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Abstract

Superfluidity and magnetism represent a spectacular manifestation of strong interactions

in fermionic systems. These antithetic complex many-body phases encompass a wide

range of environments at different energy scales, from solid-state up to quark and nu-

clear matter.

Within this thesis, I have addressed some aspects of these two fundamental phenomena

by exploiting ultracold atomic lithium-6 (6Li) Fermi gases prepared in a optical poten-

tials. Fermi gases of 6Li atoms are particularly well suited for the investigation of strong

interactions in fermionic systems. This atomic species features broad Feshbach scattering

resonances, allowing an ultimate control over the inter-particle interactions, a necessary

ingredient for exploring strongly interacting many-body phases in a controlled way. A cel-

ebrated example is represented by the experimental realization of the BEC-BCS crossover,

where long-range Cooper pairs can be smoothly converted into bosonic molecular dimers.

During the first part of this thesis, I have built a new experimental apparatus able to pro-

duce ultracold 6Li mixtures, either in the superfluid or in the normal phase, confined in

optical potentials. In particular, I have demonstrated, for the first time on this atomic

species, a new and robust sub-Doppler laser cooling technique based on D1 gray molasses.

In the second part of my work, I have investigated the physics of these cold fermions

trapped in a double-well potential, realized by superimposing to a standard optical dipole

trap a thin repulsive barrier, which splits the harmonic potential into two reservoirs. With

such a setup, I have performed two different kinds of studies. First, I have employed the

optical barrier as an insulating junction connecting two superfluid samples, to investigate

the coherent Josephson dynamics of such strongly interacting systems, so far never ob-

served in these fermionic superfluids. The characterization of the superfluid dynamics

allowed the determination of the Josephson coupling energy across the whole BEC-BCS

crossover, which was found to be maximum at the unitary limit (i.e. at the center of the

Feshbach resonance). This peculiar trend results from the interplay of both bosonic and

fermionic degrees of freedom. Our results may allow an alternative way to radio-frequency

spectroscopy fot the determination of the superfluid pairing gap on the BCS side of the

resonance, in analogy to Giaever tunneling experiments in solid-state systems. Moreover,

similarly to the phenomenology of superfluid helium, we have found that, beyond critical

values of the barrier height and chemical potential imbalance, phase-slips and vortex nu-

cleation quench the coherent dynamics in the whole crossover, leading to dissipation.
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As long as the second research line is concerned, the same experimental setup allowed

me to study the dynamics of repulsively interacting Fermi gases. The peculiar trapping

geometry allowed to create an initial state with each side of the double-well filled with a

polarized Fermi sea of up and down atoms, preparing the system into a domain-wall con-

figuration. In particular, I have performed the quantum simulation of the textbook Stonerś

model for itinerant ferromagnetism, and I have studied the spin transport properties of

such systems over a wide range of interaction and temperature regimes. Our trap con-

figuration (optical potential + repulsive barrier) has allowed to hinder those detrimental

pairing mechanisms that affects the stability of atomic Fermi gases with resonant repulsive

interactions and to demonstrate, for the first time, that a ferromagnetic instability may ac-

tually occur in this atomic system, for critical values of repulsion and temperature. This

has been firstly probed by observing the softening of the spin-dipole mode while approach-

ing the critical value of interactions. Analogously to spin fluctuations measurements, the

softening of this mode is unequivocally linked to the divergence of the spin susceptibility

at the ferromagnetic transition. Moreover, in a second set of experiments, I have mea-

sured the spin transport properties of such a system and consistently with the spin-dipole

measurements, I have found that spin diffusion may actually stop for a finite time window

for interactions above the critical one. This has allowed me to draw the critical boundary

in the temperature-interaction plane for the emergence of a ferromagnetic instability.
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CHAPTER 1

Introduction

The dynamical and transport properties of any physical system arise from its underlying

microscopic mechanisms, whose understanding is a fundamental task for the shaping of

accurate many-body theories. Several experimental observations, such as superconduc-

tivity or the quantum Hall effect, boosted the development of groundbreaking theoretical

frameworks which molded our comprehension of the intrinsic mechanisms of materials.

In this picture, simulating strongly interacting systems with ultracold atomic Fermi gases

has already proven to be a test-bed for many-body theories and a platform for exploring

exotic, or even novel, phases of matter [1]. Their unprecedented precision, typical of the

atomic physics, is a powerful and valuable resource for disclosing the intricate complexity

of condensed matter systems, with a twofold interest in both fundamental and technolog-

ical scientific advancements. The tunable interplay among quantum statistics, symmetry,

interactions and dimensionality in atomic gases is a key inspiration for the realization of

the experiments presented in this thesis, focusing on the implementation of elementary

toy models of condensed matter systems, with the goal to provide a reference for state-of-

the-art theoretical tools or even to prove the existence of debated phases.

Interactions drive the emergence of many intriguing phenomena in solid state physics.

Notable examples are the fractional quantum Hall effect and the High-TC superconductiv-

ity in cuprates. However, the analytical description of these strongly interacting systems

is generally unfeasible, as well as their numerical simulation, since the available com-

putation power reduces the solution to very small size problems, which lack the overall

complexity of the real quantum state [2].

The presence of magnetically tunable Feshbach resonances makes ultracold atomic Fermi

gases well suited for the implementation of quantum Hamiltonians of strongly interact-

ing systems and to physically simulate their features, measurable by the evolution of both

single-particle and collective excitations spectra.

At first glance, Feshbach resonances, intrinsically linked to the existence of a shallow (real

or virtual) molecular state [3], provide a mechanism to pair unequal spin fermions, the

necessary ingredient for superconductivity to develop. In the presence of a Fermi sea, the
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2 Chapter 1. Introduction

Cooper instability may drive the superfluid transition for any arbitrary weak attraction.

The phenomenology of this is captured by the Bardeen-Cooper-Schrieffer (BCS) theory of

superconductivity. The creation of long-range Cooper pairs is the main mechanism behind

the superfluid behavior of conventional superconductors, as well as for rather different

fermionic systems, such as helium-3. Helium is a paradigmatic example of the rich phe-

nomenology behind superfluidity, since even its other isotope, i.e. helium-4, may turn

superfluid. The addition of a single neutron turns helium-3 into a boson. More correctly,

helium-4 is a composite boson made out of fermions. In bosonic systems, superfluidity

is associated to Bose-Einstein condensation, and not to the Cooper instability. It is so le-

gitimate to ask ourselves whether a connection exists among these different regimes of

superfluidity, where on one side the fermionic character of the constituents is washed out

by their tight bonding.

A positive answer to this question was first given by A. Leggett in 1980[4]. He predicted

the existence of a smooth crossover among long range Cooper pairs and deeply bound

bosonic molecules, as the inter-species attraction is increased.

At present, ultracold atomic Fermi gases are the only experimental systems where this

BEC-BCS crossover picture has been realized and investigated [5]. On top of a Fesh-

bach resonance, these systems encompass the two paradigmatic weakly-interacting limits

of superfluidity, passing through the most interacting system allowed by quantum me-

chanics, the so-called unitary limit, where the diverging scattering length on top of the

Feshbach resonance makes the pair size and the correlation length comparable with the

inter-particle distance, similarly to what happens in High-TC superconductors at optimal

doping, or even in more exotic systems such as neutron stars or the quark-gluon plasma

of the early universe. These table-top atomic systems encompass quantum matter at dif-

ferent energy scales, allowing a transfer of knowledge from different research lines.

The main peculiarity of any superfluid is its frictionless flow when passing through ob-

stacles or constrictions. This was intensively investigated for both superconductors and

superfluid Helium, for early investigation of the superfluid gap and the critical velocity

[6]. However, as pointed out by B. Josephson in the sixties, a more interesting regime

arises when the obstacle or the insulator among two superfluids is smaller than, or com-

parable with, the superluid coherence length. The overlap between the superfluid wave-

functions on each side of the obstacle allows a direct current among the two reservoirs,

even if no bias field is applied. This is the famed Josephson effect, which is not only the

manifestation of a quantum effect on a macroscopic scale, but also a valuable resource

for metrology and quantum information [7]. On a more fundamental level, the overlap

of the two macroscopic wavefunction across the junction acts as a mutual probe of the

two condensates, as their relative interference is the only way to access their most inti-

mate feature, the superfluid order parameter. The Josephson effect connects two objects
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which violate the same symmetry, providing us a unique tool to physically pin down the

order parameter [8]: far from being just a textbook example of a macroscopic quantum

phenomenon, the Josephson effect represents a powerful possibility for probing and char-

acterizing a superfluid state. Inspired by this, we have first experimentally investigated

the still unexplored Josephson dynamics of ultracold crossover superfluids. The imple-

mentation on our set up of a high-resolution optical system allowed us to imprint onto the

atomic cloud a micrometer-sized optical barrier. Acting as a tunnel junction, the barrier

bisects the cloud into two reservoirs, creating an atomic physics analogue of a solid-state

Josephson Junction, with our neutral fermionic atoms playing the role of electrons in su-

perconductors. The disclosure of coherent particle transport through the junction via the

observation of Josephson oscillations, together with the ultimate control over cold atoms,

opens the possibility to investigate regimes where quantum fluctuations and exotic phe-

nomena are enhanced, with a possible boomerang effect on the quest for novel quantum

devices.

The unique control of interactions between Feshbach resonant ultracold atoms allowed

me also to experimentally address another fundamental phenomenon, notoriously diffi-

cult to quantitatively describe: namely, itinerant ferromagnetism. In this frame, it is still

debated whether a homogeneous Fermi gas can turn ferromagnetic once short-ranged re-

pulsive interactions between particles with different spin are sufficiently strong. At the

mean-field level, this picture is captured by the Stoner model of itinerant ferromagnetism,

which dates back to 1933 [9]. More sophisticated theoretical models, going beyond the

mean-field approximation, confirmed the occurrence of the Stoner instability and refined

its properties. However, side-by-side comparison between microscopic theory models and

real solid-state materials has proven to be difficult, due to unavoidable imperfections and

complications, such as the presence of disorder and of intricate lattice structures. Instead,

quantum gases experiments, thanks to their unprecedented cleanliness, offer an ideal bat-

tlefield for targeting this goal.

Within this spirit, we engineered a trapping configuration where the aforementioned bar-

rier potential separates two macroscopic domains with opposite spin. Notably, in the

absence of the barrier, this would almost correspond to the exact ground state predicted

by the Stoner model. Our setup allowed the investigation of the (meta)stability of such

an initial state, avoiding the detrimental mechanisms (i.e. pair formation and three-body

recombination) that so far hindered the investigation of atomic Fermi gases with resonant

repulsive interactions [10, 11]. By measuring collective modes, we probed the magnetic

properties of such state at different values of the two-body scattering length. In particular,

by focusing on the spin-dipole mode, i.e. the out-of-phase oscillation of the spin domains,

we could unveil the trend of the spin susceptibility χs, which was found to abruptly in-

crease when approaching the critical interaction, consistently with the occurrence of the
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4 Chapter 1. Introduction

Stoner instability and the emergence of a ferromagnetic phase transition.

Further studies may shed new light on more unconventional scenarios, difficult to target

in the solid state counterparts. Control over the relative spin population may allow to

investigate the dynamics of impurities in a Fermi seas and their transport properties, even

in reduced dimensions. The combination of this with the accurate interferometric probing

techniques of atomic physics may give access to spatial and time-resolved emergence of

correlations in a many-body state, a fertile and still mainly unexplored research line [12].

Outline of the thesis

This thesis is organized as follows:

• In Chapter 2, we review the basic theoretical framework for understanding the

physics behind strongly interacting trapped atomic Fermi gases. The concept of

Feshbach resonance is introduced, focusing on its effect at both the two-particle and

the many-body level. The emergence of a lower and an upper branch in the energy

landscape of this system allows to investigate two orthogonal regimes: a strongly

interacting fermionic superfluid and a normal Fermi gas with repulsive interactions.

Finally, the basic theory concepts to understand the two topics of this thesis, namely

the coherent Josephson dynamics and itinerant ferromagnetism, will be briefly in-

troduced.

• In Chapter 3 we give details over the experimental setup, built during the period of

this thesis, which is used to perform our experiments.

• Chapter 4 covers the production of degenerate quantum gases of 6Li, both in the

normal and the superfluid regimes, achieved by exploiting, for the first time on this

atomic species, a sub-Doppler laser cooling technique. Details on the performances

of this cooling stage, called D1 gray molasses, will be given.

• The first investigation of coherent Josephson dynamics across the BEC-BCS crossover

is described in Chapter 5. By bisecting the cloud into two reservoirs, we could ob-

serve Josephson oscillations in both the population imbalance and the phase, whose

frequency was measured and compared throughout whole crossover. Our results

highlight the robust nature of resonant superfluids.

• Finally, in Chapter 6, we perform the quantum simulation of the Stoner model,

initializing the system in two separated spin domains. Details of the initial state

preparation will be given. The observation of the softening of the spin dipole mode

towards the ferromagnetic transition and the occurrence of a finite time window
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of zero spin diffusion above it, suggest the occurrence of the Stoner instability in

repulsive Fermi gases without the need of any lattice, even if in a metastable sense.

Publications

The following list of articles has been published in the context of this thesis

• A. Burchianti, G. Valtolina, J. A. Seman, E. Pace, M. De Pas, M. Inguscio, M. Zaccanti

and G. Roati, Efficient all-optical production of large 6Li quantum gases using D1 gray-

molasses cooling, Phys. Rev. A 90, 043408 (2014).

• G. Valtolina, A. Burchianti, A. Amico, E. Neri, K. Xhani, J. A. Seman, A. Trombet-

toni, A. Smerzi, M. Zaccanti, M. Inguscio and G. Roati, Josephson effect in fermionic

superfluids across the BEC-BCS crossover, Science 350, 1505 (2015).

• G. Valtolina, F. Scazza, A. Amico, A. Burchianti, A. Recati, T. Enss, M. Inguscio, M.

Zaccanti and G. Roati, Evidence of ferromagnetic instability in a repulsive Fermi gas of

ultracold atoms, in preparation.
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CHAPTER 2

Fundamentals of interacting atomic Fermi

gases

The experiments presented throughout this thesis probe the dynamical properties of

strongly interacting Fermi gases. Within this chapter, a brief introduction is given about

the properties of these fermionic systems, focusing on the physical scenarios that tunable

interactions and optical manipulation offer for the implementation of textbook models of

condensed matter from an atomic physics perspective.

2.1 Degenerate Fermi Gases

Fermions are named after Enrico Fermi. In 1926 [13], the italian physicist was the first

to discover the statistical laws governing these particles. Fermions, namely all elementary

or composite particles with half-integer spin, obey the Pauli exclusion principle, which

prevents two identical ones to occupy the same quantum state. Particles with integer

spin instead are called bosons and obey the Bose-Einstein statistics, which allows them to

condense into the same single quantum state. This different spin statistics becomes crucial

as temperature is lowered down to regimes where the thermal de Broglie wavelength,

defined as λdB =
r

2πħh2

mkB T , becomes comparable with the interparticle distance. Here, in

the so-called degenerate regime, particles are no more distinguishable and the quantum

statistics starts playing a major role (see fig.2.1).

2.1.1 Ultracold atoms in harmonic traps

The energy levels that particles populate reflect the boundaries and structure of the space

where they are found. The common traps for holding the atomic gases can be very well

approximated by a harmonic potential, with the typical dispersion relation 1
2ωi x

2
i , where

ωi is the trap frequency in the i-th direction.

Given the Pauli exclusion principle, the single-atom probability to occupy a quantum state
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T=0T<Tdeg

bosons

fer
mi
on
s

T Tdeg

Figure 2.1 – When de Broglie wavelength λdB is of the same order of the inter particle distance d , the quantum

statistics starts arising and particles organize themselves according to their spin properties. A phase transitions

drive bosons to condense towards the lowest accessible energy level. Fermions instead pile up one for each

level. At T =0 only the lowest states are occupied but there is no phase transition involved with this behavior.

at an energy ε is given by the Fermi-Dirac distribution:

f (ε) =
1

e
(ε−µ)
kB T + 1

(2.1)

where ε = p2

2m + V (r) is the sum of kinetic and potential energy, µ the chemical potential,

T the temperature and kB the Boltzmann constant.

As shown in fig.2.2, for decreasing temperatures, the Fermi distribution shows a sharper

drop at the chemical potential position, due to the emergence of a Fermi surface. At T = 0,

all energy levels from the lowest up to the chemical potential are occupied. This last one

defines so the Fermi energy EF . In the case of a three-dimensional harmonic trap, the

Fermi energy is expressed as:

EF = (6N)1/3ħhω (2.2)

where ω= (ωxωyωz)1/3 is the geometric average of the trapping frequencies.

The Fermi energy sets the most important energy scale in the system, and eq.(2.2) is

related to the peak density n(0) of the gas at the trap center as EF =
ħh2k2

F
2m =

ħh2

2m(6π
2n(0)2/3,

where kF is the Fermi momentum. The inhomogeneity of the trap makes the chemical

potential position dependent. In the Local-Density-Approximation (LDA), it is convenient

to define it as:

µ(r) = µ− V (r) (2.3)

where V (r) is the trapping potential. On the trap edges, we have a vanishing local chemi-

cal potential and the atomic cloud tails are essentially classical. This would be a limitation

when looking for critical phenomena across a quantum phase transition, since it will hap-

pen only at the trap center due to the higher degree of degeneracy. Over the whole trap,

the divergent correlation length will be renormalized to lower values, with a possible
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Figure 2.2 – Fermi-Dirac distribution f (ε) at various temperatures. The energy levels on the x-axis are in units

of the chemical potential µ.

hindering of the critical phenomenon. However, the presence of the trap can sometimes

turn advantageous. First of all, the trap frequency naturally provides a time reference for

comparing the dynamics of collective modes. These are powerful tools for disclosing the

effects of interactions and quantum fluctations on the elementary excitations of the many-

body state [14, 15]. Second, the trap dispersion allows the investigation of the system

over a wide range of local chemical potentials. In a single experimental shot, it is possible

to reconstruct the thermodynamical properties and the phase diagram over a wide range

of temperatures (i.e. degree of degeneracy).

Density distribution and temperature

Accounting for the Fermi statistics and the harmonic confinement [16], the density distri-

bution for trapped ideal Fermi gases can be expressed as:

n(r) =

∫

dp
(2π3)

f (r,p) = −
1

λ3
dB

Li3/2
�

−eβ(µ−V (r)
�

(2.4)

where Lin is the n-th order polylogarithmic function [16].

At zero temperature, the density distribution has a polynomial expression proportional to

(1 − (x i/RFi)2)3/2, vanishing at a distance RFi =
r

2EF

mω2
i
, which defines the Thomas-Fermi

radius along the i-th direction.

In the weakly interacting regime, the density distribution after releasing the atoms from

the trap becomes isotropic at long expansion times, due to the initial isotropic momentum

distribution. However, in the degenerate regime, it still reflects a strong deviation from a

classical gaussian profile [17, 18], allowing to determine the temperature and the degree
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10 Chapter 2. Fundamentals of interacting atomic Fermi gases

of degeneracy of the sample [16, 19].

2.2 Scattering theory of ultracold collisions

The scenario of cold collisions in quantum gases can be described in a simple and ele-

gant way. Morever, the interaction strength can be easily controlled by means of magnetic

Feshbach resonances [3], which allow an ultimate control over interaction tunability, un-

achievable in ordinary solid-state systems.

2.2.1 Elastic collisions

The simple physical picture to understand cold collisions arises from the combination of

two main properties of these quantum gases. First, the inter-atom scattering potential is

of Van der Waals type ( ∼ − C6
r6 , where C6 is the Van der Waals coefficient), meaning it is

essentially short-ranged and with central symmetry. Second, quantum gases are extremely

dilute, more than a million of times thinner than air, such that we can consider only

pairwise interactions (i.e. two-body collisions).

The Schrödinger equation in the reference frame of two colliding atoms can be generally

written as:

H|ψ〉= (H0 + V (r)) |ψ〉= E|ψ〉 (2.5)

where H0 is the free particle Hamiltonian and V (r) the interaction potential.

Away from the target region, the wavefunction can be expressed as:

|ψ〉= eik·r + f (θ ,φ)
eikr

r
(2.6)

i.e. as the sum of an incident plane wave and an outgoing spherical wave. This last one

is modulated by the scattering amplitude f (θ ,φ) which records the amplitude and phase

of the scattered components along the angular direction (θ ,φ). This is related to the

scattering cross section σ by the differential relation: dσ
dΩ =

4π
k2 | f (θ ,φ) |2, with Ω the solid

angle.

Due to the central symmetry of the problem, the wavefunction can be expanded in

partial waves. For any of these partial waves with a defined angular momentum l there is

a Schrödinger equation with a potential given by the sum of the Van der Waals one and the

centrifugal repulsive barrier at a given momentum l (see fig.2.3). At low temperatures,

for the considered short-range potentials (i.e. V (r) that falls off faster than 1/r3 at large

distances, collisions in any channel with l > 0 are deeply suppressed. Only collisions in

the s-wave (l = 0) channel are allowed. At low momenta, the s-wave scattering amplitude
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Figure 2.3 – Left panel: sketch of a typical Van der Waals potential in the s-wave channel (l = 0) with the

1/r6 scaling at long distances. Right panel: same left panel potential with the addition of the centrifugal barrier

for l > 0. The barrier prevents atoms to approach at short distances, quenching collisions and thermalization.

can be expressed as [20]:

f =
1

k cotδ0 + ik
≈

1
a−1 + reffk2/2+ ik

(2.7)

The collision imprints a phase shift δ0 onto the scattered wavefunction which, according

to eq. 2.7, can be parametrized as a function of the only scattering length a and the

effective range reff of the potential. Despite that a and reff are set by the microscopic

details of the potential, an equal scattering amplitude can be obtained by very different

microscopic interaction potentials , with the same scattering length and effective range.

This allows replacing the complicated and not exactly known inter-atomic potential with

a much simpler effective one, called pseudopotential, which at long distances leads to the

same asymptotic behavior for the wavefunction [21].

The scattering length a is defined as:

a = lim
k→0

tanδ0(k)
k

(2.8)

When δ0 is equal to ±π/2, a diverges. In the context of this thesis, it is instructive to un-

derstand the physical meaning of a diverging scattering length. To explain this, we analyze

the scattering problem for a simple square-well pseudopotential. The well is characterized

by a range R and a depth V0. In panel 2.4, the function u(r) is plotted for different V0,

with u(r) = rR0(r), where R0(r) is the s-wave solution of the radial Schrödinger equation.

For repulsive wells (V0 > 0) as in fig.2.4a, the boundary conditions at the origin and at

r = R force u(r) to have a positive curvature inside the well (black solid line). The scat-

tering length a is here defined as the intercept of the wavefunction just outside of the

well, extended to all abscissas (orange dashed line). With this potential, even in the hard-

sphere limit (V0→∞), the scattering length cannot diverge and is upper-bounded by the

range R. The situation changes if the potential becomes attractive (V0 < 0) as in fig.2.4b.

The wavefunction curvature becomes negative, which gives an intercept for the extended

wavefunction at r < 0, namely a negative scattering length. The analytical solution for a

in this well potential reads as a = R(1− tanγ/γ), where γ = |V0|1/2R is equivalent to the
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Figure 2.4 – Qualitative trend at short distances of u(r) (solid line) and a (dashed orange line) for different

heights V0 of the square-well potential. The oscillating behavior at large distances (r � 1/kF ) is not reported

[22]. a) V0 > 0: The repulsive well does not allow a scattering length larger than the range R . b) V0 < 0 but

still not enough for supporting a bound state: a becomes negative as well as the curvature of u(r). c) V0 < 0

and a bound state (dotted blue line) is found at the same energy of the scattering threshold: the scattering

length a asymptotically tends to−∞. d) V0 < 0 and the bound state energy is below the scattering threshold:

despite the attractive potential, a is positive and the potential is effectively repulsive.

phase shift δ0. When |V0| is further increased until γ = π
2 , the scattering length diverges

(see fig.2.4c). At this critical V0, the well is deep enough to support a bound state at

zero energy. Despite a→∞, the cross-section remains finite, ensuring the stability of the

system. For s-wave collisions we have:

σ =
4π
k2

sin2δ0 (2.9)

When a→∞ or equivalently δ0 =
π
2 , the cross section saturates to σ = 4π

k2 , which is the

maximum value allowed by quantum mechanics.

Coming back to the well potential exploration, a further small increase of |V0| flips the

sign of a, as in fig.2.4d. Despite the overall attractive potential, the presence of a bound

state just below the energy threshold of the interacting particles introduces a positive and

large scattering length and consequently a repulsive interaction between atoms in scatter-

ing states. By further increasing |V0|, the positive scattering length can be first reduced

to zero and then turned negative again. The appearance of other bound states into the

potential will create a periodic divergence in a [3]. This leads to some additional consider-
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ations. First, a negative scattering potential V0 allows both positive and negative scattering

lengths, while the condition V0 > 0 implies only a positive scattering length. Furthermore,

purely repulsive potentials do not allow a finite scattering length in the zero-range limit

(R→ 0), differently from attractive ones. Attractive potentials can support bound states at

an energy Eb. The relative distance between the bound state and the scattering threshold

at E = 0 sets the value of the scattering length a. At the same time, changing the scat-

tering length means tuning the bound state energy respect to the scattering one, implying

that diverging scattering lengths at both negative and positive values can be achieved only

with the presence of a bound state really close to the scattering state.

Despite looking like a textbook exercise, this scenario can be actually implemented in

quantum gases thanks to magnetic Feshbach resonances [23]. As it will be explained in

the following sections, the “tuning” of the bound state energy will affect the mere value of

the scattering length but also the ground state of the many-body system.

Role of quantum statistics

The quantum statistics introduces some constraints on the previously discussed scatter-

ing problem with short-ranged potentials. For fermions, the wavefunction must be anti-

symmetric respect to particles permutation. This allows the scattering to happen only

in those channels with odd angular momentum l. In the cold collisions framework, this

means that identical fermions do not collide. The Pauli exclusion principle forbids s-wave

scattering and the centrifugal barrier at l > 0 prevents atoms to get closer one to the

other and to experience the scattering potential. Two fermions with different spin can

instead collide, since they are distinguishable and the s-wave channel is not impeded by

any quantum statistics rule.

2.2.2 Feshbach Resonances

Thanks to the hyperfine and Zeeman structure of the atoms, the previously investigated

scenario of tuning the energy of a bound state relative to the scattering channel can be

actually implemented in quantum gases. The scattering state of two atoms defines the

energetically accessible open channel, characterized by a certain magnetic moment µ1. In

the overall molecular spectrum of the two atoms, it may also be possible to find another

scattering channel, this time closed, i.e. not energetically accessible. Suppose now that

this latter potential supports a bound state with a magnetic moment µ2 different from the

open channel one (see fig.2.5). The simple application of a magnetic offset field shifts the

relative energy of the bound state respect to the scattering threshold. If a hyperfine cou-

pling exists between the two channels, a mixing among the two states will take place. As
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Figure 2.5 – Representation of the closed and open channel in the scattering problem. The relative energy

difference can be controlled by a magnetic offset field if a non-zero difference exists among the magnetic

moments of the atoms in the two channels.
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Figure 2.6 – Feshbach resonances in Lithium 6 for different hyperfine mixtures. Any of pairwise combination

of the three lowest hyperfine states has one broad Feshbach resonance.

a result, the bound state will affect the continuum scattering channel with a resulting ef-

fective tuning of the scattering length. This is the phenomenon of the Feshbach resonance

(FR)[24], which is an extremely powerful tool for boosting the efficiency of evaporative

cooling and for exploring strongly interacting many-body phases in a controlled way.

Usually, the magnetic dependent scattering length follows the relation:

a = abg

�

1−
∆

B − B0

�

(2.10)

where B0 is the resonance center, where a diverges and the bound state reaches the scat-

tering threshold, ∆ its width and abg the background scattering length.

For 6Li the FRs scenario is quite appealing. Any pairwise combination of its lowest three

hyperfine states supports a broad scattering FR (see fig.2.6). The most used one is that

between the lowest two states, which is located at a B0 field of 832 G [25]. Moreover,
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Figure 2.7 – The bare atoms and molecules form a two level system. Hyperfine coupling provides the dressing

among the two. As in Landau-Zener picture, the dressing results in avoided crossing among the bare states.

Lithium FRs are among the broadest ones observed in ultracold gases. The broadness of

FRs mainly affects the effective range reff, which has profound implications on both the

microscopic scattering mechanism and the many-body regimes that can be accessed.

For alkali atoms, the expression for reff reads as:

reff =
ħh2

2µabg∆δµ
(2.11)

where µ is the reduced mass and δµ the difference in the magnetic moments between

open and closed channels.

