Taming, slowing and trapping atoms with light
Cold is quantum, Quantum is cool!
We shape quantum matter
Multicolored lasers for a variety of atoms
Keeping our eyes on the quantum world
Join our ultracool group!
High technology for great science

Welcome to the website of the Ultracold Quantum Gases group at the European Laboratory for Nonlinear Spectroscopy (LENS), the Department of Physics and Astronomy of the University of Florence (Italy) and the Institute of Optics of the Italian National Research Council (CNR - INO). In our labs we use lasers and magnetic fields to produce the lowest temperatures of the Universe, just a few billionths of a degree above absolute zero...

At these temperatures, atoms stop moving and we can control them for a variety of different fundamental studies and applications. We can force atoms to arrange according to a periodic structure and simulate the behavior of crystalline solids and new materials. We can use the atoms as ultra-high accurate sensors to probe forces with the power of quantum mechanics. We can study how quantum particles combine together under the action of strong interactions and how superfluidity develops. We can use these ultracold atoms to process information and develop new quantum technologies.

Dress warmly and... follow us for this ultracold journey!

LAST NEWS

Josephson effect of superfluid fermions across the BEC-BCS crossover

Shining a blue detuned thin (2 μm) barrier we produce a double-well potential, which creates a Josephson-like junction for fermionic superfluids. By varying the interactions we investigate the population and phase dynamics between the two wells, observing the Josephson effect across the BEC-BCS crossover.

G. Valtolina et al.,
Josephson effect in fermionic superfluids across the BEC-BCS crossover
Science 350, 1505 (2015)

Laser cooling sources ready to be used

Light at 421nm will be employed for transverse cooling and for the Zeeman slower. Up to 1.2W of blue light is produced in a homemade frequency doubling cavity and is locked to the atomic line using saturated absorption spectroscopy in a hollow cathode lamp.

Light at 626nm will be employed for the magneto-optical trap (MOT). The red light is obtained from a commercial laser system and is locked to the atomic line using saturated absorption spectroscopy in a iodine cell.

"SIR" Carlo, congratulations!

Carlo Sias has been awarded with a SIR ("Scientific Independence of young Researchers") grant from MIUR ("Italian Ministry for Education and Research") for the development of the Ba+/Li experiment!

Thermodynamics of a Unitary Fermi gas

Using the inverse Abel transform, the in-situ 3D density profile of a cloud of two-state 6Li atoms trapped in a potential with cylindrical symmetry can be derived. Following [M. Ku et al., Science 335, 563 (2012)] we reconstruct the equation of state of the system. In particular, local pressure and compressibility have been obtained for the unitary Fermi gas, revealing the superfluid transition.

Efficient all-optical production of large 6Li quantum gases

The quest to develop new and efficient experimental schemes to produce large and highly degenerate fermionic samples is fundamental in the way of using them to study fermionic superfluidity with a high degree of control on properties as interaction strength and dimensionality. 6Li samples of two spin components offers a broad Feshbach resonance allowing a good tenability of the interactions and the ability to investigate superfluidity across the BEC-BCS crossover. On the other way, standard laser cooling configurations are not efficient due to the lack of sub-Doppler cooling mechanism on the D2 line. We use a gray molasses operating on the D1 atomic transition to produce degenerate quantum gases of 6Li with a large number of atoms. This sub-Doppler cooling phase allows us to lower the initial temperature of 109 atoms from 500 to 40 μK in 2 ms. We observe that D1 cooling remains effective into a high-intensity infrared dipole trap where two-state mixtures are evaporated to reach the degenerate regime. We produce molecular Bose-Einstein condensates of up to 5×105 molecules and weakly interacting degenerate Fermi gases of 7×105 atoms at T/TF

A. Burchianti et al.
Efficient all-optical production of large 6Li quantum gases using D1 gray-molasses cooling
Phys. Rev. A 90, 043408 (2014)