![]() |
We’ve reached a significant milestone in our experiment — our Blue MOT is up and running! After carefully characterizing the setup including optimizing parameters like blue imaging power, timing, polarization, and alignment, we are proud to report that we have captured approximately 1 million atoms. The density is 109 cm-3, which sets a strong foundation for the next steps in our project. The next phase will focus on achieving a broadband red MOT and a single-frequency red MOT. Stay tuned for more updates as we continue pushing forward! |
LAST NEWS
![]() |
Thanks to bando Trapezio we were able to test new technical advancements on our patented laser design in collaboration with Silentsys. We could reach narrow linewidths (<<1kHz) with minimal effort. More upgrades are yet to come, so stay tuned! |
![]() |
The Hall effect, which originates from the motion of charged particles in magnetic fields, has deep consequences for the description of materials, extending far beyond condensed matter. Understanding such an effect in interacting systems represents a fundamental challenge, even for small magnetic fields. In this work, we used an atomic quantum simulator in which we tracked the motion of ultracold fermions in two-leg ribbons threaded by artificial magnetic fields. Through controllable quench dynamics, we measured the Hall response for a range of synthetic tunneling and atomic interaction strengths. We unveil a universal interaction-independent behavior above an interaction threshold, in agreement with theoretical analyses. The ability to reach hard-to-compute regimes demonstrates the power of quantum simulation to describe strongly correlated topological states of matter. T.-W. Zhou et al. |
![]() |
We have completed the design and testing of a custom high-resolution objective with a long working distance. The microscope consists of a commercial aspheric lens plus a meniscus lens and has a diffraction-limited resolution of 1.2 micron at 766 nm. We have performed some preliminary tests by recording the in-situ density distribution of a strongly attractive 41K-87Rb mixture. The measured size of the cloud is in agreement with the simulated density profiles in this interaction regime. We are going to detect our quantum mixture through its phase diagram with micrometric resolution! |
![]() |
On 17th-19th April we were in Innsbruck for a joint meeting with the research groups on Ultracold Atoms at IQOQI and University of Innsbruck. Great to be there discussing ultracold physics with old friends of ours and so many young researchers!
Many thanks for the perfect organization and warm hospitality in Innsbruck. See you in Florence next year! |