Fermions with tunable interactions... In the lithium lab we produce ultracold Fermi gases of 6Li to explore out-of-equilibrium dynamics and transport phenomena in strongly correlated fermionic matter. Atoms are confined into light-imprinted potential structures, simulating the motion of electrons in solid state devices. Our main goal is the study of two-dimensional strongly correlated phases, such as superfluidity across the BCS-BEC crossover and its robustness to disorder.

Connecting critical transport and vortex dynamics in a thin atomic Josephson junction between fermionic superfluids

We theoretically investigate the onset of dissipation in the Josephson dynamics between two atomic Fermi superfluids. We demonstrate that resistive currents are directly connected with nucleations of vortex rings and their propagation into the superfluid bulk. We compare the simulations with our recent experimental results, finding excellent agreement. This work has been carried out in collaboration with the theory group of the University of Newcastle, led by Prof. Proukakis and it will be valuable for advancing our comprehension of the complex superfluid transport in emerging atomtronic devices.

K. Xhani et al.
Critical Transport and Vortex Dynamics in a Thin Atomic Josephson Junction
Phys. Rev. Lett. 124, 045301 (2020)

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.