For the FR at 832 G, we have ∆=300 G and abg = −1400a0. This makes reff smaller the

Van der Walls one, making the scattering problem almost decoupled from the microscopic

potential details and with a universal character. Coming back to eq.(2.7), we can therefore

neglect the effective range term in the scattering amplitude. Without it, the scattering

amplitude has a pole at an energy:

Eb = −
ħh2

2µa2
(2.12)

where Eb is the binding energy of the Feshbach molecule. The quadratic dependence

on the scattering length is an evidence of strong coupling between the molecular bound

state supported by the closed channel and the scattering one. Here, the bound and the

scattering states can be interpreted as energy levels in a textbook two-level system. The

hyperfine coupling provides the off-diagonal term in the matrix representation, which

leads to the quadratic dependence in a as in the usual picture of avoided crossing (see

fig.2.7). For narrow FRs instead, the dispersion relation of the binding energy is almost

linear close to resonance, evidence of a weaker coupling and of non-universal character of

the scattering problem.

The resulting dressed Feshbach molecule state has a molecular part embedded in the

scattering one and reads as:

|ψb〉=
p

Z |C〉+ eiφ
p

1− Z |Bg〉 (2.13)
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where |C〉 is the closed channel components or bare molecular part, while |Bg〉 represents

the bare atoms in the open channel. Z represents the closed-channel fraction.

Eq.(2.13) is valid for both broad and narrow resonance, but only for the first ones the

fraction Z of the closed channel component is extremely small (i.e. Z � 1) over a large

fraction of the resonance width ∆. In this case, the dressed bound state has a universal

character and it is usually referred to as “halo dimer”, since its wavefunction extends much

over the classical turning point of the Van der Waals potential (that is |ψ〉 ∝ exp (−r/a)).

The molecular weight is zeroed if the bare bound state energy is above the open channel

one. However, if we cross the resonance by shifting the relative position among the bare

states, the open channel one is adiabatically converted into the dressed one, with an in-

creasing molecular character away from the resonance center.

The resonant wavefunction has however a non-zero molecular weight at short distances,

hence three-body collisions may lead to inelastic decay into more deeply bound molecules,

provided these last to have a non-vanishing Franck-Condon overlap with the resonant

wavefunction. Luckily again, this does not happen in 6Li for two main reasons. First, the

closed-channel fraction is proportional to reff/a, hence it is small and negligible over a

wide magnetic field region. Second, if three fermions approach each other, two of them

are identical, and so again the Pauli exclusion principle inhibits three-body processes [26].

About the few-body problem, FRs can be seen as a bridge among free atoms and bound

molecules but they can as well dramatically affect the system at the many-body level.

Notably, the experimental investigation of FRs in atomic Fermi gases led to the first real-

ization of the famed BEC-BCS crossover. In the following, I will give a brief introduction

about this scenario.

2.2.3 The energy spectrum

The general question we have to solve now is about how interactions affect the energy

spectrum of a many-body system. A simple intuitive picture to this problem has been

presented in ref.[27], where just two fermions with tunable interactions, confined in a box

are considered [28]. Despite being extremely qualitative, the aforementioned theoretical

toy model is useful for understanding the phenomenology of two Fermi gases close to a

FR.

The system investigated in [27] is composed by a particle confined in a spherical box with

a fixed scatterer at the center. In turn this can be qualitatively connected to the case of two

homogeneous Fermi gases with opposite spin, equal number of atoms N/2 and equal mass

m. Confining the particle in a sphere of radius R∝ 1
kF

with infinite walls mimics the effect

of Pauli blocking that prevents scattering at low momenta, i.e. too large wavelengths.

By introducing a fixed scatterer at the center of the box between fermions with unequal
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Figure 2.8 – On the left, the fictitious model of ref.[27] is represented, where the many-body problem of two

interacting Fermi seas is reduced to the scattering solution of a particle in a box of radius R with a delta-like

scatterer in the center. On the right, the energy spectrum for the non-interacting case (dashed gray lines) and

the interacting one (black solid lines) is reported as a function of the interaction strength. Interactions mix the

levels of the ladder of the non- interacting solution towards the resonance center. The drop of the lowest level

for positive scattering length is due to the increasing binding energy of the atomic pair.

spin, this simple single particle picture can reproduce the case of two Fermi gases close

to a Feshbach resonance (see fig.2.8). A delta functions is used to approximate the real

scattering potential between the particles. For the purposes of this toy model, we can

neglect the unphysical ultra-violet divergence of the delta pseudopotential and focus on

the convenient approximation that it gives to the scattering amplitude. The considered

pseudopotential is zero-ranged and so the scattering amplitude can be written as:

f = −
1

a−1 + ik
(2.14)

This is the same formula of eq.(2.7) for vanishing effective range reff � a. As already

stated, this is a good approximation for the case of 6Li and its broad FR with universal

character.

The formula in (2.14) is equivalent to introduce another boundary condition, the so-called

Bethe-Peierls condition at zero interparticle distance which reads as:

lim
r→0

∂r (rψ)
rψ

= −
1
a

(2.15)

A qualitative trend of the resulting energy levels is shown in the right panel of fig.2.8

as a function of the dimensionless parameter −1/kF a. The non-interacting case (gray

dotted lines) shows an infinite ladder of constant levels, with equal spacing due to the

boxing of the problem. For clarity we only show the lowest two of these levels. For the

interacting case the situation is different. The lowest level, usually called lower branch,

coincides with the non-interacting case for weak attractions (−1/kF a→∞), and progres-

sevely decreases its energy while approaching and then crossing the resonance towards

(−1/kF a→−∞). Therefore, the lower branch is associated to a net attractive interaction.
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The strong energy decrease of the lower branch as a→ 0+ is associated to the increase of

the molecular character of the bound state and of its binding energy.

Being the lower branch associated with an effective attraction, it represents the minimal

picture for the BEC-BCS crossover, leading to a superfluid state at sufficiently low temper-

ature. The fermionic character on the attractive side is smoothly converted into a bosonic

one when crossing the resonance. For sufficiently low temperatures we will find a BCS

superfluid when sitting on the attractive side or a molecular Bose-Einstein Condensate

on the repulsive one. The transition between these two regimes, as predicted by Leggett

[4], is a crossover rather than a phase transition, since these are adiabatically connected

extremes of the same branch. The lower branch is therefore the ideal playground for

investigating the two aspects of fermionic superfluidity.

The first excited state is instead usually called upper branch. For weak repulsions

(−1/kF a → −∞) it asymptotically approaches the non-interacting ground state, while

monotonically increasing its energy towards the resonance and connecting to the first

excited state of the non-interacting system as a → 0−. Here, particles feel an effective

repulsion when sitting on this branch for positive scattering lengths, differently from the

effective attraction on the lower branch [29]. This can be further understood by looking

at the wavefunction of the two-body solution for the different branches, as sketched in

fig.2.9. While on the lower branch, when moving from the BCS to the BEC side, the

wavefunction acquires the exponentially decaying character of the bound state, on the

upper-branch the wavefunction gets a node in the radial direction when moving towards

the resonance from the BEC side. In the thermodynamic limit this would describe a state

orthogonal to the BEC-BCS crossover superfluid, with the node introducing an effective

repulsion among the particles. The upper branch is therefore the place where normal

repulsive Fermi gases can be studied. However, in real 3D many-body system this would

be intrinsically metastable, since the true ground state is the paired one. Three-body

recombination leads to the decay towards the lower branch. Nonetheless, if populated

for sufficiently long time, the upper branch allows the investigation of ferromagnetic

phenomena of a repulsive Fermi liquid [29].

Very importantly, at 1/kF a = 0 both the upper and lower branch exhibit an energy which

does not depend by a, but only on EF . Hence, the properties of the system are expected

to be universal. Within this thesis, I actually probed both the superfluid properties on

the BEC-BCS crossover and the magnetic ones on the upper branch of the system. The

physical picture arising from this brief introduction will be discussed in more details in

the following sections.
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Figure 2.9 – Evolution of the two body wavefunction across the Feshbach resonance for the lower and upper

branch. The wavefunction at weak interactions on the lower branch is almost equal to the upper branch one at

weak repulsion. The two branches are indeed adiabatically connected by the zero crossing of the Feshbach

resonance. After [30].

2.3 BEC-BCS Crossover

The bridge among atom pairs and molecules allows us to investigate the Leggett’s picture

of the BEC-BCS crossover on the lower branch of a Feshbach resonance. The crossover

spans among the two paradigmatic regimes of superfluidity: a fermionic BCS superfluid

of long-range Cooper pairs on the attractive side of the FR and a Bose-Einstein Condensate

(BEC) of tightly bound molecules on the repulsive one. In the intermediate regime, where

the scattering length diverges on top of the resonance, the gas is said to be a unitary one.

With the scattering length dropping out of the problem, the gas has a universal character

since the only relevant scales are set by the Fermi energy EF and the Fermi momentum kF

[4]. The unitary limit is a pristine realization of a many-body system which encompasses

quantum matter at different energy scale, and therefore a rich test-bed for quantum many-

body theories.

BEC side: Bose gas of tightly bound molecules

On the repulsive side of the Feshbach resonance, halo dimers are converted into deeply

bound molecules when the scattering length is reduced. For a sufficiently large bind-
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Figure 2.10 – Different regimes of fermionic superfluidity across the BEC-BCS crossover. Just by changing the

value of an external magnetic field we can smoothly pass from a Bose condensate of tightly bound molecules

to a BCS Fermi gas.

ing energy, these composite molecules behave like bosons, their size being much smaller

than the inter-particle distance. In this limit, few-body calculations [26] found that the

dimer-dimer scattering length am is related to the atom scattering length by the rela-

tion am = 0.6a. Dimers, though less than free atoms, interact repulsively with each

other, ensuring a relatively large stability with respect to collapse into more deeply bound

molecules. The same calculation found that the atom-dimer scattering length aad is re-

lated to the atomic one by the relation aad = 1.2a

If the temperature is sufficiently low, these dimers may undergo Bose-Einstein condensa-

tion [31]. For trapped gases [32] and weak repulsive interactions, the critical temperature

for condensation is expressed as

TBEC =
ħhω̄
kB

�

N
ζ(3)

�1/3

(2.16)

where ζ(n) is the Riemann zeta function.

Below TBEC, a macroscopic occupancy of the lowest energy level occurs. The ratio of the

number of atoms in the lowest level N0 respect to the total number N can be expressed as

N0

N
=
�

1−
T
T0

�3

(2.17)

For samples with temperature above TBEC the momentum distribution measured after re-

lease from the trap has a gaussian profile, as expected for a thermal cloud. Below TBEC,

the distribution becomes bimodal, with a peak in the center of the gaussian profile [32],

increasing in height as the temperature is further reduced. The emergenge of a BEC in
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these dimerized gases has been proven in [33–35], demonstrating one limiting case of the

whole crossover picture.

BCS side: weakly bound Cooper pairs

When the scattering length is negative and the temperature sufficiently low, the Fermi gas

can be unstable towards Cooper pairs formation [36]. Introduced by Bardeen, Cooper

and Schrieffer in 1957 [37], BCS theory was the first one to successfully describe super-

conductivity in normal metals and it is applicable also on the attractive side of a Feshbach

resonance where no two-body bound state exists in vacuum.

When the Cooper instability takes place, an energy gap appears in the excitation spectrum

of the Fermi sea, which can be expressed as:

∆gap =
8
e2

EF e−π/2kF |a| (2.18)

At the mean-field level, the critical temperature for the emergence of a gap reads as:

TC = 0.28TF e2e−π/2kF |a| (2.19)

Below TC , the neutral atomic gas is expected to be superfluid, in analogy to the emergence

of superconductivity of charged particles in metals.

Differently from the BEC side, the momentum distribution measured after release from the

trap does not show a central peak or any other feature of an occurring superfluid phase

transition [38].

The most important characteristic on the BCS side is the emergence of the superfluid gap

∆, which acts as the order parameter of the superfluid state. This is a genuine fermionic

property, not present at all for purely bosonic superfluid. In a simple interpretation, the

gap sets an energy shell of width ∆ around the Fermi surface where the pairing occurs.

As expressed in eq.2.18, the gap is exponentially vanishing with interactions, making the

BCS state extremely fragile. Despite being small, the gap drastically affects the density

of states at the Fermi energy and consequently the whole many-body picture is linked

to it. Accessing this quantity is so of paramount importance. In solid-state physics, this

is generally accomplished by both tunneling experiments [39] and ARPES spectroscopy

[40], based on which the amplitude and symmetries of the order parameter can be deter-

mined. In quantum gases, this investigation has been restricted only to radio-frequency

spectroscopy, by observing a gap opening in the excitation spectrum [41, 42].

Unitary Fermi gas

On top of the FR the previous two limiting cases of superfluidity are connected by the so-

called Unitary Fermi Gas (UFG). Here, the scattering length diverges and the cross section
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Figure 2.11 – Theoretically expected phase diagram as a function of temperature and interaction strength

across the BEC-BCS crossover. Exploration of the Pseudo-gap phase in the Unitary Fermi gas should allow

to unveil microscopic mechanism behind High-TC superconductivity. Picture taken from [43].

reaches its maximum value allowed by quantum mechanics, thus realizing a paradigmatic

strongly interacting many-body system [44].

As for the toy model of previous section, with the scattering length dropping out of the

problem, all thermodynamical quantities become universal functions of the Fermi energy.

For instance, the energy per particle E/N and the pressure P are related to ideal gas val-

ues by the expressions E/N = (1+ β)3EF/5 and P = (1+ β)nEF , where β is the so-called

Bertsch parameter [45].

A large part of the interest in resonant superfluidity in atomic gases is due to speculated

connections with pairing effects in High-TC superconductors [46]. In both systems su-

perfluidity occurs at relatively high temperatures and in a strongly interacting regime

[47, 48], but more importantly, in the whole crossover, the superfluid healing length

reaches a minimum on top of the resonance and becomes comparable with the interparti-

cle distance, in analogy to what happens for High-TC superconductors at optimal doping.

Despite being discovered already in 1986 [49] by Bednorz and Müller, the microscopic

origin of such phenomenon is still not fully understood.

Ultracold atoms, thanks to the high control over a wide range of parameters, such as

temperature, dimensionality, interactions and spin-imbalance are an ideal toolbox for in-

vestigating on the physics behind strongly correlated superfluids [46]. One example of an

expected phase diagram for a 3D Fermi gas is shown in fig.2.11. Besides the conventional

superfluid and normal Fermi liquid phases, more exotic phases are expected to show up.
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One of these is the pseudo-gap regime, where fermion pairs are created above the super-

fluid transition. Despite many evidences of this pseudo-gap in High-TC superconductors

[50, 51], a consensus on its origin and its role on high-temperature superconductivity is

still missing.

Going beyond these general considerations, the superfluid properties are strongly affected

by the nature of the pairs. On the BCS side, the single-particle momentum distribution

looks like the normal Fermi gas step-function, only broadened over a small width ∆� EF

af the Fermi wavevector. Towards the BEC side, this broadening is increased, more mo-

mentum states are occupied and the Fermi surface gets washed out, reflecting the higher

bosonic character of the pairs [52, 53]. The crossing from fermionic to bosonic statistic

affects the overall properties of these fermionic superfluids. First of all, as just said, on the

BCS side in the limit of weak attractions (1/kF a → −∞), the gas is essentially a normal

Fermi one, with a chemical potential µ close to the Fermi energy (µ ∼ EF ), while on the

BEC side the chemical potential can be expressed at the mean-field level as:

µ= −
ħh2

2ma2
+
πħh2an

m
(2.20)

where the first term is the molecular binding energy per fermion, while the second is a

mean-field contribution due to the repulsive interactions of molecules [26].

Naively, when µ turns negative on the BEC side, the Fermi surface disappears as well as

the fermionic gap ∆ at finite momentum in the single-fermion excitation spectrum (see

below).

On the BCS side, the stiffness of the Fermi surface introduces a strong modulation in

the spatial Cooper pair wavefunction at the inverse Fermi wavevector 1/kF , with a typi-

cal length-scale associated with the two-particle correlation length ξ0, much larger than

1/kF . The broadening in the momentum distribution towards the BEC side reduces the

extension of the pair wavefunction. In the deep BEC limit this approaches the extent of a

molecule of size ∼ a.

As anticipated, the single-particle excitation spectrum is affected as well by the pairing

mechanism, as shown in fig.2.12. On the BEC side, the spectrum has a minimum at k = 0,

in accordance to the Bogolioubov picture. Towards the unitary limit, the minimum shifts

at a finite momentum k < kF , evidence of a gapped Fermi surface. Further in the BCS

limit, the position of the minimum approaches kF and its peak value becomes vanishing

small, according to the superfluid gap trend.

So far, one way to probe this spectrum was accomplished by moving an obstacle at a cer-

tain velocity in the superfluid, looking at the creation of elementary excitations (heating)

into it. According to the Landau’s criterion for superfluidity, energy cannot be dissipated

into any superfluid by an object, which moves at a velocity below a certain critical one.

The critical velocity was found, both theoretically [54] and experimentally [55, 56], to
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Figure 2.12 – Qualitative mean-field trend of the single-particle excitation spectrum across the BEC-BCS

crossover. On the BEC side (1/kFa ' 1 in the graph, blue line), the spectrum has a minimum at k = 0, while

this shifts at k > 0 on resonance (1/kFa = 0, green line) and becomes more pronounced on the BCS side

(1/kFa ' −1, red line) and close to kF . After [5].

be maximum on resonance due to increasing robustness against limitations set by both

bosonic sound modes and fermionic pair-breaking. Further studies are however needed to

disclose the properties of these resonant superfluids, in particular in the coherent regime

where the superfluid flow is not quenched by heating effects.

It is so possible to excite a BEC-BCS crossover superfluid in two ways. One is a bosonic

density fluctuation exciting the whole fermionic pairs, the other is a single-atom excita-

tion, related to pair-breaking. Due to the character of the pair wavefunction, only bosonic

excitations affect the system on the BEC side, since the pair-breaking energy becomes too

large because of the strong interatomic binding and any fermionic character can’t be dis-

cerned anymore. The properties of such a Bose condensate, as pointed out by London [57]

and later by Penrose and Onsager [58], should be described by the one-particle density

matrix:

ρ1(r, r ′) = 〈Ψ†
B(r)ΨB(r

′)〉 (2.21)

where Ψ†
B(r) is the bosonic creation operator. The presence of a macroscopically occupied

quantum state, such as a condensate, should be signaled by the existence of long-range

order and so of a non-vanishing value of eq.(2.21) at long distances, as:

lim
|r−r ′|→∞

ρ1(r, r ′) =ψB(r)ψ
∗
B(r
′) (2.22)

where ψB(r) is the direct bosonic wavefunction. Even in the thermodynamic limit, the

number of condensed particles N0 =
∫

d3r|ψB(r)|2 is sizeable respect to the whole particle

number N .
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For fermionic superfluids, the existence of long-range order is apparent in the two-particle

density matrix ρ2, since Pauli blocking prevents macroscopic occupation of a single quan-

tum state. The ρ2 can be written as:

ρ2(r1, r2, r ′1, r ′2) = 〈Ψ
†
↑(r1)Ψ

†
↓(r2)Ψ↓(r

′
2)Ψ↑(r

′
1)〉 (2.23)

where Ψ†
↑ (Ψ†

↓) is the creation operator of a fermion with spin up (down).

Again in the long distance limit, eq.(2.23) leads to:

lim
|R−R′|→∞

ρ2(r1, r2, r ′1, r ′2) =ψ(r1, r2)ψ
∗(r ′1r ′2) (2.24)

where we have used the center of mass notation R= (r1 + r2)/2 and R′ = (r ′1 + r ′2)/2.

The term ψ(r1, r2) = 〈Ψ
†
↑(r1)Ψ

†
↓(r2)〉 is the BCS pair wavefunction and from it we can write

down the condensate fraction n0 as:

n0(R) =

∫

d3r|ψ(R+ r/2, R− r/2)|2 (2.25)

where r = (r1 − r2)/2. In a homogeneous system [59], eq.(2.25) reduces to:

n0∝ n
∆

EF

√

√

√µ+
p

µ2 +∆2

EF
(2.26)

On the BCS side, the condensed fraction is proportional to the finite superfluid gap∆. The

formula in eq.(2.26) for the deep BEC limit gives n0 = n/2, the factor of 2 coming from

n0 being the density of molecules and n the atomic one. This is consistent with the one-

body matrix results of eq.(2.22), giving a condensed fraction close to 1. Some theoretical

expectations for the condensed fraction are reported in fig.2.13. As one can notice, the

condensed fraction is around unity for a non-interacting BEC, while, when interactions are

turned on, the zero-momentum state is depopulated and higher momenta are occupied.

This is the quantum depletion predicted by the Bogoliubov theory for an interacting Bose

gas. Towards the BCS side, the Pauli exclusion principle provides the main mechanism

for depleting the condensate, reducing its size only to an amplitude ∆ around the Fermi

surface.

It is worth to remind that the condensed fraction is different from the superfluid one [60].

The latter one quantifies the part of the system which, after experiencing an external

perturbation such as a rotation or the presence of a moving object, does not respond. A

non-interacting BEC can be all condensed, but its superfluid fraction is zero, while for a

two-dimensional Bose gas there could be a superfluid response even if no condensation is

expected [61]. For the BEC-BCS crossover case, at T = 0 the superfluid fraction is constant

and equal to unity across a considerable range. A first experimental measurement of the

superfluid fraction for a resonantly interacting Fermi gas was achieved by excitation of the
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Figure 2.13 – Evolution of the condensed fraction across the BEC-BCS crossover. Its value approaches 1 in

the BEC limit and exponentially vanishes on the BCS side, similarly to the superfluid gap. Symbols are for

Quantum Monte Carlo simulation, red dashed line for Bogoliubov model for a molecular BEC with am = 0.6a,

blue dot-dashed line for BCS theory, and green solid line for a self-consistent mean-field theory. From [52].

second sound mode [62], namely the out-of-phase oscillation of the normal component

versus the superfluid counterpart. By looking at its dispersion into the atomic cloud, the

superfluid fraction was found to increase very fast below the critical temperature, similarly

to the case of Helium-4. In the lowest temperature regime achievable by conventional

quantum gases experiments, the superfluid fraction for the Unitary Fermi gas saturates to

unity. It may be inferred an analogous result for the remaining strongly interacting regime

(−1≤ 1/kF a ≤ 1), but an experimental confirmation is still missing.

2.4 Probing the lower and upper branches: from superfluidity

to magnetism

As introduced before, depending on which branch the system is sitting different phenom-

ena arise. The scope of my thesis has been the investigation of the dynamical properties

on each individual branch.

In the lower branch atoms with opposite spin feel an attraction which causes pairing and

eventually superfluidity. Here we focused on one aspect which represents a hallmark of

superfluid coherent transport, namely the Josephson effect, and we used it as an effective

probe for the condensate wavefunction in the superfluid state.

The upper branch features no pairing siince atoms with opposite spin interact repulsively.

Within this framework, we performed the quantum simulation of the still debated Stoner

model of itinerant ferromagnetism.

In the following, a theoretical description of both the Josephson effect and the Stoner
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Cooper pair

K

superconductor1 insulator

superconductor2

ψ1
ψ2

Figure 2.14 – Top panel: sketch of a typical Josephson Junction, where two superconductive metals (gray) are

separated by a thin insulator (red). Bottom panel: representation of the macroscopic condensate wavefunc-

tions in the above Josephson Junction. Despite the vanishing order parameter in the insulator, a finite coupling

K may be established by the wavefunctions overlap.

model will be given.

2.4.1 The Josephson effect for quantum gases in a double well

When atomic physicists started to investigate atomic BECs in the late 90s, one of the first

seminal results was the observation of interference patterns among two expanding con-

densate [63]. Supported by the later observation of arrays of quantized vortices [64–66],

this was an evidence of superfluidity and of the existence of macroscopic phase coherence,

connected to a global condensate wavefunction. These are necessary conditions also for

the occurrence of the Josephson effect in atomic quantum gases.

The basic configuration for observing the Josephson effect is represented in fig.2.14, where

two coherent quantum states are separated by a potential barrier. If the barrier is thin

enough, the two wavefunctions may overlap inside of it, allowing a coupling which in

turn drives a particle flow or current among the two distinct sites.

Back to the example of fig.2.14 we can assume the condensate wavefunction to be written

as:

ψi =
p

ρie
iφi (2.27)

where i = 1,2 is the label site, ρi the condensate “charge” density and φi its global phase.

If a weak, though non-zero coupling K is established between the two condensates, by

solving the coupled Schrödinger equations the time derivative of ρ defines a net current J
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flowing among the reservoirs through the barrier, which reads as:

J = ρ̇ =
2K
ħh
p

ρ1ρ2 sinφ = J0 sinφ (2.28)

where φ = φ1 −φ2 is the phase difference between the two condensates and J0 the maxi-

mum Josephson current. From eq.(2.28), one can therefore see how the Josephson effect

relates a physical quantity, the current, to a more elusive one, the phase, directly con-

nected to the order parameter ψ.

If a potential difference V exists among the two sites, the time derivative of the relative

phase φ can be written as:
∂ φ

∂ t
=

q
ħh

V (2.29)

where for a superconductor q = 2qe is the charge of a Cooper pair and qe the charge of a

single electron.

When V = 0, we may have a DC current flowing through the barrier, with an upper bound

given by J0. This is the so-called DC Josephson effect. Instead, for a constant non-zero

voltage drop, the phase evolves as φ(t) = qV
ħh t. Inserting this in eq.(2.28), a regime of

alternated current is achieved, called AC Josephson effect, with a characteristic current

frequency at ω= qV
ħh .

Thanks to optical manipulation, it is possible to engineer a potential landscape for cold

atoms very similar to the one experienced by electrons in a Josephson junction. By bisect-

ing a cloud with a repulsive potential barrier, or by placing the atoms into two nearest

sites of a superlattice, one can exactly reproduce the situation of two superfluid reservoirs

separated by a thin insulator as in fig.2.14.

Let us first focus on the Josephson effect of a weakly interacting BEC, where pair-breaking

effects can be neglected and the system is captured by a Gross-Pitaevskii equation [67].

In the case of an atomic BEC, we can write the condensate wavefunction of eq.(2.27) as

ψi =
p

Nie
iφi , with Ni being the number of atoms for the condensate on site i. Using the

Gross-Pitaevskii equation for a BEC, the time-evolution for the condensate on site 1 can

be written as:

iħh
∂ψ1

∂ t
= (V + U |ψ1|2)ψ1 − Kψ2 (2.30)

with the equation for the site 2 mirroring this one.

The term U in eq.(2.30) is due to the on-site interactions. Because of its coupling to |ψ|2,

the U term introduces a non-linearity in the evolution and consequently new dynamical

phases, as it will be explained later. The expression in eq.(2.30) has a physical sense in

the so-called two-mode approximation, valid for a barrier height much larger than the

chemical potential of the condensates. In this way we can properly define two separate

wavefunctions, as well as the coupling K.

After some math [68], the condensate dynamics can be described in terms of an effective
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Figure 2.15 – Transition from Rabi to Josephson regime. On the left panel (Λ = 0.4), the phase portrait

shows closed orbits around the (0, 0) and (0,π) phase-space points. When Λ is increased over one (central

panel Λ = 1.2), the bifurcation of the (0,π) occurs with resulting π-modes with a non zero average population

imbalance (green symbols). For larger Λ (right panel Λ = 10), the typical MQST orbits happen (orange

symbols) with a non zero average imbalance and a running phase. After [69].

Hamiltonian which, for V = 0, can be written as:

H =
EC

2
z2 − EJ cosφ (2.31)

where EC is the charging energy and EJ the Josephson tunneling energy. We have intro-

duced the new conjugate physical quantities, the population imbalance z = N1−N2
N0

and the

relative phase φ = φ1 −φ2, with N0 being the total number of atoms in the condensate.

After eq.(2.31), the time dependence of z and φ reads as [68]:

ż = −
∂ H
∂ (ħhφ)

=
EJ

ħh
sinφ, (2.32)

φ̇ =
∂ H
∂ (ħhz)

=
EC

ħh
cosφ (2.33)

The definition of the atomic current is I = −dzd t = I0 sinφ, which again recovers the

typical sinusoidal behavior of the Josephson effect, with I0 = 2EJ/ħh and the factor of two

accounting for the composite nature of the pairs [68].

From EC and EJ , we can define the parameter Λ as Λ = EC/EJ . The value of Λ shapes

the landscape of the possible dynamical trajectories of z and φ. It is usually possible to

distinguish between three regimes: Rabi (Λ→ 0), Josephson (Λ ∼ 1) and Fock (Λ→∞).

In our experimental investigation, we cannot access neither the Fock regime, due to too

large atom number, nor the Rabi regime, because of too large interactions. This last regime

has been achieved in atomic quantum gases only in an internal Josephson junction [69],

thanks to the possibility of reduci almost to zero the interactions in those spinor BECs.

Here, we only show in fig.2.15 how the dynamics in the system evolves as a function of

the Λ term in the (z,φ) plane for both the Rabi and Josephson regime, which for the

features of our system is the one we can deeply study.

An important dynamical regime of Josephson oscillations is achieved in the linear limit

(z� 1,φ� 1), where both the imbalance and the phase undergo a sinusoidal oscillations
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with a π/2 relative phase-shift, at the same frequency given by:

ωJ =
1
ħh
p

EC EJ (2.34)

This is analogous to the Josephson plasma frequency [70] observed in BCS supercon-

ductors [71]. Usually [68, 70], the charge and Josephson energy can respectively be

expressed as EC = 2 dµ
dN and EJ = N0K/2. The charge energy is proportional to the chemi-

cal potential. For the case of a bosonic superfluid, the chemical potential is proportional to

interactions and when these are too large, the EC term tends to localize the condensate in

each separate well. On the contrary, the Josephson energy quantifies the system tendency

to delocalization and sets the robustenss of the superflow, being proportional to both the

tunneling K through the barrier and the condensate fraction N0.

