
Synthetic Gauge Field and
Spin-Orbit Coupling Studies with

Ytterbium Atoms

Universität Hamburg
and

Università degli Studi di Firenze

26. Mai 2017

Marcel Diem



Gutachter: Prof. Dr. Klaus Sengstock
Zweitgutachter: Prof. Dr. Leonardo Fallani



Abstract

This thesis reports, on the one hand, on a novel technique for the implementation of spin-orbit
coupling in ultracold atomic gases which exploits a single-photon optical clock transition in
173Yb atoms between the ground state and a long-lived excited state, and on the other hand, on
groundwork conducted for the investigation of interaction effects in spin-orbit coupled systems.
By treating the internal electronic state of the atoms as a “synthetic” dimension a fermionic
ladder system pierced by a tunable uniform synthetic magnetic flux is realized.

In comparison to other methods, the application of a clock transition avoids a possible undesired
population of an unstable intermediate state. Furthermore, it features a drastic simplification
in the tunability of the magnetic flux in a practical manner. The spin-orbit interactions are
detected by the observation of characteristic double-peak spectra, which are connected to Van
Hove singularities, and by a direct measurement of chiral edge currents as a function of the
magnetic flux. Both detections are enabled by fiber-link-enhanced clock laser stability.

In a second series of measurements, two-photon Raman transitions are used for groundwork
studies on the role of interactions varied by the depth of the underlying lattice potential. First
indications of interaction effects in spin-orbit coupled systems are presented, insights on chiral
current dependencies are provided and experimental limitations are revealed.

The results described in this thesis offer new possibilities for the investigation of topological
states of matter with ultracold quantum gases, which could lead to the discovery of topological
superconductivity and to applications in quantum information processing.
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Zusammenfassung

Diese Masterarbeit berichtet auf der einen Seite von einer neuartigen Technik für das Imple-
mentieren von einer Spin-Bahn-Kopplung in ultrakalten atomaren Gasen, die einen optischen
Einzelphotonen-Uhren-Übergang in 173Yb Atomen zwischen dem Grundzustand und einem
langlebigen angeregten Zustand ausnutzt. Auf der anderen Seite wird von fundamentalen Stu-
dien berichtet, die für die Untersuchung von Wechselwirkungseffekten in Systemen mit Spin-
Bahn-Kopplung durchgeführt werden. Durch das Behandeln des internen elektronischen Zu-
stands der Atome als eine „synthetische“ Dimension wird ein fermionisches Sprossenleiter-
System realisiert, das von einem einstellbaren gleichförmigen magnetischen Fluss durchbohrt
wird.

Im Vergleich zu anderen Methoden umgeht die Verwendung eines Uhren-Übergangs eine mög-
liche ungewollte Population eines instabilen Zwischenzustands. Darüber hinaus zeichnet es
sich durch eine drastische Vereinfachung in der Einstellbarkeit des magnetischen Flusses auf
eine praktische Art und Weise aus. Die Spin-Bahn-Wechselwirkungen werden durch die Be-
obachtung von charakteristischen Doppel-Peak-Spektren, die mit Van-Hove-Singularitäten zu-
sammenhängen, und durch eine direkte Messung von chiralen Randströmen als Funktion des
magnetischen Flusses, detektiert. Beide Detektionen werden durch eine verstärkte Uhren-Laser-
Stabilität aufgrund einer Faser-Verbindung ermöglicht.

In einer zweiten Messungsserie werden Zwei-Photonen-Raman-Übergänge für fundamentale
Studien zum Einfluss von Wechselwirkungen genutzt, die durch die Tiefe des zugrunde lie-
genden optischen Gitters variiert werden. Erste Hinweise auf Wechselwirkungseffekte in Syste-
men mit Spin-Bahn-Kopplung werden präsentiert, Einblicke in die Abhängigkeiten der chiralen
Randströme gewährt und experimentelle Grenzen aufgezeigt.

Die Ergebnisse, die in dieser Arbeit beschrieben werden, bieten neue Möglichkeiten für die
Untersuchung von topologischen Materiezuständen mit ultrakalten Quantengasen, die zu der
Entdeckung von topologischer Supraleitung und zu Anwendungen in der Quanteninformations-
verarbeitung führen könnten.
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Riassunto

Questo lavoro di tesi presenta nella prima parte una nuova tecnica che permette la realizzazione
di un accoppiamento spin-orbita in gas atomici ultrafreddi sfruttando una transizione ottica di
orologio a singolo fotone tra lo stato fondamentale e uno stato eccitato metastabile in atomi
di 173Yb. La seconda parte del lavoro descrive invece alcune misure preliminari realizzate per
caratterizzare gli effetti delle interazioni in sistemi accoppiati spin-orbita.

Trattando lo stato elettronico interno degli atomi come una dimensione “sintetica”, è stato realiz-
zato un sistema fermionico bidimensionale soggetto ad un campo magnetico sintetico con flusso
regolabile. In confronto ad altri metodi, l’utilizzazione di una transizione di orologio evita che
vengano popolati stati intermedi instabili e permette una drastica semplificazione dal punto di
vista sperimentale della regolazione del flusso magnetico. L’interazione spin-orbita viene rileva-
ta dall’osservazione di spettri caratteristici con un doppio picco in connessione delle singolarità
di Van Hove e da una misura diretta della corrente chirale di bordo in funzione del flusso ma-
gnetico. Entrambe le misure sono rese possibili dalla stabilizzazione in frequenza del laser di
orologio su un riferimento ottico ultrastabile disseminato per mezzo di un link in fibra.

In una seconda serie di misure, una transizione Raman a due fotoni è stata utilizzata per carat-
terizzare gli effetti delle interazioni al variare dell’altezza del potenziale reticolare. Vengono
presentati alcuni risultati preliminari sullo studio degli effetti delle interazioni in sistemi accop-
piati spin-orbita, viene analizzata la dipendenza delle correnti chirali di bordo in funzione di vari
parametri del sistema e presentati i limiti sperimentali della misura.

I risultati descritti in questa tesi offrono nuove possibilità per la ricerca nell’ambito degli stati to-
pologici della materia con gas quantistici ultrafreddi. Tale ricerca potrebbe portare alla scoperta
della superconduttività topologica e ad applicazioni nel campo dell’informazione quantistica.
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Introduction

The development of methods to cool and trap atoms with laser light by Steven Chu, Claude
Cohen-Tannoudji and William Daniel Phillips (awarded with the Nobel Prize in Physics in 1997)
led to the realization of Bose-Einstein condensates (BECs) [3, 32] and degenerate Fermi gases
[33]. These achievements gave rise to the field of quantum simulation after the idea of Richard
Feynman [37], who envisioned the possibility to engineer real quantum systems in a control-
lable manner to simulate quantum effects in order to overcome the limitations of analytical
calculations and computational power. Cold atomic gases are ideally suited for such quantum
simulation, as they allow an extraordinary tunability of the physical parameters characterizing
the system, such as: confining potentials, particle density, effective dimensionality [49] and even
interactions using Feshbach resonances [26]. To the most outstanding achievements with quan-
tum gases belong the bosonic superfluid to Mott insulator transition [38, 51, 67], the Bardeen-
Cooper-Schrieffer (BCS)-BEC crossover with degenerate Fermi gases [9, 16, 52, 73, 146] and
even Higgs modes have been discovered [11, 36].

Despite these outstanding achievements, the possibilities for the simulation of solid states with
quantum gases seem to be limited as many interesting phenomena occurring in solid state ma-
terials are based on electrons moving through electromagnetic fields, whereas atoms in quan-
tum gases are charge neutral. However, laser-atom coupling effects can induce synthetic gauge
fields in atomic gases and among them synthetic Abelian gauge fields with U(1) symmetry like
the gauge fields of electromagnetism (the well-known vector potential ~A and scalar potential
Φ) can be created in a way to generate synthetic magnetic or electric fields for neutral atoms
[86–88], i.e. atoms behave like charged particles in electromagnetic fields. Furthermore, the
successful implementation of synthetic spin-orbit coupling in one dimension of quantum gases
[25, 41, 82, 89, 114, 138, 143, 144] gives hope to even achieve non-Abelian gauge fields [139]
with different symmetries like SU(2) or SU(3) as it would be the case for Rashba-type spin-orbit
coupling in more than one dimension. Since the weak and strong force possess SU(2) and SU(3)
symmetry, respectively, advances in this research direction could further establish quantum gases
as emulators for high-energy physics.

Another great and exciting motivation for further studies in these fields is the potential of using
synthetic magnetic fields and especially synthetic spin-orbit coupling to form topological states
of matter [59, 113]. These materials can feature remarkable characteristics with exceptional
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Introduction

possible applications [99] and their importance for science has been acknowledged with the
most recent Nobel Prize in Physics to David J. Thouless, F. Duncan M. Haldane and J. Michael
Kosterlitz “for theoretical discoveries of topological phase transitions and topological phases of
matter” [1]. One of the most interesting features of topological matter is its robustness against
imperfections, such as finite temperature and disorder, which makes it a promising candidate for
application fields under unprotected environments and may not be limited to environmental con-
ditions only reachable in laboratories. Moreover, topological matter is expected to be inhabited
by non-Abelian anyons, exotic particles, which, if connected in a network, could be used for
error-free quantum computing [99] and, thus, could revolutionize modern technology. For this
introduction to the research fields Ref. [31, 42, 45, 48, 141, 142] were used for orientation.

In this thesis, important steps are taken towards further advances in the research field of quan-
tum emulators for spin-orbit coupling, gauge theories and topological matter. The first accom-
plishment described in this thesis is the successful implementation of spin-orbit coupling with
a single-photon clock transition, which not only adds another technique for the generation of
spin-orbit coupling in ultracold atomic gases but also shows major advantages in comparison
to other schemes: avoidance of spontaneous emission from an intermediate state and a reduced
complexity in the experimental implementation. The latter point leads to the possibility of tuning
the induced magnetic flux in a practical manner, whereas in other approaches this tunability is
only theoretically proposed but lacks experimental demonstration and feasibility on reasonable
time scales. The significance of the latter improvement is emphasized by the fact that the big
advantage of using cold atomic gases for quantum simulation is their outstanding tunability in
the underlying physical properties.

The second accomplishment are groundwork studies for the investigation of interaction effects
in fermionic spin-orbit coupled systems. The many-body behavior in topological states of mat-
ter may enhance and further stabilize their extraordinary characteristic of topologically-protected
edge currents. Furthermore, a novel topological superfluid state with Majorana zero modes could
be realized [115] and the synthetic dimensions approach used in this thesis could be particularly
well suited for fractional quantum Hall emulations [30]. Moreover, a combination of the tun-
ability of the magnetic flux and interactions may lead to the observation of an exotic BCS-BEC
crossover since interactions are predicted to allow two-body bound-states on the BCS side for
spin-orbit coupled atoms [120, 135, 136]. The studies conducted within the framework of this
thesis show first indications of interaction effects, provide insights on chiral current dependen-
cies and reveal experimental limitations.
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The content of this thesis is structured as follows:

• In chapter 1 the basic physical concepts underlying ultracold atomic gases are described
and fundamental effects are derived and explained. Within this framework, the specific
consequences for and properties of ytterbium atoms are pointed out.

• Chapter 2 is about the more specific theoretical models of spin-orbit coupling, synthetic
gauge fields and topological matter. Main characteristics are mentioned and in particular
the implementation in quantum gases is discussed.

• The specifications of the experimental apparatus like the vacuum system and the laser
setups are presented in chapter 3. Furthermore, the prime experimental procedure for
the preparation of degenerate gases as well as main detection and imaging methods are
illustrated.

• The experiments conducted in this thesis are described in the chapters 4 and 5. In chapter
4 the successful implementation of spin-orbit coupling with an optical clock transition is
reported, the tunability of the magnetic flux demonstrated and several evidences for the
correct interpretation of the observed physics discussed. In chapter 5 two-photon Raman
transitions are used for groundwork studies on the role of interactions, insights on chiral
currents dependencies are provided and experimental limitations are revealed.

• A final conclusion and outlook will complete this thesis.

Publication

In the context of this thesis the following paper has been published:

Synthetic Dimensions and Spin-Orbit Coupling with an Optical Clock Transition
L. F. Livi, G. Cappellini, M. Diem, L. Franchi, C. Clivati, M. Frittelli, F. Levi, D. Calonico, J.
Catani, M. Inguscio, L. Fallani
Phys. Rev. Lett. 117, 220401 (2016)
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1 Fundamental Physics of Ultracold
Atomic Gases

In this chapter the basic physical concepts underlying ultracold atomic gases are described and
fundamental effects are derived and explained. Within this framework, the specific consequences
for and properties of ytterbium atoms are pointed out.

1.1 Laser Cooling and Trapping

This section gives an introduction to the physics of laser cooling and trapping, which is the basis
of all experiments with ultracold atomic gases. The description given here has the purpose of
demonstrating the most important phenomena in a rather qualitative way. For rigorous deriva-
tions and for precise quantitative calculations see suitable literature as books on atomic physics,
for example [122].

There are two different forces, which light applies on atoms, the dissipative and non-conservative
radiation pressure (see section 1.1.1) due to photon scattering processes and the conservative
dipole force (see section 1.1.2) based on the potential energy of an induced dipole moment in
the light’s electric field.

1.1.1 Radiation Pressure

When a photon is absorbed by an atom, its momentum of h̄~kph is transferred to the atom. There-
fore, the scattering of photons from a laser beam applies a force an atoms proportional to the
scattering rate Rsc:

~Frad = h̄~kphRsc. (1.1)

An atom also gains a momentum with modulus of h̄kph in a spontaneous emission process, but
since this momentum points in a random direction, the total gained momentum averaged over
many emission processes is zero. Whereas, the absorbed momenta always point in the same
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1 Fundamental Physics of Ultracold Atomic Gases

direction and thus a net force is applied. If the laser frequency is close to a single resonance, the
photon scattering rate and correspondingly the radiation pressure become [122]

Rsc =
(Γω/2)3

∆2 +(Γω/2)2 ·
I

Isat
, ~Frad =

h̄~kph(Γω/2)3

∆2 +(Γω/2)2 ·
I

Isat
, (1.2)

where Γω is the classical damping rate due to radiative energy loss, ∆ is the detuning from the
single resonance, I is the laser intensity and Isat is the saturation intensity.

The radiation pressure is a dissipative force and not conservative. It is one of the fundamental
forces exploited in quantum gases and used for cooling and trapping mechanisms such as a
Zeeman slower (see section 3.3.1) or a magneto-optical trap (see section 3.3.2).

1.1.2 Dipole Force

The description and explanation of the dipole force given here is done in a classical picture
[122]. An external electric field ~E induces a dipole moment ~d in an atom according to

~d = α~E, (1.3)

where α is the complex scalar polarizability1 of the atom. The potential energy of the induced
dipole moment ~d in the electric field ~E is

Vdipole =−
~d~E
2

=−dE
2
, (1.4)

which is half of the potential energy of a steady dipole moment. If the expression ~E = ~E(+)
0 e−iωt +

~E(−)
0 eiωt is used, where ~E(+)

0 is the complex conjugate of ~E(−)
0 , and fast rotating terms (∝ e±i2ωt)

are neglected since they are too fast for responses of the atomic motion, the following expression
is obtained:

Vdipole =−
1
2

[
α(ω)~E(+)

0

]
·~E(−)

0 − 1
2

[
α(ω)~E(−)

0

]
·~E(+)

0 =− 1
2ε0c

Re[α(ω)]I(~r), (1.5)

where ε0 is the vacuum permittivity, c is the speed of light and I = 2ε0c |~E(+)
0 |2 was used. The

corresponding conservative force felt by the atoms is then the negative gradient of the potential

~Fdipole =−~∇Vdipole =−
1

2ε0c
Re[α(ω)]~∇I(~r). (1.6)

1The assumption of a scalar polarizability made here is only valid for atoms without “orientation”. In general
an atom’s polarizability can also contain vector or even tensor components, which can lead to additional forces
experienced by the atom in an electric field (see Ref. [101])
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1.1 Laser Cooling and Trapping

Using the electron mass me, the elementary charge e, the resonance frequency ω0 and the laser
frequency ω an explicit form for the polarizability can be obtained

α(ω) =
e2

me(ω2
0 −ω2− iΓωω)

=
e2(ω2

0 −ω2 + iΓωω)

(ω2
0 −ω2)2 +(Γωω)2 . (1.7)

If this expression is inserted into the dipole potential and the detuning ∆ := ω−ω0 from a single
resonance is defined, the dipole potential can be written as

Vdipole =
e2

2meε0c
· (ω0 +ω)∆

[(ω0 +ω)∆]2 +Γ2
ωω2 I(~r). (1.8)

This form of the dipole potential has the advantage that it shows that its sign only depends on
the detuning. For a blue-detuned laser (i.e. ω > ω0) the potential is positive, whereas for a red-
detuned laser (ω < ω0) it is negative. This means that a laser beam with its transverse intensity
gradient will repel atoms, if it is blue-detuned, while it will attract atoms, if it is red-detuned.

In order to be able to actually trap atoms in a dipole potential on relevant time scales and not
lose them because of the radiation pressure described above (see section 1.1.1), the laser needs
to be far-detuned from any resonance. This becomes clear in the dependence of the two forces
on the detuning in the case of a far-off single dominant resonance:

~Frad ∝
I

∆2 , Vdipole ∝
I
∆
. (1.9)

The loss of trapping depth for the dipole force can be compensated by an increased intensity.

Magic Wavelength

Moreover, using e2/me = 6πε0c3Γω/ω2 and introducing the on-resonance damping rate Γ ≡
Γω0 = (ω0/ω)2Γω the dipole potential (1.5) in the limit of far detuning for a two-level atom can
be written as [53]

Vdipole =−
3πc2

2ω3
0

(
Γ

ω0−ω
+

Γ

ω0 +ω

)
I(~r), (1.10)

~Frad =
3πc2

2h̄ω3
0

(
ω

ω0

)3(
Γ

ω0−ω
+

Γ

ω0 +ω

)2

I(~r), (1.11)

which can easily be generalized to a multi-level atom in a state |n〉:

Vdipole, n =− ∑
m6=n

3πc2

2ω3
mn

(
Γmn

ωmn−ω
+

Γmn

ωmn +ω

)
I(~r), (1.12)

~Frad,n = ∑
m 6=n

3πc2

2h̄ω3
mn

(
ω

ωmn

)3(
Γmn

ωmn−ω
+

Γmn

ωmn +ω

)2

I(~r), (1.13)
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1 Fundamental Physics of Ultracold Atomic Gases

Figure 1.1 – Ytterbium’s light shifts. The figure shows the light shifts for ytterbium’s 1S0 (blue) and
3P0 state (green) in dependence of the light’s wavelength. The green dot denotes the partic-
ular magic wavelength used for the optical lattices in this thesis. Figure courtesy of Marco
Mancini.

where ωmn is the transition frequency between the states |m〉 and |n〉with the respective damping
rate Γmn. With equation (1.12) the dipole potential for ytterbium’s ground state 1S0 and meta-
stable state 3P0 (see section 1.5) is calculated and shown in Figure 1.1. In particular, crossings
of the green and blue lines are of interest as at these magic wavelengths the dipole potentials
for the two states are equal and this fact is of high importance for the measurements conducted
in chapter 4. The green dot in Figure 1.1 shows the particular magic wavelength used for the
optical lattices (see section 1.1.4) in the experiments conducted in this thesis.

1.1.3 State-Dependent Dipole Potentials

In 1.1.2 the light shifts for the 1S0 and 3P0 states were calculated in the limit of far detuning
from any resonances, whereas in this section optical dipole potentials are discussed in the case
of detunings comparable or even smaller than the hyperfine splitting. The equations (1.12) and
(1.13) are approximations from the full expressions [122]

Vdipole, n =− ∑
m6=n

3πc2

2ω3
mn
|Cnm(q)|2

(
αJJ′Γmn

ωmn−ω
+

αJJ′Γmn

ωmn +ω

)
I(~r), (1.14)

Frad, n = ∑
m 6=n

3πc2

2h̄ω3
mn

(
ω

ωmn

)3

|Cnm(q)|2
(

αJJ′Γmn

ωmn−ω
+

αJJ′Γmn

ωmn +ω

)2

I(~r), (1.15)
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1.1 Laser Cooling and Trapping

containing the multiplicity factor αJJ′ = (2J′+1)/(2J+1) and the square of the absolute value
of the Clebsch-Gordan coefficients |Cnm(q)|2, which depend on the light polarization state q =

(1,0,−1) in the spherical basis.

The Clebsch-Gordan coefficients for a transition between two states, |n〉 = |J,F,mF〉 → |m〉 =
|J′,F ′,mF +q〉 with well-defined electronic, hyperfine and spin-projection quantum numbers
are

Cnm(q) = (−1)2F ′+J+I+mF
√
(2J+1)(2F +1)(2F ′+1)

×
{

J J′ 1
F ′ F I

}(
F ′ 1 F

(mF +q) q −mF

)
, (1.16)

where the matrix in curly (round) brackets denotes the 6j(3j)-symbol [122]. The Clebsch-Gordan
coefficients make the expressions in (1.14) depend on the considered hyperfine state mF and the
polarization q of the dipole radiation. This is relevant, when Raman transitions are considered in
chapter 5 to couple different hyperfine states of the ground state manifold and for the concept of
the optical Stern-Gerlach (OSG) technique (see section 3.4.1), since in both cases the detuning
is on the same order as the hyperfine splitting in the excited state.

