Two electrons are better than one... In the Yb lab we produce Bose-Einstein condensates and degenerate Fermi gases of ytterbium atoms. These atoms offer metastable electronic states, ultranarrow clock transitions, multicomponent fermions with SU(N) interactions: a whole range of experimental tools that allow new possibilities for quantum simulation and quantum information processing.

Dissemination of frequency standards beyond the GPS level

Global Positioning System (GPS) dissemination of frequency standards is ubiquitous at present, providing the most widespread time and frequency reference for the majority of industrial and research applications worldwide. On the other hand, the ultimate limits of the GPS presently curb further advances in high-precision, scientific and industrial applications relying on this dissemination scheme. Here, we demonstrate that these limits can be reliably overcome even in laboratories without a local atomic clock by replacing the GPS with a 642-km-long optical fiber link to a remote primary caesium frequency standard. Through this configuration we stably address the 1S03P0 clock transition in an ultracold gas of 173Yb, with a precision that exceeds the possibilities of a GPS-based measurement, dismissing the need for a local clock infrastructure to perform beyond-GPS high-precision tasks. We also report an improvement of two orders of magnitude in the accuracy on the transition frequency reported in literature.

C. Clivati et al.,
Measuring absolute frequencies beyond the GPS limit via long-haul optical frequency dissemination
Opt. Express 24, 11865 (2016)

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.