = |~kL| = 2π
λ
is the wavevector of the monochromatic radiation considered,

~Ω = q ~d · ~E is the Rabi frequency where ~d = 〈~r〉 is the dipole operator and ~E is
the electric field associated to the radiation considered, δ is the detuning and Γ is
the natural width of the transition |g〉 → |e〉.
This equation is clearly composed by two parts, the first one represents the so
called dissipative term and describes the mean effect due to cycles of directional
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2 - Scattering processes and atom-atom interactions

absorptions and isotropic spontaneous emissions while the second part is a conser-
vative term and can be expressed by the following potential:

V =
~δ
2

log

[
δ2 + Γ2

4
+ Ω2

2

δ2 + Γ2

4

]
. (2.2.2)

The potential reported in equation 2.2.2 constitutes the so called optical dipole
potential and usually it is expressed by considering only the first order of the
Taylor expansion12

V ' ~
Ω2

4δ
. (2.2.3)

Equation 2.2.3 shows that, if the light is red detuned with respect to the transition
|g〉 → |e〉, the potential due to the radiation, neglecting the dissipative term, is
attractive and then can be used to trap atoms in the maxima of radiation inten-
sity. In the case of a standing wave, for example obtained by retroreflecting a laser
beam, maxima are spatially periodic. The relations shown can be generalized for
a real atomic system characterized by many energy levels, as it has been reported
in references [76, 77].

Let us consider two counter-propagating plane waves on the x̂ direction of a ref-
erence frame and take into account ideal plane waves characterized by wavenumber
kL; it is possible to demonstrate that the mean intensity profile can be expressed
as

I(x) =
ε0c

2
E2

0 (1 + cos (2kLx)) . (2.2.4)

The periodicity of this intensity profile is λ/2. Light beams used to realize spatially-
periodic potentials are not exactly representated as ideal plane waves because the
radiation employed in an experimental laboratory can be approximated as Gaus-
sian beams [78] (that are solutions of the Helmholtz equation in paraxial approx-
iamtion13). The real spatial dependance of the electric field E0, that can be ne-
glected if we are interested in the analysis of lattice physics phenomena, as we will
see in the following, has a non-negligible relevance from the experimental point of
view because the shape generate an additional light potential. The characteristic
trap frequencies generated by the lattice beams can be experimentally measured
and represent an important characteristic to determine the physical processes that
can occur on confined atoms.

12The far-off resonant condition implies that
Ω2

2

δ2+Γ2

4

� 1 that is the requested condition to

expand equation 2.2.2 to the first order.
13While plane waves are solutions of the equation �~E (~x) = 0 where � is the d’Alembert

operator.
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In general, the potential generated by a retroreflected Gaussian lattice beam can
be written as 14

V (r, x) = V0e
−2 r2

ω(x) cos2 (kLx) ≈ V0 cos2 (kLx) +
1

2
ω2
rr

2 +
1

2
ω2
xx

2 (2.2.5)

where ωr
2π

=
√

4Er
mw2

0

√
s, ωx

2π
=
√

2Er
mz20

√
s are the trap frequencies along and perpendic-

ular to the propagation direction x̂, (w0, z0) are the beam waist and the Rayleigh

parameter z0 =
πw2

0

λ
, Er ≡

~2k2L
2m

is the recoil energy of the radiation and s ≡ V0

Er
is a dimensionless parameter that indicates the lattice depth with respect to the
recoil energy. If we generalize the one-dimensional intensity profile in equation
2.2.4 to the three-dimensional case in which three pairs of (independent) lattice
beams are shone along orthogonal directions, a cubic three-dimensional optical
lattice forms. If we neglect the trapping potential induced by the real shape of the
lattice beams it is possible to describe the motion of an atom in the 3D spatially
periodic potential as:− ~

2m
∇2 + Er

∑
i={x,y,z}

si sin2
(
k(L,i) i

)
− ε

ψ (~x) = 0. (2.2.6)

The resulting Hamiltonian is a separable operator and the wavefunction can be
factorised as follows:

ψ (~x) = ψx (x)ψy (y)ψz (z) .

The eigenstates problem reduces to solve three separate Mathieu equations [54, 80].
Solutions of these equations are the Mathieu special functions that are periodic
functions characterized by the same periodicity of the lattice and constitute an
orthonormal set.
By following a different approach to the solution of the same mathematical prob-
lem, it is possible to search a solution of the spatially periodic eigenstate problem
by imposing

ψj (j) = u(n,kj) (j) eikjj ∀j ∈ {x, y, z} (2.2.7)

where u(n,kj) are eigenfunctions characterized by the lattice periodicity and kj is
the quasimomentum in the direction ĵ. The existence of a set of solutions that can
be expressed as reported in equation 2.2.7 is ensured by the Bloch theorem [81].
It is possible to demonstrate that u(n,kj) is a periodic function in kj with the

14Equation 2.2.5 takes into account the electric field only as a function of the radial position
x while the axial dependance has been neglected (this contribution should be considered if the
dimension of the trapped cloud results comparable to the Rayleigh parameter z0 = πω0

λ )[79].
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periodicity of the reciprocal lattice and also the eingenvalues are invariant under
traslation of multiples of the reciprocal lattice vectors. As a consequence of this
translational symmetry in the momentum space, introducing the band index n
it is possible to limit the representation of the eigenvalues to the primitive cell
of the reciprocal lattice, that is called first Brillouin zone (FBZ). For the sake of
illustration, in figure 2.2.1 we show the first four bands for a simple one-dimensional
lattice.

0

0
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20

30

k

[ k
H
z]

s=10

I 

FBZ

II 

III 

Figure 2.2.1. Lattice band structure evaluated for Yb atoms and s = 10. A solu-
tion is plotted in red as a function of the quasimomenta k. Using the invariance under
translations in reciprocal space each red-painted branch can be translated in the in-
terval {−π/d, π/d} where 2d is the one-dimensional direct primitive cell. In the inset
the fundamental band has been reported, to enhanceing its shape as a function of the
quasimomenta.
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2.2.1 Wannier functions
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Figure 2.2.2. Sketch of the first order Taylor expansion (dark red) of the lattice potential
(red) when the depth s� 1. The firsts eigenstates and eigenvalues for a pure harmonic
potential are also shown.

When s� 1 the atomic wavefunction, that can be always expressed as a sum
of plane waves over the whole lattice, results localized around the lattice sites.
That suggest us to introduce an alternative for the solutions of the Schrödinger
problem 2.2.6, as combination of the so-called Wannier functions, localized on single
lattice sites. If we consider a one-dimensional lattice characterized by a distance
d between two nearest-neighbour lattice sites in the direct space, the Wannier
functions are defined by [81]

wn(x− la) = N

∫ +k

−k
ei(kla+θn,k′)ψn,k′ (x) dk′ (2.2.8)

where N is a normalization constant, θn,k′ is a phase factor, ψn,k′ (x) are the Bloch
functions and l ∈ Z. The uncertainty due to the phase factor θn,k′ can be removed
if we choose to work with maximally localized Wannier functions (MLWF). To impose
this condition it is sufficient to determine θn,k′∀n that minimize the quantity [82, 83]

∆x2 = 〈wn(x)|x̂2|wn(x)〉 − 〈wn(x)|x̂|wn(x)〉2.

MLWF are an orthonormal set characterized by the completeness relation

〈wn (x− la) |wn′ (x− l′a)〉 = δn,n′δl,l′ . (2.2.9)

From this relation it is possible to note that two particles in the same band (n =
n′) have orthogonal wavefunctions if they are in two different lattice sites. That
means also that, if an atom is perfectly described by a MLWF, the overlap of its
wavefunction with the wavefunction of the atom in the nearest neighbour lattice
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site can be neglected.
In this condition, it is possible to approximate each lattice site as a harmonic
potential, as shown in figure 2.2.2, by approximating the potential 2.2.5 to the
first-order Taylor expansion and neglecting also the terms due to the intensity
Gaussian shape of the beam employed to realize the lattice15.

2.2.2 Two interacting particles in a harmonic potential

If we consider the tight-binding condition, the study of atom-atom interactions
in a lattice site reduces to the study of the collision process in a harmonic trap. To
describe the interaction in a harmonic trap let us assume, as discussed in section
2.1, to consider a dilute and ultra-cold atomic gas. Under these assumptions, by
following the idea proposed by Fermi [84], the interaction can be modelled with a
pseudo-potential with a contact interaction proportional to the scattering length
a as follows:

V (r) =
4π~2

m
a δHY (r) (2.2.10)

where δHY = δ (r) ∂
∂r

(r·) is the regularized delta function introduced by Fermi
and exploited by Huang and Yang to analyze the interaction between hard spheres
[85, 86].
By following reference [87], if we restrict the problem to a three-dimensional,
isotropic (ωx = ωy = ωz), harmonic oscillator and we consider that both the
kinetic energy term of the two-particles Hamiltonian and the external potential
energy are quadratic forms, it is possible to separate the center-of-mass motion
from the representative system point described by the relative coordinates.
The center-of-mass Hamiltonian can be expressed as the sum of a kinetic term and
a harmonic potential, so the solution is well known and the interaction problem
can be attributed only to the representative point of the system Schrödinger equa-
tion.
By defining the relative coordinate ~r = 1√

2
(~r1 − ~r2), and center-of-mass coordinate

consequently16, we can write:[
Ĥho + a π

√
2mω

~
δHY (r)

]
ψ (~r) =

ε

~ω
ψ (~r) (2.2.11)

where Ĥho is the Hamiltonian of the harmonic oscillator for the representative
point of the system.

15In this case this approximation is completely justified because the shape of the beam has an
effect over bigger distances than the dimension of a single lattice site.

16The same authors in reference [87] define this choice “unconventional” but they prefer it to
balance the masses of center-of-mass and representative point of the system.
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Figure 2.2.3. Energy spectrum of two interacting atoms in a three-dimensional, isotropic
harmonic oscillator potential as a function of the scattering length a. The expected
behaviour for a → ∞ is reported as dashed black lines. The green line shows the lowest-
energy state allowed by the harmonic potential for non-interacting atoms. As it can be
observed, due mainly to the induced confinement caused by the trapping potential, both
positive and negative scattering lengths support the formation of bound states.

This model can be solved analytically and the energy E = ε/~ω of two inter-
acting atoms in a harmonic trap can be written as:

√
2

Γ (−E/2 + 3/4)

Γ (−E/2 + 1/4)
=

1

a

√
mω

~
. (2.2.12)

The energy spectrum can be evaluated by numerically solving equation 2.2.12. In
figure 2.2.3 the energy spectrum of two interacting particles in a three-dimensional
isotropic harmonic potential is plotted. If the interaction goes to zero, the eigenval-

ues converge to the non-interacting eigenvalues, namely εn =

(
3

2
+ 2n

)
~ω where

n ∈ N is the eigenvalue of the number operator n̂ = â†â.
If the scattering length increases, the energy increases up to the highest possible
limit, that is represented by the next oscillator level and atoms start to repel each
other as much as possible to reduce the interaction energy cost, providing a node in
the relative wavefunction. This mechanism causes the so-called fermionization of
identical bosons, that has been observed recently also for distinguishable fermions
[88, 89].
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2 - Scattering processes and atom-atom interactions

We also note that, it is always possible to find a state characterized by a lower
energy than the first allowed harmonic state, that is plotted in figure 2.2.3 and has
a energy equal to ε0 = 3

2
~ω.

2.2.3 Singlet-triplet interactions in a harmonic potential

In reference [87] the interaction between two atoms was parametrized by one
parameter, the scattering length a introduced in section 2.1.1. This assumption
can be justified for all the collisional processes described, but has to be revisited if
we consider particles that obey well-defined statistics. In particular, if we consider
the interaction between two particles that obey Bose-Einstein statistics, we have to
consider also that the total wavefunction has to be even under exchange 1↔ 2. In
the following sections we will show that this characteristic property allows s-wave
scattering between identical particles.
Viceversa, two particles that obey Fermi-Dirac statistics have an antisymmetric
total wavefunction under exchange 1↔ 2 and we will see that this property permits
s-wave scattering only between particles characterized by a different collection of
quantum numbers.
Usually, when the interaction between fermionic atoms is considered, the degree
of freedom that differs between two particles is the projection of the total angular
momentum on the quantisation axis mF.
However, two electron atoms have also other stable levels, as we will show in the
following sections. In particular, they have spin-triplet states |e〉 characterized by
a lifetime of the order of tens of seconds. The lifetime of some of these excited
metastable levels is so long with respect to the atomic dynamics that it is possible
to treat these levels as proper stable states of the system. To describe interactions
between a ground-state atom |g〉 and a metastable atom |e〉 in the presence of a
harmonic potential we derived a model following the course reported in reference
[87].
In this case, the total wavefunction describing the ground-state and the excited-
state atoms has to be antisymmetrized by imposing the oddness over the exchange
transformation 1↔ 2.
The two obtained antisymmetric states

|+〉 =
1√
2

(|ge〉+ |eg〉) ≡ |s〉, |−〉 =
1√
2

(|ge〉 − |eg〉) ≡ |t〉

have, in general, two different scattering lengths named a+ and a−.
In this section we17 will generalize the two-body interaction in a harmonic potential

17The largest part of this theory has been evaluated by my collegue L. F. Livi.
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by introducing two different scattering lengths for the two colliding atoms. The
obtained result will collapse on the solution described in the section 2.2.2 [87] if
we impose the relation a+ ≡ a−.
As described in the previous section, in this case it is possible to separate the
center-of-mass motion from the representative point of the system that is described
by the relative coordinates introduced by the relation ~r = 1√

2
(~r1 − ~r2).

The Hamiltonian Ĥho for the system in which the harmonic potential is considered
could be expressed as

Ĥho =
∑
n

En|s, n〉〈s, n|+
∑
n

(En −∆µB) |t, n〉〈t, n| (2.2.13)

where |n〉 are the harmonic oscillator eigenfunctions corresponding to eigenvalues
identified by En.
In the rotated basis introduced by |±〉 states, where the interaction Hamiltonian
is diagonal, the Hamiltonian operator in equation 2.2.13 can be evaluated by per-
forming the transformation OĤhoO where

O =
1√
2

(
1 1
1 −1

)
O ∈ SO2

By following the course of reference [87] we add interactions to the Hamiltonian
and expand the unknown solution Ψ of the colliding particles as follows

Ψ (~r) =
∞∑
n=0

(
c+
n + c−n

)
ψn (~r) (2.2.14)

where Ĥhoψn = Enψn. The resulting system describes a couple of particles that
interacts by two scattering lengths a±:
∑∞

n=0

[
c+
n

(
En − E + ∆µB

2

)
− c−n

∆µB
2

]
ψn (~r) +

[√
2πa+δHY

]∑∞
m=0 c

+
mψm (~r) = 0

∑∞
n=0

[
c−n
(
En − E + ∆µB

2

)
− c+

n
∆µB

2

]
ψn (~r) +

[√
2πa−δHY

]∑∞
m=0 c

−
mψm (~r) = 0

that can be simplified by projecting the two equations over ψ∗n (0) and by summing
the obtained equations:

(
c+
n + c−n

)
(En − E) + ψ∗n (0)

[
√

2π
∂

∂r
r
∑
m

(
a+c+

m + a−c−m
)
ψm (~r)

]
︸ ︷︷ ︸

AS

= 0 (2.2.15)
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and by subtracting them:

(
c+
n − c−n

)
(En − E + ∆µB) + ψ∗n (0)

[
√

2π
∂

∂r
r
∑
m

(
a+c+

m − a−c−m
)
ψm (~r)

]
︸ ︷︷ ︸

AD

= 0

(2.2.16)
where we have introduced the functions AS and AD as shown in relations 2.2.15
and 2.2.16. By reverting these relations we can obtain the system

c+
n = ψ∗n(0)

2

[
AS

En−E + AD
En−E+∆µ

]
c−n = ψ∗n(0)

2

[
AS

En−E −
AD

En−E+∆µ

] (2.2.17)

that allows us to indentify the expansion coefficients.
Now, if we are interested to separate the two coefficient AS, AD to determine
them, by substituing equations 2.2.17 in expansion 2.2.14 it is possible to obtain :

ΨS = AS

∞∑
n=0

1

(En − E)
ψ∗n (0)ψn (~r) (2.2.18)

and ΨD can consequently derived by evaluating
∑∞

n=0 (c+
n − c−n )ψn (~r).

Equation 2.2.18 can be expressed in term of Laguerre polynomials [87] and this
procedure brings to:

ΨS = AS
π−3/2

2
e−r

2/2Γ (−E/2 + 3/4)U (−E/2 + 3/4, 3/2, r2)

ΨD = AD
π−3/2

2
e−r

2/2Γ
(
−E/2 + 3/4 + ∆µB

2

)
U
(
−E/2 + 3/4 + ∆µB

2
, 3/2, r2

)
(2.2.19)

where U(. . . ) derives from the integral representation of the confluent hypergeo-
metric function [54, 87].
The last step to find the exact eigenvalues is to obtain AS, AD in the limit r → 0.
To achieve this result it is possible to substitute the relations 2.2.17 in equations
2.2.15 and 2.2.16 in the limit r → 0. The model obtained has a numerical solution
that will be exploited, considering also numerical anharmonic correction to the
harmonic potential in order to extend the results of this model to the case of a
lattice potential well up to the 4-th order18, to evaluate the bound-state energy
for Yb atoms as will be explained in detail in chapter 5.

18In the case of 4-th order potential the problem has been analyzed exactly in [90] while a
numerical comparison with the usual theory evaluated in reference [87] can be found for example
in reference [91] supplementary material.
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2.3 Many-body lattice physics

So far we have introduced the problem of collisions in a harmonic trap and we
have shown an exact solution only for two isolated interacting atoms. This condi-
tion, that can be observed experimentally if we consider very high lattice depth s,
has given us an important insight on the role of the external trap in the interac-
tion dynamics because the energy of two particles saturate at the next harmonic
oscillator state when the scattering length a → ∞. Moreover, the presence of a
trap allows for the existence of a bound state for each non null scattering length
a.
In this section we will go beyond the two body problem and introduce a differ-
ent formalism that is commonly used to describe many-particles lattice dynamics.
As this formalism makes use of single- particle wavefunctions, it cannot properly
describe the system when the scattering length diverges, that is the condition an-
alyzed in the previous part.

Figure 2.3.1 shows the possible processes that can occur in a lattice in which
the depth s is not so high and the energy scale associated to the motion of the
atoms in the lattice cannot be neglected. In particular, on the left side of figure
2.3.1 the atomic occupation number distribution after the lattice loading procedure
is reported. Each lattice site can be described by a single MLWF (independently
of the number of particles occupying the site) so it is possible to introduce, using
these functions, a new description of the lattice dynamics based on the so-called
“second quantization approach”.
We limit our analysis to a single band and in particular we decide to ignore

inter-band processes and consider only the fundamental band19.
Let us introduce a†i , ai as creation and annihilation atom operators corresponding
to the i-th lattice site, the field Φ̂(x) associated to the annihilation of a particle in
the x spatial position can be expressed by the relation [92]:

Φ̂(x) =
∑
i

w (x− id) âi (2.3.1)

By exploiting the introduced field it is possible to describe the processes graphically
represented on the right side of figure 2.3.1. We can define the following quantities

19As we will see, inter-bands processes can occur, for example by shining on an atom a laser
light resonant with the transition |g〉|gb〉 → |e〉|eb〉 where |gb〉 describes the fundamental band
and |eb〉 describes the first excited band shown in figure 2.2.1.
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Figure 2.3.1. Sketch of a square lattice system when the atomic cloud has been loaded
in the periodic light structure. On the left, a red scale has been used to represent the
occupation number in a specified lattice site (more intense red corresponds to higher
number of atom per site). On the right are represented the processes that can play a role
in the many-body lattice dynamic. In particular a) describes a hopping process in which
an atom transfer itself from its site to the nearest neighbour and b) describes the on-site
interaction.

related to processes a) and b) of figure 2.3.1: the tunneling energy t and the
interaction energy U.

By considering a one-dimensional lattice it is possible to define the tunneling
energy by the relation

ti,j =

∫
w∗(x− xi)

(
p̂2

2m
+ sEr sin2 (kLx)

)
w(x− xj)dx (2.3.2)

that describes the MLWF overlap between the sites (i, j). The tunneling process
along one direction, describing the hopping from a lattice site to the nearest neigh-
bour (j = i± 1), can be represented by the Hamiltonian

Ĥ = −
∑
i

ti,i+1

(
â†i+1âi + â†i âi+1

)
= −t

∑
i

(
â†i+1âi + â†i âi+1

)
, (2.3.3)

that has to be evaluated on the many-particle state that describes the atomic oc-
cupation number in the lattice. This relation is just the equation 2.2.6 evaluated
in the second quantization approach and neglecting the hopping between sites
that are not nearest neighbour, because the overlap integral between sites that are
further away is exponentially suppressed as the Wannier functions become more
localized on the single lattice site. This approximation is valid when the lattice
potential V0 exceeds about 4Er.
The expression 2.3.3 of the lattice Hamiltonian in the MLWF basis takes the name
of tight binding approximation (tba).
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In this approximation, considering a one-dimensional lattice, the dispersion re-
lation of the lowest band becomes a cosinusoidal function of the quasimomenta
ε(k) = −2t cos (kd) and subsequently the bandwidth ∆ε = |ε(0)− ε(π/d)| = 4t.
The obtained relation has been derived for a one-dimensional lattice but, since the
Hamiltonian operator 2.2.6 is separable, the total wavefunction can be factorised.
In this case the dispersion relation, assuming isotropic lattice depth, can be written
as

ε3D = −2t
∑

i∈{x,y,z}

cos (kid) ,

that implies, as direct consequence, a 3D bandwidth ∆ε = 12t.
By considering an isotropic three-dimensional lattice it is possible to define the

interaction energy U as follows:

U =
4π~2

m
a
∏

i∈{x,y,z}

∫
w4 (i) di, (2.3.4)

that describes the on-site overlap of the densities corresponding to two atoms.
To introduce the interaction in the many-body Hamiltonian 2.3.3 it is necessary to
specify the statistical behaviour of the atoms considered. This is due principally to
the Pauli principle [93] that imposes, for identical fermionic particles, an antisym-
metric wavefunction under the exchange transformation 1 ↔ 2. Consequently, it
is not possible to have two fermions characterized by the same quantum numbers
and therefore the s-wave scattering cannot occur between two identical atoms.
Bosonic atoms, differently, have a symmetric wavefunction under the exchange
transformation 1 ↔ 2; in this case the interaction between atoms characterized
by the same set of quantum numbers is not forbidden and s-wave scattering can
occur.
In this thesis we will present experimental results obtained by loading a 3D cubic
lattice with atoms of a unique lanthanide, Ytterbium, that we will introduce in
detail in chapter 3.4.
This element presents many stable isotopes and in this work we studied mainly
174Yb and 173Yb, that obeys to Bose-Einstein and Fermi-Dirac statistics respec-
tively.
In section 2.3.1 we introduce interactions for bosons and fermions in the many-
body Hamiltonian 2.3.3 and we analyze some effects of interactions on the trapped
atomic gas.
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2 - Scattering processes and atom-atom interactions

2.3.1 Hubbard models

In this section atomic interactions, introduced in sections 2.3 and 2.1.2, will be
integrated in the lattice Hamiltonian and we will present some important results
regarding interactions in a many-body lattice system.
Our starting point is the hopping Hamiltonian, that, by following the second quan-
tization approach and restricting the analysis to the tba, can be expressed as shown
in equation 2.3.3.

Interactions between atoms can be modelled in the second quantization ap-
proach by inserting an on-site term that can be written in the form [94, 95]

Ĥint =
U
2

∑
i

â†i â
†
i âiâi. (2.3.5)

Bose Hubbard model (BHM)

For bosonic atoms, in which the commutation rules between creation and annihi-
lation operators can be written as[

âl, â
†
l′

]
= δl,l′ , (2.3.6)

the interaction term can be written as n̂i (n̂i − 1), where n̂i is the number operator
referred to the i-th lattice site.
The complete Hamiltonian

ĤBH = Ĥ + Ĥint

is the well-known Bose-Hubbard Hamiltonian (BH), and despite its simply form,
cannot be resolved exactly except for trivial cases.

In the case in which the on-site collisions can be neglected (U ' 0), the eigen-
values of the model have been reported in section 2.1.2 and show an absolute
minimum for quasimomentum k = 0, while the eigenfunction for the ground state
of N atoms is delocalized over the whole lattice and the atomic gas exhibits a su-
perfluid (SF) behaviour. The resulting wavefunction can be written by introducing
the total number of lattice sites NL, as [92, 94–96]

|ΨSF〉 =
1√
N !

(
1√
NL

∑
i

â†i

)N

|0〉 (2.3.7)

where |0〉 is the vacuum state.
In the limit U/t→ 0 the ground state of the BH model is a Gross-Pitaevskii-type
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state with a condensate fraction equal to 1. When the number of lattice sites
NL → ∞ and the number of atoms N increases consequently to keep constant
the ratio N/NL, the ground-state wavefunction becomes indistinguishable from a
coherent state [92]:

|ΨSF〉 = e(
√
Nâ†k=0)|0〉 =

∏
i

e

(√
N
NL

â†
(i,k=0)

)
|0〉i. (2.3.8)

The resulting coherent state can be factorized into a collection of local coherent
states characterized by mean value equal to

√
N/NL and centered on each lattice

site as shown in equation 2.3.8.

The other easily evaluable example is the case in which the interaction is pre-
dominant over the hopping contribution (U� t). In this case the effect of inter-
actions is to inhibit the tunneling in order not to pay the energy cost of a hopping
process in an occupied site, which is proportional to U as sketched in figure 2.3.1
[97]. In this case the system is in a gapped phase called Mott insulator (MI) and
the system ground state, if we consider the condition in which the total number
of atoms N is exactly equal to the number of lattice sites NL, can be expressed as
the product of Fock states characterized by 〈n̂〉 = 1:

|ΨMI〉 =
∏
i

â†i |0〉. (2.3.9)

As shown by relation 2.3.9, when the tunneling can be neglected, and the number
of atoms is sufficiently low to keep the mean occupation filling under or equal to 1
the number of doubly-occupied sites goes to zero. This characteristic define a ideal
MI only when the hopping is forbidden and, consequently, t ≡ 0.
When the tunneling cannot be completely neglected, i.e. a condition that experi-
mentally is always verified, the characteristic of theMI phase is the incompressibility,
that means that when the chemical potential µ is changed the density remains un-
changed (∂µ〈n̂〉 = 0).

When t increases, the probability to find a doubly-occupied site becomes non
negligible and the BH model describes the competition between the kinetic energy
t and the repulsive on-site interaction U: the first lowers the total energy of the
system by delocalizing particles over the periodic potential, the latter minimizes
the presence of multiple-occupied lattice sites.
A sharp quantum phase transition from an ideal SF, described by 2.3.7, to a MI
occurs in the thermodynamic limit in two and three dimensions. When the ther-
modynamic limit is not fulfilled, the sharp transition between SF and MI becomes
a proper crossover and in particular, if we consider the 3D case, the transition
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order parameter is the condensed fraction nSF/n. This quantity is equal to 1 in a
pure SF while it goes to zero when U/t� 1.
By evaluating a mean-field theory [96, 98] it is possible to obtain a critical value
at which the transition from MI to SF can occur. For 〈n̂〉 = 1, the critical ratio at
which the transition occurs corresponds to

(U/t)c = 5.8 ζ (2.3.10)

where ζ is the coordination number and it is determined by the lattice geometry
(for a cubic lattice ζ = 6).

As briefly introduced in section 2.2, the light beams used to create spatially
periodic potentials are not ideal plane waves, rather Gaussian beams that induce
an additional harmonic potential that can be quantified by the relation 2.2.5. The
presence of an additional harmonic potential that has a long-range curvature with
respect to the distance between two nearest neighbour lattice sites, can be modelled
by adding a site-dependent potential Vi, proportional to the number of atoms in
the site n̂i, in the total Hamiltonian ĤBH. This potential allows for a more faithful
description of experimental conditions. Phenomena related to many-body lattice
physics usually are not strongly influenced by the presence of a little site potential
correction due to the finite curvature of lattice beams. Remarkably, they can even
favour the observation of strongly-correlated gapped states like the Mott insulator
phase. Indeed, the presence of a smooth confining potential allows the observation
of Mott insulating regions regardless of the precise atom number, provided that
the density is large enough to reach an integer value in some regions of the trap.

As we will describe in section 4, in this work we will present recent results
regarding the experimental estimation of previously unknown scattering lengths
in a 3D 174Yb bosonic Mott insulator [44].

Fermi Hubbard model (FHM)

Regarding atoms that obey Fermi-Dirac statistics, as we introduced in section 2.3,
the interaction potential cannot be described using relation 2.3.5 because the Pauli
principle [93] avoids any s-wave scattering between two particles that are described
by the same quantum numbers. Since fermions are characterized by half-odd spin,
it is possible to have a s-wave interaction between two atoms if the spin projections
(σ, σ′) on the quantization axis are different:

ĤFD =

{∑
σ,σ′,i

Uσ,σ′
2
â†i,σâi,σâ

†
i,σ′ âi,σ′ ∀σ 6= σ′

0 otherwise
(2.3.11)
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Figure 2.3.2. This sketch compares the occupation of the lowest energy band for bosons
and fermions when the interaction energy U can be neglected. The dependence of the
occupation number as a function of ε for fermions and as a function of the quasimomentum
k for bosons is reported. Bosonic atoms constitute a superfluid phase (BEC) ideally
described by a Gross-Pitaevskii-type state. The quantity εF is the Fermi energy and
represents the highest occupied energy level in a system in which T = 0. Fermionic
atoms constitute a metal if the band filling is < 1 otherwise it constitute a band insulator.

All the other operators introduced in section 2.3, the tunneling process between
two near lattice sites and the potential induced by the real shape of the light
beams used to generate lattices are not modified by fermionic statistics because
they operate as identity operator20 in the spin space:

ĤFD = Ĥ ⊗ Iσ V̂(i,FD)n̂(i,FD) = V̂i ⊗ Iσ. (2.3.12)

The Fermi-Hubbard Hamiltonian (FH) can be obtained by summing all the consid-
ered operators:

ĤFH = −t
∑
i,σ

(
â†i+1,σâi,σ + h.c.

)
+
∑
i,σ 6=σ′

Uσ,σ′
2

â†i,σâi,σâ
†
i,σ′ âi,σ′ +

∑
i,σ

Vi,σâ
†
i,σâi,σ.

(2.3.13)
The FH Hamiltonian can be solved analitically only by exploiting the Bethe ansatz
on the one-dimensional model [99, 100], while for higher dimensions it is not pos-

20Strictly speaking, as it is shown by relation 3.4.4, the potential generated by a radiation is
not completely independent from the nuclear-spin projection considered. The spin-dependent
contribution has a non-negligible role only if quasi-resonant light is considered. For that reason,
the potential Vi, that is realized by shining far-off resonant light, can be considered diagonal in
the spin space as assumed by relation 2.3.12.
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sible to solve the model exactly21. Despite its simple form, the FH Hamiltonian
can describe and simulate the behaviour of interacting electrons in an ideal crys-
tal. The FH model has been intensively studied and allowed the experimental
description of the transition from a metallic conducting phase to an insulating
phase [105], band magnetism [106], bad metallic phases [107, 108], and there are
proposal regarding the possibility to understand the phenomenon that underlies
the existence of high-temperature superconductivity in iron-based materials [109]
or in cuprates [110].
In general, the interaction energy Uσ,σ′ depends on the internal states of the
fermions but, if we consider atomic states for which the interaction energy does not
depend on the internal states22, the interaction and consequently the FH model
simplifies to

ĤsFH = −t
∑
i,σ

(
â†i+1,σâi,σ + h.c.

)
+

U
2

∑
i,σ 6=σ′

n̂i,σn̂i,σ′ +
∑
i,σ

Vi,σn̂i,σ. (2.3.14)

As we made for the BHmodel, it can be convenient to evaluate initially the simplest
cases possible. In particular, we consider a gas formed by a single spin23. In this
case the most convenient way to analyze the model is to consider 1D geometry and
perform a canonical transformation on creation and annihilation operators:

â†k,σ =
1√
N

∑
j

eikj â†j,σ. (2.3.15)

The FH model in the quasi-momentum space can therefore be written as:

ĤU=0 =
∑
k

εk n̂k where εk = −t
∑
j

eikj. (2.3.16)

By summing over the nearest neighbour lattice sites, j = ±d, we obtain:

εk = −2t cos (kd) .

Single-spin atoms occupy the lowest energy band accordingly to the Pauli prin-
ciple as shown in figure 2.3.2. If a mixture of spins in which interactions can be

21The model, in the presence of a potential that depends on the i-th lattice site, can only be
solved by using numerical techniques. Some theoretical methods used to solve this model are
Quantum Monte-Carlo (QMC) [101], Density Matrix Renormalization Group (DMRG) [102, 103]
and Dynamical Mean-Field Theory (DMFT) [104].

22As we will see in detail in section 5.1.1, this property is a characteristic of the hyperfine states
of the level characterized by J = 0 of two-electron and two-electron like atoms as Sr,Yb,Hg,Cd, . . .

23This condition include also U = 0 as shown by equation 2.3.11.
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2 - Scattering processes and atom-atom interactions

neglected (U/t → 0) is considered instead of a pure polarized gas, the same be-
haviour is expected for each spin.
If the band filling for each spin is not integer the gas behaves as a metal while, if
the filling per spin is integer, the gas simulates a crystal in which the conduction
is not allowed because the “valence” band is completely filled. This state, called
band insulator, is an incompressible state in which the mean site occupation is de-
termined but atoms are not localized on the lattice sites. The gas instead results
incompressible because the system energy increases by the energy gap between the
fundamental and the first excited band when an atom is added.

When the interaction energy is much bigger than the hopping term (U � t),
and if the filling per lattice site is an integer atoms localize in the lattice sites and
a Mott insulator generates, similarly to the bosonic case discussed above. When a
particle is added, the many-body system, in order to avoid the energy cost U, avoids
to create a doubly-occupied site and therefore the sample compressibility vanishes.
In this case the hopping term can be neglected and the resulting Hamiltonian can
be written as

Ĥatom =
U
2

∑
i,σ 6=σ′

n̂i,σn̂i,σ′ +
∑
i,σ

Vi,σn̂i,σ. (2.3.17)

Conditions in which equation 2.3.17 results verified are refereed as atomic limit.
In this limit the Hamiltonian can be diagonalized analytically. Nevertheless, this
operator cannot describe properly a real trapped sample because thermalization
processes, that occurs in the lattice, are driven by the tunneling (t 6= 0). For
that reason Hamiltonian 2.3.17 can be used as unperturbed Hamiltonian Ĥ0 of a
perturbative approach in which is evaluated the contribution of a finite but non
negligible tunneling to the insulating phase.
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mental techniques

This chapter is devoted to the description of two-electron atoms properties and to
the experimental procedures adopted to trap and cool down atomic ytterbium to
the quantum degeneracy (both bosonic and fermionic isotopes).
The first part (section 3.1) introduces the electronic-structure and the properties
of alkaline-earth-like atoms. The following section is devoted to the theoretical
description of interactions that allow the excitation of intercombination (section
3.2) and “clock” transitions for both bosonic (section 3.2.2) and fermionic (section
3.2.1) AEL atoms.
In section 3.3, we will illustrate how to coherently couple the nuclear-spin degree
of freedom by means of Raman transitions.
In the third part of the chapter the Ytterbium (Yb) atom and its physical and
chemical properties are described (section 3.4). Last part is also devoted to the
description of the resonant laser sources (section 3.4.1) and the out-of-resonance
laser sources (section 3.4.2) employed to trap and cool down Yb atoms in order to
reach the degenerate regime.
Finally, section 3.4.3 describes briefly the vacuum setup and the experimental
steps necessary to realize and detect ultracold bosonic and fermionic samples in
the “Florence Yb” laboratory.
These last subjects are described in detail in references [111–113].
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3 - Alkaline-earth like atoms and experimental techniques

3.1 Basic atomic properties

The denomination alkaline-earth atoms (AE) is a prerogative of the elements that
constitute the II group1 of the periodic table of elements (Be, Mg, Ca, Sr, Ba, Ra),
while alkaline-earth like atoms (AEL) is preferred to indicate the elements that are
not in the II group of the periodic table but have an external electronic configu-
ration that is constituted by a complete external high-momenta (d,f) shell and a
complete external s-shell. This occurs to elements of group IIBCAS that are char-
acterized by complete d-shells (Zn, Cd, Hg, Cn) or to rare-earth elements in which
there are complete f -shells (Yb, No) or, more easily, happens to helium (He) in
which there is only one s-shell occupied.

For the specified atoms, AE, AEM, AEL, the structure of the lowest-energy
excitations in the spectrum is determined by the presence of the complete external
s-shell, in a similar way to what happens in He: due to the fact that the total spin
in the most external s-shell can assume only values S ∈ {0, 1}, the quantized energy
levels, can be divided into singlet (S = 0) and triplet states (S = 1). Singlet states
are characterized by an antisymmetric wavefunction in the spin space under the
exchange transformation 1↔ 2, while triplet states have a symmetric wavefunction
in the spin space.
By exposing atoms to a proper electric field, transitions from a singlet state to
a triplet state are forbidden2 because the electric field cannot modify the spin
sector (S = S’) [114]. While this sentence is nearly exact for He, when an AEL
atom is considered, the fact that the Russell-Saunders coupling cannot describe
exactly the interactions that take place in the atom, makes transitions between
singlet and triplet states possible. However, as a strong indication that the Russell-
Saunders coupling is still a good approximation to describe AEL atoms, those are
very narrow. In any case, by using L-S coupling it is possible to evaluate the
coupling strength due to electric-dipole interaction for the low-lying states and
in particular between the ground state 1S0 and the states 1P1, 3Pi ∀i ∈ {0, 1, 2}.
As happened in section 2.3.1, to describe these transitions the atom statistical

1By following the chemical abstracts service (CAS) standard the right name of the
considered group should be IIACAS. The other II group designed by the CAS stan-
dard, named IIBCAS, is represented by transition metals characterized by “complete” ex-
ternal d-shell

(
l = 2 with degeneracy (2s+ 1) (2l + 1) =

(
2 · 12 + 1

)
(2 · 2 + 1) = 10

)
and s-shell

(l = 0 with degeneracy 2). For that reason, the old nomenclature prefers to use, for atoms of the
IIBCAS group, the diction alkaline-earth metal atoms (AEM).

