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Introduction

The interplay between disorder and interactions lies at the heart of many physical
phenomena and its study has recently aroused more and more interest. In fact,
disorder is ubiquitous in nature, since any physical structure is disordered if observed
on small enough length scales (e.g., impurities in crystals, fractals surfaces, etc), and
it strongly affects the transport properties of a system. Non-interacting particles can
be localized by disorder; the celebrated phenomenon of Anderson localization6 has
been observed in the last fifty years in many physical systems. On the other hand,
interactions play a fundamental role in the physics of condensed matter, altering
the effects of disorder; for instance, the large electron-electron and electron-phonon
interactions prevent a direct observation of the Anderson transition for electrons in
a crystal. Despite its relevance, the fate of the localized phase in the presence of
nonlinearities is still debated, and new unconventional behaviors are expected to
appear.

The case of bosons is a paradigm of disorder-related phenomena. Here, inter-
actions alone lead to superfluidity, a peculiar conducting state of matter, normally
resistant to disorder. The combined effects of disorder and interactions strongly
affect superfluidity, leading to a new localized quantum phase, the so-called Bose
glass. This particular glassy phase was initially predicted in 1988 by Giamarchi and
Schulz 42 , treating the disorder as a small perturbation to the strongly-correlated
1D bosonic system. In this context, a large repulsion between bosons plays the role
of the Pauli exclusion principle in a fermionic system, cooperating with disorder in
destroying superfluidity. As a consequence, the Bose glass phase can be described as
an Anderson localized Fermi gas in a weak disordered potential37, and is expected42,37

to behave as a compressible insulator, thus characterized by the absence of a finite
energy gap in the excitations spectrum.

While large interactions cooperate with disorder in localizing bosons, weak inter-
actions tend to establish coherence between the single-particle (Anderson) localized
states, thus competing with disorder and possibly leading to a delocalizing transition
from an insulator to a superfluid. In this regime, the resulting Bose glass phase
is well described by several coherent puddles weakly coupled through the disorder
potential. Despite a flurry of theoretical studies during the last 25 years, how exactly
this glassy phase develops and connects to the strongly-interacting regime is still
highly debated.

Also on the experimental side, a characterization of the Bose glass from weak
to strong interactions is still missing. Recently, doped quantum magnets immersed
in a magnetic field93 provided the evidence of a gapless strongly-correlated Bose
glass but, lacking the ability to simultaneously control disorder and interactions,
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they did not probe this glassy phase in the whole phase diagram. This control is
instead possible in ultracold atomic systems. In these systems, a laser light can
create optical potentials for the atoms, enabling to engineer controllable and tunable
disordered potentials. Pioneering experiments32,68,39 studied the disordered phases
of a 87Rubidium BEC by measuring its spectral response and its transport properties
at strong interactions, distinguishing between insulating and superfluid regimes.
However, they could not discriminate the Bose glass from a more conventional
gapped insulator (a disordered Mott insulator), because of the impossibility to
easily control the atom-atom interaction and the inhomogeneity due to the confining
potentials. Other atomic species, such as 39Potassium, do provide the possibility to
easily tune the inter-particle interaction by means of Feshbach resonances. Exploiting
this feature, some works79,26 explored the coherence properties of a 39Potassium BEC
in a disordered lattice, providing the experimental diagram in the disorder-interaction
plain, but only at weak interactions.

