Taming, slowing and trapping atoms with light
Cold is quantum, Quantum is cool!
We shape quantum matter
Multicolored lasers for a variety of atoms
Keeping our eyes on the quantum world
Join our ultracool group!
High technology for great science

Welcome to the website of the Ultracold Quantum Gases group at the European Laboratory for Nonlinear Spectroscopy (LENS), the Department of Physics and Astronomy of the University of Florence (Italy) and the Institute of Optics of the Italian National Research Council (CNR - INO). In our labs we use lasers and magnetic fields to produce the lowest temperatures of the Universe, just a few billionths of a degree above absolute zero...

At these temperatures, atoms stop moving and we can control them for a variety of different fundamental studies and applications. We can force atoms to arrange according to a periodic structure and simulate the behavior of crystalline solids and new materials. We can use the atoms as ultra-high accurate sensors to probe forces with the power of quantum mechanics. We can study how quantum particles combine together under the action of strong interactions and how superfluidity develops. We can use these ultracold atoms to process information and develop new quantum technologies.

Dress warmly and... follow us for this ultracold journey!

LAST NEWS

We realize a programmable quantum vortex collider in planar and homogeneous atomic Fermi superfluids with tunable inter-particle interactions. We follow a bottom-up approach reminiscent of other atomic platforms featuring control at the single-particle level, and gain exquisite control of individual 2D vortices to assemble them one by one in arbitrary arrangements. In particular, we use the combination of a high resolution microscope objective and a Digital Micromirror Device to create on-demand vortex configurations and we monitor their evolution across the BEC-BCS regimes of fermionic superfluidity. By engineering collisions within and between vortex–antivortex pairs we distinguish the different relaxation processes of the irrotational vortex energy due to sound emission and due to interactions with normal fluid. For the first time, we directly visualize how the annihilation of vortex dipoles radiates a sound pulse. We progress towards a complete microscopic description of the dissipative dynamics of both single and colliding vortex–antivortex pairs, which is at the heart of the relaxation of non-equilibrium states in bosonic and fermionic superfluids, thereby opening the route to exploring new pathways for quantum turbulence decay, vortex by vortex.

W. J. Kwon et al.
Sound emission and annihilations in a programmable quantum vortex collider
Nature 600, 64 (2021)

Cooling neutral atoms in optical traps can be a difficult task under some experimental conditions, like when optical trapping potentials are state-dependent. We report on a theoretical study showing that cooling can be achieved even if the internal states of the atoms experience different potential depths as long as a well-tailored frequency sweep is applied to the cooling laser. We develop a master rate equation and a Monte Carlo simulation for atoms of Li and Yb trapped in optical lattices and tweezers and we find that the average occupation number of the vibrational levels is drastically reduced under feasible experimental conditions. Our findings provide an alternative cooling scheme that can be applied in principle to any particle that is optically trappable, e.g. atoms, molecules or ions, and can provide a faster route to cooling atoms to condensation or degeneracy.

F. Berto, et al.
Prospects for single-photon sideband cooling of optically trapped neutral atoms
Phys. Rev. Research 3, 043106 (2021)

We report the experimental realization of a new kind of optical lattice for ultra-cold atoms where arbitrarily large separation between the sites can be achieved without renouncing to the stability of ordinary lattices. Two collinear lasers, with slightly different commensurate wavelengths and retrorefected on a mirror, generate a superlattice potential with a periodic \beat-note" profile where the regions with large amplitude modulation provide the effective potential minima for the atoms. To prove the analogy with a standard large spacing optical lattice we study Bloch oscillations of a Bose Einstein condensate with negligible interactions in the presence of a small force. The observed dynamics between sites separated by ten microns for times exceeding one second proves the high stability of the potential. This novel lattice is the ideal candidate for the coherent manipulation of atomic samples at large spatial separations and might find direct application in atom-based technologies like trapped atom interferometers and quantum simulators.

L. Masi, et al.,
Spatial Bloch Oscillations of a Quantum Gas in a “Beat-Note” Superlattice
Phys. Rev. Lett. 127, 020601 (2021)

Last Tweets

Seminars & Events

19-21.04.2022
Palaiseau-Florence Workshop on Ultracold Atoms:
Experimental and theoretical groups from Palaiseau (France) and Florence (Italy) research areas will present their activities and discuss collaborations. More info at quantumgases.lens.unifi.it/paf
18.02.2020
Seminar by Prof. Carlos Sa de Melo:
Ultra-cold Fermi Gases with Three and Four Internal States: The Evolution from BCS to BEC Superfluidity in Multiband Systems ,
h. 12.00 Querzoli room, LENS.
13.02.2020
Seminar by Dr. Dimitrios Trypogeorgos:
Unconventional topology with a Rashba spin-orbit coupled quantum gas,
h. 14.30 Querzoli room, LENS.
09-10.05.2019
Firenze-Trieste workshop:
Two days of talks and scientific discussions with the theory groups of ICTP and SISSA,
ICTP, Trieste.
17-18.01.2019
Firenze-Trieste workshop:
Two days of talks and scientific discussions with the theory groups of ICTP and SISSA,
Aula Querzoli, LENS.
13.12.2018
Quantumgases retreat:
A full-day group meeting to discuss the activity of the different labs,
h. 9.00 Villa il Gioiello, Arcetri.
24.11.2017
Fermi Colloqium by Prof. Wolfgang Ketterle:
New forms of matter with ultracold atoms: superfluids, supersolids and more,
h. 11.30 Querzoli room, LENS.
27.09.2017
Seminar by Prof. Arno Rauschenbeutel:
Chiral Quantum Optics,
h. 11.00 Querzoli room, LENS.
13.06.2017
The LENS QuantumGases group is glad to welcome in Florence Prof. Randall Hulet from Rice University. Prof. Hulet will be our guest for one month until mid July.