2If we consider the electric dipole interaction as coupling operator.
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3 - Alkaline-earth like atoms and experimental techniques

behaviour will play an interesting and unexpected major role.

3.2 Intercombination transitions in AEL

AEL atoms (both fermionic3 and bosonic isotopes) are characterized by full
external electronic configuration, thus the ground state is characterized by mo-
mentum L = 0. Moreover, the ground state is a singlet state, that implies S = 0.
The whole internal angular momentum that an atom carries in the ground state
is only due to the nuclear momentum I.
The Russell-Saunders coupling, used to describe ground and low-lying excited
states, does not takes into account the atomic spin-orbit interaction, that can be
expressed as

Ĥso =

#el∑
i=1

ξ(~r)~Li · ~Si (3.2.1)

where i is referred to the i-th atomic electron. Let us consider this Hamiltonian
as a perturbative contribution to the unperturbed atomic term, noticing that, if
the spin-orbit term is considered, S is not a good quantum number. The first
excited state, for each reported AEL, can be written as e s e p where e represents
the principal quantum number of the most external s electron4.
In LS.coupling approximation, if we define the unperturbed states as 1P0

1, 3P0
j

∀j ∈ {0, 1, 2}, it is possible to express e s e p as [115–117]
3P0
3P1
1P1
3P2

 =


1 0 0 0
0 α β 0
0 −β α 0
0 0 0 1


︸ ︷︷ ︸

R


3P0

0
3P0

1
1P0

1
3P0

2

 (3.2.2)

where the 3P0,2 states result unperturbed because J commutes with the perturba-
tion Ĥso. The transition 1S0

0 → 1P0
1 occurs in electric-dipole approximation so,

if β is non null, also the transition 1S0
0 → 3P1 can happen, because of the sta-

ble mixing described in equation 3.2.2. Since experimentally the cited transitions
occur, transition frequencies and level lifetimes have been accurately measured

3The stable fermionic AEL atoms are: 9BeF=3/2, 25MgF=5/2, 43CaF=7/2, 87SrF=9/2, 135BaF=3/2,
137BaF=3/2, 67ZnF=5/2, 111CdF=1/2, 199HgF=1/2, 201HgF=3/2, 171YbF=1/2, 173YbF=5/2 but in many
cases the natural abundance is so low with respect to the stable bosonic counterparts that is
necessary to use enriched samples. The main exception is represented by Be that has a natural
abundance about 100%.

4In Yb, for example, e = 6.
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Iso- Tran- Final F Frequency δ from 174Yb Γ/2π
-tope -sition (Fin = 5/2) (MHz) (MHz) (kHz)
174Yb 1S0 → 1P1 751 526 533.49± 0.33 a 28.9 · 103 b

173Yb 3/2 −253.418± 0.050 c

5/2 516.26± 0.90 d

7/2 587.986± 0.086 c

174Yb 1S0 → 3P1 539 386 561± 10 e 182 f

173Yb 3/2 3805.66± 0.60 g

5/2 2311.73± 0.50 g

7/2 −2386.49± 0.50 g

Table 3.2.1. Transition frequencies ν and linewidths Γ of the dipole permitted transition
1S0

0 →1 P0
1 and the so called intercombination transition 1S0

0 →3 P0
1 for most abundant

[125] bosonic and fermionic Yb isotopes.
References: a:[120], b:[121], c:[122], d:[126], e :[123], f :[127], g :[124]

[118–124]; the method proposed in [117] can be used to directly evaluate α and β.
The first condition, that allows the ratio α/β to be calculated, is obtained by the
relation

|α|2

|β|2
=
τ3P1

τ1P1

(
ν3P1

ν1P1

)3

, (3.2.3)

while the second condition (α2 +β2 = 1), necessary to determine separately α and
β, is obtained by taking into account that R ∈ SO4.

Frequencies and linewidths for the mostly abundant [125] bosonic and fermionic
Yb isotopes5 are reported in table 3.2.1. By solving the equation system constituted
by equation 3.2.3 and α2 + β2 = 1 we obtain α = 0.992 and β = 0.127.

The statistical nature of atoms involved has not played any role in the physical
description of spin-orbit interaction. This means, as it can be observed experi-
mentally, that intercombination transition (in which ∆S 6= 0) between the ground
state and the triplet state 3P1 can occur for any AEL atom. We have considered
the case of Yb explicitly, but the interaction presented is completely general and

5In Yb, the biggest isotopic frequency difference is represented by the shift between transitions
1S0 → 3P1(F = 7/2) and 1S0 → 3P1(F = 3/2) that correspond to [123] ∆MAX ' 6200 MHz. By
evaluating that ∆MAX/ν ≈ 10 · 10−6 results that α and β are substantial invariant with respect
to the isotopic shift.
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carries to values of α and β for other AEL6. In the following section we will in-
troduce the hyperfine interaction that gives a non trivial contribution only when
fermionic atoms are considered.

3.2.1 Doubly forbidden transitions in Fermionic AEL

In any AEL atom, if only the electric dipole interaction is considered, each in-
tercombination transition is prohibited by the Wigner-Eckart theorem [128], that
forbids transitions in which the total atomic spin is changed (∆S 6= 0). In sec-
tion 3.2, we briefly analyzed the contribution of the spin-orbit interaction in AEL
atoms when the Russell-Saunders approximation is used to describe atomic inter-
nal states.
Moreover, as we introduced in section 2.2.3, in AEL atoms other states exist, that
are not directly coupled to a state in which a dipole transition from the ground
state is allowed. These states are those that in section 3.2 remained unperturbed
when the spin-orbit interaction contribution has been evalued. In L-S approxi-
mation these states can be expressed by 3P0,2 and the transitions 1S0 → 3P0,2

coupling them to the ground state are called “doubly-forbidden transitions”. The first
transition rule that is forbidden is the cited spin-singlet to spin-triplet transition
while the second transition rule that is not permitted is:

• J → J ′ = 0 for 3P0 state; (at all orders of light-matter interaction)

• ∆J 6= ±1 for 3P2 state. (in electric-dipole coupling approximation)

In this chapter we introduce the fundamental role of hyperfine interaction in
fermionic atoms.
The hyperfine interaction Ĥhfs is due principally to the electromagnetic interaction
of an incomplete electronic shell with the atomic nucleus. In general, since we are
interested in describing the interaction of an AEL atom with an external radiation,
we have to consider simultaneously the hyperfine interaction and the coupling with
the external electric field. To overcome this circumstance, we will suppose the hy-
perfine term as the biggest perturbation to the spin-orbit Hamiltonian, knowing
that this approach is valid only if the width of the 3P1 state is much smaller than
the fine-structure energy intervals between the components of triplet 3P level [129].
The Hamiltonian that describes the hyperfine electromagnetic interaction can be

6As further example, for Sr it is possible to obtain α = 0.9996, β = −0.0286 [117].It can be
noted that the coupling between 3P0

1 and 1P0
1 is lower in Sr than in Yb, i.e. βSr < βYb. For

that reason, intercombination transitions for Sr, are more prohibited than what happens for Yb;
this is due principally to the smaller Z of Sr with respect to Yb, entering the amplitude of the
spin-orbit interaction.
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written as sum a over multipole nuclear tensors N (q)
λ of rank q combined with

even-parity electronic coupling operators E(q)
λ . The resulting Hamiltonian opera-

tor is invariant under parity and rotational transformation, or in other words, is a
scalar [116, 129, 130]. A scalar operator ensures that the total angular momentum
F = I + J and its projection mF on the quantization axis are conserved.
The interaction Hamiltonian can therefore be expressed as:

Ĥhfs =
∑
q

(
N (q)E(q)

)
. (3.2.4)

The first-order corrections to the unperturbed eigenstates, that are marked by
superscripts 0 (as happened in section 3.2), are obtained by relation

|γ(IJ),F,mF〉 =
∑
γ′J′
|γ′(IJ’),F,mF〉0

〈γ′(IJ’),F,mF|0Ĥhfs|γ(IJ),F,mF〉0

E0
(γ′,J′) − E

0
(γ,J)

(3.2.5)

where γ indicates the collection of good quantum numbers necessary to determine
a certain state.
The expectation value of the considered Hamiltonian can be evaluated by using
the Wigner-Eckart theorem, to obtain [116]:

〈γ′,F′,mF′ |0Ĥhfs|γ, F,mF〉0 = δFF′δmFmF′
(−1)I+J′+F∑

q

〈I||N (q)||I〉〈J’||E(q)||J〉
{
I I q
J J′ F

}
(3.2.6)

where we introduced the 6-j Wigner symbols [48].
Equation 3.2.6 shows clearly that the hyperfine interaction couples states7 only if
J′ + J = q. Since the lowest correction to the unperturbed atomic potential can
be obtained by imposing q = 1, it can be noted that the reduced matrix element
for E(1) is not diagonal over J and in particular J′ = J, J± 1 ∀J > 0, J′. From this
relation, it can be deduced that perturbed states cannot be described properly by
states characterized by J because it is not a good quantum number of the perturbed
system.
To describe properly the state 3P0 it is necessary to consider at least the interaction
terms corresponding to (q = 1), that describes the interaction with the nuclear
magnetic dipole (to which the measured quantity µ = 〈I,mI = I|N (1)|I,mI = I〉 is
associated) and to the second term of multipole expansion (q = 2), that describes
the interaction of the electromagnetic field generated by electrons with a electric
quadrupole (to which the quantity Q = 2〈I,mI = I|N (2)|I,mI = I〉 is associated).

7Remarkably, by using 6 − j properties the other equalities that have to be verified are:
I + I = q, I + J = F, I + J′ = F.
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Exact calculations regarding higher multipole expansion orders and the explicit
evaluation of each reduced matrix element can be found in reference [116].
The perturbed state can therefore be described by the relation [131, 132]:

|3P0〉 = |3P0
0〉+ (α0α− β0β) |3P0

1〉+ (α0β + β0α) |1P0
1〉+ γ0|3P0

2〉 (3.2.7)

where8

α0 = −1

~
〈3P1,F = I|Ĥµ|3P0

0,F = I〉
ω3P1

− ω3P0
0

,

β0 = −1

~
〈1P1,F = I|Ĥµ|3P0

0,F = I〉
ω1P1

− ω3P0
0

,

γ0 = −1

~
〈3P2,F = I|ĤQ|3P0

0,F = I〉
ω3P2

− ω3P0
0

.

(3.2.8)

By taking into account the probability to perform a transition from the excited
state |3P0〉 to the ground state |1S0〉 as a result of the interaction with the dipole
operator it is possible to evaluate numerically the decay rate of the doubly forbid-
den |3P0〉 state. For 173Yb the decay rate due to dipole interaction corresponds to
38.5 mHz and, consequently the state has a lifetime of 23 s [133, 134].
In 2016 Clivati et al. [135] measured the absolute frequency ν of the |1S0〉 → |3P0〉
“clock” transition in 173Yb improving the uncertainty with respect to the previous
measured value [136] by exploiting an optical fiber link between a Cesium foun-
tain9 and the 578 nm clock laser that will be shortly presented in section 3.4.1.
The measured frequency is [135]:

νclock = (518294576845268± 10) Hz. (3.2.9)

3.2.2 Doubly forbidden transitions in Bosonic AEL

Except for the fermionic species reported in section 3.2, all the other stable
isotopes are bosons characterized by electronic angular momentum J = 0 and
nuclear angular momentum I = 0. The hyperfine interaction introduced in 3.2.4,

8Each P state, as it happened in equation 3.2.2, can be obtained introducing a matrix R0 ∈
SO4. In this case we have ~P = R0R~P

0
. Because R0 and R have a determinant equal to 1, it can

be demonstrated that the state 3.2.7 does not satisfy the relation R0RT0 = I. The correct form
should be δ0|3P0

0〉+ (α0α− β0β) |3P0
1〉+ (α0β + β0α) |1P0

1〉+γ0|3P0
2〉 where δ0 can be determined

by the determinant of R0. Equation 3.2.7 is, howerever, a good approximation because coefficient
δ0 results to be about 1 and all the others about 10−4 (in Sr) [117].

9It is placed in INRiM institute in Turin (IT), about 642 km distant from LENS institute in
Florence (IT), where the clock laser was placed.
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that at the (q = 1) order can be written as [137]

Ĥhfs = gIµN ÎE(1)

where

E(1) = 2
µ0

4π
µB

 ~L
r3
− 1

r3

~̂S− 3
~̂S ·~r
r2
~r

+
2

3

δ (r)

r2
~̂S

 ,
gives always a null contribution because the total angular momentum, that is al-
ways a conserved quantity, is equal to F = 0. As a consequence, the mixing mech-
anism introduced in section 3.2.1 cannot occur and the transition |1S0〉 → |3P0〉 is
forbidden.

In the absence of other magnetic or electric fiels, the |3P0〉 state is connected to
the ground state |1S0〉 only by two-photon transitions that pass through a virtual
state |v〉. The linewidth of this process for Yb has been analyzed in reference [134]
and for Sr in Refs. [117, 138], and in any case it results to be about10 1012 s.

The cited doubly forbidden transition can occur [139–141] if an external field
takes the place of the hyperfine interaction in fermionic isotopes. To model prop-
erly how this mechanism works let us consider the magnetic dipole interaction
Hamiltonian

Ĥz = ~̂µ · ~B (3.2.10)

where ~̂µ is the magnetic dipole operator and ~B is the applied external magnetic
field. Without losing generality we can consider a magnetic field along the ẑ axis of
our reference system ~B = |B|ẑ and express the magnetic dipole operator in terms
of spin Ŝ and angular momentum L̂ operators as follows:

Ĥz = µB

(
L̂z + gsŜz

)
|B| (3.2.11)

where µB =
(

e~
2me

)
is the Bohr magneton and gs = (2.00231930436± 152 · 10−11)

[142] is the electron g-factor11. By considering the perturbation theory framework,
the doubly forbidden 3P0 state of Hamiltonian Ĥtot = Ĥatom+Ĥz, can be expressed
as:

|3P0〉 = |3P0
0〉+

∑
i 6=|3P0

0〉

1

~
〈3P0

0|Ĥz|i〉
ω|3P0

0〉 − ω|i〉
|i〉 ' |3P0

0〉+
1

~
〈3P0

0|Ĥz|3P0
1〉

ω|3P0
0〉 − ω|3P0

1〉
|3P0

1〉 (3.2.12)

10A year corresponds to 3.15 · 107 s.
11For the scope of this work it is always possible to approximate it to g ' 2. This approximation

allows to write the Hamiltonian 3.2.11 as µB (Jz + Sz).
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where we neglected all the terms in which the frequency difference between two
unperturbed states is big enough to give negligible contributions to the final sum.
In order to evaluate numerically the coupling induced by the magnetic interaction,
it can be useful to write the atomic states in the basis |L, S, Lz, Sz〉 ≡ |Lz, Sz〉 in
which Lz and Sz are diagonal. Since

|3P0
0〉 =

1√
3

(| − 1, 1〉+ |0, 0〉+ |1,−1〉)

and
|3P0

1〉(mJ=0) =
1√
2

(| − 1, 1〉+ |1,−1〉)

equation 3.2.12 can be written as:

|3P0〉 = |3P0
0〉+

√
2

3
µB|B|︸ ︷︷ ︸
ΩB

1

∆
|3P0

1〉 (3.2.13)

where ∆/~ = ω|3P0
0〉 − ω|3P0

1〉. The electric dipole transition between the perturbed
doubly forbidden state and the ground state |1S0〉 can be described by evaluating
the matrix element

〈3P0|~̂d · ~E|1S0〉 =
ΩB

∆
〈3P0

1|~̂d · ~E|1S0〉 (3.2.14)

where ~̂d is the electric dipole operator defined in equation 2.1.19 and relation 3.2.13
has been used. The resulting matrix element can be evaluated for 174Yb by taking
into account frequencies and linewidths reported in table 3.2.1.
The Rabi frequency of the doubly forbidden transition can be expressed as [143]:

Ω2 =

∣∣∣∣µBB∆

∣∣∣∣2 λ3Γ

2π2~c︸ ︷︷ ︸
2
3

Ω2
L

I = α2
174|B[G]|2I

[
mW
mm2

]
(3.2.15)

where α174 = 2π×0.186 and I is the intensity of the laser used to excite the
transition. Regarding the natural linewidth of this magnetic-induced transition, it
can be estimated by the relation [139]

Γ3P0
' Γ3P0

1

Ω2
L + (2ΩB)2

(2∆)2 .

This broadening is due mainly to the fraction of unperturbed 3P0
1 population trans-

fered in the clock state when an external magnetic field is applied, as clearly shown
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Figure 3.2.1. Coherent Rabi oscillation performed by exciting the clock transition on
a singly-occupied Mott insulator constituted by a 174Yb atomic sample in a deep 3D
optical lattice. Red points represent the number of ground state atoms remained after
the excitation pulse while the red line is a sinusoidal fit that also takes into account an
exponential decay to consider decoherence phenomena. The best fit frequency obtained
is Ω = 2π×(208± 4) Hz, that is comparable to the theoretical prediction.

by the previous relation. The energy difference ∆ corresponds, in the case of Yb, to
21.1 THz [144], the Rabi frequency obtained by applying a magnetic field of 150 G
and an intensity about 10 mW

mm2 can reach about 2π×100 Hz [145] and therefore
the theoretical broadening is about or less than some µHz [139]. In figure 3.2.1 a
Rabi oscillation performed by expoiting the clock transition 1S0 → 3P0, when an
external magnetic field of 150 G is applied, is reported. In particular, the bosonic
sample was loaded in a deep 3D optical lattice to avoid any photon momentum
tranfer, as we will see briefly in section 4.1.1 [140]. As it can be observed, it is pos-
sible to achieve Rabi frequencies comparable to the ones provided by the model.
The most important linewidth-enhancing term results to be the power broadening
due to radiation intensity. This contribution is not negligible every time the light
intensity exceeds the saturation intensity defined by [143]:

Isat =
~ω3

0

4πc2
Γ. (3.2.16)

When I ≥ Isat, the line broadening is dominated by the power broadening. The

observed linewidth thus can be expressed as Γ′ = Γ

√
1 +

I

Isat
.
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3.2.3 Magnetic properties of the transition

When the bosonic species are taken into account, due to a null total momentum
for both the 3P0

0 and 1S0 states, the effect of an external magnetic field can be
evalued by calculating, in the perturbation theory framework, the second12 order
energy shift due to Hamiltonian 3.2.11:

∆Ez(II) =
|〈3P1|Ĥz|3P0〉|2

∆
=

1

4π2

Ω2
B

∆
= βB2 (3.2.17)

where, for 174Yb, β ' (−6.12± 0.10) 10−2 Hz/G2 [146].

Having a half-integer total angular momentum F, fermionic species exihibit a
magnetic-sensitive substructure that is determined by the total momentum F. If
the clock 3P0 and the ground states are considered, by noticing that the total mo-
mentum is F = I, the Zeeman structure results to be the same for each considered
state and in particular, for 173Yb where F = 5/2, the multiplet degeneracy is equal
to 2F + 1 = 6. Defined a quantization axis of the system, the states can be char-
acterized by the projection of the total momentum F on this axis.
When an external magnetic field is applied, the Zeeman shift [147] removes the
energy degeneracy by following the relation

∆Ez = µBgFmFB (3.2.18)

where the external magnetic field has been considered aligned to the quantization
axis of the system and gF is the Landé factor13 [117, 148]. If unperturbed states

are considered, the Landé factor become gF = −µN
µB
gI where µN =

(
e~

2mp

)
is the

nuclear magneton and gI is the magnetic nuclear factor (for 173Yb gI = −0.6776
[130]). While the approximation of unperturbed states is completely verified for the
ground state, that are not mixed with other states by the hyperfine Hamiltonian,
we discussed in detail the role of the latter interaction term on the clock state in

12The first order correction is related to 〈ψ|Ĥ|ψ〉, where ψ is the unperturbed state wavefunc-
tion. Being the 3P0

0 an amagnetic state the matrix element 〈H〉 = 0.
13In general it can be defined as

gF = gJ
F(F + 1) + J(J + 1)− I(I + 1)

2F(F + 1)
+ gI

µN
µB

F(F + 1)− J(J + 1) + I(I + 1)

2F(F + 1)
(3.2.19)

where
gJ = 1 + (g − 1)

J(J + 1)− L(L + 1) + S(S + 1)

2J(J + 1)
. (3.2.20)
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section 3.2.1. As shown in equation 3.2.7, the mixing of the perturbed 3P0 state
with magnetic-sensitive state (3P1) causes a small variation in the effective Landé
factor, that produces a differential Zeeman splitting for the two states. For 173Yb
it results to be [133]:

∆E(z,1S0)/h ' 207.4 mF B ∆E(z,3P0)/h ' 320.8 mF B (3.2.21)

where the field is reported in [G] and the coefficient is expressed in [Hz/G].

Figure 3.2.2. The Zeeman substructure for 173Yb is reported for the ground and the
clock state for an external magnetic field B = 1 G. Sublevels, in the presence of a
quantization axis, are parametrized by their projection quantum number mF. For 173Yb
the projections range from −5/2 (violet) to +5/2 (red).

As it occurs in the bosonic species, the transition frequency is also affected by
a second-order Zeeman shift ∆Ez that, as we described in the first part of this
section, induces a quadratic dependence of the transition frequency as a function
of the external magnetic field applied. As displayed in equation 3.2.17, the second-
order shift due to the Zeeman Hamiltonian can be expressed as

∆E(II)
z = βB2 (3.2.22)

where the parameter β = −(0.064± 0.002) Hz/G2 has been measured experimen-
tally [113].
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3.3 Raman transitions between spin states

Figure 3.3.1. A simple description of Raman transitions
between two states with different nuclear spin projection
in 173Yb can be made by oversimplifying the atom as a
Λ configuration system. A complete description can be
found in [112, 145]

In this section we will
focus on the possibility
to induce a coherent laser
coupling between different
nuclear-spin states of AEL
atoms. We will intro-
duce the theoretical basis
for the description of two-
photon Raman transitions,
that will be used in the ex-
periments reported in this
thesis for the coherent ma-
nipulation of the nuclear-
spin degree of freedom of
173Yb. For the sake of
illustration, we will con-
sider a simplified case in
which only two states out
of the nuclear-spin mani-
fold are coupled. The com-
plete theory for multi-level
system can be found in ref-
erences [112, 145].

The Λ scheme repre-
sented in figure 3.3.1 shows
the simplest system in

which a Raman transition can occur. Two stable nuclear-spin states of the ground
state (1S0) identified by the spin projection on the quantization axis |mF〉, |m′F〉
are coupled by two laser fields that induce a two-photon process exploiting the
higher-energy state (3P1) as intermediate state. The detuning of the laser beams
employed to couple the aforementioned states (∆1, ∆2) is big enough to consider
the single-photon transition probability |mF〉 → |3P1〉 ∀mF negligible [149].
If the energy differences between |mF〉 and the excited state is ~∆1 and that for
|m′F〉 is ~∆2, as shown in figure 3.3.1, the total electric field that interacts with the
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Λ system can be expressed as

~E (~r, t) = ε̂1E01 cos
(
~k1 ·~r− (∆1 + δRaman) t

)
+ ε̂2E02 cos

(
~k2 ·~r− (∆2 + δRaman) t

)
(3.3.1)

where ωi = (∆i + δRaman)/2π is the light frequency of the i-th beam employed to
perform the transition and ε̂i is the i-th beam polarization vector [143].
The Hamiltonian that describes the Λ system can be written, in the rotating frame
of the laser field, as:

ĤRaman = Ĥ0 + ~δRaman (|mF〉〈mF|+ |m′F〉〈m′F|) + ĤI (3.3.2)

where δRaman = ω1−∆1 = ω2−∆2 is the detuning with respect to the corresponding
single photon transitions and Ĥ0 contains the kinetic term. The Hamiltonian ĤI,
that describes the interaction between the Λ system and the two-colour radiation,
can be expressed, in rotating wave-approximation (RWA), as:

ĤI =
~
2

[
ΩRamane

i~q·~r|mF〉〈m′F|+ h.c.
]
, (3.3.3)

where ~q = ~k1 − ~k2 is the momentum transferred by the radiation to the atoms in
the Raman process,

ΩRaman =
Ω1Ω∗2

2δRaman
(3.3.4)

is the effective two-photon Rabi frequency. By solving the Schrödinger equation
the excited state, that is considered out of resonance, is not involved in the dy-
namics and the total Hamiltonian can be expressed in the two-dimensional Hilbert
subspace generated by |mF〉, |m′F〉:

ĤRaman =

 Ĥ0 + U1
~
2

ΩRamane
i~q·~r

~
2

Ω∗Ramane
−i~q·~r Ĥ0 + U2

 (3.3.5)

where
Ui =

~|Ωi|2

4δRaman
(3.3.6)

are the light shift on the |mF〉, |m′F〉 states caused by the radiation.
If the momentum acquired by the system is null (~q = 0), that implies that the
two considered beams propagate on the same direction, and we suppose the Rabi
frequencies Ωi real, the Hamiltonian can be further simplified to obtain:

ĤRaman =
~ΩRaman

2
σx +

(
Ĥ0 + U1

) I2×2 + σz
2

+
(
Ĥ0 + U2

) I2×2 − σz
2

. (3.3.7)
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As shown in figure 3.3.1, in the case of interest, that regards ground-state
sublevels identified by nuclear-spin projections in 173Yb atoms, when an external
magnetic field is applied, a differential energy shift between two sublevels corre-
sponding to 207.4

[
Hz
G

]
×∆mFB (see section 3.2.3) is generated.

The final state |m′F〉 that is “connected” to the initial one |mF〉 strongly depends
on the polarization of the light employed to perform the transition because the
angular conservation imposes

mF + j1 + j2 = m′F (3.3.8)

where ji is the angular momentum transferred by photon to the Λ system. If the
transition is performed with the two σ+/σ− laser fields, the states that can be
coupled are determined by the condition

m′F = mF ± 2

while, if the transition is performed with two σ±/π laser fields, the final possible
states are determined by

m′F = mF ± 1.

We note that the possibility to induce coherent nuclear-spin filps with an optical
field in ensured by the choice of an intermediate excited state in which the hyperfine
interaction couples the nuclear spin with the electronic wavefunctions. Specifically,
we have chosen to use the 3P1 as an intermediate state because of the combination
of reduced linewidth (' 180 kHz) and large hyperfine splitting (several GHz), that
allow substantial two-photon Rabi frequencies (on the order of several hundreds
of Hz) with very modest heating due to residual single-photon absorption over a
timescale of approx. 100 ms. The experimental implementation will be discussed
in section 3.4.5

By exciting the σ+σ− Raman transitions, recent experiments in which the
Raman beams have been arranged in order to transfer momentum to the atoms
(~q 6= 0) have been performed [12]. In this work, the configuration in which the
transferred momentum is null (~q ' 0) has been used. In section 5.4 we employed
this technique as a detection tool of 173Yb molecules supported by an Orbital
Feshbach Resonance and in chapter 6 this technique has been employed in order
to study Fermi-Hubbard models where different spins are coupled.
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3.4 Ytterbium and experimental setup

Figure 3.4.1. Chemical and physical proper-
ties of Yb are reported. From the left-top to
the right-bottom are shown: mean weight in
[u] [150], atomic number, boiling and melt-
ing temperatures, density, electronegativity,
common oxidation numbers, electronic con-
figuration.

Ytterbium (Yb) is the fourteenth
lanthanide of the periodic table of el-
ements and has atomic number Z =
70. Lanthanides and actinides have the
f -shell14 as most external shell occu-
pied. Its complete electronic configu-
ration can be written as [Xe] 4f 14 6s2.
Since its f -shell is completely occu-
pied15, its electronic structure is deter-
mined by the two electrons in the 6s-
shell. As introduced in section 3.1, for
that reason it is possible to consider
Ytterbium as an external member of
groups IIACAS or IIBCAS. By consider-
ing that No atom have only unstable
isotopes characterized by half-life of the
order of tens of minutes, Ytterbium can
be considered as the only element of
the so-called “f -block” that can be de-
scribed as a two-electron atom.
As direct consequence of its electronic
configuration, it is the rare-earth metal
with the lowest magnetic susceptibility.
To highlight the uniqueness of this lan-

thanide it can be noted that, differently from all other elements of its period,
in which the preferred oxidation number is +3, the stability of the complete f -
shell induces the oxidation number +2, that instead is a peculiar characterstic of
IIA/BCAS-group atoms.
If exposed to molecular oxigen, it reacts forming oxides and in particular YbO and
Yb2O3. It reacts also with atmospherical traces of VIICAS elements, by forming

14The f -shell corresponds to angular momentum l = 3 and consequently degeneracy deg =
(2s + 1)(2l + 1) = 14.

15It can be interesting to note that each element of its period has a complete external s-shell
but does not present electronic properties of AEL atoms, as a consequence of the partially-filled
f -shell.
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YbX2 and Yb2X3 where X is a generic element of the cited group. Compounds of
Yb(II) are strong reducent and therefore are not stable in acqueous solution where
the reaction

2YbO + H2O→ H2(g) + Yb2O3

can occur16. Also if it is not highly reactive in all the other conditions, due to
the pureness degree requested by atomic physics experiments17, it is transported
in jars with inert atmosphere.
Except for Hg, this atom is the heaviest stable alkaline-earth-like atom18.
While at room temperature Hg is a fluid, Yb is a soft, ductile and malleable solid
metal.
To obtain chunks of pure Yb, this element is separated by other rare-earth elements
by solvent-solvent extraction or ion-exchange techniques. The elemental metal is
prepared by the metallothermic reduction of its mostly abundant oxide (Yb2O3).
When it is purified in chunks it appears bright and silvery19.
It has a density of 6.90 g/cm3, a fusion temperature equal to 1097 K and the boiling
point is about 1442 K at standard pressure. In this condition, it has the smallest
liquid range of all metals [151].
Fundamental physical-chemical characteristics of Yb are summarized in figure
3.4.1. To produce a vapour pressure of about 10−2 Torr, that is a necessary con-
dition to produce degenerate gases experimentally, temperatures below the fusion
point are used. The vapour pressure can be determined by the empirical relation:

log10 (P [Pa]) = 14.117− 8111

T [K]
− 1.0849 log10 (T [K]) (3.4.1)

[111], that implies temperatures between 450 and 500 ◦C. This range of tempera-
tures are achievable by means of a relatively simple oven setup, but unfortunately
ytterbium becomes highly reactive when the temperature reaches the specified
temperature interval and, in particular, it has been noted that this metal can
cause chemical deterioration of silica glass and sapphire [152]. To avoid this kind

16Similar reactions occur when compounds of halogens are considered. It is possible to revert
these reactions to synthetize mono-oxide of Yb as W. K. Klemm and W. Schuth made in 1929
to obtain YbCl2.

17Although this peculiar metal was discovered in 1878 by the Swiss chemist Jean Charles
Galissard de Marignac (He named four elements (Yb, Ytterbium - Y, Yttrium - Tb, Terbium
- Er, Erbium) referring their name to the village of Ytterby (Sweden) where the minerals in
which compounds of the new species was found were extracted.) until 1953 described physical
and chemical properties remained unknown, because the low abundance of this element and the
difficulties to purify it from all the other rare-earth metals do not permit to obtain a pure sample.

18Strictly speaking, Mercury is catalogued as an alkaline metal AEM and thus Ytterbium
results the heaviest stable AEL atom.

19To inhibit all the unwanted reactions, chunks can be treated with HF. Ytterbium flouride is
quite inert and can stop the oxidation with atmospherical moisture.
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Nuclide Mass F Statistics Natural abundance µI
[u] % [µN]

168Yb 167.933897(5) 0 bosonic 0.13(1)
170Yb 169.9347618(26) 0 bosonic 3.04(15)
171Yb 170.9363258(26) 1

2 fermionic 14.28(57) +0.4919
172Yb 171.9363815(26) 0 bosonic 21.83(67)
173Yb 172.9382108(26) 5

2 fermionic 16.13(27) −0.6776
174Yb 173.9388621(26) 0 bosonic 31.83(92)
176Yb 175.9425717(28) 0 bosonic 12.76(41)

Table 3.4.1. Nuclear properties of the seven stable isotopes of Yb. Masses in atomic
units (u = 1.6605390404(20)×10−27kg) are taken from [153], while natural abundances
and magnetic nuclear momentum (including the diamagnetic correction) are taken from
[154].

of problem it can be necessary to heat up vacuum viewports exposed to atomic
vapours or direct flux20.

Another interesting property of this metal is the presence of many isotopes with
relatively high natural abundancies, as shown in table 3.4.1. This is a considerable
difference between this metal and principally all the other AEL elements. The two
isotopes with half-integer nuclear spin, 171Yb and 173Yb, are fermionic while all the
other isotopes, have zero nuclear spin and are bosonic. Moreover, the possibility to
have high abundances for all the isotopes allow studies over Bose-Bose, Bose-Fermi
and Fermi-Fermi mixtures [155–159].
Those principal physical properties, as the atomic mass, the spin, the statistical
behaviour, the magnetic nuclear momentum and the natural abundancies are re-
ported in table 3.4.1.
Artificially it is possible to synthesize 27 unstable isotopes; as it can be expected,
from 148Yb to 181Yb, atoms can change significantly their properties as the half-life
time and the type of decay scheme. The description of this atomic catalogue goes
beyond the scopes of this thesis, but a particularly interesting synthesized atom is
169Yb, that is the unstable isotope with the longest half-life time (about 32 days)
and is used as a portable hard X-ray source when electricity is not available or for
medical purposes [163].

In the experiments reported in this thesis we focus on 174Yb and 173Yb, the
20In our setup the atomic beam that is not captured by the Zeeman slower goes on a viewport

that is maintained at 200 ◦C to overcome chemical bonds between Yb and sapphire.
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Figure 3.4.2. Grotrian’s diagram for Yb atoms. Optical transitions are reported as solid
lines connecting involved levels. For each transition the corresponding wavelength and
the decay rates defined by γ = Γ/2π are reported. For fermionic isotopes, hyperfine
structure has not been displayed. References: linewidths and wavelengths are taken for
|g〉 → 1P1 from [120, 121, 126, 160]; 3P1 [123, 127]; 3P0 [91, 130]; |3P0〉 →3 Di [161]; 3S1

[162].

mostly abundant bosonic and fermionic isotopes respectively. In section 4 we
present the experimental characterization of state-dependent interactions in bosonic
174Yb, which realizes a promising platform for the implementation of quantum in-
formation schemes based on the control of the electronic degree of freedom with
the clock transition 1S0 → 3P0 in an almost ideal two-level system. In sections 5
and 6 we present experiments performed in fermionic 173Yb, where the additional
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control of the nuclear spin state (I = 5/2) enriches the range of possibilities that
can be explored, allowing the efficient production and control of orbital Feshbach
molecules, as well as novel quantum-simulation experiments from the realization
of spin-orbit-coupled systems to the study of strongly correlated multi-component
Hubbard models.

Regarding its electronic structure and principal transitions, Yb can be described
as an AEL atom. In the previous sections we have already discussed the excitation
of singly and doubly forbidden intercombination transitions for both bosonic and
fermionic species.
In section 3.2.2 instead has been explored the clock intercombination transition by
applying an external magnetic field, also in this case all the numerical evaluation
has been reported for isotopes employed during experiments.
A more complete Grotrian’s diagram [164] for Yb is shown in figure 3.4.2. The
transitions reported in this diagram are exploited to produce and manipulate rou-
tinely atomic samples of Yb. In the next section the experimental setup and the
relevant transitions will be treated.

3.4.1 Resonant laser sources

This section is devoted to the description of the laser sources used to excite
the described atomic transitions and the experimental apparatus. Since high-
power lasers at transition wavelengths (see figure 3.4.2) were not available when
the experiment was built, all the principal transitions are excited by radiation
produced by exploiting second-harmonic generation. A complete description and
characterization of the sources and of the experimental apparatus can be found
in references [111–113]. Regarding the laser devoted to the excitation of the 3P0

state a complete review can be found in Refs. [113, 165]. In the last part of this
section, we introduce a source to detect directly the meta-stable 3P0 state.

- 1S0 → 1P1 (Zeeman slower, Imaging)

The laser light necessary to excite the dipole-permitted 1S0 →1 P1 transition,
corresponding to 398.9 nm, is generated by starting from a fiber-coupled tapered-
amplifier laser-diode system Toptica TA PRO, that emits about 1.2 W at 798 nm.
The radiation emitted by the cited source is injected in a home-made bow-tie cavity
where, exploiting a non-linear Lithium-Triborate (LBO) crystal, second-harmonic
generation (SHG) can occur. The LBO crystal temperature is stabilized at 55 ◦C
to achieve best phase-matching conditions and to stabilize the amount of light
generated by the SHG process.
Starting from 1.2 W at 798 nm it is possible to reach a conversion efficiency of about
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Figure 3.4.3. a): 399 nm radiation generation and atomic spectroscopy on the auxiliary
oven are shown. b): A spectrum obtained by applying a linear voltage ramp on the
Toptica TA PRO piezo is reported. Atomic resonances for the desired isotopes are shown.
In particular, the green trace represents the fluorescence detected by the photodiode and
the red trace shows the error signal after the lock-in demodulation. As it can be noted,
due to the presence of other transitions the center of the green fluorescence signal does
not correspond to the position of the resonance. The selected line 1S0 (F = 5/2) →
1P1 (F = 5/2) of 173Yb cannot be distinguished from the 172Yb bosonic transition, while
the blueshifted signal with respect to the resonance is due to the 1S0 (F = 5/2) →
1P1 (F = 7/2) 173Yb transition. The green trace has been offset vertically for the sake of
presentation.

40% by obtaining 480 mW of 399 nm radiation. Acting on a piezo crystal, placed
on a cavity mirror mounting, it is possible to slightly change the cavity length in
order to optimize the conversion of 399 nm light. To stabilize the frequency of
the 399 nm radiation, by applying a variable voltage on the piezo actuator, the
Haensch-Couillaud technique [166] is applied.
To stabilize the light frequency emitted by the Toptica TA PRO saturation spec-
troscopy over an auxiliar Yb oven is performed, as shown in figure 3.4.3a). In
particular, pump and probe beams employed to perform saturation spectroscopy
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propagate orthogonally to a collimated atomic flux to diminish the Doppler broad-
ening. To perform saturation spectroscopy light is modulated by means of an
acousto-optical modulator (AOM) and a lock-in amplifier is employed [167] to gen-
erate an error signal starting from the collected flourescence spectrum (see figure
3.4.3b)). By changing finely the piezo position and the temperature of the TA
PRO it is possible to select the isotope we decide to work with. As shown in figure
3.4.3b), if 174Yb is considered the line results isolated from the absorption lines of
other isotopes. If, instead, 173Yb is considered, line 1S0 → 1P1 splits into three
lines shifted one from each other by hundreds of MHz (see table 3.2.1). We choose
to lock the light on the 1S0(F = 5/2) → 1P1(F = 5/2) transition. In this case
the transition is not completely isolated and thus cannot be perfectly resolved, as
instead happens for the 174Yb. This transition results shifted by tens of MHz with
respect (see table 3.2.1) to the 1S0(F = 5/2) → 1P1(F = 7/2) resonance and by
less than a linewidth with respect to the 172Yb transition (it is the second most
abundant bosonic isotope of Ytterbium, as shown in table 3.4.1).
The AOM employed on spectroscopy light introduces a shift of −740 MHz on the
radiation that comes out of the SHG-cavity21. The radiation locked on atomic
transition results red-shifted.