Some important considerations have to be made for the case of BEC-BCS fermionic super-

fluids. First, for the charging energy, we can write down the general relation EC ∝
∂ µ
∂ N ∝

1/κ, with κ being the thermodynamical compressibility. Due to Pauli blocking, κ goes to

zero on the BCS side, while increasing towards the BEC regime, being infinite for an ideal

non-interacting Bose gas. In our system, three-body recombination effects impede to ac-

cess the regime of weak inter-molecule interactions, hence, even at the lowest accessible

kF a on the BEC side, the charging energy EC is always large. This prevents the observation

of Rabi dynamics in our system, since the Λ term is always above unity. While EC mono-

tonically increases from the BEC to the BCS limit, the Josephson energy EJ is influenced

by the nature of the particles tunneling through the junction. We can approximate the

junction Hamiltonian as:

H = H1 +H2 +Ht (2.35)

where H1,2 are the local Hamiltonians of the condensates reservoir and Ht = −
∑

t1,2a†
1a2+

h.c. is the transfer Hamiltonian, with t1,2 being the tunneling amplitude and a†
i the cre-

ation operator of a particle on site i.

Treating perturbatively the transfer matrix Ht [72], for the case of a Bose gas the Joseph-

son energy arises already at first order, reading, for the case of T = 0 [72], as:

EJ = 〈ψ|Ht |ψ〉= 2t1,2N0 (2.36)

For genuine fermionic superfluids, being the tunneling associated to Cooper pairs, the first

term vanishes. EJ becomes proportional to the second order term |t1,2|2 and it is possible

to recover the Ambegaokar-Baratoff formula [73]:

EJ ∝∆ tanh (β∆/2) (2.37)

with β = 1/kB T .

The Josephson energy is so proportional to the condensate amplitude for both the BEC
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and the BCS case. The Josephson plasma frequency is connected in both cases to the mi-

croscopic properties of the superfluid state, and it can therefore be exploited as a weak

probe of their intimate order parameter.

The Josephson regime may support other dynamical phases. Given a certain imbalance,

for increasing values of Λ, the nice plasma oscillations get more and more anharmonic

until a critical value ΛC , where the oscillation becomes over-damped. For Λ > ΛC , a new

dynamical phase is reached, usually called Macroscopic Quantum Self-Trapping (MQST).

In the MQST the population undergoes small and fast oscillations at a mean value differ-

ent from zero (〈z〉 6= 0). Moreover, the phase does not perform a bounded orbit around

the π-point, but periodically runs from 0 to 2π through phase-slippage.

In a genuine two-mode picture, these different trajectories may as well be explored by

changing the initial population imbalance. Given a certain value of Λ > 1, it is possible to

define a certain critical population imbalance zC at which, as for ΛC , the dynamics looks

over damped. For an initial z0 � zC we recover the harmonic plasma oscillations, while

for z0� zC we enter into the MQST.

The MQST is a non-linear effect due to the self-interactions in each well. When the im-

balance surpasses the zC critical value, the internal energy of the condensates differs so

much that the two sites are brought off resonance, with a resulting localization of most of

the particles on one site. The large energy difference brings the phase to run, but this is

a completely different regime from the AC Josephson effect since it is self-sustained and

dependent on the initial conditions[74]. So far, this dynamical regime has been demon-

strated in a large variety of synthetic bosonic systems, from the first observations in quan-

tum gases [75, 76] to their investigation in polaritonic systems [77].

The MQST is a phase that arise from a first-order treatment of the tunneling Hamilto-

nian in eq.(2.35). The inclusion of higher-order terms [72] in the tunneling Hamiltonian

of eq.(2.35) introduces the effect of non-condensate particles currents through the junc-

tion. These are expected to eliminate the MQST phase at long evolution times making

this regime intrinsically metastable. We expect these higher-order terms to play a more

significant role with respect to the previously discussed bosonic systems [75–77]. First of

all, as discussed above for the derivation of the Ambegaokar-Baratoff formula, the first-

order term vanishes for Cooper pairs tunneling. Moreover, the strong interactions in the

BEC-BCS crossover reduce the condensate fraction from unity [52], eventually increasing

the role of non-condensed particles in the tunneling dynamics and consequently washing

out the MQST regime.

In BCS superconductors the MQST dynamical phase has been elusive so far and it is very

difficult to observe. The main problem is due to the extremely weak interactions, that

would require a high initial population imbalance and consequently an application of a

large voltage drop across the junction. However, before reaching the required imbalance,
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Figure 2.16 – Representation of the Giaever tunneling effect in a Superconductor-Insulator-Superconductor

(SIS) Junction with the trend of the density of states at increasing voltage V (top three panels) and the char-

acteristic I − V curve of the system. The superfluid gap ∆ renormalizes the density of states at the Fermi

energy level (dashed line) of the normal Fermi gas (top-left panel), both for the filled states (gray area) and for

the holes (white area). With no bias field, current may flow due to the DC Josephson effect, resulting in the

peak (orange central line) at V = 0 of the I − V curve. If a current is applied the filled state level of the first

reservoirs is brought out of resonance with the second one. Due to the superfluid gap, there is an avoided

region for electrons on top of the last filled states of size 2∆, resulting in a suppression of the DC current.

When the voltage V brings the filled states of the first reservoir at the empty states level of the second, a

thermal current flows due to newly available states. For large voltages, the usual ohmic flow is recovered. In

a Superconductor-Insultor-Normal metal (SIN) junction, we would get a slightly different I − V curve, with the

absence of the V = 0 current peak associated to the DC Josephson effect and the shift of the onset of the

normal current at a value of ∆/e, since the normal state has no gap.

pair-breaking effects would set in, resulting in an onset of a normal current among the

two sites of the junction, completely washing out any quantum non-linear effect. In solid

state, this phenomenon is usually called Giaver tunneling (see fig.2.16) and is a valuable

resource for measuring the superfluid gap, since the normal current sets in when the po-

tential energy across the junction matches the superfluid gap or twice its value [39, 78].

Instabilities of the superflow and vortex creation

In the MQST regime, the relative phase dynamics is governed by phase slips. In a gen-

uine two-mode picture, any 2π phase slips would correspond to the creation of a soliton

among the two condensate, with a periodic creation and annihilation of this inside the

barrier. In a more realistic three-dimensional junction the topological excitation with the

lowest energy would be a vortex ring. The regime where these topological excitations are
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created is that of high barriers, meaning a strong reduction of the superfluid density in the

link. This results in a lowering of the superfluid critical velocity inside the barrier. When

this becomes comparable to the superflow velocity through the barrier, the creation of

these topological defects becomes energetically favored [79]. Considering the case of cold

atoms, these defects would start nucleating at the edge of the cloud, where the density

is lower, while shrinking towards the center and there annihilating [80, 81]. This would

result in a complete phase-slip, with an overall quantized drop of the superflow velocity,

similarly to the case of helium [6]. However, small imperfections and asymmetries in the

trap may cause vortices to not fully perform a complete phase-slip inside of the barrier and

to escape from this and to propagate into the superfluid bulk [80], providing a dissipative

channel, where damping and decoherence may eliminate the MQST phase, similarly to the

effect that the current of non-condensed particles would have on the coherent tunneling

dynamics [72].

2.4.2 Ferromagnetism in normal Fermi gases with repulsive interactions

Magnetism represents, together with superconductivity, a fundamental phenomenon char-

acterizing a wealth of many-body fermionic systems. Unlike superfluidity, magnetism re-

quires strong repulsions to occur. As a consequence of electronic interactions, many con-

densed matter systems, from metals to insulators, may undergo a magnetic phase transi-

tion below a certain critical temperature TC , the Curie temperature [21], where ordered

spin patterns would spontaneously create, even in the absence of an external magnetic

field.

In certain systems, called ferromagnets, neighboring spins prefer a parallel orientation,

creating a non-vanishing local magnetization. In antiferromagnets, antiparallel alignment

is preferred, leading to a zero net magnetization, though featuring strong spin up-down

correlations, hence magnetic order. In both cases, magnetic properties require strong in-

teractions to show up. Consequently, magnetism is not a weak coupling problem and its

theoretical description is notoriously difficult and challenging.

A notable theoretical model for the description of magnetic phases is represented by the

Stoner model for itinerant ferromagnets, first introduced to describe the behavior of d-

and f -metallic elements, such as iron or nickel. Similarly to the Heisenberg or Hubbard

pictures [82] for electrons pinned on lattice sites, the Stoner model [9] describes mobile

and delocalized magnetic moments that, because of the competition between screened

short-ranged repulsive interactions and Fermi pressure, may arrange spins to acquire a

non-vanishing magnetization. Within his model, Stoner found out that in a homogeneous

system with continuous symmetry (i.e. with no lattice), by turning on interactions the

system may undergo a quantum phase transition from an unmagnetized sample to a par-
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tially polarized one and then, for even larger interactions, to a fully polarized one, as

depicted in fig.2.17. Nowadays, it is clear that Stoner mean-field model can only hold

at the qualitative level, but the possibility of a ferromagnetic transition driven by short-

ranged repulsion between itinerant fermions is confirmed by more rigorous approaches

[83]. Despite strong experimental advances in solid-state physics for disclosing the prop-

erties of this magnetic phase, the unavoidable presence of impurities and disorder and

the complex band structure of metals make comparison among experiments and Stoner’s

initial scenario a still unresolved challenge. Consequently, there is still not an unanimous

consensus whether or not a homogeneous system, as originally envisioned by Stoner, can

turn ferromagnetic.

The original Stoner model can be introduced considering the Hamiltonian for N electrons

of the form:

Ĥ =
N
∑

i=1

p2
i

2m
+

4πaħh2

m

∑

i< j

δ(ri − r j)
∂

∂ ri j
ri j (2.38)

where opposite spin σ =↑,↓ particles may interact via a general short-ranged pseudopo-

tential, whose interaction strength is parametrized by the usual scattering length a.

Using a short-ranged potential is a convenient approximation even for describing elec-

tronic interactions in solids, since the whole metallic state screens the Coulomb potential,

exponentially cutting off its long-range behavior.

This allows to write down the energy at first order in interactions as:

E =
∑

σ=↑,↓

3
5

EF ,σnσ +
4πaħh2V

m
n↑n↓ (2.39)

having defined the spin density nσ = Nσ/V and the Fermi energy EF ,σ =
ħh2k2

F ,σ
2m . The first

term in eq.(2.39) represents the kinetic energy, while the second the interaction one.

Introducing y = N↑/N , the expression for the energy reads as:

E =
3
5

EF

�

(1− y)5/3 + y5/3
�

+
4

3π
kF aEF y(1− y) (2.40)

where kF and EF are now the Fermi wavevector and energy of a single component Fermi

gas with density n =
N↑+N↓

V and k3
F = 6π2n. Among the single-component and the two-

components Fermi gases, the relation kF = 21/3kF ,σ holds. It should be noticed the invari-

ance of eq.(2.40) under the transformation y↔ 1− y.

By minimizing the total energy as a function of y, we are left with three possible scenarios

[21], also depicted in fig.2.17:

• for kF ,σa < π/2, the minimum energy is achieved for y = 1/2, meaning zero net

magnetization

• for π/2 < kF ,σa < 3π/27/3, the y = 1/2 point becomes unstable and the system

becomes partially polarized



i
i

“ValtolinaG_PhDThesis” — 2016/8/31 — 10:52 — page 35 — #45 i
i

i
i

i
i

2.4 Probing the lower and upper branches: from superfluidity to magnetism 35

Energy

y=N /N
0 1/2 1

In
c
re

s
in

g
in

te
ra

c
ti
o
n
s

Figure 2.17 – Evolution of the energy at constant volume for different interaction strengths. For weak inter-

actions, the energy has a stable minimum at y = 1/2. Progressively increasing interactions (from bottom to

top) makes the point y = 1/2 unstable, with the creation of two minima, symmetric with respect to y = 1/2.

For large enough interactions, the system is in a saturated ferromagnetic state (minima in y = 0 and y = 1).

After [84].

• for kF ,σa > 3π/27/3, the system becomes fully polarized (i.e. y = 0 or y = 1) and

the ferromagnetic state gets saturated

The mean-field Stoner model predicts a transition to the ferromagnetic state for kF ,σa ≥

π/2, which can be translated into the condition:

g(kF ,σ)U ≥ 1 (2.41)

where g(kF ,σ) = mkF ,σ/(2π2ħh2) is the density of states at the Fermi surface and U =

4πħh2a/m is the strength of the contact potential.

Furthermore, the mathematical translation of the instability of the y = 1/2 point at the

critical strength kF ,σa = π/2 is expressed by the thermodynamical spin susceptibility χs

defined as:
1
χs
=
∂ 2E
∂ y2

(2.42)

where E is the system free energy.

At the critical point, χs diverges. This is the thermodynamical variable which quantifies

the tendency of the system to turn ferromagnetic and a fundamental parameter to be mea-

sured, being related to the spin fluctuations at the phase transition.

Nevertheless, the very same presence of a non-vanishing coupling term (kF ,σa ≥ 1) makes

this perturbative treatment unreliable in the quantitative determination of the critical pa-
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rameters of this phase transition. For instance, the Stoner model predicts for any tem-

perature range a second order phase transition, while more sophisticated theories [85],

which take into account particle-hole excitations coupled to magnetization [21, 86] turn

the phase to be first order at temperatures T < 0.2TF , as experimentally confirmed in in-

vestigations over ultra clean samples [87]. Inclouding higher order perturbative terms in

the mean-field Stoner picture reduces the critical interaction strength and actually drives

the phase transition to be of first order at low temperatures [88].

However, Quantum Monte Carlo (QMC) numerical experiments are at present the more

sophisticated theoretical tool for targeting this problem in mixtures of repulsive Fermi

gases. In these studies the pairwise interaction is modeled by using both purely repulsive

(i.e. Hard Sphere and Soft Sphere) and attractive (i.e. Square Well or Pöschl-Teller) po-

tentials. Provided the potential to be sufficiently short-range, the microscopic details of

the chosen potential do not affect the overall (long-range) physical picture. As seen in

section 2.2.1, this assumption is valid for attractive potentials, contrary to repulsive ones.

However, for both the considered case, QMC calculations show the Stoner instability to

take place at T = 0 at a critical interaction parameter of the order of 0.8 ≤ kF ,σa ≤ 0.9

[29, 89], significantly lower that any perturbative result from the mean-field model.

In this framework, ultracold atomic gases are an ideal platform for comparison with state-

of-the-art theoretical models. The unprecedented cleanliness of these systems, combined

with the extreme control over interactions, temperature and geometry would allow the

exploration of an ideal phase-space, unlike conventional condensed matter systems. One

important difference among quantum gases experiments and solid-state one is that spin-

changing collisions are not allowed, making each spin population Nσ conserved. Hence,

spontaneous magnetization is translated into the development of phase separated domains

with unequal spin densities. Ideally, in a quantum gas simulation, above the critical in-

teraction there would be a spatial separation of domains with unequal spin reducing the

interaction energy from the overlap, as depicted in fig.2.18.

As anticipated, this issue can be addressed in normal atomic Fermi gases on the upper

branch of a Feshbach resonance. While existing on this excited level, the gas has no pairing

and the pairwise interaction is genuinely repulsive. A successful platform for understand-

ing the properties of these atomic Fermi gas with tunable repulsive interactions is given

by Landau’s Fermi liquid theory. In the following a basic introduction to this theory will

be given.

Basics of Landau’s Fermi liquid theory: quasiparticles and Stoner instability

When interactions are “adiabatically” [90] turned on in a non-interacting Fermi gas,

the eigenstates of the interacting case have a one-to-one correspondence with the non-



i
i

“ValtolinaG_PhDThesis” — 2016/8/31 — 10:52 — page 37 — #47 i
i

i
i

i
i

2.4 Probing the lower and upper branches: from superfluidity to magnetism 37

interaction strength

Figure 2.18 – Representation of the Stoner phase transition in repulsive atomic Fermi gases. For vanishing

interactions (left panel) the system is in a paramagnetic phase, with random spatial spin distribution. Increasing

interactions, the paramagnetic phase becomes unstable and, spontaneously, phase separated spin domains

start to appear (center) with non-zero local magnetization. For very strong repulsion (right), even a single spin

impurity is energetically not allowed. The dashed line represents a domain wall.

interacting ones. This is the basic idea behind Landau’s picture of Fermi liquids [91, 92].

Landau realized that, in the limit of weak excitations, the single-particle occupation num-

bers Nkσ of the non-interacting state evolve extremely smoothly even for strong interac-

tions. Consequently, the same set of Nkσs can be used as approximate quantum numbers

for the interacting system [90]. This allows to threat the excitations of a Fermi liquid as

quasiparticles, which, despite some renormalized properties, behave like non-interacting

elementary particles.

Consider for example the ground-state of an ideal non-interacting Fermi gas at T = 0. An

elementary excitation of the system will be the addition of a particle at momentum k > kF ,

since below the Fermi momentum any state is occupied. This excitation would be itself

an eigenstate of the system, thus having infinite lifetime. Suppose now to take the same

system and, as envisioned by Landau, smoothly turn on interactions. The free eigenstates

will start scattering into the new ground state and the excitation would be properly de-

fined only if surviving for a sufficiently long time.

Taking into account the Pauli exclusion principle and conservation laws, the available states

for scattering of the quasiparticles lie within a shell of thickness |k− kF | around the Fermi

surface. Consequently, its scattering probability or inverse lifetime would be proportional

to 1/τ ∝ (k − kF )2. Hence, quasiparticles can be treated as an approximate eigenstate

only close to the Fermi surface.

Here, the Landau’s Ansatz for the quasiparticles energy functional can be written as:

E[Nk,σ] = E0 +
∑

kσ

EkδNkσ +
1
2

∑

kσ,k′σ′
fkσ,k′σ′δNkσδNk′,σ′ (2.43)

where E0 is the ground state energy, fkσ,k′σ′ the Landau interaction function and δNkσ =

Nkσ −N0
kσ is the difference among the quasiparticles distribution function and that of an

ideal Fermi gas at T = 0.
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The quasiparticle energy can be evaluated as:

Ek =
�

∂ E
∂Nkσ

�

Nkσ=N0
kσ

(2.44)

At the Fermi energy with chemical potential µ, this gives:

Ek = µ+
ħh2kF

m∗
(k− kF ) (2.45)

where m∗ = ħh2kF/|
∂ Ek
∂ k |k=kF

is the effective mass.

The latter is one of the fundamental properties of the quasiparticle, which depends upon

the interaction function. One may think that interactions dress a certain particle with the

others in its surroundings, creating an effective particle dragged by all the others while it

is moving. This would result in an effective mass different from the bare one, similarly

to what happens for electrons on a lattice, but with a renormalization now driven by

interactions.

The interaction function fkσ,k′σ′ can instead be considered as the interaction energy among

quasiparticles. From it, one can derive the expression for the Landau parameters:

F s,a
l =

V N(µ)m∗

2m

∫

dΩ
Ω
[ f↑↑(cosθ )± f↑↓(cosθ )]Pl(cosθ ) (2.46)

where Ω is the solid angle and Pl(cosθ ) the l-order Legendre polynomial. The label s and

a means symmetric or antisymmetric respect to the angular dependence over the interac-

tion function, that here have been reduced to fkσ,k′σ′ ' fσσ′(cosθ ), due to the spherical

symmetries of the quasiparticles distribution Nkσ.

When using the Landau parameters, the expression for many of the quasiparticle proper-

ties can be expressed in simple and elegant formulas. For instance, the expression for the

effective mass reads as:
m∗

m
= 1+ F s

1 (2.47)

or again the one of the spin susceptibility becomes:

χs

χ0
=

m∗

m
1

1+ F a
0

(2.48)

where χ0 is the spin susceptibility of the non-interacting gas. In the case of a ferromagnetic

transition, χs diverges for F a
0 →−1.

The previous arguments introduced the quasiparticle properties from a sort of macroscopic

point of view. More and deeper insights can instead be inferred by a rigorous microscopic

treatment of the problem, dealing with the Green’s function G(k,ω) of the system [93, 94].

This can be generally expressed as:

G(k,ω) =
1

ħhω− εk −Σ(k,ω)
(2.49)
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a b c

Figure 2.19 – Quasiparticles for an impurity (blue circles) immersed in a Fermi sea (red circles). Sketch of: a)

Attractive polaron, b) molecule + hole, c) repulsive polaron

where we have introduced the self-energy Σ(k,ω) which encodes the effects of the inter-

actions on the correlations of the many-body state.

The relevant problem for our experimental investigation is that of Fermi gases with spin

polarization, the simplest case being the one of a ↓ particle immersed in a ↑ Fermi sea.

The resulting quasiparticle in this framework is usually called polaron [95]. The proper-

ties of these quasiparticles are usually described by the spectral function A(k,ω). In the

non-interacting regime the spectral function is a comb of delta functions, peaked at the

eigenstates εk of the problem. When interactions are considered, the function A(k,ω) is

still peaked at some resonance frequencies, generally featuring a Lorentzian shape. The

central position of the Lorentzian is expressed as ξk = εk +Re[Σ(k,ω)] and is interpreted

as the “new” quasiparticle energy. The width of the distribution is instead equivalent to

the imaginary part of the self-energy Im[Σ(k,ω)], which defines the inverse lifetime Γk of

the quasiparticle.

In the many-body problem of a ↓ impurity in a ↑ Fermi sea, the spectral function depending

on the interaction parameter 1/kF a is strongly peaked around two branches, similarly to

the aforementioned case of the two-body problem in a box. The lowest of these branches

describes an impurity attracting a cloud of majority atoms [21] (see fig2.19) and for this

the associated quasiparticle is called attractive polaron. The energy E− of this branch ver-

sus 1/kF a is reported in fig.2.20, together with the trend of the other higher branch energy

E+. This upper branch describes an impurity repelling the majority components and it is

the many-body analogue of the excited state of the two-body solution. For this reason, the

quasiparticles on this branch are called repulsive polarons.

Differently from the two-body problem, the many-body solution predicts an increasing

decay towards resonance of the upper branch, making eventually the repulsive polaron

ill-defined [21]. Moreover, a continuum of states between the two branches is expected

(see fig.2.20). Considering the BEC limit, it is also possible that the impurity particle binds

with one majority component, taken from any place in the Fermi sea. This leads to the

creation of a dimer, or dressed molecule, together with a hole. The resulting excitation has

a spectral width of the order of the Fermi energy EF [21], becoming the true ground state

in the BEC limit (1/kF a > 1). The experimental proof of this scenario has been shown in
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Figure 2.20 – Representation of the lower (green) and upper (red) branches, together with the molecule-hole

continuum for a broad Feshbach resonance. After [21].

ref.[96].

The decaying channels for the repulsive polaron are provided by both the attractive po-

laron branch and the molecule-hole continuum. Two-body processes lead to the formation

of attractive polarons, while three-body processes to the formation of a molecule and a

hole excitation, the latter decaying channel becoming dominant only in the BEC limit.

The stability of the ferromagnetic phase is connected to the properties of these quasipar-

ticles. For instance, in the usual case of a ↓ impurity interacting with a Fermi gas of ↑

particles with a Fermi energy EF↑, if the energy of the polaron E+ is higher than EF↑, the

diffusion of the ↓ particle in the ↑ Fermi sea will be impeded, favoring a phase separation

among the unequal spins [97].

The most important question is however related to the intrinsic metastability of the upper-

branch, in particular whether the lifetime of such a many-body state is sufficient to estab-

lish ferromagnetic correlations in the system.
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CHAPTER 3

Experimental Setup

This chapter covers the description of the machine used to obtain and manipulate ultracold

Fermi gases of Lithium 6. The apparatus is composed of an Ultra-High-Vacuum (UHV)

system (see fig.3.1) to isolate cold atoms from hot thermal background ones. The main

element of this system, the science chamber, has large optical access to perform high-

resolution imaging of the atomic cloud and to imprint arbitrary optical potentials.

A brief introduction to laser cooling and trapping will be given, focusing on the laser

sources used in our apparatus.

Zeeman slower

Science Chamber

Oven

Figure 3.1 – View of the overall UHV apparatus for isolating the cold atoms from the background. Atoms are

initially held in the oven and then enter though a nozzle in the main UHV system. Decelaration by the Zeeman

slower allows atoms to be captured inside the Science chamber.

3.1 Overview of the vacuum system

Isolation from thermal background atoms is a mandatory task for efficiently perform cold

atoms experiments. A pressure below 10−11 mBar is generally required into the science
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chamber to guarantee a sufficient long lifetime to the atomic sample. Atoms enter into the

science chamber coming from an effusive oven, where a sufficient flux of 6Li is produced

at a temperature above 400◦C. To avoid pressure contamination in the science chamber

from the oven, an intermediate differential pumping stage has been placed among the

two. An overview of these three main different parts, the oven, the differential pumping

stage and the science chamber will be given in the following sections.

Ion pumps

Lithium

reservoir

Nozzle

To Zeeman

slower

Differential

pumping

Shutter

Figure 3.2 – Section-view of the oven chamber. Lithium is held in the reservoir on the left and enters the

apparatus from the nozzle, which provides a first collimation of the atomic beam. After passing through the

differential pumping stage, atoms are decelarated by the Zeeman slower.

3.1.1 The oven and the differential pumping stage

Lithium is solid at room temperature. To extract a significant vapor pressure from the solid

metal, this is heated up till a temperature over 400◦C. In our oven a sample of artificially

enriched 6Li is held in a cup at a temperature around 420◦C. As shown in fig.3.2, a circular

nozzle connects the cup to the main oven chamber, collimating the vapor traveling into

the system. To avoid sticking and solidification of Lithium onto the nozzle, this is generally

held at a temperature of 460◦C. To reduce pressure due to high temperatures, a Agilent

75 l/s ion pump is placed below the oven chamber. For further collimating the atomic

beam, a copper cold finger is placed after the nozzle. On the other side, an electric gate

valve disconnects the oven from the rest of the apparatus. This will allow refilling of the

atomic sample, once the oven runs out of it, without affecting the pressure in the science

chamber.

A sufficient pressure gradient among the oven and the science chamber is provided by a

differential pumping stage. This stage is composed by two tubes, with a diameter of 4.6
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mm and 7.7 mm and a length of 12.6 cm and 6.35 cm, respectively. The low conductance

among the tubes does not allow the oven pressure to contaminate the science chamber.

Moreover, another Agilent ion pump of 55 l/s capacity has been placed among the tubes

to further decrease their conductance. This stage connects through a manual gate valve

to the Zeeman slower tube and then to the science chamber.

3.1.2 Science chamber

All cooling stages, from the magneto-optical trap (MOT) to the evaporative cooling, and

all of the physical experiments are performed in the same science chamber. It is a custom

octagonal stainless-steal cell from Kimball Physics (see fig.3.3). Its several windows allow

good optical access among different directions. On the vertical axis, it is equipped with

two large re-entrant viewports. These are silica windows made by Ukaea with a 60 mm

diameter and a thickness of 6 mm. Their relative distance in vacuum is 25.4 mm. This

allows to have a large numerical aperture and to place a high resolution imaging system

close to the atoms. A sufficiently low pressure in the chamber is achieved by placing

another Agilent 75 l/s ion pump after the science cell. To further reduce the pressure,

the chamber’s walls have been coated with a non-evaporative getter (NEG) coating. This

coating is thermally activated during the bake out and acts as an additional titanium

sublimation pump, sticking mainly to H2 molecules, which are weakly affected by ion

Feshbach coils

MOT coils

Viewport

Figure 3.3 – Section of our custom chamber, with addition of some magnetic field coils. The re-entrant view-

ports are shown in dark blue, the Feshbach coils in brown and the MOT coils (for clarity only at the bottom) in

purple.
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pumps. We achieve pressure of the order of 10−12 mBar in the science chamber after

activation of NEG coating.

3.2 Laser sources

In atomic physics experiments, laser beams can be used for creating both dissipative and

confining forces. The dissipative one relies on the absorption and scattering of near res-

onant light with the atomic transition. Photons with energy below the atomic transition

can be absorbed by counter propagating atoms thanks to the Doppler effect. Consequent

spontaneous emission of absorbed photons at the atomic transition determines a reduction

of atoms’ energy and of their temperature. Inhomogeneous far-detuned laser beams can

instead be used to create conservative potentials to trap and confine atoms in different

geometries. In our experiment we rely on both kinds of atom-photon interaction and a

description of the laser system to control them will be given.

