We report the realization of a Bose-Einstein condensate of 39K atoms without the aid of an additional atomic coolant. Our route to Bose-Einstein condensation comprises sub-Doppler laser cooling of large atomic clouds and evaporative cooling in an optical dipole trap where the collisional cross section can be increased using magnetic Feshbach resonances. Large condensates with almost 106 atoms can be produced in less than 15 s. Our achievements eliminate the need for sympathetic cooling with Rb atoms, which was the usual route implemented until now due to the unfavorable collisional property of 39K. M. Landini et al., |
LAST NEWS
Driving the complex dynamics of physical systems to perform a specific task is extremely useful but challenging in several fields of science, and especially for fragile quantum mechanical systems. Even harder, and often unfeasible, is to invert the time arrow of the dynamics, undoing some physical process. We theoretically and experimentally drive forth and back through several paths in the five-level Hilbert space of a Rubidium atom in the ground state. We achieve such an objective applying optimal control strategies to a Bose-Einstein condensate on an Atom chip via a frequency modulated RF field. We further prove that backward dynamical evolution does not correspond to simply inverting the time arrow of the driving field neglecting the only-system part of the dynamics. Apart from the relevance for the foundations of quantum mechanics, these results are important steps forward in the manipulation of quantum dynamics that is crucial for several physical implementations and very promisingly powerful quantum technologies. C. Lovecchio et al., |
Chiral edge states are a hallmark of quantum Hall physics. In electronic systems, they appear as a macroscopic consequence of the cyclotron orbits induced by a magnetic field, which are naturally truncated at the physical boundary of the sample. Here we report on the experimental realization of chiral edge states in a ribbon geometry with an ultracold gas of neutral fermions subjected to an artificial gauge field. By imaging individual sites along a synthetic dimension, we detect the existence of the edge states, investigate the onset of chirality as a function of the bulk-edge coupling, and observe the edge-cyclotron orbits induced during a quench dynamics. The realization of fermionic chiral edge states is a fundamental achievement, which opens the door towards experiments including edge state interferometry and the study of non-Abelian anyons in atomic systems. M. Mancini et al., See also the Science Perspective by A. Celi and L. Tarruell: A. Celi and L. Tarruell |
It is generally impossible to probe a quantum system without disturbing it. However, it is possible to exploit the back-action of quantum measurements and strong couplings to tailor and protect the coherent evolution of a quantum system. This is a profound and counterintuitive phenomenon known as quantum Zeno dynamics (QZD). Here we demonstrate QZD with a rubidium Bose-Einstein condensate in a five-level Hilbert space. We harness measurements and strong couplings to dynamically disconnect different groups of quantum states and constrain the atoms to coherently evolve inside a two-level subregion. In parallel to the foundational importance due to the realization of a dynamical superselection rule and the theory of quantum measurements, this is an important step forward in protecting and controlling quantum dynamics and, broadly speaking, quantum information processing. F. Schӓfer et al., S. Gherardini et al., |
Carlo Sias has been awarded with an ERC Starting Grant! The title of the project is "PlusOne: An ultracold gas plus one ion: advancing Quantum Simulations of in- and out-of-equilibrium many-body physics”. Congratulations! |