- 1S0 → 3P1 (MOT, Optical pumping, Raman, OSG)

The light employed to excite the intercombination atomic transition 1S0 → 3P1

is generated by means of second harmonic generation starting from 1112 nm light.
The source of this radiation is a fiber laser Menlo System mod. ORANGE ONE
that is capable to furnish about 2 W at 1112 nm. This light is injected in a bow-
tie home-made cavity22 in which a 10mm non-linear crystal of periodically-poled
Lithium Tantalate (LiTaO3) performs second-harmonic generation to obtain about
1.1 W of 555.8 nm light, reaching a conversion efficiency of about 55%.
In this case, as it occurs for the 399 nm laser, a piezo actuator mounted on a cavity
mirror permits to slightly change the cavity free spectral range in order to optimize
the conversion process. As in the previous case, a Haensch-Couillaud technique
permits a continuous cavity emission of 555.8 nm radiation.

Due to the reduced linewidth of the selected transition, saturation spectroscopy
on the auxiliary oven is performed to lock the ORANGE ONE laser to the atomic
line. As in the previous laser system, two counterpropagating laser beams, re-
spectively named pump and probe beams, are used to interrogate, the Yb atomic

21This frequency shift has been chosen in order to optimize the intensity of the light used for
the Zeeman slower beam (detuned by −983 MHz, see also section 3.4.3), as a single high-efficiency
single-passage AOM can be used to produce the remaining frequency shift.

22The cavity has a measured finesse about F ' 67 [111–113].
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Figure 3.4.4. Error signals obtained from a π-polarized saturation spectroscopy on 173Yb(
1S0(F = 5/2) → 3P1(F = 7/2)

)
transition when a magnetic field of about 1 G is applied.

Performing only π transitions each hyperfine level in the |g〉 is excited to its counterpart
in the |3P1〉 state.

beam illuminating it trasversally to the atomic motion. The fluorescence light is
collected by a photomultiplier and used as input of a lock-in amplifier that permits,
by acting on the piezo of the 1112 nm laser source, to lock the emitted laser light
to the atomic transition.
In this case selecting an isotope is not as simple as it happens with 1S0 → 1P1

transition, because the requested shifts (see table 3.2.1) can not be obtained just
by varying the position of the pump laser piezo, and a temperature change of the
seed laser is required.
To lock the laser light to the 174Yb intercombination transition, the spectroscopy
light is modulated by means of a 83 MHz double-passage AOM. The transition
chosen is the 1S0(F = 0,mF = 0) → 3P1(F = 1,mF = 0). To address this
magnetic-insensitive transition a magnetic field is applied in order to shift the fre-
quency23 of all the other projections mF = ±1 and π-polarized radiation is used.

A similar approach is severally complicated to lock fermionic isotopes. To sim-
plify the problem, let us consider 1S0(F = 5/2) → 3P1(F = 7/2) transition of
173Yb and, moreover, let us consider a modest magnetic field and π-polarized spec-
troscopy light. Neglecting other isotopes resonances, for example the contribution
due to bosonic 170Yb atom that is nearly coincident with the F = 5/2 → F = 5/2
transition, the spectroscopy signal obtained in the specified conditions is shown in
figure 3.4.4. As the transition linewidth is much smaller than the Zeeman shift,
the resonance now splits in six resolved absorption lines and each observed line
contributes to the total fluorescence with one sixth of the total intensity.
Since all those lines experience a finite Zeeman shift, in order to have a magneti-
cally, insensitive lock signal (and thus improve the locking stability) a non-trivial

23The Zeeman shift for magnetic projections of the 3P1(F = 1) state corresponds to about
∆ν ' 600 kHz/G×mF.
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Figure 3.4.5. 555.8 nm radiation generation by means of SHG and saturation spec-
troscopy on the auxiliary oven are shown. The system has been dramatically simplified
for the sake of presentation. Flipping between two spectroscopy-beam paths, by using a
removable mirror on a magnetic mount, allows applying the proper frequency shifts either
for 173Yb (solid branch) or 174Yb (dashed branch), keeping the same 174Yb spectroscopic
signal for stabilization.

locking scheme to the most abundant bosonic isotope of Yb has been implemented.
Laser light is then locked to the magnetic-insensitive 174Yb resonance described
above employing a spectroscopy radiation shifted by the isotopic shift between
173Yb and 174Yb (2386 MHz - see table 3.2.1). Spectroscopy light passes through
an electro-optic modulator that is also used to modulate the radiation (its con-
tribution to the final frequency shift is 1850 MHz) and a double-passage AOM, as
shown in figure 3.4.5.

In each case the stabilized laser light is red-detuned by 166 MHz with respect
to the transition employed for the magneto-optical trap (MOT). As it can be rec-
ognized in figure 3.4.5, a magnetic mirror mounting is employed to switch from
bosonic 174Yb to fermionic 173Yb.

In the first part of this work we tried to implement a different locking scheme
by employing, instead of spectroscopy of a Yb beam, an external reference [168]
constituted by a glass cell containing iodine (I2). The procedure followed to stabi-
lize the frequency emitted by the Menlo ORANGE ONE laser was very similar with
respect to the one described above and the presence of an oven was not required.
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It is preferable to avoid ovens and localized thermal sources on the system because
they can introduce non-negligible thermal gradients. Unfortunately, also the tem-
perature of the iodine cell has to be carefully stabilized at about 100 ◦C and the
signal-to-noise ratio obtained by the spectroscopy of the I2 molecule was lower (or
comparable) with respect to the signal obtained by performing spectroscopy on
the Yb beam. Moreover, the shift between the iodine line and the frequency used
for the MOT had a slight dependence on external parameters as weak magnetic
fields and temperature. Thus this alternative locking scheme has been discarded.

- 1S0 → 3P0 (“Clock” transition excitation)

In this section we briefly report the main features of the home-made ECDL laser
employed to excite the “clock” transition in 173Yb and 174Yb atoms. These subjects
are described in detail in references [113, 165].

The laser at 578 nm used to address the doubly forbidden 1S0 → 3P0 transi-
tion in bosonic and fermionic Yb atoms is basically constituted by a home-made
ECDL laser that emits about 200 mW at 1156 nm. As it occurs for all the other
sources previously introduced, also this source is frequency doubled by means of
second-harmonic generation in order to obtain ' 50 mW at 578 nm.
The peculiarity of the external-cavity diode laser is the presence of an intra-cavity
EOM that is used as a “fast” actuator to perform correction on the laser frequency
up to a bandwidth of 500 kHz. The “slow” actuator is a piezo crystal mounted on
the cavity diffraction grating.
In this way the laser frequency is varied by using two actuators that are not di-
rectly related to the diode employed. This frequency-correction scheme allows for
a relatively fast diode replacement without losing the possibility to lock the emit-
ter to the chosen reference24.

The light produced by the ECDL is used to inject a LiNbO3 non-linear crys-
tal placed in a home-made bow-tie cavity in which second-harmonic generation is
performed. As in the other sources, the length of the cavity can be slightly varied
by changing the voltage applied to a piezo crystal mounted on a cavity mirror.
578 nm radiation is stabilized by means of the Haensch-Couillaud technique. The
conversion process has an efficiency25 of about 30% furnishing 50 mW.

About 60 µW of the generated yellow light is used to stabilize the frequency of
24During this work, the Innolume quantum-dot chip employed to generate 1156 nm radiation

was substituted with a Toptica chip without changing the locking scheme.
25Probably limited by the beam shape produced by the ECDL and the subsequent cavity

coupling [113].
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Figure 3.4.6. 578 nm radiation generation by means of SHG and experimental setup
used to lock the emitted light are shown. In the lower panel a typical PDH error signal
obtained from a high finesse (F = 1.7×105) ULE reference cavity is shown. The free
spectral range can be evaluated knowing that the cavity is exactly 10 cm long. The lock
to the fiber link briefly introduced in section 3.2.1 is performed on the infrared (red)
light.

the ECDL laser on a high-finesse (F = 1.7×105) ultra-low-expansion (ULE) cavity.
The stabilization of the laser frequency is obtained by performing a Pound-Drever-
Hall technique [169]. The remaining light is used in the experiment to excite the
1S0 → 3P0 transition. For that reason the lock is performed on the ULEmode that
is nearest to the atomic transition (cavity FSR is 1.5 GHz). The ULE cavity allows
us to obtain a final observed linewidth of the laser of the order of tens of Hz on the
timescale of ≈ 15 min, while for longer timescales the linewidth is degraded by the
ageing of the ULE cavity glass, which determines a shift of the cavity modes of the
order of 5 kHz/day [113, 170] and by erratic fluctuations of comparable amplitude,
induced presumably by an imperfect temperature stabilization of the cavity.
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Figure 3.4.7. Coherent Rabi oscillations performed exciting the clock transition in 174Yb
atoms trapped in a deep 3D optical lattice in which the presence of lattice doubly-
occupied sites is reduced. Each point corresponds to a different clock-laser pulse duration
and is obtained by performing spectroscopy (and successive destructive detection) on
different atomic sample, produced at a rate of approx. 1 sample/ 40 s. The time sequence
of data acquisition follows the pulse duration, from shorter values to longer values. Blue
points represent an oscillation in which the resonance has not been spectroscopically
checked during the 30 min of measurement time. When the ULE mode starts to drift out
of the resonance, the Rabi frequency associated to the clock transition increases according
to the relation Ω2

G = Ω2 + δ2 (where Ω is the Rabi frequency on resonance, δ is the shift
of the laser with respect to the resonance frequency and ΩG is the generalized Rabi
frequency) and the amplitude decreases, as it can be observed starting from pulses of
approx. 6 ms. Red points represent the same Rabi oscillation but adjusting the frequency
of the clock transition during the measurement process. Blue and red lines are sinusoidal
fits.

This long-term drift cannot be corrected just by changing the emission fre-
quency with the intra-cavity EOM and the cavity piezo crystal, so a double-passage
AOM has been used in order to correct the daily shift. In particular, it has been
chosen to kept the laser stabilized frequency about −40 MHz with respect to the
atomic transition in order to compensate this shift finely by using another AOM
on the spectroscopy branch, as shown in figure 3.4.6.
As introduced in section 3.2.1, the long-term drift can be overcome by exploiting
a long-term lock on a metrological reference [113, 135].

- 3P0 → 3S1 (Imaging of 3P0 atoms)

Due to the extremely long lifetime of the 3P0 = |e〉 state, it is possible to treat it as
an alternative ground state having a spin-triplet wavefunction. For that reason it
can be interesting to study the dipole-permitted transitions from the 3P0 to higher
levels. During this thesis two transitions have been considered to directly estimate
the population of the metastable |e〉 state.
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Population detection of the |e〉 state can be performed or by finding a closed
dipole-allowed transition that connects the excited state with a higher-lying triplet
state (direct imaging) or by transferring the whole atomic population of the excited
state in a state that is connected to a third state in which a closed transition can
occur (indirect imaging). The latter is the circumstance considered in this thesis.

The first transition that experimentally we tried to address is the transition
|e〉 → 3S1 at 649.1 nm. As shown in figure 3.4.2, it is characterized by a short
lifetime (see table 3.4.2) and can be exploited to detect atoms in the metastable
state [162].
Atoms pumped into the 3S1 state can decay in the ground state |g〉 passing through
the 3P1 state. The atomic population that reaches the ground state can be de-
tected by applying the common absorption imaging procedure based on the closed
transition |g〉 → 1P1. The specified transition |e〉 → 3S1 is a common but quite
inefficient choice because atoms excited in the 3S1 state can only populate the 3P
manifold by following the branching ratios shown in table 3.4.2.
By evaluating the ratio equations it can be demonstrated that, employing only a
649.1 nm laser to excite |e〉 atoms in the 3S1 state, it is possible to detect only
∼ 43% of the total population [171].
To increase the observed atomic population of |e〉 atoms another source emitting
at 770.2 nm should be employed. This laser would allow one to observe also atoms
spontaneously decayed from the 3S1 state to the metastable 3P2 state, reaching
∼ 90% of the initial population in the |e〉 state.
This repumping scheme results quite complicated, for that reason we preferred to
implement a detection scheme based on the 3D states.

- 3P0 → 3D1 (Imaging of 3P0 atoms)

During this work we have implemented an imaging routine based on the dipole-
allowed 1388.8 nm transition connecting the |e〉 state with the (5d6s)3D1 state with
a 270 kHz natural linewidth [161]. When atoms are excited in the 3D1 state they
decay spontaneously to the 3P manifold, but in this case the population that is
transferred to the 3P2 state is about the ∼ 1% (see table 3.4.2). It means that the
remaining ∼ 99% decay via spontaneous emission to the |e〉 (branching ratio 64%)
or to the ground-linked 3P1 state (branching ratio 35%). Theoretical calculations
performed considering the specified branching ratio has been performed in refer-
ence [171] and, due to the low population transferred in the 3P2 state, this indirect
imaging allowed us to observe, by using a single transition, ∼ 95% of the |e〉 initial
population. In particular it is possible to reach a stationary condition in which
∼ 95% of the |e〉 population is transferred to the |g〉 state by shining a relatively
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Transition Wavelength γ a,b Branching
[nm] [kHz] Ratio [%]

3S1 → 3P0 649.1 9.6×103 13.0
3S1 → 3P1 680.1 27×103 36.7
3S1 → 3P2 770.2 37×103 50.3

3D1 → 3P0 1388.8 270 63.7
3D1 → 3P1 1539.1 150 35.3
3D1 → 3P2 2092.6 4 1.0

Table 3.4.2. Fundamental properties of the transitions connecting the 3P manifold with
principal states exploited to perform indirect imaging of the 3P0 metastable state.
γ = Γ/2π is the transition probability where Γ = ω3/

(
3πε0~c3

)
|〈|| ~̂d||〉|2 [143].

References: a:[162], b:[161].

short pulse (∼ 10µs) on |e〉 atoms when a laser power of 1 mW
cm2 is considered [171].

In order to address the |e〉 → 3D1 transition we employed a distributed
feedback (DFB) fiber coupled laser-diode model NLK1E5GAAA produced by NEL
Laser Diodes that generates ∼ 20 mW at 1388.8 nm.
An AOM is employed to illuminate atoms with a beam characterized by a waist of
150 µm and with a light power of about 10 mW. The saturation intensity, defined
by relation 3.2.16, for the considered transition is about 0.13 W/m2, thus the
expected power broadening results ∼ 103 bigger than the natural linewidth Γ (see
table 3.4.2). For that reason no locking is performed on the laser frequency, which
is left in free running. The center of the resonance frequency is periodically checked
by directly observing the efficiency of the repumping process on the atoms26.

3.4.2 Out-of-resonance laser sources

In order to manipulate properly ytterbium isotopes, laser sources that are not
resonant with an atomic transition are also employed. As shown for an ideal two-
level system in section 2.2, light causes a force on atoms composed by a dissipative
term and a consvervative term (as explicitly shown in equation 2.2.1), that have
a stronger or weaker effect depending on the wavelength of light with respect to

26To measure this efficiency, the difference between the total number of atoms remaining after a
π-pulse on the clock transition and the total number of atoms observed shining also the 1388.8 nm
laser, is evaluated. Usual experimental efficiencies are about (95± 5) %.
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Figure 3.4.8. Light shift as a function of the radiation wavelength λ has been calculated
starting from relation 3.4.2. λL represents the wavelength in which the differential light
shift for ground and metastable state is null. λtrap represents the induced light shift
when a 1064 nm is employed. The differential light shift can be employed to detect
simultaneously ground and excited atoms by performing Optical Stern-Gerlach technique
[172, 173].

the atomic resonances. In the far off-resonant case, transitions between internal
states do not occur and the dissipative term of the force can be neglected. In this
regime, the two-level approximation may also break down and it is important to
consider the effect of multiple atomic resonances.

By taking into account red-detuned radiation with respect to all the possible
transitions linked to the internal state i, the expression of the dipole potential U i

dip
for a multi-level atom can be expressed as [76, 77]:

U i
dip (ω,~r) = −3πc2

2
I (~r)

∑
n 6=i

(
1

ω3
n

Γnβn
ωn − ω

)
(3.4.2)

where I (~r) is the intensity profile of the radiation, ω/2π is its frequency, ωn/2π
are the frequencies of the transitions connecting the n-th state with the i state, Γn
are the linewidths of these transitions and βn are their branching ratios.
When two stable levels |g〉 and |e〉 with optical energy difference are considered,
the potential introduced in equation 3.4.2 changes substantially with the wave-
length of the radiation, as shown in figure 3.4.8. In particular, when ultranarrow
transitions are considered the frequency shift introduced by the differential light
shift induced by the different Grotrian connections for the ground |g〉 and the
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Figure 3.4.9. 759 nm generation by means of Ti:Sa laser emission. A 10− cm Coherent
confocal cavity is used to monitor the single-mode emission of the MBR. An etalon placed
inside the cavity of the MBR can be adjusted to ensure single-mode operation of the laser.
The light transmitted by the last polarizing beam-splitter cube, here dumped on a beam
absorber, can be employed to check the frequency of the emitted radiation.

metastable |e〉 states can cause an unwanted uncertainty source. To avoid this
effect the frequency employed to generate lattices (introduced in section 2.2) has
been carefully chosen in order to have the same light shift for the ground and the
metastable state. These wavelengths are commonly called magic wavelengths. An
accurate calculation in which relativistic many-body effects are taken into account
can be found in Ref. [174], where magic wavelengths in the visible range are de-
termined. Many wavelengths, due to the proximity to an atomic resonance, have
to be discarded in order to avoid detrimental photon scattering. For that reason,
the visible magic wavelength that is commonly employed to realize optical lattices
in Yb atoms results to be λL = 759.37 nm [174].

In this section we provide a schematic description of the lasers employed to
generate optical lattices at the magic wavelength (759 nm), and to trap and evap-
oratively cool down to the degeneracy condition the Yb samples (1064 nm). As it
happened in the previous section, a complete information about these sources can
be found in Refs. [111–113].
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- 759 nm

To generate 759 nm radiation a Coherent MBR 110 Ti:Sa laser pumped with a single-
mode 532 nm Coherent Verdi V18 is employed. The Ti:Sapphire laser produces
about 3.5 W at 759 nm, that are employed to generate a 3D cubic optical lattice in
the center of the glass cell in which experiments take place. To achieve this scope
the radiation generated by the Coherent MBR 110 is divided into five different
branches as shown in figure 3.4.9. On the three branches employed to generate
optical lattices the light power is controlled by means of double-frequency27 AOM.
Radiofrequencies employed to drive AOMs are set to avoid interferences between
light that arrive on the science cell from different branches. The active control of
the beam intensity is achieved by feeding custom PID circuits with the intensity
signal detected by the photodiodes on pickup beams (placed close to the atom
position), which then feed back onto the AOM RM supply for intensity stabilization.
The fourth branch is employed to inject a Coherent Laser Spectrum Analyzer System
confocal cavity characterized by a FSR of 0.75 GHz in order to monitor the single-
mode emission of the MBR (see figure 3.4.9). The last branch is employed to dump
a possible light power surplus.

- 1064 nm

The 45 W radiation emitted by a Coherent Nd:YAG Mephisto MOPA 45 at 1064 nm
and a linewidth below 100 kHz is employed to trap atoms in the fundamental
|g〉 state. As shown in figure 3.4.8, for atoms in the 3P0 state this wavelength is
antitrapping and thus cannot be used to confine atoms in the metastable state.
The radiation emitted by the MOPA is splitted into three branches whose power
is controlled, as it happens for the Ti:Sapphire, by means of three independent
double-frequency AOMs.
The first branch is injected in a 9 cm in-vacuum Fabry-Pérot cavity28 (see figure
3.4.10) characterized by a measured finesse F ' 1850 (FSR of 1.67 GHz). The op-
tical cavity in the MOT chamber enhances the collection of atoms from the MOT
and pre-cool them before their optical transport in the glass cell. The cavity ge-
ometry has been designed to achieve the largest possible beam dimension in order
to match the MOT size, compatibly with the trap depth which needs to be higher
than the MOT temperature. The cavity beam waist has been chosen to be about
300 µm. With these conditions, using about 1.8 W, it is possible (neglecting the

27The AOMs are driven by custom double-frequency RF drivers in which the RF is switched
between one master value (ensuring proper injection of the diffracted beam into the optical fiber)
and one slave value (causing the beam to be dumped onto an absorber), in order to control the
beam intensity impinging onto the atoms with no change in the RF power fed to the AOMs (which
minimizes unwanted thermal effects).

28Similarly to technical solution employed in Ref. [175].
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Figure 3.4.10. Sketch of the experimental setup employed to produce a degenerate gas
of Yb. The experimental setup has been simplified for the sake of presentation. 1064 nm
laser beams has been reported in order to clarify the position of trasport beam, resonator
(in-vacuum cavity) and crossed trap. A complete description of the experimental setup
can be found in references [111–113] while a graphical representation of the laser beams
shone on atoms in the glass cell can be found in reference [145].

cavity losses and mirrors absorption) to obtain a trap depth of V0/kB ' 800 µK.
The second branch is employed to transport the atomic cloud from the resonator
position to the science glass cell (see figure 3.4.10). The transport is realized by
means of a magnetically-controlled low-vibration translation stage (Aerotech ABL
1500b) on which a 1 m lens is mounted. This lens is used to realize a movable focus
(waist about 30 µm) for the transport beam, which thus operates as an “optical
tweezer” to move the atomic cloud over a distance of 26 cm in a time of 2.5 s (see
figure 3.4.10). Optimizing the transport parameters we obtained a process effi-
ciency of about 66% with a final sample temperature (T = 2µK) only 30% higher
than the initial one [111, 176]. The light power requested to transport atoms is
about 3.4 W and it corresponds to a trap depth of about V0/kB ' 90 µK.
The third branch constitutes the beam that, properly crossed in the glass cell with
the transport beam, generates a crossed dipole trap in which the final evaporation
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cooling stage is performed (as it is reported in figure 3.4.10). The beam, char-
acterized by a waist of ' 60 µm, is directly focused onto the atomic position by
shining ' 3.5 W at 1064 nm.
Both the far-off resonance crossed trap (FORT) and the lattices harmonic confine-
ment have been finely characterized to properly manipulate the final potential felt
by atoms (see appendix B). The next sections will be devoted to the description
of the setup and of the procedures employed to produce a degenerate fermionic or
bosonic gas, starting from a thermal atomic beam characterized by propagation
velocity of about 300 m/s.

3.4.3 How to obtain a degenerate Yb gas

In this section we describe the main components of the vacuum setup and the
experimental procedures employed to trap and manipulate Ytterbium (Yb) atoms.
These subjectes are described in detail in references [111–113].

As previously introduced in section 3.1, at room temperature Yb is a solid metal
with a negligible vapour pressure. To produce a gaseous sample of this metal an
oven has been loaded with about 15 g of 99.9% pure Yb chunks supplied by Sigma-
Aldrich. By following the experimental relation 3.4.1 that describes the vapour
pressure as a function of the absolute temperature, to obtain a pressure of about
10−2 Torr it is necessary to set a temperature of about 450− 500 ◦C. The atomic
beam is collimated by means of a square area of 100 micro-tubes characterized
by an internal diameter of 0.2 mm and a length of 1 cm before the exit of the
oven29. The collimated atomic flux is composed by atoms characterized by a mean
velocity30 of about 340 m/s.

Zeeman slower

By exploiting the dipole-permitted transition 1S0 → 1P1 atoms are decelerated
from their initial velocity to a few tens of m/s passing through a 50 cm Zeeman
slower (see figure 3.4.10. This tecnique is performed by employing a counterpropa-
gating σ− radiation red-shifted by 983 MHz with respect to the atomic transition.
The magnetic field necessary for the operation of the Zeeman slower is generated
by seven sets of coils in order to maintain the atomic sample in resonance with the
399 nm radiation along the Zeeman slower pipe.

29The front part of the oven is kept at a temperature approx. 50 ◦C higher than the oven body
to reduce the probability of capillary obstruction.

30It can be evaluated by means of the virial theorem or by supposing a Boltzmann velocity
distribution as proposed in reference [111].
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By performing a σ− Zeeman slower configuration the most intense magnetic field
BZSmax is reached at the end of the pipe; for that reason additional compensation
coils are used to cancel the residual magnetic field in the MOT chamber.

Magneto-Optical Trap

At the exit of the Zeeman slower, the atomic flux part characterized by a velocity
lower than the capture velocity31 for the intercombination transition 1S0 → 3P1

(see table 3.2.1) are loaded in a 556 nm magneto-optical trap (MOT). For the most
abundant fermionic isotope 173Yb the transition chosen is the closed transition
between hyperfine states F = 5/2 → F′ = 7/2. Due to its reduced linewidth, the
selected transition allows for a lower Doppler temperature (kBTD = ~Γ/2) than
what would be achievable on the 399 nm transition, but limits the capture velocity
around 10 m/s for our experimental parameters.
To increase the capture velocity range the MOT radiation is splitted on a comb
of 18 frequencies separated by 600 kHz and all red-detuned with respect to the
1S0 → 3P1 transition frequency. This multi-frequency stage lasts for 20 s, that
is the time necessary to saturate the MOT achieving a stable number of atoms.
At the end of this multi-frequency stage we obtain about #multiF = 1.7×108 atoms
trapped in the MOT for 173Yb and #multiB = 10×108 for 174Yb, achieving a sample
with a temperature of T ' 60 µK [177].
This temperature is significantly higher than the minimum Doppler temperature
achievable (TD = 4.3 µK) since collisional heating mechanisms can occur due to
high MOT density [178].
At the end of the 20 s loading the sidebands used to trap atoms in the MOT
are switched off in order to pass from a multi-frequency trap capable to capture
the highest atomic number possible to a temperature-optimized single-frequency
MOT32. In the meanwhile a 200 ms exponential ramp is performed to switch on the
1064 nm radiation and trap the atomic cloud inside the in-vacuum cavity briefly
introduced in section 3.4.2. In order to optimize the MOT position with respect to
the in-vacuum cavity position a magnetic field generated by three additional coils
is used. The efficiency of the procedure is about ≈ 80%.

31The capture velocity is, by definition, the maximum velocity class that is possible to trap
using a MOT and can be expressed as

vc = α
Γ

2

I

I + Isat
(3.4.3)

where α contains all the constants that are not relevant in order to emphasize the behaviour
with respect with saturation intensity and the linewidth of the transition considered.

32The magnetic gradient is also changed in order to compress the multifrequency MOT into
the in-vacuum cavity (every detail can be found in Ref. [111]).
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First evaporation in a resonator optical dipole trap

When the cloud is completely trapped in the in-vacuum cavity the single frequency
MOT radiation is turned off and a first evaporative cooling is performed by de-
creasing the light power from 1.8 W to 0.6 W with a 670 ms long exponential ramp.
At the end of this stage the obtained sample is consituted by 3×107 fermions or
50×107 bosons with a temperature of about 3 µK. As specified in section 3.4.2,
a 1064 nm “transport” beam (see figure 3.4.10) is employed to generate a 70 µK
deep optical trap characterized by a waist of 30 µm at the center of the in-vacuum
cavity. This beam is turned on by using a 400 ms exponential ramp.

Transport into glass cell and final evaporation

Once the resonator is turned off approximately 30% of the sample remains trapped
in the transport beam.
By dynamically changing the position of a 1 m convergent lens, the waist of the
beam is moved from the center of the in-vacuum cavity to the center of a glass cell
at a distance of 26.4 cm. The reproducibility of the process is guaranteed by the
magnetically-driven Aerotech ABL 1500b translation stage. The atomic cloud is
moved in 2.5 s, the obtained sample has a temperature increase of only 2 µK and
only the 30% of the initial number of atoms get lost during the operation [179].
Finally, when atoms are in the center of the cell, an additional 1064 nm trapping
beam (it is reported as “crossed beam” in figure 3.4.10) is adiabatically turned on.
The beam, used to generate an optical crossed trap, has a waist of 60 µm. When
the crossed trap is loaded, the final evaporative cooling procedure is performed in
order to reach the quantum degenerate regime. To obtain this scope the depth of
the crossed trap is lowered by means of a double concomitant exponential ramp
on the two beam intensities. Each ramp used has the same duration Tevap but
different decay constant for the transport and the orthogonal beam.
Due to the different scattering cross section imposed by the statistics (see section
2.3.1), for the fermionic sample we use different time constants depending on the
number of hyperfine states that are considered in the final sample. Bose-Einstein
condensation of 174Yb atoms is obtained decreasing the transport power from 3.5 W
to 30 mW and the power of the orthogonal beam from 3 W to 1 W with ramp pa-
rameters: Tevap = 2.5 s and τtransp = τort = 2.2 s.
The resulting gas is characterized by a condensed fraction of about ' 80% and a
number of atoms around #B = 2×105.
Fermi degeneracy for a dilute gas in which the six hyperfine components are con-
sidered is achieved by performing a ramp from 3.5 W to 30 mW for the transport
beam and from 3 W to 1 W for the orthogonal beam. In this case the ramp pa-
rameters are: Tevap = 4 s and τtransp = τort = 1 s.
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The atomic sample obtained following this procedure is characterized by a tem-
perature of about T/TF = 0.15 where TF is the Fermi temperature, and a number
of atoms #F = 4×104.

Imaging

The imaging of the atomic cloud is thus performed with standard absorption imag-
ing. This tecnique is based on the detection of the shadow cast by the atomic
sample on a CCD camera when resonant light is shone. The transition employed
to perform imaging is the dipole-allowed transition at 399 nm and in particular,
when 173Yb is considered, the closed transition F = 5/2→ F′ = 7/2. The imaging
beam is aligned with the vertical direction. The main imaging setup in the glass
cell is performed with a single f = 150 mm achromatic doublet placed at 200 mm
from the atomic position. The CCD, that is a Andor iXonEM + DU885KCSO, is
placed at 600 mm from the lens providing a magnification of 3x. So far, the main
resolution limitation is the numerical aperture that is restricted by the diameter
of the doublet (2′′). The resolution obtained on the 8×8 mm2 CCD, composed by
a pixels matrix 1002×1004, is about 10 µm and does not allow for in-situ imaging.

On the main imaging branch a λ/4 and a λ/2 waveplate has been added to
maximize the observed number of atoms. The dependance of the number of atoms
as a function of the polarization used to perform imaging is theoretically discussed
for example in Ref. [143].
To perform in-situ imaging a new optical system with a N.A. that should allow for a
resolution better than 1 µm has been studied and tested. In order to implement the
setup based on a custom Leica objective on the experimental system it is necessary
to stabilize the external physical quantities that can modify the position in the glass
cell. Experimentally, the alignments and the position of the atoms, environment
temperature variations or spatial temperature gradients caused for example by
ovens, high-power laser sources, magnetic field coils not correctly cooled, can cause
slight variations on the position of the atomic sample. This kind of phenomena
are detrimental and can nullify the effects of high-resolution optics, decreasing the
effective point-spread-function resolution and all the efforts proposed to increase
the optical imaging system.
For that reason, during this thesis, a flowbox built by Galvani S.R.L. has been
mounted on the experimental setup, as sketched in figure 3.4.11. This instrument is
devoted to the generation of a constant purified33 temperature-controlled air flow.
The input air, that is pre-filtered, is cooled by means of a couple of copper heat
exchangers that employ 1600 dm3/h of water at 13−18◦C to stabilize, by applying

33The air expulsed from the plenu passes through an absolute filter (that is illustrated in
figure 3.4.11). The air flow has been tested and resulted compatible with ISO 6 standard for
clean chambers [180].
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Figure 3.4.11. Schematic representation of the flowbox mounted on the experiment. This
apparatus, based on two indipended heat exchanger and fans, can guarantee a purified
constant air flow with a temperature uncertainty about 0.1 ◦C. The noise produced by
the operating instrument is lower than 65 dB and the water flux necessary to cool down
the input air is about 1600 dm3/h.

a proportional-integral feedback control system based on pneumatic valves and
temperature and pressure controllers, the air temperature in the plenum within
0.1 ◦C. The air temperature in the plenum can be set from 21.0 to 25.0 ◦C.
This flowbox allows for a continous air flow on the experimental setup that avoids
the formation of dust on optics, reduces the thermal gradients due to the previously
mentioned sources and stabilizes the temperature of optics, avoiding principal day-
time drifts.

3.4.4 Nuclear spin states selection and manipulation

When the 173Yb fermionic isotope is considered, it is necessary, to describe the
cooling procedure employed to reach the quantum degeneracy regime, to specify
the spin-mixture under consideration. As mentioned in previous sections, due to
Pauli blocking, if two identical atoms are considered, s-wave scattering and, conse-
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Figure 3.4.12. Optical Stern-Gerlach experiment performed on 173Yb. Nuclear spin
ground-state components have been selected by means of optical pumping performed
through σ+ and σ−-polarized beams resonant on specific Zeeman components of the
1S0 → 3P1 transition. In the lower part the transitions from the ground to the 3P1

hyperfine components are reported. The last transition |g〉(mF = 5
2) → |3P1〉(mF = 7

2)
is a closed transition that is employed to blast a nuclear spin component.

quently, the re-thermalization processes necessary to the evaporative cooling, can
not occur. Spin mixtures are obtained by optical pumping exploiting the inter-
combination transition 1S0 (F = 5/2) → 3P1 (F = 7/2) that has been described
in section 3.2, and that is excited by employing a 556 nm radiation that is stabi-
lized experimentally by the scheme described in section 3.4.1. Due to the reduced
linewidth of the cited transition, it is possible to address the nuclear spin states
individually by just applying a moderate external magnetic field that removes the
levels energy degeneracy.
In figure 3.4.12 we report the nuclear-spin composition, detected after Optical
Stern-Gerlach (OSG) separation (see below), for different samples of 173Yb. As it
can be observed it is possible to obtain a nearly perfect Zeeman states selection
by properly adjusting the light frequency and the polarization used to excite the
mentioned transitions. In order to transfer the population of |g〉mF state to the
|g〉mF’ = mF±1 state the transition from the initial state to the |3P1〉mF’ = mF±1
level is excited by shining resonant light characterized by σ± polarization, respec-
tively. A 23 G magnetic field is applied to properly address the cited transition.
The considered excited state is a magnetic-sensitive state and thus the Zeeman
shift induced by an external magnetic field, as described in equation 3.2.18, causes
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a splitting between adjacent hyperfine states ∆Ez = 2π×13.7 MHz, that is suf-
ficient to separate each transition and avoid unwanted nuclear spin states in the
final atomic sample.
The preparation of a sample constituted by a certain nuclear spin mixture is per-
formed before the final evaporative cooling stage; in this way, atoms have the
possibility to thermalize properly by distributing the momentum transferred by
the photon to the atomic sample.

In this work we realized principally two fermionic mixtures of 173Yb: the mix-
tures composed by ±5

2
and ±5

2
∩ 1

2
, as we will introduce in the next chapters.

In order to select ±5
2
spins we start from a sample composed by all the possible

spins as shown in figure 3.4.12. The first two concomitant pulses are performed by
using 75 µW of σ± radiation at 556 nm and are devoted34 to transfer completely
the population of ±1

2
in the mF = ±3

2
spin states. The second couple of pulses

is performed by shining 50 µW of σ± radiation and transfers the population from
the mF = ±3/2 to the mF = ±5/2 spin states.
From the obtained mixture, if we are interested in a spin-polarized sample it is
possible to excite the closed transition |g〉 (mF = ±5/2) → |3P1〉 (mF = ±7/2)
in order to selectively remove one spin from the dipole trap. This optical blast is
performed at the end of evaporating ramp because the polarized sample cannot
interact by s-wave scattering and thus cannot be cooled further by evaporation.
Although this pulse has a duration of only 30 µs, it inevitably causes a heating of
the sample that can reach a temperature up to T/TF ' 0.2.

The other spins-mixture used in this work is obtained by performing an “anoma-
lous” but efficient pumping procedure in order to obtain a balanced mixture. The
pumping scheme starts as usual, from an unpolarized atomic sample. As a first
step a σ+ pulse resonant with the transition |g〉 (mF = −1/2) → 3P1 (mF = 1/2)
is performed in order to unbalance considerably the +1/2 and −1/2 spin popula-
tions.
After this stage, two concomitant σ± pulses are performed to transfer the atomic
population to the |g〉 nuclear spin mF = ±3/2 states. At this stage a σ− pulse
resonant with the transition |g〉 (mF = 3/2) → 3P1 (mF = 1/2) and a π pulse
resonant with the transition (mF = 3/2)→ (mF = 3/2) are performed. Finally, by
exploiting the transitions |g〉 (mF = ±3/2)→ |3P1〉 (mF = ±5/2), the selected mix-
ture is obtained. A negligible |g〉 (mF = −1/2) population remains as residual un-
wanted state. The sample obtained following this procedure is constituted by about
2.5×104 atoms in each spin state and has a typical temperature ≈ T/TF ' 0.17.

34The pulse necessary to transfer completely the population has a duration of 1.5 ms.
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In order to detect the hyperfine composition of the atomic sample, due to
the magnetic-insensitive nature of the ground state, explored in detail in section
3.2.3, we cannot perform a standard Stern-Gerlach magnetic detection35. As we
introduced in section 3.4.2, the conservative potential introduced in relation 2.2.2
can be generalized to the case of multi-level atoms with equation 3.4.2. This
relation can be further generalized for radiation that is nearly-resonant with the
specific transitions by the equation:

U i
dip (ω,~r) = −3πc2

2
I (~r)

∑
n6=i

|Cn(q)|2 1

ω3
n

(
Γnβn
ωn − ω

+
Γnβn
ωn + ω

)
(3.4.4)

where Cn(q) is the Clebsch-Gordan coefficient that connects the initial state |i〉 =
|J,F,mF〉 to the final state |n〉 = |J′,F′,mF′〉 and (q) is the polarization of the
photon expressed in the spherical basis [143].
The dependence of the Clebsch-Gordan coefficients on mF and on the light polar-
ization (q) is related to different line strenghts between transitions from different
magnetic sublevels of the initial-state manifold excited by a certain polarization.
This implies different light shifts for different mF states, which are also strongly
dependent on the polarization of the incident radiation [143, 173].
The possibility to apply a nuclear spin state-dependent potential represents a pow-
erful tool that substitute the effect of the magnetic field in the Stern-Gerlach ex-
periment [172, 173].
In particular, a 472.6 MHz red-detuned radiation is experimentally employed to
spatially separate different spin populations. The beam used to cause a spin-
selective spatial displacement of the atomic cloud is a 60 µm waist slightly mis-
aligned with respect to the sample position [156]. To obtain the images shown in
figure 3.4.12, a 13 mW pulse is turned on for the first 1.5 ms after the release of the
atomic cloud from the trap, then the image is taken after 7.0 ms of time-of-flight
free evolution.

