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Introduction

Ultracold atoms are emerged as ideal quantum simulators of many-body
physics, becoming model systems where to test quantum Hamiltonians, thanks
to the unprecedented possibility of controlling most of the experimental pa-
rameters [1] [2]. This feature distinguishes atomic gases from ordinary ma-
terials in which the inevitable presence of disorder, interactions and of large
number of particles greatly complicates the comparison between microscopic
theories and experiments. In ultracold atom experiments it is possible to
tailor arbitrary potentials by laser light which mimic the structure of crys-
tals but without the presence of impurity and imperfections. In addition,
an extraordinary property of ultracold atoms is the possibility to tune the
interaction between atoms by Feshbach resonance [3] [4] which allows to ex-
perimentally produce and to study both strongly and weakly correlated gases
[5] [6].

One of the latest most exciting results was the observation of superfluidity
in fermionic systems. Superfluidity is one of the most spectacular phenom-
ena in nature, intimately connected to superconductivity, being a superfluid
essentially a superconductor carrying zero charge. With ultracold atomic
fermions, it is nowadays possible to study the physics of the so-called BEC-
BCS crossover [7] [8], thanks to the tunability of the interparticle interactions
given by Feshbach resonances.

In particular, the transition between a Bose-Einstein condensate (BEC)
of molecules and a superfluid composed of Cooper-like pairs of fermions is
observed. At the resonance, the size of the pairs becomes much smaller than
the one of conventional Cooper pairs, but similar to the ones composing high-
Tc superconductor, showing the strong link among these two systems. The
quest to develop new and efficient experimental schemes to produce large
and highly degenerate fermionic samples is therefore still a crucial challenge.

My thesis fits exactly this context. In fact during my work I have partici-
pated to the realization of a new and efficient experimental scheme to produce
large degenerate and eventually superfluid gases of fermionic 6Li atoms. Fur-
thermore, I have also designed and then implemented a simple and versatile
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optical scheme to image the fermionic atoms (paired or unpaired) across all
the interaction regimes offered by the magnetic Feshbach resonance.
In detail, my work was focused in three main topics:

• First implementation and characterization on fermionic 6Li of a Sub-
Doppler cooling scheme based on blue-detuned gray molasses. This
novel cooling scheme permits to achieve phase space density more than
one order of magnitude larger than the one achieved with standard
cooling scheme. I have also demonstrated its efficiency even in the
high intensity optical dipole trap (peak-intensity of the order of few
MW/cm2)

• Production and characterization of 6Li quantum gases trapped in two
different spin states. In particular, I have explored the peculiar regimes
offered by the tuning of the interactions via Feshbach resonance. In the
repulsive side, I have observed the onset of Bose-Einstein condensates
of molecules composed by lithium atoms, while at the center of the
resonance (the BEC-BCS crossover), I have studied the presence of a
condensate of fermionic pair. In the weakly interacting regime, I have
been able to produce ultra-degenerate Fermi gases.

• Design and then implementation of a new optical scheme to image the
lithium quantum gases in all the different interaction regimes, which
depend on the value of the scattering length between fermions. i.e. on
the magnetic field. Both the low and high field imaging is now available
in the laboratory in a much more versatile fashion. I have in particular
set up an offset-lock loop at 1 GHz able to lock two different laser
sources with high stability and tunability. Furthermore, I have built
up an home-made laser tapered amplifier to produce the requested laser
power to be sent to the atomic sample.

This thesis is divided in four chapters:

1. In chapter one, I describe the properties of ideal and interacting Fermi
gases, giving a short theoritical description of their interaction and
of the Feshbach resonance. Then I illustrate the special case of the
fermionic 6Li, showing in some details the cooling techniques used to
produce quantum degenerate Fermi gases.

2. In chapter two, I describe in details our experimental apparatus devoted
to the production of lithium quantum gases.
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3. In chapter three, I give the main theoretical aspects of the blue-detuned
gray molasses. Then, I show the main experimental results character-
izing the gray molasses cooling scheme, showing how they are in good
agreement with the theoretical expectation. I also show that this new
sub-Doppler cooling scheme works efficiently even in the presence of
the high intensity dipole trap. At the end of this chapter, I describe
the efficient production of molecular BEC and of weakly and strongly
degenerate Fermi gases.

4. In chapter four, I describe the optical scheme that I have designed and
implemented to produce imaging light resonant with an atomic transi-
tion at low and high magnetic field. The imaging light is amplified using
a home-made tapered amplifier whose construction, working principle
and characterization are shown. The phase-lock loop technique and its
experimental realization are described too.
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Chapter 1

Ultracold quantum gases

In this chapter, I will introduce the concept of quantum degenerate regime,
showing how the density distribution of an ideal trapped Bose and Fermi gas
changes passing from the classical to the quantum regime [1], [2]. Then I
will consider the case of interacting particles giving a short theoretical de-
scription of the two-body scattering problem [1], [2], [3]. In fact, a very
interesting property of the ultracold atomic gases is the possibility of tuning
their interaction thanks to magnetic Feshbach resonance [4]. This allows to
study different and intriguing physical regimes, as we will see in the following
of this thesis. At the end of this chapter I will illustrate the special case of
the fermionic 6Li which is implemented in our experiment.

1.1 Quantum degenerate regime
Any particle in nature has an associated de-Broglie wavelength given by
λdB = h/p, where h is Planck’s constant and p is the particle momentum.
Within a gas at temperature T, the particles have an average kinetic energy
of

p2

2m
=
h̄2k2

2m
≈ kBT (1.1)

and hence an average momentum p = h̄k ≈
√

2mkBT , wherem is the mass of
the particle, kB the Boltzman constant and k the wave-vector. Knowing that
k = 2π/λdB and by substituting it in equation 1.1 I find that the de-Broglie
length depends on temperature as λdB =

√
2πh̄2

mkBT
. At high temperature λdB

assumes values which are small compared with the interparticle separation
given by n−1/3, where n is the particle density. This means that the particles
are well-localized (pointlike) and they can be considered as distinguishable
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ones (classical regime). By keeping the density fixed and decreasing the tem-
perature, the spatial wave-functions of individual particles start to overlap
as λdB becomes larger. Consequently, the particles can not be considered
anymore as distinguishable ones and they enter in the quantum degenerate
regime λdB ≈ n−1/3.
In the quantum degenerate regime, the probability density, defined as the
modulus square of the many-body system wave function |Ψ|2, must be in-
variant under the exchange of two particles "described" by the coordinates
xi

|Ψ(x1, ..., xi, ..., xj...xN)|2 = |Ψ(x1, ..., xj, ..., xi...xN)|2 (1.2)

This condition is fulfilled if the many-body wave-function is anti-symmetric
or symmetric under the exchange of two particles{

Ψ(x1, ..., xi, ..., xj, ..., xN) = −Ψ(x1, ..., xj, ..., xi, ..., xN) Antisymmetric
Ψ(x1, ..., xi, ..., xj, ..., xN) = Ψ(x1, ..., xj, ..., xi, ..., xN) Symmetric

(1.3)
In the first case Ψ describes an ensemble of fermions, that have a half-integer
spin in units of the reduced Planck’s constant; in the second one instead it
describes an ensemble of bosons, which have an integer spin in the same units.
The anti-symmetry condition for the fermions many-body wave-function, im-
plies that two identical fermions can not occupy the same quantum state
because this would lead to Ψ = 0. This represent the Pauli exclusion prin-
ciple. For bosons instead the symmetry condition for Ψ implies that there
is not constraint on the number of particles occupying the same quantum
state. The distinction between these two different classes is valid not only
for elementary particles but also for composite ones, with the sum of spins of
their costituents defining the quantum nature (bosons or fermions) of these
particles. For instance, a 6Li atom is composed by an odd number of fermions
(3 neutrons, 3 protons and 3 electrons) and it is therefore a fermion. A 7Li
atom in turn, having 4 neutrons, 3 protons and 3 electrons, is a boson.

1.2 Ideal Bose and Fermi gases in a harmonic
trap

In our case and in many other experiments that deal with quantum degen-
erate gases, the gases are confined in potentials which can be approximated
as harmonic ones near their minimum:

V (x, y, z) =
1

2
m(ωx

2x2 + ωy
2y2 + ωz

2z2) (1.4)
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where ωi for i = x, y, z are the trapping frequencies in each direction. I
consider here the particular case of an ensemble of particles which do not
interact (ideal) with each-other. When the thermal energy 1/β = kBT is
much larger than the harmonic level spacing h̄ωx,y,z (Thomas-Fermi approxi-
mation) [1],[2] the occupation probability of a phase-space cell {~r, ~p} is given
by

f(~r, ~p) =
1

e( ~p
2

2m
+V (~r)−µ)/kBT ± 1

(1.5)

where ~r is the particle position (with coordinates x, y, z), µ is the chemical
potential and V (~r) is the external potential which in our case is the harmonic
one. The upper sign is for fermions and it is known as Fermi-Dirac distri-
bution, while the lower one is for bosons and it is known as Bose-Einstein
distribution. By integrating f(~r, ~p) in momentum space, one found the den-
sity distribution

nth(~r) =
1

(2πh̄)3

∫
d~pf(~r, ~p) = ∓ 1

λ3
dB

Li3/2(∓eβ(µ−V (~r))) (1.6)

where Li3/2(z) is the Polylogarithmic function of order 3/2, that in general
is defined as:

Liν(z) =
1

Γ(ν)

∫
tν−1

1
z
et − 1

dt =
∞∑
k=1

zk

kν
(1.7)

where Γ(ν) is the gamma function of order ν.
In the classical limit (high temperature), the density distribution calcu-

lated by equation 1.6 is a Gaussian one known as the Maxwell-Boltzmann
distribution:

ncl = N
π3/2σxσyσz

e
−
∑
i

x2
i

σ2
xi where σ2

xi
= 2kBT

mω2
xi

(1.8)

In the quantum degenerate regime, achieved at T ≈ Tdeg = h2

2mkB
n2/3 being

of the order of µK in typical quantum degenerate gases experiment where
n ≈ 1013cm−3, the density distribution for bosons and fermions have different
profiles. A Bose gas undergoes a first-order [9] phase transition to a Bose-
Einstein condensation (BEC) which consists in a macroscopic population of
the system ground state and in a saturated excited state population at a
certain value. Therefore the BEC is described by a many-body wavefunction
whose modulus square give the condensed (ground state) part density [2][5]
[6] [7] that in the case of the harmonic potential is:

nc(~r) =
N0

π3/2dxdydz
e
−
∑
i

x2
i

d2xi (1.9)
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where dxi =
√
h̄/mωxi is the harmonic oscillator length and N0 is the ground

state population. In the harmonic trap, the critical temperature at which the
phase transition occurs is:

TBEC =' 0.94
h̄ω̄

kB
N1/3 (1.10)

where ω̄ = (ωxωyωz)
1/3 is the geometric mean of the trapping frequencies. For

temperature below TBEC , the condensate fraction in the case of the harmonic
trap is given by:

N0

N
= 1−

(
T

Tc

)3

(1.11)

Fermions instead "repel" each other and each quantum state is occupied by
at maximum one particle (Pauli exclusion principle). At zero temperature,
each of the states with energy less than the Fermi energy EF is occupied
but no phase transition occurs. In this limit the Fermi-Dirac distribution
becomes

f(~r, ~p) =
1

e( ~p
2

2m
+V (~r)−µ)/kBT + 1

T→0−−−→

{
1 ~p2

2m
+ V (~r) ≤ µ

0 ~p2

2m
+ V (~r) > µ

(1.12)

where the chemical potential coincides with the Fermi energy at zero temper-
ature. After substituting in equation 1.6, one finds that the density profile
changes smoothly from its Gaussian shape at high temperature to its zero
temperature profile that, for our case of harmonic trap, is given by:

nF (~r) =
8

π2

N

RFxRFyRFz

[
max

(
1−

∑
i

x2
i

R2
Fi

, 0

)]3/2

(1.13)

with RFx,y,z =
√

2EF
mω2

x,y,z
the Fermi radii. This density profile is flat top with

respect to the Gaussian one because the occupation of the excited states
saturates at unity. From the total fermion number N =

∫
nF (~r)d~r, the

Fermi energy value is found to be:

EF = (6N)1/3h̄ω̄ (1.14)

1.3 Interaction in ultracold atoms
In the field of quantum degenerate (ultracold) atoms, interactions play an
important role not only in preparing quantum degenerate ensembles but also
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in the physics phenomena that are studied. At degenerate regime tempera-
ture, the system stable phase is the solid one, but supposing that the range of
the interaction potential R0 is much smaller than the interparticle distance
(diluteness condition) the system phase becomes the gaseous one. For in-
stance, in the case of 6Li, the interparticle distance n−1/3 ∼ 5000− 10000a0,
where a0 is the Bohr radius, is in fact much larger than the range of inter-
action potential (supposed the van der Waals potential [2]) R0 ∼ 50a0. In
such ultradilute and ultracold ensembles, the two-body interactions domi-
nate and the collision process can be described in terms of a single quantity:
the scattering length. I consider two spinless atoms or two atoms in the same
spin state with mass m1, m2 interacting through the two-body interaction
potential V( ~R1 − ~R2). In the two-particle center of mass, this problem is
reduced in studying the motion of a "fictitious" particle of mass µ = m1m2

m1+m2

in the interaction potential V (~R), where ~R = ~R1− ~R2 is the relative position
vector. The wave function of the "fictitious" particle ψ~k(~R) corresponding
to eigenvalue E satisfies the Schrödinger equation

− h̄
2

2µ
∇2ψ~k(

~R) + V (~R)ψ~k(
~R) = Eψ~k(

~R) (1.15)

Considering a short-range R0 potential, i.e. that goes to zero when R > R0,
one finds that asymptotically (R >> R0), the wave-function is given by
the sum of the incoming wave plane, with wave vector ~ki and propagation
direction k̂i = ~ki/ki, and the outgoing scattered spherical wave-function, with
wave vector ~kf = k~n and propagation direction ~n = ~R/R

ψ~k(R) ∝ ei
~ki·~R + f(k, k̂i, ~n)

eikR

R
(1.16)

where f(k, k̂i, ~n) is the scattering amplitude in the direction defined by ~n and
its general expression is

f(k, k̂i, ~n) = − µ

2πh̄2

∫
d3~r′e−i

~kf ·~r′V (~r′)ψ~k(~r
′) (1.17)

For a spherically symmetric potential (V (~R) = V (R)), considered hereafter,
the scattering amplitude depends only on k and the angle θ between the
incident and scattered wave vector. In the case of distinguishable particles,
one can find that the differential and total cross section are given by

dσ
dΩ

= |f(θ, k)|2 and σ(k) =
∫
|f(θ, k)|2dΩ (1.18)

where 0 < θ < π.
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Including quantum statistics

For indistinguishable particles in the same spin state, the two posssible scat-
tering processes shown in figure 1.1, corresponding to the scattering ampli-
tude f(θ, k) and f(π − θ, k), are indistinguishable due to the overlap be-
tween the two-atoms wave function in the collision region. Consequently, the

Figure 1.1: Two possible scattering process for two identical particles

asymptotic scattering wave-function must be symmetrized or anti-symmetrized
with respect to the two-particle coordinates exchange for bosons or fermions
respectively becoming

ψ~k(R) ∝ 1√
2

(ei
~k·~R ± ei~k·~R) +

1√
2

(f(θ, k)± f(π − θ, k))
eikR

R
(1.19)

with the plus sign for bosons and the minus one for fermions. Thus the
differential cross section is given now by

dσ

dΩ
= |f(θ, k)± f(π − θ, k)|2 (1.20)

with 0 < θ < π/2.

Partial wave expansion and low energy limit

As the scattering potential is considered spherically symmetric, the system
own to a cylindrical symmetry which permits to expand the wave-function
as

ψ~k(
~R) =

∑
l

uk,l(R)

R
Pl(cos θ) (1.21)

where l is the angular momentum, uk,l is the radial wave-function depending
only on R, and Pl(cos θ) is the Legendre polynom depending only on θ. By
substituting this partial wave expansion into equation 1.15, one obtains that
for each of the angular momentum values the radial wavefunction satisfies[

− h̄
2

2µ

d2

dR2
− h̄2k2

2µ
+ Veff (R)

]
uk,l(R) = 0 (1.22)
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where Veff (R) = h̄2l(l+1)
2µR2 + V (R) is the "effective" potential with the second

term interpreted as the centrifugal potential. The expression of the total
cross-section can now be found in terms of l

σ(k) =
∑∞

l=0 σl(k) with σl(k) = 4π
k2 (2l + 1) sin2 δl(k) (1.23)

which contains only even(odd) values of l for bosons(fermions) with δl be-
ing the phase shift acquired during the scattering process by the incoming
plane wave and it depends on energy, therefore on k. In our case of fermionic
lithium, the p-wave scattering is present for temperature larger than Tp = 6
mK, which is much larger than the window for quantum degeneracy [2].
Therefore a second species or second hyperfine state is needed for thermal-
ization and evaporative cooling. In the general case of ultracold atoms, to
which corresponds low momenta k << 1/R0, the scattering process can oc-
cur for l = 0 (s-wave) as for any l 6= 0 the centrifugal barrier heigth is larger
than their energy E. The s-wave scattering amplitude is independent on θ
and is given by

fk,l=0 =
1

k
eiδ0 sin δ0 (1.24)

where δ0 is the phase shift acquired by l = 0 partial waves in terms of which
one defines the s-wave scattering length as

a = − limk→0
tan δ0
k

or equivalently δ0(k)
k→0−−→ −ka (1.25)

The s-wave scattering total cross section for fermions, bosons and distin-
guishable particles is now expressed as

σ =


4πa2

1+k2a2 for distinguishable particle
8πa2

1+k2a2 for identical bosons
0 for identical fermions

(1.26)

In the limit ka << 1, the total cross-section becomes energy independent
(independent on k) and depends only on a; it is equal to 4πa2 and 8πa2

for distinguishable and identical bosons respectively. In the limit ka >> 1,
called the unitarity limit, σ = 4π/k2 for distinguishable particle and a factor
of 2 larger for the bosons.

