Taming, slowing and trapping atoms with light
Cold is quantum, Quantum is cool!
We shape quantum matter
Multicolored lasers for a variety of atoms
Keeping our eyes on the quantum world
Join our ultracool group!
High technology for great science

Welcome to the website of the Ultracold Quantum Gases group at the European Laboratory for Nonlinear Spectroscopy (LENS), the Department of Physics and Astronomy of the University of Florence (Italy) and the Institute of Optics of the Italian National Research Council (CNR - INO). In our labs we use lasers and magnetic fields to produce the lowest temperatures of the Universe, just a few billionths of a degree above absolute zero...

At these temperatures, atoms stop moving and we can control them for a variety of different fundamental studies and applications. We can force atoms to arrange according to a periodic structure and simulate the behavior of crystalline solids and new materials. We can use the atoms as ultra-high accurate sensors to probe forces with the power of quantum mechanics. We can study how quantum particles combine together under the action of strong interactions and how superfluidity develops. We can use these ultracold atoms to process information and develop new quantum technologies.

Dress warmly and... follow us for this ultracold journey!

LAST NEWS

Setting up the Yb-cavity lab

We are setting up the first lasers and furniture and we are waiting for the atomic source: it's starting to look like a lab!

Array of individual Sr Atoms

In the Sr Rydberg lab, we have successfully trapped individual Strontium atoms using a one-dimensional array of optical tweezers. The video demonstrates a sequence of experimental cycles, during which the presence of atoms is detected via fluorescence imaging. After loading multiple atoms in each optical tweezer, the occupancy is reduced to either zero or one atom exploiting a light-assisted collision mechanism which expels pairs of atoms. On average, we achieve 40% single-atom occupancy, with atoms randomly distributed across the array, as shown in the video. This work is a significant step towards the preparation of defect-free arrays of single atoms in optical tweezers, which will be the starting point for future quantum simulation experiments.

Measuring Hall voltage and resistance for interacting fermions

The Hall effect is a cornerstone of modern science, spanning applications from cutting-edge technologies to the discovery of exotic topological phases of matter. In solid-state systems, it manifests as a voltage perpendicular to current flow in a magnetic field, giving rise to transverse Hall resistance. Yet, its behavior in quantum systems remains elusive. Using neutral-atom quantum simulators, we introduce the first direct measurement of Hall voltage and resistance in a non-electron-based system. This work links quantum simulations to real-world experiments, unlocking new avenues to explore the Hall effect in tunable, strongly correlated systems.

T.-W. Zhou et al.
Measuring Hall voltage and Hall resistance in an atom-based quantum simulator
arXiv:2411.09744 (2024)

Niccolò has been awarded the Sara Lapi prize 2024

Since 2015, the Friends of Sara Lapi Association has established a Degree Award named after Sara in collaboration with the University of Florence and in particular with the "Ugo Schiff" Department of Chemistry at the Scientific Center of Sesto Fiorentino. This year's award goes to Niccolò Preti for his thesis "Towards dipolar quantum gases in a ring". Well done!

more info

Repumper lasers added!

We’ve successfully integrated the 679nm and 707nm lasers into our experiment. They improve the blue and red mot stages by closing two decay channels, leading to a factor of 10 increase in density that is helpful to move forward with our optical tweezers. Stay tuned for the next update!

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.