1.1.4 Optical Lattices

Optical lattices are a very useful tool to implement a crystalline structure into systems of ultra-
cold atoms and therefore to emulate the periodic potential seen by electrons in solid-state mate-
rials. The common way to create an optical lattice in experiments is to superimpose two counter-
propagating and phase-locked gaussian laser beams of the same polarization with wavevectors
±kL, waist w0 and Rayleigh length zR. In practice the second counter-propagating beam is usu-
ally the retro-reflection of the first beam from a mirror. The stationary interference pattern along
the propagation direction z of such two beams generates the following dipole potential

Vlattice =V0e
− 2r2

w2(z) cos2(kLz)≈ sEr

2
(1+ cos(2kLz))+

1
2

mω
2
r r2 +

1
2

mω
2
z z2, (1.17)

where m is the atomic mass, w = w0
√

1+(z/zR)2 is the laser’s spot size and the potential depth
V0 = sEr is expressed in units of the recoil energy Er = h̄2k2

L/2m and a dimensionless parameter
s. The potential is approximated by an expansion around r = 0 and z = 0 to second order.
The first term in equation (1.17) describes a periodic potential along the propagation direction
z whereas the other two summands describe two harmonic confinement potentials, which are a
direct result of the gaussian form of the laser beams. Their harmonic frequencies are

ωr =

√
4Er

mw2
0

√
s and ωz =

√
2Er

mz2
R

√
s. (1.18)
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1 Fundamental Physics of Ultracold Atomic Gases

(a) Typical interaction potential. (b) Two-body collisions. Typical two-body col-
lisions are shown for partial waves with differ-
ent angular momentum l = {0,1,2} (denoted as
s, p,d, respectively). The p- and d-waves fea-
ture a centrifugal barrier.

Figure 1.2 – Scattering potentials. The figures show the short-range molecular potentials V as a func-
tion of the interatomic distance R. Taken from Ref. [66] with permission of the authors.

However, in the case of collimated beams these confinements can be neglected in first approxi-
mation and the equation (1.17) reduces to the periodic term, whose harmonic frequency associ-
ated to each lattice site can be obtained by another expansion around z = 0 resulting in

ω =

√
2k2

LV0

m
=

2Er

h̄
√

s. (1.19)

In addition to the possibility of constructing a crystalline structure for quantum gases with three
orthogonal pairs of counter-propagating laser beams, optical lattices at sufficiently high poten-
tials can be used to effectively reduce the dimensionality of the system by suppressing any
tunneling processes between lattice sites: two-dimensional “pancakes” (using one lattice) [27]
over one-dimensional tubes (two orthogonal lattices) [106] to “zero-dimensional” traps (three
orthogonal lattices) [21]. Moreover, if the lattice beams intersect at specific angles, exotic pat-
terns such as triangular lattices [127] or graphene-like structures [131] can be created. In this
thesis optical lattices are extensively used in order to create one-dimensional tubes for the mea-
surements in chapters 4 and 5 and to tune the ratio of interaction energy over tunneling energy
Uint/t (see section 5.5.1).
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1.2 Interactions in Ultracold Atomic Gases

1.2 Interactions in Ultracold Atomic Gases

This section shortly discusses the type of interactions which can be expected in ultracold atomic
gases and, therefore, characterizes the interactions which are mentioned throughout chapter 5.

Due to the absence of Coulomb interactions and the possibility to neglect dipole-dipole inter-
actions, the interaction potential in neutral atomic gases is reduced to a hard-core repulsion at
zero interatomic distance R and an attractive van-der-Waals potential ∝−1/R6, which becomes
dominant at larger distances as illustrated in Figure 1.2(a). Even for a dense Bose-Einstein con-
densate with n = 1014 atoms/cm3, the interparticle distance is d = n−1/3 ≈ 0.1µm, which is
much larger than typical ranges of the van-der-Waals potential in the order of a few angstroms.
Therefore, interactions can be effectively described as collisions. Furthermore, due to the low
density, only two-body collisions are relevant, which cannot form molecules because of the con-
servation of energy and momentum, and due to the low temperatures the collisions can be treated
as purely elastic, which is the case for two atoms in the absolute ground state.

The quantum-mechanical theory of scattering states that for elastic two-body collisions in the
center-of-mass coordinate system the wavefunction can be expanded into partial waves distin-
guished by their angular momentum l. Partial waves with l 6= 0 feature a centrifugal barrier in
their collisional behavior (see Figure 1.2(b)) because of an additional rotational kinetic energy
term h̄2l(l + 1)/2µR2, where µ is the reduced mass of the two atoms. As a consequence, in
the low energy scattering regime only s-wave (l = 0) collisions need to be considered and these
collisions have the formidable property of being completely describable by a scalar quantity, the
scattering length a. The absolute value of the scattering length specifies the strength of the inter-
action by the scattering cross section σ = 4πa2 and the sign of the scattering length determines
whether the interaction is attractive (a < 0) or repulsive (a > 0). How the interactions in this
thesis can be calculated is described in section 1.3.1.

1.3 Physics in Lattices

The description of particles in a periodic potential has been extensively studied in solid state
physics in the last century. The solutions of the Schrödinger equation for a homogeneous pe-
riodic potential are the well-known Bloch waves declared by the Bloch theorem [6]. In one
dimension the Bloch waves are

ψn,k(z) = eikzun,k(z), (1.20)

where un,k(z) has the same translation invariance as the potential. Bloch waves are characterized
by their band index n and their quasimomentum k, which is reduced to the first Brillouin zone:

11



1 Fundamental Physics of Ultracold Atomic Gases

Figure 1.3 – Energy bands. The three plots show the energy bands in units of the recoil energy Er as
a function of the quasimomentum k in units of the lattice momentum kL for three different
lattice depths s. With increasing s the energy bands become flatter and the energy gaps
between the bands become larger. Figure courtesy of Marco Mancini.

−kL < k < kL (kL being the lattice momentum). For the specific case of atoms in an optical
lattice (see section 1.1.4), the stationary Schrödinger equation has the form

ĤΨ =

[
p2

2m
+

sEr

2
(1+ cos(2kLz))

]
Ψ = EΨ (1.21)

which is a second-order differential equation that can be described by the Mathieu equation[
d2

dx2 +a−2qcos(2x)
]

Ψ = 0 (1.22)

with the substitutions: a = E/Er− s/2, q = s/4 and x = kLz. The solutions to that equation are
the Mathieu functions, which form a complete orthogonal set and are modulated according to
the lattice potential. Therefore, the Bloch waves can be described by a linear combination of the
even C and odd S Mathieu functions:

ψn,k(z) = C
(

En(k)−
s
2
,− s

4
,z
)
+ isign(k)S

(
En(k)−

s
2
,− s

4
,z
)
, (1.23)

where z is expressed in units of the lattice spacing dL = λL/2. Using the Mathieu characteris-
tic values A [k,−s/4], the energy levels in the system in units of the recoil energy Er can be
calculated by

En = A

[
k±2sign(k)

(
n+1

2
−1
)
,− s

4

]
+

s
2
, (1.24)

where “+” refers to n being odd and “-” to n being even. The quasimomentum k is expressed in
units of the lattice momentum kL. For three different values of s the energy bands are determined
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1.3 Physics in Lattices

as a function of the quasimomentum k and are shown in Figure 1.3. With increasing s the energy
gaps between the bands become larger and the energy bands become flatter until they are almost
completely flat like the energy bands for a harmonic oscillator. This parameter regime of flat
energy bands allows spectroscopic measurements to be performed in the Lamb-Dicke regime
and is of particular importance for the experimental observation of the characteristic double-
peak spectra in section 4.2.

1.3.1 Tight-Binding Approximation

When the lattice depth s is increased, the wavefunctions of the atoms are rather localized at
the lattice sites. In this case the wavefunctions can be more convieniently expressed in terms
of the Wannier states, which are the Fourier transformations of the Bloch waves, i.e. for one
dimension:

wn(z− ldL) = A
∫ kL

−kL

e−i(kldL+θn,k)ψn,k(z)dk, (1.25)

where A is a constant, l ∈ Z and the phase θn,k is included since the Bloch functions are only
defined up to an overall phase. As a result the Wannier functions are not unique and for simplicity
it is common to choose the phase of the Bloch functions in a way that the Wannier functions are
maximally localized, i.e. with the smallest possible variance ∆z2 [95]. Wannier functions form a
complete set of localized states but are not eigenstates of the Hamiltonian in equation (1.21).

One of the biggest advantages of the Wannier functions is that in the tight-binding approxima-
tion, where particles are localized at a single lattice site and hopping processes are only relevant
to nearest-neighbor lattice sites, the fermionic operators in second quantization can be expressed
in terms of Wannier functions:

ψ̂
†
m(~r) = ∑

j
w(~r−~r j)ĉ

†
j,m, (1.26)

where m denotes the spin, ĉ†
j,m creates a particle with spin m at site ~r j and the single band

approximation was applied, i.e. wn =w1 =: w(~r−~r j). In second-quantization the Hamiltonian
for a system of interacting particles in a periodic lattice potential is

Ĥ = ∑
m

∫
d~rψ̂

†
m(~r)

[
− h̄2

2m
~∇2 +Vlattice(~r)

]
ψ̂m(~r)

+
1
2 ∑

m,m′

∫
d~rd~r′ψ̂†

m′(~r
′)ψ̂†

m(~r)Uint(~r,~r′)ψ̂m(~r)ψ̂m′(~r′), (1.27)

where Vlattice and Uint are the lattice and interaction potential respectively. If fermions are consid-
ered and equation (1.26) is inserted, the Hamiltonian becomes the Fermi-Hubbard Hamiltonian
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1 Fundamental Physics of Ultracold Atomic Gases

(a) Tunneling energy. The plot shows the nearest-
neighbor tunneling energy for the lowest energy
band (green) and the first excited band (blue) as a
function of the lattice depth s according to equation
(1.29).

(b) Interaction energy. The interaction energy for
173Yb fermions with different spins and a s-wave
scattering length of a= 200a0 is shown as a function
of the lattice depth s according to equation (1.30).

Figure 1.4 – Tunneling and interaction energies. Figure courtesy of Marco Mancini.

[65]
ĤFermi−Hubbard =−t ∑

<i, j>,m
(ĉ†

imĉ jm + ĉ†
jmĉim)+Uint ∑

j,m6=m′
n̂ jmn̂ jm′ , (1.28)

where < i, j > denotes that the sum goes only over nearest-neighbor lattice sites and n̂ jm :=
ĉ†

jmĉ jm is the number operator. In the tight-binding approximation only nearest-neighbor hop-
ping is considered, i.e.~r j→~r j±~u ·dL, where~u is a unit vector, the tunneling energy t is then

t =
∫

d~rw∗(~r)
[
− h̄2

2m
~∇2 +Vlattice(~r)

]
w(~r+~u ·dL). (1.29)

For the on-site interaction energy Uint a two-body contact interaction with the s-wave scattering
length a can be assumed for ultracold fermions with different spins (see section 1.2) leading to

Uint =
4π h̄2a

m

∫
d~r |w(~r)|4. (1.30)

In Figure 1.4 the tunneling energy and the interaction energy for the case of 173Yb fermions with
scattering length a = 200a0 are plotted as a function of the lattice depth s.

1.4 Raman Transitions

In this section the basic concept of Raman transitions in a Λ-configuration (as shown in Figure
1.5) is described. This description is based on [122]. A semi-classical approach is used in
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|g1〉

|g2〉

|e〉

∆1
∆2

ω01
ω02

ω1

ω2

Figure 1.5 – Raman transitions. The figure illustrates the Raman transition scheme in a Λ-
configuration.

which the atom’s internal states are quantized whereas the light is a treated classically as an
electromagnetic wave. The optical field of the two lasers can be described as

~E(~r, t) =~ε1E01 cos
(
~k1 ·~r−ω1t

)
+~ε2E02 cos

(
~k2 ·~r−ω2t

)
. (1.31)

If the energy of the excited state is set to be zero, the free atomic Hamiltonian is

Hatom =
p2

2m
− h̄ω01 |g1〉〈g1|− h̄ω02 |g2〉〈g2| . (1.32)

In the dipole approximation, where the spatial extension of the atom is assumed to be small in
comparison to the wavelength of the light, and when the rotating wave approximation is applied,
the atom-field interaction Hamiltonian can be written as

HI =
h̄Ω1

2

(
σ1e−i~k1·~reiω1t +σ

†
1 ei~k1·~re−iω1t

)
+

h̄Ω2

2

(
σ2e−i~k2·~reiω2t +σ

†
2 ei~k2·~re−iω2t

)
, (1.33)

where σα := |gα〉〈e| is an annihilation operator and the Rabi frequencies Ωα are introduced

Ωα :=
−〈gα |~εα · ~d |e〉E0α

h̄
. (1.34)

The state vector of the Λ-configuration

|ψ〉= c1 |g1〉+ c2 |g2〉+ ce |e〉 (1.35)
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1 Fundamental Physics of Ultracold Atomic Gases

can be transformed into the rotating frame of the two laser fields:

˜|ψ〉= c1e−iω1t |g1〉+ c2e−iω2t |g2〉+ ce |e〉 . (1.36)

The two Hamiltonians in this rotating frame are then

H̃atom =
p2

2m
− h̄∆1 |g1〉〈g1|− h̄∆2 |g2〉〈g2| , (1.37)

H̃I =
h̄Ω1

2

(
σ1e−i~k1·~r +σ

†
1 ei~k1·~r

)
+

h̄Ω2

2

(
σ2e−i~k2·~r +σ

†
2 ei~k2·~r

)
. (1.38)

In order to derive the dynamics of the system the Schrödinger equation

ih̄∂t |ψ〉= (H̃atom + H̃I) |ψ〉 (1.39)

is used, where the spontaneous emission from the excited state is neglected since it is assumed
that ∆α � Γ, Γ being the decay rate of |e〉. The state vector can be factorized into external and
internal components

|ψ〉= |ψg1〉 |g1〉+ |ψg2〉 |g2〉+ |ψe〉 |e〉 (1.40)

and additionally it is assumed that the excited state is effectively never populated: ∂tψe(~r, t) = 0,
where ψα(~r, t) := 〈~r|ψα〉. Then, the Schrödinger equation factorizes into the two contributions

ih̄∂tψg1 =
p2

2m
ψg1 +(h̄∆1 + h̄ωac,1)ψg1 +

h̄ΩR

2
ei(~k2−~k1)·~rψg2 , (1.41)

ih̄∂tψg2 =
p2

2m
ψg2 +(h̄∆2 + h̄ωac,2)ψg2 +

h̄ΩR

2
ei(~k1−~k2)·~rψg1 , (1.42)

with the Raman Rabi frequency and the ac Stark shifts

ΩR :=
Ω1Ω2

2∆
, ωac,α :=

Ω2
α

4∆
, (1.43)

where ∆ := (∆1 +∆2)/2 and it is assumed that |∆2−∆1| � |∆|.

The two equations of motion 1.41 and 1.42 can be generated by applying the following effective
Raman Hamiltonian on a general state vector |ψ〉

HR =
p2

2m
+ h̄(∆1 +ωac,1) |g1〉〈g1|+ h̄(∆2 +ωac,2) |g2〉〈g2|

+
h̄ΩR

2

(
σRei(~k2−~k1)·~r +σ

†
Rei(~k1−~k2)·~r

)
, (1.44)

where σR := |g1〉〈g2|. This means that the initial three level system is effectively reduced to a
two level system. It is equivalent to a single-photon transition with momentum~ks.ph. =~k1−~k2

(apart from possible light shifts caused by the Raman beams).
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1S0

1P1

3P2

3P1

3P0

triplet states
S = 1

singlet states
S = 0

λ = 398.9nm

λ = 555.8nm

λ = 578.4nm

Γ/2π = 29.1MHz

Γ/2π = 182.4kHz

Γ/2π ≈ 10mHz

6s6p

6s6p

6s6p

6s6p

6s2

Figure 1.6 – Ytterbium energy level scheme. Ytterbium’s fundamental energy levels are shown to-
gether with the optical transitions relevant for this thesis.

1.4.1 Multiple Excited States

The approach above can easily be generalized to multiple excited states |en〉 with the respective
detunings δn. The single Rabi frequencies are then

Ωα n :=
−〈gα |~εα · ~d |en〉E0α

h̄
(1.45)

leading to the generalized Raman Rabi frequency and Stark shifts

ΩR = ∑
n

Ω1nΩ2n

2(∆−δn)
, (1.46)

ωac,α = ∑
n

Ω2
α n

4(∆−δn)
. (1.47)

1.5 Basic Properties of Ytterbium

Ytterbium is a strongly diamagnetic rare earth metal and possesses seven stable isotopes (see
Table 1.1) because of its rather high atomic number Z = 70. The averaged atomic mass consid-
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Table 1.1 – Ytterbium isotopes. The table lists ytterbium’s isotopes with their natural abundance and
their nuclear spin.

Isotope Relative abundance (%) Nuclear spin Statistical behavior
168Yb 0.1 0 bosonic
170Yb 3.1 0 bosonic
171Yb 14.3 1/2 fermionic
172Yb 21.9 0 bosonic
173Yb 16.1 5/2 fermionic
174Yb 31.8 0 bosonic
176Yb 12.7 0 bosonic

Table 1.2 – Properties of ytterbium’s fundamental transitions [140].

Blue light Green light Yellow light

Wavelength (nm) 399 556 578
Linewidth Γ/2π 29.1MHz 182.4kHz ≈ 10mHz

Life time τ 5.5ns 850ns 20s
Saturation

intensity (1/cm2)
60mW 140 µW 260pW

Experimental
application

Zeeman slower
and imaging

Magneto-optical trap,
nuclear spin manipulation

and detection
and Raman coupling

Spin-orbit
coupling

ering the natural abundance of the different isotopes is 173.04u, its melting and boiling points
are 824 ◦C and 1196 ◦C and the electronic configuration in its fundamental state is [Xe]4f146s2.
Ytterbium behaves similar to alkaline earth metals because of the two valence electrons in its
6s orbital. Depending on the combination of the two electronic 1/2 spins, ytterbium can pos-
sess a total spin of either S = 0 or S = 1 forming either singlet or triplet states, respectively.
The resulting energy level scheme together with the fundamental transition lines exploited in the
experiments of this thesis are shown in Figure 1.6.

Ytterbium’s fundamental transitions are the 1S0→ 1P1 transition at 399nm (blue), the 1S0→ 3P1

transition at 556nm (green) and the 1S0→ 3P0 transition at 578nm (yellow). Their characteris-
tics are summarized in Table 1.2 and a detailed description of all the transitions discussed here
can be found in Ref. [140], which was used as the main reference for this section. The blue
transition is dipole-allowed and the broadest transition with a linewidth of Γ = 2π× 29.1MHz
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Table 1.3 – Ytterbium scattering lengths. The table lists all scattering lengths among ytterbium iso-
topes in units of a0. Adapted from Ref. [74].

168Yb 170Yb 171Yb 172Yb 173Yb 174Yb 176Yb
168Yb 252 117 89 65 39 2 -359
170Yb 64 36 -2 -81 -518 209
171Yb -3 -84 -578 429 142
172Yb -600 418 200 106
173Yb 200 139 80
174Yb 105 54
176Yb -24

and a corresponding lifetime of 5.5ns. Blue laser light is used in the experimental setup for the
Zeeman slower (see section 3.3.1) and the imaging. The green and the yellow transition are both
intercombination transitions, which means that they are transitions between singlet and triplet
states, i.e. ∆S 6= 0. These transitions are not allowed, if only pure~L ·~S-coupling is considered in
the atom, however, strong spin-orbit interactions can occur for elements with high atomic num-
ber Z and couple the 1P1 and 3P1 states in ytterbium. Furthermore, hyperfine interactions for the
fermionic isotopes cause the 3P0, 3P1 and 3P2 states to mix, thus, enabling even the yellow tran-
sition which is not only an intercombination but also a J = 0→ J′ = 0 transition and therefore
violates angular momentum conservation. As a consequence of the weak couplings the linewidth
of the green transition is much smaller than the blue transition with Γ = 2π×182.4kHz corre-
sponding to a lifetime of 850ns and the yellow transition is again much smaller than the green
transition with Γ≈ 2π×10mHz corresponding to a lifetime of about 20s which makes the 3P0

state metastable. In the experiment green light is used in the magneto-optical trap (see section
3.3.2), for nuclear spin manipulation and detection (see section 3.4) and for Raman transitions
(see chapter 5), whereas yellow light is used for the implementation of single-photon spin-orbit
coupling (see chapter 4). Because of its very narrow linewidth and therefore precisely defined
frequency the 1S0→ 3P0 transition is exploited in atomic clocks [62, 64] and is called a clock
transition.

In Table 1.3 the different s-wave scattering lengths among ytterbium’s different isotopes are
listed, which demonstrate ytterbium’s suitability for studies of many-body physics in ultracold
mixtures.
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2 Spin-Orbit Coupling, Synthetic Gauge
Potentials and Topological Matter

This chapter is about the more specific theoretical models of spin-orbit coupling, synthetic gauge
fields and topological matter. Main characteristics of these topics are mentioned in general,
connections between them are emphasized and in particular the implementation in quantum
gases is discussed.