1.4 Tuning interaction: Feshbach resonance
An extraordinary property of ultracold atomic gases is the possibility to
tune their interaction, i.e. the scattering length, by just varying an external
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magnetic field, thanks to the Feshbach resonance they present. Consequently
one can study different physical regimes; BEC and BCS superfluidity (see
section "BEC-limit" and "BCS-limit"). But the most unique feature is the
possibility to study the crossover between these two regimes that otherwise
in condensed matter physics is not possible. The physical interpretation of
this resonance and the different physics regimes main features are given in
the following section, where the atoms internal states are taken into account
to describe the resonance scattering.

1.4.1 Basic theory concepts

Each atom is characterized by its total angular momentum ~F which is the
vectorial sum of the electron total angular momentum ~J with the nuclear one
~I. At low uniform external magnetic field B, the total angular momentum
quantum number F and its projectionmF along the B-axis are good quantum
numbers. Therefore, the initial collision channel, called also the "open chan-
nel", is defined by specifing the quantum numbers {F1,mF1 ;F2,mF2 ; l = 0}
of both atoms (1 and 2). There are also other collision channels which are
characterized by different quantum numbers. The interaction potential con-
tains the van der Waals term, which describes the interaction between the
electric dipole-dipole of atoms, and another one describing the interaction
between the atoms magnetic moment [2], which depends on the relative ~Fi
(with i = 1, 2) orientations. The last term gives rise to the coupling between
different channels, but we consider here only the coupling between the open
and a closed channel (two-channel model) as shown in figure 1.2.

A channel is called closed when its dissociation threshold energy is above
E, so that the two colliding atoms can not belong to the continuum of this
channel. We suppose also that the closed channel support a bound state
whose energy Eres is not too much different from E. The two possible
channels shown in figure 1.2 correspond to different total F configurations
(~F = ~F1 + ~F2) and also to different magnetic moments. This means that by
sweeping a static magnetic field the open and closed channel potential move
with respect to each other varying so the energy difference

Eres − E = ∆µ(B −B0) (1.27)

where ∆µ is the difference between the open and close channel magnetic
moments (see figure 1.2). When the energy of the closed channel bound
state is resonant with the energy of the colliding particles (Eres−E = 0), the
scattering length goes to infinity. This is called the Feshbach resonance and
from equation 1.27 it happens at the magnetic field value B0. Actually, there
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Figure 1.2: Left figure: The open (red) and closed (blue) channel potential corresponding
to different ~Fi orientation, where it is indicated the bound state of the closed
channel and the free atoms energy too [2]. Right figure: The energy of the
dimer state (blue profile) and the s-wave scattering length (orange profile) as
a function of the magnetic field values [19]. In the inset is shown the relative
position between the open and closed channel to which corresponds different
values of the scattering length.

is an anti-crossing between the closed bound state and the continuum states
energy due to the strong coupling between the two channels. In fact, the
resonance position is shifted at a different magnetic field value Bc. Hereafter,
we take the continuum state energy as zero, which is a good approximation
for the case that we are considering of ultracold atoms. The expression of
the scattering length [4] around the Feshbach resonance (fig. 1.2) is given by:

a(B) = aBG(1− ∆

B −Bc

) (1.28)

where the width of the resonance ∆ is such that at B = Bc + ∆, the zero
crossing of the scattering length (a = 0) is achieved, while aBG is the scatter-
ing length corresponding to the situation where the atoms enter and exit in
the "open" channel (no resonance scattering). Near the Feshbach resonance,
dimer states are formed having a binding energy

Eb = − h̄2

2µa2
(1.29)

which, from equation 1.28, depends quadratically on the detuning B − Bc

(fig. 1.2). The properties of these Feshbach molecules ("dimer states") are
considered in details in the section "BEC-BCS crossover."
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1.4.2 Weakly bound dimers stability

The expression given before for the dimer states binding energy Eb = − h̄2

2µa2

is valid in the case of a dimer size a greater than the potential range, which
is true for a→∞ (as it happens at the Feshbach resonance). In the case of
lower positive scattering length, it satisfies a similar expression but a mean
scattering length (a) is subtracted from a

Eb = − h̄2

2µ(a− a)2
(1.30)

For instance, in the case of 6Li a ' 30a0. The stability of this gas composed
of dimers depends on the frequency at which atom-dimer or dimer-dimer
collisions happen, causing the decay of the dimer states into deeper states.
In a two-state fermionic mixture, these three or four body collisions include
at least two identical fermions. In this case of weakly bound dimers, the
atoms quantum fermionic nature is considered and, from the Pauli exclusion
principle, these processes are suppressed. The atom-dimer and dimer-dimer
scattering length [1] is given by

add = 0.6a and aad = 1.2a (1.31)

The relaxation rate constant for the case of a weakly bound dimer state

αrelax ∝

{
a−3.33 atom-dimer
a−2.55 dimer-dimer

(1.32)

is small (approximately zero) for large atom-atom scattering length, i.e.
strong interactions, and the gas is thus more stable. Also the ratio of the
relaxation to the elastic rate is an important quantity that characterizes the
dimer gas stability and assumes small values (approximately 10−4 for 6Li).
This permits long-life Feshbach molecular gases.

1.4.3 Two-particle energy spectrum

In this section, I follow the simple model described in more details in [3] to
find the spectrum energy of a homogeneous ultracold Fermi gas composed
of N/2 particles having spin "up",i.e. the spin projection on the quantum
axis is ms = +1/2 in units of h̄, and the other N/2 particles having spin
"down" (ms = −1/2). Firstly, I consider the two-body s-wave scattering
between a fermion with spin "up" and its nearest fermion with spin "down"
and then include the effect of the other spin "up" and "down" particle. The
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interaction potential is taken to be the Fermi delta pseudo-potential having
a zero range

Vpseudo = gδreg(~r) (1.33)

with g = 4πh̄2a/m the coupling constant choosen to give the correct scatter-
ing length and m the particle mass. This is a good approximation of the true

Figure 1.3: The schematic model of the interaction between the N/2 fermions with spin
+1/2 with other N/2 fermions with spin −1/2 [3].

interaction potential in the regime nre3 << 1 (re is the effective range of the
true potential [10]), which is also the condition to have gaseous system. To
eliminate singularities in the Schrödinger equation [1], the pseudo-potential
is replaced with the contact condition

limr→0
∂r(rΨ)

rΨ
= −1

a
(1.34)

where r is the distance from the origin (r = 0) and Ψ is the wavefunction of
the "fictitious" particle having mass µ = m/2 (see previous section). To take
into account the interactions effect of the rest N/2 − 1 spin −1/2 particles
and the Fermi statistical effect of the remaining N/2−1 spin +1/2 particles,
the boundary conditions are choosen such that Ψ vanishes at the surface of a
sphere having radius R ∝ 1/kF , with kF the Fermi wave-vector (fig. 1.3). By
considering the contact and boundary conditions, the Schrödinger equation
is resolved for both positive and negative energy values. The results for the
total energy per particle E/N of the first two lowest branches as a function of
− 1
kF a

, which is the ratio of the interparticle spacing to the scattering length,
are shown in figure 1.4.

We can note two regimes in the ground branch:

• the first regime kFa → 0− (i.e. − 1
kF a
→ +∞) represents a weakly

attractive Fermi gas which, at zero temperature, corresponds to the
superfluid BCS phase.
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Figure 1.4: Left figure: The total energy per particle in units of the Fermi energy εF as
a function of − 1

kF a [3]. Right figure: The different physical regimes found in
the ground branch are indicated at the corresponding scattering length.

• the second regime kFa→ 0+ (i.e. − 1
kF a
→ −∞) represents a dilute gas

of dimers where each of them is a molecular bound state of two opposite
spin fermions and have an energy Eb = −h̄2/ma2. At zero temperature
they form a Bose-Einstein condensation of weakly-interacting molecules
of mass M = 2m.

• The cross-over between these two regimes corresponds to the Feshbach
resonance, a → ∞ i.e. −1/kFa = 0, and it is called the unitarity
regime. It can be noted that in this regime, the mean energy per
particle is less than the ideal Fermi gas energy, implying that there is
an effective attraction between the atoms.

For the first excited branch instead one notes that the limit kFa → 0+

corresponds to a weakly repulsive Fermi gas as in this limit the mean energy
per particle is larger than the ideal Fermi gas energy (E = 3

5
NEF ). It is a

metastable state of the gas because, during three body collisions, if a dimer
is formed, the releasing energy is carried away by the third atom, causing
the state to decay from the excited to the ground branch.

1.4.4 BEC-limit kFa→ 0+

For kFa → 0+, corresponding to positive scattering length, the interaction
potential supports a bound state and the atoms in the two-spin states can
form molecules. At temperature below the critical one, these molecules can
condensate into a BEC. For this reason this limit is called the BEC-limit.
The condensed part, i.e. the molecular BEC, is described by a many-body
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wavefunction ψ(~r, t) that obeys the Gross-Pitaevski equation (GP) [5], [6],
[7] in the limit of weakly interacting gases where nMa3

M << 1(
− h̄

2∇2

2M
+ VM(~r) + g|ψ(~r, t)|2

)
ψ(~r, t) = ih̄

∂ψ(~r, t)

∂t
(1.35)

where VM(~r) is the molecular trapping potential, g = 4πh̄2aM/M is the
coupling constant for molecules and aM = 0.6add is the scattering length
between two molecules, i.e. four fermions. In equilibrum, the ground state
wave-function can be written as ψ(~r, t) = e−iµM t/h̄ψ(~r) where µM is the
the ground state energy being equal to the molecular chemical potential and
twice the atomic chemical potential, while ψ(~r) is a solution of the stationary
Gross-Pitaevski equation(

− h̄
2∇2

2M
+ VM(~r) + g|ψ(~r)|2

)
ψ(~r) = µMψ(~r) (1.36)

The condensed part density distribution, defined as nc(~r) ≡ |ψ(~r)|2, in the
Thomas-Fermi approximation which considers the kinetic term negligible
compared to the interaction one (gnc > h̄ωx,y,z), is found to be

nC(~r) = max

(
µM − VM(~r)

g
, 0

)
(1.37)

where the zero value is assumed for µM < V (~r). Typical value for gnc away
from the Feshbach resonance and h̄ω are kBx150nK and kBx5nK respectively
so the Thomas-Fermi approximation is valid. In our case of the harmonic
trap the condensed part density is

nC(~r) =
15

8π

NM

RxRyRz

max

(
1−

∑
i

x2
i

R2
i

, 0

)
(1.38)

i.e. an inverted parabola with Ri =
√

2µ
mω2

i
the Thomas-Fermi radii. At the

Thomas-Fermi radius the wavefunction of the BEC goes to zero and it is
thus a measure of the size of the condensate. One can also determine the
chemical potential from the normalization condition NM = N/2 =

∫
nc(~r)d~r

and the result is

µM =
h̄ω̄

2

(
15NMaM
āh.o.

)2/5

(1.39)

being on order of kHz, with āh.o. =
√
h̄/mω̄ being the geometric mean of

the harmonic oscillator lengths.
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1.4.5 BCS-limit kFa→ 0−

In the BCS-limit of weakly attractive interactions between fermions with
opposite spin components, weakly bound pairs called Cooper pairs [8] are
formed at the Fermi surface, which is the surface of a sphere of radius
the Fermi momentum kF in the momentum-space. Their binding energy
[8] depends exponentially on the interactions and assumes small values for
kFa→ 0−:

EB = − 8

e2
EF e

−π/kF |a| (1.40)

If the Cooper pairs interact with the particle consituent of the Fermi sea, the
Fermi sea is unstable towards pairing (Cooper instability) and a many-body
description is necessary for the paired-states system. It is given by Bardeen,
Copper and Schrieffer (BCS) [1] [8] theory which was developed to explain
superconductivity in metals. According to this theory the Cooper pairing
causes an energy gap

∆ =
8

e2
EF e

− π
2kF |a| (1.41)

to open at the Fermi surface and the system becomes superfluid. The su-
perfluid gap is larger than the single Cooper pair binding energy due to the
other particles participating in the pairing. At finite temperature, the critical
temperature for superfluidity [1] [8] is given by

kBTBCS =
eγ

π
∆ (1.42)

where γ ≈ 0.58 is Euler’s constant and ∆ is the zero temperature energy
gap. For conventional superconductors, the critical temperature is very small
TBCS ≈ 10−4TF . In the case of ultracold degenerate gases, for instance, for
|kFa| = 0.1 the critical temperature is TBCS ∼ 10−7TF , very much smaller
than the temperature achieved experimentally.

1.4.6 BEC-BCS crossover

When crossing from BEC to BCS-limit, all quantities changes smoothly and
continuosly with the interaction parameter 1/kFa. In particular, in this
section I show how the wavefunction size and the critical temperature changes
with 1/kFa in the crossover region, which extends from 1/kFa = −1 to
1/kFa = +1. In the BCS-limit the pairing occurs around the Fermi surface
in a narrow region of width δk = ∆

h̄vF
where vF is the velocity of fermions at

the Fermi surface [1][2][8].Therefore, the spatial wavefunction of the Cooper
pairs has a strong modulation at the inverse Fermi wave vector (1/kF ) and
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an extention of the inverse width of the pairing region (∼ 1/δk >> 1/kF ),
so at r →∞ it is given by

ψ(r) ∼ sin(kF r)e
− r
πξBCS (1.43)

where ξBCS is the Cooper pairs coherence length and r = |~r1 − ~r2| is the
modulus of the relative position vector. The pair size or the two-particle
correlation length is in general defined as:

ξ0 =

√
< ψ(~r)|r2|ψ(~r) >

< ψ(~r)|ψ(~r) >
(1.44)

and is found to be on order of the coherence length in the BCS-limit, i.e

ξ0 ≈ ξBCS = h̄vF/π∆ >> 1/kF (1.45)

In the BEC-limit instead the wave-function

ψ(r) ∼ e−r/a

r
(1.46)

is in fact the wavefunction of a molecule of size a, and the corresponding
two-particle correlation length is thus a. The evolution of the pair size as a
function of the interaction parameter is shown in figure 1.5. On resonance
the pair size is of the order of ξ0 ∼ 1/kF , about a third of the interparticle
distance. Another important quantity which must change smoothly from
the BEC to BCS-limit is the temperature at which a long-range order is
established, i.e. a phase transition to a superfluid occurs, called the critical
temperature. In our case of three dimensional potential a Bose-Einstein
condensate is a superfluid. In this BEC regime and in the case of weakly
interacting molecules the critical temperature can be expressed also as

Tc,BEC = 0.22
EF
kB

(1.47)

For stronger interactions, there is a small positive correction to be added
to the critical temperature that becomes Tc

Tc,BEC
= 1 + 1.31n

1/3
M aM . In the

BCS-limit instead the critical temperature assume a very small value (see
section "BCS-limit"). This means that at the crossover between these two
regimes, the critical temperature must assume a local maxima. To determine
this value one must know the central density and, in the case of the harmonic
trap, we use the local density approximation which consists on assuming that
the properties of a gas at ~r are that of a homogeneous gas having the local
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Figure 1.5: Characteristic pair size evolution from tightly bound molecules in BEC-limit
(1/kFa > 1) to the long-range Cooper pairs in the BCS-limit (1/kFa < −1)
[2]. On the resonance, the pair size is on order of the interparticle distance
ξ0 ∼ 1/kF .

chemical potential µ(~r) = µ − V (~r) and Fermi energy εF (~r) =
h̄2k2

F (~r)

2m
=

h̄2

2m
(6π2n↑(~r))

2/3 where n↑(~r) is the density of atoms in a spin state. At zero
temperature, the density profile in the unitarity limit becomes

n↑,U(~r) =
8

π2

N↑
RUxRUyRUz

max

(
1−

∑
i

x2
i

R2
Ui

, 0

)3/2

(1.48)

with the radii RUx,y,z = α1/4RFx,y,z , where α is an universal constant which
simply rescales the radii by a factor α1/4 and the central density by a factor
α−3/4 with respect to the ideal degenerate Fermi gases. The critical temper-
ature at unitarity [1] is:

Tc,U = 0.15EF/kB (1.49)

which is actually achieved in the ultracold Fermi gases experiments. It is
interesting to note that this temperature is larger than Tc/TF ∼ 10−4 typical
of conventional superconductors and even larger than Tc/TF ∼ 10−2 peculiar
of high-Tc superconductors, thanks to the strongly interactions achieved by
the Feshbach resonance. For this reason the crossover fermionic superfluid
are called "high-temperature superfluid"; scaled to the density of electrons in
a metal, this form of superfluid would occur at temperature above the room
temperature, even above the melting one [2]. The profile of the critical Tc and
pair creation T∗ temperature as a function of 1/kFa is shown in figure 1.6.

