Fermions with tunable interactions... In the lithium lab we produce ultracold Fermi gases of 6Li to explore out-of-equilibrium dynamics and transport phenomena in strongly correlated fermionic matter. Atoms are confined into light-imprinted potential structures, simulating the motion of electrons in solid state devices. Our main goal is the study of two-dimensional strongly correlated phases, such as superfluidity across the BCS-BEC crossover and its robustness to disorder.

Arbitrary high-resolution potentials on ultracold fermions

We have implemented a new high-resolution imaging system, that also makes it possible to imprint onto the atomic cloud arbitrary optical potentials created with a digital micromirror device (DMD). This will allow us to study quantum transport of fermionic gases in arbitrary geometries -- from the non-interacting limit to the strongly correlated regime, from the clean to the disordered case. An upgrade of the setup for the production of quasi-two-dimensional clouds is now under way, stay tuned!

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.