2.1 Spin-Orbit Coupling

Spin-orbit coupling (SOC) is a relativistic quantum mechanical effect and, for example, re-
sponsible for the fine structure splitting well-known in atomic physics. In solid-state materials
SOC often occurs intrinsically, which is demonstrated by the following example. An electron
moves in a two-dimensional plane through a solid-state material, which possesses an electric
field ~E = E0~ez normal to that plane due to asymmetries in the confining potential (see Figure
2.1(a) and Figure 2.1(b)). In the comoving momentum frame, where the electron with mass m
is at rest, there exists a magnetic field ~B = (E0h̄/mc2)× (kx~ey− ky~ex), where h̄ is the reduced
Planck constant, c is the speed of light in the vacuum and kx (ky) is the electron’s momentum vec-
tor in the x-(y-)direction (see Figure 2.1(c)). The magnetic field leads to a momentum-dependent
Zeeman interaction of the form

−µB≈ σxky−σykx (2.1)

which is known as Rashba SOC [18]. As a result, the particle’s spin~s (with its magnetic moment
~µs) is directly coupled to its momentum~k. The effect of this Zeeman shift on the dispersion
relation can be seen in Figure 4.5(a).

2.1.1 Synthetic Spin-Orbit Coupling in Quantum Gases

The intrinsic SOC of solid-state materials is so strong that it would require external electric
fields in the order of trillions of volts per meter in order to generate comparable, non-negligible
SOCs in laboratories. Since such high electric fields are not available in a laboratory, in order
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Donor layer

e−
Electric field

(a) Solid with broken spatial symmetry. The donor layer breaks the spatial
symmetry in a solid-state material and, thus, induces an electric field along
the z direction.

e−

~v = v0~ex

~E = E0~ez

(b) Laboratory frame. In the laboratory frame the
electron moves through a pure electric field.

e−

~E = E0~ez
~v = 0

~B = (E0h̄/mc2)~ez

(c) Comoving frame. In the comoving momentum
frame the electric field converts partially into a magnetic
field along y.

Figure 2.1 – Intrinsic spin-orbit coupling. The Figures illustrate the occurrence of intrinsic spin-orbit
coupling in a solid. Figures adapted from Ref. [42].

22



2.1 Spin-Orbit Coupling

to be able to create SOC in a controlled matter, other ways need to be found. A workaround for
this problem is to coherently couple different (pseudo)spin states with laser transitions, which
transfer momentum to the atoms. On the one hand, in order to achieve a significant SOC, the
transferred momentum needs to be large (in the order of 0.1kL, where kL is the lattice momen-
tum) and, on the other hand, the coupling needs to be coherent, i.e. the coupled states must be
stable. These two conditions seem contradictory since in a usual photon absorption process the
transferred momentum δk correlates with the energy difference between the two coupled states
∆E = δk ·hc/(2π) and the energy difference is connected to the spontaneous emission rate for
dipole radiation as Γsp.em. ∝ ∆E3 ∝ δk3 [122]. Hence, a large momentum transfer usually de-
stroys the coherence between states.

Therefore solutions need to be found to ensure that both requirements of a large momentum
transfer and stable coupled states are met. One solution is to use two-photon Raman transitions
to couple two different spin states of a ground state manifold. This approach, early proposed in
Ref. [61] and then refined in Ref. [90], led to the first observation of SOC in an atomic quantum
gas [89]. In such a system the coupled states are stable since they belong to the ground state
manifold and the large momentum transfer can be reached by choosing the Raman beams to
be in the optical regime. However, as two-photon Raman transitions are applied, in addition,
spontaneous emissions from an intermediate state need to be strongly suppressed which can be
accomplished to a great extend for sufficiently large detunings from all possible excited states
as described in detail in section 1.4. Another solution is to couple two states with a single-
photon transition with a large δk, where the excited state has a much longer lifetime than the
time scales of the experiment. This can be the case for optical clock transitions and, as described
in section 1.5, ytterbium possesses such a clock transition with a lifetime of about 20s [110].
The implementation of SOC by exploiting ytterbium’s clock transition was first proposed in Ref.
[43] and realized for the first time in the experiments described in this thesis.

In order to demonstrate that the solutions described above can lead to SOC and to draw a connec-
tion to gauge potentials, the following analytical calculation is performed. For a one dimensional
system (~ex) the Hamiltonian of a laser-coupled two-level atom, in which spontaneous emission
can be neglected and with a non-negligible momentum transfer δkx = |δ~k| ·cosθ , where θ is the
angle between the transferred momentum δ~k and~ex, is

H =

 k2
x

2m + ∆

2
Ω

2 eiδkxx

Ω

2 e−iδkxx k2
x

2m −
∆

2

 , (2.2)

where ∆ is the energy difference between the two coupled states and Ω is the Rabi frequency. It is
of particular interest that this Hamiltonian can describe the in section 1.4 discussed two-photon
Raman processes (δ~k =~kR1−~kR2, where~kR1 (~kR2) is the momentum vector of the first (second)
Raman beam; see also equation (1.44)) or single-photon clock transitions (δ~k =~kC, where~kC is
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2 Spin-Orbit Coupling, Synthetic Gauge Potentials and Topological Matter

the momentum vector of the clock laser). For a better illustration, that this Hamiltonian actually
describes a spin-orbit coupled system, the unitary gauge transformation

U =

e−iδkxx 0

0 eiδkxx

 (2.3)

can be applied. The transformed Hamiltonian is then

H ′ =UHU† =

 (kx+δkx/2)2

2m + ∆

2
Ω

2

Ω

2
(kx−δkx/2)2

2m − ∆

2

 . (2.4)

This Hamiltonian can be expressed using the Pauli matrices:

H ′ =
(kx +δkx/2 ·σz)

2

2m
+

∆

2
σz +

Ω

2
σx (2.5)

and after a π/2 spin rotation around y (transforming the Pauli matrices: σx→ σz, σz→−σx)

H ′ =
(kx−δkx/2 ·σx)

2

2m
− ∆

2
σx +

Ω

2
σz. (2.6)

In this form it becomes obvious that this Hamiltonian describes a spin-orbit coupled system with
equal contributions of Rashba (kxσx +kyσy) and Dresselhaus (kxσx−kyσy) SOC. Moreover, this
Hamiltonian can be compared to a Hamiltonian of a particle with charge q exposed to the gauge
fields of electromagnetism, i.e. a vector potential ~A and a scalar potential Φ

Hem =
(kx−q~A)2

2m
+Φ. (2.7)

The comparison shows that the Hamiltonian H ′ in equation (2.6) is equivalent to a Hamiltonian
of a spin-1/2 particle with a vector potential A = δkx/(2q) ·σx and a scalar potential Φ = Ω/2 ·
σz−∆/2 ·σx. Hence, the production of spin-orbit coupling automatically generates a synthetic
vector potential. Theoretically this vector potential has a non-Abelian nature, which means that
the single components of the vector potential do not commute with each other, i.e. [Ai,A j] 6= 0
for i 6= j.1 However, since this vector potential only possesses a single non-zero component, it
trivially shows Abelian commutation relations2, but for SOC in more than one dimension non-
Abelian physics would appear, as it would be the case for pure Rashba or Dresselhaus SOC
[48].

1The exact definition of non-Abelian varies slightly in literature. For example in Ref. [48] it is explicitly used for
vector potentials, which actually show non-Abelian physical phenomenons.

2This statement is based on Ref. [48], whereas in Ref. [141] it is claimed that SOC as described in this section
already shows non-Abelian characteristics since the vector potential does not commute with the scalar potential:
[δk/(2q) ·σx, Ω/2σz−∆/2σx] 6= 0.
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2.2 Synthetic Gauge Potentials in Lattices

In the next section, gauge potentials and their implementation in ultracold atomic gases are
further discussed and in particular it is shown, that the spin-orbit coupled system described here
not only features a synthetic gauge field but also a non-zero synthetic magnetic field leading to
the realization of the Harper-Hofstadter Hamiltonian.

2.2 Synthetic Gauge Potentials in Lattices

In order to expand the range of systems, which can be emulated with quantum gases, the gen-
eration and manipulation of artificial gauge fields in ultracold atomic gases has gained a lot
of interest in the last 15 years [13, 31, 48, 84]. Synthetic gauge fields grant the investigation
of electromagnetism with neutrally charged particles. In particular, schemes in optical lattices
have been shown to offer the study of magnetic fluxes per lattice unit cell in the order of φ = π

[43, 68, 98, 102, 116], whereas external magnetic field strengths, which can be routinely reached
with current technology, are about 50T, which corresponds to φ ≈ 10−4π , if a typical lattice
spacing of 10−10 m in materials is considered [48]. The quantum Hall effect, which led to the
characterization of states of matter in terms of topological phases (see section 2.3), requires
large magnetic fields not reachable in quantum gases with external fields (in contrast to con-
densed matter experiments). Hence, the generation of large synthetic magnetic fluxes leads to
the possibility of exploring this extraordinary physical phenomenon. In general, gauge poten-
tials and topological states of matter are strongly connected. In this section the basics for the
generation of synthetic gauge potentials in optical lattices with ultracold atoms are described.

2.2.1 Peierls Phase

When the tight-binding approximation is justified, fermions in a lattice can be described by the
Fermi-Hubbard Hamiltonian in equation (1.28). In the case of an additional vector potential
~A generating an external magnetic field ~B = ~∇×~A, the Hamiltonian gets modified according
to the Peierls substitution [107]: the tunneling matrix elements become complex, thus, when
particles hop from one lattice site to another they acquire the Peierls phase φ i

j,m = −qAi
j,m/h̄,

where i = {x,y} and q is the charge of the particle. Hence, if interactions are neglected the
Hamiltonian takes the form

H =−t ∑
j,m

(
eiφ x

j,m c†
j+1,mc j,m + eiφ y

j,m c†
j,m+1c j,m +h.c.

)
. (2.8)

The Peierls phase in a lattice is equivalent to the Aharonov-Bohm phase ΦAB in free space, which
is acquired by a particle with charge q 6= 0 moving in a vector potential. For a closed trajectory
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q

~B

ΦAB

Figure 2.2 – Aharonov-Bohm effect. When a particle with charge q 6= 0 moves on a closed trajectory
through a vector potential (illustrated by the magnetic field as ~B = ~∇×~A), it acquires the
Aharonov-Bohm phase ΦAB.

as illustrated in Figure 2.2, the gained phase is

ΦAB =−q
h̄

∮
~A ·dr̃ =

qΦB

h̄
(2.9)

where ΦB is the magnetic flux through the area enclosed by the trajectory. Analogously, the
magnetic flux per lattice unit cell (also called plaquette) caused by the single Peierls phases can
be defined as

φ =
(

φ
x
j,m +φ

y
j+1,m−φ

x
j,m+1−φ

y
j,m

)
. (2.10)

The theoretical description depends on the gauge, whereas the physical observables, for example
the chiral currents in the chapters 4 and 5, do not. Therefore, the Landau gauge, φ x

j,m = −mφ ,
φ

y
j,m = 0, can be chosen, for which the theoretical calculations are particularly easy to compute.

This gauge leads to the Harper-Hofstadter Hamiltonian:

HHarper-Hofstadter =−t ∑
j,m

(
e−imφ c†

j+1,mc j,m + c†
j,m+1c j,m +h.c.

)
. (2.11)

The direct connection between a magnetic field and the Peierls phases means that it is sufficient
to verify that a system features non-trivial (φ 6= {0, π}mod2π) Peierls phases, in order to prove
that a synthetic magnetic field is generated. In the next sections different schemes to engineer
such Peierls phases are presented, with special emphasis on the synthetic dimensions approach,
which is exploited in this thesis.

2.2.2 Synthetic Dimensions

In this section it will be shown that the synthetic dimensions approach described in Ref. [23]
leads to the Harper-Hofstadter model, which features in general non-trivial Peierls phases and,
thus, an artificial magnetic field.
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2.2 Synthetic Gauge Potentials in Lattices

Usually, lattice sites are distinguished and characterized by their position in space (optical lat-
tices for example) but this does not need to be the case. In Ref. [14] the atom’s internal states,
(pseudo-)spin states, are shown to be treatable as lattice sites in a synthetic dimension. There-
fore, coupling of internal states, for example, by a clock transition or Raman transitions, corre-
sponds to tunneling processes in this additional dimension. Since an absorbed photon imposes
its phase on the absorbing atom, tunneling processes in the synthetic dimension are automati-
cally connected to a complex phase factor, whereas tunneling in real dimensions is not complex.
For a single spatial dimension an effective two-dimensional system describable by the Harper-
Hofstadter Hamiltonian in equation (2.11) is realized and non-trivial Peierls phases and a syn-
thetic magnetic flux are created. An example of such a two-dimensional system, consisting of
one spatial and one synthetic dimension pierced by a homogeneous magnetic flux, can be seen
in Figure 4.4 for the specific case of this thesis.

The synthetic dimensions approach distinguishes it from other schemes for creating synthetic
magnetic fields, firstly, by the sharp boundaries in the synthetic dimension, which make the
observation of chiral edge currents particularly simple (see chapters 4 and 5). Secondly, by the
unusual feature of strongly localized interactions in the real dimension, on the one hand, and the
infinitely long-range interactions in the synthetic dimension on the other hand.

If the lattice sites in the synthetic dimension are considered back as pseudo-spin states and hop-
ping along the synthetic dimension is connected to large momentum transfer, spin-orbit coupling
(see section 2.1) is realized.

2.2.3 Other Approaches

Several other approaches for the generation of Peierls phases in two-dimensional lattices exist,
which are not used in this thesis but are shortly discussed in this section in order to give an
overview of the possibilities of synthetic gauge field generation with ultracold atoms.

The first difference with respect to the synthetic dimensions scheme is, that the natural hopping
along one lattice direction must first be inhibited before it is reestablished in a way that non-
trivial Peierls phases are generated. This is not needed in the case of the synthetic dimensions
approach as the internal atomic states are not naturally coupled.3 Tunneling processes can be
prevented by tilting the lattice [96] or by creating a superlattice with an energy offset between
neighboring sites [2]. For a tilted lattice laser-assisted tunneling can provide the coupling again
as for the synthetic dimension but in this case in a spatial dimension. When a superlattice is
used either laser-assisted tunneling or lattice shaking [5, 34, 35, 60, 78, 125, 127, 128] can be
exploited to overcome the energy barrier and create the necessary Peierls phases. In the lattice

3The synthetic dimensions approach requires stable states (at least on the time scales of interest).
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shaking techniques the optical lattices are periodically modulated (“shaked”) and the application
of the Floquet theory [46, 75] leads to an effective time-independent Hamiltonian with complex
hopping phases. These methods are the most commonly used mechanisms, however, there are
more exotic schemes, which are not further discussed here.

2.2.4 Basic Lattice Models

Beside the Hofstadter model for a uniform magnetic flux, there are other basic lattice models for
different flux configurations, which are not realized in this thesis but are shortly mentioned in
this section for a clear definition of the boundaries of the work in this thesis and in order to give
an overview of the research field.

The Haldane model [56] shows a honeycomb lattice geometry with nearest-neighbor (NN) and
next-nearest-neighbor (NNN) hopping. While the NN hopping is positive and real, the NNN
hopping is complex and shows non-trivial Peierls phases, which lead to local non-zero magnetic
fluxes in triangular subplaquettes. Nonetheless, the total flux per honeycomb unit cell is zero
[48]. The complex hopping phases break time-reversal (TR) symmetry and open an energy gap
in the dispersion relation leading to a non-trivial topological phase that features an anomalous
quantum Hall effect (see section 2.3). The development of the Haldane model was an important
step for the discovery of the quantum spin Hall effect (see section 2.3.1). Quite recently, the
Haldane model was experimentally realized in Ref. [69].

The Kane-Mele model can be derived from the Haldane model when the NNN hopping is modi-
fied to be opposite for two possible spin configurations, spin-up and spin-down. In this particular
case, each spin component sees a local magnetic flux, but since the hopping is inversed the two
fluxes are exactly opposed leading to the preservation of TR symmetry [48]. This model was
developed in order to investigate the effects of spin-orbit coupling in graphene [70, 71] and it
was used to predict the quantum spin Hall effect (see section 2.3.1).

Furthermore, lattice models with non-Abelian gauge potentials exist [10, 44, 47, 94, 102, 117,
134], which can feature anyons with interesting possible applications, in particular for quantum
information processing [17].

2.3 Topological States of Matter

The strong connections to the research field of topological states of matter is one of the main
motivations for the work conducted in this thesis. Therefore, in this section the concept of
topological states of matter is introduced.
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2.3 Topological States of Matter

One of the greatest achievements in condensed matter physics in the last century was the clas-
sification of quantum states in means of spontaneous symmetry breaking [4]. The breaking of
the symmetry can be described by the order parameter, which is exclusively non-zero in the
ordered phase and on which an effective field theory, the Landau-Ginzburg theory [80], can be
formulated. With the discovery of the quantum Hall (QH) state in 1980 [76], which cannot be
characterized by spontaneous symmetry breaking, a new kind of classifcation for quantum states
arose: topology. Topological states of matter are of high interest for basic research in condensed
matter physics but also promise exceptional possible applications [99] and their importance was
recently acknowledged by the latest Nobel Prize in Physics to David J. Thouless, F. Duncan M.
Haldane and J. Michael Kosterlitz “for theoretical discoveries of topological phase transitions
and topological phases of matter” [1].

In mathematics, geometrical objects can be classified by their topology: Geometries that can
be “smoothly” deformed into one another belong to the same topological class. For example,
two dimensional surfaces are distinguished by the number of holes, called genus, in them and a
deformation is called smooth, when the genus of the surface is not changed. A famous example
of such a topologically invariant deformation is the one of a donut into a coffee cup: Both
objects possess the genus 1. Analogously in physics, deformations can be defined to be smooth
for systems with a band gap when changes in the Hamiltonian do not close the bulk gap. On the
other hand, this means that for the case that the Hamiltonian becomes gapless a quantum phase
transition occurs and the topological class is altered. The concepts of order parameters and field
theories established for spontaneous symmetry breaking can be adopted for topological phases
leading to topological order parameters [132, 133], such as the Chern number, and topological
field theories (TFTs) [145].

2.3.1 Quantum Hall Effect and Topological Insulators

The integer quantum Hall effect, discovered in 1980 by von Klitzing [76], results in the quan-
tization of the Hall conductance σ in two-dimensional electron systems of a semiconductor at
low temperature and high magnetic fields (normal to the system’s two-dimensional plane):

σ = n · e
2

h
, (2.12)

where e is the elementary charge and n is a positive integer, which can be considered a topolog-
ical invariant [81, 132]. The quantum Hall state (in its bulk) and the vacuum are both insulating
with a gap between valence band and conductance band but do not possess the same topology,
thus, following the definition described above, the Hamiltonian of the two gapped phases of
different topological classes must be gapless at the boundary between the states. Therefore, at
the edge of the quantum Hall state (boundary to the vacuum) there must exist a gapless state,
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(a) Quantum Hall state. Electrons in a quan-
tum Hall state can only move along the edges in
a chiral way.

(b) Quantum spin Hall state. The quantum
spin Hall state can be thought of as two copies
of a quantum Hall state, where one copy is only
populated by spin-up electrons and the other one
only by spin-down electrons. Electrons of dif-
ferent spin states move in the exact opposite di-
rection, thus, the total current is zero.

Figure 2.3 – Chiral edge currents. Figures adapted from Ref. [113].

B

Figure 2.4 – Skipping orbits. Chiral currents of electrons in a quantum Hall state can be described
in terms of their skipping cyclotron orbits. Electrons perform cyclotron orbits because of
the presence of a magnetic field. However, on the edges the orbits are truncated, i.e. the
electrons bounce off the edge and perform skipping orbits. Thus, electrons travel along the
edges in a direction determined by the orientation of the magnetic field.
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an edge state, which carries the Hall conductance. The edge state is protected by the topology
of the quantum Hall state and robust against impurities as long as the topology is not changed.
On a microscopic level electrons only travel along the edges of the two-dimensional layer in a
chiral way meaning that on opposite edges the electrons travel in opposite directions (see Figure
2.3(a)). On a single edge only one propagation direction is allowed demonstrating the robustness
against impurities for well-separated edges as no backscattering channels are available. This be-
havior of the electrons along the edges is also often described in terms of their skipping cyclotron
orbits: electrons in a quantum Hall state perform cyclotron orbits because of the magnetic field
present, however, on the edges the orbits are truncated, i.e. the electrons bounce off the edge
and perform skipping orbits as seen in Figure 2.4, thus, the electrons travel along the edges in a
direction determined by the orientation of the magnetic field.

The robustness of the currents makes the quantum Hall state very interesting for applications
in electronics. However, it requires high magnetic fields which limits possible applications. As
discovered by Haldane [56] the main requirement for the characteristic behavior is not the mag-
netic field but the broken time-reversal (TR) symmetry associated with the magnetic field. As
a consequence, a different type of topological class was theoretically predicted and experimen-
tally observed [59, 79, 97, 112], which does not need a magnetic field. Instead of the broken
TR symmetry a quantum spin Hall (QSH) state (an example of a two-dimensional topological
insulator) is based on spin-orbit coupling (see section 2.1). The QSH state can be thought of as
two copies of a QH state, where one copy is only populated by spin-up electrons and the other
one only by spin-down electrons. The different spins travel in opposite directions leading to a
net current equal to zero (see Figure 2.3(b)). Science Magazine ranked the first discovery of
the QSH topological insulator as one of the top ten breakthroughs among all sciences in 2007
[100].