3.2.1 Lithium 6 laser system

The hyper-fine structure of 6Li is reported in appendix A, with indications of all rele-

vant atomic levels. The hyper-fine splitting in the ground state manifold is just 228 MHz

large. This allows to obtain both cooling and repumper lights from the same source. Our

main laser is a Toptica TA-Pro, set to work at the D2 transition with a wavelength around

670.977 nm. To increase the available power, two MOPA amplifier always by Toptica are

used, one for the cooling light and the other for the repumper. Each one gives an output

power around 360 mW. The amplifiers are lodged on a different optical table respect to

the TA-Pro’s one and a single mode polarization maintaining optical fiber connects the

two. An Acousto-Optical Modulators (AOMs) scheme on the amplifiers’ table produces

all relevant frequencies for both cooling and imaging of the atoms. The beams are then

brought by other single mode polarization maintaining optical fibers onto the experimen-

tal chamber. On the same table of the D2 TA-Pro, we placed another TA-Pro working on the

D1 transition, which is essential for our cooling strategy. The shift among this two optical

transitions is just 10 GHz large. Therefore, we cannot simultaneously inject the MOPAs

with the two wavelengths. An electronic switch selectively controls which light injects the

MOPAs. A sketch of the scheme is shown in figure 3.4.

Laser Locking

We use Doppler-free saturation absorption spectroscopy to lock the two TA-Pros on atomic

references. The reference beams are made pass through an heat pipe where a sample of
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Figure 3.4 – Sketch of the 6Li laser system for producing the cooling and repumper lights, on both the D1 and

D2 transition.
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Pol.
beamksplit.

Waveplate

Mirror

Lens
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fromkTA-Pros'ktable

Figure 3.5 – Sketch of the locking scheme for the D2 TA-Pro. The EOM carries the modulation without affecting

the main laser.

enriched 6Li is held at a temperature around 330◦C. The D1 laser is locked using conven-

tional modulation transfer spectroscopy, adding a time-dependent current modulation to

the diode current. On the D2 laser we instead apply modulation transfer spectroscopy

using an Electro-Optical Modulator (EOM) at a frequency of 12.5 MHz. The EOM’s high

frequency allows to cut off all noise in the kiloHertz regime and to have a more robust

locking. Moreover, the modulation for the locking scheme is carried by a side beam, with-

out perturbing the diode current with an additional modulation. The D2 laser is locked

on the closed S1/2 F=3/2 → P3/2 F=5/2 transition, while the D1 laser is locked on the

crossover of the P1/2 F=3/2 transition of the D1 manifold. A representation of the D2

locking optics is shown in figure 3.5.

Laser Cooling: Zeeman slower and MOT lights

A sketch of the AOMs scheme used to generate the right frequencies is reported in figure

3.4. The light coming from the TA-Pros’ table is first split in two paths, one for the cooling

and one for the repumper. For the cooling we placed a double-pass blue-detuning AOM

with a center frequency around 90 MHz before injecting the MOPA. For the repumper

light we use the same scheme with a different AOM, with a center frequency around 200

MHz. Lights coming from MOPAs are overlapped and then split again in two paths, one

for the Zeeman slower and one for the MOT beams. The MOT light is simply split in

three different paths, for the tree spatial directions of the MOT beams. On any of them

a polarization maintaining optical fiber is injected to reach the science chamber. For the

Zeeman slower instead, we use a double-pass red-detuning AOM with a center frequency

around 220 MHz and then we inject another optical fiber to reach the UHV apparatus.
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Zero field and High field imaging

Our experiments are performed at different values of the magnetic field. For compensate

the Zeeman shift, we use another AOMs scheme to generate probe beams with different

frequencies. Since the Zeeman slower light is already 400 MHz red-detuned, we derive

our imaging setup from it. We placed a liquid crystal waveplate and a polarization beam

splitter on the Zeeman slower beam. The liquid crystal waveplate can change the polariza-

tion of the light passing through it as a function of the applied voltage. After the loading

of the atoms, the Zeeman slower is turned off and the liquid crystal waveplate rotates

of 90◦the beam polarization. The light is so reflected by the following beam splitter and

does not inject anymore the Zeeman slower fiber. A different polarization maintaining

fiber brings this light to a different breadboard. With a combination of waveplate and

AOMs we can selectively generate resonant light for three different magnetic field con-

figuration. For zero-field imaging, the beam passes through a double-pass blue-detuning

AOM for compensating the Zeeman slower AOM. For imaging at around 300 G, we use

the shift given by the AOM Zeeman slower and no other manipulation is needed. As it

will be explained later, the normal Fermi gas is generally produced at 300 G. To explore

the Feshbach resonance at around 800 G, we use instead a double-pass red detuning AOM

at 200 MHz. The probe beams are brought to the science chamber by other polarization

maintaining optical fibers.

3.2.2 Optical dipole traps

Light can also be used to create conservative potentials for neutral atoms [98]. The os-

cillating electric field E of the laser can induce onto the atoms a dipole moment p of the

form:

p= αE (3.1)

where α is the atomic polarizability. The electric field acts as a driving field creating an

interaction potential of the form:

Udip = −
1
2
〈p · E〉= −

1
2ε0c

Re(α)I(r) (3.2)

However, the oscillating atoms absorb some power from the driving field which is re-

emitted as dipole radiation. This process is related to the imaginary part of the polariz-

ability and the scattering rate of it can be described by the relation:

Γsc =
〈_p·E〉
ħhω

=
1
ħhε0c

Im(α)I(r) (3.3)

where ω is the frequency of the laser light.

In the assumption of a two-level atomic system, we can approximate the previous relations
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with the following formulas:

Udip =
3πc2

2ω3
0

Γ

∆
I(r) (3.4)

Γsc =
3πc2

2ħhω3
0

�

Γ

∆

�2

I(r) (3.5)

where Γ is the linewidth of the transition and ∆ = ω − ω0 is the detuning among the

frequency ω of the laser and the atomic transition frequency ω0.

The scattering rate scales as I/∆2, while the depth of the potential as I/∆. Thus, largely

detuned wavelengths are more suited for creating conservative potentials with low scat-

tering rate. By changing the sign of the detuning ∆ it is possible to have a confining

potential (∆ < 0, red-detuning) or a repulsive potential (∆ > 0, blue-detuning). In the

following sections the different laser beams used to shape optical traps will be described.

High power Optical Dipole Trap: IPG laser

To trap the atoms after the MOT phase we use a single focus Optical Dipole Trap (ODT),

derived from an IPG Photonics laser. The maximum available power is around 200 W. The

laser has a central wavelength of 1070 nm with almost a 3 nm broadening. To handle

the IPG high power we use the optical scheme represented in figure 3.6. Because of the

extremely high intensity, the IPG beam is collimated to a 1 mm waist before entering a

single-pass AOM, reducing detrimental effects on the AOM crystal spot. Most of the IPG

optical path is held in a box under a continuous flux of air, to avoid dust deposition on any

optical element. The beam passes through a hole on one of the walls and then is brought

to the science chamber and focused onto the atoms with a waist of 45 µm, both in the x

and y direction. The beam passes through the cell from one of the MOT windows, with

an angle of 7◦respect to the MOT beam.

To stabilize the IPG power we take a transmitted fraction from a mirror after the box

and focus it onto a photodiode (Thorlabs DET36A/M). The photodiode acts as the mea-

surement channel for an analog PID controller (SRS SIM960). The PID controller, after

calibration, compares the signal coming from the photodiode with the one coming from

the CPU user. Thanks to a feedback loop it actively corrects the beam power.

At full power the IPG ODT has a depth of around 3-4 mK. This is needed to effectively

trap atoms after the MOT stage, since the temperature is of the order of 400 µK. However,

after the application of the D1 cooling (see chapter 4), the drop in the atoms temperature

allows to decrease the ODT power. Furthermore, this allows us to play another trick on

our optical trapping strategy. Having more IPG power available, we apply a fast sinusoidal

modulation to both the central frequency and the amplitude of the IPG’s AOM, to increase

the trapping volume of the ODT. The frequency modulation (FM) changes the frequency
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Figure 3.6 – Sketch of the optical scheme around the science chamber. The two horizontal MOT beams are

shown in faded red, the IPG’s in green and the Mephisto’s in orange. The Zeeman slower beam is coming

from above and is also shown in faded red, while the dotted lines are the imaging beams. The box where the

IPG is brought towards the UHV apparatus is shown in the bottom left corner.
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of the AOM oscillating crystal. This shift moves physically the position of the focused beam

in the science chamber (fig. 3.7). If the frequency of this modulation is above the trap-

ping frequencies, atoms experience a time-averaged dipole potential with a larger effective

waist. We have set an FM frequency around 600 kHZ. While increasing the amplitude of

the FM, we found the beam waist to be distorted, with a significant change from the typi-

cal gaussian profile 3.7. To correct for this, we apply also an amplitude modulation (AM)

to the beam power, with a frequency twice the one of the FM (1.2 MHz) and a relative

phase of π/2. The AM corrects for the deformation due to FM and restores a gaussian

beam profile. At the maximum modulation, the beam waist on the x direction has a value

around 85 µm. Both for the FM and AM, the frequency is well above the bandwidth of the

PID (∼ 100 kHz), and does not affect its feedback action. After application of D1 cooling,

the trap has a depth around 1 µK, even with the modulation on.

FM

AM

normal 
beam

only FM FM + AM

Figure 3.7 – Representation of the Frequency Modulation (FM) and of the Amplitude Modulation (FM) on the

IPG AOM and their effect on the beam. The FM changes spatially the position of the IPG in the focus of the

trap, but it distorts the beam shape. The AM corrects for the FM’s distortion and helps recovering a gaussian

beam with an enlarged waist.

Crossed Dipole Trap: Mephisto laser

To increase the axial confinement in our trap, in particular at low intensities of the IPG,

we add a secondary ODT, derived from a Mephisto laser from Innolight at a wavelength

of 1064 nm. The beam is focused onto the atoms with an angle of 14◦respect to the IPG

beam, with a circular waist of 45 µm. The Mephisto beam is brought by a NKT Photonics

photonic crystals fiber close to the science chamber. As for the IPG beam, its power is

stabilized with a PID feedback loop, taking the transmission from a mirror.

3.3 Magnetic fields

Different magnetic fields are needed during our experimental run. They are a necessary el-

ement for efficiently perform both laser and evaporative cooling and to explore the physics
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Figure 3.8 – Section view of the Zeeman slower. The magnetic coils are shown in brown.

behind Feshbach resonances. Apart from Zeeman slower ones, all coils are placed around

the science chamber.

Zeeman Slower

The first combination of coils is the one of the Zeeman slower, used to decelerate atoms

from the oven at a temperature around 400◦. The Zeeman slower is a tube wrapped in

coils (see fig.3.8), which create a spatially inhomogeneous magnetic field. The combined

action of this field with a laser beam, counter propagating respect to the effusive atoms,

decelerates them from a velocity of the order of 800 m/s till a value around 60 m/s,

increasing the capture efficiency of the MOT. This magnetic field keeps the atoms in res-

onance with the counter propagating beam, compensating for the changes in the Doppler

shift and allowing a continuous cooling. The shape of the required magnetic field can be

found imposing the condition [99]:

ωL −ω0 + kL v =
∆Ehs(B)
ħh

(3.6)

where ωL is the beam frequency, ω0 the atomic one at zero field and ∆Ehs(B) is the

hyperfine splitting of the cooling transition, dependent on the magnetic field B. Since the
6Li atom enters into the Paschen-Back regime at relatively low fields we can approximate

∆Ehs(B) = µBB. We obtain for the magnetic field the expression:

B =
ħh
µB
(∆0 + kL

q

v2
i − 2az) (3.7)

where ∆0 = ωL −ω0, vi represents the maximum velocity which is slowed down by the

slower and a the deceleration, which can be evaluated by solving the optical Bloch equa-

tions [99].
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For our slower, we have set vi = 830 m/s, ∆0 = −66.7Γ , where Γ is the linewidth of the

cooling transition, and an intensity close to the saturation one. The calculated magnetic

field is reported in figure 3.9.

Our Zeeman slower is in a spin-flip configuration, since the magnetic field profile passes

through zero. Because of this, we need some repumper light to recover atoms after de-

polarization. This configuration has two main advantages. First, the atoms, once exiting

the slower, are off-resonance with the counter propagating beam, while traveling towards

the science chamber. Second, the creation of such magnetic fields does not require high

power consumption.

To match our theoretical calculations, we found the system of coils reported in the table

3.1 to be suitable.

The theoretical magnetic field generated by the coils is also reported in figure 3.9 and it
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Figure 3.9 – Left panel: Comparison between the ideal magnetic field and the one calculated as superposition

of the 9 coils of table 3.1. Right panel: simulation of the deceleration produced by the coils of table 3.1 onto

the velocity classes of 6Li atoms.

Coils Number Position (cm) N◦ turns N◦ windings current (A)

1 0 68 28 2

2 7 48 22 2

3 12 48 19 2

4 17 48 17 2

5 22 48 14 2

6 27 48 11 2

7 32 38 7 2

8 36 33 4 2

9 44.5 35 22 -1.6

Table 3.1 – Coils configuration for the Zeeman slower magnetic field. The position expressed in the second

column is intended from the beginning of the slower. The “N◦ turns” column and “N◦ windings” column show

the number of loops in the longitudinal and radial direction, respectively.



i
i

“ValtolinaG_PhDThesis” — 2016/8/31 — 10:52 — page 53 — #63 i
i

i
i

i
i

3.3 Magnetic fields 53

has been used in a simulation in Mathematica to check if the atoms were actually slowed

down when put in such a field. As shown in the right panel of figure 3.9, the velocities of

the atoms are really affected by the combination of a counter propagating laser beam and

the designed magnetic field and all the atoms having an initial velocity below 830 m/s

exit the slower with a much smaller one. With these parameters the final velocity of the

atoms is around 30 m/s.

The winding of all the coils for the slower was realized by an external company, which

also cared about sticking them together with the help of a thermic glue, which can sustain

temperatures up to 170◦C.

Magneto-Optical Trap coils

A large magnetic gradient is needed in the center of the science chamber to effectively

trap atoms after the Zeeman slower. For this, we use a pair of coils in anti-Helmotz

configuration, to generate a quadrupolar magnetic field. The combination of this field

with three pairs of counter propagating laser beam, one for each spatial direction, will

cool and trap atoms at the same time [100].

These coils can produce a gradient of the order of almost of 1 G/(cm·A). Each coil has an

inner diameter of 70 mm and has 6 windings horizontally and 8 vertically, realized with a

copper wire with a rectangular section of 1 X 3 mm. They are placed along the z axis of

the science chamber, in the channel of the re-entrant viewports. They are shielded with

a non magnetic plastic support, which allows water to circulate close to them and have

sufficient cooling. Thanks to a relay we can switch the configuration of our coils from

anti-Helmotz to Helmotz. In this way, the coils can provide an additional curvature when

evaporative cooling is performed.

Feshbach coils

To exploit the rich scenario behind Feshbach resonances, we need some coils to generate

offset magnetic fields till values around 1000 G. We designed a pair of large coils for work-

ing in an almost ideal Helmotz configuration. The small deviation from genuine Helmotz

configuration introduces an helpful magnetic curvature during evaporative cooling.

The coils are realized with a kapton insulated wire with a section of 4.6 mm X 4.6 mm and

a hollow core, for water circulation and cooling. Each coil has 8 vertical windings and 7

horizontal ones. Realization of these coils has been done by Oswald Company. These are

connected to a 200 A power supply (SM 30-200 model from Delta Elektronika).

The magnetic field of the Feshbach coils is stabilized in current with the help of a trans-

ducer connected to a PID controller. The transducer is placed on one of the wire connect-
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ing the power supply to the coils. The feedback loop of the PID controls and corrects the

current circulating in the coils. Despite the current stabilization, the value of the magnetic

field inside the chamber may change due to fluctuations in the room temperature and in

the position of the coils.

To determine the stability of the Feshbach field we apply Radio-Frequency (RF) spec-

troscopy on a polarized Fermi gas. The RF signal is generated by an RF-antenna with a

central frequency around 76 MHz, placed below the science chamber. For increasing du-

ration of the RF-π-pulse, the broadening of the RF-spectrum over the pulse Fourier width

signals that noise and fluctuations dominate over the experimental data. We obtain a

relative high stability around one part over hundred thousands (∆B
B = 10−5).

Additional coils: compensation and gradients

We also placed some additional coils around the science chamber for upgrading the fea-

tures of our system. In particular:

• Compensation coils: these are a set of three pairs of small coils, each one made by a

1 mm X 1 mm copper wire with 6 windings both vertically and horizontally. These

are arranged close to a Helmotz configuration, with one pair placed along one of the

three spatial directions. These coils are used to shift the center of the MOT, in order

to place it on top of the IPG beam once the optical dipole trap has to be loaded.

• Longitudinal gradient coils: Along the IPG and Mephisto direction we placed a pair

of two coils in anti-Helmotz configuration, one before and one after the science

chamber. These coils are wrapped with a 1 mm X 3 mm copper wire, with 10 (6)

vertical (horizontal) windings. The separation among these is around 40 cm, thus

the gradient at the center of the chamber is quite small, around 0.1 G/(cm·A). They

are used only for the spin separation procedure explained in chapter 6.

3.4 Imaging system

Information about number of atoms, temperature and density distribution of trapped gases

are generally obtained by optical diagnostic techniques. In our apparatus we implemented

both destructive and non-destructive imaging techniques.

Absorption imaging with resonant light is performed to check the atomic features during

the different stages of cooling and evaporation, as well as when during the physics exper-

iment. It is the destructive imaging technique mainly used on a daily basis.

As a non-destructive imaging of the atomic cloud we implemented phase-contrast imaging
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with non-resonant light. This technique allows us to repeatedly probe the cloud at dif-

ferent evolution times, with a minimal residual heating, since the imaging pulse is quite

detuned respect to the atomic transition. Their features will be compared in the following.

3.4.1 Absorption imaging

This imaging technique is usually performed pulsing a resonant laser beam towards an

expanding or even in-situ atomic cloud. From the differences of the intensities profiles

of the probe beam with and without atoms, the density distribution of the cloud can be

reconstructed from the Beer-Lambert law.

Assuming the cloud to be a group of absorptive objects the intensity I of the beam is

modified as:
dI
I
= n(x , y , z)σ(z)dz (3.8)

where n(x , y , z) is the atomic density, σ(z) the scattering optical cross-section and z the

direction of propagation of the beam.

The scattering cross section depends on the intensity of the beam and on the detuning

δ among the beam frequency and the atomic transition, in accordance to the following

formula:

σ = σ0
1

1+ I
Isat
+
�

δ
Γ/2

�2 (3.9)

where σ0 =
3λ2

2π , Isat is the saturation intensity of the transition and Γ its natural width.

With resonant light δ = 0, eq.(3.8) is generally solved in the two limiting cases of low

intensities (I � Isat) or high intensities (I � Isat).

• Low intensity regime: for low saturation, the scattering cross section becomes a

constant, and eq.(3.8) can be exactly solved as:

I(x , y) = I0(x , y)e−σ0
∫

n(x ,y ,z)dz (3.10)

The shadow produced by the absorbing atoms is generally casted onto a CCD camera

which records the intensity profiles of the incidents beams. Typically, three different

images have to be taken by the CCD to reconstruct the column integrated density

distribution of the cloud. The first one gives the profile I(x , y) due to absorption of

the cloud in TOF measurements or in-situ. The second one is taken without atoms

and gives the profile of I0(x , y) and the third one is the background signal Ibg taken

without light, and which is subtracted at both of the previous images. The column

densities ñ(x , y) is obtained as:

ñ(x , y) = −
1
σ0

ln
I(x , y)− Ibg

I0(x , y)− Ibg
(3.11)
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By knowing the CCD pixel size and the magnification of the imaging system, the

measured column density is scaled to its real value and physical quantities are ob-

tained.

• High intensity regime: in this regime the cross section is intensity dependent and

a more rigorous treatment for solving (3.8) is needed [101]. This technique may

be useful while probing high-density samples, as those measured in-situ [102]. In

the high density regime, multi-scatter events of the probing photons among close

atoms may occur. Keeping the intensity well above Isat should saturate the transition,

making the scattering cross section not density dependent.

3.4.2 Phase-contrast imaging

Another imaging technique used in our experiment is the so-called phase-contrast tech-

nique. This technique reconstructs in-situ density distribution in a non-destructive way,

allowing to perform multiple images during the same experimental run. This technique

may be helpful when probing time-evolution of atomic distribution or phase-separation of

the spin components [103]. When a weak probe beam passes through an atomic cloud, it

may experience a phase shift φ which is proportional to the atomic density and to detun-

ing in the following way

φ ∼

∫

n(x , y , z)dz

δ
(3.12)

The difference of the electric field of the collimated beam and of the one scattered by the

atoms will give information about the cloud without significant absorption of photons,

since the detuning is generally larger than the linewidth of the transition.

The lowest two hyper-fine states of 6Li have imaging resonances that are generally 76

MHz apart at high field, and so give a different signal when probed with the same beam.

Actually if the probe detuning is set in the middle of the two levels, the signal will be

proportional to the difference of the clouds with opposite spin. To increase the phase shift

signal, the beam is made pass through a particular phase-plate which gives a phase shift of

π/2 to the collimated beam. The phase-plate has a micrometric sized bump in the middle

and is generally placed in the focus of the first lens after the science chamber of a certain

imaging system. Here the image of the cloud is collimated, while the imaging beam is

focused. The phase-plate is aligned to have the imaging beam passing through the bump.

The size of the bump is calibrated to give the correct phase shift of π/2 to the imaging

beam. With this the phase signal will be proportional to |eiπ/2+iφ| ∼ 1+2φ, while without

the phase plate the signal would be proportional to |1+ iφ| ∼ 1+φ2/2. Since phase shifts

are generally small, a linear dependence of the signal is better than a quadratic one.



i
i

“ValtolinaG_PhDThesis” — 2016/8/31 — 10:52 — page 57 — #67 i
i

i
i

i
i

3.4 Imaging system 57

3.4.3 Imaging setup

In our science chamber we rely onto two different imaging systems, one for checking

day-to-day efficiency of our apparatus and another one for high-resolution imaging of the

cloud.

Horizontal imaging setup

This imaging setup shines a resonant laser pulse along the x − y plane of the MOT. The

polarization of the beam is linear and perpendicular respect to the quantization axis posed

by the Feshbach coils when working at high magnetic fields. In this condition the scatter-

ing cross section is reduced by a factor of two. The atomic shadow is then collected by a

versatile imaging setup which allows fast switching from two configurations with different

magnifications.

A first setup has a magnification M = 0.5 which is suited for checking the MOT cloud and

the efficiency of the IPG loading. Two lenses in telescope configuration, the first one with

focal length of 15 cm, the second with focal length of 7.5 cm, produce the density pro-

files onto a Stingray CCD camera. The Stingray CCD and the second lens are placed onto

magnetic movable mountings, which allow to remove and re-insert them at will, without

significantly affecting the imaging quality. After the Stingray, we placed a different lens,

always in telescope configuration respect to the first one, with focal length of 40 cm for a

magnification around 2.7 of the cloud, imaged onto a Andor Ultra camera. The magnified

horizontal imaging is used to check the atom number during evaporative cooling stages.

High-resolution imaging system

A more sophisticated imaging system is placed onto the z-axis of the science chamber. This

imaging system is based onto a large aspheric lens with a given numerical aperture around

0.61 and a working distance of 24 mm. This lens allows a resolution below 1 µm, which

is the relevant length scale (healing length) for the unitary Fermi gas. After this large lens

we placed a second aspheric lens with focal length around 15 cm, for a total magnification

of the setup estimated to be M = 7.8± 0.2.

The resonant imaging beam comes from below the science chamber and has a circular σ−

polarization to correctly drive the transition at high field. Images are then collected by

an Andor IXon3 EMCCD camera. The high resolution of this setup allows to obtain in-situ

density distribution and gives access to microscopic details of trapped gases.

Since we have only one science chamber, we must overlap the MOT beams on the z-

axis with the imaging beam. We do this by using polarization optics such as a wire grid

polarizer and a λ/4 waveplate. The wire grid polarizer reflects efficiently light with a
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Figure 3.10 – Sketch of the imaging system on the vertical axis of the science chamber. The MOT beam is

retro reflected by polarization optics (λ/4 and a wire-grid polarizer) while the imaging beam passes through it.

The imaging beam is also transmitted by a dichroic mirror and then collected onto the CCD. The dichroic mirror

can reflect instead green light in order to imprint repulsive microscopic potentials onto the atoms.

certain linear polarization and transmits the one with orthogonal polarization. To exploit

this feature, the imaging beam and the upcoming vertical MOT beam are overlapped with

opposite circular polarizations. Then the λ/4 waveplate changes their polarization to

linear, but still orthogonal one respect to the other. The wire grid polarizer is aligned in

order to have the MOT beam reflected and the imaging one passing. After being reflected

the MOT beam reaches the atoms with the correct circular polarization. The imaging beam

is collected by the CCD.

By preliminary tests of the imaging setup, we found that the resolution of the aspheric

lens is not affected by the presence of this polarization optics if this is placed behind the

lens. However, to have a collimated retro reflected MOT beam, the wire grid polarizer

should be placed in the focus of the aspheric lens. This may represent a problem since

we estimated that the intensity of the focused beam should be higher than the damage

intensity threshold of the wire grid polarizer. To avoid this we slightly shifted the position

of the wire grid polarizer towards the aspheric lens. Despite this, the beam is just a bit

focusing while passing through the atoms position and does not significantly affects the

efficiency of the MOT. A sketch of the optical configuration is shown in figure 3.10.

The large aspheric lens is also used to imprint microscopic optical potentials onto the

cold cloud. With the help of a dichroic mirror, we can make green light at 532 nm passing

through the last lens. In particular we aim at studying the transport and dynamics of Fermi
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gas with a thin barrier optical potential, which is created with the help of a cylindrical lens.

Details of this setup will be given in chapter 5. As a future upgrade of the system, we plan

to introduce a Digital Mirror Device (DMD) for creating more complex potentials in a

holographic fashion [104]. DMDs allow fast and tailored creation of arbitrary potential

which could be extremely well-suited in the exploration of transport phenomena in cold

gases.

Both the high-resolution imaging and the optical system for tailoring the green light are

placed above the science chamber on non-magnetic mountings. First, the aspheric lens

and the polarization optics are placed in a PEEK plastic tube, which ensures a very good

stability. This is then connected through a translation stage with micrometer accuracy

(model LP-2A XYZ ΘXΘY by Newport) to a table top breadboard. This is made of fiberglass

resin, so completely amagnetic. This ensures a good stability and rigidity of the system

during the experimental runs, in particular while fast switches of the magnetic fields are

performed. The non-magnetic character of these components will prevent eddy currents

to circulate in these, reducing any undesired oscillation of the components as well as the

noise over the experimental signal.
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CHAPTER 4

Production of degenerate Fermi gases

using D1 gray molasses cooling

In this chapter we summarize the experimental procedure we use to produce large Degen-

erate Fermi gases (DFGs) of 6Li atoms exploiting, for the first time on this atomic species,

D1 gray molasses cooling. This laser cooling technique allows to achieve sub-Doppler

temperatures for atoms, such as lithium or potassium, which lack of a good excited state

hyper-fine splitting on the D2 manifold and consequently of a good sub-Doppler cooling

mechanism. D1 gray molasses cooling allows better initial conditions for evaporation and

to achieve quantum degeneracy of large samples in a fast and cheap way, with no need to

rely on another coolant atomic species [105] or to use expensive optics and laser sources

in the UV region [106].

The main results of this chapter have been published in:

• A. Burchianti, G. Valtolina, J. A. Seman, E. Pace, M. De Pas, M. Inguscio, M. Zaccanti

and G. Roati, Efficient all-optical production of large 6Li quantum gases using D1 gray-

molasses cooling, Phys. Rev. A 90, 043408 (2014).

4.1 D1 gray molasses

Laser cooling theory predicts the possibility to cool atoms when using pairs of counter

propagating beams, red-detuned respect to the atomic transition [107]. Thanks to the

Doppler effect, atoms can emit a photon with an energy higher than the absorbed one,

lowering their kinetic energy. Theory also predicts a lower bound to the coldest achievable

temperature. This temperature, called the Doppler temperature, is achieved at a detuning

δ = −Γ/2 and is equal to TD =
ħh
kB
Γ/2, where Γ is the natural linewidth of the transition.

For 6Li the Doppler temperature is around 140 µK.

However, since the very first experiments were performed in the 80’s [108], temperatures

below the Doppler limit were reached. This was later explained by J. Dalibard and C.
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Figure 4.1 – Sketch of the atomic structure on the D1 manifold. The 2P3/2 excited state has been represented

as a single line, to stress its small hyper-fine splitting. The splitting on the D1 manifold is instead larger than the

linewidth of the transition. The detunings of repumper and cooling are δ1 and δ2 respectively, while δ = δ1−δ2
is their relative one.

Cohen-Tannoudji [109] as a consequence of optical pumping among internal hyper-fine

levels due to polarization gradient generated by the counter propagating beams, used both

in molasses and MOTs scheme. This resulted in a larger cooling force and this effect is

generally called Sysyphus cooling. Unfortunately, for 6Li the hyper-fine structure of the

excited state in the D2 manifold is not resolved, causing Sysyphus cooling not to efficiently

work.