3.4.5 Raman setup

In section 3.3 we have introduced Raman two-photon transitions as an ex-
perimental technique for the coherent manipulation of the nuclear-spin degree of
freedom in 173Yb. These transitions are induced by using the 3P1 state as the
intermediate level in a Λ scheme. In order to implement this scheme is necessary
to employ non-resonant 556 nm radiation that minimizes the probability of single-
particle transitions |mF〉 → |3P1〉 as requested by the simplified theory presented

35This technique, originally used in 1922 by Stern and Gerlach [172] to observe the spin of
Silver (Ag) atoms, would require unpratical magnetic field gradients in our case [172].

79



3 - Alkaline-earth like atoms and experimental techniques

in section 3.3. The best detuning interval for 173Yb, taking into account single-
particle transitions from the ground state to the |3P1〉 level, has been evaluated
numerically in reference [112] by maximizing the ratio between the Raman Rabi
frequency ΩRaman and the light scattering rate and results ∼ 1.6 ÷ 2.2 GHz blue-
shifted with respect to the resonance frequency.
A system of four double-passage AOMs has been developed to obtain 556 nm
laser-light blue-shifted by 1756 MHz and a complete description of this experimen-
tal setup can be found in reference [112]. As it can be easily imagined, a chain
of four double-passage AOMs is a quite complex configuration and, unfortunately,
the efficiency, measured as the ratio between the light power before the first AOM
and the output of the fiber that brings the light to the atoms, corresponds to only
∼ 3%.
For that reason, in order to achieve a Raman Rabi frequency ΩRaman/2π ' 100 Hz,
during this work the setup sketched in figure 3.4.5 has been improved with a pro-
grammable waveplate that has the role, when the MOT phase in the experimental
cycle is concluded, of diverting the resonant light employed to load the MOT to
the Raman branch.
This technical improvement allows us to probe the Raman transition with about
30 mW of 1756 MHz blue-shifted light with respect to the |g〉 → |3P1, (mF = 7/2)〉
transition.
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This chapter is dedicated to the description of the experimental results related to
the measurement of the scattering properties of 174Yb bosonic atoms in a 3D opti-
cal lattice system [44]. Similar measurements have been performed independently
by Yb BEC group at LKB [45].
The chapter is divided into three parts: section 4.1 describes the experimental
techniques employed to excite the so-called “clock” transition, 1S0 → 3P0, in a
ultracold bosonic 174Yb sample loaded in a 3D lattice system.
In section 4.2 we show the possibility to use the optical clock transition to resolve
the atom occupancy of the sites in a bosonic Mott insulator and we use this in-
formation to determine scattering lengths for collisions regarding atoms in the e
state.
Finally, in section 4.3 the state-dependent loss rates coefficients for the collisions
involving atoms in the ground state (g) and in the metastable state (e) are de-
rived1.
The knowledge of scattering parameters (as scattering lengths and loss rates) is
crucial for the realization of quantum information platforms relying on the possi-
bility to excite ground state AEL atoms to the 3P0 metastable state [31, 182, 183].

1A similar experimental study based on the magnetic-sensitive 1S0 → 3P2 “clock” transition
in 174Yb has been recently performed [181].
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4.1 Realising clock spectroscopy

In this section we describe the experimental procedures employed to excite the
bosonic doubly-forbidden transition described in section 3.2.2.

To experimentally address the clock transition in 174Yb sample we start from
the realization of a Bose-Einstein condensate by means of evaporative cooling in
a crossed FOR Trap characterized by final trap frequencies
ωx,y,z = 2π×(92.8, 72.6, 86.3) Hz (see appendix B for details).
The obtained degenerate sample is constituted by about 2×105 atoms with a con-
densed fraction of 80%, as introduced in section 3.4.3. The number of atoms in this
sample can be easily decreased exploiting three-body losses collisions by extending
the time in which atoms are trapped into the crossed trap.
Finally, the bosonic gas is adiabatically loaded into a 3D cubic optical lattice (see
section 2.2) realized by shining three orthogonal retro-reflected beams at the magic
wavelength for the clock transition (see section 3.4.2). The depth of each lattice
can be set by varying the light intensity up to s = 40 Er, where Er is the recoil
energy evaluated for the 174Yb isotope (see table 3.4.1). The light intensity of
each lattice beam is exponentially ramped up in 150 ms in order to adiabatically
load the atomic sample into the 3D optical lattice. After this process the FOR
Trap is adabatically turned off by means of a 250 ms long linear ramp (see figure
4.1.1 (inset)); during this process half of the atoms get lost by means of inelastic
collisions in multiply-occupied lattice sites.
The final sample is constituted by 1.2×105 atoms, a number that can easily

lowered by extending the waiting time in the lattice after the FOR Trap has been
turned off, as shown in figure 4.1.1, or by changing the trap frequencies.
In order to excite the magnetically-induced clock transition introduced in section
3.2.2 it is necessary to modify the setup presented in section 3.4.1 in order to
compensate the isotopic shift between 173Yb and 174Yb, that has been evaluated in
Ref. [135] and corresponds to

δν = ν173Yb − ν174Yb = (551536050± 10) Hz.

Since the spacing between ULE modes is 1.5 GHz� δν, to compensate for the iso-
topic shift it is sufficient to substitute the double-passage AOM that sets the clock
laser frequency on the ULE branch (see figure 3.4.6). Clock spectroscopy is then
performed by shining a 578 nm light pulse on the sample, that causes an excitation
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Figure 4.1.1. The number of atoms in the final sample can be precisely selected by
increasing the time in the 3D optical lattice (in this case s = 30). The line represents
an exponential fit characterized by decay rate τ = (16.7± 0.6) s. In the inset the
experimental procedure used to load the optical lattice is graphically reported.

of part of the population from the ground |g〉 state to the metastable |e〉 = 3P0

state. As introduced in section 3.2.2, the presence of an external field2 is neces-
sary to permit a non-negligible coupling in the 3P manifold, and the spectroscopic
linewidth can be set by varying the light intensity or the magnetic-field intensity.
All the measurements presented in this and in the following sections are performed
without taking advantage of the optical-fiber link reference provided by the INRiM
institute. This means that, as explicitly shown in figure 3.4.7, transitions can be
probed only as long as the drift of the ULE cavity does not become larger than
other involved effects. For example, for a light intensity corresponding to a power
broadening of 1 kHz, the resonance can be easily addressed for about half a day.
On the other side, if the power broadening is comparable or lower with respect to
the linewidth of the laser (≈ 50 Hz), the transition can be probed only for half an
hour.

2In section 3.2.2 the case of an external magnetic field has been described. Otherwise, it has
been proposed to excite doubly-forbidden transition in bosonic AEL species also by exploiting
multiphoton schemes [184, 185].
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4.1.1 The Lamb-Dicke regime

As mentioned in chapters 3.2.1 and 3.2.2, the most important peculiarity of
the doubly-forbidden transition is represented by the extremely narrow natural
linewidth3.
The momentum exchanged in the interaction between the radiation field and the
atoms represents a non negligible limit in the identification of the transition fre-
quency and linewidth. As a matter of fact, by requiring the momentum conserva-
tion it is possible to obtain, for an atom in free space:

ωabs = ω +~k ·
~p
m

+
~k2

2m
(4.1.1)

where ω is the absolute transition frequency, ~k is the photon momentum, ~p is the
atomic momentum, and m is the atomic mass. The presence of the two addi-
tive terms, linked to Doppler broadening and recoil shift, respectively, constitutes
a problem that is of particular relevance in the optical spectroscopy framework,
differently from microwave spectroscopy, where motional effects can be easily dis-
regarded because of the negligible photon wavenumber [186]. For this reason, to
overcome unwanted broadening, clock transition spectroscopy is performed in deep
optical lattices, in which the external degree of freedom connected to the motional
state of the atom can be frozen, allowing for Doppler-free, recoil-free spectroscopy.
This is the so-called Lamb-Dicke regime [187], in which the absorption (emission)
of a photon can not change the motional state of the trapped atom. To formal-
ize this condition, we can consider a two-level |g〉 − |e〉 atom in a 1D harmonic
potential4 with harmonic frequency ωho interacting with a monochromatic radia-
tion of frequency ω and wavevector k. The total Hamiltonian of the system, in
a frame co-rotating with the laser field, in second quantization approach and by
considering only electric-dipole interaction, can be expressed as [188]:

Ĥ = −~∆|e〉〈e|+ ~ωho

(
â†â+

1

2

)
︸ ︷︷ ︸

Ĥ0

+
~Ω

2

[
eiη(â

†+â)|e〉〈g|+ h.c.
]

︸ ︷︷ ︸
Ĥint

(4.1.2)

where ∆ is the detuning from the resonance condition, Ω is the Rabi frequency
for the unconfined atom at rest, â† is the creation operator and η is known as

3In the case of bosonic AEL species, due to the lack of hyperfine interaction, if multiphoton
processes are neglected and external fields are not applied the transition can not occur.

4A lattice site can be described as a harmonic potential, as explained in section 2.2.1.
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Figure 4.1.2. Lamb-Dicke regime spectrum: the most intense line reprents the Carrier,
transitions in which higher harmonic levels are excited by radiation constitute the blue
sidebands, other transitions constitutes the red sidebands. Peak intensities of I blue- and
red- sidebands scale as η2 while for II blue- and red- sidebands the scaling factor is 2η4.

Lamb-Dicke parameter and is defined as:

η = k

√
~

2mωho
=

√
ωrec

ωho
. (4.1.3)

In order to separate the atomic internal and external degrees of freedom, it is
possible to write a general state of Ĥ0 as direct product of the internal and external
states |i〉 =

∑
n |n〉 ⊗ |i〉 where |n〉 is the autostate of the harmonic-oscillator

number operator n̂ = â†â.
As shown in Ref. [189], if the atom is confined in such a way that the spatial

extent of the atomic wavefunction is much smaller5 than 1/k, the argument of the
exponential is � 1 and can be expanded to the lowest order in η.
The transition probability, evaluated by considering the interaction Hamiltonian

5Equivalently, it occurs when the recoil energy Er = ~2k2

2m associated to the photon absorption
is much smaller than the harmonic oscillator energy quantum ~ωho.
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Hint, can therefore be written as

Pn→n′ ∝ |〈n′|1 + η
(
â† + â

)
|n〉|2 =

∣∣∣∣δn,n′ + η
(√

n+ 1δn′,n+1 +
√
n′ + 1δn′+1,n

) ∣∣∣∣2.
(4.1.4)

From this relation it results evident that, if the expansion is justified, the most
intense line in the emission or absorption spectra is the transition that occurs
without varying the atomic external degree of freedom. Typically this resonance
is referred as carrier transition [189] and it is characterized by a total suppression of
recoil and Doppler broadening, since the interacting photon cannot influence the
spatial part of the atomic wavefunction.
The other allowed transitions, that are referred to as first red sideband and first
blue sideband, correspond to transitions from the n-th harmonic oscillator level to
the (n − 1)-th and to the (n + 1)-th, respectively. The probability associated to
these transitions is lowered by a factor η2 with respect to the carrier transition, as
shown in figure 4.1.2. These transitions result energy-shifted by ±ωho and so can
be individually resolved only if the broadening of the transition is smaller than
the harmonic-oscillator spacing between two consecutive levels. Remarkably, since
the discrete energy spectrum of the harmonic oscillator has an absolute minimum,
that is reached for n = 0, the so-called red sideband transitions can occur only if
the initial state n allows lower energy levels (n > 1).

4.1.2 Measurement of second-order Zeeman shift by nar-
row spectroscopy

To obtain the clock transition spectra, we address the ultranarrow induced
transition |g〉 → |e〉 (described in section 3.2.2) by shining clock-laser pulses from
500 ms to 1 s long. The Rabi frequency and the width of the resonance can be
modified by changing the light intensity by means of power broadening, or the
external magnetic field applied to the sample, allowing for an accurate control of
the transition parameters. Spectra have been obtained by reporting the number of
|g〉 atoms remained after the excitation as a function of the clock laser frequency.
When the clock radiation frequency is resonant with respect to the atomic transi-
tion, a dip in the observed number of |g〉 atoms can be observed.
As shown in references [38, 145, 171], many beam paths have been implemented
in order to excite the trapped atoms from different directions by exploiting the
clock transition. Regarding our actual scopes, each branch is characterized by a
well-defined waist and in particular, the smallest waist6 is achieved when the clock

6And consequently the branch that allows for the biggest Rabi frequencies achievable.
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Figure 4.1.3. Characterization of the second-order Zeeman shift. The resonance position
has been reported as a function of the applied magnetic field. The experimental data,
obtained as mean value of multiple acquisitions, have been fitted by using a quadratic
function. In the inset a comparison between our estimation of β and the value reported
in reference [146] has been reported. As explained in the main text, the discrepancy
between the two measurements could be due to an underestimation of the uncertainty
error on the magnetic field value. Blue points represent the resonance frequency of single
measurements as a function of the magnetic field.

radiation is collinear to one of the lattices used to confine atoms.
This choice permits us to reach the Lamb-Dicke regime, previously described, by
just varying the intensity of the lattice collinear to the clock radiation, while no
particular constraints exist for the other lattices. As we will describe in the follow-
ing section, although the Lamb-Dicke regime is required to perform very narrow
spectroscopy without taking into account the photon recoil, it does not represent
the only condition that we have to take into account if we are interested in mea-
suring experimentally lattice parameters as the interaction energy U introduced in
equation 2.3.4. In a first experiment we investigated the clock transition frequency
as a function of the external applied magnetic field. We excited the transition with
a 500 ms pulse characterized by an intensity of 10 mW

mm2 . We acquired many spectra
in order to determine the transition frequency for applied magnetic fields ranging
from 50 to 175 G. Each spectrum has been fitted with a gaussian curve in order
to determine the mean resonance value. The error on the resonance position has
been obtained as a standard deviation. The resonance frequencies as a function of
the external magnetic field, that are shown in figure 4.1.3, have been fitted with
a parabolic function in order to evaluate the second-order Zeeman shift described
in section 3.2.3.
From the β ≡ ∆E

z(II)

B2 parameter introduced in equation 3.2.17, it is possible to
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obtain the second order Zeeman shift

β = − (5.4± 0.2) 10−2 Hz
G2

that is not consistent with the value reported in reference [146] shown, for com-
parison, in the inset of figure 4.1.3.
The magnetic field has been calibrated by performing a spectroscopy over a mixture
of fermionic 173Yb composed by ±5/2 states and evaluating the Zeeman separation
of their transition frequencies, assuming a linear Zeeman effect only7. The scat-
tering of the data around the fit line could be ascribed to fluctuations of the ULE
reference cavity stabilization, as discussed in section 3.4.1.A possible reason for the
discrepancy between the two independent measurements, can be an unidentified
effect in the calibration on the magnetic field leading to an underestimation of the
calibration uncertainty. Another uncertainty source is connected to the observed
width, corresponding in each measurement to about 500 Hz, that does not follow
the predicted linear scaling law between the Rabi frequency and the magnetic field
reported in equation 3.2.15. This suggests the existence of a substructure hidden
by the power broadening. The following sections are devoted to the description
and to the indentification of this substructure.

7For the fermionic isotopes, the second-order Zeeman effect provides only a shift of the tran-
sition center, not a change in the separation between spin components [190].
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4.2 Interaction-peaks resolved spectroscopy
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Figure 4.2.1. Typical 500 ms time pulse, 1.5 mW
mm2 spectroscopy scanning the frequencies

near the atomic peak. The external applied magnetic field corresponds to 55 G. Light blue
points represent raw normalized data obtained by rescaling all the frequencies with respect
to the fitted frequency position, for each acquisition, of the high frequency resonance. Due
to frequencies rescaling it is not possible to obtain statistics over the same frequencies, for
that reason, to obtain dark blue points raw points has been binned using as bin interval
25 Hz. Dark blue points represent the mean value of each binned interval dataset, standard
deviation instead has been used as error.

To investigate the presence of a substructure in the resonance peak we tried
to perform spectroscopy lowering the light intensity on atoms in order to decrease
drastically the power broadening. Atoms are loaded in a 3D cubic optical lattice
at the magic wavelength corresponding to 759 nm; the lattice depth is increased to
reach the Lamb-Dicke regime along the clock radiation direction and bring atoms
in a bosonic Mott-insulating phase. As explained in section 2.3.1, to reach a Mott
insulating phase it is necessary to overcome the ratio (U/t)c = 5.8 ζ where ζ = 6
is the coordination number for a cubic lattice geometry. This condition is realized,
by considering isotropic lattice depth (s1 = s2 = s3 = s), when s ≥ 12.
Reducing the coupling to the |e〉 state by lowering the intensity of the clock laser
(set to 1 mW/mm2) and the external magnetic field (set to 55 G), we observe the
appearance of a series of resonances that were hidden by the power broadening.
An averaged spectrum acquired for a sample of ≈ 5×104 bosons in the specified
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Figure 4.2.2. Clock spectroscopy on 174Yb in a 3D optical lattice. All the shown spectra
report the fraction of |g〉 atoms remaining after a 500 ms long pulse performed shining
1 mW

mm2 of clock radiation. All the frequencies are expressed as shifts with respect to
the highest-energy resonance. Panel a) shows the typical spectrum, also shown in figure
4.2.1. Panel b) represents a clock spectrum performed on the atomic sample on which a
photoassociation (PA) pulse has been applied to remove multiply-occupied lattice sites.
Direct comparison between a) and b) allows to detect clearly the single-particle peak.
As specified by legends of each plot, in panel c) spectra obtained by gradually lowering
the number of atoms inside the lattice are shown. By decreasing the number of loaded
bosons a corresponding area reduction of the resonances attributed to multiply-occupied
lattice sites can be noted. This feature is in agreement with the hypothesis about the
nature of the redshifted peaks (δ < 0).

conditions is shown in figure 4.2.1. Due to the unpredictable residual frequency
drift of the ULE cavity presented in section 3.4.1, the laser frequency changes
during the measurement and during the day; for that reason, since a full spectrum
needs about 20 min, it is necessary to take into account the drift by acquiring and
averaging over many realizations.

In order to average over many acquisitions each spectrum is fitted with a multi-
gaussian function and all the frequencies are shifted to make the highest-frequency
peak coincident in the different spectra8. Offsetting the frequencies to the fitted

8That is taken as a reference because we are interested in relative shifts and not in absolute
frequencies.
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position of the observed peak at highest energy, the resulting points are spread
all over the abscissa axis. Since it is not possible to acquire statistics for all the
resulting sparse frequencies, it is necessary to bin the obtained points; we choose
a bin interval of 25 Hz, that is consistent with the observed short-term linewidth
of the clock laser. Mean values and standard deviations of points in an abscissa
interval {−12.5 + ν, 12.5 + ν} [Hz] are used as dataset for each averaged spectrum
as shown by the dark blue points of figure 4.2.1.

The final experimental dataset is fitted with a sum of gaussian functions, and
the frequency shift with respect to the highest energy peak are determined. By
following this procedure the substructure shown in figure 4.2.1 arises clearly.
The spectrum is characterized by several resonances that we ascribe to processes
where a single |g〉 atom in a lattice site occupied by n particles is excited to the
|e〉 state. To describe this process by employing a compact notation we introduce
| (n) g〉 as the lattice site occupied by n |g〉 bosons.
The excitation of one atom in this lattice site can be written by the notation
| (n) g〉 → | (n-1) g, e〉.
We attribute the splitting of the resonances to the effect of state-dependent atom-
atom interactions, that shift the different resonances according to the value of n,
as it will be discussed in the next section.
We identify the highest-energy resonance in the spectra as the excitation of the
|g〉 → |e〉 in singly-occupied sites. This attribution is justified by the results of
two independent experiments in which we probe a sample in which the number of
multiply-occupied lattice sites is drastically reduced by means of a photoassocia-
tion (PA) pulse (see figure 4.2.2 a), b)) and by performing spectra as a function
of the total number of atoms loaded in the lattice9 (see figure 4.2.2 c)), respectively.

In the first experiment, shown in figure 4.2.2 b), after the loading of the degen-
erate sample in the 3D optical lattice, we shine a photoassociation (PA) 556 nm
pulse resonant with the two-atoms transition |(2)g〉 → |3P1 · g〉 where 3P1 · g has
been introduced to describe a shallow molecule composed by a ground atom and
an excited atom in the same lattice site. The molecular state generated by this
transition is in a high vibrational state (the binding energy is ' 10 [MHz]×h) and
the finite lifetime of the 3P1 isolated state causes a fast decay to ground state
molecules in high vibrational states or to an unbound state in which |(2)g〉 atoms
can newly absorb resonant radiation in order to form again a molecule. After
many absorption-decay cycle the absorbed energy is sufficient to overcome the lat-

9As mentioned in the previous sections (see section 4.1), it is possible to reduce the number
of atoms by changing the final evaporation powers of the crossed trap or, in order to preserve the
same experimental conditions for all the spectra, it is possible to wait in the lattice (see figure
4.1.1).
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Figure 4.2.3. 556 nm photoassociation transition characterization. In the inset of panel a)
a PA spectrum performed by employing 5 ms long pulses and an intensity of about 3 mW

mm2

is reported. Three resonances can be detected and the observed resonances positions
with respect to the 1S0 →3 P1 frequency are consistent with references [192, 193]. The
main graph in panel a) shows a spectrum near the chosen PA line in order to excite
multiply-occupied lattice sites. Panel b) shows the remaining population as a function
of the PA pulse duration. For pulses longer than tsat = 2.5 ms the number of remaining
atoms saturates on 30×103 bosons, suggesting that no multiply-occupied lattice sites are
left. After 7 ms photon scattering causes a heating of the sample, reflected by a slowest
decay of atomic population.

tice confinement potential [191]. This transition has been characterized accurately
in bosonic Yb atoms in Refs. [192, 193]. This transition can occur only if a lattice
site has at least two ground atoms, hence the photoassociation transition can be
employed as a selective tool to reduce only multiply-occupied lattice sites10. The
resulting atomic sample is characterized mainly by singly occupied sites, that we
probe by performing clock spectroscopy.
In order to employ the PA to remove multiply-occupied lattice sites we started by
characterizing this process. We loaded about 100×103 atoms in a s = 30 3D opti-
cal lattice and by means of a 5 ms long pulse of 556 nm radiation (intensity set to
3 mW

mm2 ) we performed spectroscopy. Resonances have been identified by observing
the number of remaining |g〉 atoms when the excitation pulse was shone on the
sample. The spectrum reported in the inset of the panel 4.2.3a) shows three reso-
nance peaks; these represent the transitions from the doubly-occupied lattice site
|(2)g〉 to the three least-bound vibrational state of the |3P1 · g〉 molecule. We de-
cided to employ the transition centered at −20 MHz with respect to the 1S0 → 3P1

frequency because the resonance can be easily addressed (as shown in figure 4.2.3
a), avoiding an excessive photon scattering, as instead it occurs for the resonances

10Remarkably, this simplified picture can be used if we neglect the effects of the tunneling. If
the lowest lattice depth in order to have a Mott insulating phase (s = 12) is considered tunneling
processes are characterized by a timescale t−1 ' 40 ms, while PA pulses employed are about
1/20 t−1.
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centered at −6 and −10 MHz.
In figure 4.2.3 b) the population decay obtained by increasing the PA pulse time
is reported.
Due to the effectiveness of the described PA pulse, in figure 4.2.2 b) only the
highest frequency transition occurs as a consequence of the diminished number
of doubly-occupied lattice sites, which allows for the identification of the single-
particle |g〉 → |e〉 transition.

In a second experiment (see figure 4.2.2 c)) we perform spectroscopy on samples
containing different atom numbers. As the atom number is reduced, the relative
weight of the lower-energy transitions decreases, which indicates that these pro-
cesses can be attributed to |(n)g〉 → |(n-1)g, e〉 transitions with n > 1. On the
other hand, the weight of the highest-energy resonance increases as the atom num-
ber is reduced, which shows an increased relative number of singly-occupied lattice
sites, further confirming the validity of our hypothesis.

4.2.1 Measurement of e-g scattering length

As already introduced in the previous section, the splitting of the resonances in
the low-intensity spectrum of figure 4.2.1, is attributed to state-dependent atom-
atom interactions. The identification of the resonances (as corresponding to lattice
sites with different occupation) represents the starting point for the determination
of the s-wave scattering length aeg that describes the interaction between |g〉 and
|e〉 states atoms in 174Yb. To our knowledge, this value was not reported before. If
the single-band Hubbard model introduced in section 2.3.1 describes properly the
processes that occur in the lattice11, relation 2.3.4 can be used to determine the
unknown scattering length aeg. The frequency shift experimentally measured by
means of narrow spectroscopy is the energy difference between the ground-ground
and the ground-excited states interaction energies Ueg−Ugg ≡ ∆eg. Equation 2.3.4
is generalized in order to take into account the interaction energy Uij regarding
{i, j} particles by equation:

Uij =
4π~2

m
aij

∫
w (~r)4 d~r (4.2.1)

11As shown in section 2.2.2, if the interaction energy is of the order of the lattice band gap, U
saturates to the band gap and the relation 2.3.4 can not describe properly the connection between
the interaction energy and the scattering length a. This condition is always verified because the
band gap of an isotropic lattice for s = 15 (the shallowest lattice used in these measurements)
corresponds to 12.5 kHz while the observed frequency shift is of the order of hundreds of Hz.
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Figure 4.2.4. Measured frequency shifts for two (blue points) or three (red points) in-
teracting 174Yb bosons one of whom is the excite metastable state |e〉, with respect to
the single particle transition |g〉 → |e〉 as a function of the lattice depth s. Inset reports
a spectrum simulation for s = 30, blue and dark red points of the main plot represent
the frequency shifts between the peaks center as shown in inset. Solid lines represent the
fitted function 4.2.2 by considering the best fitted aeg. The specified fit function takes
into occount only two-body on-site interactions. Dashed lines represent a fit that takes
into account two-body and three-body interactions. As shown the agreement between
theoretical and experimental dataset is very good.

where m is the atomic mass. By reverting the definition for ∆eg it is possible to
obtain:

aeg = agg +
m

4π~2

∆eg∫
w (~r)4 d~r

(4.2.2)

where agg is the s-wave scattering length for ground-ground interaction and is
known to be equal to

agg = (104.9± 1.5) a0 (4.2.3)

where a0 is the Bohr radius [194]. The frequency shift between the |g〉 → |e〉 transi-
tion and the resonances shown in figure 4.2.1 has been experimentally observed as
a function of the lattice depth s, as shown in figure 4.2.4. The energy shifts ∆eg(s)
for the transition |(2)g〉 → |g, e〉 (blue points), measured for different values of s,
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Figure 4.2.5. Sketch of the interaction contributions when a lattice site is occupied by
n bosons. Blue circles represent atoms in the fundamental state while red cicles represent
atoms in the metastable excited state |e〉. When n = 1 the on-site interaction can not
cause an interaction shift to the transition |g〉 → |e〉. When two particles are considered
(n = 2) only one interaction energy plays a role. For triply-occupied lattice sites it is
necessary to consider two- and (effective) three-body interactions, as explained in the
main text; these contributions are shown in the first and second rows, respectively.

have been fitted with equation 4.2.2, using the known dependency of the Wannier
functions w (~r) on s, leaving aeg − agg as the only free parameter. The resulting
fit is reported in figure 4.2.4 as blue solid line. The agreement with the observed
behaviour is quite good and from the best-fitting value aeg = agg − 10.19×a0, it
results immediately:

aeg = (94.7± 1.6) a0. (4.2.4)

In figure 4.2.4 experimental shifts between the single-particle excitation and the
transition |(3)g〉 → |(2)g, e〉 are also reported (red points). As it can be observed,
if the obtained value aeg and only two-body interactions are considered (red solid
line), the agreement between experimental data and theoretical behaviour is not
good. Contributions to the total interaction energy for a triply-occupied lattice site
are shown in figure 4.2.5. By considering only two-body interactions the expected
energy shift due to the presence of a metastable state in a triply-occupied lattice
site |(2)g, e〉 can be expressed as

∆egg = Ugg + 2Ueg − 3Ugg = 2(Ueg − Ugg) = 2∆eg, (4.2.5)

or equivalently ∆egg/∆eg = 2, where the two-body interactions have been graph-
ically schematized in figure 4.2.5. This result, as shown by red solid line in figure
4.2.4, deviates from the observed shift. We ascribe this deviation to an addi-
tional correction arising from three-body effective interactions (see figure 4.2.5).
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As demonstrated in reference [195] in a second-quantization approach, by taking
into account the many-body Hamiltonian for spin polarized neutral bosons in a
deep optical lattice beyond the single-band approximation, it is possible to obtain
an effective interaction Hamiltonian

Ĥeff = U2
â†2â2

2︸ ︷︷ ︸
Ĥ2

+U3
â†3â3

6︸ ︷︷ ︸
Ĥ3

(4.2.6)

that gives rise to a second-order energy correction, due to Ĥ3, equal to

EII (n) = δU2
n (n− 1)

2
+ δU3

n (n− 1) (n− 2)

6
(4.2.7)

where n is the number of atoms in a lattice site and δU2, δU3 are first-order energy
corrections arising from virtual transitions to higher lattice bands. At the lowest
order possible, it can be demonstrated that δU2 = 0 and the effective elastic three-
body interaction can be expressed as

δU3 (a, s) = −βU2 (a, s)2

~ω(s)
(4.2.8)

where β = 4
√

3 − 6
[
1− log

(
4√
3+2

)]
' 1.34 is a constant, U2 is the two-body

interaction energy and ω(s) is the harmonic frequency characterizing the confine-
ment within one lattice site. Relation 4.2.8 allows us to evaluate the second-order
correction to the interaction energy for the | (3) g〉 state:

Etot
|(3)g〉 (3) =

[
n(n− 1)

2
− 4βπ~

mω
agg

n(n− 1)(n− 2)

6

∫
w (~r)4 d~r

]
(

4π~2

m
agg

∫
w (~r)4 d~r

) ∣∣∣∣∣
n=3

.

(4.2.9)

We note that this energy correction could also be interpreted as arising from an
effective modification of the single particle Wannier function (dependent of the
number of particles in the lattice site), that was also at the basis of the physics
discussed in section 2.2.2 for two particles out of the perturbative regime.
For the |(2)g, e〉 state, since particles are not identical, the theoretical approach
developed in reference [195] could not be directly employed. In order to describe
heuristically the three-body interaction energy for this state, let us suppose the
validity of equation 4.2.9 in which the scattering length agg is substituted by the
geometric average12 scattering length aegg = (aggaegaeg)

1/3 ' 98×a0.
12As it has been graphically represented in figure 4.2.5, in a lattice site occupied by (2)g, e

atoms, the two-body possible interactions are: g − e, g − e, g − g.
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Figure 4.2.6. Red points show the ratio between the frequency shift for triply-occupied
and doubly-occupied lattice sites as a function of s. The dashed black line represents
the theoretical ratio obtained by taking into account only two-body interactions. While
the experimental mean value is (1.9± 0.2), by neglecting three-body interactions the
theoretical value is constantly equal to 2. If three-body interactions are considered (blue
solid line), by means of equation 4.2.8, the agreement between experimental data and
theoretical model results very good.

With this hypothesis, the measured |(3)g〉 → |(2)g, e〉 transitions as a function of s
reported in figure 4.2.4 can be employed to estimate aeg. Also in this case, by using
equation 4.2.8 (and its extension to the |(2)g, e〉 state) to express the total energy
shift between the |(3)g〉 and the |(2)g, e〉 state, a combined fit has been performed
by considering all the experimental dataset shown as red and blue points in figure
4.2.4, leaving the differential scattering length aeg−agg as the only free parameter.
The result of the fit, that is in a very good agreement with the measured shifts
(and is shown as dashed lines in figure 4.2.4) permits us to obtain a determination
of the scattering length aeg = agg − 10.08×a0:

aeg = (94.8± 1.6) a0 (4.2.10)

that is consistent with the value obtained previously (see relation 4.2.4).

Regarding the ratio ∆egg/∆ge, by neglecting effective three-body interactions
theoretically it should be equal to 2, as shown by relation 4.2.5. As it can be
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observed in figure 4.2.6, the mean experimental value of the considered ratio is

∆egg

∆eg

= (1.9± 0.2) .

Although this value is consistent with 2 within the error bars, we clearly observe
that the points in figure 4.2.6 lie all below the theoretical prediction (dashed black
line). If instead three-body interaction are considered, by means of including the
term described by equation 4.2.8, the ratio between three-body and two-body shifts
gains a weak dependence on the lattice depth s as shown in relation

∆egg

∆eg

= 2 +
δU3 (agg, s)− δU3 (aegg, s)

Ugg − Ueg
. (4.2.11)

The weak dependence can be observed in the blue solid line of figure 4.2.6. In this
case a better agreement between theoretical expected value and measured values
can be noted.

By evaluating similar excitation spectra, Bouganne et al. [45] obtained inde-
pendently, in the same time period, a scattering length equal to

aeg = (86± 11) a0,

that is consistent with the value obtained in this work, as it can be observed in
figure 4.2.7 (numerical values are reported in table 4.2.1). The weighted arithmeti-
cal mean between the values obtained in reference [45] and in this work, shown in
figure 4.2.7, is

aeg = (94.6± 1.6) a0. (4.2.12)
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Figure 4.2.7. Direct comparison between the values of aeg (red points) and aee (blue
points) obtained in this work and in reference [45]. All the scattering lengths have been
derived by assuming the ground-ground scattering length agg reported in reference [194]
(green point).

4.2.2 Measurement of e-e scattering length

Performing spectroscopy by employing 1.5 s long pulses, a blue-shifted peak
∆ν ' 160 Hz (for s = 30) with respect to the single-particle excitation arises, as
shown in figure 4.2.8 (blue points).
We ascribed this resonance to the two-photon process |(2)g〉 → |(2)e〉 which si-
multaneously transfers two ground particles confined in the same lattice site to a
state with two excited particles state, via an intermediate state |g, e〉 (where we
used the notation introduced in the previous sections).
In order to confirm the nature of this transition we performed a “two-colour” spec-
troscopy by exciting atoms with a clock laser beam characterized by two frequen-
cies f± = f ± δf , shifted by δf = ±800 Hz with respect to the carrier frequency
f . Spectra are obtained by scanning the carrier f frequency and the number of
remained |g〉 state atoms are reported in figure 4.2.8.
In order to detect the very weak blue-shifted transition identified in figure 4.2.8,
the “two-colour” spectroscopy is performed by shining about 30 mW

mm2 . For that
reason the single-photon resonances corresponding to clock frequencies −δf and
+δf are power-broadened and their interaction substructure cannot be resolved,
as shown by the red points in figure 4.2.8. This spectrum also shows a weak transi-
tion that is not shifted with respect to the “single-colour” spectrum. That suggests
that the peak corresponds to a simultaneous absorption of two photons, one char-
acterized by frequency f+ and the other by frequency f−, in such a way that the
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Figure 4.2.8. Single-frequency (blue points) and two-frequency (red points) clock spec-
troscopy of an atomic 174Yb sample confined in a 3D optical lattice with s = 30. In the
“single-colour” spectrum, we ascribe the weak resonance blue shifted with respect to the
single particle frequency transition |g〉 → |e〉 to the two-photon process corresponding
to the transition |(2)g〉 → |(2)e〉. This identification is confirmed by the presence of a
resonance having the same frequency in the “two-colour” spectrum taken at frequencies
f± = f ± δf (see explanation in the main text).

total energy transferred to the system is h× (f+ + f−) = 2h×f , i.e. in the same
position as in the “single-colour” spectrum. The two-photon nature |(2)g〉 → |(2)e〉
of this resonance is then experimentally confirmed and it is possible to determine
the interaction energy shift ∆ee ≡ Uee − Ugg.
By imposing energy conservation for the two-photon transition, it is possible to
obtain

ν0 = ν|g〉→|e〉 +
Uee − Ugg

2h
where ν0 is the resonance frequency i.e. ν|g〉→|e〉+∆ν; that relation implies that the
experimental shift ∆ν corresponds only to half of the interaction energy between
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Scattering channel Measured value Reference
[a0]

agg 104.9± 1.5 [194]

aeg 94.8± 1.6 This work
86± 11 [45]

aeg 94.6± 1.6 This work & [45]

aee 126.7± 2.3 This work
102± 25 [45]

aee 126.5± 2.3 This work & [45]

Table 4.2.1. Summary of the measured s-wave scattering lengths of 174Yb for different
interaction channels involving the ground and the metastable states.

states |(2)e〉 and |(2)g〉. Adopting an argumentation similar to that carried on in
section 4.2.1, it is possible to connect this interaction shift to the scattering length
aee via the relation

∆ee =
4π~2

m
(aee − agg)

∫
w4 (~r) d~r. (4.2.13)

Averaging over several spectra (both single- and two-colour) acquired at mean
lattice depth s = (29.3± 0.3) it is possible to determine the scattering length for
the |(2)e〉 state by employing equation 4.2.13:

aee = (126.7± 2.3) a0 (4.2.14)

that has been obtained by using the knowledge of the agg scattering length (see
equation 4.2.3).
This scattering length has been evaluated independently by Bouganne et al. [45],
obtaining

aee = (102± 25) a0,

and also in this case the obtained value is consistent with the value obtained in
this work, as it can be observed in figure 4.2.7.
The weighted arithmetical average between these values has also been reported in
figure 4.2.7 (numerical values are reported instead in table 4.2.1) and corresponds
to

aee = (126.5± 2.3) a0. (4.2.15)
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4.3 Interaction-dependent state addressing and
inelastic losses

This section is devoted to the description of the experimental procedure em-
ployed to excite selectively one of the resonances presented in section 4.2.1 in order
to determine the losses due to inelastic collisions between particles in a lattice site.
In particular,in section 4.3.1 we firstly present the possibility to address selectively
each interaction state introduced in section 4.2.1 by performing Rabi coherent os-
cillations.
In the second part of this section 4.3.2 we characterize the number of remaining
|g〉 atoms after a selective excitation pulse in the optical lattice providing, at our
knowledge for the first time, the loss rate coefficients β for 174Yb in the |e〉 state.