While the integer QH effect is observed in the regime of non-interacting or only weakly inter-
acting electrons, in the strong interaction regime the fractional quantum Hall (FQH) effect takes
over. In the FQH effect the Hall conductance is quantized at fractional values of e2/h instead of
at exact multiples. Since the FQH effect is not fully understood theoretically and is expected to
feature, for example, non-Abelian anyonic excitations, it is a very promising research topic. The
scientific impact of the FQH state was acknowledged in 1998, when Robert B. Laughlin, Horst
L. Störmer and Daniel C. Tsui were awarded the Nobel Prize in Physics “for their discovery
of a new form of quantum fluid with fractionally charged excitations” [1]. There are several
proposals [7, 30, 54, 109, 124, 129] for the possibility to use ultracold atomic gases as quantum
emulators for FQH states. The synthetic dimensions approach exploited in this thesis (see sec-
tion 2.2.2) seems to be particularly well suited because of the featured long range interactions
in the synthetic dimension [30]. In chapter 5 groundwork studies are conducted for the experi-
mental investigation of interactions in a spin-orbit coupled system, whose results are also a step
towards possible studies of the FQH state.
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In this thesis chiral currents, as present in a quantum Hall state, fractional quantum Hall state
or in a topological insulator, are observed and analyzed in their behavior in dependence on the
synthetic magnetic flux φ (see chapter 4) and in dependence on interactions and other system-
characterizing quantities (see chapter 5), demonstrating the connection of this thesis to the pro-
gresses in the investigation of topological phases.
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3 Experimental Setup and Procedures

The specifications of the experimental apparatus are presented in this chapter. The vacuum sys-
tem and the laser setups are described and the prime experimental procedure for the preparation
of degenerate gases as well as main detection and imaging methods are illustrated.

3.1 Vacuum System

The vacuum apparatus is shown in Figure 3.1 and the description given here mostly relies on [22,
93, 105] with some updates. Since Ytterbium has a high melting point (824 ◦C), it is impossible
to obtain a sufficient flow of atoms to the trap with a vapor pressure at room temperature, thus,
7g of ytterbium chunks (99.9% purity) in natural isotope composition are placed in an oven (1),
where they are heated up to a mean temperature of 460 ◦C achieving a vapor pressure of about
10−2 Torr and an atom velocity of about 300m/s. The random atomic motions are channeled
by a square array of 100 small tubes (length: 1cm, inner diameter: 0.2mm), which are located
directly at the oven exit. These small tubes lead to a collimated atomic beam and allow the
implementation of a first differential pumping stage using the first ion pump (3) of the two
Varian Starcell (20L/s). The front of the oven with the micro-tube array is at a temperature of
about 485 ◦C, whereas the back of the oven only has a temperature of about 435 ◦C in order
to avoid clogging of the micro-tubes. The second ion pump (3) performs a second pumping
stage between two small tubes (6) with lengths of 8cm and 10cm and inner diameter of 5mm
right after the first pumping stage. A compressed-air shutter is located in the middle of the
second pumping stage. The atoms move further through a VAT-48124 UHV gate valve (7),
which separates the ultra-high vacuum (UHV) region (10−11 Torr), reached by the 55L/s Varian
Starcell (14), from the oven region (10−7− 10−10 Torr). When the atoms reach the Zeeman
slower (8), they are slowed down from approximately 300m/s to a few tens of m/s (see section
3.3.1). The input window (17) of the Zeeman slower beam (18) on the right side of the setup
is made of sapphire and is kept at a temperature of about 250 ◦C to prevent atom accumulation,
which could lower the window’s transmission. The velocity reached by the Zeeman slower is
low enough in order to capture the atoms in a magneto-optical trap (MOT, see section 3.3.2). A
compensation coil (10) is implemented in the setup in order to annihilate any residual magnetic
field of the Zeeman slower leaking into the MOT chamber (9).
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Figure 3.1 – Vacuum system setup 1) Oven 2) UHV valve 3) Ion pumps for differential pumping (20L/s
each) 4) Compressed air shutter for atomic beam 5) UHV valve 6) Differential pumping
tubes (not shown) 7) VAT UHV gate-valve 8) Zeeman Slower 9) MOT chamber 10) Com-
pensation coil 11) Glass cell 12) MOT coils 13) Titanium sublimation pump 14) Ion pump
for MOT chamber (55L/s) 15) UHV Gauge, mod. Bayard-Alpert, Varian UHV-24p 16)
UHV Valve 17) Sapphire window with bellow 18) Slowing beam at 399nm. Taken from
Ref. [105].
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3.1 Vacuum System

Figure 3.2 – In-vacuum optical cavity mounted on a CF100 flange. Taken from Ref. [105].

An AISI L316 stainless steel octagonal chamber (9) is used for a MOT stage employing two
water-cooled anti-Helmholtz coils (12) [105]. The chamber has seven CF40 flanges in the hor-
izontal plane: one flange is used to attach the MOT chamber to the Zeeman slower, the four
flanges at 45 degrees with respect to the atomic beam axis are used for the horizontal MOT
beams and the two flanges orthogonal to the atomic beam axis are used for an input window
for the optical transport beam and for a connection to a high-optical-access glass cell (11, see
subsection 3.1.2). In addition, there is a larger CF63 flange directly on the atomic beam axis
used for a cross connection to the 55L/s Varian Starcell ion pump (14). In the vertical plane the
MOT chamber features two CF100 flanges, each holding a CF40 window, where on the upper
flange, in addition to the window, two metallic supports are mounted for an in-vacuum optical
cavity (see subsection 3.1.1 and Figure 3.2). A titanium sublimation pump (13) is included in
the setup for further vacuum improvement and the pressure at this end of the vacuum system is
measured by a Bayard-Alpert ion gauge UHV-24P (15).

3.1.1 In-Vacuum Optical Cavity

On the upper CF100 flange of the MOT chamber a Fabry-Perot cavity is mounted (see Figure
3.2) in order to trap and pre-cool the atoms before they are transported to the science glass cell
(see subsection 3.1.2 and Figure 3.3). The cavity’s metallic supports seen in Figure 3.2 hold
two spherical mirrors with a radius of curvature of 2m, a diameter of 6.35mm and a thickness of
2.3mm. The theoretical finesse of the cavity is about F ≈ 1600 given by the mirror’s reflectivity
of 99.98%, whereas a finesse measurement resulted in a value of F ≈ 1850, which corresponds
to a power enhancement factor of 4F/π ≈ 2350 (losses neglected). The cavity has a fixed length
of 9cm, which leads to a free spectral range of FSR = 1.67GHz. Assuming an incident power of
1.8W and considering the chosen waist w0 = 300 µm, the cavity’s parameters lead to a trap depth
of V0/kB ≈ 800 µK≈ 8TMOT, where TMOT is the temperature reached in the magneto-optical trap
(see section 3.3.2).
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Figure 3.3 – Science glass cell. Number 11 in Figure 3.1. Taken from Ref. [105].

3.1.2 Science Glass Cell

The atoms are transported (see section 3.3.4) to a high-optical-access glass cell (see Figure 3.3
and for its position in the vacuum system see number 11 in Figure 3.1) manufactured by Hellma
Analytics, where the main part of any experiments is conducted. This concept of transporting
ultracold atoms to a separated science cell after the MOT phase becomes more and more com-
mon [55, 119]. The advantages of a science glass cell are, firstly, the high optical access and,
secondly, the avoidance of influences from residual magnetization of the vacuum apparatus’
metallic components. The glass cell’s outer dimensions are (60× 60× 18)mm and since each
face is 5mm thick, the inner dimensions are (50×50×8)mm. The glass cell is designed for a
possible implementation of a high-numerical-aperture objective with a small working distance
[24, 57, 108, 121] in the future. Hence, in the vertical direction the distance from the center of
the glass cell to its outer surface is only 9mm.

3.2 Laser Setups

3.2.1 399nm and 556nm Laser Systems

In the experimental system of this thesis the blue laser radiation at 399nm addresses the 1S0→
1P1 transition (see Figure 1.6) and serves two purposes, firstly, slowing down the atomic beam in
the Zeeman slower and, secondly, performing absorption imaging. The laser setup can be seen
in Figure 3.4. 1.1W of 798nm radiation reached by a fiber-coupled tapered amplifier laser-diode
system, TOPTICA TA PRO, is used to inject a 15mm long Lithium-Triborate (LBO) non-linear
crystal, which is optimized for type-I phase matching and stabilized at a temperature of 55 ◦C.
The second-harmonic generation inside the LBO is enhanced by a bow-tie cavity using two
plane mirrors, M1 and M2, and two curved mirrors, M3 and M4, with radii of curvature 60mm
and 100mm, respectively. The cavity’s free spectral range is FSR = 749MHz, its finesse is
F = 100 and its length is stabilized by the Hänsch-Couillaud locking technique [58], which acts
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Figure 3.4 – Laser setup for 399nm. See text for details. Figure courtesy of Marco Mancini.

Figure 3.5 – Laser setup for 556nm. See text for details. Figure courtesy of Marco Mancini.
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on a piezoelectric stack (PZT) mounted on the cavity mirror M2. With a conversion efficiency
of about 50% a stable output power of 550mW of 399nm laser light is reached.

Green 556nm laser light, which addresses the 1S0→ 3P1 transition (see Figure 1.6), has several
applications in the system described in this thesis: magneto-optical trapping (see section 3.3.2),
optical spin state pumping (see sections 3.4.2 and 3.4.3), optical Stern-Gerlach (see section
3.4.1) and Raman coupling (see section 5.1). The setup for the production of this laser light is
very similar to the scheme for the 399nm laser and can be seen in Figure 3.5. A fiber laser at
1112nm, Menlo Systems model ORANGE ONE, is frequency doubled in a bow-tie cavity with
a 10mm long Lithium Tantalate (LiTaO3) crystal, which possesses an anti-reflective coating for
1112 nm light. In order to ensure quasi phase-matching, the crystal is periodically poled with a
period of 9.12 µm. The cavity’s free spectral range is FSR = 567MHz, its finesse is F = 67 and
it is also stabilized with the Hänsch-Couillaud locking technique [58]. The conversion efficiency
of about 50% leads to an output power of 1.05W of 556nm radiation.

For the purpose of a higher lock stability, the thermal and acoustic isolation is improved by seal-
ing the two bow-tie cavities for the second-harmonic generation inside aluminum boxes under
vacuum. Moreover, the two lasers are directly locked on the atomic transitions, 1S0→ 1P1 for
the 399nm and 1S0→ 3P1 for the 556nm, by performing standard fluorescence spectroscopy on
an atomic Ytterbium beam, which is provided by a second oven (average temperature of 425 ◦C)
and, thus, independent from the Ytterbium source used for experiments. The spectroscopy pro-
duces an electronic feedback signal, which is sent to the lasers and causes frequency corrections.
The spectroscopy interrogation is performed with the laser beams transverse to the propagation
direction of the atomic beam. The 1S0→ 1P1 transition has a linewidth of Γ399 = 2π×29MHz,
which is broader than the transverse Doppler profile of the collimated1 atomic beam. Therefore,
the transverse spectroscopy signal is sufficient for a stable lock of the 399nm laser, whereas the
1S0→ 3P1 intercombination transition only has a linewidth of Γ556 = 2π × 182kHz and needs
a Doppler-free saturation spectroscopy. A detailed description of the two spectroscopy setups
and locking procedures can be found in Ref. [92, 104], however, with respect to the references a
few changes have been made on the locking scheme of the fermionic isotope 173Yb, which are
considered below.

A scheme for the locking procedure of the green 556nm light is shown in Figure 3.6. With
the experimental setup described here, only the fermionic isotope 173Yb and the bosonic iso-
tope 174Yb are used. The Doppler-free spectroscopy performed with π-polarized light on the
1S0→ 3P1 transition differs for those two isotopes significantly, since 173Yb has a nuclear spin
I173 = 5/2 (see Table 1.1), which leads to six magnetic-field-sensitive π-transitions (F = 5/2→
F ′ = 7/2), whereas 174Yb has a nuclear spin I174 = 0 (see Table 1.1), which leads to a single

1The atomic beam is collimated in the second oven by the same kind of micro-tubes described in section 3.1.
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Figure 3.6 – Fluorescence spectroscopy locking scheme for 556nm. See text for details. Figure cour-
tesy of Marco Mancini.

magnetic field insensitive π-transition (J = 0, mJ = 0→ J′ = 1, m′J = 0). Furthermore, the nat-
ural abundance of 174Yb is approximately twice as large as of 173Yb (see Table 1.1). Therefore,
the spectroscopy signal on 174Yb has a much larger signal-to-noise ratio and is better suited for
a laser frequency lock, hence, this isotope is always used for the frequency locking regardless
of which isotope is used in the experiment. This is realized by the following setup (see Figure
3.6). When the experiment runs with 174Yb the laser branch for the spectroscopy signal first
propagates through an acousto-optic modulator (AOM) in double passage increasing the fre-
quency by 166MHz, thus, the laser itself, when locked, is red-detuned by−166MHz. When the
experiment runs with 173Yb the laser branch for the spectroscopy signal propagates through a
different AOM in double passage increasing the frequency by 702MHz and, in addition, through
an electro-optic modulator (EOM) increasing the frequency by another 1.85GHz, thus, the laser
is red-detuned by a total of −2552MHz. Since the two isotope transitions described above
have a frequency difference of ∆174−173 = 2386MHz, the laser is effectively red-detuned with
respect to the 173Yb transition by−166MHz, which is the same detuning as in the case of exper-
imental operation with 174Yb. It is possible to change between the two locking schemes simply
by removing or inserting a removable mirror on a magnetic mount (RM in Figure 3.6) and by
switching the EOM on or off.
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3.2.2 1064nm Laser System

Laser radiation at 1064nm is used for three different purposes. It is used for the injection of the
in-vacuum Fabry-Perot cavity (see sections 3.1.1 and 3.3.3), for the dipole trap transporting the
atoms from the MOT chamber to the science glass cell (see section 3.3.4) and for the crossed
dipole trap (see section 3.3.4). The laser source is a Nd:YAG Mephisto MOPA from Coherent
with an output power of 42W and a linewidth below 100kHz. A scheme of the laser setup can
be seen in Figure 3.7(a).

The laser’s frequency is stabilized by a frequency lock for the in-vacuum optical cavity (see
section 3.1.1) with a standard Pound-Drever-Hall (PDH) locking technique [12] using an EOM
at 39MHz for the frequency modulation. The locking scheme can be seen in Figure 3.7(b).
An active filter splits the error signal into high-frequency components, which are sent to a PID
that acts on a piezoelectric actuator connected to the Mephisto’s seed laser for fast corrections
(100kHz bandwidth), and low-frequency components (<3Hz), which are sent to a PID that acts
on the temperature of the seed laser for slow corrections (1Hz bandwidth) and a wide range
(3GHz / ◦C). Furthermore, the power on the photodiode of the PDH signal is actively stabilized
using an additional AOM for a stable error signal, which is needed since the power on the in-
vacuum cavity is strongly tuned during the experimental cycle. More specifically, the error
signal’s AC part is used for the PDH frequency lock and the DC part is sent to the AOM in front
of the photodiode for the power stabilization. The optical fibers could be damaged by small
beam misalignments because of the very high powers involved in this setup. Therefore, all the
AOMs used before the coupling into the fibers are operated in a double-frequency mode [40] in
order to keep their temperatures stable and avoid thermally-induced misalignments.

3.2.3 759nm Laser System

In this experimental apparatus the laser radiation at 759nm has the single purpose of forming
the optical lattices in the way described in 1.1.4 (see section 3.3.5 for the implementation in the
experimental system). The wavelength of 759nm was chosen as it is the “magic” wavelength,
for which the induced light shifts on the 1S0 and the 3P0 state are exactly equal (see section 1.1.2
and Figure 1.1). The Coherent MBR 110 is a Titanium-Sapphire laser, which emits the desired
laser radiation, after it is pumped by a Coherent VERDI 18 at 532nm. The approximately 3.5W
of 759nm laser light is split into three different branches in order to produce optical lattices
along three different directions, where each branch includes an AOM (for power control) and a
fiber. Moreover, the single-mode emission of the MBR is monitored by injecting a small portion
of the 759nm light into a confocal Fabry-Perot cavity.
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(a) Main setup

(b) Pound-Drever-Hall locking setup.

Figure 3.7 – Laser setup for 1064nm radiation. See text for details. Figure courtesy of Marco
Mancini.
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Figure 3.8 – Clock laser setup. See text for details. Figure courtesy of Giacomo Cappellini.

3.2.4 578nm Laser System: the Clock Laser

Laser radiation at 578nm is needed to address the 1S0→ 3P0 clock transition (see Figure 1.6)
for one of the main subjects of this thesis, which is the realization of spin-orbit coupling with
an optical clock transition (see chapter 4). For a detailed description of this laser source with its
particular challenges see Ref. [22]. In order to address the clock transition with an ultra-narrow
linewidth Γ≈ 2π×10mHz the laser source needs to be very stable. A scheme of the laser setup
can be seen in Figure 3.8. The first stages of the setup are similar to the ones for the 399nm and
556nm lasers (see section 3.2.1). Infrared light at 1156nm is emitted by a quantum dot laser,
which is placed in a 15cm long external-cavity. For the purpose of high-bandwidth frequency
stabilization an intra-cavity EOM is included in the cavity. After SHG in a bow-tie cavity about
50mW of 578nm laser light are reached. The cavity length is stabilized by a Hänsch-Couillaud
locking technique [58] acting on a piezoelectric actuator mounted on one of the cavity mirrors.

Ultra-low-expansion glass cavity

An ultra-low-expansion glass (ULE) cavity is used as a frequency reference for the infrared
1156nm laser. The ULE cavity is injected by a small portion of the 578nm light, which is power
stabilized on 60 µW by an AOM in front of it. Because of the precision needed for a frequency
reference used for addressing an ultra-narrow clock transition (10−14 for a power-broadened
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linewidth of a few Hz), the ULE cavity is isolated from noise sources as much as possible. The
power stabilization minimizes power-induced fluctuations on the cavity resonance, for example
by radiation pressure or coating absorption (photo-thermal effect) [108]. It is surrounded by
a thermally-stabilized copper shield and placed in a vacuum chamber (10−7 mbar). The ULE
cavity, together with an EOM used for the generation of the PDH error signal, are mounted on
an anti-vibrating platform for the reduction of seismic noise and placed in a box isolating the
system from the lab environment. The PDH signal from the ULE cavity is sent to the intra-cavity
EOM (for corrections in the high frequency domain) and to a piezoelectric stack mounted on the
grating (for corrections in the low frequency domain) of the infrared laser.

Optical fiber link

The frequency stabilization described so far for the laser source still features a random residual
drift of the order of 0.1Hz/s, which prevents the work with the clock transition on time scales
longer than about 20-30 minutes without recalibration. Since typical measurements performed
in this thesis take about several hours and already small detunings from resonance have a major
impact on the measured data, as for example the loading of the dressed state (see section 4.4.1)
is very sensitive to it, a long term reference is needed. For this purpose a connection from
the Italian Metrological Institute (INRIM) in Turin to the European Laboratory for Non-linear
Spectroscopy (LENS) in Florence via a 642km long optical fiber link is exploited [28, 83]. A
1542nm laser, which is stabilized at INRIM onto the primary Cs-fountain atomic clock and
injected into the fiber, reaches the LENS laboratory and is used as a reference for a frequency
comb. Then the laser source described here is locked on the comb and thus reaches a long-term
stability that makes measurements for several hours possible [29].

3.3 Experimental Procedure

In this section the experimental procedure for the preparation of a degenerate 173Yb gas is pre-
sented.

3.3.1 Zeeman Slower

As soon as the ytterbium atoms leave the oven they are slowed down by a Zeeman slower which
uses the broadest fundamental transition, the 1S0→ 1P1 at 399nm. The radiation pressure (see
section 1.1.1) induced on the atoms by the Zeeman slower slows the atoms down from about
340m/s to a few 10m/s in a distance of 50cm before the atoms enter the vacuum chamber
of the magneto-optical trap (MOT). For this purpose the laser is aligned to propagate in the
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opposite direction than the atoms, it is σ− polarized and red-detuned by −983MHz from the
exact hyperfine transition F = 5/2→ F′ = 7/2. An inhomogenous magnetic field is then applied
to keep the atoms in resonance with the transition exploiting the Doppler-shift due to the velocity
of the atoms. There is a residual magnetic field leaking from the Zeeman slower into the MOT
chamber which is compensated by magnetic coils dedicated to this purpose, thus, once the atoms
enter the MOT chamber they are not in resonance anymore with the detuned light.

3.3.2 Magneto-Optical Trap

For the magneto-optical trap (MOT) three orthogonal laser beams at 556nm are used, which
is the wavelength of the intercombination transition 1S0 → 3P1. The MOT is operated at the
hyperfine transition F = 5/2→ F′ = 7/2 in order to avoid optical pumping into dark states.
Since this transition is quite narrow (Γ556 = 2π×182kHz), 18 sidebands are added to the laser
beam in order to increase the range of the atoms’ velocity classes that can be addressed. These
sidebands are all red-detuned with respect to the carrier frequency and separated by 600kHz to
each other. At this stage either 108 atoms of the fermionic 173Yb isotope or 109 atoms of the
bosonic 174Yb isotope can be trapped. After 20s the number of atoms trapped by this multi-
frequency MOT stage is saturated, the sidebands are turned off and the carrier frequency and
intensity are optimized for the minimization of the atom cloud’s temperature. The temperature
reached for the 173Yb isotope is T ≈ 25 µK, which is low enough to achieve an efficient transfer
from the MOT to the in-vacuum Fabry-Perot cavity.