20



In the region between Tc and T∗, there are bound pairs which are not yet
condensed.

Figure 1.6: Behavior of the superfluid transition temperature (Tc) and pair creation tem-
perature (T∗) as a function of 1/kFa in the BEC-BCS crossover regime. [2].

1.5 The special case of 6Li
An extraordinary property of fermionic lithium (6Li), which we use in our
experiment, is the presence of broad Feshbach resonances between its internal
states which permits to finely tune the interaction scattering length by just
varying an external magnetic field. The enhanced scattering length at the
resonance permits to efficiently evaporate (see "Evaporative cooling") the
lithium gases to the quantum degenerate regime and then, by just tuning the
magnetic field value, to the directly production of molecular BEC (mBEC).
Therefore one can study different physical regime from quantum degenerate
Fermi gases to mBEC and thus simulate different many-body phenomena
of condensed matter physics. In the following, I firstly describe the level
structure of 6Li and then give its Feshbach resonances features.

1.5.1 Level structure

Fermionic lithium (6Li) has in its ground state (2S1/2) a valence electron
having a total angular momentum J = 1/2, where ~J = ~L + ~S with ~L the
orbital angular momentum and ~S the electron spin equals to zero and 1/2
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respectively. At zero external magnetic field, the level energies are given by
the eigenvalues of the hyperfine hamiltonian:

Hhf = ahf ~I · ~J (1.50)

where ahf is the hyperfine constant of the level and ~I is the nuclear spin,
whose value is one for 6Li. If we define the atom total angular momentum as
~F = ~J+~I, a good basis to diagonalize Hhf is the one of the atom momentum
quantum number F and of its projection along the quantization axis mF .
As a result, we achieve that the ground state splits in two hyperfine levels
|2S1/2, F = 1/2〉 and |2S1/2, F = 3/2〉 separated by 228.2 MHz. In figure 1.7
is shown not only the ground state hyperfine structure but also that of the
excited states 2P1/2 and 2P3/2 where the hyperfine energy splitting value is
indicated [12] [11]. The state 2P3/2 hyperfine structure is unresolved as the
hyperfine splitting is smaller than its natural width Γ = 5.9 MHz, while
instead the 2P1/2 hyperfine sublevels are well-resolved. When an external
magnetic field (B) is applied, the hamiltonian is instead given by the sum
of the hyperfine hamiltonian and the Zeeman hamiltonian which gives the
interaction of the electron and nuclear spins with the magnetic field

H = ahf ~I · ~J + gjµB ~B · ~J + giµN ~B · ~I (1.51)

where gj and gi are the electron and nuclear Lande g-factor respectively,
while µB ≈ 1.4 MHz/G is the Bohr magneton. At magnetic field values
B << ahf/µB, which is almost 30 G for 6Li, the Zeeman effect is a weak
perturbation to the hyperfine structure and |F,mF 〉 continue to be a good
basis. At high field values (larger than 30 G) instead, the Zeeman effect
dominates and the electron and nuclear spin decouples. So, F is not anymore
a good quantum number while the electronic and nuclear spin projectionsmS

and mI are good ones. To find the hamiltonian eigenvalues at intermediate
field too, we write it in terms of the creation and destruction operators ~J±,
~I± as

H = hahfIzJz +
hahf

2
(J+I− + J−I+) + µBB(gJJz + gIIz) (1.52)

where
J± |J,mJ〉 =

√
(J ∓mJ)(J ±mJ + 1) |J,mJ ± 1〉 (1.53)

the same is true for I± if we substitute J → I. The hamiltonian eigeinvalues
expression is called the Breit-Rabi formula. The profile of the energy of the
ground state sublevels versus magnetic field, calculated via Mathematica, are
shown in figure 1.8. In our experiment, we use two-state mixtures composed
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Figure 1.7: The ground (22S1/2) and excited states (22P1/2, 22P3/2) hyperfine structure of
6Li and the corresponding hyperfine energy splitting. The transition 22S1/2 →
22P1/2 (called D1 transition) and the 22S1/2 → 22P3/2 (called D2 transition)
are also indicated.

of 6Li atoms being in |1〉 − |2〉 or |1〉 − |3〉 states. The fermionic system I
considered in the previous sections was composed of fermions having spin
"up" and spin "down", i.e. spin components along the quantization axis
equal to +1/2 and −1/2 respectively. Hereafter, the fermionic particle I
consider are the 6Li atoms and the state |1〉 and |2〉 or |3〉 are the analogous
of spin "up" and spin "down" states, a kind of "pseudospin" states.

1.5.2 6Li Feshbach resonances

The 6Li open channel is described by the triplet potential to which corre-
sponds an angular momentum F = 1, while the closed one is the singlet
potential corresponding to F = 0 [4]. The 6Li Feshbach resonances between
its internal state |1〉 − |2〉 and |1〉 − |3〉 are shown in figure 1.9 [13] while
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Figure 1.8: Ground state Zeeman sublevels energy as a function of the magnetic field,
labeled from |1〉 to |6〉 where the quantum numbers indicating the states are
|F,mF ,mJ ,mI〉.

the corresponding properties such the resonance position, width and back-
ground scattering length [14], [15] are given in the table 1.10. I note that 6Li
Feshbach resonances background scattering length abg assumes large values,
of about −1600a0, when compared to typical abg on order of hundreds of
a0 for the other alkali atoms. Thus, if the triplet potential of 6Li were just
about h̄2/ma2

bg ' h · 415 kHz deeper, it would support a new bound state.
Also, the Feshbach resonance width (∆) is two or three order of magnitude
larger than typical values. The strongly interaction regime 1/kF |a| < 1 is
thus completely in the universal (unitarity) regime.

1.6 Production of quantum degenerate gases
The atomic gases are produced by heating up in an oven (see next chapter) its
solid at very high temperature. So, the first step in producing the quantum
degenerate gases is to reduce their velocity after leaving the oven. This
is achieved by an interplay between the effect of the laser and magnetic
fields on the atoms motion. In order to achieve the quantum degenerate
regime, the evaporative cooling is applied, where interactions play a crucial
role in the cloud thermalization. Therefore, the following section begins by
describing the forces that the light exerts on the atoms, continues considering
its application and in the end I explain the evaporative cooling technique.
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Figure 1.9: Feshbach resonances between |1〉 − |2〉 and |1〉 − |3〉 internal states of 6Li.

Figure 1.10: The position, widths and background scattering lengths of the Feshbach res-
onances between |1〉 − |2〉 and |1〉 − |3〉 states of 6Li.

1.6.1 The effect of light on the atoms

The force exerted on the atoms by the light field originates from the mo-
mentum exchange during the absorption/emission processes. To achieve an
expression of this force, I follow the semiclassical approach which consists
on calculating the mean force acting on an atom at a position x. This ap-
proach is valid only if the atomic wavepackets spatial (∆x) and momentum
(∆p = m∆v) spread are sufficiently small but such to satisfy the Heisen-
berg uncertainty relation ∆x∆p ≥ h̄. The atom is considered spatially well-
localized in the laser field if ∆x� λ, where λ is the laser wavelength. If the
spread of the Doppler shifts k∆v associated to a velocity spread and conse-
quently to a momentum spread is much smaller than the natural width of
an excited level Γ , i.e. k∆v = k∆p/m � Γ, the atom wave-packed is well-
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localized even in momentum space [16] [17]. In this semiclassical approach
the electric field is taken to be

~EL(~R, t) = ~eLεL(~R) cos
[
ωt+ φ(~R)

]
(1.54)

where ~eL is the polarization vector supposed independent on R, while the field
amplitude εL(~R) and phase φ(~R) depends on R. It can be shown [16] that
the average force acting on the atoms, calculated at the rest atom position
supposed to be R = 0, is the sum of two terms; the dissipative force ~Fdiss
and the reactive one ~Freact expressed as

~Fdiss = − h̄Γ
2

Ω2/2

δ2+ Γ2

4
+ Ω2

2

∇φ and ~Freact = − h̄δ
4

~∇Ω2

δ2+ Γ2

4
+ Ω2

2

(1.55)

where δ = ω − ω0 is the laser detuning from the atomic transition ω0 and
Ω(~R) the Rabi frequecy defined as:

h̄Ω(~R) = −εL(~R)~deg · ~eL (1.56)

For a plane wave whose ~∇φ = ~kl, one finds that the dissipative force varies
with δ as a Lorentzian absorption curve centered at δ = 0, at which it as-
sumes the maximum value ~Fmax = h̄~klΓ/2, and having a width

√
Γ2

4
+ Ω2

2

(fig. 1.11a). Defining the intensity parameter I
Isat

= 2 |Ω|
2

Γ2 , one finds also the

Figure 1.11: The dissipative force profile as a function of the detuning (a) and the ratio
I/Isat (b).

dissipative force profile versus this parameter as shown in figure 1.11b. At
low laser beam intensity I/Isat << 1 the dissipative force is proportional to
Ω2 and thus to the light intensity. At high intensity I/Isat >> 1 instead the
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dissipative force saturates at its maximum value ~Fmax. Also it can be inter-
preted as being proportional to the rate of spontaneous emission processes
[16], during each of them the atom gains the momentum h̄~kl:

~Fdiss = h̄~kl <
dNspont

dt
> (1.57)

where < dNspont
dt

> is the average value of the rate of variation of the excited
state population per second due to spontaneous emission process. For a
plane wave, the reactive force is instead zero, but in general it varies with
δ as a dispersion curve having the same width as the dissipative one. For
positive detuning δ > 0 (blue-detuned laser), the laser repels the atoms away
from the high intensity region. For negative detuning δ < 0 (red-detuned
laser) the force instead attracts the atoms toward the regions of high laser
intensities. In contrast to the dissipative force it increases with the laser
intensity (Ω2 ∝ I) without saturating. The reactive force can be expressed
also as the gradient of a potential appearing so as a conservative force and
it is called the "dipole" force

~Freact = −~∇U with U = −3πc2

2ω3
0

(
Γ

ω0−ω + Γ
ω0+ω

)
I(~r) (1.58)

The scattering rate of photons by the atoms is

Γsc(~r) = −3πc2

2ω3
0

(
ω

ω0

)3 [
Γ

ω0 − ω
+

Γ

ω0 + ω

]2

I(~r) (1.59)

1.6.2 Magneto-optical trap (MOT)

MOT configuration

When two counterpropagating laser light at the same frequency ω are sent
to an atom whose velocity ~v points in the same direction, for instance, as the
left laser (fig. 1.12a), the atom feel a total dissipative force given by

~F ' h̄~kΓ

2

[
I
Isat

1 + 4(ω−ω0−kv)2

Γ2

−
I
Isat

1 + 4(ω−ω0+kv)2

Γ2

]
(1.60)

which takes into account the Doppler shifts of each laser in the atom reference
frame: the right laser frequency is upshifted to ωR = ω

(
1 + v

c

)
and the force

exerted by it is given by the second term, while the left one frequency is
downshifted to ωL = ω

(
1− v

c

)
and the first term gives the force exerted by

it to the atom (fig. 1.12b).
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Figure 1.12: The two counterpropagating laser beams sent to a moving atom (a) and the
resulting dissipative force as a function of the atom velocity (b) [17].

In the limit of small laser intensity (I << Isat), the total dissipative force
exerted by the two beams on the atom is

~F = −β~v +O(v3) with β = −8h̄k2 I
Isat

δ
Γ(

1+ 4δ2

Γ2

) (1.61)

where β is the damping coefficient and is positive for red-detuning (δ < 0)
giving a dissipative force that lineary reduces the atomic velocity beeing op-
posite to it (fig. 1.12b), the opposite happens for blue-detuning (δ > 0). We
would expect these results as when ω < ω0, ωR is closer to resonance than ωL
so the right laser has higher probability to be absorbed by the atoms and con-
sequently the atoms gain a momentum h̄~kl in the opposite direction of their
motion slowing down. This configuration called optical molasses, efficiently
cool the atoms but does not provide any spatial confinement of them. The
atoms trapping is achieved by using an inhomogeneous magnetic field and
a pair (in one dimensional) of counterpropagating red-detuned laser beams
polarized σ+ and σ−. To show the MOT principle of work, for simplicity, I
consider an atom whose angular momentum number of the ground and ex-
cited state are J = 0 and J = 1 respectively (fig. 1.13). Supposing that a
linear magnetic field is applied in x-direction, i.e. ~B(x) = bxx̂, we achieve a
position dependent Zeeman shift of the excited hyperfine states energy

EZ(x) = gJ ′µBmJ ′bx (1.62)

where mJ ′ = −1, 0, 1 are the angular momentum components defined respect
to the quantization axis x, gJ ′ is the Lande factor of the excited state, µB
the Bohr magneton and b the gradient of the magnetic field. For an atom
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Figure 1.13: The Zeeman energy shift of the excited state J = 1 in the presence of magnetic
field having a constant gradient and the incident σ+, σ− laser light [17].

located at x > 0, the transition |mJ = 0〉 → |mJ ′ = −1〉 is almost resonant
with the red-detuned laser beams. As ∆mJ = −1 for this transition, due
to the selection rule, these atoms are resonant with the σ− polarized laser.
The atoms experience so a radiation pressure force directed towards the trap
center. If instead the atom is located at x < 0, the situation is reversed; the
transition |mJ = 0〉 → |mJ ′ = +1〉 is almost resonant with the laser beams
but it probably absorbs the σ+ polarized laser due to the corresponding
selection rule ∆mJ = +1. It results in a radiation pressure force which
tends to bring the atom at the trap center, opposite to the first one. In fact,
for small atom displacement (x) and velocity (v), the resulting force can be
expressed as

F ' −mω2x− βv (1.63)

which describes the force acting on a damped harmonic oscillator. This
discussion can be generalized in three dimensions.

MOT cooling limit

During the spontaneous decay from the excited state, the atom acquires a
momentum h̄~k in a random direction, for any emission process. This can be
thought as a random walk in the momentum space with unit step equal to h̄~k
which results in an atom heating with an average squared velocity increasing

< v2 >= v2
rΓ scattt (1.64)
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with vr = h̄k
m

the recoil velocity and Γscatt the scattering rate of photons.
Also the laser intensity fluctuations can contributes in heating the atoms.
The equilibrum is achieved when the cooling and heating rate are equals and
it happens at the Doppler temperature [16] [17]:

TD =
h̄Γ

4kB

1 +
(

2∆
Γ

)2

2|∆|
Γ

(1.65)

We would expect for TD to assume a minimum value because when the mo-
mentum of the particles becomes so low that their Doppler shift becomes
smaller than the linewidth of the transition, the absorption of light from the
counter- and co-propagating light beams becomes equally probable and this
cooling mechanism does not work anymore. In fact, a minimum temperature
is achieved for |∆| = Γ/2 and is:

TminD =
h̄Γ

2kB
(1.66)

being equal to TminD = 140 µK for 6Li.
Doppler temperature originates from considering a two-level atom in a stand-
ing wave, but if an atom has a Zeeman ground state structure (as alkalin
atoms) and it moves in a polarization gradient light field, sub-Doppler cool-
ing mechanism are possible having as minimum temperature limit:

Tr =
h̄2k2

2mkB
(1.67)

which corresponds to the recoil of a single photon with momentum k and in
the case of 6 Li is about Tr = 3 µK. However, such very small temperature for
6Li is unreachable with standard sub-Doppler cooling technique due to the
unresolved excited state hyperfine structure. To achieve sub-Doppler tem-
perature, in our experiment is implemented a "blue-detuned gray molasses"
scheme, which is explained in more details in the third chapter.

1.6.3 Optical dipole trap

In typical ultracold atoms experiment, in the MOT one achieves phase-space
density ρ = nλ3

dB ' 10−5 which is much smaller than the quantum degener-
ate value ρ ∼ 1. For this reason the atoms are transferred into a conservative
potential in order to perform a further cooling stage called evaporative cool-
ing.
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Optical dipole trap

As I explained previously, the dipole force, exerted by focused laser beam,
traps the atoms if the laser light is red-detuned with respect to the atomic
transition. The disadvantage of this trapping technique is that the atoms
scatter the trapping light which causes heating or loss of atom from this
optical dipole trap ODT. However, while the trap depth reduces lineary with
the increase of the detuning of the light U ∝ I/δ, the scattering rate drops
off quadratically while increasing the detuning Γsc ∝ I/δ2. Thus by using
very far-detuned laser beams, the scattering rate is reduced while sufficiently
deep dipole traps are achieved. To efficiently load the atoms from the MOT
into the ODT, are sufficient trap depth on order of 1mK.