4.3.1 Coherent addressing of the transition

As shown in the previous section, by performing narrow spectroscopy at low
magnetic field (' 55 G) it is possible to selectively address resonances correspond-
ing to transitions |(n)g〉 → |(n− 1)g, e〉 ∀n = {1, 2, 3}.
174Yb atoms are trapped in a 3D optical lattice realized at the magic wavelength by
exponentially increasing the lattice depth up to s = 30. An intensity of 1.0 mW

mm2 of
clock radiation is shone on the sample for variable pulse times and the population
of |g〉 atoms is reported as a function of the excitation time. For this laser intensity
and long illumination times (0.5 s), we observed a frequency shift of about 200 Hz
between resonances corresponding to different atom number, as shown in figure
4.2.1.
A Rabi oscillation on the resonance |g〉 → |e〉, exhibiting coherence times exceed-
ing 100 ms, is shown in figure 4.3.1 a). The fitted frequency of this oscillation is
Ωa) = 2π×26.9 Hz. In figure 4.3.1 b) and c) we report Rabi oscillations performed
on the n-particle resonances |(n)g〉 → |(n − 1)g, e〉 in the same experimental con-
figuration employed to achieve the single-particle excitation, in order to compare
directly the oscillation frequencies obtained by the sinusoidal fit.
The resulting oscillation frequencies are Ωb) = 2π×36.8 Hz and Ωc) = 2π×45.5 Hz.
The subscripts {a), b), c)} have been used to indicate the excitation processes con-
nected to the panels scheme of figure 4.3.1.
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a) b)

c)

Figure 4.3.1. Rabi oscillations corresponding to selective excitation performed in 3D
optical lattice characterized by depth s = 30. Clock radiation pulses are performed by
employing 1.0 mW

mm2 and a magnetic field of 55 G. Panel a) shows an excitation of the
single-particle transition, panels (b,c) instead report Rabi oscillations on two and three
particle resonances, respectively.

The ratios between the single-particle excitation and the n-particle excitation
frequencies are Ωb)/Ωa) = 0.97

√
2, for n = 2 and Ωc)/Ωa) = 0.98

√
3 for n = 3.

Therefore, we verify the relation

Ω|(n)g〉→|(n-1)g,e〉 =
√
n Ωa)

obtained in reference [196]. This evidence further confirms our hypothesis on the
nature of the resonances observed in figure 4.2.1.

4.3.2 Measurement of state-dependent loss rates

In this section we will describe measurements aimed to the characterization
of inelastic collisions of 174Yb atoms in the metastable (e) state. To measure the
state-dependent loss rates relative to the e− g and e− e interaction channels it is
useful to detect atoms in the metastable 3P0 state (e).

As initially introduced in section 3.4.1, during this work we implemented a
laser source that allowed for the direct detection of the population of the |e〉 state
by means of rempumping transitions from the metastable clock to the 3D1 states.
The repumping scheme has been described in section 3.4.1; for the scopes of this
section the only interesting characteristic is the detection efficiency, that allows for
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Figure 4.3.2. a) 1388.8 nm spectroscopy: the number of repumped bosons is reported
as a function of frequency (expressed as shift δ with respect to the mean value). By
performing a Lorentzian fit the experimental linewidth obtained is about 1.8 GHz. In the
inset the experimental procedure to blast |g〉 atoms in order to only observe |e〉 repumped
atoms is shown. b) Rabi oscillation (red points) obtained by exciting the atoms on the
clock transition with an intensity of 50 mW/mm2 and an external magnetic field of 175 G.
The blue points represent the sum of ground and rempumped metastable atoms after the
excitation pulse. The repumped detection efficiency is about 95% so the decay observable
in both the red and blue points can be attributed to inelastic collisions occurring in the
sample.

the detection ∼ 95% of the total number of excited atoms.
In order to observe just |e〉 atoms, after ramping down the light intensity of the
lattice beams in 150 µs, a |g〉 blast procedure, performed by employing a 100 µs
long pulse resonant with the 399 nm transition g → |1P1〉 (F = 7/2,mF = 7/2), is
used to induce a strong selective heating of the atoms originally in the ground
state, in such a way to make them “invisible” to the imaging beam.
During the subsequent time of flight (TOF = 10 ms) the 1388.8 nm radiation is
continously shone on the sample, trasferring about 95% of the excited population
in the |g〉 state. After the TOF the usual |g〉-atoms imaging is performed on the
sample in order to detect the atoms originally in the |e〉 state.
The sequence of experimental pulses used to detect exclusively the |e〉 atoms are
shown in the inset of figure 4.3.2 a).
The power broadening of the |e〉 → 3D1 transition, caused by the ∼ 10 mW
1388.8 nm radiation focused onto a waist of about 150 µm is approximately 1.8 GHz,
as it can be observed in figure 4.3.2 a). The power broadening, that results about
104 times bigger than the natural linewidth (see table 3.4.2), is sufficient to over-
come the daily drift of the laser, that is used in free running configuration, allowing
many days between frequency resonance checks.

In order to evidence the effects of inelastic collisions involving |e〉 atoms, as a
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first exemplifying case we consider the Rabi oscillations induced by a clock exci-
tation of intensity ∼ 50 mW/mm2 in the presence of a 175 G magnetic field. In
these conditions, the frequency shift between resonances corresponding to differ-
ent atom number, observed in figure 4.2.1, is completely dominated by the power
broadening caused by the clock laser. For that reason, in order to simplify the dy-
namics and avoid other excitation processes, preliminarly to the clock excitation,
we performed a 5 ms photoassociation pulse to decrease drastically the number
of multiply-occupied sites in the sample. The clock excitation is thus performed
after the PA pulse and the resulting Rabi oscillation is shown by the red points of
figure 4.3.2b); the best fitted frequency is (208± 4) Hz.
As it is shown in figure 4.3.2 b), the first π pulse, corresponding to ∼ 2.4 ms,
cannot excite properly the total sample, showing the presence of a small amount
of non-resonant occupied lattice sites remained after the PA pulse.
This insight is confirmed by the second π pulse, corresponding to ∼ 7ms, which
results in the same number of detected |g〉 atoms as the first π pulse. This be-
haviour cannot be associated to a loss of coherence of the laser or of the atomic
dynamics, since it should imply a smaller depletion at the second π pulse, instead
it is coherent with a loss of number of atoms in the lattice sites that are affected
by the clock pulse.
This hypothesis is also confirmed by the blue points of figure 4.3.2 b) showing the
total number of atoms, given by the sum of |g〉 and repumped |e〉 atoms. In this
case, due to the high and stable detection efficiency of the repumping process, the
depletion in the total number of atoms is clearly shown.
We attribute this depletion to the presence of doubly-occupied sites where the
interaction between |g〉 and |e〉 or between two excited |e〉 atoms can represent a
fast decay interaction channel. The last part of this section will be devoted to the
characterization of the possible inelastic interaction channels, that to our knowl-
edge were unknown for 174Yb (while they are well known for interaction between
ground and metastable states 3P0,2 in fermionic isotopes13 such as 171Yb, 173Yb
[40, 197, 198]).

- Detection of e-g inelastic collision losses

In a following experiment aimed at a better characterization of inelastic losses, we
selectively excite the transition |(2)g〉 → |g, e〉 by employing 10 ms long π pulse in
order to obtain the largest possible number of excited doubly occupied sites. To
maximize the number of doubly-occupied sites and minimize at the same time the
amount of sites with larger occupancy, lattice ramps and waiting time in the FOR
Trap before the lattice loading are adjusted.

13The next chapter will be dedicated to the description of interaction in 173Yb.
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a) b)

Figure 4.3.3. Inelastic e − g collisions have been investigated by exciting atoms in the
|(2)g〉 state in the |g, e〉 state by selectively addressing the |(2)g〉 → |g, e〉 transition in
a cubic 3D optical lattice characterized by lattice depth s = 27.5. Panel a) shows the
number of g atoms remaining after the clock pulse (red points) and the number of g
atoms in the absence of the clock excitation (green points). The slow decay that can be
observed is attributed to the finite single-particle lifetime in the lattice. Green and red
lines are exponential guides to the eye. Panel b) shows the number of atoms detected in
the excited state (blue points) as a function of the holding time in the optical lattice after
the excitation of the transition. This number is compared with the difference between the
number of g atoms without and with the clock excitation (gray points), that displays an
approximately time-independent behaviour. The solid blue line represents an exponential
fit of the experimental data characterized by τ = (1.52± 0.14) s.

To characterize e − g inelastic losses, atoms are trapped in a 3D optical lattice
(characterized by depth s = (27.5± 1.0)) at the magic wavelength for the clock
transition |g〉 → |e〉. Then a clock laser π-pulse excitation is performed and, after
waiting a variable holding time in the lattice, the atomic population of |g〉 and |e〉
are measured.
The collected data measured as a function of the holding time are reported in the
panels of figure 4.3.3 as red points for g state atoms and blue points for repumped
e state atoms. Green points, instead, represent the initial number of g atoms in a
sample on which the excitation pulse is not applied. Red and Green solid lines are
exponential fits characterized by τ of the order of ten seconds but are intended
only as guides to the eye.
Panel 4.3.3 b) shows clearly that atoms in the e state decay on a timescale of
the order of 1.5 s while g atoms, as shown by the red points in panel a), decay
in decades of seconds. To properly understand if the observed long decay of g
atoms is connected to excited state atoms, we consider the difference between the
initial atomic sample and the ground state population when the excitation pulse
has been performed, plotted as gray points in panel b). As can be noted, when the
holding time is very short, the number of e state atoms is equal to the difference
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between the total population and the number of |g〉 atoms after the excitation.
When the holding time is about 1 s, excited atoms are no longer in the trap and
the difference between |g〉 atoms with and without the excitation is approximately
constant. This behaviour implies that the losses in the e state population are not
caused by inelastic collisions with g atoms otherwise the slow behaviour shown by
the gray points should be observed also in the blue points.
The slow decrease of the g atoms has been ascribed to the finite single-particle
lifetime of the atoms in the lattice.
Regarding e atoms, the decay rate γ, that is the inverse of the τ reported in the
caption of figure 4.3.3, can be estimated as

γ = (0.66± 0.06) Hz.

This timescale is comparable with a tunneling rate of the order of 3 Hz at the
lattice depth of the experiment, suggesting that the e atoms, initially in lattice
sites with g atoms, could be lost after tunneling processes to neighbour sites via
e− e inelastic collisions.

The observed inelastic loss dynamics can be used to provide an upper limit to
the e− g inelastic loss rate coefficient.
The rate equation for the e− g inelastic losses can be written as:

ṅg
ng

= −βegne = −γeg

where βeg is the density-dependent loss rate coefficient.
As the decay time of g atoms is not affected by the excitation to the e state, we
can assume γeg � γ and, evaluating the in-site mean density from the Wannier
functions in the 3D lattice, we obtain:

βeg � 10−14 cm3

s
. (4.3.1)

- Detection of e-e inelastic collision losses

The data in figure 4.3.3 b), suggest the existence of atom losses involving only the e
state, with a faster decay in the first ' 100 ms, probably due to the e-e interaction
in the excited lattice bands (where tunneling times are shorter). However, since
the timescale of the observed losses is attributed principally to the tunneling time
before the interaction events, it is not possible to extract a reasonable e-e loss rate
coefficient from this data.
In order to characterize the e-e inelastic losses we implemented a different strategy,
that overcomes the technical difficulties to obtain a reasonable signal-to-noise ratio
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Figure 4.3.4. Blue points represent the number of excited atoms as a function of the
holding time in the lattice after a 10 ms long clock excitation pulse in a 1D lattice. Red
points represent instead the number of ground state atoms after the excitation pulse in
the same lattice geometry. As it is shown by red solid line, that is constantly equal to
the mean value of the ground state atoms (104.8± 1.8), the number of g atoms can be
considered independent to the holding time on this timescale. Blue solid line is the result
of a fit to the e data with the two body inelastic mechanics described by equation 4.3.3.

connected to the selective excitation of the e-e transition shown in figure 4.2.8.
We decided to change the lattice geometry where atoms are trapped, by reducing it
from a 3D cubic optical lattice to a 1D vertical optical lattice at a depth s = 27.5.
The confining potential is constituted by an array of two-dimensional pancakes
characterized by a radial trapping frequency about ω = 2π×34.5 Hz. In order to
detect the e-e inelastic loss rate part of the population is excited to the metastable
state by performing a 10 ms long clock pulse directed along the pancakes plane.
After the excitation the 1D vertical lattice is maintained for a variable holding
time and, finally, the population of ground and metastable states are measured by
releasing the confining potential and performing absorption imaging.
As shown in figure 4.3.4, the excited population (blue points) exhibits fast losses
on the timescale of ms, while the population in the ground state (red points) does
not depend on the holding time in the specified timescale and can be approximated
with a constant function (red solid line). The only process that we will take into
account will be an e − e loss rate, that can be described by a two-body inelastic
scattering model. Other interaction losses can be neglected on this timescale, as it
can be deducted by the previous experiment on e-g losses. As shown in references
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[40, 199], e − e two-body losses usually represent the principal loss term and are
attributed to principal-number-changing collisions.
In terms of population in the excited state, the dynamics of the two-body inelastic
losses can be described by the equation

ṅe = −βeen2
e (4.3.2)

where ne is the density of e state atoms. The straightforward solution is given by

ne (t) =
1

1
ne0
− βeet

(4.3.3)

where ne0 is the initial e atom density and βee is the the two body loss rate
coefficient.
In order to determine the βee coefficient we derived a simplified model to obtain
the density in the pancakes from the number of g atoms in the optical dipole trap.
From a bimodal fit of time-of-flight images of the sample it is possible to directly
extract the fraction of condensed atoms, that corresponds to f = 65% of the total
number of atoms for the experiment of figure 4.3.4. The thermal distribution
instead is characterized by a temperature of about T3D = 60 nK. This bosonic
sample can be described by the equation

n3D =
mf

4π~2agg

µ3D − 1

2
m

∑
i∈{x,y,z}

ω2
i i

2

+
(1− f)Ng0

3
√
π2rxryrz

e
−
∑
i∈{x,y,z}

i2

r2
i (4.3.4)

Where ri =
√

2kBT3D/mωi are the thermal distribution radii, ωi/2π are the trap
frequencies, µ3D is the chemical potential [200] and the initial number of atoms is
Ng0 ' 180×103. We then consider the density profile in the pancakes assuming no
population redistribution during the loading of the lattice.
In order to describe the distribution in the pancakes we cut the 3D distribution
along the ẑ axis in slices having thickness equal to the lattice periodicity. As
we made for atoms confined in the trap, the bimodal fit of the experimental data
loaded in the 1D vertical lattice allows us to estimate the condensed fraction (f1D =
20%) and the temperature of the thermal part (T1D ' 45 nK). For each pancake
the radial distribution as a sum of a two-dimensional Thomas-Fermi and thermal
distributions are thus evaluated.
Finally, the 3D density function in each pancake is obtained by multipling the
in-plane 2D density by the square of the fundamental state eigenfunction of a 1D
harmonic oscillator aligned to the ẑ direction and characterized by the harmonic
oscillator length aẑho.
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We then assume a linear relation between the atom number and the density14, so
the excited state density ne (t) after the clock excitation can be determined as

ne(t) = Ne(t)
ng0
Ng0

,

where Ne(t) is the measured number of atoms in the excited state. From the fit
shown as blue solid line in figure 4.3.4 it is possible to determine the parameter βee
as

βee = (1.3± 0.7)×10−11 cm3

s
. (4.3.5)

During the realization of this work we noticed the results reported in reference
[45], where, by broadening the transition |(2)g〉 → |(2)e〉 in a 3D optical lattice,
the loss decay value

βee = (2.6± 0.3)×10−11 cm3

s
.

This value is consistent with the value obtained independently in our work within
two error bars. The largest uncertainty of our determination comes from the
theoretical assumptions used to extract this value from the e population decay
shown in figure 4.3.4.
The weighted average of the two independent measurements is

βee = (2.4± 0.3)×10−11 cm3

s
. (4.3.6)

14This assumption follows from the consideration that the observed decay mostly happens on
a timescale that is faster than the inverse trap frequency, which means that the size of the sample
is expected not to change significantly during the loss dynamics.

110



5 | 173Yb orbital Feshbach molecules pro-
duction and manipulation

This chapter is dedicated to the description of the possibility to produce and ma-
nipulate shallow homo-nuclear Feshbach molecules constituted by AEL atoms in
different electronic states (1S0 = |g〉, 3P0 = |e〉). Moreover, we provide a first
measurement of the molecules lifetime in a many-body environment [159].
The chapter is organized as follows: in section 5.1.1 we review the emergence of
SU(N) symmetry for states characterized by null total electronic angular momen-
tum (J = 0) in fermionic AEL atoms.
Interorbital interactions between g and e states are described in section 5.1.2.
Section 5.2 is devoted to the description of Orbital Feshbach Resonance in fermionic
173Yb.
Finally, section 5.3 describes the experimental production, by means of direct pho-
toassociation in a 3D optical lattice setting, of homo-nuclear Feshbach molecules
starting from an ultracold sample of 173Yb.
In section 5.4 we demonstrate that the internal molecular state can be controlled
by exploiting Raman transitions that swap between different nuclear-spin states of
the g state atom forming the molecule. This manipulation scheme has been used
as detection tool for orbital molecules (section 5.5.1).
In section 5.5 we report the first lifetime measurement of shallow-bound orbital
molecules in a many-body environment.
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5.1 Interactions characterization and symmetries
in Yb atoms

In chapter 4 we characterized completely the interactions between ground-state
atoms (1S0) and metastable excited-state atoms (3P0) using a general method
based on the experimental excitation of the ultranarrow clock transition. The
spectroscopy technique employed in our work has been recently used to determine
the Hubbard energies in a bosonic sample exploiting the clock transition between
ground and the magnetic metastable1 state 3P2 in reference [201]. Moreover, the
losses of atoms in 3P2 have been extensively studied, characterizing completely the
losses and the interactions offered by 174Yb bosonic atoms [181].
The obtained knowledge of interaction energy and losses allowed also the formula-
tion of more complex systems, based on bosonic Yb, as a possible tool to achieve
new accuracy and precision limits, as shown in reference [202].
Regarding interactions in fermionic isotopes of Ytterbium, so far we have already
discussed some effects that are linked to the statistical behaviour of the atoms,
(section 2.3.1), but we ignored one of the most fundamental properties of AEL
atoms as Yb and Sr, that is the possibility to have interactions that does not cause
depolarization by means of spin-changing collisions.
In this section, in order to properly present one of the most interesting results
obtained in this work, we will introduce the symmetries that characterize the
Fermi-Hubbard Hamiltonian regarding the case of Yb atoms2.

5.1.1 Emergence of SU(N) symmetry in J = 0 states of
two-electron atoms

For a non-interacting atomic system composed by half-integer fermions, the
Hamiltonian that describes the system admits a SU(2) symmetry, because it is in-

1Despite its importance in the Grotrian diagram of low-lying transitions of Yb (shown in
figure 3.4.2), in this thesis the 3P2 metastable state has been neglected in order to emphasize
the possibilities offered by the nearly amagnetic metastable state 3P0.

2From now on all the experiments will be performed by using fermionic 173Yb atoms.
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variant under three-dimensional rotations (whose generator is represented by the
operator ÛR(~̂n, θ) = e−i

~̂F·~nθ), as potentials that break the Hamiltonian symmetry
by means of defining a preferred direction are absent.
That implies that, if no other interactions are considered, this symmetry induces
a degeneracy of order 2F+ 1, because the Hamiltonian, ~̂F2, F̂z can be diagonalized
simultaneously. States with different values of mF, the projection of the angular
momentum on the quantization axis, have the same energy and F, mF are good
quantum numbers.
Let us consider now an interaction potential, for example by taking into account
the interparticle potential described by equation 2.2.10. When the wavefunctions
of the external electrons of an atom start to overlap the electronic cloud of the other
atom, F and mF are not good quantum numbers, because the energy connected
to the overlapping electron wavefunctions overcome the single-atom hyperfine in-
teraction energies. The colliding-pair Hamiltonian shows SU (2) symmetry. In
this case, in the s-wave scattering regime, where the orbital angular momentum
of the colliding pair is equal to zero (~LP = 0), the angular momentum of the pair
~FP takes the role of the total momentum operator for an isolated non-interacting
atom. In this case the symmetry can be described by the (2FP + 1) dimensional
representation of SU(2).
Due to the symmetry with respect to pair rotation, the FP operator and its pro-
jection on the quantization axis are conserved in the collision process.
On other hand, if atoms are described in the absence of interaction (namely when
r → +∞) by the good quantum numbers |f1,mf1〉, |f2,mf2〉, by considering Hamil-
tonian symmetry in s-wave scattering regime, immediately results ~FP = ~f1 +~f2,
mf1 +mf2 = MFP .
In order to formalize the interaction dynamics, the pseudo-potential introduced in
equation 2.2.10 for a pair of spin-F fermions can be generalized by the modified
pseudo-potential [203]:

V̂ (~r) =
4π~2

m

2FP−1∑
FP=0

aFPPFPδHY (~r) (5.1.1)

where FP is the modulus of the total spin of the pair and PFP is the projection
operator onto the states with total spin FP. The sum is evaluated only on even
results of ~f1 +~f2 in order to fulfill the condition on the symmetry of the total
wavefunction [204].
As matter of fact, the s-wave scattering spatial wavefunction is always even under
1↔ 2 exchange transformation and it is necessary to impose the spin-wavefunction
anti-symmetrization. Under this transformation the single-particle3 spin-f wave-

3We assumed f1 = f2 = f in order to simplify the equations.
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functions change by a factor (−1)2f while the pair spin wavefunction changes by a
factor (−1)2f+FP .
Thus, to impose the total wavefunction antisymmetrization, the condition
1 = (−1)FP has to be verified.

From equation 5.1.1 it seems clear that, to describe completely the interaction
between two interacting fermionic particles characterized by spin-f, it is necessary
to know of (2f + 1) /2 scattering lengths, corresponding to each possible interaction
channel.
After the collision each particle can be described again in terms of |f,mf〉, since
the short-range potential is no longer effective and those eigenvalues represent
again good quantum numbers for the system. Hence, it is possible to describe the
collision process by evaluating the quantity

〈f,m3| ⊗ 〈f,m4|V̂ (~r) |f,m1〉 ⊗ |f,m2〉 =

4π~2

m
δHY (~r)

∑
FP

∑
mFP

aFP〈f,m3; f,m4|FP,mFP〉〈FP,mFP|f,m1; f,m2〉
(5.1.2)

where 〈· · · ; · · · | · · · 〉 are Clebsch-Gordan coefficients and where we inserted the
explicit form of the projection operator P as expansion on |FP,mFP〉 pair states.
From equation 5.1.2, if all the scattering lengths have the same value, as it occurs
for ground-state components in AEL atoms (as further discussed below), it is pos-
sible to simplify this equation by exploiting the completeness relation for FP and
mFP . The term 〈m3;m4|m1;m2〉 where f has been omitted because it is present in
all the terms considered, can be evaluated by invoking the orthogonality relation
[48], that allows us to obtain immediately

〈m3;m4|m1;m2〉 = δm1,m3δm2,m4 . (5.1.3)

Equation 5.1.3 shows clearly that, if the scattering lengths are the same for each
possible |FP,mFP〉, s-wave scattering interactions can not cause spin-changing col-
lisions.
In order to derive more formally the symmetries that characterize the Hamiltonian
of an interacting fermionic gas of spin-f, let us write, in the second quantization
approach, the interaction part of the complete Hamiltonian, associated to the mod-
ified pseudo-potential introduced in equation 5.1.1, and let us call aFP = a for each
possible FP. In this formalism it is possible to write

ĤU =
4π~2a

m

1

2

∑
mm′

∫
ψ̂†m (~r) ψ̂†m′ (~r) ψ̂m′ (~r) ψ̂m (~r) d~r

=
4π~2a

m

1

2

∑
m6=m′

∫
n̂m (~r) n̂m′ (~r) d~r

(5.1.4)
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where ψ̂m (~r) is the second-quantization field operator that annihilates an atom of
spin m and the number field operator for the m spin state is n̂m = ψ̂†mψ̂m. To
obtain the final relation in terms of the number operators the anticommutation
relation for fermionic operators has been used. Equation 5.1.4 shows clearly that
the interaction between two particles in the same spin state can not occur when
s-wave scattering is considered. This result is just a modelization of the Pauli
principle for two indistinguishable fermions, as already discussed in section 2.3.1.
Equation 5.1.4 finally justifies the presence of the interaction Hamiltonian 2.3.14
heuristically introduced for fermionic interacting particles.
Other Hamiltonian terms (i.e. the kinetic term) operate as identity operators in
the spin space (If×f) thus, to understand the symmetries of the total Hamiltonian
describing an interacting system of spin-f fermions, it is necessary to evaluate spin
operators that commute with the interaction term described in equation 5.1.4.
The cited interaction Hamiltonian commutes with any spin-permutation operator
acting on (2f + 1)-dimensional spinors [205]:[

ĤU, Ŝ
p
q

]
= 0 ∀p, q = −f, . . . , f

where Ŝ pq =

∫
ψ̂†q (~r) ψ̂p (~r) d~r.

(5.1.5)

This property of the interaction Hamiltonian 5.1.4 can be transposed to the to-
tal Hamiltonian. In particular, if q = p the found relation implies that the total
atomic population corresponding to the m spin Nm = Ŝmm =

∫
n̂m (~r) d~r is con-

served, that emphasizes again the lack of spin-changing collisions. Moreover, the
absence of spin-changing collisions is remarked by the fact that, if Ŝmm = 0 for the
m-th spin projection state, that means that no m-th component is present in the
atomic sample even in the ensuing dynamics, and the system behaves as having a
lower effective spin.
The spin-permutation operators defined in equation 5.1.5 are generators of the
SU (N) group and, since this group is a Lie group [48], its irreducible representa-
tions can be obtained by exploiting the Lie algebra of its generators [206]:[

Ŝ dq , Ŝ
p
n

]
= δdnŜ

p
q − δpqŜ dn . (5.1.6)

The Hamiltonian commutes with all the generators of SU (N) and it is therefore
SU (N) symmetric [27].

An unpolarized gas of 173Yb, where all the possible spin components are present
can be treated as a gas with SU (6) symmetry. The lack of spin-changing colli-
sions for a sample with lower spin components is shown in figure 3.4.12, where
different spin states are experimentally detected by exploiting a state-dependent
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optical dipole force (as explained in section 3.4.4). As described in the previous
part of this section, the symmetry that characterizes an atomic sample in which,
for example, only two spin components are maintained, corresponds to SU (2).

The absence of hyperfine interaction caused by the lack of electronic angu-
lar momentum J in the ground state 1S0 allows the perfect decoupling of the
nuclear-spin degree of freedom with respect to the electronic degrees of freedom,
and induces the SU(N) Hamiltonian symmetry. As shown in section 3.2.1, AEL
fermions, and among those 173Yb atoms, are characterized by the presence of a
metastable state 3P0, that has the same internal structure of the ground state.
Therefore, atoms in that state are expected to show nearly the same symmetries
detected for interacting atoms in the ground state. However, in section 3.2.1 we
have shown how the hyperfine interaction causes a very weak coupling of the cited
metastable state with the 1P1 state; we have also discussed that the possibility to
address the doubly forbidden transition from the ground to the metastable state
is only a consequence of a non well defined F quantum number for the P states of
AEL atoms.
For that reason, strictly speaking, the symmetry associated to the metastable state
cannot be exactly SU (N). These observations can be ignored, and therefore the
Hamiltonian symmetries can be recovered, if the energy shift associated to the
effect of these contributions, as the presence of an external magnetic field in the
case of the hyperfine mixing of P states, is lower than the energy scale associated
to the hyperfine interaction that define the mF state in in the excited metastable
states.
In reference [205] the contribution of the hyperfine mixing between P states has
been taken into account and, due to this phenomenon, the spin independence of
the scattering lengths in the metastable state is expected to be slightly reduced
with respect to the ground state (in which deviation from SU (N) model are of
the order of δaFP/aFP ∼ 10−9) and variations of the order of δaFP/aFP ∼ 10−3 are
expected.

Since in the ground-state of AEL atoms the hyperfine interaction is completely
absent, F = I andmF = mI are good quantum numbers also if an external magnetic
field is applied.

The possibility to have an interacting gas characterized by SU (N) symmetry4

with N ∈ {2, . . . , 6} makes two-electron atomic systems a unique resource for
4Evidently, if a polarized gas is considered, the particles can not collide and the gas becomes

effectively non-interacting. In this case the symmetry that characterizes the sample is simply
the SU (2) symmetry that allows the identification of ~̂F and mF as good quantum numbers.
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quantum simulation of many fields of physics. Inspired by the case of quantum
chromodynamics, where quarks interact by exchanging SU (3) gauge bosons [207],
the application of SU (N)-symmetric atomic gases to the quantum simulation of
gauge theories has been discussed in several studies, as demonstrated by references
[109, 208, 209]. Moreover, quantum mixtures of different SU(N) fermionic atomic
systems have been realized experimentally, showing the possibility to implement
frameworks for quantum simulation characterized by higher symmetries with re-
spect to the simple SU (N) case, as shown in Ref. [156].

5.1.2 Inter-orbital interactions

So far we described the collisions that characterize interacting |g〉 and |e〉 atoms
(in which the electronic angular momentum J = 0).
By considering only the s-wave scattering collisions, that properly describe the
interaction between atoms when the degenerate regime is reached, we introduced
the scattering lengths agg and aee in order to characterize the collisions of fermionic
atoms in the same electronic orbital but in different nuclear spin states.
In this section we generalize the described phenomenon to the inter-orbital col-
lisions between atoms in the |g〉 state and in the excited metastable |e〉 state,
exploring all the possibilities furnished by those states in the framework of two-
electron fermions.
We finally introduce the scattering lengths corresponding to the orbital states Ψ±
that validate the antisymmetrization of the total wavefunction under the exchange
transformation 1↔ 2.

In order to introduce the inter-orbital collision let us consider two interact-
ing AEL atoms, one in the ground state 1S0 = |g〉 and the other in the excited
state 3P0 = |e〉. These atoms are trapped in the same lattice site, sharing the
same spatial wavefunction Φ (~r). The possible states that take into account the
antisymmetrization of the total wavefunction can be expressed as:

|Ψ+〉 =
1√
2

(|ge〉+ |eg〉)︸ ︷︷ ︸
Symmetric 1↔2

⊗|s〉 ⊗ Φ (~r1) Φ (~r2)︸ ︷︷ ︸
Spatial

|Ψ−〉 =
1√
2

(|ge〉 − |eg〉)︸ ︷︷ ︸
Antisymmetric 1↔2

⊗|t〉 ⊗ Φ (~r1) Φ (~r2)︸ ︷︷ ︸
Spatial

(5.1.7)
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where in general

|t〉 =


| ↑; ↑〉

(| ↑; ↓〉+ | ↓; ↑〉) 1√
2

| ↓; ↓〉
|s〉 = (| ↑; ↓〉 − | ↓; ↑〉) 1√

2
. (5.1.8)

We are interested in describing processes that can occur in a “real lattice site” in
which |e〉 states are obtained by promoting a |g〉 atom to the excited state as a
consequence of the interaction with the clock radiation. For that reason, and also to
simplify the description of the physical phenomena that undelies the inter-orbital
collisions, we can discard the states corresponding to maximum and minimum
total momentum projection on the quantization axis because the | (2) g〉| ↑; ↑〉 and
| (2) g〉| ↓; ↓〉 states cannot be experimentally achieved as direct consequence of the
Pauli principle.
The four states and the corresponding scattering lengths that completely describe
the collisions in a system of |e〉, |g〉 atoms can be summarized as:

| (2) g〉 → agg |Ψ+〉 → a+
eg |Ψ−〉 → a−eg | (2) e〉 → aee. (5.1.9)

To describe the inter-orbital collisions let us further generalize the pseudo-
potential introduced by equation 5.1.1 by taking into account the presence of two
other interaction channels:

V̂ (~r) =
4π~2

m
δHY (~r)

∑
i∈{c.c.}

ai |i〉〈i|︸︷︷︸
Pi

(5.1.10)

where c.c. are the mentioned possible collision channels expressed in equation 5.1.9
and Pi is the projector on the i-th channel.
Collision channels related to states |(2)g〉 and |(2)e〉 represent the interaction be-
tween atoms in the same electronic state and different nuclear spin states, and have
been accurately described, identifying also symmetries corresponding to homo-
orbital interaction, in section 5.1.1 of this work.
The remaning two terms, in which “bare” states |ge〉, |eg〉 are mixed by the an-
tisymmetrization of the total wavefunction, constitute a two-dimensional Hilbert
subspace on which each operator can be mapped in terms of Pauli matrices and
the identity:

M = α I2×2 + ~β · ~σ (5.1.11)

where M is a generic operator and ~σ is the usual vector of Pauli matrices.
The projectors P± can be expressed in the two-dimensional space spanned by the
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|eg〉, |ge〉 states by just evaluating |Ψ+〉〈Ψ+|, |Ψ−〉〈Ψ−|:

P+ ≡ |Ψ+〉〈Ψ+| =
1

2

(
I2×2 + σx

)
|s〉〈s|

P− ≡ |Ψ−〉〈Ψ−| =
1

2

(
I2×2 − σx

)
|t〉〈t|.

(5.1.12)

By substituting these expressions in equation 5.1.10 the resulting pseudopotential
reads:

V̂ (~r) =
4π~2

m
δHY (~r) (a+P+ + a−P−) =

=
4π~2

m
δHY (~r)

[(
a+
eg + a−eg

2

)
I2×2 (|s〉〈s|+ |t〉〈t|) +

(
a+
eg − a−eg

2

)
σx (|s〉〈s| − |t〉〈t|)

]
(5.1.13)

also states |s〉, |t〉 generate a two-dimensional Hilbert subspace, thus it is possible
to express each operator again as expansion on the Pauli matrices and the identity;
we indicate operators that operate on this spin subspace with subscript S.
By introducing IS and σzS, equation 5.1.13 can be written as:

V̂ (~r) =
4π~2

m
δHY (~r)

[(
a+
eg + a−eg

2

)
I2×2IS︸ ︷︷ ︸

V

+

(
a+
eg − a−eg

2

)
σxσzS︸ ︷︷ ︸

Vex

]
(5.1.14)

where we introduced V, Vex terms. By introducing the basis

|Ψ±〉 =
1√
2

(
|g ↑, e ↓〉 ± |g ↓, e ↑〉

)
Φ (~r1) Φ (~r2) (5.1.15)

it can be easily demonstrated that the V term, expressed in this rotated basis,
keeps unchanged the spin of the particles, while Vex exchanges the two spins
[145, 205]. In particular, the latter term depends on the difference of scattering
lengths between the orbital-symmetric channel a+

eg and the orbital-antisymmetric
channel a−eg as shown in equation 5.1.14. If a+

eg = a−eg this term does not contribute
to the pseudo-potential 5.1.14 and only the direct termV contributes. Remarkably,
the presented model can be applied for each collision process in which two internal
degrees of freedom participate to the scattering dynamics.

Defined the scattering lengths that characterize the main interaction channels
when ground and excited levels are considered, we report the most accurate avail-
able measurements of these quantities in table 5.1.1 and in figure 5.1.1. As it can
be observed, the agreement between the different determination of about a±eg is
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Figure 5.1.1. Pictorial comparison between available known values of a+
eg (red points),

a−eg (cyan points) in 173Yb. The measured scattering lengths describing the interactions
between atoms in the same orbitals agg (green point), aee (blue point) are also shown.

Scattering channel Measured value Reference
[a0]

agg 199.4± 2.1 [194]

a+
eg 1894± 18 This work

1878± 37 [210]

a−eg 219.5± 2.9 [40]
219.7± 2.2 [210]

aee 306.2± 10.6 [40]

Table 5.1.1. Summary of the measured s-wave scattering lengths of 173Yb for different
interaction channels involving the ground |g〉 and the metastable |e〉 states.

very good.

The exchange pseudopotential can contribute considerably only if the two scat-
tering lengths a+

eg and a−eg are substantially different. Two-electron atoms offer a
variety of possibilities, since some are characterized by similar scattering lengths,
as it happens in fermionic 87Sr where a+

eg = (169± 8) a0, a−eg = (68± 22) a0 (in
which the exchange phenomenon has been observed by probing the clock transi-
tion in a optical clock experiment [211]) or in 171Yb where a+

eg = (225± 13) a0,
a−eg = (335± 6) a0 [212], while others are characterized by a very different scat-
tering lengths as it occurs in 173Yb where δa ≡ a+

eg − a−eg = (1894− 219.5) a0

[39, 40, 159].
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As a matter of fact, the presence of a non negligible coupling term between dif-
ferent collision channels allows us to control the interaction strength by operating
on external parameters as the magnetic field via the Feshbach resonance between
open and closed interaction channels.
In the next chapter we will introduce the mechanism that underlies the possibility
to change interactions in a 173Yb atomic sample by means of the so-called Orbital
Feshbach Resonance (OrbFR).
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5.2 Feshbach resonances

In this section we introduce the most used tool5 that allows the fine control of
interactions in an atomic sample: the Feshbach resonances [17–19]
So far we have described the physical phenomenon that underlies interactions in
atomic systems and until section 5.1.2 the possibility to have two colliding channels
associated to the same atomic interacting pair has not been considered in order to
simplify the description of the interaction processes.
Despite that, in the aforementioned section it has been stressed out that, in the case
of AEL atoms and in particular of 173Yb, two possible interaction channels for the
colliding pair e-g exist. In the s-wave scattering regime they can be characterized
by the scattering lenghts a+ ≡ a+

eg and a− ≡ a−eg (experimental values are reported
in table 5.1.1).
These scattering lenghts are very different, δa = a+

eg−a−eg ∼ 1500, and, as shown in
section 5.1.2, this causes a peculiar non-negligible exchange interaction that occurs
only when mixtures |g〉, |e〉 are considered. The difference between a± arises from
the asymptotic energy associated to the two specified scattering channels as shown
in figure 5.2.1.
In section 2.1.2 we connected the scattering length of a scattering channel to the
least bound state of the scattering potential by equation 2.1.26. The last relation
ensures that the least bound state corresponding to such a high scattering length
as a+ (it is in the case of 173Yb) is related to the existence of an extremely shallow
bound state (see section 2.1.2 or reference [76] for an alternative description). The
least bound state has an energy of the order of 10 kHz below the continuum energy
for the aforementioned values. The existence of this extremely shallow bound state
motivated the theoretical research [213] on the possibility to tune interactions in
|g〉, |e〉 mixtures via a new kind of Feshbach resonance, defined Orbital Feshbach
Resonance to emphasize the role of the two-different electronic orbitals (and their
symmetries) involved in the scattering process.