3.3.3 In-Vacuum Fabry-Perot Cavity

The in-vacuum Fabry-Perot cavity is injected by a laser at 1064nm which is kept in resonance
by a Pound-Drever-Hall locking scheme [12]. A transfer efficiency of about 80 % is reached
with a trap depth of V0/kB ≈ 800 µK and a beam waist of w0 ≈ 300 µm. The transfer is con-
ducted by compressing the MOT and moving it to the center of the cavity’s dipole trap, which
is done by using three orthogonal compensation coils to move the position of the point where
the quadrupole magnetic field vanishes. After the successful transfer, MOT beams and mag-
netic fields are switched off and the cavity is used as a first evaporative cooling stage. For this
purpose the trap depth is exponentially lowered to V0/kB ≈ 60 µK leaving 107 atoms at roughly
T≈ 3 µK.
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Table 3.1 – Trap frequencies of the crossed dipole trap for each direction and the averaged trap fre-
quency f̄ = ( fx · fy · fz)

1/3.

fx (Hz) fy (Hz) fz (Hz) f̄ (Hz)

53.8±0.5 99.5±0.5 90.3±0.6 78.4±1.0

3.3.4 Optical Transport and Crossed Dipole Trap

The actual experiments are not conducted directly in the MOT chamber but in a glass cell with
high optical access. For the transportation of the atoms a different branch of the 1064nm laser
is used as a dipole trap, the center of which, i.e. the focus of the beam, is moved from the center
of the Fabry-Perot cavity to the glass cell using a focusing lens on the air-bearing translation
stage AEROTECH ABL 1500b. By moving the focusing lens of the beam, the strong focus
(P = 3.4W,w0 = 30 µm,V0/kB ≈ 90 µK) is shifted as well. With an efficiency of about 30 % the
atoms are transferred from the in-vacuum cavity to the transport beam by lowering the injection
power adiabatically to an idle value2. Then, the atoms are transported 26.4cm in 2.5s with an
efficiency of approximately 66%.

When the atoms arrive in the glass cell another branch of the 1064nm laser system is used to
form another dipole trap (P = 3.0W, w0 = 60µm), which is orthogonal to the transport beam.
In this crossed dipole trap consisting of two laser beams in the horizontal plane the final evap-
orative cooling stage is performed which leads to quantum degeneracy. In this cooling stage
an exponential ramp is performed for each dipole beam. For the transport beam the power is
lowered from Pinitial = 3.4W to Pfinal = 35mW with a ramp duration of Tramp = 3.5s and a ramp
decay constant of τramp = 3s. For the other beam the parameters are: Pinitial = 3.0W, Pfinal =

1W, Tramp = 6.1s, τramp = 2.95s. At the end of the evaporation 1.2× 105 degenerate 173Yb
atoms, distributed over all six nuclear spin states, are routinely obtained with a temperature of
T ≈ 0.15TF (TF ≈ 200nK). The measured characterizing trap frequencies of the final crossed
dipole trap are shown in Table 3.1.

3.3.5 Optical Lattices

For all experiments described in this thesis the degenerate atoms are loaded in a three-dimensional
optical lattice which is created by three orthogonal and retroreflected beams at a wavelength of
759nm. One of the beams is aligned with the vertical direction and the other two are in the

2The power is not lowered to zero in order to be able to keep the laser locked to the cavity for the next experimental
cycle. However, it is sufficiently lowered to enable the transport.
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Table 3.2 – Lattice beam waists w0 and trap frequencies f (s) (orthogonal to the corresponding lattice
beam direction).

Lattice 1 Lattice 2 Lattice 3

w0 (µm) 96.1 111.3 102.3

f (s) (Hz) 7.1
√

s 6.2
√

s 6.8
√

s

horizontal plane as the crossed dipole trap, one of which thereby forms an angle of 35◦ with
the transport beam. The beam powers of the lattices are actively stabilized by standard feed-
back loops and in Table 3.2 the beam waists are estimated and the measured harmonic trapping
frequencies are shown.

3.4 Nuclear Spin Manipulation and Detection

In this section the possibilities for nuclear spin manipulation and detection are presented and
explained.

3.4.1 Spin Distribution Detection

A Stern-Gerlach technique is usually used in ultracold gases experiments in order to separate
different spin components in space, thus, enabling to distinguish different spin states. Unfor-
tunately, 173Yb is strongly diamagnetic and only possesses a nuclear spin and not an electronic
spin in its ground state. Therefore, a standard Stern-Gerlach magnetic field cannot be used for
spin separation, however, the optical Stern-Gerlach effect [123, 130] can be exploited to image
spin distributions.

As already discussed in section 1.1.3 the dipole potential of laser radiation for detunings in the
order of the hyperfine splitting depends on the atom’s spin orientation mF . In the specific case
of the 1S0 (F = 5/2)→ 3P1 (F ′ = 3/2,5/2,7/2) transition, equation (1.14) becomes

Vdipole,mF =
3πc23Γ

2ω3
0

(
|C7/2,mF (q)|2

δ7/2
+
|C5/2,mF (q)|2

δ5/2
+
|C3/2,mF (q)|2

δ3/2

)
I(~r), (3.1)

where δF ′ = ω −ωF ′ are the detunings from the specific hyperfine state. The laser beam is
aligned normal to the horizontal plane and is not directly centered on the atomic cloud but
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Figure 3.9 – Spin distribution detection. The figure shows a false-color absorption image of a degener-
ate gas of 173Yb atoms after applying the optical Stern-Gerlach technique. Each gathering
of atoms corresponds to a certain nuclear spin state as denoted on the left side. For further
details see text.

with a distance in such a way that the atoms experience the maximum intensity gradient. A
square pulse of 1.25ms is used with 10mW of a σ− polarized laser beam with a detuning of
δ7/2 =−566MHz ≈−3100Γ and a waist of w0 = 60 µm in order to split the atoms of different
mF states in the horizontal plane after a time of flight (i.e. the time between releasing the atoms
from any dipole traps and the absorption imaging) of 4.5ms. The quantization axis is defined by
a bias magnetic field of 2.5Gauss along the vertical axis. An example image for the detection of
the six different spin states for 173Yb can be seen in Figure 3.9.

3.4.2 Spin Distribution Preparation

The nuclear spin components of 173Yb can be individually addressed by the narrow 1S0 (F =

5/2)→ 3P1 (F ′ = 7/2) transition when a magnetic field is applied which separates the 3P1 (F ′ =
7/2) states with ∆mF = 1 by ∆Z = 2π×595 ·BkHz/Gauss due to a Zeeman shift. The magnetic
field used for this has a value of 23 Gauss resulting in ∆Z = 2π × 13.7MHz ≈ 75Γ. Then, two
independent circular polarized beams can be used to address transitions mF → mF ′ = mF ± 1
and pump the atoms in the desired hyperfine ground sublevels (see Ref. [105] for details). With
this method a gas with basically any number of spin components between one and six can be
achieved. However, for the experiments of this thesis only the preparation of a spin-polarized
gas with only one spin component is of interest. In the experimental procedure this pumping
to certain spin states takes place just after the atoms have been transported to the glass cell and
before the evaporative cooling is performed so that the dipole trap is deep enough to contain the
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atoms during the pumping processes. In the case of the spin-polarized gas preparation evapo-
rative cooling is performed with a two-spin mixture to enable collisions between the fermions,
then an additional blast pulse is executed after the evaporation in order to eliminate atoms in one
of the two remaining spin states.

3.4.3 Spin-Selective Imaging

The Raman beams experiment described in this thesis requires the measurement of the atomic
momentum distribution of only one spin component, the mF = −1/2 of the 1S0 ground state.
The optical Stern-Gerlach (OSG) method cannot be used for this purpose, since the momen-
tum distribution measurement and the OSG technique require different time-of-flight expansion
times in the setup, in combination with the fact that the OSG beam may distort the atoms’ mo-
mentum distribution in the desired direction. Moreover, the 399nm transition is too broad to
allow for spin-selective imaging since for practically reachable magnetic fields all spin states are
always in resonance with this transition. Imaging on the 556nm transition could be considered
but the approach described below results in a significantly better signal-to-noise ratio because of
a higher photon absorption rate.

Just as for the spin distribution preparation (see section 3.4.2) a combination of pump and blast
pulses is used, but now after the actual experiment rather than before and during the first 2.5ms
of time-of-flight expansion at a magnetic field of B = 15 Gauss. The sequence of the pulses
is as follows: Atoms in the −5/2 spin state are blasted away with a resonant pulse on the
1S0(F = 5/2, mF =−5/2)→ 3P1(F ′ = 7/2, mF ′ =−7/2) transition. Atoms in the mF =+3/2
spin state are first pumped into the mF =+5/2 spin state and then blasted away with a resonant
blast pulse on the 1S0(F = 5/2, mF = +5/2)→ 3P1(F ′ = 7/2, mF ′ = +7/2) transition. Since
the spin states mF = −3/2,+1/2 are only negligible populated (as it will be clearer in section
5.1), only the mF = −1/2 spin state remains. The proper functionality of this spin-selective
imaging is checked in OSG images before each experiment.
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Clock Transition

As mentioned in section 2.1.1 there are basically two different schemes for the implementation of
spin-orbit coupling (SOC) in ultracold atomic gases using either two-photon Raman transitions
or an optical clock transition. In this chapter experimental results on the novel technique of
the latter case are reported. The specific system is described and evidences for the functioning
of the method are presented. Furthermore, advantages in comparison to other methods for the
implementation of spin-orbit coupling are pointed out.

The first proposal to use the optical clock transition in ytterbium atoms for the production of
gauge fields in superlattices was done in Ref. [43], whereas in Ref. [137] it was first proposed
that the single-photon coupling can induce a non-negligible SOC, when the two electronic states
are treated as the two possible spin projections of an effective spin-1/2 system.

4.1 Comparison to Other Techniques

Before the first experimental results are presented a short comparison of the novel technique to
other techniques for the implementation of SOC is done in this section.

One of the main advantages of using a single-photon clock transition instead of a two-photon
Raman transition is the avoidance of heating due to spontaneous emission from an intermediate
state. For example, in experiments with 40K atoms heating rates of about 0.3kBTF/(50ms) =
6kBTF/s, where TF is the Fermi temperature and kB is the Boltzmann constant, were measured
and attributed to the limitations of the Raman technique [25]. With the experimental parameters
described in this thesis (intensity of about 1 µW/(mm2)), other atomic energy levels are so
far from resonance that the calculated heating rate due to spontaneous emission is lower than
10−9kBTF/s. Such a rate is ten orders of magnitude smaller than the heating associated with the
Raman method and completely negligible. It is not even measurable in the experiment.

On the other hand, the use of a clock transition requires first of all an element, which possesses
a clock transition in the optical regime and, furthermore, it requires a highly stabilized laser
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Figure 4.1 – Sketch of the experimental setup. The atoms are confined in one-dimensional tubes with
a shallow lattice at the magic wavelength. The clock laser beam intersects the tubes under
a certain angle θ . For further details see text.

source (see section 3.2.4) in order to be able to address the very narrow transition. On the
contrary, the Raman method can be used in many more elements of the research field of ultracold
atomic gases. Even though depending on the element spontaneous emission can be more or less
influential.

Furthermore, two promising and quite different techniques for the generation of SOC exist,
which both claim to be able to avoid heating from spontaneous emission. Firstly, in Ref. [85] an
approach is proposed where Raman transitions are used to couple orbital levels in a double-well
potential, which are treated as pseudospin states. Secondly, in Ref. [126] it is proposed to use
a periodically driven magnetic field gradient to create spin-dependent tunneling in an optical
lattice and additionally use a radio-frequency coupling of the two spin states.

4.2 Characteristic Double-Peak Spectra

The first experimental evidence for the successful implementation of spin-orbit coupling is the
observation of characteristic double-peak spectra, which are connected to Van Hove singulari-
ties. In this section the results on this observation are presented with a detailed description of
the experimental setup and procedure.

A scheme of the experimental setup can be seen in Figure 4.1. An ultracold gas of spin-polarized
(mF = −5/2) 173Yb fermions is adiabatically loaded into a two lattice system.1 One lattice in

1In principle also a three lattice system with two lattices at high trapping depth would be theoretically possible
for the conducted measurements. However, in the experimental implementation the additional lattice has been
observed to cause distortions in the spectrum. Most likely because of the additional trapping potential, causing
deviations of the spectrum from the plain lattice bands shown in Figure 4.2.

50



4.2 Characteristic Double-Peak Spectra

Figure 4.2 – Band structure of the ground and excited state. The blue solid line shows the lattice
band of the ground state, whereas the green dotted line shows the lattice band of the excited
state in the first Brillouin zone. For reasons of illustration the excited band is shifted by
−δk/kL and reflected at the boundaries of the Brillouin zone leading to the solid green line.
For the solid lines the clock transitions are vertical in the momentum space picture.

the vertical direction is operated at high trapping depth s = 30. It keeps the atoms from falling
down and freezes any atomic motion along the vertical direction. This lattice is needed since
all other dipole traps are switched off in order to avoid state-dependent light shifts, whereas
the light shifts of the lattices are state-independent as the lattices are operated at the magic
wavelength (see Figure 1.1). The other lattice in the horizontal plane is at a low trapping depth
3≤ s≤ 11 so that tunneling processes along this direction are still possible (see Figure 1.4(a)).
The π-polarized clock laser hits the shallow lattice under a certain angle θ and can drive the
1S0 (mF =−5/2)→ 3P0 (m′F =−5/2) transition. For the measurements conducted here θ = 0
and only motion along the shallow lattice direction is of interest. In the general case, a ground
state atom with a certain quasimomentum k along the shallow lattice direction, defined in units
of kL in this chapter, is coupled to the excited state with a quasimomentum of k+δk/kL, where
δk = kC cosθ is the transferred momentum depending on the angle θ between the clock laser
and the shallow lattice. Thus, the clock laser couples

|g, k〉 → |e, k+δk/kL〉 . (4.1)

These transitions can be displayed in momentum space for the lowest lattice band of the ground
and excited state in a usual manner as vertical transitions when the excited band is shifted exactly
by −δk/kL and reflected at the boundaries of the first Brillouin zone (see Figure 4.2). This shift
is performed for a better visualization of the resulting spectra. In Figure 4.2 it can be seen that
the energy difference, i.e. the vertical distance, between the two solid bands depends on the
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quasimomentum k. Therefore, the spectrum broadens as the band width increases, i.e. as the
lattice is lowered. This is the first expected influence of the SOC on the spectrum. The second
observable alteration is related to the following. The density of states correlates with the gradient
of the energy bands in a way that the density of states diverges at stationary points where the
gradient is zero. These divergences are Van Hove singularities and they can be observed as peaks
in the spectrum [6]. In the case described here two peaks are expected in the spectrum for the two
transition frequencies with the highest combined density of states of the lower and higher band.
These peaks are induced by the Van Hove singularities of the individual bands but because of the
chosen momentum transfer δk the stationary points of the two bands are not directly coupled by
the clock laser. Hence, the highest combined density of states is reached between the individual
Van Hove singularities, i.e. for the minimal and maximal energy differences, which are reached
in Figure 4.2 at approximately k ' 0.8 and k '−0.2. The exact shape of the spectrum depends
on the shift of the excited band and therefore on the transferred momentum δk. In particular the
two peaks are expected to have the maximum contrast with respect to the rest of the spectrum for
δk = kL since for that case the regions with the highest density of states (the stationary points)
of the two bands are directly coupled.

4.2.1 Experimental Observation

The laser used for driving the very narrow clock transition is stabilized by the locking scheme
described in section 3.2.4, where in particular it should be noticed that a recently established fiber
link infrastructure to the Italian National Institute for Metrological Research (INRiM) [19, 29]
is exploited. For the experimental observation of the spectra the clock laser is aligned with
the shallow lattice (θ = 0) leading to a momentum transfer of δk = 1.31kL. The clock laser
illuminates the atoms for an interrogation time between 100ms and 800ms which is long enough
to be in the incoherent regime, where Rabi oscillations can be neglected, which would otherwise
influence the spectrum strength as the Rabi frequency ΩRabi depends on the detuning ∆Rabi from
resonance:

ΩRabi =
√

ΩRabi,0 +∆Rabi, (4.2)

where ΩRabi,0 is the Rabi frequency on resonance.

The experimental results are shown together with the theoretical predictions on the single-
particle level in Figure 4.3(b) for different lattice depths sx starting from the Lamb-Dicke regime
to an increasingly shallower lattice from top to bottom. The broadening of the spectrum can be
calculated as follows.

The two lattice bands can be described by the two cosine functions [6]

−2t cos(k) and −2t cos
(

k+
δk
kL

)
. (4.3)
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4.2 Characteristic Double-Peak Spectra

(a) Single spectrum. Clock transition spectrum
in a lattice with s = 3, t = 2π×220Hz and δk =
1.31kL.

(b) Spectra in dependence on the lattice depth. Clock
transition spectra for different lattice depth. Data sets with
s≥ 4 have been offset vertically for the sake of presentation.

Figure 4.3 – Clock transition spectra. The plots show the number of atoms remaining in the ground
state after a 800ms interrogation time. The horizontal axes show the detuning with respect
to the center of the spectra. The points are averages over multiple measurements and the er-
ror bars are standard deviations. The solid lines are the result of a single-particle theoretical
model.
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4 Spin-Orbit Coupling with an Optical Clock Transition

Their energy difference is

∆E = ω0 +2t
(

cos(k)− cos
(

k+
δk
kL

))
, (4.4)

where ω0 is the resonance frequency in the Lamb-Dicke regime and for the following ω0 is set
to be zero. Using the identity

cos(x)− cos(y) =−2sin
(

x+ y
2

)
· sin
(

x− y
2

)
(4.5)

∆E becomes

∆E = 4t
(

sin
(

k+
δk
2kL

)
· sin
(

δk
2kL

))
. (4.6)

The minimum and maximum energy difference ∆Emin and ∆Emax are then

∆Emin =−4t
∣∣∣∣sin
(

δk
2kL

)∣∣∣∣ and ∆Emax = 4t
∣∣∣∣sin
(

δk
2kL

)∣∣∣∣ . (4.7)

Therefore, the total broadening of the spectrum is 8t|sin(δk/(2kL))|, which can be seen in Fig-
ure 4.3. The spectra for s ≥ 4 are vertically displaced for the sake of presentation. In order to
demonstrate how evident the two emerging peaks are, the strongest signal for s = 3 is addition-
ally shown in a separated plot in Figure 4.3(a).

In the experiment the resolution of the two peaks and the spectrum in general is limited to the
linewidth of the spectroscopy peak in the Lamb-Dicke regime (see section 1.3) since it reflects
how well a precise2 transition frequency can be resolved. The resolution limit is not determined
by the natural linewidth of ≈ 10mHz and also the contribution due to the finite coherence time
of the laser, which is below 50Hz, is not the main constraint. Instead, the resolution is mostly
limited by a power broadening as the laser is operated at a power of a few 100nW with a spot size
of approximately (600−800)µm and the saturation intensity for the transition is 260pW/cm2.
Therefore, the spectroscopic resolution function can be approximated with a power-broadened
Lorentzian line profile with a full width at half maximum of ≈ 340Hz derived from a fit to the
spectrum at s = 28 in Figure 4.3(b). Because of this limited resolution the measured spectrum
is the convolution of the theoretical curve (assuming perfect resolution) and the experimental
spectroscopic resolution function.

The observed spectroscopy peaks indicate the successful implementation of momentum-transferring
transitions and are a first signature of SOC according to Ref. [137].

2The Lamb-Dicke regime in the case described here at s = 28 features lattice bands of < 10Hz, which is flat
with respect to the experimental resolution, i.e. the transition frequency is defined much more precise than the
resolution limit.
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4.3 Synthetic Magnetic Flux

Figure 4.4 – System scheme. Using the synthetic dimensions approach the internal state of the atoms
can be treated as a synthetic dimension with the two lattice sites: g and e. The clock
transition then describes hopping along this direction with the amplitude Ω/2 · exp(iφ j).
The lattice site-dependent phase factor leads to a uniform synthetic magnetic flux φ piercing
the effective two leg ladder system.

4.3 Synthetic Magnetic Flux

In this section the system used for the generation of SOC is described in more detail and particu-
larly it is explained how the synthetic dimensions approach can be exploited to create a synthetic
magnetic field.

The concept of synthetic dimensions (see section 2.2.2) can be exploited to treat the internal
state of the atoms, i.e. the |g〉 and |e〉 state which can be seen as pseudo-spin states |↑〉 and |↓〉,
as an extra dimension with only two lattice sites. Within this picture the driving of the clock
transition can be seen as a hopping along the synthetic dimension with the complex amplitude
Ω/2exp{iφ j} which depends on the lattice site j along the real dimension. In total, instead of
a one-dimensional system an effective two-dimensional system is realized which looks like a
two-leg ladder (see Figure 4.4). The Hamiltonian describing this system can be derived from
the general Harper-Hofstadter Hamiltonian (2.11) and is called the Harper-Hofstadter ladder
Hamiltonian:

H =−h̄

(
t ∑

j,α
c†

j,αc j+1,α +
Ω

2 ∑
j

eiφ jc†
j,ec j,g

)
+H.c. (4.8)

where t is the tunneling amplitude along the real dimension and c†
j,α (c j,α ) are fermionic creation

(annihilation) operators on the site ( j,α) in the real ( j) and synthetic (α = e, g) dimension. The
phase φ in the complex phase factor exp{iφ j} of the synthetic tunneling is the Peierls phase
(see section 2.2.1) which leads to a behavior of the atoms on the two-leg ladder as if an external
magnetic field were piercing it. Therefore, in this system the physics of a two-dimensional
fermionic gas exposed to a (strong) magnetic field at ultralow temperature can be studied.