I consider here the case of the dipole trap created by a red-detuned Gaus-
sian beam propagating along z-axis. Its intensity varies spatially depending
both on the radial r and axial z coordinates as

I(r, z) = 2P
πw2(z)

exp
(
−2 r2

w2(z)

)
with w(z) = w0

√
1 +

(
z
zR

)2
(1.68)

where P is the laser power and w(z) is the radius at which the intensity is
diminished by 1/e2 with respect to its maximum value. Its minimum value
w0 is called the beam waist and zR = πw0

2/λ is the Rayleigh range. The
beam waists and Rayleigh ranges determine the region of confinement for the
atoms, i.e. the trapping volume. If the thermal energy of the sample kBT is
much smaller than the trap depth U0 the extension of the trapped cloud is
smaller than the trapping volume, which is the case in our experiment. Thus
we can expand the Gaussian beam intensity to the second order on r and z
around its maximum value I0, which includes all the constant

I(r, z) ' I0

(
1− z2

z2
R

− 2r2

w2
0

)
(1.69)

Consequently the dipole potential can be expanded around its minimum value
U0 = 3πc3

2ω3
0

Γ
|δ|I0 and we find

Udip ' −U0 +
1

2
mω2

rr
2 +

1

2
mω2

zz
2 (1.70)

where ωz and ωr are the axial and radial frequency given byωz =
√

2U0

mz2
R

ωr =
√

4U0

mw2
0

(1.71)
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The ratio of the radial to axial frequency is called the aspect ratio ε =
ωr/ωz =

√
2πw0/λ. In general it is more than one which means that there is

stronger confinement in the radial than in the axial direction and it increases
with the beam waist value. In order to strongly confine the atoms in the
axial direction too, we can use crossed laser beam or magnetic trapping.

1.6.4 Evaporative cooling

Once the atoms are transfered in an optical dipole trap, we perform the
evaporative cooling process in order to cool them to the degenerate regime
temperature on order of hundreds of nK. In the ODT, the velocity of the
atoms follow initially the Maxwell-Boltzman distribution and the tempera-
ture of the cloud is defined by the mean velocity. The idea of the evaporative
cooling technique is to lower the trap depth by descreasing the laser inten-
sity, so the atoms having energy larger than the mean, i.e. the tail of the
velocity distribution, leave the trap. After the loss of these high-energy par-
ticles and if elastic collision are present, the gas is re-thermalized to a new
velocity distribution to which corresponds a lower equilibrum temperature.
The trap depth is lower slowly enough for the atoms to re-thermalize in order
not to loose too many atoms during the evaporative process. High elastic
collision rates are very important to re-thermalize the gas during the evap-
orative cooling. For this reason we perform evaporative cooling in two-state
mixture fermions near the Feshbach resonance, where the scattering length
is very large (see ’Feshbach resonance’). In principle, the evaporative cooling
process can cool the sample down to zero temperature, but the fraction of
escaping particles is found to be

Nfree

Ntrapped

∝ e−U/kBT (1.72)

where the ratio η = U/kBT between trap depth and temperature of the gas
is called the truncation parameter and is almost η ∼ 10 in our experiment.
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Chapter 2

Experimental apparatus and
results

In this chapter I will describe the experimental apparatus we use to produce
quantum degenerate gases of 6Li atoms. I will illustrate the optical schemes
to produce a Magneto-Optical Trap of 6Li and to investigate its properties,
such as number of atoms and temperature. I will show in detail the set-up
to create a pure optical potential where the degenerate regime is achieved for
our fermionic gases.

2.1 Laser system
To cool and trap the atoms we use laser beams at 670.977nm, resonant with
the |2S1/2, F = 3/2〉 → |2P3/2, F

′ = 5/2〉 transition. These cooling lights can
transfer with a finite probability the atoms in F = 1/2 hyperfine state and
thus removing them from the cooling cycle. For this reason we use also
a repumping beam which repump the atoms from F = 1/2 to the cooling
transition (fig. 2.1). As the hyperfine splitting in the ground state manyfold
is just 228 MHz, the cooling and repumper light are obtained from a sin-
gle frequency laser source by just appropriately shifting its frequency with
acousto-optical -modulators (AOMs). The master laser we use is a Tapered
Amplifier High Power Diode Laser (TA-Pro) produced by TOPTICA that
gives a maximum power of 400 mW. Using polarization maintaining fibers
the light is brought from this table (TA-Pro’s table) to the one where all the
necessary lights (MOT, Zeeman slower and imaging beam) are generated,
called hereafter "the MOT table".
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Figure 2.1: Optical transition used to cool the 6Li atoms in the magneto-optical trap.

Lock-in scheme

The D2 laser is frequency locked at the cooling transition F = 3/2 → F ′ =
5/2 line through a +140MHz double passage AOM by saturated absorption
spectroscopy with frequency modulation technique, using an Electro Optic
Modulator at 12 MHz. The details of the lock-in scheme can be found in the
Master Thesis [20].

2.1.1 Optical set-up to produce MOT and Zeeman slower
lights

In figure 2.2 is shown a scheme of the frequency shifts: the D2 light en-
tering the MOT table is shifted of around -205 MHz from the resonance
F = 3/2 → F ′ = 5/2, which is given by the sum of the frequency shift
achieved by the double passage AOM of the locking scheme and of another
AOM at around +75 MHz placed in the TA-Pro’s table, called the switch
AOM (see "Experimental set-up and the characterization of 6Li gray mo-
lasses" subsection). The D2 laser light is then divided in two parts: the
cooling and repumper light, that follow different optical path (fig. 2.3). The
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Figure 2.2: Frequency scheme of the experiment for the cooling and repumper light. The
laser light entering the MOT table is frequency locked at -205 MHz from the
resonance F = 3/2 → F ′ = 5/2. MOT laser beams frequency can be further
shifted from the resonance at a quantity ∆MOT by just varying the frequency
of the respective AOM.

cooling light passes twice through an AOMwith center frequency at +90 MHz
before injecting the corresponding tapered amplifier MOPA. The light power
amplifiers (BoosTA, Toptica) give a maximum output power of about 400
mW for an input power of 28 mW. The repumper light instead passes twice
an AOM with a center frequency of +200 MHz and then is sent to its MOPA.
To obtain a frequency difference of 228 MHz at resonance (∆MOT = 0) be-
tween the cooling and repumper light, the AOM frequencies are set at +91
MHz and +205 MHz respectively. Both the cooling and repumper light are
overlapped to a non polarized 50:50 beam splitter NPBS, where two output
beams are achieved: one for the Zeeman slower (part of the experimental
apparatus, see section 3.4) and one for the MOT. The Zeeman slower light
frequency is shifted with a double-pass AOM with a center frequency of -200
MHz and then is injected to another optical fiber to reach the experimental
apparatus, i.e. both its repumping and cooling frequency are shifted -400
MHz with respect to the MOT lights νslower = νMOT − 400 MHz. We inject
part of the light of the slower into an optical fiber and prepare the imag-
ing light on another breadboard. In particular, to create the imaging light
resonant with the F = 3/2 → F ′ = 5/2 transition, we make use of an addi-
tional AOM to compensate the shift required for Zeeman slower. The MOT
light instead is splitted in three different paths, one for each spatial direction
with each of them sent to a polarization-maintaining optical fiber to reach
the experimental apparatus. Independent shutters are used for MOT beams
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Figure 2.3: Optical scheme to produce the cooling and repumper light.

(Uniblitz), imaging (electromechanical shutter) and slower light (Uniblitz
plus AOM deflection). All the fibers are stabilized in polarization by means
of λ/2 positioned at their entrances. We can control the detuning of MOT’s
beams ∆MOT by changing the AOM shifts before the MOPA amplifier.
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2.2 Absorption imaging of cold atoms at low
and high magnetic field

In our experiment, the number of atoms in each of the three lowest spin
states, i.e. |1〉, |2〉 and |3〉 of 6Li, as well as the sample temperature, are
determined using absorption imaging. In this chapter, I will describe the
actual experimental set-up for the preparation of imaging light at low and
high magnetic field which corresponds to different interaction regimes.

2.2.1 Absorption imaging

The main tool that we use to investigate our sample is absorption imaging.
A weak (I << Isat) resonant laser beam is sent to the atoms which absorbs
it creating a shadow cast on the imaging light recorded with a CCD camera.
This image represents the projection of the atomic cloud in the plane orthog-
onal to the view axis. In our system, the imaging pictures are taken either
in the vertical or horizontal direction by means of two independent optical
set-up. Both the vertical and horizontal absorption beams can be quickly
switched off and on by a AOM. Typically, a sequence of three pictures is
recorded: the first one with the atomic sample, the second picture without
the atoms (the reference picture), and the third one is a "background" pic-
ture, without the atoms and the imaging beam. The latter takes into account
all the effects due to spurious light sources and is substracted from the other
two. If, for example, the imaging axis is the z-axis, then the atomic density
integrated along z is given by

n̂(x, y) =

∫
n(x, y, z)dz = − 1

σ
ln
(
It − Ibg
I0 − Ibg

)
(2.1)

where It and I0 are the trasmitted and incident beam intensity respectively,
Ibg is the intensity corresponding to the "background" imaging and σ is the
resonant absorption cross-section. In our case, σ takes different values for the
imaging in vertical and horizontal direction. The reason is that the vertical
imaging light at high magnetic field is σ−-polarized along the quantization
axis (the Feshbach field axis) while the horizontal imaging beam is lineary
polarized, so the value of sigma for the horizontal imaging is reduced by a
factor of 2 with respect to the vertical one given by:

σvertical =
3λ2

2π
(2.2)

In order to extrapolate the number of atoms corresponding to each CCD
pixel (labeled with i,j), the equation 2.1 has to be corrected by the area A of
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a single pixel and by the magnification M (set by the optical system):

n̂i,j = − A

σM2
ln
(
It − Ibg
I0 − Ibg

)
(2.3)

Summing n̂i,j over all pixels, we get the total atom number. In the case of a
thermal gas, the two-dimensional density is fitted with a Gaussian distribu-
tion while in the case of mBEC only the wings of the density distribution,
which gives the non-condensed part (thermal) density, are fitted with the
Gaussian one. Due to the absorption of photons from the imaging beam the
atomic cloud heats up very quickly which destroys the ultracold sample and
consequently we have to prepare a new ultracold atom cloud after each imag-
ing cycle. The absorption imaging sequence starts in general when all MOT
lights and magnetic fields are switched off. The cloud expands according to
its momenta and the interaction energy is transformed into kinetic energy in
the expansion. We calculate the temperature of the thermal cloud from the
width of distribution after time of flight (texp) as:

σ =

√
σ2

0 +
kBT

m
t2exp (2.4)

We take different images for different time of flight (indicated also with TOF)
and, by fitting σ as a function of TOF with this function, we recover the cloud
temperature. When instead the sample expands in a magnetic field after
being trapped in the optical dipole trap, the temperature is not recover by
the free ballistic expression as we take into account the effect of the magnetic
field too [2].

2.2.2 Imaging light preparation

Thanks to the Feshbach resonances we are able to study different physics
regime found for different values of magnetic field B, passing from zero to
high B values. To image the cloud at this range of magnetic field we have
to compensate for the corresponding Zeeman shifts. The main issue that we
have to deal with is that, the fast switching off of high magnetic fields, is
not straightforward for our apparatus, due to both inductance of our coils
and the auto inductance of the chamber. Furthermore at high field we may
use non-destructive phase contrast imaging, sensitive to the single spin state,
to address the physics close to the Feshbach resonance [23]. The optical
scheme we developed is reported in figure 2.4, whose disadvantageous is that
it permits to produce imaging light for restricted values of magnetic field.
So, during my thesis work I design and develope a versatile optical sheme
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Figure 2.4: Optical setup for zero and high field imaging [21].

for imaging in a larger range of magnetic field values as I will show in the
next chapter. To perform 0 field imaging, we need to compensate the shift
of the slower light and the MOT detuning with respect to the D2 transition,
unresolved in its Zeeman substates. Instead for high values of the magnetic
field, we image the closed atomic transition |mj = −1/2〉 → |mj′ = −3/2〉.
At a magnetic field value of 800 G, for instance, the Zeeman shift is -1100
MHz so the required frequency shift to be added to the slower’s detuning is
-700 MHz and this is achieved by a double-pass red-detuned AOM of -350
MHz frequency. The value of the AOM’s shown in the figure 2.4 are for the
imaging at 840 G and 690 G.
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2.3 The oven and the science chamber
The heart of the experiment is an Ultra-High-Vacuum (UHV) system, to
isolate cold atoms from hot thermal background atoms, which is composed of
two principal parts: the oven assembly where the atomic vapor are produced
and the science chamber where the atoms are trapped and cooled to the
degenerate limit as shown in figure 2.5. These two regions are connected by
a Zeeman slower tube long 56cm and by a differential pumping stage.

Figure 2.5: The vacuum system consisted on an oven and a science chamber connected by
the Zeeman slower and a pumping section.

The oven

At room temperature, lithium is a solid so to achieve its atomic vapor we
heat up in an oven to almost 4000C a source of bulk composed of about 10g of
6Li with purity of 99%. The atomic vapor coming out the oven and entering
in the system is collimated by two apertures: the first one, called nozzle, is
adjustable in its position permitting so to achieve a better alignment of the
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atomic beam with the science chamber and is generally held at a temperature
of 4600C. After it a second regulable aperture, a copper plate called the cold
plate, is kept cold using a Peltier cell1: hot atoms with misaligned direction
with respect to the science chamber will strike and be stuck onto it and they
will be stopped before entering the rest of the experiment. A pneumatic
shutter is used to stop the atomic beam preventing it from entering the
Zeeman slower and it is kept closed after loading the MOT. A differential
pumping stage is also used to provide a pressure drop of about three order of
magnitude from almost 10−8 mbar in the oven to almost 10−11 mbar in the
science chamber.

Science chamber

The chamber 2.6 is a spherical octagon from Kimball Physics with a large
optical access among different directions guaranteed by six CF40 (view di-
ameter of 38 mm), ten CF16 viewports (view diameter 16 mm) and two
rientrant CF100 viewports (view diameter of 90 mm). The pressure in the

Figure 2.6: On the right: draw of the main vacuum chamber. On the left: fluorescence
imaging of the atomic cloud in the MOT seen outside viewports.

UHV system is below of P ≤ 10−11mbar and is reached and maintained by
1A Peltier cell is formed by two p and n doped semiconductor materials connected with

each other by a thin copper plate. Based on Peltier effect, the cell is able to transfer heat
from a junction to another when a current is fluxed in the copper circuit.
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ionic pumps after the science cell and titanium sublimators. The system is
descibed in more details in the [20].

2.4 Zeeman slower and magneto-optical trap
In figure 2.7 are shown the configuration of the MOT, gray molasses, the
slower and the ODT laser beams across the science chamber. A flux of

Figure 2.7: Top view of the science chamber showing the MOT/gray molasses beam (red),
the slower beam(orange) and the ODT beam(brown)

atoms of about 1010 atoms/second entering the Zeeman slower have a mean
velocity almost 800 m/s which is reduced to almost 30 m/s thanks to the
combined effect of the slower magnetic field and a counter-propagating red-
detuned laser beam. Such final velocity value is less than the MOT capture
velocity of 60 m/s permitting to efficiently load the MOT. In 4 seconds we
are able to load a MOT of 109 atoms and achieve temperatures on order of
mK with a corresponding phase space density of 10−5.

