Atoms few, damned but quick... Magnetic fields sources, RF antennas, optical structures, all integrated in a micro-chip with a Bose-Einstein condensate a few hundred microns from the surface: an "Atom chip". The benefits are higher trap frequencies, shorter evaporative time, better atom-field coupling plus a much (much) cheaper set-up. The goal of our experiment is to make the best use of Atom chips for quantum technological applications.

Quantum Zeno-assisted Noise Sensing

The ideal quantum Zeno effect is a robust method to protect the coherent dynamics of a quantum system. In particular , in the weak quantum Zeno regime, repeated quantum projective measurements can allow the sensing of semi classical field fluctuations. We report our proposal and demonstration, both theoretical and experimental, of a novel noise sensing scheme enabled by the weak quantum Zeno regime. We experimentally tested these theoretical results on a Bose Einstein Condensate of 87Rb atoms realized on an atom chip, by sensing ad hoc introduced noisy fields.

H.–V. Do et al.,
Experimental proof of quantum Zeno-assisted noise sensing
New J. Phys. 21, 113056 (2019)

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.