As already mentioned in 2.2.2 the synthetic dimensions approach distinguishes it from other

55



4 Spin-Orbit Coupling with an Optical Clock Transition

schemes for creating synthetic magnetic fields by the sharp boundaries in the synthetic dimen-
sion, which make the observation of chiral edge currents particularly simple (see section 4.4).

4.4 Chiral Currents

In this section the observation of chiral currents is described, which is the second strong evidence
for the successful implementation of SOC in the system. This type of proof was already used
in a previous work of this laboratory (see Ref. [91]). The occurrence of chiral currents also
demonstrates the close relation to non-trivial topological quantum states as the quantum Hall
effect and the quantum spin Hall effect (see section 2.3.1).

As described above the dressed states of the combined system consisting of the atoms and the
clock laser is described by the Harper-Hofstadter ladder Hamiltonian (4.8). The dispersion re-
lations of the dressed energy bands can be calculated by transforming the Hamiltonian into
momentum space and diagonalizing it. The results are shown in Figure 4.5(a) for a transferred
momentum δk = 1.31kL in the limit of zero coupling Ω→ 0 (dotted lines) and for Ω = t (thick
lines) after a gauge transformation. The colors of the thick lines indicate the state composition,
with the ground state represented in blue and the excited state represented in green. As it can be
seen in Figure 4.5(a), the momentum distributions of the ground state atoms for the case with
SOC and without SOC are different. Without SOC the atoms have a symmetric distribution
around k = 0, whereas with SOC the distribution of the ground state atoms in the lowest dressed
band features an asymmetry starting at a certain Fermi energy level, which depends on the cou-
pling strength Ω and the transferred momentum δk. For a fully occupied lowest dressed band
and for no population in the higher dressed state it can be seen in the band structure that the mo-
mentum distribution of the ground state atoms is centered around a finite momentum k 6= 0. This
means that on the average the atoms move towards a preferred direction. For the excited state
atoms the behavior is exactly the opposite, which can be understood in terms of the symmetry of
the SOC. The result of this momentum distribution in the picture of the two-leg ladder is that the
atoms on the lower leg (ground state) move in one direction, whereas the atoms on the upper leg
(excited state) move in the opposite direction. This behavior is illustrated in Figure 4.5(b) and
describes currents of atoms moving in the two-dimensional system in a chiral way. This is the
reason why the presence of SOC in the described system is expected to feature chiral currents in
contrast to the case without SOC.
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(a) Band structure of the dressed system. The plot shows
the lattice bands of the bare system (dashed lines) and of the
dressed system (solid lines) after a gauge transformation (equa-
tion (2.3)). The colors indicate the state decomposition, with
the ground state represented in blue and the excited state rep-
resented in green. Experimental parameters: t = 2π × 138Hz,
Ω = 2π×590Hz.

(b) Chiral currents in the two-leg ladder. The figure
shows an illustration of the chiral currents corresponding to
Figure 4.5(a). As the arrows indicate, atoms on the lower leg
move on the average in negative x̂ direction, whereas atoms
on the upper leg move in the opposite direction.

Figure 4.5 – Prediction of chiral currents. The two figures illustrate why chiral currents are expected
to occur in the spin-orbit coupled system and how they can be imagined in the two-leg
ladder.
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4 Spin-Orbit Coupling with an Optical Clock Transition

4.4.1 Measurement Procedure and Experimental Observation

The description of the measurement procedure in this section begins at the point where a spin-
polarized, degenerate Fermi gas is trapped in the science glass cell. The scheme for reaching
this stage of the experimental cycle is described in chapter 3.

One-Dimensional Tubes

The Fermi gas is adiabatically loaded into one-dimensional tubes along one lattice direction
which will be in general referred to as the x direction. This is achieved by an exponential ramp
on the intensity of the three lattice beams. The lattices in the y and z direction are ramped up
to an intensity corresponding to sy ≈ sz ≈ 20 and the lattice along x to sx = 6, which is deep
enough to validate the tight-binding approximation (see section 1.3.1) but sufficiently low to
allow tunneling processes. Therefore, atoms are only allowed to tunnel along x and can be
treated as trapped in one-dimensional tubes.

As soon as the ramps on the lattices are completed, the crossed dipole trap, which was holding
the atoms so far, consisting of the transport beam and the dipole trap beam (see section 3.3.4),
is adiabatically turned off with a linear ramp. Otherwise, during the measurements the crossed
dipole trap would influence the resonance frequency of the clock transition and atoms would
see different confining potentials depending on their state. Moreover, confinement potentials are
avoided as much as possible as they limit the number of lattice sites reachable by hopping. The
lattice beams are strong enough to trap the atoms without the assistance of the dipole trap and do
not influence the measurements like the crossed dipole trap would, since the lattices are operated
at the magic wavelength (see section 1.1.2).

Adjustment of the Rabi Frequency

The chiral currents signal depends on how strong the ground and excited state of the clock
transition are coupled. The physically relevant quantity for this is the Rabi frequency ΩRabi (see
equation (1.34)), which is directly measurable by acquiring the population of ground state atoms
after various interrogation times with the clock laser. A typical example of such a measurement
is shown in Figure 4.6. Before each chiral currents measurement, firstly, ΩRabi is determined by
the best fit of a cosine function to the data points and, secondly, the frequency is accordingly
adjusted. The adjustment is performed by a correction of the clock laser power Pclock, which is
possible because of the following relation between the two quantities:

ΩRabi ∝
√

Pclock, (4.9)

where equation 1.34 has been used.

58



4.4 Chiral Currents

t [ms]

N
um

be
ro

fg
at

om
s

[1
03 ]

Figure 4.6 – Rabi frequency measurement. The figure shows a typical Rabi frequency measurement
of the clock transition.

Loading of the Dressed States

The atoms in the one-dimensional tubes are adiabatically loaded into the lowest dressed state of
the final system, which includes the permanent presence of the clock beam. This is achieved by
a ramp on the detuning ∆ramp of the form

∆ramp = ∆0

(
1− 1− exp−t/τ

1− exp−T/τ

)
, (4.10)

which is very similar to an exponential ramp but ensures that at the end of the ramp (t = T )
∆ramp = 0. A typical set of parameters are: initial detuning ∆0 = 2π×8kHz, duration of the ramp
T = 15ms and τ = 4.5ms.3 During this ramp the atoms are always kept in the instantaneous
eigenstate of the system with the lowest energy which is the lowest dressed state.

The successful loading of the dressed state is always experimentally verified before the actual
measurement is performed. This is done in terms of an observation of the ground state population
which must be around half the population observed in the initially prepared spin-polarized gas
and which must be stable in time. The stability in time of the ground state population is required
in order to make sure that the loading procedure leads to an eigenstate of the Hamiltonian. The
time stability is investigated by keeping the clock beam on at resonance for various times after
the ramp is completed. Furthermore, it is verified that the full population can be transferred back

3These values can slightly differ from measurement to measurement depending on the best results of the verification
procedure of the successful loading of the dressed state described below.
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4 Spin-Orbit Coupling with an Optical Clock Transition

to the ground state with a loading ramp and an unloading ramp directly performed after one
another. An example for such a verification can be seen in Figure 4.7, where the three different
cases are displayed: population of ground state atoms without loading the dressed state, with
the loading of the dressed state and with the loading followed by an immediate unloading of
the dressed state with the reverse frequency ramp. This proves that the system is still coherent
after the loading and that the missing atoms in the ground state population is not a loss of atoms
but indeed caused by the successful loading of the dressed state. Unfortunately, with the current
setup of the experiment it is not possible to image the excited state, however, there are plans to
include an imaging system for the 3P0 state in the near future. Since there is no closed transition
present for the excited state, in order to be able to image it, two additional laser sources would be
needed to repump the atoms into the ground state before the actual imaging. For further details
on this subject see Ref. [39]. The observation of both states would be an even clearer evidence
for the successful loading of the dressed state.

Band-Mapping and Imaging

When the loading into the lowest dressed state is completed, a band-mapping procedure starts,
where the atoms are adiabatically (i.e. conservation of the quasimomentum) unloaded from the
three-dimensional lattice and the quasimomentum of a particle in a Bloch state is converted
into a kinetic momentum in free space [50, 72, 77]. After a time of flight (TOF) of 23ms the
ground state atoms are imaged with an absorption spectroscopy using the 1S0→ 1P1 transition
at 399nm, where the position of the atoms resembles their initial momentum, thus, the images
show the momentum space distribution of the atoms (see Figure 4.9 for an example).

With this procedure the atoms of all the one-dimensional tubes are detected together in ab-
sorption spectroscopy, this means that it is not possible to distinguish between different tubes.
Therefore, in the theoretical calculations the total spectroscopy signal, consisting of all occupied
tubes, needs to be accounted for. The number of tubes containing the same number of particles
can be assumed to be constant up to the highest number of particles, which is reached in the
central tube. This statement can be verified by the following consideration.

When temperature effects are neglected, the single tubes are filled with particles up to the Fermi
energy. The trapping potential V determines how many particles can populate a tube until the
Fermi energy is reached. For example, 10 particles can populate a tube with V <V1 and only 9
particles can populate a tube with V1 < V < V2. The potential difference between two adjacent
potential boundaries Vα+1−Vα , where α ∈ N, can be denoted as ∆V and has a fixed value. The
question is, how many tubes hold the same number of particles, i.e. how many tubes are localized
in the area between two adjacent potential boundaries. The trapping potential is assumed to be
well approximated by a harmonic potential within the area, where the dipole potential is strong
enough to prevent the atoms from falling down. In addition, the trapping potential is assumed to
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4.4 Chiral Currents

(a) Without loading of the dressed state. Number of ground state
atoms ≈ 14,200

(b) After loading of the dressed state. Number of ground state atoms
≈ 8,200

(c) After loading and unloading of the dressed state. Number of
ground state atoms ≈ 15,900

Figure 4.7 – Coherence check for the dressed state. The figures show a typical representation of the
experimental verification method used to determine, whether the coherence of the system
is preserved when the dressed state of the system is adiabatically loaded. The right part of
the figures shows the false-color absorption images after a time of flight of 23ms. The left
part of the figures shows the integrated signal along the horizontal direction of the images
on the right. The higher the peak the more atoms are present. The number of atoms is
determined by finding the best fit of the atom distribution function to the integrated signal
with the atom number as a fit parameter.
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V = 1
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(a) Harmonic potential. The harmonic poten-
tial is divided into zones with the same potential
difference ∆V .
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r3
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A = π
(
r2

2− r2
3
)

(b) Area calculation. The figure illus-
trates the area calculation of the different
zones with constant ∆V as done in equa-
tion (4.12).

Figure 4.8 – Calculation illustration. The figures show an illustration of the considerations leading to
a constant number of tubes with the same number of particles up to the highest number of
particles reached in the central tube.

be symmetric with respect to rotation around the x-axis. Hence, radii rα in the plane orthogonal
to x can be defined as corresponding to the boundary potentials Vα and two adjacent radii fulfill
the relation

1
2

mω
2 (r2

j+1− r2
j
)
= ∆V = constant, (4.11)

where m is the mass of a particle and ω its oscillation frequency in the harmonic potential (see
Figure 4.8(a)). The area enclosed by these two adjacent radii is (see Figure 4.8(b))

A = π
(
r2

j+1− r2
j
)
= 2π · constant

mω2 = constant. (4.12)

The area for all tubes with the same number of particles is constant regardless of the number of
particles and the spacing between the tubes is determined by the transverse lattices and, thus,
also constant. Therefore, the number of tubes with the same number of particles is constant up
to the highest number of particles reached in the central tube.

Experimental Observation

For the experimental observation of the chiral currents TOF images of the ground state atoms for
a fully occupied lowest dressed band and no population in the higher dressed band are analyzed.
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4.4 Chiral Currents

(a) TOF images. The figure shows false-color absorption
images after a TOF of 23ms.

(b) Momentum distribution function. ng(k) is renormalized to∫
ng(k)dk = 1 after the TOF images have been integrated along

the vertical direction.

(c) Asymmetry function. The asymmetry function defined as
hg(k) = ng(k)−ng(−k) shows the most evident signal for the hor-
izontal displacement of the atoms in momentum space, i.e. for the
chiral currents.

Figure 4.9 – Chiral currents detection. The six figures illustrate the experimental detection of chiral
currents. While the figures on the left show the case without SOC (Ω= 0), the figures on the
right show a case example with SOC: Ω = 2π×590Hz, φ = 0.58π . The left figures serve
as a reference to determine the center of the first Brillouin zone at k = 0, whereas the right
figures show a chiral current signal manifested in an asymmetry of the atoms’ momentum
distribution and in a displacement of the atoms’ center of mass along the x̂ direction. The
chiral current signal becomes more and more evident from the top figures to the bottom
figures.
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Several images are taken for each measurement and the signal is averaged to a single image.
Reference images without the presence of the clock laser (Ω = 0) are taken in order to determine
the center of the Brillouin zone at k = 0. This reference case is shown in the three subfigures
of the left column in Figure 4.9, whereas an example measurement with the clock laser present
(Ω = 2π × 590Hz) and a magnetic flux of φ = 0.58π is shown in the three subfigures of the
right column. The first top figures show the averaged TOF images, the middle figures show the
momentum distribution ng(k) of the ground state atoms, which is normalized to

∫
ng(k)dk = 1

after integration along the vertical direction and the bottom figures show the asymmetry function
defined as hg(k) = ng(k)− ng(−k). As mentioned above k is defined in units of kL. From
top to bottom the discrepancies between the two columns become clearer, i.e. in the bottom
row the displacement of the ground state atoms momentum distribution to the right side is the
most evident. This means, that the atoms are not centered around k = 0 but around a positive
momentum k > 0, thus, on the average the ground state atoms move towards positive x̂ direction.
Hence, the system with SOC features chiral currents (assuming the opposite behavior for the
excited state atoms, which as mentioned above cannot be imaged due to technical reasons).

4.4.2 Higher Dressed State

A further evidence for the correct interpretation of the experimental results is the loading of
the higher dressed state, which in case of a correct theoretical understanding of the experimen-
tal system should feature a complementary momentum distribution with respect to the lowest
dressed state’s distribution. This can be seen in the band structure of the dressed bands in Figure
4.5(a), where the blue part of the higher dressed state fills exactly the momentum space of the
first Brillouin zone, which is not covered by the blue part of the lowest dressed band.

The higher dressed state can be loaded, when the frequency ramp on the clock laser (see equation
(4.10)) is inverted in the sense that the sign of the initial detuning is reversed (∆0→−∆0) so that
in the picture of the Bloch’s sphere the Bloch vector initially points in the opposite direction than
for the lower dressed state. However, it is not sufficient to only perform this inversion since there
is a blue sideband present in the spectrum corresponding to a transition from the lowest lattice
band of the electronic ground state |g0〉 to the first excited lattice band of the electronic excited
state |e1〉 and the distance of this blue sideband to the actual resonance for typical measurement
parameters is lower than the initial detuning for the dressed state loading procedure. This is
not a problem for the loading of the lowest dressed state since |g1〉 is not initially populated
(which is tested in TOF images, where only the first Brillouin zone is occupied) and therefore a
|g1〉 → |e0〉 transition cannot occur. This problem is solved by increasing the lattice depth of the
shallow lattice to sx = 20 when the loading of the lattices is performed. Then at the same time
the dressed state is loaded and the lattice is decreased to sx = 6 using the same ramp parameters.
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x̂−→
(a) Lowest dressed state

x̂−→
(b) Higher dressed state

Figure 4.10 – TOF images of the dressed states. The figures show the false-color absorption images
of the two dressed states after a TOF of 23ms.

At high lattice the blue sideband has a sufficiently large distance to the resonance in order not to
interfere with the higher dressed state loading.

The averaged TOF image of the higher dressed state together with an averaged TOF image of
the lowest dressed state for the same experimental parameters is shown in Figure 4.10. The
complementary population of the first Brillouin zone can be recognized. Hence, this supports
the correct understanding and interpretation of the experimental system.

4.5 Tunability of the Magnetic Flux

Even more interesting than the pure occurrence and observation of chiral currents associated
with a certain magnetic flux in the system, is the fact that the magnetic flux is tunable and that it
is, thus, possible to probe the chiral currents as a function of the magnetic flux.

It is possible to conduct chiral current measurements for different values of the magnetic flux

φ = π
δk
kL

= π
kC

kL
cosθ (4.13)

by changing the angle θ between the clock laser and the shallow lattice. Therefore, a system
with a fully tunable flux in the regime −1.31π ≤ φ ≤ 1.31π is realized. The sign of φ is only
a matter of definition and the limit of |φ | ≤ 1.31π is given by the maximum of the transferred
momentum in the current setup δkmax = kC = 1.31kL. Theoretically this limit could even be
expanded by changing the effective lattice spacing d by changing the angle between the shallow
lattice and the other two lattices. However, when the periodicity of the Harper-Hofstadter ladder
Hamiltonian (4.8) H(φ) = H(φ + 2π) is taken into account the whole range of 0 ≤ φ ≤ 2π is
already accessible.
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(a) Chiral currents in a lattice.

(b) Chiral currents in free space.

Figure 4.11 – Chiral currents as a function of the magnetic flux. The plots show the chiral currents
function J =

∫ 1
0 hg(k)dk as a function of the magnetic flux φ in a lattice (upper figure)

and of the corresponding transferred momentum δk/kL in free space (lower figure). The
horizontal scales of the two plots coincide as φ/π = δk/kL (see equation (4.13)). The data
points are partially averages over several single measurements and the error bars are the
standard deviation calculated of five individual measurements for φ = 1.31π . The solid
line in the upper figure is a theoretical calculation on the single-particle level (see section
4.5.2).
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In order to be able to probe the chiral currents as a function of the magnetic flux, the ability to
quantify the chiral currents is needed. For this purpose, the chiral currents function J is defined
as

J =
∫ 1

0
dk hg(k). (4.14)

The function can evaluate the strength and direction of the currents. The results for the mea-
surements of J as a function of the flux φ can be seen in Figure 4.11(a). They show a very good
agreement with a theoretical calculation on a single-particle level based on the exact diagonal-
ization of a system of fermions in the two-leg ladder. In particular, the inversion of the currents
for φ > π is notable and can be qualitatively understood by the symmetry of the system imposed
by the boundaries of the first Brillouin zone (see Figure 4.5(a)). As a proof that this symmetry
feature is imposed by the lattice, measurements without the lattice along the one-dimensional
tubes were conducted for a transferred momentum δk corresponding to φ < π and φ > π (it is
not possible to define a flux for a system without a lattice). The relation between flux and trans-
fered momentum is expressed in equation (4.13), in particular, φ = π equals δk = kL. In free
space J does not show a change in sign as shown in Figure 4.11(b). The successful reproduction
of the fundamental symmetry of the system supports the interpretation described in this thesis of
the observed physics. Furthermore, in order to check that the measurement procedure works as
expected it was verified that the measured J is the same for an exact opposite alignment of the
clock laser beam.

For the alteration of the magnetic flux, it is necessary to change the laser alignment. Therefore, in
comparison to the use of two Raman beams, the technique described in this thesis for generating
SOC with an optical clock transition has the major advantage, that an alignment of a single beam
is much simpler than an alignment of two beams. This fact makes the measurement described
in this section experimentally accessible in the first place. Moreover, it is emphasized that such
an additional degree of freedom in the adjustment possibilities of quantum system properties is
highly valuable in the context of using ultracold atomic gases for quantum simulation.

4.5.1 Experimental Observation

In order to be able to compare the measurements at different flux the Rabi frequency for each
alignment is measured and the power of the clock laser is adjusted accordingly (see also 4.4.1).
An example for such a measurement can be seen in Figure 4.6. Five different alignments of the
clock laser beam are realized leading to ten data points as for each alignment both of the two
lattice beams in the horizontal plane can be successively used as the shallow lattice, whereas the
vertical lattice always needs to be at high trapping depth in order to overcome the gravitational
force on the atoms. The data points are partially averages over several single measurements and
the vertical error bars are the standard deviation calculated of five individual measurements for
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φ = 1.31π , whereas the horizontal error bars are an estimation of the uncertainty on the measured
angle θ . Since there is no physical reason for the error on J to depend on φ (or δk respectively),
it is assumed that the error for φ = 1.31π resembles the error for all measurements.

4.5.2 Theoretical Model

For the theoretical model a single-particle two-leg ladder system of fermions with two lattice
sites in one direction and 50 lattice sites in the other direction is considered. The number of sites
along the real direction is larger than the number of sites which are effectively populated be-
cause the harmonic confinement4 is taken into account. Moreover, it is considered that the TOF
images are a summation over many inhomogeneously filled one-dimensional tubes as described
in 4.4.1 and that therefore the measured chiral currents are an average over these tubes. For the
calculations shown in Figure 4.11(a) the Harper-Hofstadter ladder Hamiltonian (4.8) is exactly
diagonalized and a finite temperature is included, the value of which is fitted to the experimental
data leading to T = 0.6 h̄t/kB. The shape of the theoretical curve is robust against fine tuning
of the underlying parameters and that in particular the inversion of the flux at φ = π and the
symmetric behavior with respect to that point is determined by the fundamental symmetries of
the system dictated by the lattice.

4.6 Summary

In this chapter a novel technique for the implementation of spin-orbit coupling in ultracold
atomic gases was described and experimental results were reported. In this framework, sev-
eral evidences for the functioning of the method were presented, such as the observation of
characteristic double-peak spectra, which are connected to Van Hove singularities, and direct
measurements of chiral edge currents. Furthermore, various experimental results support that the
interpretation of the observed physics is correct: The higher dressed state’s momentum distri-
bution is complementary to the distribution of the lowest dressed state as theoretically expected
and fundamental symmetries of the system dictated by the lattice could be reproduced and it
could be shown that they are indeed caused by the lattice.