2.4.1 Zeeman slower

The 6Li atoms leaving the oven follow a Maxwell-Boltzman velocity distri-
bution with root mean square velocity for each direction around 800 m/s
which is higher than the MOT capture velocity around 60 m/s. Conse-
quently, we have to reduce it in order to efficiently load the atoms into the
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MOT. We achieve lower velocity thanks to the radiative pressure of a counter-
propagating red-detuned laser beam exerted on the atomic cloud. The atoms
moving in the opposite direction of the incident light see a larger laser fre-
quency, due to the Doppler effect, almost resonant with the atomic transition
maximizing so the slowing force (chap.1). Once the atoms are slowed the
Doppler effect is reduced and consequently the light pressure force becomes
lower. To maintain the resonance condition, even when the atoms are slowed
down, we apply an external magnetic field and this configuration is called
the Zeeman slower. This magnetic field is designed such that the Zeeman
energy shift of the cooling transition compensate the Doppler shift satisfing
so the resonance condition δ = 0 where

δ = ω − ω0 − ~k · ~v +
∆Ezs(B)

h̄
(2.5)

with ω the laser frequency, ω0 the atomic transition frequency on which
the Zeeman slower is working, ∆Ezs the hyperfine splitting of the cooling
transition depending on the magnetic field B and ~k·~v the Doppler shift. Since
6Li enters the strong field (Paschen-Back) regime at low magnetic field we
can write ∆Ezs ' µBB. We designed the slower such that to get a constant
deceleration along the direction of propagation of the atoms, which means
that the atoms velocity varies as v2(x) = v2

i − 2ax , i.e. being dependent
on the atoms position along the Zeeman slower x-axis (fig.2.5). From the
resonance condition we obtain that also the Zeeman slower magnetic field
must be also position dependent satisfing

B =
h̄

µB
(δ0 + k

√
v2
i − 2ax) (2.6)

where δ0 = ω − ω0. In our experiment the Zeeman Slower is working on the
transition |2S1/2,mj = 1/2〉 → |2P3/2,mj = 3/2〉 induced by a σ+ polarized
laser beam with direction of propagation parallel to the direction of the
magnetic field inside the slower. The fast atoms are the first ones to be slowed
due to their great Doppler effect, while the slower ones will be captured in
the latest part of the tube. For our Zeeman slower the initial mean velocity
is almost 800 m/s giving an initial Doppler shift at the first coil of almost
1.1x103 MHz, while the red-detuning of the Zeeman slower light is equal to
-400 MHz. The frequency difference of about 700 MHz must be compensated
by the Zeeman energy shifts, which requires a magnetic field of almost 500
G. The total magnetic field of the slower is produced by nine coils directly
winded on the slower tube and do not need high electric power to be generated
reducing so the heating of the apparatus. The cooling of coils is provided
by an inner channel below the coils themselves, where water circulates after
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being pumped from a chiller. In figure 2.8 are shown the simulated and
measured magnetic fields for each coil. We note that the first three coils
have value slightly different from the computed ones, so to compensate it
we run these coils on independent suppliers and optimize the loading of the
MOT. Its last coil has a sign inverted magnetic field in order to permit the

Figure 2.8: The slower simulated and measured magnetic fields plotted for each coil.

slowed atoms coming out of the Zeeman slower not to be anymore resonant
with the counter propagating beam allowing so a better loading of the atoms
in the MOT. The disadvantage of this configuration is that it produces a
flip of the atoms spin where the magnetic field changes its sign as at this
position mj is no more a good quantum number and the slower transition is
no longer closed. Atoms can escape the cooling cycle and fall in the state
|F = 1/2〉 of the ground state. So, in addition to the cooling laser light we
use repumper light which brings back the atoms into the cooling cycles In
table 2.9 are shown the detuning and the power of the cooling and repumper
laser beams of our Zeeman slower. The relative percentage of cooling and
repumper light are due to the intrinsic design of the optical scheme: reducing
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Figure 2.9: Our Zeeman slower parameters, i.e. the counter-propagating light detuning,
the cooling and repumper light intensity and the velocity obtained at the end
of the Zeeman slower.

the repumper intensity on the Zeeman slower beam would reduce also the
repumper intensity on the MOT as can be noted in figure 2.3. The final
velocity obtained at the end of the Zeeman slower 30 m/s is less than the
MOT capture velocity almost 60 m/s allowing so a good MOT loading.

2.4.2 Magneto-optical trap

MOT configuration

In our experiment, the MOT light configuration is composed of three mutu-
ally orthogonal retro-reflected laser beams with polarization σ+/σ− working
on the D2 transition. These laser beams have a 1/e2 beam radius of 1.5 cm
and a maximum peak intensity of 7Is , with Is = 2.54mW/cm2 the saturation
intensity of the D2 transition. Each beam contains a cooling and a repumper
light such that a closed cooling cycle is achieved. The magnetic field instead
is a quadrupole one generated by a pair of coils in anti-Helmholtz configura-
tion giving a magnetic field gradient of 20 G/cm at a current I = 20 A. They
are mounted around the two reentrant CF100 viewports along z-axis and are
shielded with a non magnetic plastic support, which allows water to circulate
close to them and have sufficient cooling. Each coil has an inner diameter
of 70 mm and has 6 and 8 horizontally and vertically windings respectively,
realized with a copper wire with a rectangular section of 1 x 3 mm. .

MOT experimental results

In our case, the cooling beam is detuned−9Γ from the |F = 3/2〉 → |F ′ = 5/2〉
transition, while the repumper one is detuned −6Γ from the |F = 1/2〉 →
|F ′ = 3/2〉 transition with Γ = 2π · 5.87MHz and the ratio of the cooling to
repumper light power is 3:2. The large detunings are choosen such that to
maximize the number of the trapped atoms but these detunings values do
not minimize the temperature. In fact, after typically 8 seconds of loading
we have a large number of atoms of 2x109 but at a temperature around 2.5
mK, which is larger than the minimum Doppler temperature equal to 137.6
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µK for 6Li. To reduce further the MOT temperature, the D2 MOT is com-
pressed by decreasing the detuning of both the cooling and repumper light
to -3Γ. This leads to a larger photon scattering rate Γscatt, so simultaneously
we reduce the intensity of both the cooling and repumper light to about 1%
of the initial value at the same time. This compressed MOT (CMOT) proce-
dure results in a temperature drops to about 500 µK and in a loading atomic
number N0=1.6x109.

2.5 Feshbach and curvature coils
In our experiment we use two-state mixture composed of |1〉 and |2〉 states.
To tune the scattering length between them, we add two-coils, called Fes-
hbach coils, in quasi-Helmholtz configuration to generate the desired offset
magnetic fields. These coils together with some curvature coils, provide an
axial confinement for the atoms in |1〉 and |2〉 state, which is useful where
the atoms are trapped in the optical dipole trap as the corresponding axial
confinement is much weaker than the radial one as I will describe in the next
section.

2.5.1 Feshbach coils

To make use of the great possibility that the 6Li Feshbach resonances offer
to explore different physics regimes from BEC to BEC-BCS crossover, we
add a pair of coils mounted around the flanges of the reentrant viewport to
generate offset magnetic fields up to 1000 G. These Feshbach coils (fig. 2.10),
placed in a quai-Helmholtz configuration, produce a magnetic field that has
a maximum in the radial direction, while in the axial direction there is a field
minimum at the center. As we use |1〉-|2〉 state mixture, that for B > 30
G minimize their energy at high magnetic field, the atoms feel a confining
potential in the radial direction and an anticonfining potential in the axial
direction. At 180 A corresponding to B around 840 G, they provide a radial
magnetic curvature of about 3 G/cm2, which gives a radial frequency for
6Li atoms in the lowest hyperfine states |1〉 and |2〉 of 10 Hz. These coils
are made of kapton insulated wire having a section of 4.6x4.6 mm and a
hollow core for water circulation and cooling. Each coil has 8 vertical and
7 horizontal windings that are connected to a 200 A power supply 2. The
magnetic field of these Feshbach coils is stabilized in current by a PID con-
troller whose input is connected to a current trasducer placed on one of the
wire connecting the power supply to the coils. The digital feedback loop of

2Model SM 15-200 D, Delta Elektronika.
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the PID controls the current circulating in the coils and correct its value if
it is different from the value defined by calibrating the magnetic field. To
calibrate the magnetic field we send a Radio-Frequency rectangular π-pulse
to the atoms in the state |1〉, for instance, transfering them to the state |2〉;
at a certain radio-frequency the atoms are almost all in the state |2〉 and from
the Breit-Rabi formula we find to which magnetic field value corresponds this
transition frequency. The magnetic field stability instead is determined by
applying Radio-Frequency rectangular π-pulses of increasing duration on a
polarized Fermi gas: when the width of the obtained spectrum is above the
Fourier width δν = 1/∆t set by our interrogation time ∆t we deduce that
the spectrum is dominated by noise and fluctuations of the field knowing
the correspondence δν = δB∆µ/h where ∆µ is the difference between the
magnetic moments of the state |1〉 and |2〉 and δB the magnetic field inho-
mogeneity. The magnetic field stability is checked at different values of the
magnetic field and is relatively high ∆B/B = 10−5. Since the Zeeman slower
at the MOT position produces an axial magnetic field gradient, in order to
compensate for it, we use compensation coils placed on the other side of the
Zeeman slower. There are also other compensation coils, mounted around
each axis, that eliminates any spurious magnetic field and both of them allow
to adjust the spatial position of the quadrupole center.

2.5.2 Curvature coils

Thanks to a relay system, mounted in series to the lower coil of the MOT and
in parallel to the upper one, we can switch the configuration of MOT coils
from anti-Helmholtz to quasi-Helmholtz configuration, so that the magnetic
curvature field is summed to the Feshbach magnetic field. For the |1〉 and
|2〉 states the curvature coils provide a trapping along the horizontal axis
with stimated trapping frequency of ωtrap = 2π · 16 Hz, while in the vertical
direction (along the gravity) the atoms in this state feel an antitrapping
potential corresponding to an imaginary frequency ωanti = 2πi · 16 ·

√
2 Hz.

The curvature coils we use are placed in the re-entrances of the vertical
windows of our vacuum chamber.
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Figure 2.10: Pictures of the Feshbach coils.
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2.6 Optical dipole trap
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Figure 2.11: Sketch of the optical scheme around the science chamber. The two horizontal
MOT beams are shown in faded red and the IPG’s in green. The Zeeman
slower beam is coming from above and is also shown in faded red, while
the dotted lines are the imaging beams. The box where the IPG is brought
towards the UHV apparatus is shown in the bottom left corner.

After cooling the atoms in the D2 CMOT at 500 µK, we transfer them in
an optical dipole trap, where we evaporate down to the degenerate limit with
corresponding temperatures on order of hundreds of nK. I will describe here
the main properties of our ODT while the experimental procedure applied
to achieve degenerate temperature is explained in the next chapter. We use
a single-beam red-detuned optical dipole trap generated by a 200W multi-
mode ytterbium fiber laser (IPG laser) with a central wavelength of 1073
nm and with almost a 3 nm broadening, whose initial power is set at 120W.
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Figure 2.12: Imaging of atoms in the IPG trap.

To handle the IPG high power we use the optical scheme represented in
figure 2.11. Because of high power, the beam is made pass through a single
passage AOM without focusing and with a collimated waist around 1 mm.
The major part of the optical path is held in a box under a continuous flux of
air, to avoid deposition of dust on optical elements. The beam passes through
an hole on one of the walls and then is brought to the science chamber and
focused onto the atoms with a waist of 45 µm both in the x and y direction.
The beam passes through the cell from one of the MOT windows, with an
angle of 7◦ respect to the MOT beam. We need to stabilize the IPG power
because laser intensity fluctuations may cause exponential heating of the
trapped atoms due to parametric heating excitation [22]. This was achieved
by using a photodiode, an AOM and a PID controller. At full power the ODT
has a depth around 3 mK, sufficiently deep to trap atoms from the MOT.
In figure 2.12 we show an example of the imaging of atoms trapped into the
ODT. To optimize the transfer from the MOT into the ODT, we increase the
trapping volume of the ODT by appling a fast sinusoidal modulation to both
the central frequency and the amplitude of the IPG’s AOM (fig. 2.11). The
frequency modulation (FM) changes the frequency of oscillation of the AOM
piezoelectric (pzt) trasducer. This results in a displacement of the position of
the focused beam in the science chamber (after the lens). If the frequency of
this modulation is above the trapping frequencies, atoms experience a time-
averaged dipole potential with an effective waist larger than the one without
modulation (fig. 2.13). Increasing the amplitude of the FM signal leads to a
non-Gaussian trap profile. To correct this distortion we apply an amplitude
modulation (AM) to the AOM’s pzt with frequency twice the FM frequency
of 600kHz and a relative phase of π/2. The AM restores the Gaussian profile
with a width of 85 µm on the x-direction and thus the resulting ODT is
an elliptic Gaussian-shaped beam with a waist along y-direction instead of
42 µm. The resulting trap depth is U0 = kB x 1mK while the stimated
frequencies, using equation 2.71, are: ωz = 2π x 38.4 Hz, ωy = 2π x 9.2 kHz
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Figure 2.13: Representation of the Frequency Modulation (FM) and of the Amplitude
Modulation (FM) signal sent to the IPG’s AOM and their effect on the beam.
The FM changes spatially the position of the IPG in the focus of the trap,
(after the lens) but it distorts the Gaussian beam shape. The AM corrects
for the FM’s distortion and helps achieving the Gaussian profile but with an
enlarged waist.

(the radial horizontal frequency) and ωx = 2π x 4.5 kHz (the radial vertical
frequency). We note that the ODT aspect ratio is ωradial/ωx > 100, i.e. much
larger than one, which means that it strongly confine the atoms radially but
not axially. The axial confinement is instead achieved by the Feshbach and
curvature magnetic field as we mentioned above. In fact our Feshbach coils
produce also a magnetic field curvature which gives raise to an axial magnetic
confining potential along x-y for the high field seeker states, that at low
value of the ODT intensity generates the necessary axial confinement. For
example, at 834 G this confinement corresponds to a frequency ωc = 2π×8Hz.
This residual curvature is due to the fact that the two Feshbach coils are
opportunely placed at a distance smaller than the Helmoltz configuration
providing so a trapping potential for the high-field seeker two-state mixture

Uc(x, y) =
1

2
mω2

c (x− x0)2 +
1

2
mω2

c (y − y0)2 (2.7)
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According to the Maxwell’s equation, along the z-direction must be an anti-
confining magnetic curvature (anticurvature) whose corresponding potential
is

Uac(z) =
1

2
mω2

ac(z − z0)2 (2.8)

We note that while in the radial plane this curvature traps the atoms in
the mF=±1/2 states, in the axial direction is antitrapping the atoms with a
frequency

√
2 larger than the radial one. This must be kept in mind, since

along this direction we have to consider also the effect of gravity:

Ugrav = mgz (2.9)

So, the resulting confining potential is given by the sum of all these contri-
butions

U(x, y, z) = Uopt(x, y, z)− Ugrav(z)− Uac(z) + Uc(x, y) (2.10)
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Chapter 3

Efficient production of 6Li
quantum degenerate gases using
D1 gray molasses

In the previous chapter I have described the experimental set-up to trap and
cool 6Li gases obtaining a phase-space density ρ on order of 10−5 and a tem-
perature of 500 µK. To increase the initial phase space density for evaporative
cooling and to optimize the loading in the ODT, we have developed for the
first time on 6Li a new cooling scheme [24], [25], [26] based on a blue-detuned
gray molasses respective to F → F ′ = F transition. This cooling technique
permits to achieve temperature on order of 40 µK and a phase-space density
60 times larger than the one achieved in the MOT [27]. These represent ideal
conditions to start evaporative cooling to achieve the quantum regime. In the
following I will illustrate the main theoretical aspects of the blue-detuned gray
molasses addressing how this novel cooling scheme allow to achieve quantum
degeneracy of large samples in a very efficient way. In particular, with a
total experimental cycle time of 12 s, we create either pure molecular Bose-
Einstein condensates of up to 5x105 molecules or degenerate Fermi gases of
about 8x10 5 atoms at T/TF < 0.1.

3.1 The working principle of gray molasses
This cooling mechanism is based on: the existence of dark and bright states
when a blue-detuned light respectively to a F → F ′ = F (our case) or a
F → F ′ = F−1 transition is sent to atoms and on the coupling between these
states which gives rise to Sisyphus cooling. The dark state is not coupled
to the light field as we will see later, thus its energy does not change. The
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energy of the bright state instead is positive for positive detuning and varies
spatially depending on the light intensity variations and on the polarization
gradient. When the atom is in a dark state, it can be excited to the bright
state and this coupling is more likely to occur at the bottom of the bright
state potential [24] (fig. 3.1). When the atom is in a bright state, it climbs up
the hill of the optical potential before being pumped back to the dark state
near the top of the hill. The kinetic energy of the atom is thus reduced by
an amount of the order of the height of the optical potential barrier. Such
cooling cycle is repeated, decreasing the temperature of the atomic ensemble
to the sub-Doppler regime. Such mechanism is called Sysuphus cooling.

Figure 3.1: The energy of the bright state varying spatially like a sine because of polariza-
tion gradients, while that of the dark state remains constant. At the minima
of the bright potential, atoms are transferred from the dark |ψD〉 to the bright
|ψB〉 state and starts climbing its potential, while loosing kinetic energy. At
the top of the bright potential, atoms are pumped back into the dark state,
after a significant loss of kinetic energy [24].