However, recent experiments at ENS in Paris [110] showed the possibility of exploiting D1

gray molasses cooling on potassium isotopes which, as lithium ones, lack of an efficient

Sysyphus cooling on the D2 line. This gray molasses reminds of a cooling mechanism in a

Λ-type three-levels configuration (fig.4.2), pioneered by A. Aspect and coworkers [111],

and successfully demonstrated on the D1 manifold for heavy alkali atoms already in the

90’s [112]. The cooling mechanism can be understood as a cooperative action of Sysyphus

cooling and velocity selective coherent population trapping (VSCPT). Since the cooling

transition on the D1 line is a F → F ′ = F transition, Sysyphus cooling is achieved with blue

detuning respect to the atomic transition. However, some repumper light is needed to

recover atoms in the cycle. When the repumper detuning gets close to the cooling one, the
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|g1
|g2

|e

�1 �2

Figure 4.2 – Representation of the three level configuration with the two ground states, |g1〉 and |g2〉, and

their respective coupling transitions, Ω1 and Ω2, to the excited state |e〉.

z

E

Figure 4.3 – Pictorial view of the Sysyphus mechanism in our configuration. The energy of the bright state

(white circles) sinusoidally changes in space because of polarization gradients, while that of the dark state

(gray circles) remains constant. At the minima of the bright potential, atoms are transferred from the dark

to the bright state and starts climbing its potential, while loosing kinetic energy, naively represented as a

shrinking of the circles radius. At the top of the bright potential, atoms are pumped back into the dark state,

after a significant loss of kinetic energy. Picture adapted from [113].

atomic structure can be viewed as an effective three levels system. Atoms may so be found

into two dressed states, one dark and the other bright, which are a coherent superposition

of the two ground-state hyperfine levels, whose wavefunctions can be written as:

|ψdark〉 =
1

q

Ω2
1 +Ω

2
2

(Ω2|g1〉 −Ω1|g2〉)

|ψbright〉 =
1

q

Ω2
1 +Ω

2
2

(Ω2|g1〉+Ω2|g2〉) (4.1)

where we have used the notation of figure 4.2. The first state of 4.1 is called dark since

the action of the optical coupling operator V = ħhΩ1/2|e〉〈ψ1|+ħhΩ2/2|e〉〈ψ2|+ h.c. is zero.

As shown in figure 4.3, the energy of the bright state has a spatial modulation because of

polarization gradients, while the energy of the dark one is not affected by light.



i
i

“ValtolinaG_PhDThesis” — 2016/8/31 — 10:52 — page 64 — #74 i
i

i
i

i
i

64 Chapter 4. Production of degenerate Fermi gases using D1 gray molasses cooling

For blue detuning, coupling from the dark state to the bright one is most likely to occur

at the minima of the bright potential, causing atoms to lose energy by climbing it while

moving. At the top of the potential, the coupling towards the dark state is maximum and

atoms are pumped back, with a net loss of energy.

This cooling mechanism is expected to be more efficient for a relative detuning among

the repumper and the cooling equal to zero (Raman condition). When this condition is

fulfilled, only those atoms with zero velocity are pumped into the dark state and stop

interacting with the laser light, causing a significant reduction of the cloud temperature.

In the following sections we show our experimental characterization of D1 gray molasses

in free space and its optimization for loading a large number of atoms into an optical

dipole trap.

4.1.1 Characterization of D1 gray molasses

We start by loading atoms from the Zeeman slower into the MOT on the D2 light. For

the MOT beams, we use three mutually orthogonal, retroreflected laser beams with a 1/e2

radius of 1.5 cm. At the beginning a large red detuning for both cooling(δC = −9Γ ) and

repumper (δC = −6Γ ) is set. This increases the capture volume despite raising the MOT

temperature. After typically 8 seconds of loading, we have 2 · 109 atoms at a temperature

around 2.5 mK.

The D2 MOT is then cooled by decreasing the intensity of both cooling and repumper to

almost 1% of the initial value, while simultaneously reducing their detuning to a value

around δC = δR = −3Γ . After this, we have N0 = 1.6 ·109 atoms at T=500 µK. At this stage

we apply the D1 molasses.

The D1 line is brought to the science chamber by the same optical fibers used for the D2

MOT. For avoiding damages, we do not inject the amplifiers with the two different lights

at the same time. An electronic switch selectively injects the proper beam onto the fiber

from the master laser table to the other.

To check D1 cooling efficiency, we start from a configuration where laser beams have equal

intensity in all directions. The D1 cooling is applied 2 ms after turning off the magnetic

fields. We apply the D1 stage for 2 ms and we set Irep = 0.2Icool, where Irep is the repumper

intensity and Icool the cooling one. This imbalance among the two intensities is extremely

convenient for us since it provides for free optical pumping into the F = 1/2 manifold,

which is the most suitable for evaporative cooling. For the data in figure 4.4, we set the

cooling detuning to 5.4Γ . The behavior of the temperature and of the fraction of cooled

atoms are reported versus the relative detuning δ among the repumper and the cooling.

The graph of temperature clearly shows an asymmetric Fano profile, a clear signature of

the emergence of a quantum interference effect. As expected, the minimum temperature
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Figure 4.4 – Behavior of the temperature (blue diamonds) and of the cooled fraction (red circles) as a function

of the relative detuning δ, here in units of Γ , among the cooling and repumper of the D1 light. The temperature

graph show a clear Fano profile around the Raman condition (gray dotted line). The minimum reported tem-

perature is 40.5(1.0) µK. Error bars are one standard deviation from five independent measurements. Inset:

trend of the cooled fraction of atoms after D1 cooling at the Raman condition for different initial temperatures

(x -axis). The capture efficiency is around 100% below an initial temperature of 150 µK. Dashed line is a guide

to the eye.

is reached at δ = 0, also referred to as Raman condition. Here, we report a minimum tem-

perature T=40.5(1.0) µK and a cooled fraction N/N0 ' 75%. The Phase-Space-Density

(PSD) of the cloud is increased by almost a factor of 20 at the Raman condition, respect

to the final stages of the D2 MOT.

For small values of δ above zero, we observe strong heating and increased atom losses,

as discussed in [114]. Away from resonance the temperature instead reaches stationary

values due to the Sysyphus effect alone. For values of δ slightly below the Raman condi-

tion, we observe a higher capture efficiency which reaches 100% at δ = −0.2Γ , despite an

higher final temperature. To estimate the capture efficiency at the Raman condition, we

evaluated the cooled fraction for different initial values of the MOT temperature. Data are

reported in the inset of figure 4.4 and show 100% of capture efficiency for initial temper-

atures below 150 µK.

The efficiency of D1 cooling was also investigated, always at the Raman condition, for dif-

ferent values of the absolute cooling detuning. Results are shown in figure 4.5. For high

detunings the efficiency of D1 cooling does not change significantly. Further on, the value

of the cooling detuning will be set to 5.4Γ .
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Figure 4.5 – Dependance of D1 cooling at the Raman condition for different values of the absolute detuning

δC , in units of Γ , of the cooling light. Minimum temperature is shown in blues squares, while cooled fraction in

red circles. We found the best condition to be at δC = 5.4Γ .

4.1.2 D1 cooling for optical trap loading

For efficiently loading the IPG dipole trap, we apply the D1 molasses in a different way.

We prefer to have larger clouds of atoms in the ODT, with a temperature higher than the

minimum one reported in figure 4.4. For this reason we found convenient to turn off both

the MOT and compensations coils just 100 µs before applying the first D1 stage. This lasts

for 2 ms with a relative detuning condition δ = −0.2Γ . In this configuration, as shown in

4.4, the capture efficiency of the molasses is higher, as well as the temperature.

The loading was further optimized by unbalancing the MOT beams’ power. We signifi-

cantly reduced the MOT beam power along the direction of propagation of the IPG and

allocate it along the other axes. We so created on oblate cloud to increase the mode-

matching among the atoms and the ODT. The IPG is raised till a value of 120 W, 3 ms

before applying the D1 phase, by a linear ramp of 5 ms.

To increase the capture efficiency, the IPG beam waist along the horizontal direction is

increased as explained in section 3.2.2 with the RF-modulation on the AOM signal. This

results in an increase of the waist in one direction from 45 µm to 85 µm. Thus, we capture

up to N = 2 · 107 atoms at T=135(5) µK.

After this first stage, we apply a second D1 phase for cooling atoms already captured by the

ODT. The strong laser field created by the IPG beam induces a Stark shift for both the D1

cooling and repumper transitions. By spectroscopic investigation of the D1 lines in intense

laser fields, we evaluate for both levels a linear energy shift of +6.3(7)/(MHz·cm2). For

the initial trap power, this results in a 13 MHz shift. This allows to perform the second

D1 stage without changing the absolute value of the cooling detuning. In fig.4.6, the ef-

ficiency of the second D1 stage is investigated as a function of the relative detuning δ. A

Fano profile, even if less pronounced, can yet be distinguished in the temperature trend,

which is found to have a minimum of 80 µK at the Raman condition. Consistently with

the previous investigation over the D1 capture efficiency (see inset in fig. 4.4), the fraction

of cooled atoms is around 100%.
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Optical pumping in the F = 1/2 manifold is provided by switching off the repumper 20

µs before the cooling. This results in a moderate increase of the temperature of 10% and

no detectable atoms in the F = 3/2 level.

Mastering of the D1 gray molasses allows us to start the evaporation procedure with initial

conditions significantly improved respect to the conventional case. This is an important

step towards the production of large and deeply degenerate fermionic samples.

Moreover, D1 cooling is extremely similar to recently demonstrated EIT cooling [115]

for single-atom detection in optical lattices. This technique, similarly to Raman-sideband

cooling [116, 117], allows to image single atoms in optical lattices while cooling them

down. The achievement of single particle observation and manipulation will enable a

new generation of experiments for the quantum simulation of exotic phases connected to

condensed matter systems. The demonstration of D1 cooling in ODTs is a first step in this

direction for our apparatus.

4.2 Evaporative cooling till quantum degeneracy

The laser cooling stage pumps all atoms in the F = 1/2 manifold. The application of a

Feshbach magnetic fields automatically splits the atomic population in the lowest and sec-

ond to lowest hyperfine levels (called state |1〉 and |2〉, respectively). This is necessary

since evaporative cooling of cold atomic fermions is efficient only if these are found in two

different hyperfine levels, acting as a pseudospin degree of freedom.

To further enhance evaporation, we generally exploit the presence of a broad Feshbach
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Figure 4.6 – Efficiency of D1 cooling in a strong laser field. For this data set the ODT beam has 120 W of

power and an ellpictic waist of 45 µm along gravity and 85 µm along the other direction. A Fano profile in the

temperature trend is still observable (blue diamonds). Because of the lower initial temperature, the capture

efficiency is maximum also at the Raman condition.
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resonance among |1〉 and |2〉 at 832 G [25], which allows a fine tuning of the two-body

scattering length. On top of the Feshbach resonance, the scattering cross-section reaches

the maximum value allowed by quantum mechanics, making evaporation and thermal-

ization extremely efficient. Moreover, differently from bosonic atoms, the Pauli exclu-

sion principle forestalls three-body losses on resonance, avoiding the formation of Efimov

trimers and increasing the lifetime of the sample [118].

We typically perform a first evaporation stage at 832 G, bringing the IPG from 120 W to

30 W by a 500 ms linear ramp. During this stage, we continuously apply RF sweeps at the

|1〉-|2〉 transition, to balance the population in the two hyperfine levels in an incoherent

way.

After this, the PID control sets in, controlling the output power of the IPG AOM through

an exponential ramp, with adjustable duration and time constant, according to the kind

of Fermi gas wanted. For 6Li, the usual outputs of the evaporative cooling stage are two:

when evaporation is performed on top of the Feshbach resonance a strongly-interacting

fermionic superfluid is produced, while evaporation away from the resonance produces a

normal, weakly-interacting Fermi gas.

Production of BEC-BCS crossover Fermi superfluids

At an offset Feshbach field among 760 G and 832 G, when the temperature is decreased,

the atom-molecule chemical equilibrium favors the formation of molecules [119]. Close

to resonance, these are dimers in a sort of halo state [3], with remarkable stability against

inelastic three-body collisions.

Moving away from resonance on the BEC side, the reduction of the scattering length re-

sults in an increase of the binding energy and consequently of the bosonic character of

the dimers. If the temperature is low enough, these composite molecules undergo Bose-

Einstein condensation. A nice example of the formation of a molecular BEC, while crossing

the critical temperature, is shown in figure 4.7. At best, we end up with 5 · 105 molecules,

with a condensed fraction above 90%. The dimer-dimer scattering length is a finite frac-

tion of the two-body one (add = 0.6a, see [26]), and so not vanishing.

According to Bogoliubov theory, the resulting interacting BEC is also a superfluid. If for

positive scattering lengths (a > 0) superfluidity is provided by Bose-Einstein condensa-

tion of deeply bound molecules, on the other side of the resonance, hence for negative

scattering lengths (a < 0), a many-body effect is responsible for superfluidity. This is gen-

erally driven by the Cooper instability in the framework of conventional BCS theory. The

Feshbach resonance interconnects among these two limiting cases, with the creation of a

stongly interacting state, the so-called the unitary Fermi gas, that is a pristine example of

a genuine many-body state [120].
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Figure 4.7 – Evidence of bimodal distribution towards the end of evaporation, showing evidence of Bose-

Einstein condensation.

Despite the more difficult analysis for these systems, a first demonstration of the super-

fluid transition has been achieved by the observation of arrays of quantized vortices [121]

after stirring a movable object (a repulsive laser beam).

Another elegant demonstration of the occurring superfluid phase transition has been pro-

vided by M. Ku and coworkers in ref. [122], where, by high-precision measurements of

local thermodynamical variables in the Local Density Approximation (LDA), the charac-

teristic lambda-like feature of both the compressibility and the specific heat were observed

at the superfluid transition.

Following other seminal works on the determination of the Equation of State (Eos) across

the BEC-BCS crossover [123, 124], the method of ref.[122] provides access to the uni-

Figure 4.8 – The superfluid transition in the Unitary Fermi gas, through the lambda-like feature of the com-

pressibility (blue) as a function of temperature. Inset: evolution of the specific heat (red) as a function of

temperature at the crossing of the critical temperature.
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versal thermodynamics of the Unitary Fermi gas, without the need of any external ther-

mometer. With the high-resolution imaging system of our apparatus, we successfully im-

plemented the method of ref.[122] for absolute thermometry of the Unitary Fermi gas.

The resulting lambda-like feature of the compressibility is reported in fig.4.8.

With this method we could probe superfluidity of our gas at the end of evaporation and

measure a temperature T at the trap center as low as 0.07(2)TF , where TF is the Fermi

temperature of our gas.

Another way for determining the temperature in our cloud is to perform a magnetic field

sweep on the BEC side of the resonance. The gas is then mapped onto a molecular BEC

and by TOF expansion it is possible to measure by absorption imaging the condensed frac-

tion and from this the temperature of the cloud. At the end of our evaporation we can

achieve at best a condensed fraction above 90%. On a daily basis, this method provides

the easiest procedure for checking the efficiency of our apparatus, since the method of

ref.[122], despite being more accurate and reliable, relies on the averaging over more

than one hundred of experimental images for reducing the noise during the image pro-

cessing.

Our experimental cycle for producing deeply degenerate fermionic superfluids last around

15 s. This is mainly limited by the 8 s loading of the MOT and by the small curvature given

by the Feshbach field, which is of around 8 Hz for a Feshbach field of 832 G. Despite some

disadvantages during evaporation, such a small magnetic curvature is ideal for exploring

the physics behind two-dimensional Fermi gases, providing for free an almost flat potential

along the axis of the two dimensional plane.

Production of a normal Fermi gas

After the first ramp of IPG, the still high thermal energy of the cloud allows to safely

reduce the Feshbach magnetic field away from resonance, without creating molecules or

observing any loss. The scattering length among state |1〉 and |2〉 (i.e. a12) has a minimum

at around 300 G (a12 ∼ −300a0), extremely convenient for evaporation. However, this

minimum is more pronounced for the mixture of |1〉 and the third to lowest hyperfine

level, hereafter called |3〉 (see fig.4.9 and appendixA). The a13 scattering length at 300 G

has a minimum value of almost −900a0. This results in almost a factor of 10 improvement

in the scattering cross-section of the |1〉-|3〉 mixture respect to the |1〉-|2〉 one.

For exploting this, when reducing the Feshbach coils, we first target the magnetic field at

584 G. Since here a13 ∼ a12, the application of a 100 µs long RF π-pulse on the |2〉-to-|3〉

transition, brings all of the atoms in |2〉 to |3〉, with not detrimental final state effects or

collisional broadening during the transfer. After this, we again reduce the Feshbach field

till 300 G. To provide enough confinement, we selectively turn on an additional curvature
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Figure 4.9 – Comparison among the scattering lengths away from the Feshbach resonance for the |1〉 − |2〉
(gray line) mixture and the |1〉 − |3〉 (orange) one. The |1〉 − |3〉 has an advantageous minimum at 300 G. At

around 584 G the two scattering lengths are almost equal.

Figure 4.10 – On the left we show an expanding normal Fermi gas. On the right we show its integrated column

density, fitted with both a gaussian profile (gray line) and a Fermi-Dirac distribution. The gaussian fit clearly

both at the wings and on top of the cloud. The measured temperature in this case is T/TF = 0.06 with

N = 3 · 105 per spin component.

magnetic field using the MOT coils in Helmotz configuration or load a second ODT from

a Mephisto laser.

We finish evaporation with a typical atom number around N = 3 ·105 per spin component

and a temperature below 0.1 TF , as reported in fig. 4.10. Remarkably, the evaporation

ramps (figure 4.11) of the |1〉 − |3〉 mixture at 300 G looks very similar to the one of

the Crossover Fermi gas, showing extremely good thermalization properties for a fast

production of a deeply degenerate sample. Evaporation of the |1〉 − |2〉 with the same

ramps was instead found to be unsuccessful, resulting in a sample way hotter and with
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Figure 4.11 – Comparison among the evaporation ramps on the Crossover (top panel) and a t 310 G in the

|1〉− |3〉 mixture (lower panel). In function of time of forced evaporation we report both the atom number (blue

squares) and temperature (red circles). Vertical dotted lines show the onset of degeneracy for temperatures

below the condensation one on the crossover and below the Fermi temperature at 310 G. The behavior of the

two ramps is very similar, showing extremely good evaporation properties of the |1〉 − |3〉 mixture.

significantly reduced atom number because of a worse thermalization due to a smaller

scattering cross section.

The overall experimental procedure for producing the normal Fermi gas is of the order of

22 s.

Differently from the BEC-BCS superfluid case, while evaporating at 300 G the magnetic

curvature due to the Feshbach coils is just of 3 Hz. This would not be enough for efficient

evaporation or for preventing undesired spilling of atoms. The addition of a magnetic or

optical curvature is thus mandatory.
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CHAPTER 5

Coherent dynamics of strongly interacting

fermionic superfluids

This chapter covers the first experimental investigation of coherent Josephson dynamics

in atomic superfluids across the BEC-BCS crossover. A detailed description of the experi-

mental configuration exploited for this purpose will be given in the following sections,

together with the analysis of the rich phenomenology we have observed.

The main results have been published in:

• G. Valtolina, A. Burchianti, A. Amico, E. Neri, K. Xhani, J. A. Seman, A. Trombettoni,

A. Smerzi, M. Zaccanti, M. Inguscio, G. Roati, Josephson effect in fermionic superfluids

across the BEC-BCS crossover, Science 350, 1505 (2015).

5.1 Experimental realization of an atomic Josephson Junction

For the investigation of the Josephson dynamics, our starting point is a tunable, crossed

dipole trap where the atomic superfluid is produced. This is obtained by crossing the IPG

and the Mephisto beams. The advantages of this configuration are essentially two. First,

due to the tighter confinement of the Mephisto beam, atoms are essentially held along its

axis, in a quite elongated cigar shaped trap. The trap aspect ratio is typically around 1 :

10. This allows an experimental investigation of a one-dimensional dynamics, triggered,

as explained below, just along the longitudinal trap axis. Second and most important,

the crossing with the IPG beam sets the minimum of the overall trapping potential. By

tuning the RF-signal of the IPG’s AOM, the crossing point can be physically moved inside

the science chamber, without affecting the evaporation efficiency. The high electronic

control over the RF-signal allows an accurate positioning of the trap center, a fundamental

prerequisite for the experiments hereafter described.

The atomic superfluid is generally produced in the |1〉 and |2〉 hyperfine levels, by forced

evaporation on the top of their scattering resonance at 832 G. Typically, we end up with
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Figure 5.1 – Experimental measurement of the barrier short waist wx along the beam direction. In the

focus the experimental measurement gives 1.95(3) µm, while the fit by the theoretical expected trend

wx = w0

√
1 +

(
z
zR

)2
, where zR is the green beam Rayleigh range, gives a value of 1.90(1)µm.

105 atoms per spin component, or equivalently 105 fermionic pairs. The trap frequencies

are around 15 Hz along the longitudinal axis, 170 Hz along gravity and 150 Hz in the

other radial direction.

The final temperature is extracted by measuring the EOS of the Unitary Fermi gas [125].

This gives us a final temperature T = 0.07(2)TF , sufficiently below the superfluid critical

one. According to [62], this condition ensures a superfluid fraction saturated at one for

the resonant superfluid and the nearby strongly interacting regimes, both for positive and

negative scattering lengths. Consistently with this, we also measure in time-of-flight the

Bose condensed fraction by sweeping the Feshbach field in the BEC limit. This is found to

be above 90%. At first order, a superfluid fraction close to one, across the whole BEC-BCS

crossover, allows to neglect detrimental dynamical effects arising from normal currents,

focusing only on a pure superfluid dynamics.

After having finished the evaporation stage on top of the Feshbach resonance, all the other

interaction regimes are reached after evaporation by changing the Feshbach field through

a linear ramp of tunable duration among 200 and 300 ms.

Characterization of the barrier potential

The atomic Josephson Junction (JJ) is realized by imprinting onto the atomic cloud a

strongly elliptic repulsive optical potential. The beam light is brought from a Verdi-V8

laser to the science chamber by a photonic crystal fiber from NKT-Photonics. At the fiber

output we placed a collimation stage to a have a two-inches diameter beam. This beam
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has a wavelength of 532 nm, blue-detuned respect to the main transition of , resulting in

a repulsive potential.

In order to engineer the profile of a thin insulator among two superfluids, the beam is

made pass through a cylindrical lens with focal length f = 25 cm. At the focus of the

aspheric lens, this results in a dimension much more squeezed than the other. The beam

is first characterized on a replica optical system, which reproduces the exact beam path

towards the science chamber. The only difference is given by the glass window after the

aspheric lens. Lacking of another 6 mm thick viewport as in the science chamber, we

substitute it with a 4 mm CF100 silica window. For the short axis, we measure on a CCD

camera a beam waist of 1.90(1) µm, as shown in fig.5.1, while for the long one a waist of

840(30) µm. For the short axis measurement we added a X 20 magnification stage after

the barrier focus, in order to resolve the micrometer sized waist. The long barrier waist is

essentially constant over the displacement of fig.5.1.

To tune the angle of the barrier respect to the cloud, the cylindrical lens is placed on a

rotating mounting, as those for conventional wave plates.

When placed onto the real science chamber, the 6 mm viewport may introduce additional

aberrations, in particular along the short waist axis. Moreover, having just one large as-

pheric lens, we cannot correct for chromatic errors, such as the shift of the focus distance

for different wavelengths. On the replica system, we measured the shift among the red

imaging light and the green one to be of 1.4 µm. Given the short Rayleigh range of the

green beam, this would result in a considerable enlargement of the barrier at the actual

cloud position.

In the experiment, the aspheric lens is held on a vertically movable mounting with mi-

crometer accuracy, and placed to have the image of the cloud probed by the red light on

focus. Along the barrier path, we placed a two-lenses telescope with a ×1.25 magnifica-

tion. The last of these two lenses is mounted on a translational stage with a micrometer

scale. This allows to move the focus of the barrier beam independently respect to the red

light and to compensate for the achromatic shift. On the replica system, the movement of

the telescope did not affect the value of the short beam waist in the focus.

To correctly focus the barrier, we perform a tunneling experiment on a molecular BEC.

As it will be explained in the following sections (see fig.5.4), we produce the BEC with

the trap minimum displaced respect to barrier position, in order to have a population

difference among the two sites of the barrier. For this first investigation, we start with a

population imbalance z = NL−NR
NL+NR

' 0.40, with NL (NR) being the number of molecules on

the left (right) reservoir. The barrier is ramped up during evaporation till a tunable value

V0, without affecting the final temperature of the cloud. At this point, we non-adiabatically

bring back the trap, centering it onto the barrier position. After half of the longitudinal

trapping period, we measure how the population imbalance has evolved as a function of
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Figure 5.2 – Calibration of the barrier focus by moving the translational stage of the second telescope. The ex-

perimental data (red circles for V0 = 1.8µ and blue circles for V0 = 4.0µ) are compared with the theoretically

expected transmission probability given by the formula of eq.(5.4).

the movable lens position in the ×1.25 telescope. Data are shown in fig.5.2. When the

barrier is in focus, the tunneling through the other reservoir is more suppressed and the

population imbalance remains quite high. For the data of fig.5.2, the barrier focus is at

the zero point along the x-axis, where a maximum of the imbalance is observed.

Once having aligned the barrier with the previous method, we measure the barrier waist

by imaging the density profile onto a molecular BEC. In the BEC limit, the Thomas-Fermi

approximation tells us that the density distribution of the BEC can be written as:

|ψ(r)|2 = µ− V (r) (5.1)

where µ is the BEC chemical potential and V (r) the trapping one.

As for the negative of a photo, the atomic density profile mirrors the one of the confining

potential, and also of the eventual barrier. We so place the center of the cloud onto

the barrier. We raise the barrier in the cloud center till a value of 0.3µ, well below the

experiments reported in fig.5.2. In this way, we don’t pierce the cloud till the bottom of

the density distribution. The dip created by the barrier is fitted with a gaussian profile. In

the measurement, we take into account also the effect of the imaging pulse, which heats

the sample while probing it. On such a short micrometer scale, this results in a sizable

diffusion of the atoms during the imaging time, broadening the barrier dip carved into the

density profile. The trend of the measured barrier waist is shown in fig.5.3 for increasing

duration times of the imaging pulse. As it can be seen, the longer the pulse duration



i
i

“ValtolinaG_PhDThesis” — 2016/8/31 — 10:52 — page 77 — #87 i
i

i
i

i
i

5.1 Experimental realization of an atomic Josephson Junction 77

1.0 2.0 3.0 4.0 5.0

2.0

2.8

3.6

4.4

5.2

0.0

imaging pulse time (�s)

w
a
is

t
(�

m
)

Figure 5.3 – Evolution of the measured barrier waist on the BEC profile for increasing duration of the imaging

pulse. We extrapolate a barrier waist of 2.0(2) µm for a zero duration pulse, that is the real size of the barrier.

the wider the fitted dip. We ascribe this to the previously discussed increase of heating

and diffusivity. From these, we extrapolate with a linear fit the beam waist for an ideal

pulse of zero duration time. We obtain a value of 2.0(2) µm, in good agreement with the

independent measurement.

To further validate our results, we develop a simple theoretical model for determining the

transmission probability of the Bose gas through the barrier. First, in accordance to [98],

we express the effective potential of the barrier as:

V (r) = C · I(r) (5.2)

where C takes into account all of the lithium atomic constants [126] for transforming the

light intensity I(r) in the potential energy felt by the composite molecules.

The peak potential height V0 is given by the ratio:

V0 = C ·
P0

wx(p)w y
(5.3)

where P0 is the beam power and wx(p) (w y) the short (long) beam waist.

The short waist wx(p) is a function of the movable lens position p according to the formula

wx(p) = w0
x

r

1+ (p/13)2
zR

, where w0
x is the minimum of the short waist and zR its Rayleigh

range. The factor 1/13 takes into account that a displacement ∆p of the movable lens

becomes ∆p/13 in the aspheric lens focus. This was independently measured on the

replica optical system.

To develop our one-dimensional theoretical model, we neglect the role of interactions

(single-particle approximation) and assume atoms to have the mean-energy per particle ε

of a BEC, which is 5/7 of the BEC chemical potential. We further approximate the barrier

to a square-well of height V0 as expressed in eq.(5.3), and width b = wx(p)
p

2 ln V0/ε. The
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final expression for the transmission probability reads as:

T(V0, p,ε) = 1/

 

1+
w y

2
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2
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√ ε
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sinh2
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ln
VO

ε

!

(5.4)

Expectations for this model are shown in fig.5.2 assuming a short waist of 2.0 µm, as

the one measured by the in-situ density profile dip. We found good agreement with the

experimentally measured tunneling probability. We so take the value of 2.0(2) µm as the

width of our barrier.

This calibration is of paramount importance for understanding how to correctly tune the

barrier height respect to the energy scale of the system and address different regimes. For

V0� µ, we are in the so-called hydrodynamic limit, while when V0 ≥ µ we can access the

Josephson dynamics, since the barrier is not anymore a trivial perturbation for the atomic

density profile.