It was mentioned that the presented method avoids the necessity of an intermediate state far
from resonance, which can induce heating and loss of coherence, and it was emphasized that the
method features an unprecedented tunability of the magnetic flux, which has a high application
potential in quantum simulation. Altogether, the results in this chapter offer new possibilities for

4The harmonic confinement is only considered for the direction along the many lattice sites as it is the case in the
experimental setup.
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4.6 Summary

the investigation of topological quantum phases with ultracold quantum gases. Perspectives for
the method presented in this chapter are presented in 5.6 in combination with perspectives for
the results in chapter 5.
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5 Groundwork for the Investigation of
Interaction Effects

In this chapter groundwork is conducted on how interactions between particles influence chiral
currents. For this purpose, two-photon Raman transitions are used to couple different spin states
of the ground state manifold. This approach was already characterized and investigated in detail
in this laboratory (see Ref. [91, 93]). In principle the methods described in the following could
also be implemented with the clock transition but the Raman approach is preferred because of
the more extensive experiences with it.

For the investigation of interaction effects in ultracold Fermi gases, the Pauli exclusion principle
needs to be considered, which forbids interactions between indistinguishable fermions. In par-
ticular, for interactions between different internal states, which are in principle distinguishable,
the preparation of the state mixture needs to be taken into account. When the gas is originally
prepared in a single state and then excited by a uniform coherent laser, the atoms evolve in-
distinguishable and the two-atom correlation function at zero distance remains to be zero, i.e.
no interactions occur [20]. In this thesis it is assumed that the Raman transition does not leave
the fermions indistinguishable because of the atoms’ kinetic energy term in the lattice, which
causes a momentum dependent detuning and leads to different time evolutions of the internal
state of each fermion. Therefore, the fermions become distinguishable. However, in strongly
interacting phases as Mott-like phases the adiabatic state preparation is more challenging and is
an important, yet unresolved issue, which needs further investigation but which is not subject of
this thesis and, thus, not further discussed.

5.1 Setup of the Experiment

The experimental setup for the Raman transitions is described in detail in Ref. [93]. In this
section only the most relevant facts and parameters are listed.

Two Raman beams, with σ+ and σ− polarization components, are used to couple the −5/2
and the −1/2 nuclear spin states of the ground state manifold 1S0 with a two-photon Raman
transition (see Figure 5.1). The Raman beams are detuned from the (3P1, F′ = 7/2) state by
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−5/2 −3/2 −1/2

+1/2 +3/2 +5/2
1S0

3P1

σ+

σ−

F′ = 3/2
F′ = 5/2

F′ = 7/2
∆

Figure 5.1 – Two-photon Raman transition scheme. Two Raman beams, with σ+ and σ− polarization
components, are used to couple the −5/2 and the −1/2 nuclear spin state of the ground
state manifold 1S0 with a two-photon Raman transition. The Raman beams are detuned
from the (3P1, F′ = 7/2) state by ∆ = 2π × 1.876GHz. Furthermore, a magnetic field of
B = 153Gauss is applied leading to a Zeeman shift of ∆Z = 2π×32kHz for ∆m = 1 in the
1S0 state.

∆ = 2π × 1.876GHz. Furthermore, a magnetic field of B = 153Gauss is applied leading to a
Zeeman shift of ∆Z = 2π × 32kHz for ∆m = 1 in the 1S0 manifold. The Raman beams induce
a spin state-dependent light shift (see section 1.1.3), which pushes the +3/2 spin state out of
the Raman resonance. Otherwise three different spin states would be coupled leading to a more
complex system, which is undesired in the experiments described in this chapter but was previ-
ously realized and analyzed in this laboratory (see Ref. [91, 93]). The angle between the beams
is about 19◦ and the angle between the direction of the transfered momentum and the horizontal
lattices are 35◦ and 55◦ , which leads to possible magnetic fluxes of φ = {0.26π,0.37π} but
only the higher flux of φ = 0.37π is used in the measurements described in this chapter.

5.2 Measurement Procedure

Since each measurement in this chapter is based on the detection of chiral currents, this section
is used to describe the main measurement procedure for their observation and variations are
explained directly in the respective sections. The occurrence of chiral currents for the Raman
method has the same origin as for the clock transition method, which is described in section 4.4,
since the theoretical description is independent of the experimental implementation (see section
2.1.1). In addition, the measurement procedure is very similar to the one with the optical clock
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Figure 5.2 – Rabi frequency measurement. The figure shows a typical Rabi frequency measurement
of the Raman transitions. The colors denote the different spin states: −5/2 (blue), −1/2
(red) and +3/2 (green). The dotted lines are fitted cosine functions used to extract the Rabi
frequency.

transition (see section 4.4.1). Hence, only alterations are pointed out. Again, the description
begins at the point where a spin-polarized, degenerate Fermi gas is trapped in the science glass
cell. The scheme for reaching this stage of the experimental cycle is described in chapter 3.

One-dimensional tubes with sy ≈ sz ≈ 30 and 4 ≤ sx ≤ 12 are accomplished in the same way
as in the last chapter and again the shallow lattice is flat enough to allow tunneling but deep
enough to be in the tight-binding regime. Moreover, the measurements with the Raman beams
have also the necessity of adjusting the Rabi frequency by beam power corrections and again
the Rabi frequency is determined by the best fit to a Rabi oscillation measurement as shown in
Figure 5.2.

Loading of the Dressed States

The procedure for the loading of the dressed states is quite different for the Raman method in
comparison to the clock transition approach since the coupled states are different.

The dressed state is loaded with the same ramp (equation (4.10)) but in this case on the detuning
of the second Raman beam instead of the clock laser’s detuning. A typical set of parameters
is: ∆0 = 5.2kHz, T = 5ms, τ = 1.2ms for sx = 6 and each Raman beam with a power of
30 µW. However, the specific ramp parameters depend on ΩRabi since the loading needs to be
slow in comparison to 1/ΩRabi and a higher ΩRabi results in a larger linewidth, which makes an
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Figure 5.3 – Theoretical spin composition. The plot shows the characteristic spin compositions of the
lowest dressed state in dependence on ΩRabi/tx for a fully populated lowest dressed band
in the first Brillouin zone neglecting the harmonic confinement. The colors denote the
different spin states: −5/2 (red), −1/2 (green) and +3/2 (blue). Adapted from Ref. [93].

(a) After loading of the
dressed state.

(b) After loading and unload-
ing of the dressed state.

Figure 5.4 – Coherence check for the dressed state. The figures illustrate the coherence verification
procedure for the loading of the dressed state (see text). They show false-color absorption
images of the atoms’ spin compositions on the right side and the corresponding signals,
integrated along the horizontal direction, on the left side, respectively. The three most
evident gatherings of atoms in both images correspond from top to bottom to atoms in the
+3/2, −1/2 and −5/2 spin state. The fitted red curves in the integrated signals are of
no interest for the coherence verification and can be ignored. The used parameters are:
ΩRabi/tx = 3.7, ∆0 = 5.2kHz, T = 5ms, τ = 1.2ms for sx = 6 and each Raman beam with
a power of 30 µW.
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Figure 5.5 – Time stability check for the dressed state. The figure illustrates the time stability verifica-
tion of the spin state composition after the dressed state loading (see text). The normalized
population ratio of each spin component is displayed as a function of the holding time t
with the Raman beams at resonance after the loading ramp is completed. The blue line
corresponds to the relative population of the −1/2, the red line to the −5/2 and the green
line to the +3/2 spin state. The parameters are: ΩRabi/tx = 3.7, ∆0 = 5.2kHz, T = 40ms,
τ = 16ms for sx = 6 and each Raman beam with a power of 30 µW.

adjustment of ∆0 necessary. In this chapter the ratio ΩRabi/tx is usually fixed. Therefore, the
required ramp parameters change, when tx, determined by the chosen sx, changes.

The successful loading of the dressed state is always experimentally verified before the actual
measurement is performed. The dressed state has a characteristic composition of the different
spin components depending on the ratio ΩRabi/tx as shown in Figure 5.3 for a fully populated
lowest dressed band in the first Brillouin zone neglecting the harmonic confinement. In order
to make sure that the atoms are indeed in the dressed state, it needs to be confirmed that coher-
ence is not lost during the ramp and that the characteristic spin composition is stable in time,
i.e. the system is in an eigenstate. The coherence is tested by performing the same ramp in the
opposite direction and checking if the initial spin distribution (all atoms are in the −5/2 spin
state) can be restored which must be the case in the coherent regime. A representative image
of the spin composition of the dressed state after the loading and after the unloading with the
inverse ramp can be seen in Figure 5.4. The time stability of the composition is investigated by
keeping the Raman beams on at resonance for various times after the ramp is completed. In the
case of the true dressed state the spin distribution does not oscillate, since the system is in an
eigenstate. In Figure 5.5 an example of such a verification measurement is shown, in which the
population of the +3/2 spin state is slightly increased in comparison to the theoretical calcula-
tions in Figure 5.3. This is mainly caused by imperfections in the Raman beams’ polarizations,
which increase the coupling strength to this spin state. Nonetheless, the time stability of the
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Table 5.1 – Experimental access of relevant parameters. The table shows the relevant parameters for
chiral currents in the system and how these parameters can be altered experimentally. The
listed parameters are: the Raman coupling strength ΩRabi, the tunneling energy along the
tubes tx, the lattice depth along the tubes sx, the power of the Raman beams PRaman, the
interaction energy Uint, the trap frequency along the tubes fx, the transverse lattice depths
sy and sz, the filling factor of the tubes ν and the total number of atoms Natom. Issues may
occur for parameters, which cannot be tuned individually (as marked in red).

Relevant parameters Experimental access

Uint/tx sx
changes−−−−→Uint and tttxxx

ΩRabi/tx sx
changes−−−−→ tx, PRaman

changes−−−−→ΩRabi

fx/tx sx
changes−−−−→ tx, sy = sz

changes−−−−→ fx and UUU int

ν sx and Natom
change−−−→ ν

populations demonstrates that the system is in an eigenstate.

Band-Mapping and Imaging

As described in section 3.4.3 it is possible to only image atoms of a single spin state, which is
required for the observation of the chiral currents as each of the two coupled spin states features
a current but the total current of both states is zero. Therefore, the TOF images only consist of a
single spin component, which is chosen to be the -1/2 state. Despite the spin selective imaging
sequence, the band-mapping and imaging is proceeded in the same way as for the clock transition
technique and also in this case contributions from different tubes cannot be distinguished.

5.3 Experimental Access

The aim of the experiments conducted in this chapter is to investigate the behavior of chiral
currents in dependence on particle interactions with respect to the tunneling energy scale, hence,
the parameter of interest is Uint/tx. The best way to investigate the effect of interactions (relative
to the tunneling), would be to perform exactly the same measurements for different values of
Uint without changing tx since many other important energy-scale ratios of the system depend on
the tunneling. The tunability of system parameters is one of the great advantages of quantum
simulation with ultracold atomic gases and a lot of important parameters can be more or less
tuned at will and independently of others. However, ytterbium as all other alkali-earth metals
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Figure 5.6 – Possible interaction ranges for constant trap frequency. The figure illustrates the possi-
ble ranges of Uint/tx for a constant ratio of fx/tx. The colored lines refer to different ratios
fx/tx from 0.3 (bottom red line) to 0.8 (top purple line). Even though along the lines sx

is changed, which alters tx, the ratios are kept constant by adjusting sy = sz accordingly.
The horizontal width of the lines refer to a reasonable range of transverse lattice depths
15 < sy = sz < 40 which is experimentally accessible and which keeps a low tunneling rate
between the tubes. Figure courtesy of Leonardo Fallani.

or alkali-earth-like metals does not possess a magnetic Feshbach resonance since it does not
have an electronic spin in its ground state.1 Therefore, in this specific case the experimentally
accessible quantity, which influences Uint is the lattice depth sx, which changes not only the
interaction but also the tunneling energy (see Figure 1.4). This means, the ratio Uint/tx can be
varied but the change in the tunneling energy also alters other relevant parameters and ratios of
the system. In the best-case scenario these changes can be compensated by other experimentally
accessible quantities or can at least be theoretically compensated in an exact analysis after the
measurements. An overview about relevant quantities and experimentally accessible parameters
related to this issue are listed in Table 5.1. In the following this issue is discussed.

Firstly, the tunneling changes the ratio ΩRabi/tx, which can be easily compensated by changing
the power of the Raman beams PRaman, which directly controls ΩRabi since

ΩRabi =
Ω1Ω2

2∆
∝ E01E02 ∝

√
I1I2 ∝

√
P1P2 = PRaman, (5.1)

where Iα ∝ |E0α |2, Pα ∝ Iα , PRaman := P1 = P2 and the equations 1.43 and 1.34 were exploited.
Secondly, the tunneling changes the ratio fx/tx. The trap frequency along the tubes fx is ex-
perimentally accessible via the transverse lattice depths sy and sz (see Table 3.2). However, the

1The possibility of using the recently discovered orbital Feshbach resonance in combination with the clock transition
is discussed in section 5.6.
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transverse lattice depths not only alter fx but also Uint in such a way that when it is tried to keep
a steady ratio fx/tx while changing sx, the accessible ranges for the ratio of interest, Uint/tx, are
negligible small. This is illustrated in Figure 5.6, where possible ranges for Uint/tx are shown
while keeping fx/tx constant. The colored lines refer to different ratios fx/tx from 0.3 (bottom
red line) to 0.8 (top purple line). Even though along the lines sx is changed, which alters tx, the
ratios fx/tx are kept constant by adjusting sy = sz accordingly. The horizontal width of the lines
refer to a reasonable range of transverse lattice depths 15 < sy = sz < 40 which is experimen-
tally accessible and which keeps a low tunneling rate between the tubes. Unfortunately, the ratio
Uint/tx is approximately constant within each line. In fact, increasing sx, and thus decreasing tx,
means decreasing sy = sz in order to decrease fx, and this implies a decrease in Uint. Hence, it is
not possible to explore large ranges of Uint/tx while keeping the same value of fx/tx. The filling
factor of the tubes ν is not related to the issue of direct experimental access to Uint but brings
another degree of freedom for a possible analysis of the system, i.e. it can be used to gather
further experimentally tested information (see section 5.5.2).

To summarize, the experimental access to the tuning of the desired quantity Uint is not directly
given and, thus, compromises in the investigation of interaction effects have to be made by
performing several indirect measurements.

5.4 Theoretical Predictions

A theoretical model is used to make predictions on the behavior of the chiral currents. Because of
the issues with the experimental access to the interaction strength Uint discussed above in section
5.3, predictions need to be made for possible indirect measurements, which are discussed in this
section. The theoretical calculations are conducted by the group of Rosario Fazio at the Scuola
Normale Superiore di Pisa and related work can be found in Ref. [7, 8]. Their simulations
showed that chiral currents can be strongly enhanced by repulsive atom-atom interactions for
the filling factors considered in this chapter, i.e. with negligible population of the higher dressed
band. The influence of a harmonic trapping confinement and finite-temperature effects were not
considered.

For the predictions of this chapter density-matrix renormalization group simulations are used,
disregarding temperature effects. Firstly, chiral currents are calculated in a single tube Jn, where
n denotes the number of particles in the tube, as a function of the maximum filling factor νmax,
reached in the center of the tube, for fx = 55Hz (corresponding to sy = sz = 30) and ΩRabi/tx = 4.
The filling factor along the tube is inhomogeneous because of the confining potential of the trap
and the highest value is reached in the center of the tube, which is determined by the center
of the harmonic confinement, i.e. where the confining potential has its minimum. The results
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J n

νmax

(a) Single tube currents. The chiral currents in a single tube
Jn are shown as a function of the maximum filling factor νmax,
reached in the center of the tube, for fx = 55Hz (corresponding
to sy = sz = 30) and ΩRabi/tx = 4, both fixed for all calculations.
Each curve and color corresponds to a certain lattice depth s as
denoted in the legend, which determines tx and Uint, together with
sy = sz = 30. The dots correspond to different numbers of par-
ticles in the tube starting from 2 particles on the left side adding
two particles for the next dot and so on for up to 18 particles on
the right side, i.e. from left to right: 2,4,6,8,...,18 particles.

J

sx

(b) Total currents. The figure shows the total chiral currents J
as a function of the lattice depth sx, where J is an average of Jn
over all occupied tubes and was calculated using equation (5.2).

Figure 5.7 – Theoretical predictions. The figures show two different calculations conducted in order to
derive theoretical predictions for possible measurements. Parameters are: fx = 55Hz and
ΩRabi/tx = 4. Figure courtesies of Simone Barbarino.
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are displayed in Figure 5.7(a), in which several experimentally reachable lattice depths (namely
sx = {2,3,4,5,6,7,8}) are considered. The lattice depth determines tx and Uint, together with
sy = sz = 30. The coordinate system is chosen in such a way, that the currents are positive. The
dots correspond to different numbers of particles in the tube starting from 2 particles on the left
side adding two particles for the next dot and so on for up to 18 particles on the right side, i.e.
from left to right: 2,4,6,8,...,18 particles. The number of atoms are not directly associated with a
certain νmax but the relation depends on sx. For all lattice depths shown, the currents peak at an
intermediate maximum filling (νmax ≈ 0.75) and for νmax = 1 a Mott insulator phase (see Ref.
[51]) forms at least in the center of the tube, which suppresses the chiral currents and inhibits
any larger νmax. Moreover, the different lines corresponding to different lattice depths never
cross, which means that for a single tube the currents always decrease for a deeper lattice. If this
is true for every single tube, then, it is also true for an average over all occupied tubes leading
to the behavior of the total chiral currents J as a function of the lattice depth as shown in Figure
5.7(b). Following the considerations in section 4.4.1, the number of tubes with the same number
of particles is constant up to the highest number of particles Nmax, so that the total chiral currents
become

J =
2

Nmax(Nmax +1)

Nmax

∑
n=1

Jn, (5.2)

where Nmax = 18 is the estimated number of particles in the central tube for the experimental
parameters of the laboratory.

In the experiment only the total chiral currents can be measured. Hence, the results in Figure
5.7(a) cannot directly be experimentally tested, whereas the results in Figure 5.7(b) can be and
are tested in the following section 5.5.1. Furthermore, predictions for the influences of the
number of atoms and the trap frequency are made. Even though the calculations in Figure 5.7(a)
are performed for a single tube the qualitative behavior of the currents as a function of the
maximum filling is the same for the total chiral currents, when equation (5.2) is considered. The
filling factor depends monotonically on the total number of particles, which means that again,
when the currents are plotted as a function of the number of particles instead of as a function of
the maximum filling, the qualitative behavior of the lines is not altered. This means, that in a
measurement of the total chiral currents as a function of the number of atoms first an increasing
behavior and then a decreasing behavior is expected.

A higher trap frequency increases the effective filling since less lattice sites can be populated
by the atoms. Hence, again a monotonically dependence is given and a qualitative behavior as
the one seen by the single tube currents in Figure 5.7(a) is expected, when the total currents are
plotted as a function of the trap frequency.
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J
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Figure 5.8 – Chiral currents dependence on the lattice depth. The figure shows J as a function of sx.
ΩRabi/tx = 3.7.

5.5 Experimental Results

In this section all the experimental results are reported, compared to the theoretical predictions
in section 5.4 and conclusions are made. The synthetic magnetic flux φ = 0.37π is dictated by
the beam geometry (see section 5.1) and fixed. Moreover, if not specified differently, the ratio
ΩRabi/tx = 3.7 is fixed as well.

5.5.1 Lattice Depth Dependence

The measurement, which comes the closest to a direct analysis of interaction effects, is a mea-
surement of chiral currents for different lattice depth sx. As discussed in section 5.3 sx influences
both quantities Uint and tx. The results on this measurement are reported and discussed in this
section.

ΩR/tx = 3.7 can be fixed by adjusting PRaman (see section 5.3), while the ratios Uint/tx and fx/tx
are varied. The measured currents are shown in Figure 5.8 as a function of the lattice depth sx.
The data shows a clear enhancement of the chiral currents for increasing lattice depth and, thus,
it shows a qualitative behavior exactly opposed to the theoretical prediction (see Figure 5.7(b)).
In Figure 5.9(a) and Figure 5.9(b) the data of Figure 5.8 is displayed as a function of Uint/tx
and as a function of fx/tx respectively to illustrate that the observed behavior could be caused
by interaction effects (see Figure 5.9(a)), by confinement effects (see Figure 5.9(b)) or by a
combination of both. Figure 5.9(a) and Figure 5.9(b) demonstrate that both the ratios Uint/tx and
fx/tx vary significantly, hence, it is not possible to determine from these experimental data alone
whether the observed dependency of J is caused by the interactions or by the confinement. In
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Uint/tx

J

(a) Currents as a function of interactions. In this illus-
tration trap frequency effects are ignored.

J

fx/tx
(b) Currents as a function of trap confinement. In
this illustration interaction effects are ignored.

Figure 5.9 – Chiral currents dependencies. The figures show the same data of Figure 5.8 as a function
of Uint/tx and as a function of fx/tx respectively. ΩRabi/tx = 3.7.

addition, the origin of the discrepancy between experiment and theory is unclear and needs to be
further investigated. For this purpose, the theoretical model is further tested for its predictions of
other possible experiments in the following sections. Moreover, the influence of the ratio fx/tx
needs to be studied in order to be able to identify the genuine interaction effects.