3.1.1 Velocity coherent population trapping

To understand the gray molasses cooling mechanism, we consider an atomic
system with three levels: two hyperfine ground states |g1〉, |g2〉 and an excited
state |e〉 forming a Λ-configuration (fig. 3.2). The two transitions |g1〉 →
|e〉 and |g2〉 → |e〉 are driven by two counterpropagating laser beams with
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frequency ω1, ω2 and detuning δ1, δ2 with respect to the corresponding atomic
transition. If an atom in the excited state has a momentum p, the ground
substates must have a momentum ~p− h̄ ~k1 and ~p− h̄ ~k2 in order to be coupled
to the excited state due to the momentum conservation law. For semplicity
of notation, we will not specify the atomic kinetic state hereafter. In a

Figure 3.2: Three-level Λ-type system with |g1〉 and |g2〉 the ground state hyperfine sub-
levels and |e〉 the excited state.

semiclassical approach the corresponding hamiltonian H is the sum of the
atomic one Ha, which includes the kinetic term ~p2/2m, with the interaction
potential

V̂ = h̄Ω1/2 |e〉 〈g1|+ h̄Ω2/2 |e〉 〈g2| (3.1)

We can introduce a new basis for the ground state given by

|ψdark〉 = 1√
Ω2

1+Ω2
2

(Ω2 |g1〉 − Ω1 |g2〉)

|ψbright〉 = 1√
Ω2

1+Ω2
2

(Ω2 |g1〉+ Ω1 |g2〉)
(3.2)

where the first one satisfies 〈e| V̂ |ψD〉 = 0, which means that an atom in
the |ψdark〉 state can not absorb the light and thus can not be excited to |e〉;
for this reason it is called a dark state. The second one instead is coupled
to the excited state 〈e| V̂ |ψD〉 = h̄Ω/2 [28], with Ω =

√
Ω2

1 + Ω2
2, and for

this reason it is called bright state. If an atom is initially prepared in the
dark state |ψdark〉 and have p = 0, it remains there indefinitely if the Raman
condition is fulfilled, given by

E2 − E1 = h̄(ω1 − ω2) (3.3)

55



where E1 and E2 are the unperturbed atomic hyperfine ground states (with-
out including the light shifts). The Raman condition can be expressed also
as having a total detuning δ = δ1 − δ2 equal to zero. When the atom moves
with a momentum different from zero, |ψdark〉 and |ψbright〉 are not stationary
state of H and the kinetic term induces oscillations between these states.
An atom can remain in the dark state for a time τD ∝ 1/(vk)2 before being
pumped to the bright state [28], more probably near the potential minima.
Consequently, atoms with lower velocity will stay in the dark state for longer
time than the ones having higher velocity which more probably are trans-
ferred to the bright state and from there to the excited state by V .
Thus the coherent population trapping in ψdark(p = 0) becomes velocity se-
lective (VSCPT process) and also the absorption rate of the laser beam, as
shown in the figure 3.3. The atom that moves with velocity v climbs up the

Figure 3.3: The velocity dependence of the absorption rate in the left and the atoms
coherent population trapping at v=0 in the right [30].

bright state potential in a time τ ∝ 1/kv, reducing so its kinetic energy by
an amount of the order of the height of the potential. The optical pumping
from the bright to the dark state occurs at the top of the potential hill and is
efficient if τ ≥ Γ′−1, i.e. kv < Γ′, where Γ′ is the optical pumping rate. This
expression defines the capture velocity of the molasses vc = Γ′/k. For a beam
with detuning δ2 with respect to the cooling transition, we have Γ′ ∝ I/δ2

2

and thus vc increases with laser intensity. Such cooling cycle is repeated
(Sisyphus cooling) decreasing the velocity of these atoms and consequently
those with lower velocity are accumulate in the dark state with p in a narrow
range around p = 0 with a width δp = mδv (fig. 3.3) proportional to the
inverse of the interrogation time.
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3.2 The case of 6Li
As the 22P3/2 hyperfine splitting is small compared to the natural width Γ,
the gray molasses scheme is based on the D1 transition of 6Li, the transition
from the ground state to the well-resolved 2P1/2 manyfold (fig. 3.4). The

Figure 3.4: The D1 cooling and repumper transition.

cooling light is blue detuned of δ2 from F = 3/2→ F ′ = F = 3/2 transition
while the repumping light is blue-detuned δ1 from F = 1/2 → F ′ = 3/2
transition. The relative detuning is identified as δ. The repumper light
not only repump the atoms into the cooling transition but also it can have a
cooling effect of its own. In fact, one can see that if the cooling and repumper
light fulfill the Raman condition δ = 0 they form a Λ structure which was
shown in figure 3.2.
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3.2.1 Experimental set-up and the characterization of
6Li gray molasses

Experimental set-up

The D1 light at 670.992nm is produced by a Tapered Amplifier High Power
Diode Laser produced by TOPTICA and it is placed on the same table of the
D2 TA-Pro. The D1 laser is locked using conventional modulation transfer
spectroscopy on the crossover of the transition |2S1/2, F = 3/2〉 → |2P1/2〉.
The output of both laser is shifted in frequency by two AOMs and then
coupled on the same optical fiber (fig. 3.5). These two AOMs are used as fast
switches in order to turn on or off the D2 and the D1 laser lights selectively.
This scheme has the advantage that we can use the same optical system
for the MOT and the gray molasses without any further adjustment of the
alignment [27].

λ/2

λ/2
λ/2

D2-AOM

D1-AOM

Amplifier Amplifier

ISO ISOdiode diode

BSP BSP

BSP

D2 TA-Pro

fiber

D1 TA-Pro

to D2 lock to D1 lock

to main table

D1 and D2 TA-Pro table

Figure 3.5: The D1 and D2 light preparation.

Characterization of 6Li gray molasses

In a first experiment, we measured the cloud temperature after different time
duration of the D1 gray molasses (fig. 3.6). The temperature wass measured
by TOF vertical absorption imaging and the error bars are found by repeating
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five times the same measurement. The repumper and cooling light detuning
were set on the Raman resonance δ = 0, with each detuning δcool/rep = 5.4Γ,
while their intensity ratio was Irep/Icool = 0.2 with Icool = 2.7Is and Is
the saturation intensity of the D2 transition. We note that from 2 ms and

Figure 3.6: The temperature profile as a function of the time duration of the gray molasses.
The temperature was measured by TOF absorption imaging and the error bars
are found by repeating five times the same measurement, i.e. for the same time
duration.

on the equilibrum situation is achieved, so we keep the time fixed at 2 ms
in the following measurements. Also, the ratio of the repumper to cooling
intensity is kept fixed at this value 0.2 in the following measurements, because
was experimentally proved that it corresponds to the lowest temperature.
By increasing the D1 cooling light intensity, the number of captured atoms
increases as is shown in figure 3.7, which is expected as the molasses capture
velocity increases with the cooling intensity (vc ∝ I). The number of atoms
was found by integrating the vertical absorption imaging density profile along
the other two spatial-directions. In a second experiment, we investigated how
the D1 molasses efficiency depends on the repumper and cooling absolute
detuning taken equal, i.e. on the Raman resonance. In figure 3.8 is shown
the profile of the temperature and the cooled fraction, i.e. the ratio between
the number of atoms captured by the molasses (N) to the one loaded in
MOT (N0), as a function of the absolute detuning expressed in units of
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Figure 3.7: The number of the captured atoms in the gray molasses increases with the
cooling laser intensity as the molasses capture velocity increases too.

Γ. We observe that for 4Γ < δ2 < 8Γ the temperature T and N/N0 does
not change, so we set δ2 = 5.4Γ value hereafter. For δ2 > 8Γ the cooled

Figure 3.8: Temperature (blue) and the captured fraction N/N0 = (red) as a function of
the absolute detuning δ2 expressed in units of Γ.

fraction decreases due to the inverse dependence of the capture velocity with
detuning (vc ∝ 1/δ2). By varying the relative detuning δ (keeping fixed
the cooling detuning and changing the repumper one), we note that around
the Raman resonance δ = 0, the temperature dependence on δ shows the
asymmetric Fano-profile with a small width (0.1Γ) (fig. 3.9). This is an
evident signature of the emergence of a quantum interference effect. At the
Raman resonance, the minimum temperature T = 40.5(1.0) µK is achieved,
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Figure 3.9: Captured atom fraction (red) and the temperature (blue) profile as a function
of the relative detuning δ.

due to the Sisyphus effect on the blue-side of F → F ′ = F transition and
the formation of the dark coherent state |ψdark〉 as I shown in the previous
section. To this temperature corresponds a cooled fraction N/N0 = 75% and
its maximum value is achieved for an off-resonant detuning value δ = −0.2Γ.
For δ slightly positive instead we observe heating and atom losses. This can
be explained by the fact that away from the resonance the atom number and
the temperature assume stationary values determined by only the Sisyphus
cooling mechanism [26]. Finally, we note that the |F = 3/2〉 and |F = 1/2〉
population ratio depends on the repumper to the cooling light intensity like(

Ω1

Ω2

)2

=
ID1
rep

ID1
cool

(3.4)

Consequently, for ID1
rep/I

D1
cool ' 0.2, we find at the end of the molasses phase

almost 85% of the population transferred into the lower hyperfine level F =
1/2. In the end of the D1 gray molasses scheme we measured a phase-space
density of 2x10−5 at Raman resonance, about 60 times larger that the one
obtained with the only D2 cooling stages and this is a favorable starting
condition to load efficiently the atoms into an optical dipole trap.

3.2.2 Interpretation of the experimental results

Lets suppose that the cooling light intensity is much larger than the repumper
one and that their frequencies satisfy the Raman condition. In this limit, we
can consider the scattering of a single photon ω1 by an atom that interacts
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Figure 3.10: Representation of the scattering process in terms of bare states. In the left
part (a): the Rayleigh scattering process from |g1〉, the absorption of a ω1

photon followed by the spontaneous emission of a ω photon. In the right
part(b): the Stimulated Raman process |g1〉 → |g2〉 through the absorption
of a ω1 photon followed by stimulated emission of a ω2 photon followed by
the Spontaneous Raman process consisting in the absorption of an ω2 photon
bringing the atom in the state |e〉 and the fluorescence emission of ω photon
bringing the atom in the |g1〉 [29].

with several ω2 photons [29]. The new system eigenstates, called dressed
states, originating from the interaction of the atom in the state |g2〉 with the
cooling light are

|2′〉 ∝ |g2〉 − i
Ω2(z)

δ2

|e〉

|3′〉 ∝ −iΩ2(z)

δ2

|g2〉+ |e〉
(3.5)

If the radiative broadening of the state |3′〉 is larger than the one of the
state |2′〉, it appears as a continuum with respect to the narrow |2′〉 and |g1〉
states. The atom after absorbing the ω1 can be transferred even in the state
|2′〉 as it is contaminated by the excited state |e〉. Such contamination can
be described in terms of virtual absorption and emission of ω2 photon by
the atom in state |g2〉. So we expect in this basis of bare state two possible
paths (fig. 3.10) for the atom to go from |g1〉 to |e〉 states: the first one is
by absorbing the photon ω1 and going directly from |g1〉 to |e〉 (Rayleigh
scattering) and then returning to |g1〉 by fluoresence emission of a photon
ω. The second one intead is a three-photon process which consists on the
absorption of a ω1 photon followed by stimulated emission of a ω2 photon
which brings the atom in the |g2〉 state (Stimulated Raman process) and in
the end by the absorption of an ω2 photon bringing the atom in the state
|e〉 and the fluorescence emission of ω photon (Spontaneous Raman process).
The interference of the second path which passes through a discrete state
with the first one which is a direct path towards the continuum gives rise to

62



Figure 3.11: If the relative detuning is positive, atoms are pumped from |1〉 into |2′〉,
more probably at the maxima of the state |2′〉 light shift. Then they exit
this state near the light shift minima by spontaneously decaying into |1〉 and
consequently we expect heating [26].

the Fano profile, characteristic of a resonance between a discrete and con-
tinuum state as was also the case of the Feshbach resonance. Let’s consider
now the dressed state picture [26]. In figure 3.11 is shown the cascade of the
doublet dressed state corresponding to different number of ω2 photons. If
the frequency of the repumper light is slightly blue-detuned with respect to
the doublet state energy, i.e. the relative detuning is positive (see fig. 3.11),
atoms are pumped from |1〉 into |2′〉. The pumping process happens more
probably at the maxima of the state |2′〉 light shift as there the detuning of
this laser from |1〉 → |2′〉 transition is minimized. Then the ultracold atoms
exit this state near the light shift minima by spontaneously decaying into
|1〉 or into the cascade of dressed states and consequently we expect heating
(fig. 3.11). In fact, our experimental results verify such expectation. If the
repumper detuning is instead red detuned with respect to the state |2′〉 en-
ergy as shown in figure 3.12, i.e. δ < 0, atoms are pumped at the states |3′〉
and then they spontaneously decay near the nodes of the state |2′〉. They
climb the potential hill and due to the energy conservation law, reduce their
kinetic energy undergoing so the Sisyphus cooling process. Therefore for such
detuning we expect cooling and it was experimentally demostrated. At the
Raman resonance, the scattering rate of photons is zero due to the coher-
ent population trapping (VSCPT) on the dark state |ψdark〉. This implies

63



Figure 3.12: If δ < 0, atoms are pumped at the states |3′〉 and then they spontaneously
decay near the nodes of the state |2′〉. They climb the potential hill and
then undergoes the Sisyphus cooling process. Therefore for such detuning we
expect cooling [26].

that the Sisyphus cooling produces temperature enough low for the VSCPT
mechanism to work. The atoms trapped in |NC〉 can still be coupling to the
bright states giving rise to additional Sisyphus cooling (fig. 3.1).

3.2.3 D1-cooling phase for efficient optical trap loading

To test the feasibility of D1 cooling in the presence of the strong light field
of the optical potential, we first measure the light shifts of the D1 transitions
(cooling and repumper) as a function of the ODT power [27]. We obtain
from a fit a slope of +8.2(7) MHz/(MW/cm2), corresponding to a shift of
about 16 MHz (∼ 3Γ) for our initial trapping intensity. The uncertainty is
mostly due to the systematic uncertainty (10%) in the estimation of the trap
intensity. This measurement indicates that D1 blue-detuned molasses can
properly work in the ODT, provided that the absolute detuning accounts
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Figure 3.13: Experimental temporal sequence to load the atoms from the MOT to the
ODT using D1 molasses.

for these light shifts, remaining in the range from 4Γ to 8Γ. In order to
load into the IPG dipole trap large atomic clouds, we apply a D1 molasses
phase, lasting 2 ms, with a relative detuning δ = −0.2Γ as it corresponds
to the maximum captured atoms efficiency (fig. 3.9) even though not to the
minimum possible temperature. We found convenient to turn off both the
MOT coils and the compensation ones just 100 µs before applying this first
D1 stage. The MOT’s beam power are significantly reduced along the direc-
tion of propagation of the IPG and allocated along the other axes, creating
oblate clouds, in order to increase mode-matching between the MOT cloud
and the ODT. The IPG power is instead increased till a value 120 W in 5
ms with a linear ramp, 2 ms before the D1 phase. The experimental time
sequence is shown in figure 3.13. After passing through the corresponding
AOM, the IPG’s waist along one direction is increased (see section "Time
averaged ODT") and so the trapping volume. So, at the end of this D1 phase,
we have a loading atom number of 2x107 and a temperature of T=135(5) µK.
After this phase, we apply a second D1-cooling phase lasting 300 µs and we
measure the temperature and the captured atom fraction (fig. 3.14), after 25
ms from the ODT loading, as a function of the relative detuning δ. We note
that after the application of the second D1 phase a temperature of T=80(5)
µK is achieved on the Raman resonance δ = 0, which shows that the D1

cooling is also efficient even in the presence of the high intensity ODT. This
minimum temperature is almost a factor of two higher than that measured
without ODT and is accompanied by a broadening of the Fano profile around
δ = 0. This is due to large atom density inside the optical trap, on order of
1014/cm3, which may limit the efficiency of D1 cooling [31]. At the Raman
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Figure 3.14: The red dots indicate the N/N0 measured values while the blue squares in-
dicate the T values. The error bars are the standard deviation of five inde-
pendent measurements.

resonance a maximum captured atom efficiency (100%) is achieved too. This
because the temperature of the atoms in the ODT before applying the second
D1 phase is about 135 µK, sufficiently low to allow an effective cooling of all
the atoms. The second D1-cooling phase is followed by a hyperfine pumping
to the |F = 1/2〉, lasting 25 µs, achieved by switching off the D1 repumper
light before the cooling light. This hyperfine pumping stage also contributs
in heating the atomic clouds as it increases the temperature by about 10%.

3.2.4 Production of a molecular BEC and of Fermi gases
at BEC-BCS crossover

After loading the atoms into the IPG trap with the two stages D1 cooling, we
ramp up the Feshbach field till a value of 834 G, at the Feshbach resonance, in
about 30 ms. The corresponding enhanced scattering length helped us during
the evaporation cooling to faster thermalize the gas. We start evaporation by
reducing the laser power from 120 W to 30 W with a linear ramp of 500 ms,
i.e. from a trap depth of 1 mK to 200 µK. At the same time, we create an
incoherent balanced mixture of the two lowest hyperfine states, |1〉 and |2〉
state, of 6Li by continuously applying Radio-Frequency (RF) signals resonant
with the transition among these two states. After this first evaporation ramp,
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Figure 3.15: Feshbach resonances of 6Li |1〉 − |2〉 and |1〉 − |3〉 substates.

we have 107 atoms per spin states at T '30 µK.