5The initial theoretical proposal by Feshbach [17] was focused on the properties of scattering
resonances in nuclear physics experiments. The “interplay” between interactions in atomic physics
and nuclear physics has been largely demonstrated in chapter 2.1.2.
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5.2.1 Two coupled-channels model

In order to describe the general mechanism that underlies the Feshbach reso-
nance let us introduce a generic two-level system |o〉, |c〉 in which o, c are two-body
states corresponding to two different scattering lengths ao, ac, associated to the
open and the closed collision channels, respectively6. Also in this case, |o〉, |c〉 de-
fine a two-dimensional Hilbert subspace in which each operator can be expressed
as a linear combination of the identity and the Pauli matrices, as shown in equa-
tion 5.1.11. In this basis a generic Hamiltonian operator that takes into account
also a coupling term between |o〉 and |c〉 can be described by the relation:

H2×2 =

(
Ho W
W Hc

)
= Ho

(
I2×2 + σz

2

)
+ Wσx +Hc

(
I2×2 − σz

2

)
(5.2.1)

where Ho,c describe the single-channel Hamiltonian of the corresponding state and
W is the coupling between the two interaction channels.

In order to simplify the following equations let us consider the so-called single-
resonance approximation, for which all the eigenstates of Hc are not involved in
the dynamics except for the bound state |res〉 that is characterized by nearly null
energy. Colliding particles are characterized by energy E ' 0 thus all the other
eigenstates characterized by non null energies (both scattering states and bound
states) are far from resonance and, compared to |res〉, their contribution can be
considered negligible. The closed-channel Hamiltonian can be schematized as:

Hc = Eres|res〉〈res|

Let us suppose that the state {|o〉, |c〉} is an eigenstate of Hamiltonian 5.2.1 corre-
sponding to eigenvalue E, this hypothesis leads to the system of coupled equations:{

Ho|o〉+ W|c〉 = E|o〉
Hc|c〉+ W|o〉 = E|c〉

(5.2.2)

By recalling Rouchè-Capelli7 theorem (and its lemmas) it is possible to express
the solution of the system as a sum of a homogeneous solution 8 and the solution

6The open channel referes to the state of the colliding pair enter the scattering, while the
closed channel refers to a different collisional channel to which the open channel can be coupled
(as explained in the following).

7Sometimes it is also called Kronecker or Frobenius theorem.
8Following reference [76] we introduce |φ〉 as the solution of the uncoupled open channel

Hamiltonian Ĥo.
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Figure 5.2.1. Panel a) shows the uncoupled open-channel |o〉 (blue solid line) and closed-
channel |c〉 (red solid line) molecular potentials. At energy E (purple solid line) only the
open channel is accessible. Painted areas (red and blue for closed and open channel, re-
spectively) represent the conditions in which real bound states are supported. In panel b,
the red solid line reports the normalized scattering length with respect to the background
scattering length aφ as a function of the external magnetic field B. See the main text to
interpret the positions of B0, Bres, ∆B.

of the full equation with the coupling term considered as a source term [76]:
|o〉 = |φ〉+ Go (E)W|c〉

|c〉 =
〈res|W|o〉
E − Eres

|res〉
(5.2.3)

where Go (E) = (E − Eres + iε)−1 is a Green function of Ho. From these equations
results evident that states |o〉, |c〉 include the coupling potential W while, by defi-
nition, states |res〉 and |φ〉 are solutions of the uncoupled system. For that reason
the latter are called bare states while the firsts are named dressed states.

By properly manipulating equations 5.2.3 it is possible to express the eigenstate
|o〉 as a function of only bare states:

|o〉 =

(
1 + Go (E)

W|res〉〈res|W
E − Eres − 〈res|WGo (E)W|res〉︸ ︷︷ ︸

Veff

)
|φ〉 (5.2.4)

where Veff is an effective potential that operates on the |φ〉 space and takes into
account the effect of virtual transitions to the closed-channel subspace [214].
The denominator of Veff explicitly shows the effect of the coupling term W on
the resonance energy. In the case E → 0 the resonance energy is shifted by the
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second-order correction caused by the coupling W evaluated between “bare” |res〉,
|φ〉 states.

Assuming that the spin configurations of the two channels have different mag-
netic moments, the energies of the states in these channels vary differently when
an external magnetic field is applied.

Eres = ξ (B −Bres)

where Bres is the magnetic field for which Eres is degenerate with the energy E ' 0
of the ultracold collision state.

The position of the resonance is given not by the “zero” of Eres, but by the
relation

Eres + 〈res|WGo(E)W|res〉 = ξ (B −B0)

where we introduced B0 that takes into account the coupling W and the differential
magnetic moments of channels.

If the coupling is not present (W = 0) the dressed |o〉 state collapses on the
bare |φ〉 state; the scattering length associated to this condition is usually called
background scattering length.
If instead equation 5.2.4 is taken into account, it is necessary to consider the
explicit form of the Green function in order to evaluate the scattering length [48].
By evaluating it for r →∞ it is possible to obtain [215]:

a = aφ

(
1− ∆B

B −B0

)
(5.2.5)

where
∆B =

2m

~2
2π2 |〈φ|W|res〉|2

ξaφ
.

Equation 5.2.5 explicitly shows the divergence of the scattering length when the
applied magnetic field B corresponds to B0. Remarkably, due to the presence of
the coupling potential, the scattering length divergence does not occur when the
magnetic shift compensates the bare energy of the |res〉 bound state (Eres = ξBres),
because of the correction in equation 5.2.4 induced by the coupling W, as explicitly
shown in figure 5.2.1 b).
The distance from the resonance to the magnetic field value for which the scattering
length vanishes defines ∆B reported in figure 5.2.1.
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5.2.2 Orbital Feshbach Resonance in 173Yb

In order to adapt the two-channel model described in section 5.2.1 to the case
of AEL atoms, and in particular to the 173Yb atom that has been employed to
generate, observe and manipulate very shallow orbital molecules supported by a
OrbFR [159], let us consider two atoms characterized by different spins (↑ and
↓) and orbital degree of freedom (|g〉 and |e〉). At large inter-atomic distance
(r →∞), atoms do not interact and the eigenstates of the two-particles system
are given by:

|o〉 =
1√
2

(
|g, ↑〉|e, ↓〉 − |e, ↓〉|g, ↑〉

)
≡ |g ↑, e ↓〉

|c〉 =
1√
2

(
|e, ↑〉|g, ↓〉 − |g, ↓〉|e, ↑〉

)
≡ |e ↑, g ↓〉

(5.2.6)

where |o〉 is the open channel and |c〉 is the closed channel of the system.
In the asymptotic condition the energy shift between |c〉 and |o〉 channels can be
expressed as

δµB = hδg|∆m|B

where ∆m is the difference in the nuclear spin projection on the quantization axis
of the system, B is the external magnetic field applied and δg is the differential
Landé factor between |g〉 and |e〉 states introduced in section 3.2.3. For 173Yb it
corresponds to δg = (113± 1) Hz/G.
Considerably, in the case of null external magnetic field the asymptotic states
become degenerate, a condition that does not occur in usual Feshbach resonances
with alkali atoms.
When the relative distance diminishes, interaction energy takes a role and the total
Hamiltonian becomes not diagonal on the |o〉, |c〉 basis.
As shown in section 5.1.2, in this condition two different interaction potentials
exist and the scattering lengths related to scattering in these potentials, called a+

eg

and a−eg, are not directly connected to states with defined spin orientation.
By taking into account states in which the spin orientation are defined
(|g ↑, e ↓〉 and |g ↓, e ↑〉) and recalling the basis change rule in quantum mechanics
for operators and states:

|Φ〉 = U |φ〉 Ô = U ô Ut (5.2.7)

where U ∈ SO (N), it is possible to express these states in terms of eigenstates of
the interaction pseudo-potential operator |Ψ±〉 (defined by equation 5.1.10).
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In particular, by recalling equation 5.1.15 it is possible to deduce the rotation
matrix U that allows changing from one basis to the other:

U =
1√
2

(
1 1
−1 1

)
=

1√
2

(I2×2 + iσy) .

The complete Hamiltonian, expressed in terms of open and closed channels, reads:

HOrbFR =

(
Ho + V(ad) Vex(aex)
Vex(aex) Hc(B) + V(ad)

)
, (5.2.8)

where the closed-channel Hamiltonian can be expressed in this basis as Hc =
(Ec + δµB) |c〉〈c|, V(a) = 4π~2

m
aδHY (~r) and we introduced the direct and exchange

scattering lengths defined by relations:

ad =
a+ + a−

2
aex =

a+ − a−
2

.

As it can be observed by direct comparison, the Hamiltonians reported in equation
5.2.1 and equation 5.2.8 have the same form and thus the model described in the
previous section can be easily adapted to describe the OrbFR.
In this case the coupling term, that was not made explicit in section 5.2.1, is
represented by the exchange interaction, that, operating on the spin space, has no
classical counterpart and thus can be treated as a pure quantum effect.
The resulting scattering length for the open channel can be expressed as [213]

ao =
(a2
d − a2

ex)
√
mδµB− ~ad

ad
√
mδµB− ~

. (5.2.9)

Equation 5.2.9 explicitly shows the dependence of the scattering length on the
applied magnetic field. In order to recover the general form obtained in section
5.2.1 (see equation 5.2.5), it is possible to manipulate this relation properly to
obtain

ao = ad

(
1− B (aex/ad)

2

B− ~/ad
√
mδµ/B

)
= ad

(
1− ∆BOrb

B− BOrb

)
. (5.2.10)

From 5.2.10 results clear the “unconventional nature” of this kind of Feshbach
resonance because the magnetic field interval

∆BOrb = B
(
a+ − a−
a+ + a−

)2

(5.2.11)

expresses a direct dependance on the applied external magnetic field.
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Figure 5.2.2. Panel a) shows the magnetic-field dependence of the s-wave scattering
length in the open channel described in equation 5.2.10 for different 173Yb atomic mix-
tures. The dashed purple line represents the background scattering length ad. Panel b)
represents the energy of the least bound state described in equation 2.1.26 evaluated for
ao as a function of the external magnetic field. Finite-range contributions are not taken
into account for the sake of the presentation.

The resonance position is identified by the condition

B = BOrb ≡
~2

mδµa2
d

. (5.2.12)

The described mechanism can been observed in 173Yb for a different couplesm1,
m2 of nuclear spin states (m1 6= m2) [210, 216]. Although the scattering lengths ad,
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Figure 5.2.3. Magnetic-field dependence of the s-wave scattering length (upper panel) in
the open channel, as described in equation 5.2.13, and bound-state energy (lower panel).
Solid red lines show the dependence on the magnetic field without considering finite-range
effects, while solid dark red lines represent the case in which finite-range contributions are
taken into account (r0 = 84.8a0). Experimental points shows resonance positions reported
in literature [210, 216].

aex are the same for each possible nuclear-spins couple m1, m2, the resonance posi-
tion changes as a result of the BOrb dependence on the magnetic moment difference
δµ = hδg|∆m| where ∆m = |m1−m2|. The dependence of the scattering length as
a function of the magnetic field, for different values of ∆m, is shown in figure 5.2.2.

In references [210, 216] the position of the OrbFR in 173Yb was experimentally
determined for δm = 5 (that can be obtained only by generating a SU(2) sample
constituted by |mF = ±5

2
〉 atoms). The obtained values

Bres = (45± 5) G (ref.[216])

and
Bres = (55± 15) G (ref.[210]),

129



5 - 173Yb orbital Feshbach molecules production and manipulation

are consistent9 with each other, but are bigger than the predicted theoretical value,
as shown in figure 5.2.3. The discrepancy between the theoretical prediction and
the experimental results is related to the lack of corrections connected to the finite-
range of the interaction potential.
Reference [213] evaluated the contribution of the finite-range potential, obtaining
the relation

ao = ad

(
1− B a2

ex/ (a2
d − adr0)

B− ~/ (ad − r0)
√
mδµ/B

)
= ad

(
1− ∆Br0

B− Br0

)
. (5.2.13)

The position at which the scattering length diverges, obtained in equation 5.2.12
neglecting finite-range corrections, is modified by simply substituing ad with (ad − r0)
(as it can be obtained10 from equation 5.2.13) where r0 ' 84.8 a0 is the van der
Waals length introduced by equation 2.1.21.
As shown in figure 5.2.3, the inclusion of finite-range corrections improves the
agreement between the theoretical prediction and the experimental results. As
also shown in figure 5.2.3, when the external magnetic field is almost absent (about
4.34 G if r0 and ∆m = 5 are considered) the open-channel scattering length ao
shows a peculiar change of concavity that, as far as we know, has never been
experimentally observed and characterized. This feature is connected to the fact
that |+〉 and |-〉 channels have different energies only when an external magnetic
field B is applied.

9In [210] the fit used to estimate BOrb is employed also to determine ∆B = (417± 40) G.
They also estimate this quantity by performing spectroscopy in a 3D lattice obtaining ∆B =(
327+86
−62
)

G that is a consistent with the first value reported.
10The C6 value for the |g〉 − |g〉 potential can be found in reference [217] and corresponds to

(1932± 35) a.u. while for |g〉−|e〉 corresponds to C6 = 2561 a.u., as it can be found in references
[59, 210].
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5.3 Production of orbital Feshbach molecules of
fermionic 173Yb

In section 5.1 we described symmetries and deeply characterized interactions
in AEL atoms, and in particular in fermionic 173Yb, also introducing the SU(N)
transformation invariance and inter-orbital collisions.
In section 5.2 we introduced Feshbach resonances by exploiting a generic model in
which two coupled scattering channels are defined.
Finally, we described the orbital Feshbach resonance in 173Yb as a useful tool to
control the interaction strength, in s-wave scattering, of interacting spin mixtures
in different orbital states.
In the last part of section 5.2.2 we recalled concepts introduced in chapter 2, con-
necting the least-bound state energy supported by the interaction potential to
change of the scattering length furnished by OrbFR.
In this section we describe a series of experiments in which we have demonstrated
the possibility to excite a clock photoassociation transition coupling the |(2)g〉| ↑, ↓〉
state to the highly excited |g; e〉| ↑, ↓〉 molecular state.
In particular, by exploiting the model described in section 2.2.3 for the case of
173Yb in which ad, aex have the same order of magnitude, we characterize the
experimentally observed photoassociation transition in a 3D cubic optical lattice
operating at the magic wavelength.

The study of molecular systems gained significant momentum in the past
decades principally because molecules extend the possibilities furnished by atomic
systems, e.g. introducing new parameters range in which theoretical models can be
tested by means of quantum simulation [218–221] and enabling the development
of quantum chemistry [222] and few-body physics [223].
From a many-body perspective, interactions between molecules offer a richer physics
than that of neutral atoms. For that reason great effort has been devoted to the
realization of ultracold gases of polar (heteronuclear) molecules, eventually reach-
ing the Fermi-degenerate regime [224].
As remarked in section 5.1 for the case of bosonic homo-nuclear 174Yb atoms, the
possibility to generate and control molecules with ultranarrow clock transitions
may constitute an unexplored platform on which perform precision measurements
could be performed [202].
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So far, many theoretical proposals have been developed for polar heteronuclear
and non-polar homonuclear molecules [218, 220, 225–228]. Major experimental
efforts have been focused on the production of polar molecules starting from a
cold mixture of two alkali-atoms [229, 230], where the presence of Feshbach reso-
nances permits to finely adjust the interaction between atoms and associate them
in weakly bound dimers with tunable binding energy [231].
This work, by following and enhancing the investigation started in reference [210],
extends the study of shallow homonuclear molecules generated by 173Yb atoms in
which the molecule binding energy can be varied by exploiting the orbital Fesh-
bach resonance (OrbFR) described in section 5.2.2.
The production of OrbFR molecules and the manipulation of their internal degree
of freedom represents a first step in the path to the complete control of this new
kind of molecules in order to obtain a reliable tool e.g. for the study of fermionic
superfluidity and the BEC-BCS crossover in still-unexplored regimes [232, 233].
In the specific case of 173Yb, the binding energy of photoassociated molecules is of
only a few kilohertz.
This very small value allows the possibility of accessing the resonance regime even
if the magnetic-field tuning is strongly suppressed by the purely nuclear character
of the atomic spin (see section 3.2.3).
It is indeed because of the last property discussed above that the OrbFR exhibits
the character of a narrow Feshbach resonance [42], while keeping a very broad
tunability in terms of magnetic field accessibility.
This unusual feature could lead to the first experimental investigation of the BEC-
BCS crossover close to a narrow Feshbach resonance, allowing us to overcome the
strict magnetic-field stability requirements for ordinary Feshbach resonances in al-
kali gases [42].
The OrbFR is also characterized by an unusually small energy separation between
the coupled scattering channels [234], lying in the same kilohertz range as the
Fermi energy.
This property results in intriguing many-body physics. It was suggested that the
resulting many-body superfluid state has to be described in terms of two coupled
order parameters [213], opening the door to study the physics of two-gap super-
conductors, with the prediction of new collective excitations and the emergence of
the long-sought massive Leggett mode [41, 43].

The next section will be devoted to the description of the experimental pro-
cedure employed to produce orbital “clock” molecules in a 3D optical lattice by
means of clock photoassociation.
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5.3.1 Molecules photoassociation in 3D optical lattice
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Figure 5.3.1. Clock spectra obtained by shining a π-polarized radiation on a ∆m = 5
sample at 150 G and variable lattice depth sfin. Yellow and blue points represent two
acquisitions of the system loaded at sfin = 15, obtained performing the imaging procedure
on |e〉 and |g〉 atoms respectively. Red and light blue points represent a sample loaded
at sfin = 30. Solid lines are Lorentzian fits performed in order to determine the center
of each observed resonance. It is possible to note that areas corresponding transitions
observed in |g〉 atoms are bigger than areas corresponding to the same physical process
observed in |e〉 atoms, showing the presence of a yet-undetermined inelastic loss channel.

In order to acquire clock spectra and reveal the presence of the molecular
photoassociation peak supported by the orbital Feshbach resonance introduced in
section 5.2.2, the experiment is performed by generating a SU (2) Fermi degenerate
gas constituted by approximately 70×103 fermionic 173Yb atoms, characterized by
a temperature of T = 0.25×TF and ∆m = 5.
As described in section 3.4.3, the sample is obtained by performing evaporative
cooling in a crossed trap (purple in the time sequence in the inset of figure 5.3.3)
characterized by final trap frequencies ω{x,y,z} = 2π×{93, 73, 86} Hz. As specified
in section 3.4.4, the requested spin mixture mF = +5/2,−5/2 is obtained by per-
forming optical pumpings before the final evaporative cooling stage. As shown by
the red solid line in the inset of figure 5.3.3, after the evaporative cooling stage,
the 3D lattice intensity is increased with an exponential ramp in order to reach
a confining potential characterized by s1 = 15. At this point, the FOR Trap is
adiabatically turned off by performing a 1 s long linear ramp and lattices are sub-
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sequently increased in 1 ms to the final depth sfin.
To perform Lamb-Dicke spectroscopy (described in section 4.1.1) the final lattice
depth sfin varies from 15 to 30 depending on the specific experiment.
This lattice loading procedure has been experimentally optimized to obtain the
highest possible number of doubly occupied sites.
In order to produce orbital molecules we excite the |g〉 → |e〉 clock transition at a
specific magnetic field B and final lattice depth sfin by probing the atomic mixture
in the Lamb-Dicke regime with pulses of 578 nm, π-polarized light produced by
the source described in section 3.4.1.
While two-particle states of fermions with repulsive g − e interactions have been
investigated in references [210, 216] for 173Yb, in reference [235] for 87Sr and in
reference [212] for 171Yb, at our knowledge only a study regarding the photoasso-
ciation resonance position in an 3D optical lattice has been executed [210].
In this work we intend to extend the study of the molecular branch located at lower
energies with respect to the single-particle |g, ↓〉 → |e, ↓〉 transition, and provide
information on the lifetime of those states.
Figure 5.3.1 reports two clock spectra, corresponding to s = 30 and s = 15, ob-
tained by measuring the number of atoms in the ground state (blue, light blue
points) and in the excited state (red, yellow points) after the clock-laser pulse.
As described in section 4.3.2, in order to measure the number of excited-state
atoms |e〉, as shown in the inset of figure 5.3.3, a 100 µs, 399 nm resonant pulse
is performed after the atoms are released from the lattice to transfer momentum
and heat only the |g〉 atoms. After this |g〉 blast pulse, the 1389 nm laser is turned
on to pump the |e〉 atoms into the |g〉 state (after a population transfer to the 3D1

state) and usual imaging is performed. The repumping scheme is described in sec-
tions 3.4.1 and 4.3.2, and allow to measure about 90% of the excited population.
The excited detection efficiency is measured by evaluating the difference between
the number of |g〉 atoms remained and the number of |e〉 atoms detected after a
clock-laser π-pulse of a spin-polarized 173Yb sample.

Each spectrum reported in figure 5.3.1 is characterized by two resonance peaks.
We ascribed to the process |g, ↓〉 → |e, ↓〉 the transition reported at clock-laser fre-
quency δν = 0 where a single |g, ↓〉 atom in a lattice site is promoted to the excited
state |e, ↓〉 as a result of the interaction with the clock-laser. This attribution is
justified by the result of a spectroscopy performed on a spin polarized |g, ↓〉 173Yb
sample. The other peak can be observed only if clock spectroscopy is performed
on a sample constituted by a spin mixture (mF = +5/2,−5/2). The position of
this resonance, that is red shifted with respect to the single-particle excitation,
has been attributed to the process |g ↓, g ↑〉 → |g ↑; e ↓〉 where a doubly-occupied
lattice site is excited to a molecular states by means of a photoassociation process.
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Figure 5.3.2. Clock spectroscopy on 173Yb samples confined in a deep 3D optical lattice
(sfin = 30) and a magnetic field of 150 G. The spectra report the number of |g〉 atoms
remained after an excitation pulse of 100 ms with 50 µW of clock light focused on a
waist of about 300 µm. As clearly shown, narrow spectroscopy unveils three peaks that
in previous spectroscopies were hidden by the power broadening.

This attribution is justified by the good agreement of the photoassociation reso-
nance position as a function of the magnetic field B and the lattice depth s with
respect to the theoretical model (described in section 2.2.3) as we will discuss in
the following part.

As it can be noted in figure 5.3.1, the decrease of the |g〉 atoms is larger than the
number of observed excited atoms, especially for the photoassociation resonances.
This effect can be attributed to the presence of a yet-undetermined loss channel
that, due to the power broadening, is excited when the clock-laser is resonant with
respect to the photoassociation transition.

Figure 5.3.2 shows a narrow-line spectroscopy performed by shining clock laser
light on a sample constituted by 70×103 fermionic atoms of 173Yb. As it can be
clearly observed, by reducing the power broadening caused by the clock intensity,
three transitions are unveiled. We ascribed the peak marked as III in figure 5.3.2
as the first red-sideband transition, because the measured shift with respect to the
single-particle transition |g〉 → |e〉 is consistent to the expected first red sideband
for sfin = 30 (see section 4.1.1).
Peaks I and II have been ascribed to the molecule photoassociation resonance (I)
and to a fast inelastic process (II), respectively. We identified the latter as the res-
onance that induces a decay in the repumped |e〉 population. In the next section,
in which we evaluate the possibility to coherently address the photoassociation
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Figure 5.3.3. Clock spectroscopy (at 578 nm) of a ∆m = 5 173Yb sample in a 3D optical
lattice operating at the magic wavelength λL = 759.4 nm for different values of lattice
depth and 150 G. In order to show the shift with respect to the |g ↓〉 → |e ↓〉 transition
all the acquired spectra have been shifted to set the single-particle resonance as the origin
of the axis. In the inset a sketch of the experimental procedure employed to perform an
acquisition is reported.

transition, we further motivate the nature of the II transition.

In section 5.2.2 and we introduced the dependence of the least bound state
energy on the applied external magnetic field B.
In sections 2.2.2 and 2.2.3, we evaluated the effect of an external harmonic po-
tential on a system characterized by two scattering channels in order to quantify
the contribution caused by the confinement induced by a deep lattice (that can be
approximated at the first order with a harmonic potential) to the energy of the
least bound state supported by the orbital Feshbach resonance.

Figure 5.3.3 reports a series of typical clock spectra performed on a SU(2)
sample characterized by ∆m = 5 at B = 150 G for different depths of the 3D
lattice, obtained by measuring the number of atoms in the excited state |e〉 after
the clock-laser pulse. In all the spectra collected, the frequency shift is measured
with respect to the single-particle transition |g ↓〉 → |e ↓〉 for individual atoms.
As described in section 3.2.3, the transition chosen as the origin of the frequency
axis depends only on the applied magnetic field, and not on the lattice depth, and
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Figure 5.3.4. Values of the molecular binding energy as a function of the magnetic
field for different lattice depths. In order to maintain the Lamb-Dicke regime sfin varies
from 15 to 30 for each magnetic field explored. Solid lines represent a global fit that
takes into account the Busch model for two scattering channels described in section
2.2.3, anharmonic corrections due to the finite depth of the lattice, and the dependence
on the magnetic field due to the orbital Feshbach resonance. The best fitted value
a+ = (1894± 18) a0 is consistent with a previously reported value [210], as shown in
figure 5.2.3.

corresponds to the total energy of a pair of non interacting |g, ↑〉|e, ↓〉 atoms, that
is the threshold energy of the orbital Feshbach resonance.
By measuring the (negative) frequency shift ∆fm between the photoassociation
transition and the single-particle excitation, the molecular binding energy can be
determined as

Eb = h∆fm − Ugg (5.3.1)

where Ugg, corresponding to the initial (repulsive) energy of a pair of g atoms in
the same lattice site, has been introduced in section 2.3 and examined in detail
for 173Yb in section 5.1.1. A graphical representation of the photoassociation pro-
cess has been sketched in the inset of figure 5.3.4. Following this approach, we
measured the binding energy of a |o〉 ≡ |g, ↑; e, ↓〉 molecule as a function of the
magnetic field B for several lattice depths ranging from sfin = 15 to sfin = 30.
The results of these measurements are reported in figure 5.3.4. As it can be noted,
the bound-state transition can be detected when the modulus of the external mag-
netic field exceeds the free-space orbital Feshabach resonance (located at around
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40 G, as shown in figure 5.2.3 [210, 216]) due to the lattice confinement potential.

The model developed in section 2.2.3 has been employed to perform a global
fit of all the datasets, leaving the scattering length a+

eg related to the spin-singlet
colliding channel as the only free-parameter. To perform the fit anharmonic cor-
rections have been taken into account diagonalizing the full Hamiltonian of the
problem considering the coupling between the relative and the center-of-mass mo-
tion up to the fourth lattice band. The estimated scattering length corresponds
to

a+
eg = (1894± 18) a0.

The knowledge of a+
eg allows us to evaluate the effective range r+

eff by employing
equation 2.1.28. The estimated effective range value r+

eff ∼ 218 a0 results consistent
with respect to a previously reported value [210].

5.3.2 Coherent control of photoassociation transition

In a subsequent experiment we demonstrated the capability to drive a coherent
molecule photoassociation process as previously obtained e.g. in reference [236] for
molecules supported by a Feshbach resonance in 40K, in reference [237] by employ-
ing bosonic 88Sr and in reference [238] by exploiting the photoassociation transition
of |g;3 P2〉 molecules in 171Yb.
In this experiment the laser frequency is kept constant on the photoassociation
transition11 and the atomic sample confined in the 3D optical lattice is probed by
increasing the pulse time duration of the excitation laser.

Figure 5.3.5 reports a typical oscillation at an external magnetic field B = 150 G
and a 3D lattice depth sfin = 30 between pairs of interacting |g ↑〉|g ↓〉 atoms and
orbital bound states |g; e〉 in doubly occupied lattice sites, obtained by detecting
the number of |e〉-state atoms with the same technique described in section 4.3.2
and employed in the previous section. Reported points are the experimental data
and the solid line is the result of a fit to the data with a damped sinusoidal func-
tion.
Several cycles of photo-association and dissociation can be observed with a de-
cay time constant of τ|e〉 = (7.5± 1.6) ms. The ratio between the frequency
Ω/2π of this oscillation and its single-particle counterpart Ω0/2π, driven with

11As specified in section 3.4.1, in order to overcome the long-term drift of the cavity at which
the laser frequency is stabilized it is necessary to check the photoassociation frequency about
once in a hour.
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Figure 5.3.5. Rabi oscillation on a |g〉 − |e〉 photoassociation transition performed at a
magnetic field of B = 150 G and final lattice depth sfin = 30. The sample is probed by
shining 1.0 mW of clock light on a beam waist w0 ' 300 µm.

the same clock-laser intensity, is a direct measurement of the Franck-Condon
factor between the single-particle wavefunctions Ψgg and the molecule wavefunc-
tion Ψmol

ge , defined as FC =
∫

Ψgg (~r1,~r2) Ψmol∗
ge (~r1,~r2) d~r1d~r2, which results to be

FC = Ω/Ω0 = (0.81± 0.06) at this magnetic field value (B = 150 G) [238].
As mentioned in section 5.3.1, and shown in figure 5.3.2, the photoassociation

peak hides a near resonance that we ascribed to a fast inelastic process that can not
be properly characterized by only means of spectroscopy. All the measurements
reported in this section have been realized by shining at least 1 mW of clock
radiation on atoms (on a beam characterized by a waist of about 300 µm). Thus,
in each case reported below, due to the power broadening, transitions I and II shown
in figure 5.3.2 are excited simultaneously, causing the loss dynamics observed on
|g〉 state atoms and reported in figure 5.3.6a).

As it can be easily noted in figure 5.3.6, the number of missing |g〉 state atoms
after the first π-pulse does not correspond to the number of detected |e〉 state
atoms. We have ascribed this discrepancy to the presence of an inelastic scat-
tering channel that dominates the collision dynamics when the sample is released
from the lattice. We decided not to further investigate this feature, because the
experimental study of this process would have required a selective excitation of
the transitions (indicated as I and II) shown in figure 5.3.2.
This measurement would have needed the frequency stabilization of the clock laser
by employing the 642 km long fiber-link described in references [113, 135] that, at
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a) b)

Figure 5.3.6. Rabi oscillation on a |g〉-|e〉 photoassociation resonance performed by ap-
plying an external magnetic field B = 150 G and a 3D lattice depth sfin = 30. Panela)
shows the number of atoms left in the |g〉 state, while panel b) shows the number of
atoms in the |e〉 state for the same excitation parameters. Solid curves in panels a),b) are
damped sinusoidal functions characterized by very different decay times but same fre-
quency ν = (0.77± 0.03) kHz. In particular, the decay time and consequent loss of coher-
ence observed in |g〉 state atoms is characterized by a timescale of τ|g〉 = (1.4± 0.4) ms,
while the decoherence observed in |e〉 state atoms has a decay time of about 8 ms.

the time of this work, was not available for technical upgrades.
The presence of an inelastic scattering channel can cause a strong decrease in the
number of molecules that can be obtained in this kind of systems. Future experi-
ments, devoted to the study of the many-body properties of a molecular (possibly
degenerate) gas, must take into account the presence of inelastic channels that
limit the efficiency of the photoassociation process.

Nevertheless, the possibility to coherently excite pairs of interacting ground-
state atoms in an isolated lattice site 12 to a bound state |g; e〉 is a remarkable
feature that, in our experiment, is fundamental to maximize the number of orbital
Feshbach molecules in the sample.
As highlighted in the aforementioned sections, the possibility to associate shallow
bound molecules is interesting for the implementation of new experimental proto-
cols involving the coherent manipulation of two-particle states, but the incomplete
characterization of the photoassociation transition does not allow to maximize the
molecules production process .

12The tunneling time t for sfin = 30 corresponds to about 1 s that is much longer than the
timescale of the experimental procedure
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So far we have focused on the orbital degree of freedom that characterizes the
fermionic 173Yb atoms and we have experimentally explored the possibilities of-
fered by the orbital Feshbach resonance described in section 5.2.2.

The next section will be devoted to the description of spin-manipulation exper-
iments in which the nuclear-spin projection of the atoms constituting the molecule
is modified via Raman two-photon transitions.
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5.4 Spin manipulation of orbital molecules in 3D
optical lattice

In order to detect the shallow molecules generated by photoassociation pro-
cesses, many techniques have been developed in last decades [239], exploiting for
example the different mass of the bound molecule with respect to the single atom
[230] or the possibility to generate deeply-bound ground-state molecules [240–242],
that can be directly observed by selectively heating up isolated atoms.
Shallow bound molecules can also be produced by performing a adiabatic magnetic
sweep through the Feshbach resonance [240, 243–245]. A well-known procedure
employed to generate and observe Feshbach molecules sample produced in such
a way is the so-called “purification”. A possible purification strategy exploits the
difference in magnetic moments of molecules and atoms. In particular, the two
components of the gas can be spatially separated with the Stern-Gerlach technique
that employ magnetic gradients [243, 245, 246]. An alternative fast and efficient
technique, in order to obtain a sample constituted by Feshbach molecules, uses
light resonant with an atomic closed transition to perform a “blast” that does not
acts on molecules [247–249].
In our case these techniques are not suitable because the photoassociated molecules
binding energy (' 10 kHz) is lower than the imaging transition (1S0 → 1P1) nat-
ural linewidth (' 30 MHz - see table 3.2.1).
The molecular binding energy results also lower than the intercombination transi-
tion (1S0 → 3P1) natural linewidth (' 180 kHz - see table 3.2.1). For that reason
we developed a molecules detection method that exploits bound-to-bound transi-
tions via a two-photon Raman processes [250]. We show also that this process can
be driven coherently, allowing us to cycle between molecular states with different
ground-state components.

In section 3.3 we introduced the possibility to perform transitions between
different stable nuclear-spin states via a two-photon process. In this section we
show the possibility to use that technique for the coherent manipulation of the
shallow-bound molecules supported by the orbital Feshbach resonance (described
in section 5.2.2).
As discussed in section 5.3.1, we prepare a 173Yb degenerate gas constituted by a
SU(2) mixture characterized by ∆m = 5 (necessarily composed by |mF = ±5/2〉
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atoms).
The degenerate gas is loaded in a 3D optical lattice operating at the magic wave-
length for the clock transition |g〉 → |e〉. As described in section 5.3.1, the loading
into the lattice is performed by increasing the beams intensity in two steps, in
order to experimentally increase the number of doubly-occupied sites.
By exploiting the coherent coupling demonstrated in section 5.3.2 between inter-
acting pairs of fermions |g〉|g〉 and shallow molecules |g; e〉, a π-pulse excitation can
be performed on confined atoms in order to generate the highest number available
of shallow-bound molecules.
As shown in figure 5.3.2, the presence of an undetermined resonance at lower fre-
quencies with respect to the photoassociation transition, limits the effectiveness
of the generation process, reducing also the amount of photoassociated molecules
that is possible to obtain in our experimental system. In order to optimize the
number of photoassociated molecules further studies on the presence of inelastic
scattering channels are required.
After the π pulse, the sample is constituted by a 3D array of |g,mF = +5/2; e,mF =
−5/2〉 molecules and individual atoms in |mF = ±5/2〉 states.
We performed Raman spectroscopy with a pair of copropagating (~q ' 0) Raman
beams with frequencies ν and ν + ∆ν detuned by 1756 MHz with respect to the
intercombination transition. As specified in section 3.3, the shift with respect to
the atomic transition is chosen in order to maximize the ratio between the obtain-
able Rabi frequency and the heating due to light scattering.
The polarization of the two copropagating laser beams at 556 nm employed to per-
form Raman transitions is orthogonal to the quantization axis of the system, result-
ing in a balanced sum of σ± polarizations. This choice, as specified in section 3.3,
implies the possibility to perform only transitions |mF = ±5/2〉 → |mF = ±1/2〉.
A typical spectrum on a SU(2), ∆m = 5 sample, in the absence of photoas-
sociation and for an external magnetic field of 50 G and a 3D lattice depth
sfin = 30, is shown in figure 5.4.1 as a function of the frequency difference ∆ν be-
tween Raman beams. In order to perform a zero-background measurement, states
|mF = ±5/2〉 are selectively blasted with pulses resonant with the magnetically-
sensitive |1S0(mF = 5/2)〉 → |3P1(mF = 7/2)〉 transition during the time of flight.
As a result, only atoms having flipped their spin to other nuclear-spin states as a
consequence of the Raman process are detected.
As we will see in the next section, this detection is affected by a small background
of a few hundreds of atoms that can be attributed to an imperfection of the optical
pumping preparation procedure.

As it can be noted in figure 5.4.1, the SU(2) sample on which Raman spec-
troscopy is performed shows three well dishinguishable peaks that are located in
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Figure 5.4.1. Raman spectroscopy of a ∆m = 5 (mF = ±5/2) sample for an external
applied magnetic field B = 150 G and final lattice depth sfin = 30. As it can be observed,
the peak corresponding to the |+5/2〉 → |+1/2〉 transition (b) has nearly the same height
of the peak connected to the | − 5/2〉 → | − 1/2〉 transition (a). The small difference in
the height of the two resonance peaks can be ascribed to an imperfect population balance
between ±5/2 atoms in the initial sample. The central, weaker peak (c) is related to
the two “four photon” transitions, shown in the lower part of the picture, in which ±5/2
atoms are transferred to ∓3/2 states [112, 145].

the two-photon detuning interval ∆ν between 18 and 22 kHz. We ascribed the peak
at the lowest two-photon detuning (a) to the | − 5/2〉 → | − 1/2〉 transition. For
this attribution we have employed the OSG technique described in section 3.4.4,
which allows the direct detection of the nuclear-spin population changes induced
by the Raman excitation. Similarly, the peak at the highest two-photon detuning
∆ν (b) has been ascribed to the | + 5/2〉 → | + 1/2〉 transition. The distance
between the two specified peaks is attributed to the presence of a state-dependent
light shift caused by the incident radiation; this contribution is included in the
UmF term of equation 3.3.5 of the simplified model introduced in section 3.3.
The third resonance observed (c), that is constituted by two indistinguishable
peaks, represents the so-called “four photon” transition that connects states, if σ±
radiation is considered, whose nuclear-spin projections differ by ∆mF = mF′−mF =
4. The possible four-photon transitions starting from a ±5/2 mixture are sketched
in the lower part of figure 5.4.1.