5.2 Superfluid versus single-particle tunneling

In the first set of experiments, we compare the dynamics through the barrier of a molec-

ular BEC versus that of a normal non-interacting Fermi gas. The molecular BEC is real-

ized by evaporating on top of the Feshbach resonance and then moving to a field of 690

G. This gives an interaction parameter 1/kF a ' 4. The non-interacting Fermi gas is in-

stead produced in the |1〉-|3〉 mixture as explained in section 4.2, till a final temperature

T ≤ 0.10(2)TF . The scattering length is then reduced to zero by sweeping the Feshbach

field till the zero-crossing of the |1〉-|3〉 scattering resonance at around 568 G [25].

In both regimes, we excite the sloshing or also-called dipole mode with the barrier on.

For small excitations, or equivalently in the linear response regime, the frequency of this

mode is coincident with that of the Josephson plasma oscillations ωJ , and so, through

the relation ωJ =
p

EJ EC , an effective probe of the Josephson energy. To properly define

a Josephson plasma mode, according to [70], the value of ωJ for trapped atomic gases

should be a fraction of the trapping period, even if not extremely smaller than that.

To excite this mode, the usual procedure we follow is summarized in fig.5.4, already

described in the previous section for the characterization of the barrier focus. During

evaporation, we keep the barrier at the target value V0, with the trap center slightly dis-

placed from the barrier position. We checked the presence of the barrier not to affect the

evaporation efficiency. For triggering the dynamics, we center the trap in a non-adiabatic

fashion back onto the barrier position.

One can think the situation in the JJ to be at time t = 0 as depicted in fig.5.5. This results

in an initial non-zero population imbalance z, defined in the usual formula z = NL−NR
NL+NR

.

Equivalently to an initial chemical potential difference, this imbalance may trigger the dy-
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Figure 5.4 – Experimental procedure for triggering the dynamics in the atomic JJ. The barrier (green) is turned

on before finishing evaporation in the ODT (red). After finishing the evaporation ramp, the Feshbach field is

adjusted at the target 1/kFa and after 30 ms, the IPG center (blue) is non-adiabatically placed on top of the

barrier beam. After an evolution time t we measure the imbalance through resonant absorption imaging (acid

green).

namics through the barrier. This quantity is evaluated by counting the atom number in

each site of the well by absorption imaging.

In this first comparison among superfluid and normal tunneling, we start with a small

population imbalance z ≤ 0.05(1). Such a small population difference is of primary im-

portance for not exciting the radial modes of the trap, which may introduce breathing

in the sloshing mode. Moreover, we avoid the entrance into the Macroscopic Quantum

Self-Trapping (MQST) dynamics, since, as explained in section 2.4.1, this is triggered by

self-interactions in each well.

The time evolution of the population imbalance is reported in panel 5.6. As it can be seen,

the BEC, even for barriers higher than its energy per particle ε shows clear oscillations,

with negligible damping, while those of the ideal Fermi gas are strongly damped even for

V0 below the threshold set by ε. This is a first signature of the differences among superfluid

versus normal tunneling, which we mainly correlate to phase-coherence. In the normal

case, any atom almost freely tunnels through the barrier, without significantly being af-

fected by the presence of other particles. As a result of the single-particle character of this

process, the overall dynamics is incoherent. For increasing barrier heights, this results in

an increase of the damping and a washing out of the initial population difference. For the

superfluid BEC instead, the presence of a macroscopic wavefunction with a well-defined

phase-relation guarantees a synchronous tunneling among all particles with no damping,

even for a range of barrier heights above the energy per particle.

Another difference arises from the evolution of the frequency ωJ of this oscillations,

whether damped or not. The trend of the ratio ωJ/ω0 as a function of V0/ε is reported in
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Figure 5.5 – a) Sketch of the atomic (JJ) with an initial non-zero population imbalance. b) Typical image for

determinin the population imbalance, by counting the number of atoms NL on the left side of the barrier and

NR on the irght side. c) Interference pattern of a molecular BEC after release from the trap. The interferogram

allows determination of the relative phase among the two quantum states.

fig.5.7. Here, ω0 is the axial trap frequency, which sets our natural time reference. For

the superfluid case, once the barrier is higher than ε, the dynamics occurs at a frequency

lower than the trapping one ω0. This can also be seen in the panel of fig.5.6, where for

higher barriers a significant slowing in the superfluid dynamics is signaled by a drift re-

spect to the trapping period, marked as dashed lines. For the ideal Fermi gas the, dynamics

happens only at the bare trap frequency and for barrier peaks below the mean-energy per

particle. For even higher barriers (V0 > 2ε), the dynamics gets to noisy and we cannot

detect a clear oscillation anymore.

This is a remarkable difference among the superfluid and the single-particle dynamics. In

a certain sense, this is analogous to the drop of resistance for an atomic Fermi superfluid,

which has been recently measured in [127]. Once V0 ≥ ε, the barrier cannot be considered

anymore a small defect and only a superfluid, thanks to its phase-coherence and friction-

less flow, can pass through it. Moreover, this critical condition V0 ≥ ε is coincident with the

assumption of the two-mode approximation for detecting Josephson plasma oscillations

in atomic superfluids [67]. We can so conclude that for V0 ≥ ε we enter the Josephson

regime, as signaled by the lowering of the Josephson plasma frequency respect to the bare

trap one [70], which itself becomes our primary tool of investigation.

Moreover, one expects the imbalance dynamics to be coupled to the one of the relative

phase φ. The relative phase φ is the difference among the condensates phases, that is

φ = φL −φR, where again the label L (R) refers to the left (right) reservoir. In the Joseph-

son regime, the imbalance z and the phase φ are dynamically conjugated variables, so a

relative phase shift of π/2 is expected among the two dynamics. We measure the phase

φ by time-of-flight (TOF) measurements, letting the clouds expand for up to 15 ms, after

having turned off at the same time both the trap and the barrier. We then probe the ex-
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A

B

Figure 5.6 – Superfluid vs single-particle tunneling. a) Time-evolution of the population imbalance (blue sym-

bols) of a molecular BEC for increasing barrier height V0 respect to the energy per particle ε = 5
7µBEC. From

top to bottom V0/ε =0.25(2) (top), 1.50(3) (center),1.75(4) (bottom). b) Time-evolution of the population im-

balance (red symbols) of non-interacting Fermi gas for increasing barrier height V0 respect to the energy per

particle ε = 3
4EF . From top to bottom V0/ε =0.40(2) (top), 0.60(2) (center), 0.81(3) (bottom). The dashed

gray lines signal the expected maxima for a dynamics at the trap frequency ω0.

panded clouds by resonant absorption imaging. A typical experimental picture is shown

in fig.5.5c, where the nice interference patterns among the two superfluids can be distin-

guished in the modulation of the density profile. The phase φ is determined by fitting the

density distribution with a gaussian profile plus an overall sinusoidal modulation as:

n(x , y) = Ae(−x2/σ2
x )e−y2/σ2

y (1+ Bcos(kx +φ) (5.5)

An example of the coupled imbalance-phase dynamics is shown in fig.5.8. As expected,

within our experimental resolution, the imbalance and the phase oscillate at the very same

Josephson plasma frequency ωJ and with a relative phase shift δφ = 1.1(0.1) π/2, consis-

tent with the expectation for a π/2 difference.

Instead, for the ideal Fermi gas, the TOF expansion does not unveil an interference pat-

tern, due to lack of a proper defined phase.

Again, the measurements of conjugated imbalance and phase oscillations are a smoking



i
i

“ValtolinaG_PhDThesis” — 2016/8/31 — 10:52 — page 82 — #92 i
i

i
i

i
i

82 Chapter 5. Coherent dynamics of strongly interacting fermionic superfluids

Figure 5.7 – Evolution of the frequency ωJ for increasing barrier height V0 for a superfluid BEC (blue circles)

and an ideal Fermi gas (red diamonds).

gun of macroscopic phase coherence in these systems due to a macroscopic condensate

state, which can be directly probed and investigated by Josephson dynamics. Very inter-

estingly, the Josephson effect couples an elusive quantity, such as the phase, to a more

established or standard one, such as the particle current.

A

Figure 5.8 – Coupled dynamics of conjugated variables z and φ for a molecular BEC in the Josephson regime

(V0 = 1.4(1)ε or equivalently V0 = 1.0(1)µ). For the imbalance (phase), we measure a frequency ωJ of

13.9(0.1) Hz (13.8(0.2) Hz). The phase shift among the two observables is 1.1(0.1) π/2.
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Beyond plasma oscillations

The previous section described the different dynamics in the tunneling regime (V0 ≥ ε)

among a superfluid and an ideal Fermi gas, which always displays for high barriers an

exponential decay in the initial imbalance.

However, also for the superfluid BEC, the dynamics may turn (over)damped once the bar-

rier is increased too much, as shown in fig.5.9, where the previously investigated plasma

oscillations cannot be clearly detected anymore. In fig.5.7 the absence of experimental

points for V0 > 2.2ε is due to this kind of dynamics.

In our experimental configuration, the rise of V0 is equivalent to diminishing the critical

population imbalance zC , above which the MQST dynamics is predicted. Unfortunately,

the high interactions in the whole BEC-BCS crossover make the eventual amplitude of

the MQST oscillations even smaller than those of the already investigated plasma oscilla-

tions [68], rendering their experimental observation unfeasible. The expected modulation

should occur at higher frequencies, which are expected to be fractions of the chemical po-

tential difference among the two reservoirs.

At best, the experimentally accessible imbalance dynamics can be generally described

as an exponential decay with characteristic timescale increasing with the barrier height,

due to suppression of tunneling. This is consistent with the considerations in section

2.4.1 about the metastability of the MQST regime due to non-vanishing role played by

non-condensed particles [72] and topological defects nucleating at the barrier position

[79, 80]. In particular, the role of these vortices would be further investigated below. In

this regime, since the EC starts to dominate over EJ , one expects the phase to evolve as

ħhφ(t) ' ECz0N t, linearly running in time. Due to the phase boundaries among [-π,π],

a saw-tooth behavior is expected in the dynamics. For instance, the phase may initially

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0

- 0 . 0 4

- 0 . 0 2

0 . 0 0

0 . 0 2
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Figure 5.9 – Overdamped dynamics of a molecular BEC for V0 = 2.4(1)ε. A Josephson plasma oscillations

is no more distinguishable.
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Figure 5.10 – Running phase for a molecular BEC at V0 = 3.3(2)ε. The extracted frequency is 45(2) Hz.

start from 0 and linearly increase till π, where a phase jump of 2π brings the phase to −π,

where it starts running again till π and so on and so forth. For sufficiently high barrier, we

confirm this theoretical expectation, as shown in fig.5.10.

In particular, during the first tens of milliseconds in the dynamics, we can trace the phase

evolution and observe the saw-tooth behavior. In this time window, the imbalance does

not show a distinguishable modulation and equilibrates towards zero at later times. Af-

terward, the phase evolution becomes to noisy and a clear trend cannot be distinguished

anymore. The microscopic origins of these will be discussed in the following sections, how-

ever, as long as the frequencies are concerned, the initial dynamics allows to determine

a frequency also in the running phase regime. Here, as we increase the barrier height,

the frequency of the saw-tooth should approach the one given by the chemical potential

Josephson Running-

phase

��

0 1 2 3 4

1
�
j��

�

V0��

3
5

8

Figure 5.11 – Evolution of the frequency ωJ rescaled to the bare trap, both in the Josephson plasma and the

running-phase regime, for different values of V0/ε. Solid lines are guides to the eye.
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difference among the reservoirs. We summarize our results in the figure 5.11, where the

experimental determined frequency is plotted as a function of the ratio V0/ε for the usual

molecular BEC. This is analogous to the expectations for the MQST regime, but since we

do not detect the typical MQST dynamics in the population imbalance and because of

its exponential decay at longer evolution, we prefer to simply refer to this regime as the

running-phase or dissipative regime.

For the data in fig.5.11, in the first part we observe the coupled plasma oscillations in

both the imbalance and the phase, while for larger barrier we only detect a frequency

from the phase pattern. As expected, this increases with V0, approaching the value of 100

Hz set by our initial population imbalance. In the intermediate region, noise dominates

over both the phase and the imbalance dynamics, limiting the determination of a clear

frequency. However, despite our JJ being a multi-mode system, since many energy levels

are occupied along the longitudinal trap axis (ħhω0� µ), a clear Josephson dynamics can

be clearly distinguished in different regimes, in qualitative agreement with the ideal two-

mode model expectations. Thus, our setup provides a good platform for extending the

studies over weakly-coupled Fermi superfluids in different interaction regimes, starting

from the direction paved by our investigation of a molecular BEC.

5.3 The Josephson effect across the BEC-BCS crossover

In this section we extend the investigation of Josephson dynamics to the whole crossover,

focusing mainly on the comparison among the plasma oscillations. Again, the main rea-

son for this is the determination of microscopic superfluid properties through the relation

ωJ =
1
ħh
p

EJ EC . In particular, while the value of the charging energy EC can be computed

by state-of-the-art numerical simulations, the Josephson energy EJ , being proportional to

the tunneling term, is more affected by the specific geometric properties of our JJ which,

in addition to other microscopic features such as the condensate fraction and the pair-

size, would make a dynamical numerical simulation extremely difficult to handle in the

strongly interacting regime.

We start our comparison by moving from the deep BEC limit (1/kF a ' 4) towards the

unitary limit. In this framework, it is more convenient to express the barrier peak V0 in

units of the Fermi energy EF of an ideal Fermi gas with the same trap potential and equal

atom number. In this way, we have a helpful energy scale for the synopsis.

A first comparison is shown in fig.5.12, where the previous case of the molecular BEC

at 1/kF a ∼ 4 is compared with those of other superfluids with increasing interactions, till

the Unitary Fermi gas (UFG) at 1/kF a = 0. Similarly to what happens for the molecular

BEC, the other regimes show as well the usual trend for the plasma oscillations, with the
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frequency bending down for increasing values of the barrier height.

However, an equivalent renormalization of the plasma mode requires a much higher V0

when moving towards the center of the resonance on the BEC side. This can be under-

stood in terms of the increase of the chemical potential towards the Unitary limit. Because

of this, given a certain V0, the ratio V0/εUFG for the UFG drops respect to V0/εBEC in the

BEC limit. Looking back at the plot in fig.5.7, the increase of interactions is equivalent

to reducing the ratio V0/ε, so in this picture a plasma oscillation with a higher frequency

is expected. In conclusion, on this side of the resonance, the bosonic character of the

superfluid dominates. The increase of the particles energy requires a steeper barrier to

significantly affect their motion, as in the textbook picture of single-particle tunneling.

For the relevant case of the UFG, we investigate also the evolution of the relative phase,

which again is expected to be canonically conjugated respect to the imbalance [128].

However, in direct TOF images after release from the trap, a clear interference pattern as

in the BEC case cannot be determined. This is mainly ascribed to strong interactions and

collisions, which may scramble the phase during the overlap time [129].

To circumvent this issue, we perform a fast ramp on the BEC side during the expansion,

significantly reducing the interactions during the TOF while increasing the contrast of the

interference pattern. To enhance this effect, just for the phase measurement, we produce

a resonant superfluid in the |1〉-|3〉 mixture, which features a Feshbach resonance with a

reduced width of 180 G [25], requiring a smaller magnetic field jump from the UFG to

the BEC limit. Moreover, because our Feshbach coils have a large inductance, we create

an additional offset magnetic field with the smaller MOT coils, now flipped in Helmotz

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.7

0.8

0.9

1.0 4

2

1

0

ω
j/ω

0

V
0
/E

F

1/kFa

Figure 5.12 – Evolution of the plasma frequency for different regimes of 1/kFa on the BEC side of the reso-

nance for increasing values of V0/EF . Solid lines are guides to the eye.
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B

Figure 5.13 – Coupled dynamics of the imbalance (blue symbols) and the phase for a UFG. The two observ-

ables both show a sinusoidal oscillation. The evaluated frequency is of 12.8(0.1) Hz and 12.6(0.3) Hz for the im-

balance and the phase, respectively. The relative phase shift among the two quantities is δφ = 1.2(0.2) π/2.

configuration with the help of a relay switch. This allows a fast ramp (t ∼ 200µs) from the

Unitary limit (690 G for the |1〉-|3〉 mixture) till the BEC limit (620 G for this configura-

tion). The comparison among the imbalance and the phase evolution is shown in fig.5.13

for a barrier height V0 = 1.0(1)µ ∼
p

ξEF , where ξ is the Bertsch parameter. Both quanti-

ties show the characteristic plasma sinusoidal oscillation, occurring at the same frequency

within experimental uncertainty.

The measured relative phase shift is δφ = 1.2(0.2) π/2, confirming the imbalance z and

the phase φ to be canonically conjugated variables also for a UFG. As for the molecular

BEC, this measurement is a direct proof of macroscopic phase coherence for this strongly

interacting system.

Our investigation of the plasma excitations now moves to the BCS side of the resonance,

as shown in fig.5.14. Here, despite the monotonous increase of the chemical potential, the

slow plasma frequencies in the BCS regime stop drifting towards higher barrier heights.

Respect to the UFG phenomenology, the plasma frequency in the deep BCS limit bends

down for lower barrier potentials.

A zoom onto this behavior is shown in fig.5.15a, where the trend of the plasma frequency

ωJ is compared for different interaction regimes across the resonance, for the same barrier

height V0 = 1.2(1)EF .
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As it can be seen, the trend of ωJ shown in fig.5.15a is non-monotonic, reflecting the

tendency of the data in fig.5.14.

As long as EC is concerned, we derive its value from an extended Thomas-Fermi model

which takes into account the proper value of the chemical potential, obtained from QMC

calculation. Further details on this theoretical model will be given below, however, this

information, combined with the experimentally determined plasma frequency ωJ , allows

us to extract the value of EJ , as shown in fig.5.15b. For comparison we plotted both EJ ,

determined in the V0 = 1.2(1)EF case, and the value of N · EC in units of EF . As expected,

being EC related to the inverse of the compressibility of the gas, the quantity N · EC mono-

tonically increases across the Unitary limit. Instead, EJ reflects the up-and-down trend of

the plasma frequency.

In the hydrodynamic limit, that is V0 � µ, a similar trend has been measured in the de-

termination of the superfluid critical velocity across the whole crossover [55, 56]. This

quantity depends on the energy spectrum of the system, which in the BEC regime is dom-

inated by sound modes, while by pair-breaking excitations in the BCS limit. The critical

velocity increases while moving towards resonance from the BEC regime and, just before

reaching the 1/kF a = 0 point, it starts to decrease abruptly, due to the exponential low-

ering of the fermionic gap and the consequent emergence of the single-particle excitation

branch.

Our measurements are instead carried out in the tunneling regime (V0 ≥ µ), investigating

over a coherent effect and avoiding the depletion of the superfluid fraction. On qualitative
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Figure 5.14 – Evolution of the plasma frequency for different regimes of 1/kFa on the BCS side of the reso-

nance for increasing values of V0/EF . Solid lines are guides to the eye.



i
i

“ValtolinaG_PhDThesis” — 2016/8/31 — 10:52 — page 89 — #99 i
i

i
i

i
i

5.3 The Josephson effect across the BEC-BCS crossover 89

A

B

Figure 5.15 – a) Evolution of the plasma frequency across the UFG regime for a barrier height of V0 =

1.2(1)EF . b) Determination of the Josephson energy EJ (blue circles) from the computed value of EC (red

diamonds) and the measured value of ωJ (top panel).

arguments, one may expect:

EJ ' KN0 (5.6)

with K being the pair tunneling and N0 the condensed fraction.

As explained before, on the BEC side, the increase of EJ can be understood as an increase

of the tunneling term while approaching the resonance, since the barrier looks a smaller

defect in this direction. In this regime, the condensed fraction slightly diminishes from

unity. However, this is not true on the BCS regime where instead N0/N ∝ ∆/EF , repro-

ducing the famed Ambeogaokar-Baratoff formula for conventional BCS superconductors

JJs. The diminishing of EJ on the BCS side is so dominated by the depletion of the con-

densate fraction, due to the increasing fermionic character of the superfluid. Our results

provide for the first time an alternative way to RF-spectroscopy for the determination of

the BCS superfluid gap through tunneling experiments.

Interestingly, the determined EJ shows a peak value more shifted towards the BCS limit,

differently from the results of the critical velocity [55, 56]. On a microscopic level,

this should be referred to the increasing robustness of the so-called Andreev-Saint-James
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BEC

BCS
UFG

Figure 5.16 – Left: comparison among experimental plasma frequency (symbols) and ETFM model (solid

lines) for three different interaction regimes, that is 1/kFa= 4 (red),0 (blue), -0.5 (green). Right: comparison

among experimental (blue circles) and theoretical (red diamonds) frequency of the plasma oscillations across

resonance for V0 = 1.2(1)EF .

bound states towards the unitary limit [130]. These bound states provide the microscopic

mechanism for bridging two superconductors separated by a thin barrier [131]. Accessing

and understanding the properties of these states in the strongly interacting regime is an

active research line from both a theoretical and experimental point of view, also for the

condensed matter community [132, 133]. Our results are just a first step in that direction.

Comparison with a laptop theoretical model

In our investigation, we compared our experimental results with those from a theoretical

model that can run on a standard laptop, not requiring any particularly huge compu-

tational power, such as that of a supercomputer. This model is based on an extended

Thomas-Fermi model (ETFM), where the Schödinger equation for the pairs wavefunction

Ψ can be written as:

iħh
∂Ψ

∂ t
= −
ħh2

4m
∇2Ψ + 2V (x)Ψ + 2F(2|Ψ|2)Ψ (5.7)

where V (x) is the overall potential (trap and barrier) felt by a single atom of mass m

and n = 2|Ψ|2 the total fermionic density. The non-linear coupling term F is defined as

F(n) = ∂ E
∂ n , where E is the energy per particlewithin this model, whose value has been

determined from an independent QMC calculation across the whole crossover [134]. This

gives a different non-linear term any time we change the interaction parameter 1/kF a.

For instance, we used this model for defining a local chemical potential µloc and then for

determining the charging energy EC , in accordance to the relation EC = 2 ∂ µloc
∂ N .

Moreover, we used the ETFM for comparing its theoretical expectations with our experi-

mental results, as it is shown in fig.5.16.

As it can be noticed, the theoretical model accurately reproduce the dynamics in the
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BEC limit, as expected. For stronger interactions instead, the model doesn’t reproduce

correctly anymore the experimental observations. This is particularly highlighted on the

right side of fig.5.16, where the situation of fig.5.15 is replotted. As it can be seen, the

ETFM predicts a plasma frequency which monotonically increases through the crossover.

The ETFM is a pure bosonic model, which lacks of the correct fermionic degrees of free-

dom on the BCS limit, that is the superfluid gap. The resulting inconsistency among our

experimental results and those of the ETFM is actually expected, since the used theoretical

model oversimplifies the rich structure of the crossover superfluids.

5.4 Quenching the superflow: dissipative dynamics and vor-

tices

In the last discussion among the dynamics of a molecular BEC, we have seen the transition

at high barriers from plasma oscillations to the dissipative regime, characterized mainly

by a running-phase dynamics. However, the initial contrast of the phase trace is washed

out as the evolution time increases. Generally, we observe always a high interference pat-

tern in a single experimental run, but shot-to-shot fluctuations hinder the overall signal

at longer times, making difficult to disclose again any trend in the phase evolution. At

the same time, the initial imbalance has an exponentially decaying behavior, without any

particular or measurable modulation on top of that.

We first try to observe if this running phase regime is also achievable for the UFG. We

confirm this and show the evolution of the phase and the imbalance in fig.5.17a for a

UFG at a barrier V0 = 2.0(1)EF . As expected, the phase evolution shows the mentioned

running pattern at shorter time, becoming too noisy at longer ones. The imbalance, as

for the molecular BEC case, shows instead a damped evolution. This is reminiscent of

the discharge of a capacitor, with a resistive flow among the two reservoirs [127] which

irreversibly tends to balance the initial chemical potential difference. We have so the

unconventional situation of a resistive flow coexisting with a superfluid with a defined

phase. We can so neglect pair-breaking excitations as the main mechanism of the super-

flow quench, since these would wash out phase-coherence at the single-shot level.

Rather, our phenomenology seems more connected to that of other neutral superfluids,

such as the helium case. In these systems [6], the resistive flow is established by phase-

slippage processes and consequent vortex nucleation in the tunnel link. In the running-

phase regime, vortices are nucleated in the barrier region and then they annihilate any

time the phase performs a full phase-slip, that is a jump of 2π. In the ideal MQST of the

two-mode model, this would be a stable situation, with continuous and periodical cre-

ation and annihilation of vortices at the barrier region, that would prevent the imbalance
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Figure 5.17 – a) Imbalance (blue diamonds) and phase (green circles in the inset) for a UFG at V0 =

2.0(1)EF . b) Evolution for a UFG of the plasma frequency (blue circles, left axis) versus occurrence of vortices

in the bulk (red diamonds, right axis). c) Contour plot of the plasma frequencies across the whole crossover.

The color code is the height of the barrier potential. d) Contour plot for the vortex occurrence across the whole

crossover for an initial imbalance z0 = 0.12(2). The color code is the height of the barrier potential.

to equilibrate.

However, the strong interactions combined with the radial degrees of freedom of our junc-

tion may favor the leakage of vortices into the superfluid bulk. By taking out energy from

the initial configuration at any phase-slip, the proliferation of vortices would result in the

main mechanism for establishing the resistive flow among the two reservoirs.

For gaining more insights into this, we employ a different experimental procedure for

disclosing the presence or not of vortices into the superfluid bulk. We trigger the dynam-

ics at a given V0 in the usual manner, but after a time of 50 ms we turn off with a linear

ramp of 80 ms the barrier potential, a timescale essentially adiabatic with the longitudinal

trapping period. Then, we sweep the magnetic field in 10 ms to the BEC limit and look

at the density profile in TOF. Vortices would result as a dip in the density profile of the

expanded cloud [121].

As shown in the inset of fig.5.17b, a density depletion in the density distribution actually

may show up. We further characterize the presence of these topological defects by a sta-

tistical analysis over 40 different experimental images in the same condition, for different

values of the barrier height. As summarized in fig.5.17b for a UFG, vortices appear only

in the regime where plasma oscillations are absent.
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Figure 5.18 – In trap oscillation of a topological defect in the Unitary limit. Time increases from top to bottom.

Solid orange line is a guid to the eye.

This further confirms the breakdown of Josephson oscillations by the appearance and pro-

liferation of such defects. This interconnection is actually extended to the whole crossover

picture. This is summarized in the figures 5.17c and 5.17d, where the trend of the Joseph-

son oscillation is compared to the occurrence of vortices for different interactions regimes

and barrier potentials. As it can be seen, the occurrence of vortices mirrors the trend of

the ωJ frequencies, with resonant superfluids being more robust to vortex proliferation

while maintaining the higher values of plasma frequency.

To further characterize the nature of these defects, we let them oscillate in the trap once

they are created, by increasing the time among the barrier removal and the Feshbach

sweep and the followig detection. As it can be seen in fig.5.18, the trapping potential

induces an oscillatory dynamics on these defects.

As plotted in fig.5.19, the period of their in trap oscillation drastically increases when

moving from the BEC to the BCS limit. This is consistent with the defect being a solitonic

vortex [135], since its period is expected to follow the trend of the chemical potential

across the BEC-BCS crossover. However, this defect may actually be the result of a cas-

cade process from a vortex ring, initially created inside the barrier region [136], but be-

coming unstable while propagating inside the bulk. Further studies are however needed

to confirm this, but also to further characterize the rich phenomenology arising from the

interplay among elementary and topological excitations in the onset of dissipative flow.
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Figure 5.19 – Evolution of the oscillation period of the topological defects across the whole crossover. In-

set: typical in trap dynamics for the vortex oscillations at 1/kFa= 4 (red circles), 1 (blue triangles), 0 (green

squares).

5.5 Outlook: dissipation and thermodynamics

We reported in the previous sections about the investigation of coherent dynamics in

strongly interacting Fermi gases, focusing first on the regime of small oscillations and

then on the transition to the dissipative dynamics and the creation of vortices by phase-

slips.

Here, we instead study the regime of high population imbalance for barrier heights of the

order of the energy per particle of the system, to perform a more thorough characteri-

zation of the dissipative dynamics. We expect the junction not to sustain oscillations at

large imbalance, since the initial chemical potential drop across the barrier should allow

a coupling to the radial modes, with a resulting damping of the initial dynamics and a

quench of the superflow. In this framework, understanding how a superfluid is affected

and eventually impeded by an obstacle is a fundamental question dating back to the early

days of investigation of superfluid dynamics [137–139]. In particular, we want to investi-

gate how the creation of topological defects tangles with the coherent flow.