Molecular BEC

To produce a molecular BEC, we ramp the magnetic field at 780G which
corresponds to the BEC-limit of the |1〉-|2〉 state Feshbach resonance (see
figure 3.15) . Here the atoms are still strongly interacting with a s-wave
scattering length a12 = 7000 a0, making so the cloud thermalize faster and
thus a more efficient evaporation is achieved. The molecules are formed, by
three-body recombination, when the temperature of the cloud becomes com-
parable with the molecular binding energy (Eb = h̄2/ma2) of almost 750 nK
at this magnetic field. As the polarizability of the molecules is twice that of
the atoms, the trap depth is twice as deep for molecules. During evapora-
tion, this effect suppresses the loss of molecules compared to the loss of atoms.
After the first ramp of evaporation, we apply another one but this time to
the IPG’s AOM, lowering so further the laser power. Accordingly to the time
duration of the ramp applied to the AOM, we have different final values of
the ODT depth and thus different value of the cloud temperature. By TOF
absorption imaging resonant with an atomic transtion, we recover the tem-
perature and the atom number for each of time duration of the evaporative
ramp and the results are shown in figure 3.16. We observe a decrease on the
total atom number while increasing the ramp time duration, corresponding
to lowering the trap depth, which is due to the molecular formation. In this
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Figure 3.16: The measured temperature and total atom number for different value of the
time duration of the evaporative ramp at 800G. The phase transition tem-
perature Tc to the molecular BEC is indicated. The error bars account for
both statistical (five independent measurements) and 10% systematic uncer-
tainties.

figure is also indicated the evaporation time corresponding to the onset of the
condensation at a critical temperature of Tc =210(20) nK for 106 molecules
[27]. The error account for both statistical (five independent measurements)
and 10% systematic uncertainties. At such magnetic field value, the size of
the condensed part is not much smaller than the thermal size, due to the
strongly interaction, so the condensate fraction is not well-resolved. For this
reason, we reduce the interparticle interaction by adiabatically sweeping the
magnetic field to 690 G, where a12 = 1400 a0. In the TOF imaging, the
phase transition is observed by the emergence of a bimodal distribution in
the two-dimensional density: the central part of the cloud corresponds to a
condensed gas and its density is fitted by the integrated inverted parabola
(as the Thomas Fermi approximation is valid at 690 G) while density distri-
bution wings are fitted with a Gaussian density distribution. In fact, the fit
function is f(x, y) = y0 + A · fcond +B · ftherm where
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i
the Thomas-Fermi radius. In figure 3.17 is shown an ex-

ample of a bimodal radial density distribution fitted by this function. From

Figure 3.17: The black curve is the measured radial density, whose peak is fitted by a
Thomas-Fermi density distribution (the red one), while the thermal wings
are fitted by a Gaussian function (the blue curve).

the Gaussian fit of the thermal wings we recover the gas temperature at a
TOF of 10 ms. By integrating further the two-dimensional density distri-
bution in the vertical and horizontal radial directions, we found both the
number of condensed and thermal molecules and thus the condensed frac-
tion, resulting N/N0 = 0.5 for this example. At the experimental stimated
Tc, corresponding to a trap depth of 700 nK, we measure the trap frequencies
resulting in ωx = 2π · 8.2(1)Hz, ωy = 2π · 111(3)Hz and ωz = 2π · 239(2)Hz
where the first one is given by the magnetic curvature of our Feshbach coils.
With these trapping frequencies, we can also give an estimation of the critical
temperature using equation 1.10 and we found Tc = 240 nK, in agreement
with the value of 210 nK found experimentally. Actually, equation 1.10 is
valid for a non-interacting Bose-gas but is a good approximation in the case
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Figure 3.18: Transition from thermal to molecular BEC.

of weakly interacting Bose-gas for which n
1/3
M aM < 1, which is verified at

the magnetic field value of 690 G. The stimated chemical potential, using
equation 1.39, is found to be µ = 2.87 KHz and Thomas Fermi radius are
RTFx = 268 µm, RTF y = 19.8 µm and RTF z = 9.2 µm. By reducing the trap
depth further, we observe at the end of the evaporation the formation of a
mBEC of 5x105 molecules without thermal component. Finally we note that
when the cloud is released from the trap for a time of flight measurement, it
expands as interaction energy is converted into kinetic energy. In anisotropic
trap, expansion is fastest in the direction of strongest confinement. In a time
of flight image, a cloud released from such a trap thus inverts its aspect ratio
during expansion. In figure 3.18 is shown an experimental example of the
transition from a thermal gas of molecules to Bose-Einstein condensate.

Production of a Fermi gas at Unitarity

To produce a Fermi gas at the BEC-BCS crossover, we keep on evaporating
at a value of 834 G. We end evaporation with other cooling ramps in the ODT
intensity, lasting an overall time around 5 s. At crossover we can not resolve
the condensed fraction and so is difficult to estimate the critical temperature.
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Figure 3.19: Total atom number N (blue) and temperature T (red) of the atoms during
evaporation in the ODT at B=300G. The dotted line indicates the evapora-
tion time for which T/TF = 1.

So, we sweep the Feshbach magnetic field 834 G till 690 G, and look at the
emergence of a bimodal distribution in TOF measurements. If each fermion
pair is transferred into a tightly bound molecule, the momentum information
of the original pair is preserved [2]. We observe ultracold clouds of about
2x106 particles at a temperature corresponding to Tc, when sweeping to the
molecular side of the resonance.

3.2.5 Production of degenerate Fermi gas

To efficiently produce weakly-interacting Fermi gases we evaporate the |a〉
to |3〉 spin mixture on their Feshbach resonances at 300 G (see figure 3.15,
red curve). The first ramp of evaporation is the same as the one applied to
produce mBEC. After it, we reduce the magnetic field firstly to the value
of 580 G, where the scattering lengths between |1〉 − |2〉 and the |1〉 − |3〉
mixture are equal (see figure 3.15). This reduces collisional broadening [2]
when performing RF-transition among the state |2〉 to |3〉. In particular, we
trasfer all the atom of the state |2〉 into the state |3〉 with a RF π-pulse. Then
the magnetic field is brought to a value of 300 G, where the |1〉−|3〉 scattering
length has a minimum value of −900 a0, whose modulus is larger than the
|1〉−|2〉 scattering length of −300 a0, making evaporation in |1〉−|3〉 mixture
more efficient as the scattering rate depends on a2 (Γscatt ∝ σ ∝ a2). In this
evaporation procedure, the magnetic field of 300 G is realized with both the
Feshbach coils and the curvature one, in order to have a sufficient confinement
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Figure 3.20: Left figure: T/TF versus N, at the end of the evaporation ramp T/TF =
0.06(1). Right figure: Comparison between a Gaussian (black line) and the
non zero temperature Fermi distribution fit (red line) for T/TF = 0.06(1).
The error bars account for both statistical (five independent measurements)
and 10% systematic uncertainties.

along the ODT’s axial direction. We end evaporation with a different ramp
from the one applied for the production of BEC. In figure 3.19 we show
the measured temperature and total atom number as a function of the time
duration of the evaporation. We note that the two trajectories are similar
with the one for BEC, demonstrating the efficient thermalization between
the |1〉- |3〉 states. In the degenerate regime (T/TF < 1), we achieve the
degenerate parameter T/TF value by fitting the two-dimensional density with
a polylogarithmic function [2]. At T/TF > 1, the temperature is measured
after expansion close to the zero-crossing a13 = 0. We note that after three
seconds of forced evaporation, the system enter the degenerate regime (T '
TF ) with N|1〉 = N|3〉 = 2x106 atoms. After two other seconds later, we
produce a highly degenerate Fermi gas of N|1〉 = N|3〉 = 3.5x105 atoms at
T/TF ' 0.06(1). The corresponding measured trapping frequencies are ωx =
2π · 12.4(1) Hz, ωy = 2π · 111.5(2) Hz and ωz = 2π · 231(3) Hz and thus the
TF determined as:

TF = (6N)1/3h̄ω̄/kB (3.7)

is of the order of 800 nK. In figure 3.20 is shown the T/TF as a function of N
and the comparison between a Gaussian distribution and the non zero tem-
perature (T/TF = 0.06(1)) polylogarithmic function, in the limit of weakly
interacting fermion, which fit the degenerate Fermi gas density distribution
[27].
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Chapter 4

Development of a new optical
set-up for 6Li imaging

The atom number in the three lowest spin states and the cloud temperature
are extracted from the absorption imaging pictures taken either along the
horizontal or vertical direction (see section 2.2.1). In order to explore the
different interaction regimes, accessible by tuning the Feshbach resonance, a
versatile optical scheme is necessary to produce imaging beams whose frequen-
cies correspond to relevant atomic transitions at high and low magnetic field
values. In this chapter, I will describe a new optical set-up, which I have
designed and partially implemented during my thesis work, for generating
the required imaging beams. This scheme, differently from the one actually
used in the experiment, is based on an independent laser system, which is
frequency-stabilized by a tunable phase-lock loop [32] [33] [34] and allows to
image the atoms in a larger magnetic field range.

4.1 Imaging laser system
For generating the imaging lights, I use a commercial external cavity-diode
laser at 671 nm (Toptica D.L. Pro) which is amplified, conserving its nar-
row spectrum, by an home-made tapered amplifier (TA). The laser fre-
quency νL is locked at a reference frequency νref with an offset frequency
νoffset, using a phase lock loop. The reference frequency νref is provided
by a laser beam derived by the D2 Toptica TA laser system, which is fre-
quency stabilized using modulation transfer spectroscopy. This reference
beam is shifted in frequency by -280 MHz from the cycling cooling transi-
tion: |2S1/2, F = 3/2〉 → |2P3/2, F = 5/2〉. If we indicate with ν0 the atomic
frequency then νref = ν0 − 280 MHz and νL = ν0 − 280 MHz+νoffset. In

73



our system, the offset frequency can range from -150 MHz to -1 GHz. The
principle of frequency offset locking [32] [33] [34] consists in overlapping two
laser beams, one from a master laser and the other one from a slave laser on
a photodiode and then using the resulting beat signal. As the imaging laser
system, i.e. the D.L. Pro laser, is arranged on a separate optical table, the
light from the master laser beam which is supplied by the D2 Toptica TA
laser, is here transported via a polarization-maintaining optical fiber. In the
following subsections, we explain the working principle of the optical phase
lock and the related experimental set-up.

4.1.1 Optical phase lock loop

Basic working principle

In figure 4.1, I show a sketch describing the principle of work of an optical
phase-lock loop (O.P.L.L.), which consists in a diode laser (D.L. Pro), a phase
detector and a low pass filter.

RF in

REF in

R

C

XORBeat note

D.L.Pro

V out

V tune inout

ν
ref

ν
L
=

ν
ref

+ε

PHD

Stable

Optical phase lock loopfrom the 
master laser

ν
offset

Figure 4.1: Sketch of an optical phase-lock loop.

Firstly, the beat note at the frequency difference between the master (the
reference beam) and the slave (whose frequency has to be locked) laser is
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Figure 4.2: Left figure: truth table of XOR gate. Right figure: input and output digital
signals at the XOR gate.

detected by a fast photodiode1 (PHD) whose output drives one side of a two-
input exlusive-OR (XOR) gate working as phase-detector (P.D.) [32] [33] [34].
The other side of the P.D. is driven by a programmable frequency generator
whose frequency is set at the desidered offset value. By comparing the two
inputs, the P.D. produces an output signal (error ε signal) proportional to
their instantaneous phase difference (∆φ(t)).If the two input signals are digi-
tal ones (or are converted in digital signals) the XOR output is high when one
of the signal is high and is low when both of them are high or both of them
are low (see figure 4.2). So, the P.D. produces an output signal whenever
there is a phase misalignment between its inputs (indicated with a square
wave in figure 4.2).

A time-averaged of this logic signal is performed thanks to the low-pass
filter placed after the P.D. (fig. 4.1). During a period, when the XOR output
signal is "on" (high), the capacitor is charged until the signal goes "off"
where then it begins to discharge at a final value depending on the "off"
time duration and on the filter time constant. Over different periods, the
capacitor is charged and discharged less undergoing voltage ripples, which
after some periods are strongly reduced and the signal is stabilized at its
time-averaged value (Vout). For larger XOR output duty cycle (the time
percentage of a period in which the signal is high), i.e. for larger ∆φ, Vout
value is higher reaching its maximum value for ∆φ = π. When its duty
cycle is instead 50%, i.e. the corresponding ∆φ = π/2, Vout value is half the
maximum one. The phase-lock loop is closed by sending the time-averaged

1For our photodiode the rise and fall time are 10 ps.

75



signal to the unlocked D.L. Pro laser driver. The frequency of the D.L. Pro
is proportional to Vout (traduced in a change in the laser current, which leads
to a change in a laser frequency), which on the other hand is proportional to
∆φ (with a proportional factor K = 1.6 V/rad).
So, if νoffset > νbeatnote, ∆φ increases in time and so Vout, leading to an
increase of νL. Thus in this way the difference between the beat note and
the offset frequency is reduced (the opposite happens if νoffset < νbeatnote).
Actually, by tuning the laser voltage input (fig. 4.1) the diode laser frequency
is changed of 1 MHz for a 1 mV voltage correction. In our case, when the
D.L. Pro laser is locked, ∆φ = π/2. The range of the input signal frequency
over which the loop remains locked is limited by the P.D. and the diode laser
tuning range. The lock is maintained by the P.D. in a range 0 < ∆φ < π;
outside this range the slope of Vout versus ∆φ profile is reversed, so the
frequency would change in the opposite direction to that required to maintain
the locked condition.

The PHD is polarized by a Bias Tee2 (see figure 4.3) which contains an
inductance (L '1 µH) and a capacitance (C ' 100 pF) (LC circuit) and
its bias is derived by a 9V battery. The alternate current produced by the

PHD

Bias-Tee

VR

L

C

9V 
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Amplifier
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Spectrum 
 analyzer

  O.P.L.L.
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Figure 4.3: Scheme of the Bias-Tee and the signal processing.

PHD is transmitted to the amplifier through the capacitance, whose value
at the PHD current frequency is small enough to not significatly reduce the

2BIAS-TEE mini-circuits ZX85-12G-S+
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Figure 4.4: Optical scheme for phase locking.

signal. The inductance protects the battery from alternate currents and let
the continuous one produced by the battery to polarize the PHD. As the
PHD signal is too low for the P.D. to work, it is amplified from -40 dBm at
the PHD output to 0 dBm at the P.D. input. After the amplifier, the signal
is sent to a 10 dB directional coupler (figure 4.3), which splits the signal in
two parts; 10% of the signal is sent to a spectrum analyzer, while the rest
90% is sent to a O.P.L.L. circuitry in order to close the loop.

Experimental set-up

As first, the two laser beams coming from the D.L. Pro laser, amplified by
the TA, and from the D2 Toptica TA are coupled into two optical fibers.
The two fibers outputs, which have the same polarization, are overlapped
using a non polarized beam splitter (NPBS) (see figure 4.4). The NPBS
transmits the 50% of the incident intensity and reflects the rest 50%. Then,
the overlapped beams are coupled to the same optical fiber, whose output
is sent to the PHD 3. The PHD signal maximum visibility is achieved when
the slave and master laser intensity and polarization are the same. As the
PHD photosensitive area (0.2 mm x 0.2 mm) is smaller than the fiber output
beam (with waist of about 1 mm), a convergent lens, with focal length of 45
mm, is used to focus the beam on the photosensitive area of the PHD. The

3Hamamatsu G4176 series (GaAs)
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O.P.L.L. system is mounted on a translation stage which is moved back and
forth to align the PHD.Knowing the PHD radiant sensitivity (0.2 A/W) and
measuring the beam power (0.3 mW), I stimate the flowing current through
the resistor (R=500 Ω) (see figure 4.3) and consequently the voltage drop
across it to be 30 mV. So, the goodness of the alignment can be estimated
using a voltmeter.

Results

As first step, the laser frequency νL of the slave laser is adjusted by tun-
ing both the laser current and the laser piezoelectric voltage control, which
changes the length of the external cavity. The frequency is measured using a
wavemeter and brought close to the 6Li D2 transition. After optimizing the
PHD signal, the beat note between the locked master laser and the unlooked
slave laser is monitored by means of a spectrum analyzer. At this point,
we change further the laser current and piezoelectric voltage until the beat
note is close to the desired offset frequency νoffset, proved by the function
generator. The phase-lock loop is then closed and the laser is locked. We
observe that the laser remains locked to the offset frequency until its value
is varied over a range of about 800 MHz. The laser output is analyzed using
both the spectrum analyzer and a Fabry-Perot cavity with a Free Spectral
Range (FSR) of 1.5 GHz. For this purpose, the part of the beam split by
the NPBS, which is not used for the lock, passes through the Fabry-Perot
interferometer and the laser transmission spectra are acquired by an oscil-
loscope. In figure 4.5 is shown the transmission spectra for two different
values of νoffset:-130 MHz (red line) and -680 MHz (black line). It is worth
to note that each spectrum contains two frequencies: one from the master
(lower peak) and the other one from the slave laser (higher peak) since the
two beams are overlapped. The laser keeps the lock without mode-jumps
as νoffset is changed from -130 MHz to -680 MHz. In figure 4.6a and 4.6b
we show the beat note, measured with the spectrum analyzer, at the offset
frequency of -750 MHz and -1.25 GHz respectively.