The Raman spectroscopy has been acquired also on a SU(2), ∆m = 5 sample
on which a clock photoassociation π pulse has been previously shone in order
to generate, in the 3D optical lattice, the highest number of orbital molecules
achievable; the resulting spectrum is reported in figure 5.4.2 for a magnetic field
B = 88 G.

The spectrum shows four peaks. As it happens in figure 5.4.1, near the Ra-
man resonance condition, that is determined, excluding the differential light shift
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Figure 5.4.2. Raman spectroscopy of a sample containing individual atoms with mF =
±5/2 and orbital molecules at B = 88 G and lattice depth sfin = 15. The peaks in the
interval 36÷39 kHz correspond to spin flips of individual atoms while the small peak near
42 kHz corresponds to a bound-to-bound transition between orbital molecules constituted
by atoms in different spin states. Nuclear spins and orbital degree of freedom have been
represented by following the colour scheme introduced in figure 3.2.2.

UmF , by the condition ∆ν = ∆mB [G]× 207.4
[
Hz
G

]
(as previously sketched in fig-

ure 3.3.1), the individual peaks (a), (b), (c) corresponding to the aforementioned
single-particle Raman transitions are present. In particular, in this case, the peak
height corresponding to the |5/2〉 → |1/2〉 transition (b), also starting from the
same balanced mixture of |±5/2〉 atoms, is significantly lower than the peak height
corresponding to the | − 5/2〉 → | − 1/2〉 transition (a). This difference is due to
the 578 nm π pulse that, by exciting atoms from doubly-occupied lattice sites into
molecules, decreases the number of |g,mF = 5/2〉 atoms in the system.
In addition, we identified the peak located at a two-photon detuning of about
42 kHz (d) as a bound-to-bound transition between Feshbach molecules that differ
for the total molecular spin projection, as explained below. Figure 5.4.2 shows
that the number of |g,mF = 5/2〉 atoms excited by the photoassociation π pulse
(and consequently of doubly-occupied sites in the lattice) is ∆n ≈ 7×103, while
only ∆n′ ' 4×103 can be detected by Raman spectroscopy in the molecular peak
(d). As also discussed in section 5.3.1, we ascribed the difference between ∆n and
∆n′ to the excitation of the transition marked as II that is reported in figure 5.3.2.

Let us now discuss the origin of the molecular peak (d) with more detail. The
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Figure 5.4.3. The points in panel a) show the experimental binding energies measured
with photoassociation clock spectroscopy for sfin = 15 and ∆m = 5, as already shown
in figure 5.4.2. The blue solid line in panel a) is the fitted model used to determine the
molecule binding-energy dependence as a function of the magnetic field. The red solid
line represents the binding energy of molecules with ∆m = 3, as derived from the scaling
law discussed in the main text. As it is shown, at 88 G the frequency shift between
the two binding energies corresponds to ∆νmol = 4.8 kHz. Panel b) shows the Raman
transition, sketched as Λ process, between two bound states. The resonance occurs when
∆ν = [207.4×∆mFB + ∆νmol]

∣∣
B=88 G ' 41.3 kHz, that is consistent with the two-photon

shift ∆ν measured experimentally and reported in figure 5.4.2.

Raman transition, acting as a spin-flip operator on the ground-state costituent
of the photoassociated orbital molecule, can occur only when the two-photon fre-
quency shift ∆ν corresponds to the Zeeman shift (described in section 3.2.3) plus
the difference between the binding energy of a |g, 5/2; e,−5/2〉 molecule and that
of a |g, 1/2; e,−5/2〉 molecule.
In general, the binding energies of Feshbach molecules obtained from different spin
mixtures is not simply evaluable, because each mixture is characterized by differ-
ent interactions. However, as explored in section 5.1.1, if orbital molecules of AEL
atoms are considered, due to the symmetries of the J = 0 states, the interaction
properties of mixtures characterized by different ∆m follow a magnetic-field scal-
ing law depending only on the product ∆m×B as experimentally demonstrated in
[210, 216].

For that reason, the model developed to describe bound state energies as a
function of the magnetic field and the lattice confinement for a ∆m = 5 molecule
(presented in section 5.3.1 and theoretically introduced in section 2.2.3), can be
easily adapted to describe the binding energy of an orbital molecule characterized
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Figure 5.4.4. Shift of the bound-to-bound transition peak measured as a function of the
external magnetic field B at fixed lattice confinement sfin = 15. The blue point are the
measured peak shifts with respect to the single-particle |+5/2〉 → |+1/2〉 while the blue
solid line represents the binding energy difference between the ∆m = 5 and the ∆m = 3
molecular states calculated from our model. By performing Raman spectroscopy at low
magnetic field a narrow peak at higher frequencies can also be detected. We ascribed this
resonance to the four-photon transition from a molecular state characterized by ∆m = 5
to a molecular state in which ∆m = 1. Red points are the measured peak shift for the
latter process with respect to the single particle |+ 5/2〉 → |+ 1/2〉 transition, while the
red solid line is the calculated binding energy difference between ∆m = 5 and ∆m = 1
molecules. While the agreement between blue measured value and theory is very good,
red points are affected by a systematic error due to the uncertainty of the single-particle
resonance position (as shown in 5.4.1).

by ∆m′ = 3. The binding energies for mixtures characterized by ∆m = 5 and
∆m′ = 3 are sketched in figure 5.4.3.
In order to corroborate our hypothesis on the nature of the peak (d) observed near
42 kHz in figure 5.4.3, we realized two independent experiments:

• in the first one, we repeated the Raman spectroscopy characterizing the shift
∆νmol as a function of the magnetic field at a fixed lattice confinement;

• in the second, we photodissociate molecules before and after the Raman ex-
citation pulse in order to experimentally evaluate the binding energy of each
molecule produced.
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Figure 5.4.5. a): Rabi oscillations on the bound-to-bound Raman transition peak per-
formed at B = 150 G and a final lattice confinement sfin = 30. The Raman light coher-
ently flips the ground-state nuclear-spin component of the molecules between mF = 5/2
and mF = 1/2, showing a frequency of (390± 3) Hz and a decay time constant of
about τa) = (13± 3) ms. b): Rabi oscillation measured for the same bound-to-bound
Raman excitation after a decrease of the magnetic field from B = 150 G (used for pho-
toassociation) to B = 50 G, the Rabi oscillation is performed observing a considerably
lower frequency with respect to the oscillation shown in panel a) because of the reduced
atom-molecule Franck-Condon factor. c) Rabi oscillation on the single particle Raman
transition |g,+5/2〉 → |g,+1/2〉 performed at B = 150 G and final lattice confinement
sfin = 30. As it can be noted, the Rabi oscillation frequency (390± 1.9) Hz is consistent
with the oscillation frequency obtained for the Rabi bound-to-bound oscillation shown
in panel a).

In the first experiment we measured the shift of the bound-to-bound Raman
transition peak as a function of the magnetic field at a fixed final lattice depth
sfin = 15. The results of these measurements are reported by the blue points in
figure 5.4.4. Experimental data are compared to the theoretical prediction of the
binding energy difference between molecules with ∆m = 5 and ∆m = 3 calculated
from the model described in section 2.2.3. As it can be noted, there is a good
agreement between the data and the theory (blue points and line in figure 5.4.4),
with some slight deviation at higher magnetic-field values.

Similarly to what we observed for the photoassociation process with the clock
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laser, also the bound-to-bound Raman transition can be driven coherently, as
shown in figure 5.4.5a), where we report a Rabi oscillation performed at a field of
B = 150 G and a 3D lattice depth sfin = 30, with Rabi frequency (390± 3) Hz and a
decay time constant of τa) = (13± 3) ms. Also in this case it should be noted that
the oscillation frequency is compatible with that of its single-particle counterpart
(|+ 5/2〉 → |+ 1/2〉), shown in figure 5.4.5 c), demonstrating a Franck-Condon
factor which approaches unity.
In panel b) of the same figure we also show a measurement at lower magnetic
field B = 50 G, evidencing a lower Rabi frequency, corresponding to a smaller
Franck-Condon factor (caused by the tighter molecule binding). The possibility to
coherently address the bound-to-bound transition shown in figure 5.4.2 has been
exploited to perform a “triple-pulse” experiment (the second measurement afore-
mentioned), in which we combine clock-laser photoassociation/dissociation and
Raman manipulation with the scope to verify the nature of the observed bound-
to-bound peak and the capability to manipulate the orbital and the nuclear-spin
degrees of freedom.

In this second experiment, we generate a SU(2) sample characterized by ∆m =
5 and constituted by about 70×103 atoms. As specified in section 5.3.1, this gas
is loaded in a deep 3D optical lattice in such a way to maximize the number of
doubly-occupied sites.
A clock-laser π pulse resonant with the photoassociation transition is performed,
producing a sample in which the doubly occupied lattice sites are excited to gen-
erate about 6×103 |g,+5/2; e,−5/2〉 orbital molecules.
We then perform a Raman π pulse at the bound-to-bound transition frequency
in order to convert photoassociated molecules into |g,+1/2; e,−5/2〉 molecules.
Finally, a second clock laser π pulse is shone onto the atoms. The frequency of
the second 578 nm laser pulse is scanned in order to perform photodissociation
spectroscopy.
The results of this experiment for B = 150 G and final lattice depth sfin = 30 are
reported in figure 5.4.6. In this case the observable is the number of |e〉 atoms
remaining after the photodissociation-laser pulse. Depending on the frequency of
the clock laser during the second π-pulse, different outcomes are possible. Let
us first discuss the red points in figure 5.4.6 (the red solid line being a fit with
Lorentzian functions to guide the eye) If the second clock-laser π pulse is not reso-
nant with any possible transition (a) the number of |e〉 atoms corresponds simply
to the number of photoassociated molecules (it corresponds to about 6×103 atoms,
as it can be observed in the red points of figure 5.4.6).
If the second clock pulse is resonant with the single-particle transition (b)
|g,−5/2〉 → |e,−5/2〉 we detect an increase of |e〉-state atoms as a consequence of
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Figure 5.4.6. Clock-laser spectroscopy of a sample with individual atoms and orbital
molecules produced with a preliminary photoassociation clock-laser π pulse. The excita-
tion of individual atoms (b) is detected as an increase in the number of |e〉 state atoms
with respect to the background (a) and serves as a zero-frequency reference. The dis-
sociation of orbital molecules is instead detected as a decrease of |e〉 state atoms ((c),
(d)). Blue points correspond to an experiment in which the sample is probed by clock
radiation immediately after the photoassociation π-pulse, while red points correspond to
an experiment in which photoassociated molecules are illuminated with Raman radiation
in order to excite the σ+σ− transition between the (|g; +5/2〉 → |g; +1/2〉) nuclear-spin
states of the molecular ground-state constituent and thus probed again by clock radia-
tion. The frequency difference between the two dissociation peaks is in fair agreement
with the expected ∆νmol ' 6.2 kHz calculated evaluating our model for sfin = 30 and
applied magnetic field of B = 150 G.

additional individual |e〉 atoms summing to the preexisting |e〉 atoms forming the
orbital molecules generated by the first clock-laser π-pulse. The frequency of this
transition has been set as zero-frequency reference as shown in figure 5.4.6.
Finally, when the second clock-laser pulse frequency is resonant with respect to the
atoms to bound-state-transition, the generated orbital molecules, are photodisso-
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ciated to interacting pairs of |g〉-state atoms. This process causes a depletion of
the excited atoms, that can be noted by observing the red points in figure 5.4.6
(c). At the center of the resonance, the depletion is noticeably high, with less
than 103 excited atoms remained, corresponding to < 20% of the initial number
of photoassociated molecules.
The blue points and blue solid line show the results of a similar experiment, in which
the only difference is the absence of Raman excitation between the first photoas-
sociation pulse and the second photodissociation pulse. In this case, the orbital
molecules dissociated by the second pulse, shown as the depletion marked as (d)
in figure 5.4.6, are in the same ∆m = 5 state in which they were photoassociated.
The energy shift ∆νmol-exp between the depletion peaks (c) and (d) observed with
and without the intermediate Raman nuclear-spin-flip transition, corresponds to
about 5.9 kHz. This value, considering the long-term drift of the clock-laser and
the time necessary to perform this kind of measurement, is consistent with the
theoretical binding energy difference between ∆m = 5 and ∆m = 3 that corre-
sponds, for B = 150 G and sfin = 30, to about ∆νmol = 6.2 kHz. This evidence is
a further confirmation of the bound-to-bound nature of the peak observed in the
Raman spectra (shown in figure 5.4.2).
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5.5 Lifetime of the molecular sample

In this section we introduce the possibility to perform Raman-induced bound-
to-bound transitions as a detection tool to identify the presence of orbital molecules
in different lattice configurations.
In the last sections we introduced the possibility to coherently address the orbital
degree of freedom of fermionic ytterbium in order to produce, by means of exciting
the photoassociation transition, a new kind of homonuclear Feshbach molecules.
The rich internal structure of AEL J = 0 states has been exploited in order to
manipulate the nuclear spin of the ground-state fraction of the photoassociated
molecule and we have verified the effectiveness of this technique and the possibil-
ity to coherently drive this transition.
The measurements described until now in this chapter have been realized by con-
fining atoms in a deep 3D optical lattice. In this condition, that corresponds to
the Lamb-Dicke regime, the external degrees of freedom of the trapped atoms are
frozen and the collision dynamics can be described in a second quantization ap-
proach by introducing the on-site interaction term parametrized by U (see section
2.3) in a Hubbard-like model.
In section 5.5.1 we will explore the possibility to generate orbital molecules in a
deep 3D optical lattice (as described in section 5.3.1) and, by dynamically chang-
ing the lattice confinement geometry, we will verify, exploiting the bound-to-bound
transition described in section 5.4, the possibility to observe molecules in an in-
teracting many-body gas in which both orbital molecules and ground-state atoms
are present.
This first evidence introduces the subsequent measurement described in section
5.5.2, in which the lifetime of the photoassociated bound states has been charac-
terized in two different lattice geometries.

5.5.1 Bound-to-bound transition as detection tool

In this section we describe the possibility to employ the Raman-induced bound-
to-bound transition described and identified in section 5.4 as an accurate method
that ensures the detection of orbital molecules in a confined sample in which the
number of photoassociated molecules is only about 10% of the total number of
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particles. This detection method will be used to verify the presence of orbital
molecules in vertical pancakes-like traps, where the dominating scattering channel
is represented by atom-molecule interactions.

The necessity to develop a non-trivial detection scheme to identify orbital
molecules is motivated by the fact that the “simple” detection of |e〉-state atoms
cannot be used, because it could be possible for the orbital molecules to dissociate
into pairs of independent |e〉, |g〉 atoms as a result of an interaction process. The
possibility to dissociate molecules via on-site interactions has been neglected up
to now because atom-molecule or molecule-molecule collisions in very deep lat-
tices can occur only if an atom performs a tunneling process. In the Lamb-Dicke
regime, the tunneling time t is longer than the time used to probe the atoms, so
they cannot perform tunneling processes and therefore collisions cannot occur.
In this section we describe the possibility to dynamically change the lattice ge-
ometry switching from a 3D lattice, in which interactions are regulated by the
tunneling time between two nearest-neighbour lattice sites, to a vertical pancakes
configuration, in which collisions between atoms and molecules can occur.

We start from a 70×103 degenerate (T = 0.23×TF) SU(2) atomic sample con-
stituted by a ∆m = 5 mixture (|g,mF = ±5/2〉). The atomic sample is loaded in a
3D optical lattice with final depth sfin following the procedure described in section
5.3.1, then the 1064 nm FOR Trap in which the system reached the degenerate
regime by means of evaporative cooling is adiabatically turned off by performing a
1 s intensity linear ramp. Finally, the atoms are illuminated by the 578 nm laser,
resonant with the photoassociation transition, in order to produce the highest pos-
sible number of orbital molecules.
By comparing the number of |e〉 atoms detected in the deep 3D lattice and the
maximum number of molecules observable by performing bound-to-bound Raman
transitions described in section 5.4, it results that, due to the Frank-Condon fac-
tor that approaches unity, the bound-to-bound transition nearly detects the whole
amount of photoassociated molecules.
In order to dynamically change the lattice confinement geometry, we lower the
intensity of the horizontal lattices with a 4 ms long linear ramp, permitting atoms
and molecules motion in the horizontal plane. The vertical lattice, instead, is kept
at sfin in order to confine the atoms in a vertical pancakes structure in which in-
plane interactions are allowed.

To perform bound-to-bound transitions, that are an unambiguous signature
of orbital molecules in the sample, after a variable holding time we increase the
horizontal lattices intensity with another 4 ms long linear ramp in order to reach
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Figure 5.5.1. Raman spectroscopy detecting the Raman σ+σ− bound-to-bound transi-
tion identified in section 5.4 for three cases: the red points are measurements in a 3D
lattice characterized by depth sfin = 15 and magnetic field equal to 30 G. The blue points
represent Raman spectroscopy on a sample in which the photoassociation pulse was not
performed. As it can be noted, in this case the bound-to-bound transition can not be
excited. The green points show the Raman bound-to-bound transition when, after the
photoassociation clock-pulse, the lattice geometry is changed from a 3D lattice to pan-
cakes (see text for details). The height of the peak is decreased as an effect of collisions
between molecules and atoms in pancakes. The experimental procedure for this last
configuration is sketched in the inset.

again a homogeneous 3D lattice configuration. After refreezing the external de-
grees of freedom in the 3D optical lattice, a Raman bound-to-bound spectroscopy
is performed, in order to detect the number of remaining orbital molecules after
interactions in the 1D lattice. The measurement results are shown in figure 5.5.1,
while the experimental scheme is shown as inset of the same figure.
As it can be observed in figure 5.5.1, the bound-to-bound Raman peak identified
and characterized in section 5.4, that has been observed in a 3D lattice character-
ized by final depth sfin = 15 and external magnetic field equal to 30 G (red points)
can be observed also if the photoassociated orbital molecules are probed by Raman
spectroscopy after 1.0 ms in a pure 1D vertical lattice (green points).
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This observation guarantees that orbital molecules are not completely dissociated
when collisions with atoms and other molecules occur. We note that the magnetic
field used for this measurement, B = 30 G, lying below the 3D OrbFR position
where the atom-atom scattering length is positive ensures the presence of a bound
state even when the horizontal confinement is released. Moreover, the number
of molecules detected in the 1D vertical lattice, that is directly connected to the
height of the observed Raman peak (green points), does not differ considerably with
respect to the 3D case (red points), suggesting a measurable lifetime of molecules
in the 1D lattice geometry.
This argument will be discussed in the following section.

5.5.2 Molecules lifetime

In this section we discuss the measurements performed to determine the life-
time of photoassociated orbital molecules in two different lattice configurations:
3D lattice and 1D vertical array of pancakes. The possibility to detect the number
of molecules by means of bound-to-bound transitions in these lattice configura-
tions has been explored in section 5.5.1.

In a first experiment, we study the lifetime of isolated molecules confined in a
3D optical lattice. This is done by photoassociating molecules with a clock-laser
π pulse in a 3D optical lattice of depth sfin and at a magnetic field B, as specified
in section 5.3.1. The sample is then held in the 3D lattice for a variable time in
order to detect the number of molecules. Red points in figure 5.5.2 correspond
to the result of this measurement as a function of the hold time in a sfin = 15
3D lattice performed at an external magnetic field B = 25 G. We fit the data
with an exponential function obtaining a lifetime of isolated molecules of τ3D =
(0.35± 0.07) s, a remarkably long value despite one of the atoms forming the
molecule being in a highly excited state. The main limiting factor to the lifetime
could be identified as inelastic losses due to collisions after a tunneling process to
an occupied neighbouring site (the tunneling time t is of the order of 0.1 s).

In a second experiment, we use the possibility to selectively address orbital
molecules to perform a first study of lifetime in a many-body environment. After
the clock photoassociation of molecules in the 3D lattice, as specified in section
5.5.1 and sketched in figure 5.5.1, the horizontal lattice beams are turned off with
a 1 ms-long linear ramp to obtain a vertical collection of pancankes, characterized
by an optical lattice depth of sfin = 15 along the vertical direction. The sample is
held in this pancakes configuration for a variable time, then the horizontal lattices
are turned on again by increasing the beam intensity with a specular 1 ms-long
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Figure 5.5.2. Lifetime measurement of orbital molecules in different optical lattice config-
urations. The colour code is the same used to identify the measurements shown in figure
5.5.1. Red points provide a measurement of the lifetime of isolated orbital molecules in a
sfin = 15 3D lattice. The red solid line is an exponential fit to the data resulting in a decay
constant of τ3D = (0.35± 0.07) s. Green points provide a measurement of the lifetime of
interacting molecules in a vertical array of pancakes. In this scenario, orbital molecules
can interact with other molecules and with atoms constituting the sample, leading to a
shorter lifetime with respect to the 3D lattice case. The green solid line is an exponential
fit to the data resulting in a decay constant τ1D = (77± 8) ms.

linear ramp. The sample, confined again in a 3D homogeneous lattice, is finally
probed by a Raman π pulse in order to detect the number of remaining molecules.
The results of this experiment, performed at an external magnetic field of 25 G, are
reported by the green points of figure 5.5.2, where the lifetime of isolated orbital
molecules in the 3D lattice is also shown for comparison (red points).

In order to describe the molecule number decay observed in figure 5.5.2, it is
necessary to consider all the possible loss channels that a molecule can experience.
In a pancake an orbital molecule can interact with another molecule, with a ground-
state atom, or with an excited atom produced after the previous dissociation of a
molecule.
The rate equations can be described as:

ṅm = −βmanmna − βmmn
2
m − βmenmne (5.5.1)

where nm, na and ne are the density of molecules, individual atoms and dissociated
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excited atoms, respectively, and βma, βmm and βme are the loss rate coefficients of
the molecule-atom, molecule-molecule and molecule-excited atom loss processes,
respectively. In our experimental conditions, the typical number of molecules, that
correspond barely to a few thousands, is much smaller than the typical number of
ground-state atoms (this value corresponds to about 50×103), so it is reasonable
to assume that the dominant loss mechanism is represented by molecule-atom
interactions. The number of free excited atoms, after the photoassociation pulse is
negligible and increases when molecules start to dissociate as a result of interactions
in pancakes. In any case, the number of free excited-state atoms is limited by the
initial number of molecules.
In this case, the second and the third terms on right hand side in equation 5.5.1
can be neglected, and the rate equation can be approximated by the relation

ṅm = −βmanmna (5.5.2)

which is resolved by a single exponential curve

nm (t) = e−βmanat = e−γmat.

We fit the green data of figure 5.5.2 with an exponential fit (green solid line) ob-
taining a lifetime of

τ1D =
1

γma
= (77± 8) ms (5.5.3)

In order to quantify the loss rate coefficient related to this process, we use a
simplified model to calculate the average atomic density na in each pancake starting
from our initial sample with N atoms and temperature T = 0.23×TF, similarly to
the model used to calculate the density of bosonic 174Yb presented in section 4.3.2
of this work [44].
We then average over all the pancakes to obtain a mean density value of na '
(6.3± 3.1) 1012 cm−3, to which we attribute a conservative error due to several
assumptions in the theoretical model. From this value we can determine the loss
rate coefficient βma = (2.1± 1.2) 10−12 cm−3.

This measurement has been repeated for several applied magnetic field values
in order to measure the molecule lifetime in the sample across the free-space or-
bital Feshbach resonance (located at B ' 50 G [210, 216]). The results of these
measurements are reported in figure 5.5.3. Each point is the average of two inde-
pendent experiments performed in different days and the error bar is the average
of the fit errors of the individual experiments.

Remarkably, there is not a clearly visible trend and the measured lifetimes are
compatible within the error bars, independently of the magnetic field being set
below or near the free-space resonance. This is generally not true for molecules
supported by Feshbach resonances of fermionic alkali atoms, which show faster
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Figure 5.5.3. Measured lifetime of orbital molecules in pancakes for different values
of applied magnetic field across the orbital Feshbach resonance. Lifetime values are
compatible, within the experimental errors, and no evident trend can be observed.

losses on the BEC side of the resonance and a longer lifetime near resonance aris-
ing from the Pauli exclusion principle which suppresses collisions between the
fermionic constituents of the weakly bound dimers [251–253]. This fact is a fur-
ther suggestion that our lifetime measurements are dominated by molecule-atom
losses, which are not protected by the Pauli exclusion principle due to the pres-
ence of atoms in a “third” state (the |g,mF = −5/2〉 atoms in the singly occupied
sites of the initial 3D lattice), different from both the states of atoms forming the
|g,mF = +5/2; e,mF = −5/2〉 orbital molecule.
A more detailed investigation of inelastic interactions, especially collisions concern-
ing the molecule-molecule interaction, that have been neglected in this work, would
require a higher photoassociation efficiency, or the possibility to create a pure sam-
ple of orbital molecules. This request results in a difficult task in 173Yb samples
due to the small binding energy of the molecules supported by the orbital Fesh-
bach resonance, that does not allow to simply blast away single atoms exploiting
“permitted” or “ordinary intercombination” transitions in dipole approximation.
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ing via Raman transitions in 173Yb

This chapter is devoted to the description of the experimental measurements re-
alized employing fermionic 173Yb in an 3D optical lattice. In particular, we report
the first evidence of state-dependent localization in an atomic lattice system in
which the SU(N) symmetry, that characterize 173Yb levels with null angular elec-
tronic momentum (see section 5.1.1), is controllably broken via two-photon Raman
coupling.
The chapter is organized as follows: in section 6.1 we review the Fermi Hubbard
model (introduced in chapter 2) taking into account the Raman coupling as a tool
to break the SU(N) symmetry of the ground state in fermionic 173Yb.
This system is therefore introduced as a “good candidate” to simulate, following
the proposal reported in reference [109], the minimal Hamiltonian that capture
the basic processes happening in iron-based-superconductor materials.
Section 6.2 describes the experimental techniques developed to observe the num-
ber of doubly-occupied sites in the lattice system. This observable has been used
to perform a characterization of the metal-insulator transition in presence and in
absence of Raman coupling.
The measurements performed captured the basic mechanism of selective localiza-
tion, allowing us to obtain a first set of evidences that could open the way to the
observation of exotic, and still unexplored phases of matter.
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6.1 Raman interaction and multicomponent Fermi-
Hubbard models

In section 5.1.1 we have extensively discussed the SU(N) interaction symme-
try that emerges when one considers the scattering between AEL atoms in states
characterized by electronic angular momentum J=0. This peculiar feature of AEL
atoms allows the realization of experimental systems in which the full many body
Hamiltonian satisfies a global SU(N) symmetry. An emblematic case is the N-
flavour Fermi-Hubbard Hamiltonian already discussed in section 2.3:

Ĥ = −t
∑
i,σ

(
â†i+1,σâi,σ + h.c.

)
+

U
2

∑
i,σ 6=σ′

n̂i,σn̂i,σ′ (6.1.1)

In this section we will show the possibility to induce a controlled, explicit break-
ing of the SU (N) symmetry of the many-body Hamiltonian 6.1.1 by including a
Raman coupling between internal states, as that used in the previous chapter to
probe the properties of 173Yb orbital molecules.
The resulting Hamiltonian, that we will introduce in the subsequent section of
this work, has been intensively studied from both the theoretical and experimen-
tal [11, 12] points of view because, if the Raman transition described in section
3.3 transfers momentum to the atomic sample (~q 6= 0), the resulting spin-orbit
coupling [145] allows engineering systems (e.g. the Hall ribbon systems realized
in Ref. [12]) characterized by a topological properties. An accurate description of
SOC can be found in the theses of a former collegue of mine [112] and one of my
current collegues [145].
More recently, the SU (N) Fermi-Hubbard Hamiltonian in the presence of Raman
coupling has been studied in order to simulate some of the physical phenomena
that are believed to take place in recently discovered types of multiorbital corre-
lated materials, such as the iron-based superconductors [254]. In these materials,
the evidence of orbital-selective correlations, that imply a different conduction be-
haviour for electrons that populate different iron atoms orbitals, has been recently
observed [255–257]. Moreover, first evidences of orbital selective Mott transitions
have been recently detected [258, 259], pointing to an exotic state of matter in
which, depending on the iron orbitals occupied by the electrons, some electrons
can be localized by interactions while others are in a metallic delocalized phase.
The experimental investigation and the theoretical simulation of real solid-state
systems is complicated by the fact that, as it usually happens in this physics
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branch, real materials are quite complicated systems in which many unresolved
phenomena take place.
A minimal Hamiltonian that is supposed to capture basic processes happening in
iron-based superconductor materials, can be expressed as the sum of two terms:

ĤFe = Ĥint + Ĥt (6.1.2)

where Ĥt is a tight-binding tunneling Hamiltonian that takes into account both
intra-orbital and inter-orbital hopping from the i-th lattice site to its j-th neigh-
bour site, and therefore can be written as [257]

Ĥt = −
∑

i 6=j,m,m′,σ

tm,m
′

i,j a†i,m,σaj,m′,σ +
∑
i,m,σ

(εm − µ)ni,m,σ (6.1.3)

where a†i,m,σ is the creation operator of an electron of spin σ in the lattice site
i and in the orbital m and tm,m

′

i,j is a “multi-orbital” generalization of equation
2.3.2. In order to describe crystals in which the iron atoms have the major role,
Hamiltonian 6.1.3 takes into account the five d orbitals that constitute the most
external electronic structure of iron atoms. εm is an orbital-dependent energy
and µ is the chemical potential. The interaction Hamiltonian in these crystals,
that is the Kanamori interaction Hamiltonian reported in reference [256] or in the
supplementary materials of reference [257], in second-quantization approach reads:

Ĥint = U
∑
i,m

n̂im↑n̂im↓+U′
∑

i,m>m′,σ,σ′

n̂imσn̂im′σ′+(U′ − J)
∑

i,m>m′,σ

n̂imσn̂im′σ (6.1.4)

where U is the intra-orbital repulsion between two electrons, U′ = U − 2J is the
inter-orbital interaction and J represents the Hund’s coupling.
By following the concept of quantum simulation in the next section the possibility
to employ 173Yb atoms as a suitable platform to understand some of the physics
that underlies the behaviour of in Iron-based materials will be introduced.

6.1.1 Broken SU(N) as multi-orbital Iron based system

As shown by equation 6.1.2, the total Hamiltonian considered to describe Iron-
based superconductors, takes into account the possibility to have multi-orbital
hopping and interaction terms. In order to simulate relevant aspects of this multi-
orbital-based system employing 173Yb confined atoms, a theoretical proposal has
been recently developed by Del Re and Capone [109]; this proposal introduced the
possibility to employ the Raman coupling between nuclear-spin ground states to
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Figure 6.1.1. This sketch shows the similarity between hybridation of d orbitals in Iron
atoms, that is related to the possibility to obtain high-temperature iron-based super-
conductors and Raman-induced nuclear-spin mixing in 173Yb ground-state atoms, where,
for the effect of the Raman coupling described by equation 6.1.5, the SU(N) simmetry
(introduced in section 5.1.1) is explicitly broken.

emulate the Hund’s coupling between different Iron orbitals. This experimental
technique, briefly described in section 3.3, provides a Hamiltonian term that, as will
we show in this section, does not conserve the Hamiltonian symmetries introduced
in section 5.1.1.
In this section, the Raman Hamiltonian term that allows an explicit breaking of
the spin-invariance under SU (N) transformation will be introduced in the tight-
binding approximation, describing also the main results obtained by Del Re and
Capone [109].
In the tight-binding approximation, in which Wannier functions constitute the
proper basis to be considered in order to describe atomic wavefunction in the 3D
lattice (see section 2.2.1), the Raman interaction, limiting this analysis to the
simplified Λ-configuration scheme proposed in section 3.3, can be written as

ĤRaman =
∑
i,σ,σ′

Ωσσ′

2

(
a†i,σai,σ′

)
=
∑
i,σ,σ′

a†i,στσσ′ai,σ′ (6.1.5)

where ai,σ is the annihilation operator that destroys a particle of spin σ in the
lattice site i and Ωσσ′ is the Rabi frequency associated to the two-photon Raman
process from σ to σ′ determined by equation 3.3.6. Let us consider the case in which
the momentum transferred by the Raman coupling to the atom is null (~q ' 0). In
this case Ωσσ′ = Ωσ′σ that implies that the coupling is real. In this condition it can
be demonstrated that, if we reduce the spin Hilbert space to the subspace spanned
by σ and σ′, the Raman coupling is a pure mixing matrix, as shown by equation
3.3.7. This term does not commute with respect to the spin permutation operator
Sqp introduced by equation 5.1.5 because in this case we have[

Ŝqr , â
†
pâs

]
= δrpŜ

q
s − δqsŜpr (6.1.6)
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Figure 6.1.2. Sketch of controllable SU (3) symmetry breaking via two-photon Raman
transitions, as realized experimentally in this work. The Raman transitions shown in
figure, acting as σ̂x in the Hilbert subspace mapped by states |+5/2〉, |+1/2〉, generates
dressed states |±〉 that are obtained as rotation of bare states. The | − 5/2〉 spin state
does not enter the Raman transition, as shown by its unchanged energy.

that is exactly the commutation rule reported in 5.1.6 for the generators of the
SU (N) Lie group. This relation implies that the Raman Hamiltonian removes the
symmetry of the many-body Hamiltonian and, therefore, removes the spin degen-
eracy related to the SU (N) invariance. The possibility to generate atomic stable
levels characterized by controllable mixing and different energies results to be a
fundamental tool in order to simulate the hybridized orbitals of the Iron atoms
in chemical compounds that realize iron-based superconductivity; the similarity
between the two systems is sketched in figure 6.1.1.
By following reference [109], we will consider a SU (3) sample constituted by

±5

2
∩ +

1

2
nuclear-spin states, that experimentally can be realized by employing

the pumping scheme reported in section 3.4.4. If we neglect the effect of the ex-
ternal magnetic field (that is used to address the Raman transitions selectively
and can be considered as an effective state-dependent chemical potential, as dis-
cussed in section 5.1), these “bare” states are degenerate as a result of the global
SU(N). A two-photon Raman coupling between the +5/2 and the +1/2 nuclear-
spin states is then introduced in the system. When the Raman coupling is applied
the eigenstates of the systems become the “dressed” states

|±〉 =
1√
2

(
|1/2〉 ± |5/2〉

)
∩ | − 5/2〉, (6.1.7)

and their “dressing” energies are graphically represented in figure 6.1.2. As sug-
gested in reference [109] and shown in figure 6.1.1, the possibility to break the
global Hamiltonian symmetry by the Raman coupling term (see equation 6.1.5),
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is a good framework to better understand the fundamental phenomenon of orbital
selectivity (here, spin selectivity) that is supposed to play a key role in iron-based
superconductivity. In particular, the possibility to observe phases characterized
by different conduction properties, as orbital-dependent Mott-insulating phases,
should be accessible by evaluating the conduction properties of the different spin
components of the presented lattice system, as numerically shown by reference
[109].
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6.2 Mott-insulating phase and doubly-occupied
lattice sites detection

In reference [109] the authors highlight that the Raman coupling between spin
states described in section 6.1.1 can cause, even in interaction regimes that do
not allow for the Mott transition in 3D, an orbital Mott-selective behaviour that
can properly mimic the fundamental characteristics of Iron-based superconductor
materials.
The similarities between the energetic structure of Iron hybrid d-shaped orbitals
and nuclear-spin states coupled by two-photon Raman interaction have been stressed
out in section 6.1.1.
This section is devoted to introduce the possibilities offered by a 3D lattice system
in which the onsite repulsion (quantified in equation 2.3.13 by U) can cooperate
with the Raman coupling in order to create exotic phases of matter as orbital-
selective Mott-insulators are.
As introduced in section 2.3.1, in the absence of Raman coupling (Ω = 0), the
Fermionic Hubbard Hamiltonian supports three different phases of matter that
are:

• a metallic phase, in which the interactions strength U is much smaller than
the tunneling energy t and the particles are delocalized over the whole lattice
(see equation 2.3.16);

• a band insulator, in which each particle is delocalized over the whole lattice
but the total system results an insulator because the lowest energy band is
completely filled by particles;

• a Mott insulating phase, that sets in when the interaction strength U domi-
nates the tunneling energy t. In this phase the system cannot carry currents
because the interaction energy U gained by the system when two particles can
interact in one lattice site is not the lowest energetic configuration possible.

In a real lattice system, in which the shape of the lattice beams creates a harmonic
confinement (described by equation 2.2.5), the theory that describes the system
(still in absence of the Raman coupling) is equation 2.3.13, in which Vi is the onsite
potential. When real systems are considered, if the number of atoms for each spin
state is sufficiently low not to occupy excited bands of the lattice, an important
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quantity that can be used to characterize the state of the system is the number
of atoms residing on lattices sites that are already occupied by two atoms. In the
ideal non-interacting case this double-occupancy number should increase with the
number of atoms in the trap.
When strong repulsive interactions are taken into account, a very different be-
haviour can be predicted and a Mott insulator will appear in regions of the trap
where the local filling is of one atom per site. For regimes in which the repulsive
interaction completely dominates the tunneling and the local trapping potential,
in the entire center of the trap a proper Mott insulating phase forms and the num-
ber of doubly-occupied sites is suppressed [260].
So far the effect of finite entropy has been neglected. When we consider a 3D real
lattice system that is loaded by starting from a degenerate fermionic gas at a finite
temperature, thermal fluctuations have a non-negligible role in the formation of
insulating or ordered phases as it can be clearly observed in reference [261].
In this section we will study SU(3) Fermi-Hubbard models realized by loading a 3D
optical lattice with approximately 70×103 173Yb atoms in three different nuclear
spin states.
From a theoretical point of view, the number of doubly-occupied lattice sites in
a balanced SU(3) sample can be evaluated by extending the model presented in
reference [262] to the case of 3 interacting spins. The model introduced by Zhou
and Ho evaluates the number of doubly-occupied (and triply-occupied in the case
of SU(3)) lattice sites in the so-called “atomic limit” (introduced in section 2.3.1),
taking into account the effective entropy per particle confined in the lattice.

6.2.1 Photoassociation spectroscopy in 173Yb sample

The number of doubly-occupied lattice sites, as suggested by reference [261], is
a remarkable observable quantity to determine the state in which the system is for
defined experimental values of trapping frequencies and initial temperature of the
mixture. The derivative of this quantity, with respect to the number of particles
∂#D/∂N , is an indirect measurement of compressibility, identifying unequivocally
the state of the system.