The experimental procedure we developed for these studies is a slight modification of that

in fig.5.4. Previously, we started the experiment with the trap center a bit displaced from

the barrier position, and then we triggered the particle tunneling by non-adiabatically

getting back to the equilibrium position. Now, since we want to deal with higher initial

imbalances (z ≥ 0.2), the initial displacement would be large, in the tens of µm. The

non-adiabatic movement would so result in a large perturbation, with direct excitation of
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Figure 5.20 – Standard deviation of the phase measurement at t = 0 for a molecular BEC versus the barrier

height V0. At a barrier V0 > 3µ, we observe an increase in the shot-to-shot fluctuations. We ascribe this to

the transtion to two uncorrelated condensates. The gray dashed-dotted line marks the peak value of V0 during

the separation procedure. Blue and orange solid lines are guide to the eye to mark the regimes of connected

and uncorrelated superfluids, respectively.

breathing modes and heating of the superfluid. After finishing the evaporation, we raise

the barrier height to a value generally of the order of four times the chemical potential,

by a linear ramp of 30 ms duration. After this, we readjust the trap center back onto the

barrier through a 120 ms ramp in the IPG’s AOM RF-signal. This creates a junction with a

tunable and large chemical potential difference among the two reservoirs, without excit-

ing any sloshing or breathing mode. The dynamics is then triggered by linearly decreasing

the barrier from the peak value to the target one in 5 ms. First, we checked this procedure

to effectively give the same results about the Josephson plasma oscillation, both in the

imbalance and in the phase, as previously discussed. Second, we also controlled that the

peak value reached by the barrier during the trap readjustment would not result in the

disconnection of the two superfluids. If this would be the case, any of the two condensate

would freely evolve in each reservoir, resulting in a considerable increase of the noise on

the phase measurements due to shot-to-shot fluctuations. We observed that the standard

deviation on the phase measurement remains low for the barrier heights employed during

this procedure, considerably increasing only for barrier heights much higher, as reported

in fig.5.20. This increase marks the transition to two uncorrelated superfluids [140].

With this starting configuration, we investigate how the current flow is affected by the

initial population imbalance z0, now set to a higher value respect to the former investiga-

tion of the Josephson oscillation, that is z0 > 0.05. A typical evolution of this is shown in

panel 5.21 for a UFG at a barrier V0 = 1.0(1)µ. Similar trends can be obtained as well for

the other superfluid regimes.
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The dynamics in this scenario looks more complex than in the previous experiments. When

increasing the imbalance from z0 > 0.05, we observe that the junction cannot sustain any-

more an undamped oscillation as in fig.5.8 and 5.13. For the data in fig.5.21a-c, the

evolution of z follows a fast initial decay towards zero. However, after this first transient,

an oscillatory dynamics is observed at longer evolution times. Within our experimental

uncertainty, this restored oscillation happens at the same frequency of the small imbal-

ance case at a certain V0 (see for instance fig.5.12). As well, their amplitude is in the same

range of the plasma dynamics. After an initial damping the junction is able to restore the

typical Josephson oscillation, dissipating away the excess energy introduced by the large

initial imbalance.

Interestingly, when z0 is further increased as in fig.5.21d, the flow evolution changes again,

with the curve now describable just in terms of a simple exponential decay with a long

timescale and no revival of the oscillatory trend. For the entire duration of the experimen-

tal run, we observe only a resistive flow, with a leakage of particles from one reservoir to

the other.

Similarly to the investigation in [141], we derive the particle current through the bar-

rier for the data in fig.5.21. The particle current is defined as the time derivative of the

imbalance behavior. For a more accurate determination of the current, we fit the curves

in fig.5.21a-c and similar with an exponential decay plus a sinusoidal oscillation, while

for the data analogous to fig.5.21d we employ a single exponential. The analytic time

derivative of this curves will give us the mean current through the barrier, which is con-

nected to the amount of energy dissipated by the junction through the particle flow. For

an exponential decay with a timescale τ, the current would be expressed simply as z0/τ,

while a sinusoidal term would not contribute to the mean current.

The results from this analysis are displayed in fig.5.22. It can be noticed that the cur-

rent as a function of the initial imbalance has a non-monotonic behavior. For the case of

fig.5.21, the current linearly increases for small imbalances, while abruptly diminishing at

z0 ' 0.25. After this drop, the current increases again but with a softer slope. The fast

slope is associated to the ability of the junction to dissipate the excess imbalance in the

first times of the dynamics, meaning a small τ in the expression for the current. When the

system cannot efficiently dissipate the energy associated with z0, the equilibration time

increases, as observed in fig.5.21d, with a corresponding drop of the current.

This current trend is strongly affected by the barrier height V0. For higher V0, the first fast

increase in the current in fig.5.22 is shrank in a smaller imbalance range, with the current

drop occurring at an always smaller z0. Eventually, for higher barrier only an exponential

decay is observed, without the possibility to distinguish anymore an oscillation, neither

the restored one nor the direct plasma one.

This non-monotonic behavior of the current can be observed for different superfluids, as
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Figure 5.21 – Evolution of the current for a UFG at a barrier of V0 = 1.0(1)µ for different initial imbalances.

From top to bottom: a) z0 = 0.09(2), b) z0 = 0.16(3), c) z0 = 0.23(3), d) z0 = 0.54(4),

shown in fig.5.23a for a molecular BEC at V0 = 0.9µ. This is accompanied in fig.5.23b by

the investigation of the vortex occurrence after 40 ms of the dynamics with the technique

described in section 5.4.

For the case of fig.5.23 we can distinguish three different regimes as a function of the

initial population imbalance. For z0 < 0.1 we recover the usual undamped plasma oscilla-

tion, whose mean currents averages to zero and with no observation of topological defects

in the bulk. We identify this with the Josephson regime. With the imbalance in the range

0.1 < z0 < 0.35, we enter the same dynamical regime of fig.5.21a-c, with a first initial

damping and a restoring of plasma oscillations. This leads to a first increase of the mean

current and to the appearance of a moderate number of defects into the bulk, that is the

vortex detection probability increases with z0 but stays below 30%. For a further increase

of z0 above 0.35, the transition to a more dissipative dynamics as in fig.5.21d is followed

by a huge increase of the production rate of this topological defects, even with a possibility

of observing more than one vortex in the same experimental shot.

As previously discussed, vortices appear only if the dynamics has a decaying part in the
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Figure 5.22 – Current through the junction as a function of the initial population imbalance. Solid lines are

guide to the eye.
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Figure 5.23 – a) Current versus initial imbalance for a molecular BEC at V0 = 0.9µ. b) Occurrence of vortices

after 30 ms of dynamics. Solid lines are guide to the eye. Dotted dashed lines mark the transition to a different

dynamical regime: z0 < 0.1 plasma oscillations and no vortex; 0.1 < z0 < 0.35 revival of oscillation and few

vortices; z0 > 0.35 dissipative current and several vortices

particle flow. This means that the junction tends to balance the population difference by

dissipating the excess energy through phase-slips and vortex nucleation. If the initial im-

balance difference is moderate, the system rapidly dissipate the excess energy and after

this, the coherent flow regime is re-established, with a consequent revival of the plasma

oscillations. When instead, the excess energy is too high, the system cannot easily dis-

sipate the initial chemical potential difference in a fast way, with a likely accumulation

of topological defects inside the bulk, which completely scamble the phase correlations,

preventing the observation of Josephson dynamics.

Interestingly, within our resolution we do not detect a significant increase of the temper-

ature associated to the nucleation of vortices, even if the dissipative normal currents that

are observed should introduce as well a local heat transport, which may compete with the
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Figure 5.24 – VC across the BEC-BCS crossover (yellow circles) compared with the EOS for a homogeneous

system from QMC calculations (gray diamonds) [142]. The experimentally measured [25, 122] energy per

particle for a UFG is displayed, both for the homogeneous case (red diamond) and the trapped one (purple

inverted diamond).

vortex proliferation to the quench of the superfluid flow.

5.5.1 Connecting tunneling experiments with thermodynamical quantities

This section develops after a phenomenological interpretation of the imbalance dynamics

at different barrier height V0. This is connected to the onset of the dissipative dynamics,

that is the one describable with a single exponential decay as in fig.5.21d. For a vanishing

barrier V0 � µ, this dissipative dynamics is never observed, even for very initial z0. The

current always sustain some oscillatory behavior, despite an additional damping. The

monotonic exponential decay in the large imbalance regime (z0 ≤ 0.5) shows up only

above a critical value Vc of the barrier.

The experimental trend of Vc is plotted in fig.5.24 across the whole BEC-BCS crossover

in units of EF . This quantity increases monotonously from the BEC regime up to the BCS

side. This is somehow an expected feature, since the chemical potential increase along

the same direction makes a robust barrier on the BEC side look like a small perturbation

for a BCS Fermi superfluid, (see discussion in 5.3). However, the value of VC is quite close

to the value of the equation of state evaluated by QMC calculations in [142] across the

whole interaction regime for a homogeneous system. We already saw that for a molecular

BEC the non-trivial superfluid dynamics is accomplished only for V0 ≥ ε, with a significant

renormalization of the plasma frequency ωJ respect to the bare trap one. Our tentative

interpretation for the closeness of VC to the energy per particle ε is that the barrier acts as

a sharp knife edge in the energy space. When the barrier height is below the mean energy,

some particle may still perform an oscillation on top of that, while for higher barrier this



i
i

“ValtolinaG_PhDThesis” — 2016/8/31 — 10:52 — page 100 — #110 i
i

i
i

i
i

100 Chapter 5. Coherent dynamics of strongly interacting fermionic superfluids

is impeded. Ideally, one would like to use the barrier as a local probe of the density of

states of the two superfluids, establishing a closer connection with tunneling experiments

in condensed matter [132]. However, one should avoid the inhomogeneity given by the

conventional harmonic traps, which hinder the local signal. The recent implementation

of flat box potential in quantum gases experiments [143] should allow to overcome this

limitation, making feasible for instance the measurement of the superfluid gap on the

fermionic side of the Feshbach resonance exploiting the so-called Giaver tunneling [39].
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CHAPTER 6

Probing the magnetic properties of

repulsive normal Fermi gases

We show in this chapter our results over the investigation of normal Fermi gases on the

upper branch of a Feshbach resonance. Differently from the previous Josephson dynamics,

here we access the regime of strong repulsion among fermions with different spin. As a

consequence, we target the problem of the emergence of the ferromagnetic instability in

a repulsive Fermi gas.

Our main findings have been collected in the following paper:

• G. Valtolina, F. Scazza, A. Amico, A. Burchianti, A. Recati, T. Enss, M. Inguscio, M.

Zaccanti & G. Roati, Evidence of ferromagnetic instability in a repulsive Fermi gas of

ultracold atoms. In preparation.

Here, an extended description will be given about the experimental setup and techniques

employed for this investigation.

6.1 Producing an artificial atomic ferromagnet

The Stoner model represents a milestone in our understanding of a variety of systems

which owe their magnetic properties to delocalised fermions. Despite its simple and mean-

field arguments, this model in his first formulation [9], predicts the occurrence of a ferro-

magnetic instability in a homogeneous electron gas with sufficiently strong, short-ranged

repulsive interactions. The Stoner’s picture nowadays still holds only at the qualitative

level, since more rigorous approaches confirm Stoner’s expectations but differ in the quan-

titative results about critical interactions and temperature.

Unlike their solid-state counterparts, quantum gases experiments arise as an ideal platform

for confirming the theoretical predictions, without the detrimental disorder and lattice

structure, typical of condensed matter, that would hinder the comparison among micro-

scopic theories and experiments.
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Figure 6.1 – a) Sketch of the upper and lower branch of the many-body system. On the upper branch, the

repulsive gas may turn ferromagnetic but it has to compete with relaxation onto the lower branch. b) Concept

of the experiment: realization of two spin-polarized Fermi gas separated by a thin optical barrier (experimental

signal below), which would allow to beat detrimental losses due to decay from the upper to the lower branch.

So far, the Stoner model has been investigated in atomic gases starting from a param-

agnetic weakly-interacting mixture by quenching interactions using a Feshbach resonance

[10]. One would expect the Fermi gas to stay, while interactions are ramped up, always on

the upper branch of the many-body picture, realizing a truly repulsive Fermi gas that may

show a magnetic phase above some critical parameter. However, when interactions are

quenched starting from a paramagnetic mixture, the pairing instability dominates over

the ferromagnetic one, hindering the emergence of any magnetic correlation. This has

been the subject of a deep investigation, both theoretical [144] and experimental [11],

which ruled out the appearance of any ferromagnetic transition in such a configuration.
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Figure 6.2 – Energy level dependance at low magnetic fields of the lowest two states |1〉 and |2〉 out of the six

given by the hyperfine manifold. Below 10 G, the two magnetic moments have opposite sign with almost equal

amplitude.

The general question “Can a homogeneous Fermi gas with short-range interactions turn

ferromagnetic?” has not a conclusive answer yet.

Stimulated by this, we investigate this problem in the same physical system, but with a

different initial approach. To overcome the pairing instability, we implemented an ex-

perimental procedure for splitting two atomic Fermi gases with different spin into two

disconnected reservoirs, as depicted by the cartoon in fig.6.1b. The barrier in this scenario

acts as an infinite repulsive wall, preventing undesired tunneling. In this way, since now

the two spin-polarized Fermi gases do not interact, approaching the Feshbach resonance

by a magnetic field sweep would not result in any molecule formation before having trig-

gered the relevant dynamics. Hopefully, by removing the barrier after having reached a

target interaction strength, the dynamics would be dominated only by the effective repul-

sion among atoms on the upper branch of the system, beating so the detrimental pairing

mechanism.

For achieving this goal, we first produce a normal Fermi gas by forced evaporation at 300

G. As explained in section 4.2, by a suitable choice of the hyperfine levels, we can reach

temperatures lower than 0.10 TF . However, for performing the anticipated spin separa-

tion, we always need atoms to be equally distributed among the states |1〉 and |2〉 of the

hyperfine manifold. The reason is hidden in the magnetic field response of these hyperfine

states. As shown in fig.6.2, at low magnetic field, that is B ≤ 10 G, the energy dispersion of

|2〉 has a low-field seeking behavior, differently from that of |1〉. Consequently, the appli-

cation of a magnetic field gradient at this offset field would result in a force with opposite

directions for the atoms in these two levels.

A balanced and normal Fermi gas in the |1〉-|2〉 mixture is so very needed. Generally,

when evaporation is accomplished in the |1〉-|3〉 mixture, the |3〉 state is flipped into |2〉
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Figure 6.3 – Experimental sequence for separating the two spin domain on different sites of the trap, showing

the ramps for the Feshbach field (blue), the magnetic gradient (purple), the plugs (dark green) and the barrier

(acid green). The barrier removal ramp is that for the spin diffusion measurements.

by a RF π-pulse. This lasts 100 µs and it is applied at a field around 584 G for reducing

interaction effects during the transfer. With a |1〉-|2〉 mixture finally in the trap, we reduce

the offset field till a value of 1 G with a linear ramp of around 500 ms. Then we apply the

magnetic field gradient for spatially separating the atoms. The gradient is linearly turned

on in 40 ms till a peak value of 1 G/cm. After 150 ms the overlap of the two cloud is

zeroed. We so raise the barrier in the center of the trap by a linear ramp of 30 ms, till

a peak value of V0 ' 10EF . With such a high barrier potential, we do not observe at all

tunneling of atoms for several seconds. Once the barrier separates the two spin clouds,

we gently reduce the gradient and increase through a 500 ms linear ramp the Feshbach

field till the target value.

While the gradient is on, for avoiding significant spilling of atoms from the trap, we turn

on two additional plug beams, always at a wavelength of 532 nm and with a short (long)

waist of 50 (120) µm along the longitudinal (gravity) trap axis. They create an additional

repulsive potential on the edge of the trap, preventing the atoms from being spilled. The

plugs are raised before lowering the magnetic field to 1 G and turned off while this last is

increased.

By performing a round-trip similar to what usually done with optical lattices, we check

that no significant heating occurs. We separate the atoms as explained before and we

raise the field to 300 G. We measure the density distribution by absoprtion imaging after 5

ms of TOF. After the separation procedure, this is accomplished by turning off the barrier

in the trap center through a 50 ms linear ramp, always performed at an offset field of

300 G. Once the cloud has occupied the overall trap volume, we observe again the typical
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Fermi-Dirac distribution, with a fitted temperature equal within our experimental uncer-

tainty to that measured just after evaporation. The separation induces however a 20%

losses in atom number. Since we do not detect an increase of the degeneracy parameter

T/TF , we argue this procedure to spill just the hotter atoms at the trap edges, where the

gradient effect is more pronounced.

After this, the pictorial representation of the system we deal with is extremely close to the

expected ground state of an eventual ferromagnetic phase. This “adiabatic” realization of

the spin domains allows to target a certain Feshbach field, that is a certain kF a, without

exciting any breathing or density modulation over the clouds. Importantly, the raising of

the magnetic field does not result in any molecule formation while the barrier is still high.

Once this is removed, our non-interacting Fermi gases will be projected onto the many-

body scenario, that may result in the occupation, even if for a limited amount of time,

of the real upper branch of the system, without the presence of preformed molecules.

Our initialization in a domain-wall configuration would result in an ideal platform for the

investigation of Fermi gases with resonant repulsive interactions, reducing those detri-

mental mechanisms that tend to depopulate the upper branch.

6.2 Magnetism 1.01: The spin-dipole mode softening

Collective modes are a powerful tool for addressing the excitation spectra of a system but

also for disclosing the response of this to a small perturbation. Here, we investigate the

evolution of the spin-dipole mode in a repulsive Fermi gas as a function of interactions.

This mode is defined as the out-of-phase oscillation of two spin components. Being so

related to a spin perturbation, it is a sensitive probe for disclosing a magnetic instability,

similarly to the measurements of spin fluctuations.

In this framework, the sum-rule approach is a powerful method for evaluating an upper

bound of collective modes excited by a small (linear response regime) perturbation. By

using such a method [145], the frequency ωSD of the spin-dipole mode can be valuated

from the following formula:

ħh2ω2
SD ≤

m1

m−1
(6.1)

where mk =
∑

n |〈0|D|n〉|
2(En− E0)k are the moments of the strength distribution function,

or sum rules, connected to the perturbation operator D. For the case of the spin-dipole

mode, we have D =
∑

i↑ zi −
∑

i↑ zi, where zi is the longitudinal coordinate along the trap

axis.

Importantly, eq.(6.1) gives an upper bound to the lowest energy out-of-phase mode excited

by D [145]. In this case, the direct energy weighted m1 moment can be calculated from

commutators algebra, giving m1 = N ħh
2

2m , while the formula for the inverse energy weighted
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term m−1 reads as:

m−1 =
1
2

∫

dr z2χ(n) (6.2)

with n the density and χ the spin susceptibility.

Inserting this in eq.(6.1), gives:

ħh2ω2
SD =

N

2
∫

dr z2χ(n)
(6.3)

This allows to write down:
ω2

SD

ω2
0

'
χ0

χ(n)
(6.4)

where χ0 is the spin susceptibility of the ideal Fermi gas. For clarity, the density averaging

has been omitted in eq.(6.4).

The frequency of the spin-dipole mode univocally connects us to the measurement of the

spin susceptibility, that quantifies the tendency of the system to turn ferromagnetic. In a

homogeneous system the spin susceptibility χ is expected to diverge towards the ferro-

magnetic transition, signaling the occurrence of the magnetic instability. In accordance

with eq.(6.3), This would lead to a lowering, or more correctly, to a softening of the spin-

dipole mode at the ferromagnetic transition. Given the coupling among this collective

excitation and the spin susceptibility, the observation of the spin-dipole mode softening

would translate into a direct proof of the occurrence of a ferromagnetic instability.

The relation expressed by eq.(6.3) is valid only below the ferromagnetic transition, since

the sum-rule approach is alowed only for normal Fermi liquids, that is for a repulsive gas

in a paramagnetic phase. How the frequency ωSD evolves above the transition is not know

yet and cannot be inferred with the previous methods.

In an atomic gas experiment, where atoms are held in harmonic potentials, the trap in-

homogeneity would shrink the region of a diverging susceptibility only towards the trap

center. This would result in a renormalization of χ, lowering its divergence. As a first con-

sequence, the spin-dipole frequency would not decrease to zero at the critical interaction,

but a significant deviation from the trap frequency is still expected [145].

Effective Fermi energy and wavevector

Accounting for the trap inhomogeneity, we redefine the length and energy scales of the

system by a suitable trap averaging. We substitute the peak values of kF and EF with the

effective ones in the trap κF and εF , which are defined as it follows.

First, we approximate the density distribution of a Fermi gas of N atoms in half a har-

monic trap as half of the distribution of a 2N particle Fermi gas, spread all over the trap

potential, neglecting de facto the presence of the barrier. Given the atom number, the
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Figure 6.4 – Model for the definition of κF and εF . a) Effective density distribution of the cloud. b) Mean

interparticle spacing at the interface.

trap frequencies and the finite temperature of the cloud, we use the usual Fermi-Dirac

distribution nF (r, T/TF ) for evaluating the density profile. After this, the local Fermi

momentum reads as kF (r, T/TF ) = (6π2nF (r, T/TF ))1/3 and the local Fermi energy as

EF (r, T/TF ) = ħh2kF (r, T/TF )2/2m. The rescaled Fermi momentum κF is so defined by

averaging kF (r, T/TF ) over a small volume around the trap center, that is at the barrier

position at z = 0. This volume extends for one interparticle spacing (6π2/kF (x , y , 0, T/TF )

along the overall radial extension of the cloud, as shown in fig.6.4. The parameter εF is

defined in the same way.

We introduce this rescaling since the dynamics we probe is that of the overall interface

among the two spin domains. Averaging over this region gives us the effective energy and

length scales of our system.

6.2.1 Measurement of the spin-dipole mode

For measuring the spin-dipole mode, we use the same experimental scheme of fig.6.3 for

initializing the system in the domain-wall configuration. The only difference is related to

the barrier removal.
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Figure 6.5 – Time evolution of the center of mass (C.o.M.) of the two clouds after removing the barrier. The

spin dipole dynamics is obtained by subtracting the blue data (spin ↑ cloud) from the red data (spin ↓ cloud).
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Once the Feshbach field as reached the target value, the barrier is still as high as 10 EF .

For such a high peak value of the barrier, also the gaussian tails of the profile significantly

affect the density distribution of the cloud, repelling more and more the atoms from the

barrier center. With a barrier height V0 = 10EF , we measure an interface separation of the

two domains of 5 µm. At this point, we turn off in few µs the barrier, a timescale instan-

taneous respect to the typical ones of the trap. We follow the evolution of the centers of

mass zi, with i being the spin-label, by spin-selective resonant absorption imaging.

The two clouds start to drift one towards the other, with their relative distance d(t) = z↑−z↓
approaching zero at long evolution time, as shown in fig.6.5. The timescale over which

this diffusion happens will be the subject of another section, following below in this chap-

ter. Here instead, we address the oscillatory signal that is detectable at short evolution

times in the relative dynamics among the two centers of mass (see fig.6.5). The small-

amplitude out-of-phase oscillation on top of d(t) signals the excitation of the spin-dipole

mode. For determining its frequency νSD = ωSD/2π, we first fit the trend of d(t) with an

exponential decay, and then we subtract this to the data, obtaining the small-amplitude

oscillation ∆d(t) on top of the overall drift. By fitting the remaining data with a damped

sinusoidal oscillation, we evaluate the frequency νSD. Typical results for this procedure

are reported in fig.6.6a-c. The evolution of νSD respect to the bare trap frequency νz is

displayed in fig.6.6d, for two distinct temperature data sets, as a function of the interac-

tion strength, parametrized by the usual dimensionless parameter κF a. First, we focus

on the results of our coldest data set, that is a Fermi gas at a T/TF = 0.12(2). As shown

in blue symbols in fig.6.6d, the value of νSD almost equals the bare trap frequency νz in

the weakly-interacting regime (κF a→ 0+ and fig.6.6a). As interactions are increased, the
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spin-dipole frequency goes down to values as low as νSD ' 0.6νz at κF ' 1 (see fig.6.6b).

This decrease of νSD is accompanied by an increase of the damping of the oscillation

in ∆d(t) [146]. By a further small increase of the interactions above κF a ' 1, we ob-

serve a sudden jump of the spin dipole frequency which remains essentially constant from

κF a ≥ 1.1 up to the center of the Feshbach resonance, with a mean value νSD = 1.70(4)νz.

This is in very good agreement with theory models based on the hydrodynamics of two

spin clouds bouncing off each other [147] and previous measurements [148]. Similarly,

the damping of this oscillation does not significantly depend on interactions for κF a ≥ 1.1.

We connect the decrease of νSD with the parallel increase of the spin susceptibility χ. In

fact, our experimental observations are in very good agreement with a recent sum-rule

approach and knowledge of χ(κF a) from QMC calculations [145] for the trend of νSD

versus κF a, evaluated at zero temperature for a repulsive Fermi liquid. The theoretical

predictions are plotted in fig.6.6d as a dashed line for an initial overlap of 100% and as

a solid line for an initial overlap of 25%, in closer analogy to the experimental configura-

tion where the two clouds just partially mix at the trap center. The frequency of the 25%

overlap prediction is higher since only an inner unpolarised layer will contribute to the

frequency renormalization, the outer of the cloud being just a spin-polarized Fermi gas.

However, the critical point where the abrupt change in νSD is observed does not depend

on the initial configuration and the theoretical lines mark so a confidence range where

all of our experimental data fall in. The sudden change in νSD marks the occurrence of

a critical phenomenon and highlights the position of the critical value of κF a where the

ferromagnetic instability occurs.

It should be stressed that the experimental measurement of the spin-dipole mode starting

from a mixed phase, as assumed for the theoretical results at 100% overlap, would be

unfeasible, with pairing processes kicking in and preventing us to access the upper branch

physics [149].

For higher temperatures, the spin-dipole frequency always shows the trend discussed

above, but the critical point is shifted at higher κF a, consistently with the general ex-

pectations for higher T/TF [21]. This is always shown in fig.6.6d in purple symbols for a

T = 0.25(4)TF Fermi gas.

The importance of this measurement is that the softening of the spin-dipole mode tells us

that the system in the paramagnetic phase is becoming unstable and “would like” to turn

polarized. Our results strongly suggest that a para-to-ferro magnetic transition is actually

feasible.
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Figure 6.7 – Evolution of the axial and radial widths of the single-spin cloud during the spin-dipole measure-

ment. On the left axis we report the evolution of the axial width (blue symbols) and on the right axis the axial
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Radial modes: collisionless to hydrodynamic transition

During the measurement of the spin-dipole mode, we follow the evolution of the radial

and axial widths of each spin-polarized gas. Starting from half the overall trap potential,

the clouds tend to fill the entire longitudinal axis, following the decay of the initial spatial

separation shown in fig.6.5. This brings the axial width to increase in time, filling the

whole longitudinal extension of the trap, while at the same time the radial width dimin-

ishes. An example of both of the widths dynamics for a T = 0.12(2)TF Fermi gas is shown

in fig.6.7.

Out of the data in fig.6.7, we subtract an exponential trend and look for eventual mod-

ulations on top of that, similarly to the determination of νSD out of ∆d(t). Results for

this procedure are reported in fig.6.8a, where we investigated the evolution of both the

frequency and the damping of these oscillations on top of the overall trend.

The frequency νB of the investigated breathing mode shows a transition for increasing

interactions from a collisionless to a hydrodynamic regime. At low interactions the breath-

ing mode has a frequency around 2νz, consistent with the expectations for collisionless dy-

namics. While interactions are increased, the ratio νB/νz approaches the value of
p

12/5

predicted by the hydrodynamic regime. The transition already occurs for κF a ≤ 0.2, far

below the observed critical trend of the spin-dipole mode in fig.6.6. Parallel to this, the

decay time of this oscillation, that is the inverse of the damping rate, shows a minimum

in the same interaction range. Following the analysis in ref.[150], our system shows a

collisionless to hydrodynamic transition around κF a ' 0.2.

The importance of this observation is twofold. First, the softening of the spin-dipole mode

happens around κF a ' 1, well above the transition to the hydrodynamics regime. This
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Figure 6.8 – a) Evolution of the axial width modulation for increasing κFa (top to bottom). b) Frequency of

the breathing modes in units of the bare axial trap frequency νz . c) Evolution of the damping of the breathing

mode as a function of κFa.

means that our sudden change in the spin-dipole mode frequency is not coupled to the

breathing dynamics, since the transition for this already happened when considering the

relevant regime for the ferromagnetic instability. Second, the diffusion of one cloud into

the other, as shown in fig.6.5, happens in a much longer timescale respect to the char-

acteristic trapping periods. This means that the overlap of the two clouds is not 100%

during the investigated time regime reported in fig.6.8, as well as for the results in fig.6.6.

Despite this reduced overlap, the effect of interaction is sufficient to drive the transition

from a collisionless to a hydrodynamic regime. Moreover, as it will be further discussed

below, the stronger the interactions the longer the cloud diffusion, meaning an always

smaller overlap region for larger κF a. However, the interface region seems to dominate

the overall behavior of the spin-polarized cloud. This may explain as well our results for

the spin-dipole softening and their good agreement with the theoretical expectations for

a 100% overlap configuration.

6.3 Equilibrium spin dynamics

The previous experiments on the spin-dipole directly connected us with the determination

of a relevant thermodynamical quantity, the spin susceptibility, whose critical behavior
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Figure 6.9 – Full time evolution of ∆M at κFa =∞ at T = 0.12(2)TF .

drives the occurrence of the ferromagnetic instability. Here, we instead investigate spin

dynamics without exciting the spin-dipole mode, that is in a situation closer to equilibrium

transport for accessing the measurement of spin diffusion and transport. Ideally, if the

ferromagnetic phase were indefinitely stable, an adiabatic removal of the barrier would

trigger just a small re-adjustment of the population in the trap center, maintaining a net

magnetization in most of the trap volume.