5.5.2 Dependence on the Number of Atoms

In this section a measurement is described, which can be used to better understand the theoretical
model and which can give some knowledge about the behavior of chiral currents in general. In
this measurement only the number of atoms Natom is changed, while all other parameters are
kept constant.

Since the number of atoms can be determined in the TOF images taken for the measurement of
the chiral currents, it is possible to organize the data with a postselection. Two measurements
for sx = 7 and sx = 11, where ΩRabi/tx = 3.7 respectively, are performed for various number of
particles, where it is verified that population in the second Brillouin zone or higher is negligible,
i.e. only the lowest lattice band is considerably occupied. The TOF images are then organized in
six different Natom bins (in 103): 1.5 - 3, 3 - 4, 4 - 5, 5 - 6, 6 - 7 and 7 - 9. The results of the chiral
currents as a function of the number of atoms can be seen in Figure 5.10, where the two data
sets are displayed after the currents have been normalized to the highest measured value. The
two measurements have a good agreement and show a decrease in the currents with increasing
number of atoms. This observation would agree with the theoretical calculations, if even for the
lowest number of atoms the maximum filling were above approximately 0.75 (see Figure 5.7(a))
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Figure 5.10 – Chiral currents dependence on the number of atoms. The figure shows the chiral
currents as a function of the number of atoms Natom for sx = 7 and sx = 11, where the cur-
rents are normalized to the highest measured value respectively and are therefore denoted
as Jnorm. The data is organized in six different Natom bins (in 103): 1.5 - 3, 3 - 4, 4 - 5, 5
- 6, 6 - 7 and 7 - 9, where it was experimentally verified that population in higher lattice
bands is negligible. ΩRabi/tx = 3.7.

in the central one-dimensional tube, which features the highest νmax. If νmax were less than 0.75,
a second discrepancy between experiment and theory would be revealed.

Another observation is that two small cuts seem to be present in the decreasing behavior for the
two bins, (3 - 4) ·103 and (6 - 7) ·103. These cuts appear to be fluctuations in the measurements,
firstly, because the accuracy of the measurements is in the same order of magnitude and, sec-
ondly, because they almost completely disappear, when the boundaries of all the bins are shifted
by 0.5 · 103. Nonetheless, it might be interesting to investigate this behavior further with more
data sets.

To conclude, with the experimental data of this section alone it is impossible to determine
whether the experimentally observed behavior of J in dependence on the number of atoms agrees
with the theoretical calculations in section 5.4. In order to be able to derive such a statement,
an independent information about the maximum filling in the central tube is necessary. One
approach in this matter could be to determine νmax by performing additional tests, for example,
to use a theoretical model in order to estimate the number of atoms in the central tube from the
total number of atoms (considering experimental parameters like the transverse confinement)
and then determine the maximum filling according to the calculation in Figure 5.7(a).
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Figure 5.11 – Example trap frequency measurement. The atoms’ center of mass position is shown in
arbitrary units as a function of the oscillation time. The dots correspond to single position
measurements, while the line shows a fitted cosine function to the data, which is used to
extract the oscillation frequency, i.e. the trap frequency fx.

5.5.3 Trap Frequency Effects

As mentioned in section 5.5.1 the effect of the increasing chiral currents with increasing lattice
depth might be either dominated by increasing interaction strength Uint/tx or by the increasing
trap confinement along the tubes characterized by the trap frequency fx/tx. As discussed above
it is not possible to only change the ratio Uint/tx and observe the pure effect of interactions.
However, it is possible to only modify the trap frequency and leave Uint/tx unchanged by using
the dipole trap of the transport beam (see section 3.3.4) which is usually completely switched
off before the loading of the dressed state. A measurement is conducted in order to explore the
confinement influence on the currents.

The trap frequency can be directly determined for each measurement by displacing the atom
cloud with the dipole trap orthogonal to the transport beam (which can be adjusted by the use
of a mirror mounted on a piezoelectric stack) and letting the atoms oscillate around the trap
center along the tubes without the shallow lattice. The position of the atoms is recorded for
various oscillation times tosc and after enough data points are taken the evolution is fitted with
a cosine function to determine the oscillation frequency, which is the trap frequency fx. An
example measurement for the case without additional confinement is shown in Figure 5.11. The
contribution of the weak confinement caused by the focus of the shallow lattice can be neglected
and is not considered in the measurements of the trap frequencies.

The chiral currents are measured as a function of the trap frequency fx along the tubes for
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Figure 5.12 – Chiral currents dependence on the trap frequency. J is shown for sx = 11 (tx =

2π × 30Hz) and ΩRabi/tx = 3.7 as a function of fx and fx/tx. The trap frequency fx is
changed independently from the other parameters by using an additional confining beam
(in contrast to the measurements displayed in Figure 5.9(b)).

sx = 11 (high current signal) and ΩRabi/tx = 3.7 starting at the lowest possible trap frequency
caused exclusively by the transverse lattices. The trap frequency is increased by not completely
switching off the transport beam for the measurement but keeping it at a finite value. The results
in Figure 5.12 show that the currents decrease with increasing trap frequency, which is the
opposite behavior as observed in Figure 5.9(b). Even though the parameter ranges coincide only
in a small region of fx/tx = [1.93,2.42], this result suggests that the behavior seen in Figure 5.8
is due to interactions or at least due to a combination of interactions and confinement. However,
since the issue of opposite behaviors in theory and experiment remains for the dependence of the
chiral currents J on the lattice depth sx, this result is classified as preliminary and should only
be further evaluated, when all inconsistencies are resolved, in order to reduce the possibility of
misunderstandings and false interpretations of the underlying physics.

5.5.4 Chiral Currents Lifetime

In order to increase the amount of information about the experiment, the time stability of the
currents is investigated in this section. Strong decays could be a sign of deficiencies in the
experimental approach.

The chiral currents are probed with different holding times thold after the loading of the dressed
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J

thold

Figure 5.13 – Chiral currents lifetime. The figure shows two different lifetime measurements of
the chiral currents for sx = 6 (blue) and sx = 11 (red), where for both measurments
ΩRabi/tx = 3.7. The displayed lines are fit curves to the two data sets of the form:
A + B · exp(−thold/τsx), which lead to the decay constants τ6 = (17.1± 5.8)ms and
τ11 = (64.5±7.5)ms.

state is completed, i.e. the system is given a various time to evolve before the imaging procedure
starts. The results are shown in Figure 5.13. This lifetime measurement has been performed
for sx = 6 (orange) and sx = 11 (blue) with fitted (an exponential decay is assumed) lifetimes
τ6 = (17.1±5.8)ms and τ11 = (64.5±7.5)ms respectively. For both measurements ΩRabi/tx =
3.7. The given uncertainties are the standard errors of the fit functions and do not consider
uncertainties on the single data points. Therefore, the genuine uncertainty is expected to be
larger but not calculated since it is not of particular interest at this stage of the experiment. The
measured lifetimes suggest that they are either approximately equal to twice the tunneling time
2/tx or to half the Raman coupling time 1/(2 ·ΩRabi), both cases would result in τ6 = 20ms and
τ11 = 67ms. At the chosen detuning of ∆ = 2π×1.876GHz the spontaneous scattering rate of
the Raman transition is only in the order of 10−3 ·ΩRabi [93] and, thus, it cannot be the main
cause for the observed decay.

Another observation on these decays is that the signal does not go to zero but ceases to a finite
value depending on the lattice depth, which is also not expected by the theoretical model. If
the decay were caused by a loss of coherence, then after an infinite amount of time, the chiral
currents should completely disappear: J

thold→∞−−−−→ 0.

The encountered issues described in this section are observed in very preliminary measurements
on the chiral currents lifetime. They could be caused by technical deficiencies and further inves-
tigations are necessary in order to draw any conclusions. This matter is further discussed in the
following section and some investigations are described.
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5.5.5 Issues Investigation

The experimental data of all measurements raises two issues, which might be related or not.
Firstly, the theoretical prediction and the experimental observation of chiral currents in depen-
dence on the lattice depth show the opposite qualitative behavior. Secondly, the lifetime of the
chiral currents is much smaller than expected and the currents cease to a finite value instead of
going to zero. The two issues are investigated in this section, possible explanations are discussed
and suggestions for further studies are made.

The observed decays could explain the discrepancy between theoretical predictions and the ex-
perimental observations, if the measured signal at thold = 0 is not identical with zero evolving
time, i.e. if the currents already started to decay before the loading procedure of the dressed state
is completed. An extrapolation of the decay lines to negative holding times leads to the value of
thold ≈ −25ms at which the fitted chiral currents behavior for the two lattice depths is inversed
and matches the theoretical predictions in Figure 5.7(b). This simple estimation is supposed to
give a very rough approximation of the time when the decay may start, it ignores the possibility
that the starting time of the decays may as well depend on the lattice depth. A decay start at
−25ms would be theoretically possible since the dressed state loading times for acquiring the
two data sets of the lifetime measurement were at least 40ms. Therefore, in order to experimen-
tally test this scenario, the dressed state loading time has been shortened as much as possible up
to the point where the loading time is about 5ms which is strongly below 25ms (see for example
Figure 5.4 with T = 5ms). However, the results show the same J within experimental accuracy.
Hence, the discrepancy between the trend of the experimental and theoretical data cannot be
simply explained in terms of finite J lifetime.

Because of the finite value, the decay ceases to, the possibility of an insufficiently adiabatic
loading is investigated, i.e. maybe an excited dressed state is loaded, which features higher chiral
currents and then decays into the genuine ground state with a lower but stable chiral current
signal (the finite value after the decay). However, theoretical simulations show that the loading
procedure is robust against small perturbations and only small oscillations on the measured
currents can be expected, which even in worst case scenarios cannot explain the observed decay.
Moreover, even if the final value of the currents were the signal of the genuine ground state, the
discrepancies between the theoretical model and the experimental observations on the behavior
in dependence on the lattice depth cannot be solved as the lower lattice still shows a smaller
signal than the higher lattice case.

Another possible explanation for the occurrence of the decays is that the Raman beams also
couple the two-leg ladder to another spin state, the +3/2 state, which might not be sufficiently
detuned and thus the coherence of the two-leg ladder system could be destroyed. A measurement
for the investigation of this possible phenomenon is conducted in the following way. The third
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thold

J

Figure 5.14 – Lifetime comparison. Lifetime measurements are plotted for the original case without
a sideband (blue) and for the case of an additional sideband (orange), where sx = 6 and
ΩRabi/tx = 3.7 for both cases. The displayed lines are fit curves as defined in Figure 5.13,
which lead to τ6 = (17.1±5.8)ms for the original case and τ6 = (32.6±6.1)ms for the
case with the sideband. If the point at thold = 30ms is neglected, the lifetime without the
sideband becomes τ6 = (20.9±7.4)ms.

spin state is further pushed away from resonance by an additional light shift implemented with
an additional sideband in one of the Raman beams. The sideband is far detuned from any other
transitions and only contributes to the light shift caused by the two Raman beams (see section
1.1.3). It is experimentally verified that the +3/2 spin state is further detuned and that the system
is still coherent by checking the Raman Rabi oscillations. Two independent measurements are
performed for this configuration with the sideband and averaged for sx = 6 and ΩRabi/tx = 3.7.
The fitted lifetime is τ6 = (32.6± 6.1)ms and a direct comparison of this measurement with
the sideband and the original measurement without the sideband are shown in Figure 5.14. As
above the given uncertainties here are the standard errors of the fit functions and do not consider
uncertainties on the single data points. Even though the lifetime is slightly increased with the
sideband, it seems to be within experimental accuracy, which can be demonstrated by the fact
that the fitted lifetime without the sideband increases to τ6 = (20.9±7.4)ms if only the point at
thold = 30ms is neglected. Therefore, it is concluded that a possible coupling to the +3/2 spin
state is not the main cause for the decay of the chiral currents.

The most recent idea for a possible explanation of the discrepancy between theory and experi-
ment is, that the system’s temperature could depend on sx, i.e. for a shallower lattice the tem-
perature might be higher than for a deeper lattice and the increased temperature could decrease
the chiral currents. So far, the theoretical calculations have all been performed at zero temper-
ature. For the investigation of this possible temperature dependence, simulations are currently
performed at the Scuola Normale Superiore di Pisa.
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To conclude, the Raman transition technique with ytterbium atoms yields two issues, which
need to be investigated further in order to derive reliable statements on the role of interactions
in spin-orbit coupled systems. The investigations may result in a better understanding of this
yet insufficiently studied research field. However, the lack of direct experimental access to pure
interaction tuning in combination with non-negligible confinement effects reveals the limitations
of the scheme presented in this chapter for the analysis of interaction effects and for this specific
purpose other schemes should be taken into consideration (see the perspectives in section 5.6).

5.6 Summary and Perspectives

The aim of the experiment described in this chapter was to study interaction effects in a spin-orbit
coupled system. For this purpose, a scheme of two-photon Raman transitions with ytterbium
atoms was used. Challenges of the experimental access were discussed, theoretical predictions
described and experimental results presented.

Moreover, a discrepancy between theory and experiment was observed together with unexpected
short lifetimes. These issues were discussed, possible explanations were investigated and sug-
gestions for further studies were made.

Altogether, the results of this chapter provide insight in the dependence of chiral currents on
various system parameters, reveal experimental limitations, show first indications of interaction
effects and can be used as a solid groundwork for further investigations on many-body effects in
spin-orbit coupled systems.

5.6.1 Perspectives

In this section a few schemes for possible future experiments are shortly discussed demonstrating
the potential of the results presented in chapter 4 and 5. There are many proposals for promising
experiments with ytterbium atoms and the synthetic dimensions approach in general, such as
the four-dimensional quantum Hall effect using a synthetic dimension additional to three real
dimensions [111] or exploiting the two available synthetic dimensions for a vast amount of
different connection possibilities leading to non-trivial topologies [15]. Here only two ideas for
strongly related subjects to the presented work are discussed.
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Figure 5.15 – Hofstadter’s butterfly. The figure shows the fractal structure of the single particle en-
ergy spectrum as a function of the magnetic flux for electrons known as the Hofstadter’s
butterfly. Figure courtesy of Marco Mancini.
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Figure 5.16 – Periodic boundary conditions. The figure shows a scheme for a possible realization
of periodic boundary conditions in the synthetic dimension. ωC,1 and ωC,2 denote clock
transitions, whereas ΩR denotes a Raman transition. For further details see text.
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Periodic Boundary Conditions

In the schemes discussed in this thesis the synthetic dimension only consists of two lattice sites,
whereas in related work previously conducted in the laboratory also three lattice sites in the
synthetic dimension where realized [91]. For three lattice sites periodic boundary conditions
could be accomplished, when the first and last lattice site are directly coupled with a momentum
transfer from the third site to the first, which must have the same direction as the momentum
transfer from the first to the second and from the second to the third. The achievement of periodic
boundary conditions could lead to the observation of the famous Hofstadter’s Butterfly, which
shows the fractal structure of the single particle energy spectrum as a function of the magnetic
flux for electrons (see Figure 5.15). It occurs for the Harper-Hofstadter Hamiltonian (2.11)
with periodic boundary conditions. Two possible ways for the implementation of periodically
coupled states are described here. The first only relies on Raman transitions, whereas the second
exploits a combination of Raman and clock transitions.

For the pure Raman scheme two σ+ + π transitions could be used for the already achieved
coupling of three spin states. In addition, a σ− + σ+ transition for the coupling from the third
state back to the first state would close the boundaries in the synthetic dimension (see also
[93]). Individual control over the single Raman transitions and the avoidance of unwanted state
couplings could be accomplished by the use of state-dependent light shifts (see section 1.1.3).

In the approach combining Raman and clock transitions the coupling scheme could be as shown
in Figure 5.16. Firstly, the |g,mF =−5/2〉 state is coupled to the |e,mF ′ =−3/2〉 state via a
σ+ clock transition. Secondly, the excited state is coupled to the |g,mF =−1/2〉 state using a
σ− clock transition and thirdly, the transition |g,mF =−1/2〉 → |g,mF =−5/2〉 is a standard
Raman transition. As mentioned above the transferred momentum for all three processes must
have the same direction. For the experimental realization it should be mentioned, that the two
clock transitions can be distinguished from another in order to avoid unwanted transitions by
exploiting the differences in the Zeeman shifts for the 3P0 state and the 1S0 state. Moreover,
the Raman beams can be tuned out of resonance with respect to a possible Raman transition
between the −1/2 and the +3/2 spin states of the 1S0 manifold by using spin state-dependent
light shifts (see section 1.1.3).

Orbital Feshbach Resonances

Because of the problems encountered by the tunability of interactions using the lattice depth, it
is only natural to think about other possibilities for tuning interactions. Unfortunately, as in all
other alkali-earth metals or alkali-earth-like metals ytterbium’s ground state 1S0 does not possess
an electronic spin, therefore, the well-studied phenomenon of magnetic Feshbach resonances in
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alkali atoms cannot be utilized. One possible substitution could be the use of an optical Fesh-
bach resonance but this technique suffers from spontaneous emissions and, thus, is associated
with high losses [26]. However, recently another type of Feshbach resonance was discovered,
the orbital Feshbach resonance (OrbFR) [63, 103]. The OrbFR exploits the also just recently ob-
served spin-exchange interaction [21, 118] between ytterbium’s 1S0 and 3P0 state. This method
requires the clock laser to drive the transition between these states. As a result of the OrbFR the
interactions in the system are tunable via a magnetic field as it is the case for magnetic Feshbach
resonances.

The OrbFR could be exploited in several ways. Firstly, the OrbFR could be used to investigate
the role of interactions in a system with spin-orbit coupling. Secondly, the fractional quantum
Hall state could be emulated [7, 30, 54, 109, 124, 129], which is a very promising research
topic since the fractional quantum Hall state is not fully understood theoretically and is expected
to feature non-Abelian anyonic excitations. The synthetic dimensions approach would be par-
ticularly well suited because of the featured long range interactions in the synthetic dimension
[30]. Thirdly, the use of an OrbFR enables the implementation of intrinsic attractive interac-
tions, which completes the requirements for the formation of a novel topological superfluid state
with Majorana zero modes. According to Ref. [115] such a topological state would form in a
one-dimensional Fermi gas with Rashba-like spin-orbit coupling, a Zeeman field and attractive
interactions in a harmonic trap. Fourthly, the OrbFR may be used in combination with the tun-
ability of the spin-orbit coupling provided by the clock transition technique for the investigation
of an exotic BCS-BEC crossover [120, 135, 136]. Instead of altering the particles’ scattering
length, in this crossover the scattering length would be set to a certain value, for example a neg-
ative value on the BCS side, and then the SOC would be tuned in order to induce the formation
of two-body bound-states. Aside from the technical challenges for improving the SOC tunabil-
ity further, an additional requirement of a truly non-Abelian gauge potential must be met. As
mentioned in section 2.1.1 the generated gauge potential already possesses a non-Abelian nature
but it would be needed in at least two dimensions in order to show non-Abelian behavior (see
Ref. [48]).
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Conclusion and Outlook

This thesis presents on the one hand a novel technique for the implementation of spin-orbit
coupling and on the other hand groundwork results for the investigation of the role of interactions
in fermionic spin-orbit coupled systems made by ultracold atoms.

It was evidenced that the novel technique can be used for the implementation of spin-orbit cou-
pling by observing characteristic double-peak spectra, which are connected to Van Hove sin-
gularities, and by a direct measurement of chiral edge currents. The two single phenomenons
would not occur in the system of this thesis without spin-orbit coupling. The existence of chi-
ral currents emphasizes the strong connection to non-trivial topological quantum states such as
the quantum Hall and the quantum spin Hall state. Furthermore, it was shown that the tech-
nique leads to the generation of a synthetic magnetic flux in the “synthetic dimensions” picture,
whose unprecedented tunability was demonstrated by a probing of the chiral currents for vari-
ous flux values. These results could also verify fundamental symmetries, which together with
the observation of the higher dressed state’s momentum distribution strongly support the correct
interpretation and understanding of the observed physics.

In a second series of measurements, two-photon Raman transitions were used for groundwork
studies of the role of interactions varied by the depth of the underlying lattice potential. Chal-
lenges of the experimental access were discussed, theoretical predictions described and experi-
mental results presented. A discrepancy between theory and experiment was observed together
with unexpected short lifetimes. These two issues were discussed, possible explanations were
investigated and suggestions for further studies were made. The results provide insight in the
dependence of chiral currents on various system parameters, reveal experimental limitations,
show first indications of interaction effects and can be used as a solid groundwork for further
investigations on many-body effects in spin-orbit coupled systems.

The results of this thesis offer new possibilities for the investigation of topological states of
matter with ultracold atomic gases. The synthetic dimensions approach could be used for the
investigation of a four-dimensional quantum Hall effect using a synthetic dimension additional
to three real dimensions [111] or for a vast amount of different connection possibilities leading
to non-trivial topologies [15], when the two available synthetic dimensions are exploited. Two
ideas for strongly related subjects to the presented work were discussed. Firstly, it was presented

93



Conclusion and Outlook

how periodic boundary conditions in the synthetic dimension could be realized, which could lead
to the observation of Hofstadter’s butterfly, and, secondly, an alternative scheme for the inves-
tigation of interaction effects by the use of the recently discovered orbital Feshbach resonance
in ytterbium was presented. The latter could be exploited for the emulation of the fractional
quantum Hall state [7, 30, 54, 109, 124, 129], for the formation of a novel topological superfluid
state with Majorana zero modes [115] and for the investigation of an exotic BCS-BEC crossover
[120, 135, 136], when combined with the tunability of the spin-orbit coupling provided by the
clock transition technique.
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