Fermions with tunable interactions... In the lithium lab we produce ultracold Fermi gases of 6Li to explore out-of-equilibrium dynamics and transport phenomena in strongly correlated fermionic matter. Atoms are confined into light-imprinted potential structures, simulating the motion of electrons in solid state devices. Our main goal is the study of two-dimensional strongly correlated phases, such as superfluidity across the BCS-BEC crossover and its robustness to disorder.

Shaping quasi-two-dimensional Fermi gases with sculpted light

We have projected micron-scale light potentials onto quasi-2D degenerate Fermi gases of lithium-6. A single atomic layer is created by vertically compressing a 3D atomic cloud into a highly anisotropic blue-detuned TEM01-mode optical trap, with very weak in-layer confinement. A digital micromirror device (DMD) is then used here to mold the skyline of Florence in a unitary Fermi gas. The sample is imaged with micron resolution by the same high-resolution objective used for focusing the sculpted light potential. These new capabilities enable exciting investigations of fermionic quantum transport and out-of-equilibrium dynamics in a large variety of paradigmatic scenarios.

Li people

Marco Fedrizzi
Master student
Alessandro Muzi Falconi
Master student
Giulia Del Pace
Postdoctoral fellow
Klejdja Xhani
Postdoctoral fellow
Woo Jin Kwon
Postdoctoral fellow
Francesco Scazza
Scientific staff
Massimo Inguscio
Scientific staff
Giacomo Roati
Scientific staff
Former members:
Andrea Amico
Alessia Burchianti
Chiara Fort
Riccardo Panza
Jorge Seman
Pedro Tavares
Giacomo Valtolina
Matteo Zaccanti

Li contacts

For further information, request of material, job opportunities, please contact:

Giacomo Roati

Li funding

EU Quantum Flagship
Qombs (2018-2021)
PRIN 2017 CEnTraL
Progetto Ente Cassa QuSiM2D
H2020-MSCA-IF-2018 VorDIST
H2020-MSCA-IF-2015 SCOUTFermi2D