The locked beat note signal has a full width half maximum (FWHM) of
611 kHz (fig. 4.7) measured as the distance between the points where the
signal drops of 3 dB with respect to its maximum value (as it is normalized).
This value depends on the bandwidth of the time-averaged filter used, but as
the FWHM is much smaller than the state |22P3/2〉 natural width (6 MHz),
it is not necessary to further reduce the FWHM.
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Figure 4.5: Fabry-Perot transmission signal as a function of the frequency for two different
values of the offset frequency. The lower transmission peak corresponds to the
master laser while the higher one to the slave laser.

4.1.2 Tapered amplifier

The imaging laser’s maximum output is limited to 25 mW, however further
gain in its power is possible using a tapered amplifier (TA) [35] [36] [37].
This semiconductor device is characterized by a trapezoidal geometry and
it is pumped in current; however, contrary to a standard diode laser, the
TA chip has an anti-reflection coating (Rf ≈ 1%) on both facets in order
to prevent internal lasing. Therefore, the TA needs a seed beam, coupled
into the front side, for lasing. As the seeding beam propagates through
the TA medium is strongly amplified. Here, I describe and experimentally
characterize a home-made TA system which uses a GaAs Semiconductor
Laser Chip (manufactured by Eagleyard Photonics). This device has been
developed and tested in our laboratory, during my thesis work, and it provides
a cheap and effective solution to increase the available laser power.

Basic principle of the TA semiconductor chip

The TA chip amplifies the power of an input Gaussian laser beam maintaining
its single spatial mode. This is realized by means of a straight index waveg-
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(a) Offset frequency at -750 MHz without mode-hoping.

(b) Offset frequency at -1.25 GHz without mode-hoping.
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Figure 4.7: The beat note signal.

uide section (L1=0.5mm) and a gain-guided tapered section (L2=1.5mm)
(see figure 4.8). The seed laser light is coupled, through a narrow aperture
(w1=1.2 µm), into a straight waveguide. The light propagates towards the
tapered region where it is diffracted and fills all the gain medium. In a single
pass, along the gain medium, the optical power is enhanced and the ampli-
fied output beam exits from the cavity through a wider output facet (w2=205
µm). The small transverse dimensions of the waveguide only permits the fun-
damental transverse mode to propagate. This has the drawback to limit the
output power for a certain energy density. This limit is overcome by the
tapered gain region which matches the spatial diffraction of the seed laser
light coming out from the straight waveguide (the diffraction angle is about
40 for our chip). The active medium is pumped by a spatially homogeneous
current density, which gives rise to an uniform gain along the propagation
axis, but not laterally as the gain is proportional to the inverse of the op-
tical power density. Thus an incident Gaussian beam experiences a higher
gain at its wings and a lower gain at its center; this results in an output
beam profile with a "flat hat" distribution. As shown in figure 4.8, cavity-
spoiling grooves are etched into the chip, out of the tapered region, to deflect
oscillating modes which are not fundamental. Such laser mode wavefronts
propagate parallel to the two facets and are known as Fabry-Perot cavity
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Figure 4.8: Principle drawing of a TA with a straight waveguide and a tapered section.

modes. If these modes are allowed to oscillate they would optically pump
the regions of the chip that are not electrically pumped, thus heating up the
chip. Due to the diffraction at the tapered angle, the amplitude and phase
of the resulted beam will be uniform along the curved wavefronts expanding
from the straight aperture. Consequently, the beam emitted from the wide
output aperture seems to originate from a point that is approximately L/nl
behind the output facet, with L the length of the gain region and nl the
effective refractive index. Furthermore, according to the Snell’s law and for
small angles, the output beam horizontal (parallel to the wide side of the
facet) diffraction angle is given by the TA chip angle times the lateral modal
index. The vertical beam profile instead diffracts with an angle of 450 at the
output facet.

TA components

A schematic drawing of the TA system is shown in figure 4.9. The chip
mount (EYP-TPR-0670-00500-3006-CMT02-0LAB) is screwed to a copper
block; we use a thin indium foil pressed between the chip and the copper
surface in order to provide a good thermal contact. The copper block is
fixed to a copper base plate with a groove wherein a temperature transducer
(AD592) is accommodated (fig. 4.9). A ceramic thermoelectric cooler (TEC)
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is attached at the bottom of the copper plate and fixed with four Teflon
screws on the top of an aluminum heat sink.

TEC

Aluminum 
 heat sink

Collimation lens housing

Copper block

TA chip

Figure 4.9: Tapered amplifier components.

Two aspherical lenses, with a focal length of 4.5 mm (Thorlabs C230TME-
B), are placed in front of both chip facets: one to focus the seed beam, the
other one, i.e. the fast-axis collimating lens, to collimate, along the vertical
direction, the divergent output beam from the TA. Both lenses are housed
inside two holders (Thorlabs S05TM09) which are, in turn, placed into an
aluminum block with a fitting thread hole. The lens are aligned with respect
to the chip axis by adjusting the position of the aluminum holder by means
of three micrometric screws. After the alignment procedure, the aluminum
holder is permanently fixed to the copper block with two screws. Holes are
cut into the mechanical parts to allow for electrical wires to pass through,
in order to supply current to the chip and for temperature regulation. The
laser and TEC current are provided by a dual current/temperature controller
(Thorlabs ITC4001).
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Figure 4.10: Optical set-up for the input and output side of the TA.

4.1.3 TA alignment and characterization

TA alignment

When the TA chip is unseeded, an amplified spontaneous emission (ASE)
light is produced by its several quantum wells (see figure 4.8), both from the
input and output facet. As a starting point, I set the TA current at 500 mA,
not a large value, to avoid damage to the chip because most of the electrical
power dissipates as heat when the TA is unseeded (ASE power is low). Then
I collimate both sides of the unseeded TA by adjusting the position of the two
aspherical lenses. I overlap the D.L. Pro outgoing beam with the TA light
emitted from the input facet using a pair of mirrors (see figure 4.10). Once
the seed beam is injected in the TA, I observe a suddenly increase of the TA
output power, which is measured by means of a power meter. Also, using
a spectrum analyzer, an intense peak in a background of ASE multi-mode
is noted when the TA is seeded. Since the TA injection efficiency strongly
depends on the position of the input collimation lens with respect to the input
facet, I slightly re-adjust its position to improve the output power. Once
that the alignment of the TA to the seeding beam has been optimized, the
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Figure 4.11: ASE power as a function of
the TA current.

Figure 4.12: The diode voltage as a func-
tion of the TA current.

amplified output beam is collimated also in the horizontal direction using an
anti-reflection coated cylindrical lens (slow-axis collimating lens) with focal
length of 200 mm. In order to protect the chip from any back-reflections,
we place an optical isolator (ISO), which provides up to 60 dB of isolation,
between the TA output facet and the cylindrical lens.The ISO transmits 74%
of the incident light power.

TA characterization

When the TA is unseeded, it simply produces the amplified spontaneous
emission light. Since its output and input facets are slightly reflective (Rf ≈
1%), the TA acts as a laser diode. By measuring the output power as a
function of the injected current (fig. 4.11), I note a threshold followed by a
linear increase of the power versus current, which is a characterizing feature
of a laser diode. In figure 4.12 is shown instead the the voltage versus the
injected current, which has the same profile as a diode laser. In figure 4.13,
I show the spatial density profile of the unseeded TA output beam recorded
by a CCD camera. The laser current is set at 200 mA. One can note the
expected "flat hat" distribution profile of the light along the x-direction .
As the seed beam from the D.L. Pro laser is properly injected into the TA,
the laser operation is started and the output power increases. At this point,
we characterize the dependence of the TA output power on the power of the
seed laser (figure 4.14) and on its polarization (figure 4.15) which is changed
using a λ/2 waveplate. In both cases the TA current is set at 200 mA.
One observes that the TA output power linearly increases with the input
power and saturates for injection powers up to 17 mW. So, in the following
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Figure 4.13: Amplified spontaneous emission light of the tapered amlifier at I=200mA.
Note the "flat hat" distribution along the x-direction.

measurements the input power was set at a value almost 18 mW in order
not to degrade the chip. The output power also depends on the polarization
of the seed laser and gets its maximum value for an horizontally polarized
seeding beam. I achieve an output power of about 300 mW for a TA current
of 600 mA and a seed power of 18 mW. This corresponds to an amplification
factor of more than 17. Then, the amplified TA output beam is coupled into
an optical fiber and the coupling efficiency is optimized by slightly changing
the position of the cylindrical lens. I note that the coupling into the fiber is
also affected by the TA current, i.e. the TA mode profile; for a current of
about 600 mA we achieve the maximum coupling efficiency which is of the
order of 55%.

4.2 Imaging at low and high magnetic field
In order to image the atoms in the three lowest spin states at low and high
magnetic field, the D.L. Pro laser frequency (νL = ν0 − 280 MHz+νoffset)
must be resonant with an atomic transition in a large range of magnetic
field values. So, νoffset must take into account not only the shift of -280
MHz but also the Zeeman shifts of the ground and excited substates. Also,
for the imaging of the F = 1/2 state manyfold, hyperfine splittings have to
be considered too. In the following, I show the resulting frequency shifts
to be compensated, by using also some AOMs, at the particular values of
magnetic field of 0 G, 300 G and 850 G. The corresponding Zeeman shifts
was calculated via Breit-Rabi formula using Mathematica.
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Figure 4.14: The TA output power beam as
a function of the seeded laser
power.

Figure 4.15: The TA output power beam as
a function of the seeded polar-
ization.

At zero magnetic field, the |1〉 and |2〉 state are degenerate so they can
not be resolved; they are contained both at the ground state hyperfine level
|F = 1/2〉. In order to image the atoms that are found in the |F = 1/2〉
manyfold, I have to compensate for the detuning of -280 MHz (from the
|2S1/2, F = 3/2〉 → |2P3/2, F

′ = 5/2〉 transition) and for the ground state
hyperfine splitting of 228 MHz (i.e. between |F = 3/2〉 and |F = 1/2〉 hy-
perfine substates). Actually, the imaging light, because of dipole selection
rules, have to be resonant with |F = 1/2〉 → |F ′ = 3/2〉 so the splitting be-
tween |F ′ = 3/2〉 and |F ′ = 5/2〉 have to be considered but it is negligible
(almost 2.5 MHz) with respect to the natural linewidth Γ ' 6 MHz. At low
magnetic field, in particular at 300 G, the |1〉 and |2〉 state are no longer
degenerate and it is possible to image the atom population in each spin state
(see figure 4.16). For 6Li, such magnetic field value corresponds to the regime
where mI and mJ are good quantum numbers. We choose as imaging light
transition: |mJ = −1/2〉 → |m′J〉 = −3/2. The magnetic field value of 300 G
corresponds to the value at which we achieve a weakly-interacting two-state
Fermi mixture, composed of |1〉 and |3〉 states. To image the atoms in |3〉
state, I have to compensate only for the Zeeman shifts in addition to the
shift of -280 MHz. Another important magnetic field value is 850 G, which
is near the Feshbach resonance position between the state |1〉 and |2〉. In
figure 4.17, I show the offset and AOMs frequencies chosen for imaging of
the three lowest spin states at 0 G, 300 G and 850 G. The advantageous of
this imaging scheme is that the offset frequency value can be changed in a
large range, during which the D.L. Pro laser remains locked, from -100 MHz
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Figure 4.16: The Zeeman splitting of the excited state (|22P3/2〉) and of the ground state
(|22S1/2〉) at a range of magnetic field from 0 to 850 G. Actually, the excited
state is splitted in twelve Zeeman sublevels which can be resolved at a lower
magnetic field range. Also the imaging light transition is indicated.

to more than -800 MHz, permitting so to image the atoms in these states
even at intermediate value of magnetic fields.
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Figure 4.17: The offset and AOM frequencies chosen for the value of the magnetic field of
0 G, 300G and 850 G for imaging of each state |1〉 |2〉 and |3〉.

Experimental set-up

In figure 4.18 is shown an optical scheme of the experimental set-up that
I mounted in order to prepare the imaging light. The D.L. Pro laser of
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Figure 4.18: A sketch of the experimental set-up that I mounted to preparate the low and
high magnetic field imaging light.
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the right polarization and power of 19 mW injects the TA, whose output
beam power is strongly enhanced. The operation current of TA is set at
600 mA, which corresponded to the maximum coupling efficiency with the
polarization-maintaining optical fiber, and its temperature is set at T =
18◦C. The TA output power at this current is 260 mW. An optical isolator is
placed between the output facet and the cylindrical lens to protect the chip
from retro-reflection, transmitting 74% of the incident power, i.e. almost 190
mW. After the cylindrical lens, the TA beam divergence is corrected both
in the horizontal direction by the cylindrical lens and in the vertical one
by the TA output collimation lens. Then the TA beam is coupled to the
corresponding optical fiber (indicated with the brown color in figure 4.18),
behind which a λ/4 and a λ/2 waveplates are placed in order to stabilize
the polarization of the light entering the fiber. Its output is then splitted in
two parts by a λ/2 waveplate and a polarizer beam splitter: the transmitted
light goes versus the AOMs while the reflected one is overlapped with the
D2 laser, brought in this table by an optical fiber (indicated as "D2" fiber in
figure 4.18), with a NPBS. For practical reasons, the maximum output power
of the D2 fiber is 0.39 mW. After the NPBS, only its 50% is coupled with
the "lock" fiber, with an efficency of 74%. In order to have the maximum
visibility of the beat note at the PHD, I further reduced the D.L. Pro laser
power, by placing a λ/2 waveplate and BSP along its path and before the
NPBS, achieving so equal power of the master and slave laser. I also placed
an λ/2 waveplate after the D2 fiber in order to achieve the same polarization
as the slave laser. The "lock" fiber output (of 0.3 mW) is focused into the
PHD by the convergent lens (f = 45 mm).

The light that goes versus the AOMs is divided in three "branches" for
imaging at 0 G, 300 G and 850 G. Each "branch" consists in a λ/2 waveplate,
a PBS, a λ/4 waveplate, a mirror and an optical fiber. The part of the light
that is reflected from the PBS passes firstly through an AOM. In figure 4.18
is indicated the value of the first order (positive or negative) of the AOM that
I used in order to achieve the laser light frequency resonant with the atomic
transition. After it, the light passes through a λ/4 waveplate, which produces
a circularly polarized light for our linearly polarized D.L. Pro beam. It passes
twice through this waveplate and also through the AOM, after being reflected
by a mirror. The result is a laser beam having a polarization perpendicular
to its initial one, so now it is transmitted by the corresponding PBS, going
versus the "imaging" fiber which brings it to the experiment table.
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Conclusions and future
perspectives

My thesis work has been focused on the production and characterization of
quantum gases composed of 6Li atoms.

• The quantum degenerate regime has been achieved by implementing a
new all-optical method based on the combination of D1 gray molasses
cooling (for the first time observed on 6Li atoms), optical trapping and
Feshbach resonances. I have experimentally tested that this molasses
cooling is particularly effective, reaching temperatures as low as 40
µK for sample composed of almost 109 atoms in just few milliseconds.
The large phase-space density obtained represents the optimum condi-
tions to load the atoms in a pure optical potential where evaporative
cooling to quantum regime has been performed. In the experiment,
we have explored the different regimes across the Feshbach resonance
of 6Li centered at 832 G. In particular, on the positive side of the
resonance we have produced an almost pure molecular BEC of 5×105

molecules, while working at the center of the resonance, in the strongly-
correlated regime (the so-called BEC-BCS crossover) we have observed
similar ultracold gases, eventually superfluid. We have also achieved
Fermi degeneracy in the weakly-interacting regime (at 300 G) for about
N=7×105 atoms at T/TF ' 0.06.

• Beside my active participation to the main experimental work, I have
also followed a more independent project, designing and setting up a
new a and more versatile optical scheme to image the fermionic lithium
in a large range of magnetic fields, i.e. of interactions. In fact, as dis-
cussed in this thesis, the main and peculiar properties of these 6Li gases
rely on the value of the inter-atomic scattering length that in practice
we control via an external magnetic field B . This means that it is
necessary to compensate the Zeeman shifts of the optical transition in
a quite large range of frequency, indeed from 0 (corresponding to null
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magnetic field) to almost 1 GHz (B=840 G).
This scheme involves the use of an independent commercial diode laser,
of an home-made tapered amplifier and of a electronic offset-lock phase
loop (up to 1 GHz) to stabilize this laser to a master, which is refer-
enced to an absolute atomic spectroscopic line. The main advantage
of this set-up is the possibility of tuning the value of the frequency
with much more freedom, covering the full requested range of values.
Furthermore the presence of a tapered amplifier assures the necessary
intensity to produce the resonant light to image the atoms in all the
three spatial directions.

In the future we want to study the effects of tailored optical potentials im-
printed on our 6Li quantum gases. In particular, we are now aiming at in-
vestigating the dynamics of lithium superfluids (both in the molecular BEC
side and at the crossover of the resonance) through a thin barrier (with a
size of about 2 µm) that we are currently implementing on the experiment.
The work done in this thesis is the fundamental to proceed in this direction.
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