Fermions with tunable interactions... In the lithium lab we produce ultracold Fermi gases of 6Li to explore out-of-equilibrium dynamics and transport phenomena in strongly correlated fermionic matter. Atoms are confined into light-imprinted potential structures, simulating the motion of electrons in solid state devices. Our main goal is the study of two-dimensional strongly correlated phases, such as superfluidity across the BCS-BEC crossover and its robustness to disorder.

Shaping quasi-two-dimensional Fermi gases with sculpted light

We have projected micron-scale light potentials onto quasi-2D degenerate Fermi gases of lithium-6. A single atomic layer is created by vertically compressing a 3D atomic cloud into a highly anisotropic blue-detuned TEM01-mode optical trap, with very weak in-layer confinement. A digital micromirror device (DMD) is then used here to mold the skyline of Florence in a unitary Fermi gas. The sample is imaged with micron resolution by the same high-resolution objective used for focusing the sculpted light potential. These new capabilities enable exciting investigations of fermionic quantum transport and out-of-equilibrium dynamics in a large variety of paradigmatic scenarios.