From the experimental point of view, the number of atoms in doubly-occupied
sites can be measured by following the procedure exploited in chapter 4 to remove
doubly-occupied sites from the system. In the case described in section 4.2, in order
to remove multiply-occupied lattice sites from the confined system, we exploited
the 556 nm photoassociation transition from the ground state to the bound-state
generated by a ground-state atom and a 3P1 atom.
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Figure 6.2.1. Typical photoassociation spectrum obtained by scanning the frequency
of 556 nm light, red-shifted by about 790 MHz with respect to the atomic transition
|g〉 → |3P1〉. The spectrum has been obtained by exciting a SU(3) (±5/2∩+1/2) atomic
sample with 0.5 W of radiation on a waist of about 100 µm for 5 ms. An external magnetic
field, of about 3 G, is applied to define a quantization axis of the system. The red line
represents the frequency employed to excite the photoassociation resonance while the
black line, that is red-shifted with respect to the red line by about 7.2 MHz, is employed
as “out of resonance” frequency.

In this case, we employ the 556 nm transition from the |2g〉 to the bound state
|g; 3P1〉 that is 796.2 MHz red-detuned with respect to the single-particle excita-
tion |g〉 → |3P1〉 in 173Yb (as reported in reference [263]).
The specified photoassociation transition is based on the 3P1 magnetic-sensitive
triplet state (the first-order Zeeman splitting corresponds to about ' 600 kHz/G),
thus the transition frequency depends on the external magnetic field applied to
the trapped sample.
As studied in reference [263] and in the next sections, the specified photoassociation-
transition dependence with respect to the magnetic field can be exploited to selec-
tively address different photoassociation processes that, fixed the light polarization,
can occur only when atoms in certain spin states are trapped in the same lattice
site.

In order to determine the number of lattice sites occupied by two particles we
need to evaluate the difference between the number of atoms in the sample when
the photoassociation transition is excited by shining resonant light (the resonant
frequency is represented by a red line in figure 6.2.1) and when the light is out
of resonance (the chosen frequency is represented as a black line in figure 6.2.1).
The main source of uncertainty associated to this kind of measurement can be
attributed to the instability of the total number of atoms loaded in the lattice.
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Figure 6.2.2. The result of several spectroscopies near the previously determined pho-
toassociation resonance frequency are reported. In particular, by applying an external
magnetic field of about 60 G, the photoassociation transition observed in figure 6.2.1,
where position is marked by the red line, splits into several peaks. As it can be observed,
transitions corresponding to different spin mixtures can be selectively addressed, allow-
ing us to detect the number of doubly-occupied sites for each couple. Each spectroscopy
is performed by exciting a sample confined in a deep 3D lattice with 0.5 W of 556 nm
radiation on a beam that has a waist of about 100 µm.

A typical resonance spectrum near the photoassociation frequency, for an applied
external magnetic field of about ' 3 G, is reported in figure 6.2.1. It is necessary
to apply an external magnetic field to define a system quantization axis and,
therefore, to avoid the depolarization of the SU(3) sample.

To selectively address the photoassociation resonances related to the nuclear-
spin pairs that can be found in the cited SU(3) sample:

• | − 5/2〉, |+ 5/2〉;

• | − 5/2〉, |+ 1/2〉;

• |+ 5/2〉, |+ 1/2〉;

we performed three different high-magnetic-field spectroscopy runs starting from
SU(2) atomic clouds constituted by each of the mentioned spin mixtures. The
results of this measurement are reported in figure 6.2.2, where the photoassociation
peak of figure 6.2.1 (centered at the position determined by the red line) generates
singular addressable resonances when a magnetic field of about ' 60 G is applied
to the confined atomic sample.
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6.2.2 Doubly-occupied lattice sites in a balanced
SU(3) sample

In the absence of Raman coupling, the trapped atomic system can be described
by the Fermi-Hubbard model with a site dependent potential, as described by
equation 2.3.13. As a first “test bench”, we determined the number of the doubly-
occupied sites as a function of the total number of atoms in the sample at different
3D lattice depths.
In order to compare the results of these measurements with the case studied in
the following sections, where the SU(3) symmetry is controllably broken by the
Raman coupling, we choose to work with a balanced SU(3) nuclear spin mixture
that is realized by performing the optical pumping scheme described in section
3.4.4.
After the evaporation stage the resulting sample is constituted by about 70×103

173Yb atoms with a temperature of about 0.25×TF. The number of atoms in the
obtained SU(3) gas can be finely set by slightly modifying the final light power of
the 1064 nm laser beams constituting the crossed trap.
However, changing the total number of atoms trapped in the system by only vary-
ing the power of the laser beams employed to realize the crossed trap, also affects
the harmonic trap frequencies of the confined system, as it can be noted by the
FOR Trap characterization reported in appendix B. Therefore, measurements re-
alized at different number of atoms cannot be directly compared. In order to
characterize the same system by only modifying the number of particles after the
evaporation stage that fixes the number of atoms constituting the sample, the
power of the beams that form the crossed trap is enhanced by performing a linear
ramp of 300 ms in order to reach trap frequencies ω{x,y,z} = 2π× (56, 96, 73) Hz;
the sample preparation procedure is sketched in figure 6.2.3.

Once the number of atoms in the trap characterized by the aforementioned
harmonic frequencies has been set, by following the lattice loading procedure em-
ployed also in reference [264], in order to avoid the increasing of the harmonic
confinement caused by the lattice beams intensity ramp, the light power of the
crossed trap beams is lowered accordingly, as shown in the inset of figure 6.2.3. In
the first step, the 3D lattice depth is increased up to s = 4 in 2 s by performing
a spline ramp in order to avoid band excitations and transfer atoms in the lowest
lattice band [265]. Finally, the second spline ramp shown in the inset of figure
6.2.3 is performed in 1 s and increases the 3D lattice depth from s = 4 to the
final s at which the sample has to be probed in order to measure the number of
doubly-occupied sites.
Figure 6.2.3 reports the result of a typical measurement of doubly-occupied sites

169



6 - Controllable SU(N) symmetry breaking via Raman transitions in 173Yb

10 20 30 40 50

0

5

10

15

Number of atoms [103]

D
ou

bl
y

oc
cu

pi
ed

la
tti

ce
si

te
[1

03
]

-

s

time

FORT

556 nm

Evaporation

Photoassociation pulse

759 nm

Lattice loading

Enhancing
FORT

Figure 6.2.3. The plot reports the number of doubly-occupied sites in the 3D lattice
(characterized by a depth s = 8) as a function of the total number of atoms in the
SU(3) (±5/2, +1/2) sample. When the number of atoms is below 5×103 experimental
instabilities do not allow reliable measurements. Moreover, when the number exceeds
about 30×103, the atoms start to occupy higher lattice bands and, therefore, the system
can not be described by equation 2.3.13. The dashed line is the generalization of the model
proposed in reference [203] for 3 spins (T/TF = 0.27). The inset shows the procedure
used to load atoms in the lattice and observe the number of doubly-occupied sites.

as a function of the total number of atoms in the 3D lattice system. The exper-
imental points are obtained as the difference between the total number of atoms
and the population remained after a photoassociation pulse performed at ' 3 G
of external applied magnetic field. The errorbars are determined as the result of
a bootstrapping procedure over the experimental data. The number of doubly-
occupied sites for final lattice depth s = 8 shows a nearly linear behaviour with
respect to the number of atoms N, with no evident incompressible regions at small
N, because for the specified lattice depth the ratio between the interaction energy
and the tunneling is still lower than the critical value1 evaluated for 〈n̂〉 ≈ 1:
(U/t) � (U/t)c. Technical issues on the experimental procedure do not allow ex-
perimentally stable atom numbers lower than ∼ 5×103, for that reason it has not

1The critical ratio between U and t has been introduced in section 2.3.1 for 〈n̂〉 ≈ 1 and, for a
cubic geometry, it corresponds to ζ×5.8 ∼ 34.8. In 173Yb the transition should occur at s ≈ 11.
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Figure 6.2.4. Experimental points are the result of the doubly-occupied sites measure-
ments for different 3D lattice depths s. The red line represents the theoretical critical
value (U/ (ζt))c. When the ratio U/t exceeds the critical value the mean number of
doubly-occupied sites in the system is strongly suppressed suggesting the formation of a
Mott insulating core in the center of the trap. The dashed line is a guide to the eye to
emphasize the decreasing behaviour of the mean number of doubly-occupied sites.

been possible to collect data in that interval. When the total number of particles
exceeds ∼ 30×103, the atoms start to populate higher lattice bands; in this condi-
tion the lattice dynamics can not be determined by the simple FHM described by
equation 2.3.13 and therefore the number of doubly-occupied sites in the sample
can not be associated to the single-band description.
In order to characterize the transition from a metallic phase, in which the param-
eter U/ (ζt) � 5.8, to a state in which the sample, or part of it, is in a localized
Mott phase, and therefore U/ (ζt) � 5.8, we performed several measurements of
the doublon number as a function of the total number of atoms N for different val-
ues of final lattice depths s. The results of these measurements are shown in figure
6.2.4. The experimental points reported represent the mean number of doubly-
occupied sites in the interval from N = 5×103 to 30×103, that is, for the reason
described above, the interval that ensures that the system can be described by
equation 2.3.13. The change in the mean number of doubly-occupied sites, from a
nonzero value at small U/(ζt) to a vanishing value above the critical value U/(ζt)c
reflects the transition from a delocalized metallic state to a localized Mott state
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where strong interactions suppress the multiple occupation of the lattice sites.

6.2.3 Raman ground-state loading procedure

In this section we will discuss the experimental procedures developed to prepare
the atomic sample in the ground state of the lattice system described in section
6.1.1 in which the SU(3) symmetry can be controllably broken by exploiting Ra-
man coupling between nuclear-spin states of 173Yb atoms.
In order to realize the ground state of the Fermi-Hubbard Hamiltonian that in-
cludes also the Raman coupling described in section 6.1.1, we start from an unbal-
anced SU(2) sample constituted by | ± 5/2〉 nuclear-spin states; the population of
each spin state has been optimized by changing the frequencies of optical pumpings
to obtain a sample composed by about 2/3 of the whole atomic population in the
|+ 5/2〉 state. Although the reason for this choice will be made clear later in this
section, we can anticipate that this condition will allow us to obtain a balanced
sample composed by an equal, steady population of (+5/2, +1/2, −5/2) bare
spin states, coherently coupled as in the scheme shown in figure 6.1.2. The SU(2)
unbalanced sample is therefore loaded in a deep 3D lattice by performing two-step
intensity lattices spline ramps, by following the experimental procedure described
in section 6.2.2.
Before explaining the details of the Raman loading protocol, let us discuss some
technical aspects of the Raman scheme that we have implemented. As discussed
in the previous sections and shown in figure 6.1.2, we want to create a coupling
between |+ 5/2〉 and |+ 1/2〉 nuclear-spin states, leaving the | − 5/2〉 state uncou-
pled. The coupling between the first two states is realized by using 556 nm Raman
beams, detuned by 1756 MHz with respect to single-photon g → 3P1 transition.
The polarization is in the horizontal plane orthogonal to the quantization axis,
enabling the excitation of σ+/σ− transitions with ∆m = 2 (see section 3.3). As
specified in section 3.3, the energy separation between two nuclear-spin compo-
nents is generated by applying an external magnetic field. The resulting splitting
is linear, that also implies that the shift between +5/2 and +1/2 spin states is
the same generated between +1/2 and −3/2 and between −1/2 and −5/2 nuclear
components. Therefore, in order not to populate the “unwanted” −1/2 and −3/2
states, we need to resolve the different Raman processes by using spin-dependent
light shifts2, as described in reference [112]. In order to ensure the effective two-
level coupling +5/2 ↔ +1/2 induced by the σ+-σ− Raman transition, for each

2As specified in chapter 5 of this work, that implies that each light beam has σ+ and σ−

polarizations.
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Figure 6.2.5. Starting from an unbalanced mixture of ±5/2 spin states, we show the
Raman dynamics induced by a magnetic field of 150 G and a Raman coupling realized
by shining 700 µW of horizontally polarized 556 nm radiation (on a waist of ' 350 µm).
When the two-photon Raman coupling is resonant with the +5/2 - +1/2 transition, the
dynamics is limited to two spin components (blue and red experimental points). The
third state, in this case the −5/2 spin state, is not affected by the Raman transition, as
shown explicitly by green points.

value of the external magnetic field and light power of the Raman beams, we had
to experimentally find the resonance condition, i.e. the two-photon detuning that
matches the energy shift caused by the differential light shift and the magnetic
field.
As also shown in figure 5.4.1, the possibility to selectively address the two-photon
transition for the specified nuclear spin components can be achieved. As additional
evidence, in figure 6.2.5, we demonstrate the possibility to coherently address the
transition between |+5/2〉 and |+1/2〉 nuclear spin components without coupling
the | − 5/2〉 spin state.

Finally, we discuss the procedure that we have followed to load the lowest-
energy Raman band of the Fermionic coupled system described in section 6.1.1.
To achieve this scope, after the lattice loading of the unbalanced SU(2) sample, we
turn on the Raman beams with an initial two-photon Raman frequency difference
δin that is out of resonance with respect to the resonance condition δfin for the
+5/2 → +1/2 transition selected transition Raman detuning, and perform an
exponential frequency sweep of the form:

δout (t) = δin + (δfin − δin)
(

1− e−t/τ

1− e−T/τ

)
(6.2.1)
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This frequency sweep results in an adiabatic passage that brings atoms in the
+5/2 state into a superposition of equally populated +5/2 and +1/2 states, as
in the lowest-energy state shown in figure 6.1.2. Parameters such as the total
time of the ramp T and the exponential constant τ are determined by verifying
experimentally the possibility to revert the procedure in order to recover the initial
spin composition of the initial sample [112].
At the end of this procedure, we have a balanced mixture of N + N atoms in
the coherently coupled +5/2 and +1/2 states + N in the uncoupled state −5/2.
The numerical solution of the few-site version of the full Hamiltonian, including
tunneling and interactions, (based on exact diagonalization and time evolution)
show that this procedure ensures the loading of the many-body ground state with
the constraints of equal populations described above.

6.2.4 Enhancement of localization and state-selectivity in-
duced by the Raman coupling

In section 6.2.2 the number of atoms in doubly-occupied sites, measured with
a photoassociation detection technique, was used as an indicator of the transition
from a metallic phase to a localized Mott phase in a SU(3) sample in the absence of
Raman coupling. In this section we will compare those results with those obtained
in the SU(3)-broken case in the presence of the Raman coupling, after the loading
procedure presented in the previous section. In order to perform a photoassociation
measurement of the total number of doubly-occupied sites, the magnetic field has
to be decreased from the value used in the loading procedure (150 G) to a smaller
value (3 G), as discussed in section 6.1.
The whole experimental procedure employed to evaluate the number of doubly-
occupied lattice sites is graphically sketched in the inset of figure 6.2.6.
The number of doubly-occupied sites, as reported in section 6.2.2, is measured by
evaluating the difference between the total number of atoms in the sample when
the 556 nm pulse is on resonance with respect to the photoassociation transition
and the total number of atoms in the sample when the photoassociation pulse
is out of resonance. The results of these measurements, performed at fixed trap
frequencies ω{x,y,z} = 2π× (56, 96, 73) Hz and for lattice depth s = 8 are reported,
as a function of the coupling strength Ω/ (ζt), in figure 6.2.6. As it can be noted,
in absence of Raman coupling, the interaction strength U for s = 8 does not allow
to have a localized phase, as also shown in figure 6.2.4. Increasing the Raman
coupling strength, we observe a clear suppression of double occupancies, which
we associate to an enhancement of localization induced by the SU(3) symmetry
breaking by the Raman coupling. The measurements reported in figure 6.2.6 have
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Figure 6.2.6. The experimental points are measurements of the number of doubly-
occupied sites performed at the same lattice depth s = 8 as a function of the Raman
coupling strength Ω. At s = 8 the repulsive interaction alone is not sufficient to cause an
effective localization, as also shown in figure 6.2.4. By increasing the energy difference
between |+〉 and |−〉 states, that results proportional to Ω, the system is driven into a
more localized phase. The dashed line represents a guide to the eye.

been performed for different values of lattice depth s keeping unvaried the trap
frequencies. The results of these measurements as a function of the lattice depth
(reported as a function of U/ζt) and of the Raman coupling are shown in figure
6.2.7.
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Figure 6.2.7. Two-dimensional plot obtained as first order interpolation of experimental
measurements (black points). Darker colours imply a higher mean number of doubly-
occupied sites (reported as #D/N) while light green represents nearly absent doubly-
occupied sites in the interval between 5×103 and 30×103 atoms. It is evident that both
the interaction strength U and the Raman coupling Ω co-operate to localize the atoms
in the lattice sites, as also observed from the measurements reported in figure 6.2.6.

Figure 6.2.7 shows clearly that, increasing the Raman coupling, i.e. extend-
ing the energy difference between |+〉 and |−〉 dressed states (as it is graphically
sketched in figure 6.1.2), the mean number of doubly occupied sites decrease, as
a result of increased atom localization in the lattice sites. This behaviour can
be observed for each interaction strength measured, below and above the critical
U/ (ζ t) ratio, confirming the decreasing behaviour shown for s = 8 in figure 6.2.6.
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Figure 6.2.8. Fraction of observed doubly occupied sites for the mixture composed by
| + 5/2〉 and | + 1/2〉 bare states (see text for definition) as a function of the Raman
coupling strength.

As last experimental result, we performed a state-selective measurement of the
mean number of doubly-occupied sites by repeating the measurement described
above at an external magnetic field of ' 60 G. As shown in figure 6.2.2 and in
reference [263], by applying an external magnetic field the photoassociation peak
splits into several transitions that have been exploited to selectively evaluate the
number of doubly-occupied sites corresponding to two nuclear-spin combinations.

The fraction of | + 5/2〉 and | + 1/2〉 spin states in doubly-occupied sites
(%(+5/2;+1/2)) has been experimentally measured by evaluating the ratio

%(+5/2,+1/2) =
#(+5/2;+1/2)

#(+5/2;+1/2) + 2×#(+5/2;−5/2)

×102 (6.2.2)

where #(+5/2;+1/2), #(+5/2;−5/2) are the numbers of doubly-occupied sites of |+5/2〉,
|+ 1/2〉 and |+ 5/2〉, | − 5/2〉 spin states, respectively. We assumed that the un-
coupled spins mixtures have the same behaviour in such a way that #(+5/2;−5/2) =
#(+1/2;−5/2) and therefore the total number of doubly-occupied sites can be written
as

#D = #(+5/2;+1/2) + 2×#(+5/2;−5/2).

The fraction of doubly-occupied sites for the spin-mixture composed by | + 5/2〉
and | + 1/2〉 states as a function of Raman coupling strength for a fixed lattice
depth (s = 8) has been reported in figure 6.2.8.
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As it can be noted, this quantity decreases when the Raman coupling strength
is increased, from 1/3 at Ω = 0 (as expected by the SU(3) symmetry of the Hamil-
tonian) down to 0 at large Ω.
This behaviour is consistent with the theoretical prediction reported in reference
[109]. We can provide an intuitive explanation to describe the observed behaviour.
When the Raman coupling is absent (Ω = 0) all the nuclear-spin combinations
have the same energy and, therefore, they behave in the same way, as a conse-
quence of the SU(3) symmetry.
When the coupling is enabled (Ω 6= 0), the degeneracy between levels is lifted (see
figure 6.1.2). In the rotated basis, where the Raman coupling is diagonal, (con-
stituted by |+〉, |−〉, | − 5/2〉 states, as shown in section 6.1.1) the configuration
corresponding to |+ 5/2〉, |+ 1/2〉 atoms occupying the same lattice site requires
the population of both |+〉 and |−〉 states, that is energetically more onerous than
the configuration corresponding to either | + 5/2〉, | − 5/2〉 or | + 1/2〉, | − 5/2〉,
that can be realized with the less energetically-costly population of |+〉 and |−5/2〉.

This observation represents a first experimental evidence of a state-selective
localization in an atomic lattice system in which the SU(3) symmetry has been
controllably broken via two-photon Raman coupling.
While it is not the observation of an orbital-selective Mott behaviour yet [109],
this state-selective behaviour is the first demonstration of the microscopic mecha-
nism underlying a whole class of phenomena under intense study in the physics of
strongly-correlated multi-orbital materials.
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In this thesis we have reported on a set of experiments aimed out the characteri-
zation of strongly interacting states of ultracold bosonic and fermionic Ytterbium
(174Yb and 173Yb, respectively) trapped in an optical lattice. The results of these
experiments provided a further proof of the extreme versatility that these ultracold
atomic systems have demonstrated in recent past. In particular, the possibilities of-
fered by two-electron atoms confined in optical lattices are multiple: lattices allow
for the fine control of interaction and hopping energies while the external electronic
structure of the atoms offer possibilities of coherent control over two different in-
ternal degrees of freedom: the orbital d.o.f., corresponding to the possibility to
excite ultranarrow transitions between the ground state 1S0 and the metastable
states 3P0, and the nuclear-spin d.o.f., that instead is related to the possibility
to couple coherently atoms in different nuclear-spin projections. Moreover, due
to the high symmetry of states characterized by null electronic total momentum,
fermionic isotopes allow the realization of systems with tunable SU(N) symmetry,
a valuable resource for the quantum simulation of various systems from few-body
to solid-state materials, to high-energy physics.

The first set of measurements reported in this thesis exploited the orbital de-
gree of freedom in 174Yb. The possibility to excite the ultranarrow transition
1S0 → 3P0 in a deep 3D lattice allowed the experimental determination of scat-
tering parameters (in s-wave approximation) regarding the ground-to-metastable
interactions, before unknown. The obtained values are reported in table 4.2.1 and
are consistent with similar measurement performed in the same period [44, 45].

In a second set of measurements [159], the orbital degree of freedom of 173Yb was
exploited in order to produce homo-nuclear molecules supported by the recently
discovered Orbital Feshbach Resonance, that occurs when a nuclear spin mixture
of ground and excited atoms is considered. Photoassociation processes in a 3D
optical lattice have been characterized as a function of lattice confinement and
magnetic field, observing the effect of the OrbFR on the binding energy of the
molecular state and allowing an accurate measurement of the scattering length
a+
eg. We also developed a detection technique based on Raman bound-to-bound
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transitions, employed to determine the lifetime of molecules in isolated lattice sites
and in a many-body environment realized by creating a stack of vertical pancakes.
In the latter case we observed a lifetime of about 80 ms, currently limited by
interactions between molecules and unpaired atoms still populating the sample.

The third set of experiments reported in this work was focused on the quantum
simulation of analogues of the orbital-selective Mott insulating behaviour recently
studied in the context of high-temperature iron-based supercondutor materials.
In order to mimic orbital mixing in iron-based superconductors we considered a
SU(3) system of 173Yb atoms in a 3D optical lattice in the presence of a Raman
coupling between two nuclear-spin states, that lifted the spin degeneracy, pro-
viding a controllable explicit breaking the SU(3) symmetry. We experimentally
demonstrate that, by increasing the strength of the Raman coupling, the mean
number of doubly occupied sites decreases, implying an enhancement of localiza-
tion in the atomic sample. Finally, we performed a spin-selective measurement of
the number of doubly-occupied sites, providing a direct demonstration of the onset
of state-selective localization behaviour, that is the fundamental mechanism in the
microscopic description of iron-based superconductors materials. A further char-
acterization of the state-dependent behaviour of the system will benefit from the
implementation of single-site imaging in the current experimental setup [111–113].
To this aim, first technical improvements have been implemented for increasing
the stabilization of the setup, as reported in chapter 3.

The experiments described in this thesis provide a further demonstration of
the versatility of ultracold systems of Yb for a variety of applications, ranging
from quantum simulation to metrology. Many theoretical proposals regarding the
possibilities offered by the degrees of freedom of fermionic and bosonic isotopes of
Ytterbium (Yb) have been made or can be easily adapted in order to be realized
in our experimental setup.

The study of the interaction properties of bosonic 174Yb in 3D optical lattices,
presented in chapter 4, is relevant for applications in the field of high-precision
spectroscopy and metrology. Optical lattice clocks realized by probing confined
bosonic atoms reached the performances achieved by fermionic optical lattice
clocks. Bosonic clocks (that overcome the current definition of the SI second by
about two orders of magnitude), with respect to the fermionic clocks, rely on the
simpler internal structure, the higher natural abundancy, and the possibility to
control the transition by applying an external field [34, 266–268]. 174Yb, with re-
spect to other elements such as 88Sr, having a bigger mass and similar induced
clock linewidths, is a good candidate for metrological applications.
Recent theoretical proposals have relied on the interaction strength and inelastic
loss rate of ground-to-excited on-site 174Yb collisions characterized in this work
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in order to study the feasibility of an optical molecular clock based on ultranar-
row clock transitions in 174Yb molecules prepared in high vibrational states [202].
These molecules could promise unparalleled sensitivity to the temporal variation
of the electron-to-proton mass ratio and insight into possible new physics beyond
the standard model [202, 269].
Moreover, the possibility to generate a coherent clock coupling between the ground
state and the 3P0 metastable state by applying an external magnetic field suggests
the use of this isotope to build a reliable quantum-information platform based on a
nearly ideal two-level system [31]. In this perspective, the first characterization of
state-dependent 174Yb interactions reported in this work could serve for the design
and characterization of collisional quantum gates.

The results reported in chapters 5 and 6 of this thesis are a further demon-
stration of the richness of the 173Yb system for diverse applications in the field
of quantum simulation. Many different proposal, exploiting the coherent control
of both electronic and nuclear-spin degrees of freedom in 173Yb, have been re-
cently advanced. Regarding the nuclear spin d.o.f., the first observation of chiral
currents in a Hall-like system by exploiting the picture of “synthetic dimension”
[12, 38, 112, 145] provided a significant boost to the investigation of strongly-
correlated topological states of matter. Many theoretical works highlighted in-
triguing possibilities resulting from the interplay between the synthetic-dimension
approach and strong interactions in the system, leading e.g. to the emergence of
properties that are intimately connected with the fractional quantum Hall effect
[270, 271] or the identification of universal regimes in the Hall response [272]. In
this respect, the experimental work reported in chapter 6 of this thesis provides
an important demonstration of the possibility to study interacting 173Yb systems
in the presence of a coherent coupling between internal components, i.e. of the
compatibility of the synthetic-dimension approach with the strongly interacting
regime. Extensions of these results to the case of spin-orbit coupling could enable
the realization of those proposal and stimulate novel approaches for the study of
topological effects in interacting states of matter. Regarding the coherent control
of the orbital degree of freedom, i.e. the possibility to excite the doubly-forbidden
transition 1S0 → 3P0, many proposals focused on the possibilty to obtain degen-
erate orbital Feshbach molecules samples have been realized. In particular, due to
the peculiar character of the observed Feshbach resonance, that is based on the
strong orbital spin-exchange interaction in 173Yb, now exciting possibility for the
study of the crossover from BEC to BCS in unexplored regimes are opened [41–43].
The results presented in chapter 5, with the demonstration of novel manipulation
capabilities and the characterization of the experimental lifetimes, represent a first,
important step in this direction.
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A | About the nature of the effective range

Let us consider the one-dimensional Schrödinger equation:

y′′ + (ε− U(x)) y = 0. (A.1)

By definition, the Wronskian of two function y1, y2 is,

W (y1, y2) ≡ y1y
′
2 − y′1y2. (A.2)

From the definition we derive that, if W (y1, y2) vanishes in each point of the entire
interval (−∞,∞), the two functions differ by a multiplicative constant.
If y1 and y2 are solutions of equation A.1 corresponding to the values ε1, ε2, for any
pair of values a, b of the variable x, located in the interval where these solutions
are defined:

W (y1, y2)|ba = (ε1 − ε2)

∫ b

a

y1y2 dx (A.3)

Proof. To verify this statement is sufficient to multiply by y1 equation A.1 evalued
for y2 and multiply equation A.1 evaluated for y1 by y2, then substract term by
term the two resulting equations.

This general result, here briefly reported, is obtained by only supposing to
know two solutions of the initial differential equations and, as we will see in the
following part, can be used to obtain the well-known Bethe formula. In fact, in the
framework introduced in chapter 2, in which the problem of a particle that scatters
in a central potential is considered, by directly using the equation introduced
above, it is possible to extract the exact relation of the phase shift δl for the case
l = 0.
Let us now consider two functions u1, u2, corresponding to the regular solutions
of equation 2.1.13 and consider also the irregular solutions û1, û2 corresponding
to the same energy values ε1, ε2 respectively. According to equation A.3

W (û1, û2)−W (u1, u2)|ba = (ε1 − ε2)

∫ b

a

(û1û2 − u1u2) dr. (A.4)
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As b → ∞, since u and û have the same asymptotic behaviour, the integral
converges and the difference among the two Wronskians, evaluated at b tends to
zero. Moreover, lima→0W (u1, u2) = 0, so, by choosing properly the normalization
for u and considering only the s wave scattering limit (l = 0) it is possible, by
selecting also V̂ = 0 (where V̂ is the potential corresponding to the Schrödinger
equation for û), to obtain

W (û1, û2)|a→0 ≡ k1 cot δ1 − k2 cot δ2 = (ε1 − ε2)

∫
(û1û2 − u1u2) dr (A.5)

Now, by setting ε1 ≡ ε, ε2 = 0 and by remembering that

û0 = 1− a

r
lim
ε→0

k cot δ = −1

a
(A.6)

it is possible to obtain the well known Bethe formula [273]:

k cot δ = −1

a
+ ε

∫
(ûû0 − uu0) dr (A.7)

where solutions designated by the index 0 correspond to the zero-energy case and
a is the scattering length. This relation is exact and has been used in reference
[274] to express the phase shift as a series of powers of the energy.
The right-hand side of equation A.7 is usually approximated by considering V (r)
as a short-range potential, as it happens usually in nuclear and in atomic physics.
In this case, it is possible to divide the space in two zones, one where the potential
|V | � ε and it gives a non-negligible contribution to the right-side integral, and
the other one where the potential can be neglected with respect to the energy
scale of the system. In this case the contribution to the integral can be neglected
without committing large numerical errors. Equation A.7 can be therefore written
as

k cot δ ' −1

a
+ ε

∫ ∞
0

(
û2

0 − u2
0

)
dr ≡ −1

a
+ ε

ρ2
eff

2
= −1

a
+ k2 reff

2
(A.8)

where reff is the so-called effective range and it is a characteristic parameter of the
scattering potential V (r).
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B | Far-off resonance trap and lattices con-
finement characterization

In order to characterize experimentally the 1064 nm trap frequencies along the
three orthogonal directions we performed measurements by switching on an at-
tractive red-detuned far-off resonance laser beam (probe beam), slightly misplaced
with respect to the trap equilibrium position. The total light potential felt by
atoms when the probe light is shone has an absolute minimum displaced with re-
spect to the initial equilibrium position. In order to minimize the system energy,
atoms start to move to the absolute minimum as shown in figure B.1.
After a fixed pulse time (of the order of the trapping frequency), the probe beam
is abruptly turned off, the light potential felt by atoms returns to be the initial
one and the atoms start to oscillate in the initial harmonic trap, allowing us to

time

FORT

Probe
Hold time

Figure B.1. Sketch of experimental sequence performed in order to measure the trapping
frequencies of the harmonic confinement of the FOR Trap described in section 3.4.2. The
displacement of the waist of the proble laser (wavelength 759 nm) with respect to the
center of the trap is driven by changing the voltage on a piezo actuator on a mirror
mounting.
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measure directly the harmonic confinement frequencies, as sketched in figure B.1.

To characterize the crossed trap we recorded the mean atomic cloud position of
a 174Yb BEC as a function of the hold time after the probe pulse for several values
of light intensity of transport and crossed beams1.
The obtained frequencies have been employed to determine experimentally the
waist of the trap beams and the shift δz between the waist positions.
The total beam intensity in a certain spatial point ~r can be written as

I (~r) =
2

π

Pc
w2
c

e
−2 y

2+z2

w2
c +

2

π

Pt
w2
t

e
−2

x2+(z+δz)2

w2
t (B.1)

where {Pt, wt} and {Pc, wc}, are the light power and the waist of the transport
and of the crossed beam, respectively, and δz takes into account a possible vertical
displacement of the crossed trap beams in order to obtain the maximum vertical
frequency available in the combined system2.
The complete potential can be obtained by substituting in equation 3.4.2 relation
B.1 evaluated for the ground state 1S0 of Yb and 1064nm radiation and taking into
account, on the vertical direction, the effect of gravity.
The resulting potential has been used to perform a fit in which the only free pa-
rameters are the beam waists and the dispacement δz. Best fitted parameters are:
wc = 32.0 µm, wt = 61.0 µm, δz = 11.0 µm. The frequencies that it is possible to
obtain from the resulting trap model have an average mean error of about 5.8 Hz
with respect to the measured values (typical values at the end of the evaporative
cooling are (92.8, 72.6, 86.3) Hz).

In order to increase our knowledge on the trapping frequencies caused by the
shape of the Gaussian beams employed to experimentally realize a 3D cubic lattice
we performed a second series of experiments focused on the determination of the
harmonic confinement of each lattice beam.
As a first step, to measure the harmonic frequencies corresponding to the vertical
lattice we loaded the atomic sample in vertical pancakes and thus, as in the case
of FOR Trap, we shone a red-detuned probe beam in order to induce an oscillation
of the center of the atomic cloud in the pancakes. In order to describe the light
potential of the lattice on the directions perpendicular to the strong confinement

1We choose to measure the trap frequencies by employing a 174Yb BEC in order to maximize
the resolution but, since the potential felt by the 173Yb is the same, the results can be extended
to this isotope (if we rescale the frequencies following the relation f173/f174 =

√
m174/m173).

2The waists of the beams wc, wt are different, for that reason the maximum number of trapped
atoms, that is the condition in which we perform all the experimental measurements, can not
correspond to the condition in which the position of the transport beam on the z axis corresponds
exactly to the position of the crossed beam.
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Figure B.2. A BEC is loaded in a vertical lattice and, in order to induce trap oscillations
a displaced FOR probe beam is pulsed for 5 ms. Blue points are the oscillation frequency
measurement results. Each point is the mean value over five experimental realizations
and the error is calculated as standard deviation. The solid blue line is the best fitted
function that is obtained for A = (7.42± 0.41) Hz.

direction, it is possible, by following equation 2.2.5, to write:

Vvlat = −svlatEr e
−2mπ

2

Er
A2
vlat(x2+y2) (B.2)

where sEr represents the light intensity of the lattice beam introduced in section
2.2 and A is a parameter introduced to describe the harmonic trap confinement.
We performed oscillation measurements for several values of the vertical lattice
depth from svlat = 6 to svlat = 50. In each case the probe beam employed to create
a perturbation on the atomic cloud is the FOR T crossed beam, that has a piezo
actuator mounted on the last mirror and thus can be used to dislocate the beam
waist from the initial atomic position.
The results of these measurements are reported in figure B.2; the observed frequen-
cies have been employed to perform a fit choosing ω/2π =

√
A2svlat as a fitting

function, in which the only free parameter is the quantity A introduced in relation
B.2. The best fitted model, that is represented as solid blue line in figure B.2, is
obtained for ωvlat/2π = (7.42± 0.41)

√
svlat. It is also possible to directly estimate

the waist of the lattice by reverting the relation [275]

wvlat =
1

ωvlat

√
4Vvlat

m
. (B.3)
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Figure B.3. A BEC is loaded in a two-dimensional lattice generated the vertical lattice
beam and a horizontal lattice. Oscillations are induced by illuminating the atomic sample
with a displaced FOR light. In panel a) we report frequency measurements regarding the
two-dimensional lattice obtained by shining the vertical lattice and the horizontal lattice
1 described by relation B.4. Panel b) instead shows the measurements realized by shining
the vertical lattice and the horizontal lattice 2 described by relation B.5. Red and green
solid lines are the results of two fits (see the main text).

It allows us to determine experimentally the waist of the lattice beam considered,
that corresponds to wvlat ' 92.2 µm.

In order to measure the harmonic trapping frequencies induced by the horizon-
tal lattices it is not possible to use the same technique employed for the vertical
lattice, because the horizontal lattices are not able to trap atoms by compensating
the gravitational potential. In order to measure the oscillation frequency due to
the harmonic confinement of the horizontal lattices, we decided to load the atoms
in a two-dimensional lattice, generated by shining both the vertical lattice and a
horizontal lattice onto the atoms.
Also in this case, the oscillation in the two-dimensional optical lattice was induced
by a FOR probe beam, slightly displaced with respect to the waist of the lattice
beam. The oscillation frequency in the transverse direction with respect to the
propagation directions of the two lattice beams used to trap the atoms was mea-
sured for several horizontal lattice depths, while the vertical lattice have a depth
svlat = 15 for each horizontal lattice considered. The results of these measurement
are reported in figure B.3, where the experimental data have been fitted taking
into account the optical potentials

Vtot1 = −shlat1Er e
−2mπ

2

Er
A2
hlat1(z2+(cos (θ)x−sin (θ)y)2)︸ ︷︷ ︸
Vhlat1

+Vvlat, (B.4)

where θ is the angle between the crossed beam and the horizontal lattice 1 (approx.
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Lattice propagation direction Frequency ω/
(
2π
√
s
)

Waist w
[Hz] [µm]

Horizontal 1 8.27± 0.06 82.8

Horizontal 2 7.87± 0.05 86.7

Vertical 7.42± 0.41 92.3

Transport 31.0

Crossed 62.0

Table B.1. In the higher part of the table we report the lattice beam waists and trap
frequencies obtained by a fit following the procedure described in the main text. In the
lower part we report the beam waists that allow us, knowing the reciprocal waists shift
δz = 11.0 µm and relation B.2, to evaluate the 3D trap frequencies.

35 degree), and

Vtot2 = −shlat2Er e
−2mπ

2

Er
A2
hlat2(z2+(cos (θ)y+sin (θ)x)2)︸ ︷︷ ︸
Vhlat2

+Vvlat, (B.5)

that is the corresponding relation for the horizontal lattice 2. Due to the two-
dimensional lattice confinement the fitting function induced by the complete po-
tentials B.4, B.5 is ω/2π =

√
const. + A2s where const. is the constant contribution

due to the vertical confinement at fixed lattice depth svlat = 15. The obtained val-
ues of waist (from equation B.3) and A for horizontal lattice 1 and lattice 2 are
reported in table B.1.
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