Apart from the connection with itinerant ferromagnetism, the problem of spin transport

is relevant as well for other research lines in physics, from more applied ones such as

the creation of spintronics devices and their application in solid-state physics till more

fundamental ones, towards a major understanding of the role of impurities in media and

the search for phenomena beyond Landau’s Fermi liquid picture [151].

We start this measurement preparing the system in the usual domain-wall configuration

of fig.6.1b, with two spin domains separated by an impenetrable barrier and with the

Feshbach field adjusted at the target value. Initially, the barrier is as high as 10 EF , the spin

interfaces as large as 5 µm. Despite the domain distance being that thin, by quenching

the barrier we could trigger the small oscillations of the spin-dipole. For avoiding this,

we now ramp down the barrier in a two steps process, as shown in fig.6.3. During the

first step, the barrier is linearly ramped down from 10 EF to 2 EF in 30 ms, a timescale

essentially adiabatic respect to the longitudinal trapping period. Due to the decrease of

the barrier potential, the two clouds get closer to each other, with the interface distance

reducing from 5 to 1 µm, a distance very similar to the expected size of an eventual
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different interactions and temperatures

domain wall in a ferromagnetic state [152]. Moreover, during this first ramp down, atoms

have not started yet to tunnel. We quantify this introducing the magnetization observable

∆M = (M↑ −M↓)/2 with Mi = (Ni,L − Ni,R)/Ni, with the labels L and R referring to the left

and right reservoir, respectively. Meanwhile the barrier is brought from 10 to 2 EF , the

value of ∆M is stuck to one, with the two domains that have not started yet to probe each

other. After this, a second linear ramp turns off the barrier potential. The measurements

presented in the following have been obtained with a 5 ms linear ramp, a fast timescale

respect to the axial trapping period. As shown in fig.6.9, we can so discriminate among

two different dynamical regimes, one at short times after the barrier removal, focusing

on the eventual metastability of the upper branch and its properties, and one at longer

timescales, similarly to what investigated in ref.[148] and connected to the relaxation

from the upper branch.

6.3.1 Short time dynamics: exploring the upper branch

Here, we follow the evolution of ∆M , exploring different interaction and temperature

regimes, focusing on the short time dynamics, that is just after removing the barrier. Due

to the metastability of the upper branch, the physics related to it should be accessible only

at the beginning of the dynamics, the longer time frame being dominated by the already

occurred relaxation to the lower branch.

In fig.6.10a the time evolution of∆M is shown for a T = 0.12(2)TF Fermi gas for different

1/κF a. At zero time the barrier is as high as V0 = 2EF and in the following 5 ms is

turned off as described above. During this time, ∆M diminishes from its initial value

of 1. This corresponds to the two cloud filling in the barrier region. However, after

an initial mixing, we observe that the spin conductance may actually stop if interactions

are sufficiently strong. The plateau of the signal in ∆M corresponds to the condition of

zeroed spin current, which can be defined as Iσ = d∆M/d t. The stop of spin diffusivity
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would correspond to the ideal situation of two ferromagnets that repel each and do not

interpenetrate one into the other. However, this spin conductance plateau happens in a

limited time window, marked as τP . After this finite time τP , ∆M decays, similarly to

ref.[148].

For measuring τp, we fit the ∆M curve with a piecewise function of the kind:

f (t,τ1,τ2, x1, x2, A) = Aexp(−x/τ1) ·min(x − x1, 0)/(x − x1) ·max(x , 0)/x+

+Aexp(−x1/τ1) ·min(x − x2, 0)/(x − x2) ·max(x − x1, 0)/(x − x1)+

+Aexp(−x1/τ1)exp(−(x − x2)/τ2) ·max(x − x2, 0)/(x − x2)

(6.5)

which takes into account the initial mixing, the intermediate stage of conductance stop

and the final decay.

Following eq.(6.5), the duration of the plateau is given by τP = x2−x1. When no plateau is

present, the term x1 exceeds the time range of the data, loosing physical meaningfulness.

We so mark a zero in τP when this happens. The investigation of the τP duration, as a

function of interactions, parametrized by 1/κF a, is reported in fig.6.10b, for Fermi gases

at different T/TF .

As it can be seen, for any temperature reported plateaus show up only above a certain

interaction strength. Below this critical point, we do not observe any halt of spin diffusion.

For stronger interactions on the BEC side of resonance, the plateau lasts for longer time,

reaching is maximum around 1/κF a = 0. At the same time the duration of τP is enhanced

for colder samples and in addition, we do not observe any plateau in the spin diffusion

for T/TF ≥ 0.70. Moving towards the BCS side, the duration of these plateaus abruptly

decreases in a narrower region respect to the BEC side.

We understand this zeroing of spin conductance as an evidence of the presence of a domain

wall, which sharply separates the regions with unequal spin. Above a critical interaction,

the cost of adding a ↓ particle in a ↑ Fermi sea is too high and the clouds prefer to stay

in a phase-separated state. Adding a ↓ in a ↑ Fermi sea would result in the creation of

repulsive polaron [95], the quasiparticle associated with the upper branch of the many-

body problem, whose tunneling through the phase boundary may become energetically

unfavorable.

However, being the upper branch an excited state, the repulsive polaron would decay in

the low-lying energy levels, that is the attractive polaron or the molecule-hole continuum,

which, as the name suggests, are related to attractive interactions. The relaxation to the

lower branch justifies the limited window of the ∆M plateau, with the consequent mixing

of the two clouds and the diffusion of quasiparticles from both the branches that will wash

out the initial polarization. For better understanding this and capture the experimental

results, we developed a phenomenological model for describing the finite time window

where spin conductance is stopped, which is explained as it follows:
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• If a domain wall exists, a ↓ fermion would need to pay an energy σ > 0 to access the

other spin domain and form a repulsive polaron at E+.

• We assume σ = E+ − E+c where E+c is the energy of a free fermion at the interface.

This is kept in our case as a phenomenological parameter, but for a homegeneous

system at zero temperature we would have E+c = EF .

• The energy of the interface is obtained as Nintσ, where Nint is the number of atoms

at the interface of the two spin domains (z = 0), evaluated in a shell of thickness

equal to one interparticle spacing.

• From the upper branch, repulsive polarons relax into the lower branch at a rate Γ .

For any of these processes, an amount of energy ∆E = E+ − E− −σ is released into

the system at a rate Γ . E− is the energy of the attractive polaron.

• The value of E+,E− and Γ are derived from non-perturbative theoretical results in

[94]

• When an amount equal to the tension of the domain wall is released into the system

the domain wall melts down. This is given by the condition:

Nintσ = (E+ − E− −σ)ΓτP (6.6)

• Consequently, after eq.(6.6), we have for τp:

τP =
Nint(E+ − E+c)
Γ (E+c − E−)

ħh
εF

(6.7)

In a homogeneous system and in the impurity limit (i.e. N↓ � N↑), E+c = EF is expected

for the realization of a fully-saturated ferromagnet. However, we leave E+c as free fitting

parameter in eq.(6.7) for the data in fig.6.10b. As it can be seen, our model for the decay

of the repulsive polaron and the consequent melting of the domain wall seems to correctly

capture the trend of the plateau duration on the BEC side, for the different interaction and

temperature regimes. On the BCS side, the model complete fails to reproduce the results.

While the measured τP decreases to zero already for 1/κF a ' −0.5, the theoretical model

predicts a monotonous increase for τP from the resonance to the BCS side. This is mainly

due to the increase of Γ predicted by the theoretical approach in ref.[94]. This difference is

ascribed to the properties of our initial state, the synthetic ferromagnet. We start the mea-

surement with two disconnected fermionic system, each one occupying all the levels up

to the Fermi energy. The energy of the repulsive polaron instead increases monotonically,

approaching 2εF away from resonance on the BCS side. This means that the upper branch

on the BCS side is too high for our system to occupy it. When the dynamics is started, our
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Figure 6.11 – Evolution of the spin-dipole mode frequency (red symbols) versus the occurrence of the ∆M

plateau (red symbols) for a Fermi gas at T = 0.12(2)TF . Theory for the spin-dipole mode from [145] (dotted

red line) and first order prediction for the BCS side (dashed red line). The gray shaded area marks the limit of

the ferromagnetic phase.

two non-interacting Fermi gases are projected onto the many-body landscape. Due to the

energy distribution of the upper branch, we argue that on the BEC side the system actually

occupies this excited level, while becoming energetically not allowed on the BCS side. The

upper branch is populated only slightly in a narrow region on the BCS side, realizing so a

counter intuitive situation of a repulsive gas with a < 0. In a one dimensional system, the

occupation of the upper branch for negative scattering length would realize the so-called

super Tonks phase, as experimentally observed in [153]. Given the previous energetic

arguments, our system populates from the start the lower-branch in the deep BCS regime.

These considerations are further supported by the comparison among the spin-dipole fre-

quency trend and that of the plateau, plotted in fig.6.11 for a Fermi gas at T = 0.12(2)TF .

First and most important, the softening of the spin-dipole mode is coincident with the ap-

pearance of the plateau in ∆M . While the paramagnetic phase is favored, νSD decreases

and no plateau is observed. Once νSD jumps above the critical point, we observe a τP > 0.

The existence of the plateau marks the occurrence of the ferromagnetic state, even if in a

metastable sense. Even on the BCS side, in the narrow region where νSD ' 1.7νz, we found

a finite τP . In the deep BCS limit, we observe a reduction of the spin-dipole frequency.

This trend is expected, since for attractive interactions the spin susceptibility is expected
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to be lower than that of an ideal Fermi gas, meaning an higher νSD. For κF a→ 0−, χ → χ0

and so the spin-dipole frequency should approach the bare trap one. We find very good

agreement among our data and that obtained by a first-order theoretical approach. How-

ever, this perturbative treatment should not be very reliable in the strongly-interacting

limit and we should consider it only as a guide to the eye. The lowering on the BCS side

of the spin-dipole frequency is another hint towards the occupation of the lower-branch

from the very beginning, since the feature of a normal Fermi liquid with attractive inter-

actions are found. For the BEC side of the resonance, we argue that the observation of a

plateau is indeed an effect of the genuine repulsive interactions, associated to the energy

cost of repulsive polaron to cross a phase boundary.

6.3.2 Phase diagram of the metastable ferromagnetic state

The measurement of the spin-dipole mode softening is considered the true smoking gun

about the instability of the Fermi liquid, occurring at a critical value of the interaction. In

fig.6.11, we show the softening to be locked to the observation of the conductance plateau

in the spin dynamics investigation. This last measurement requires considerably less ex-

perimental effort respect to the spin-dipole one, but equivalently shows the instability of

the Fermi liquid.

After this, we have investigated the emergence of the conductance plateau for different in-

teractions and temperature regime. In the temperature-interaction plane, we pinpoint the

critical points where the plateau conductance starts to occur, that is τP > 0. This results

in the determination of the critical line that separates the para from the ferro magnetic

state. Results are reported in fig.6.12. For the data at T = 0.12(2)TF and T = 0.25(5)TF ,

the onset of the finite plateau is coincident with the critical behavior of the spin-dipole

frequency.

Within the framework of Landau’s Fermi liquid theory, the spin susceptibility at finite tem-

perature can be written as:

χ−1(T ) =
2π2

m∗k f
(1+ F a

0 +π
2/12(T/TF )

2) (6.8)

The additional quadratic term in the temperature respect to zero temperature case is a sig-

nature of Fermi liquid theory. For T � TF , the correction is due only to free quasiparticles

which is proportional to the density n and therefore to T2, similarly to the Sommerfeld

expansion. After this, the critical line on the temperature-interaction plane for a Fermi

liquid is expected to follow the trend:

�

T
TF

�

'
Æ

κF a− (κF a)c (6.9)
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Figure 6.12 – Phase diagram on the temperature-interaction plane of the metastable ferromagnetic state. The

solid line is a low temperature fit (T < 0.3TF ) with a power law function, which gives a critical exponent

α = 0.52(5) and a zero temperature critical interaction (κFa)c = 0.80(9). The dashed line is a continuation

of this fit, assuming no plateau for T > 0.7TF (right arrow).

where the term (κF a)c indicates the critical interaction at zero temperature, which in the

original Stoner model is (κF a)c = π/2.

The low temperature data (T < 0.3TF ) have been fitted with a power law function of the

kind:

y = A · (x − x0)
α (6.10)

with y for the temperature and x for the interaction term.

We obtain a value for the zero-temperature critical interaction (κF a)c = 0.80(9), in good

agreement with recent QMC calculations, which place this critical parameter in the range

0.8 ≤ (κF a)c ≤ 0.9 [29, 89]. For the critical exponent we instead obtain α = 0.52(5), in

good agreement with the expectations for the Fermi liquid theory of α= 1/2.

The line in the high T - high κF a region of fig.6.12 is extedend for including the absence

of plateau at T ≥ 0.7TF . We use an exponential curve which smoothly connects with the

fitted line of eq.(6.10) and asymptotically approaches the T = 0.7TF line.

Our results could be a benchmark validation for those theoretical approaches that seek

the boundaries of the ferromagnetic instability. However, it should be stressed that we do

not realize the proper phase of the itinerant ferromagnetism, since the eventual ferromag-

netic state is washed out by detrimental processes at the interface of the two spin domains.
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Figure 6.13 – Evolution of ∆M(t) for different interactions at a T/TF=0.12(2).

Rather, our results show that the regime of ferromagnetic instability is achievable as well

for ultracold atomic Fermi gases and should be regarded as a starting point for the stabi-

lization of the ferromagnetic phase. As instance, this could be achieved by exploiting the

kinetic energy quench given by optical lattices or disorder [154, 155], which are expected

to lower the critical interaction to a regime where the upper branch is sufficiently stable,

or by using proper mass-imbalanced fermionic mixtures where the decay from the upper

branch is naturally suppressed [118].

6.3.3 Long time dynamics: spin drag in the lower branch

The evolution at longer times, that means after the plateau transient as disappeared, is

instead connected to the scattering properties of the quasiparticles that may populate the

different branches. Their diffusion through the medium washes out the initial spin polar-

ization, bringing the system to a vanishing final magnetization. The characterization of

the timescale and how this diffusion happens may connect us to the microscopic scattering

properties of these quasiparticles.

Following the previous arguments, naively one would expect that on the BCS side the

diffusion is dominated by attractive polarons, since the upper branch is forbidden for en-

ergetic arguments. On the BEC regime instead, one expects the diffusion to be connected

to that of repulsive polarons, since these quasiparticles are well defined away from the

resonance, that is have a high residue Z and a long lifetime, whit the lower branch too

low in energy for being populated. In the strongly interacting regime, quasiparticles on

both branches will contribute to the overall diffusion, with a continuous relaxation from

the excite level to the ground one.

The scattering properties of these quasiparticles in a medium can be investigated devel-
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oping a diffusion equation for the relative dynamics of the center of mass of the two spin

clouds d(t) = z↑ − z↓ or equivalently for ∆M(t). This can be modeled starting from the

Boltzmann equation [156], obtaining two coupled equations as:

∂t(z↑ − z↓)− (v↑ − v↓) = 0 (6.11)

∂t(v↑ − v↓) +ω
2
z (z↑ − z↓) = (∂t(v↑ − v↓))coll (6.12)

where vi is the average velocity of the i-spin component cloud and (∂t(v↑ − v↓))coll the

collisional term. Following [156], the collisional term can be written as:

(∂t(v↑ − v↓))coll = −ΓS(v↑ − v↓) (6.13)

where ΓS is the spin drag coefficient.

Given this, the equation of motion can be written as:

d̈ + ΓS ḋ +ω2
z d = 0 (6.14)

The evolution of d(t) and ∆M follows that of a damped oscillator, with a damping rate

related to the spin drag coefficient ΓS, which encodes the diffusion of a quasiparticle in the

medium.

By fitting our experimental decaying curves, as those in fig.6.13, with the solution of

eq.(6.14), we investigate the evolution of the spin drag in units of εF/ħh as a function of

temperature and interactions. Data are reported in fig.6.14 and are compared with a theo-

retical model for an impurity moving in a homogeneous Fermi gas based on kinetic theory

and T -matrix approximation for evaluating the scattering cross section of the impurity it-

self with the medium. Our results are in very good agreement with the theoretical model,

in particular in the high temperature regime (T ≥ 0.3TF in fig.6.14b, since the T-matrix

approximation is known to be less accurate at low temperatures. Our data also capture the

asymmetry of the spin drag coefficient across the Unitary limit, with the maximum being

shifted at a > 0, similarly to other recently experimentally determined transport coeffi-

cients such as the shear viscosity [157] and the transverse demagnetization [158, 159].

This asymmetry is progressively washed out for increasing T/TF , in agreement with the

expectations for a non-degenerate Fermi gas or Boltzmann gas, where the drag is expected

to be a2 dependent [148, 160, 161].

6.4 Pairing instability and molecule formation

As extensively anticipated, one major issue that hindered the investigation of Fermi gases

with strong repulsion is represented by the pairing instability [10, 11, 144]. Repulsive

interactions can be achieved only when sitting on the upper branch of the system, which in
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Figure 6.14 – Evolution of the spin drag coefficient ΓS in units of εFħh for different temperatures across the

Feshbach resonance. a) Higher temperatures. b) Lower temperatures.

turn is intrinsically metastable, being an excited state of the low lying BEC-BCS crossover

superfluid state. The paired phase represents the true ground state of the many-body

system, thus the upper branch will inevitably show a tendency to relax into it via decay

processes, both of two and three-body character.

Our initial domain-wall configuration has to interpreted as the only one to overcome

the pairing instability, which in a paramagnetic homonuclear mixture close to a broad

Feshbach resonance is the dominating mechanism [21, 96, 144]. With this, we are

able to contain the system tendency towards pairing, allowing for the investigation of

the metastable upper branch. Furthermore, since our phenomenological model seems

to capture the observed plateau, attractive polarons, rather than pairs, seem to be the

preferential decay products in our system, at least in the strongly interacting regime.

Nonetheless, we should rule out that the observed features, both in the mode softening

and the spin transport measurements, are ascribable to pairing effects.

Typically [11], the counting of molecules is achieved via a rapid magnetic field ramp

technique. After some evolution time at a target field close to the Feshbach resonance

center, where molecules could be formed via recombination processes, two distinct mea-

surements are performed. In the first, performed close to the Feshbach resonance center,
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Figure 6.15 – Sketch of the technique employed for the determination of the molecular fraction. The incident

photon may be absorbed by one spin component of the pair, resulting in the dissociation of this last and with

the two bare atoms acquiring a considerable momentum

the population of both atoms and molecules can be monitored by the same absorption

imaging technique, since the molecular binding energy is here much smaller than the

linewidth of the imaging transition, preventing them to be distinguished from bare atoms.

In the second instead, the imaging pulse is taken after a rapid sweep of the magnetic field

to zero. In this way, the weakly bound pairs created at the Feshbach center are converted

into deeply bound molecules, which become transparent to the imaging light. From the

differential analysis among the two images, the molecules population can be recovered.

Unfortunately, our setup does not allow to perform fast (∼102 G/µs) ramps to low fields,

hence we employed a different protocol to monitor the presence of molecules in the sys-

tem. This is based on acquiring, within a single experimental run, two subsequent absorp-

tion images, by means of 4µs long pulses resonant with the ↑ and ↓ states, respectively,

and separated by 300µs. If no molecules are present, the effect of the first imaging pulse

resonant with the ↑ state on ↓ atoms is negligible, the ↑ imaging light being off-resonant

to the ↓ component. Furthermore, the short delay between the two pulses greatly limits

the effect of heating of the ↓ cloud associated to collisions with escaping ↑ imaged atoms.

The effect of the first imaging pulse is in turn completely different if molecules, rather

than atoms, are considered. Since the ↑ − ↓ dimers are only weakly bound, the first imag-

ing photon, resonant with the ↑ optical transition, dissociates the bound state into two

atomic products, each of which symmetrically acquires a significant momentum. The lat-

ter is associated to the density of states of the two outgoing atoms, to the binding energy

of the dimer (negligible in this case), and to the photon momentum[119] ħhkL, as shown

in fig.6.15. The increase of the cloud size detected by the second imaging pulse is thus

proportional to the amount of molecules in the system. We therefore monitor the increase
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of the radial width after the first pulse for different interaction strengths and different

evolution times during the spin diffusion.

We developed a simple model to link the molecular fraction to the increase of the cloud

width after the first pulse, following the experimental protocol described above. In gen-

eral, the size of a trapped cloud can be written as:

〈x2
0〉=

2〈U〉
mω2

(6.15)

Where 〈U〉 is the potential energy of one atom weighted over the density distribution of

the cloud, the latter being eventually modified by interaction effects. In the case of a pure

gas of dimers, application of an imaging pulse resonant with the ↑ component causes the

dimers to dissociate with a certain transfer of energy E1 to the ↓ component. Since the

photon energy is always larger than the binding one, we assume E1 to be independent

from the molecular binding, and hence independent from κF a.

According to the same argument of Eq. (6.15), the width measured through the second

pulse, following the first, can be written as:

〈x2
1〉=

2〈U + E1〉
mω2

(6.16)

If the gas is a mixture of free atoms and molecules, the mean size is set by:

〈x2〉=
Na〈x2

0〉+ Nm〈x2
1〉

Na + Nm
(6.17)

Defining the molecular fraction fm = Nm/N , we get:

〈x2〉=
2

mω2
〈U〉+

2
mω2

〈E1〉 fm = 〈x2
0〉+

2
mω2

〈E1〉 fm (6.18)

When starting from a pure molecular sample, fm = 1, we would have:

2
mω2

〈E1〉= 〈x2
1m〉 − 〈x

2
0m〉 (6.19)

We can therefore express the molecular fraction as:

fm =
〈x2

1〉 − 〈x
2
0〉

〈x2
1m〉 − 〈x

2
0m〉

(6.20)

The denominator of Eq. (6.20) can be experimentally determined by applying the double-

pulse imaging technique on a BEC-BCS crossover superfluid at a temperature T/TF < 0.1,

which ensures a molecular fraction fm ' 1 on the BEC side of the resonance. The change

of the density distribution when moving from the unitary limit to the BEC one is accounted

by renormalizing the measured radial width by the average density of the gas, evaluated

with the conventional single-pulse absorption imaging.

The numerator of Eq. (6.20) is evaluated by measuring the radial size of the cloud 〈x2
1〉 at
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Figure 6.16 – Molecule fraction derived from the double image technique. The peak of molecule formation

appears below the measured critical interactions.

different evolution times of the dynamics. Conversely, 〈x2
0〉 is the size measured through

the first imaging pulse at the corresponding times. Results of this analysis are reported

in Fig. 6.16, for various interaction strengths and different diffusion times, for a repulsive

Fermi gas mixture initially prepared at T/TF =0.12(2).

The general trend for these measurements is interpreted as follows: starting from the

weakly repulsive regime, the upper branch is very long-lived, and despite rapid mixing of

the two spin clouds only a small number of molecules is formed. Increasing interactions,

the decay rate of the upper branch monotonically increases[21, 94–96]: hence, despite

a parallel increase of the spin drag coefficient[146, 148], which tends to slow down the

interpenetration and to reduce the spatial overlap of the ↑ and ↓ clouds, the molecule

formation becomes more sizable, reaching a maximum near 1/(κF a) ∼ 1.3. However, as

one accesses the strongly interacting regime where the magnetic susceptibility is increas-

ing, the molecule formation is again strongly reduced, highlighting the resistance of the

system to mix the two spin components. The trend at large κF a values, observed also after

long evolution times even when the spatial overlap of the two clouds has considerably

increased, suggests that also at small values of local population imbalance the system may

be a Fermi liquid state of attractive polarons, rather than a Bose gas of dimers. The Fermi

liquid state might be favored by our way to initialize the system dynamics, and also by the

temperature increase associated to the exothermic decay process from the upper to the

lower branch.

Importantly, for timescales below 100 ms, over which both the plateau measurements

and the spin-dipole oscillations were acquired, the observed heating is relatively small and
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the derived molecule fraction remains below 10% for interaction strengths exceeding the

critical value for the stop of diffusion to occur. We therefore conclude that neither the be-

haviour of the spin-dipole frequency nor the appearance of plateaus in the spin diffusion

can be strongly influenced by dimer formation. For what concerns the measurement of

the spin-dipole frequency, the possible development of a sizeable cloud of molecules is ex-

pected to strongly reduce the amplitude of the out-of-phase oscillation. While some addi-

tional damping associated to pairing effects cannot be excluded in our frequency measure-

ments, we do not envision how the observed dynamics could arise from a lower-branch en-

ergy functional, with attractive interactions forming bound pairs[11, 147]. This is equally

true if an attractive Fermi liquid, rather than a Bose gas of pairs, would be considered: for

this latter system, both experimental studies[11, 162] and theoretical calculations[163]

indicate that the spin susceptibility monotonically decreases when moving from the BCS

to the BEC side of the crossover, vanishing at kF a ' 1. This in turn would correspond to a

spin-dipole frequency monotonically increasing when passing from BCS to BEC side along

the lower branch, a qualitatively different trend with respect to the one revealed in our

experiment.
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CHAPTER 7

Conclusions and outlook

Within this thesis we have described the construction of an experimental apparatus for the

production of ultracold degenerate samples of atomic 6Li Fermi gases. We have realized a

flexible quantum simulator to investigate over the transport and dynamical properties of

strongly interacting fermionic systems. We have focused on the exploration of some fun-

damental aspects of paradigmatic phenomena, namely superfluidity and ferromagnetism,

allowing comparison with state-of-the-art theoretical approaches.

We have first probed fermionic superfluidity by investigating the coherent Josephson dy-

namics in these systems. Importantly, the Josephson effect was used as a probe of the

strongly interacting condensate states across the whole BEC-BCS crossover and of their

inner order parameter. Further investigation in this regime may allow to determine the

fermionic superfluid gap of these fermionic superfluids or to observe other dynamical

phases, such as for instance Shapiro resonances [164].

In the second part of this thesis, we have investigated repulsive Fermi gases on the upper

branch of a Feshbach resonance. Our observation of the softening of the spin-dipole mode

and the investigation of spin currents point out that a para-to-ferromagnetic phase tran-

sition is possible, for critical values of interaction and temperature, as first envisioned by

Stoner [9] in his minimal model of a homogenous gas of itinerant fermions. Interesting

future extension of our studies could allow us to tackle other fundamental issues, such as

the order of the occurring phase transition, even in the presence of weak optical lattices

or controlled disorder.

The results we have obtained within this work may pave the way for the exploration

of similar phenomena in situation where quantum correlations and fluctuations are en-

hanced, as for instance in two-dimensions (2D) [165, 166].

In the last period of this thesis, an optical scheme which exploits a TEM01 beam has been

developed for trapping the atoms in a single two-dimensional layer. This is a physical

scenario extremely relevant for strongly-correlated fermionic phenomena such as high-TC

superconductivity. The large optical access of our apparatus will enable an accurate mi-

croscopic investigation over the dynamics of the system. Moreover, the tailoring of the
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trapping potential will allow to explore a regime at the dimensional crossover from three-

to-two dimensions, a scenario difficult to target in condensed matter systems and where

the increase of the critical temperature of the superfluid state is expected to occur [167],

similarly to the phenomenology of cuprate superconductors.

The rich possibility given by optical manipulation will allow to further explore ideal mod-

els of condensed matter, from the usual Fermi-Hubbard model with single-particle reso-

lution [168], to more exotic ones, as for instance the trapping in a toroidal configuration

in analogy to SQUID devices in solid-state physics. This may be achieved by the imple-

mentation of optical elements, such as a Digital Mirror Device (DMD) or a Spatial Light

Modulator (SLM), which may allow the creation of microscopically tailored optical po-

tentials when combined with our high-resolution optical systems. Very recently, we have

started to implement the DMD device for replacing the rigid optical scheme of the barrier

potential with a more versatile one.

An extreme fertile ground for experimental exploration in quantum gases is represented

by the realization of synthetic gauge potentials [169] and synthetic spin-orbit coupling

[170, 171]. The implementation of these on a strongly interacting 6Li quantum gas may

lead to the exotic realization of a topological superfluid. Recently, a theoretical approach

showed the possibility of using the Josephson effect [172] for identifying the presence of

the elusive Majorana fermion in a topological superfluid system.

Quantum gases experiments are really entering into the regime on the edge of our theo-

retical knowledge, with the possibility to push its boundary a bit further and to artificially

create new states of matter nowadays only in theorists mind [173, 174].
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APPENDIX A

6Li Level structure

Hyper-fine structure
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D1=670.977 nm

Figure A.1 – Hyperfine structure of 6Li.

The hyper-fine structure of Li6 is sketched in the figure A.1. The ground state is

described using conventional spectroscopic notation with momentum quantum numbers

L=0 (s-wave orbital), S=1/2 and I=1. The D2 and D1 line are reported and their relative

splitting.
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High magnetic field behavior

Here we report in fig.A.2 the energy shifts of the hyperfine levels of the 6Li ground state as

a function of the applied magnetic field. The usual labeling |1〉, |2〉, ... of the ground-state

levels is also shown in fig.A.2.
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Figure A.2 – Behavior of the 2S1/2 level as a function of the magnetic field.
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