In this thesis we describe an extensive experimental investigation of the disordered
bosons problem. We employ a degenerate Bose gas of 39Potassium atoms with
tunable interactions in a quasiperiodic lattice, and, for the first time, we explore
the whole disorder-interaction plane at low temperature, exploiting our ability to
control both the energy scales. We realize the one-dimensional system, the most
studied in theory. We study both the equilibrium and the transport properties of the
system, by combining various experimental techniques. In particular, we study three
experimental observables: the system coherence, the mobility and the excitation
spectrum. Cold atoms experiments do not allow to measure phase transitions, due to
the unavoidable inhomogeneity and the finite temperature of the samples, but allow
to distinguish the different phases. Combining coherence and transport measurements
we give evidence of an insulating regime with a peculiar reentrant behavior from
weak to strong interactions, surrounding a conducting one. At strong interactions,
we use an excitation technique to spectrally resolve a gapless insulator well described
by the Bose glass theory at low-temperature, and a disordered Mott insulator. We
test the spectral response of the insulating regimes in the whole interaction range
and we find a contrasting behavior at weak and at strong interactions, confirming a
different interplay of interaction and disorder in the two regimes. We compare our
finite-T observations to the established T=0 theory, finding good agreement. The
theoretical studies are performed in cooperation with Guillaume Roux and Thierry
Giamarchi, using a combination of density-matrix renormalization group (DMRG),
exact diagonalization and fermionization approaches, adapted to the inhomogeneous
experimental system.

The thesis is organized as follows. In Chapter 1 we give the intuitive physical
picture of the phases predicted for interacting disordered bosons (the so-called dirty
bosons). We briefly discuss their experimental realization with quantum magnets
and with ultracold atoms. In Chapter 2 we illustrate the experimental apparatus,
describing how the physical properties of the system can be tuned and controlled,
especially the interaction energy and the disorder strength. In Chapter 3 we introduce
few theoretical models which describe the experimental system.

The last three chapters report the experimental observation of the dirty-bosons
regimes. In Chapter 4 we explore the coherence properties of the system, by measuring
the atomic momentum distribution in a wide range of disorder and interaction. We
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provide the first full experimental disorder-interaction diagram showing a broad
crossover between coherent and incoherent regimes. We probe the different phases,
by comparing the experimental diagram with numerical studies which account the
system inhomogeneity, and with finite temperature simulations.

In Chapter 5 we measure the mobility and the momentum-dependent transport
of the system, in the single lattice and in the disordered potential. We observe a
crossover from a weakly dissipative regime at small momenta to a strongly unstable
one at a disorder-dependent critical momentum. We compare the experimental results
with theory suggesting a contribution of quantum phase slips to the dissipation. The
combination of these measurements with the coherence diagram give the evidence of
a reentrant insulating (incoherent) regime surrounding the superfluid phase in the
disorder-interaction diagram.

Finally, in Chapter 6 we test the excitation spectrum of the insulating regions. In
the strongly-correlated limit this measure allows to differentiate two insulating regimes:
the Bose glass and the disordered Mott insulator. We compare the experimental
response with the low-T theory for the Bose glass, finding good agreement, consistent
with a gapless insulator. At weak interactions the disordered phase response is quite
different suggesting the presence of a distinct glassy phase.





Chapter 1

Interacting bosons in disorder

Disorder may have very strong effects on quantum fluids. The problem of the
metal-insulator transition in interacting Bose systems is not easily addressable neither
in theory nor in experiments. At the end of the eighties some theoretical studies
tackled the problem using similar techniques to those employed in localized fermionic
systems. Subsequently, many theoretical approaches have been developed, predicting
the onset of a new insulating phase, the Bose glass, but the actual shape of the
full phase-diagram is still debated. In this chapter we give the intuitive physical
picture of the phases expected to appear in an interacting Bose gas in disorder. Few
theoretical models will be discussed more in detail in Chapter 3.

1.1 The weakly-interacting Bose glass

Actually, the problem of interacting disordered bosons is very general, concerning
a variety of real physical systems, such as superfluid Helium in porous media21,22,
Cooper pairs in disordered superconductors82, and cold atoms in random optical
potentials32,68,39. Basically, it consists in addressing the quantum phases induced by
disorder in fundamental states of matter, such as superfluidity or superconductivity.
In fact, at zero temperature the de Broglie wavelength associated to the bosonic
particles is larger than the inter-particles separation. The bosons behave as coherent
waves and they all occupy the same quantum state, giving rise to a Bose Einstein
condensate (BEC). In the presence of interactions this macroscopic phenomenon
imply superfluidity, a peculiar fluid state characterized by the complete absence of
viscosity. If the condensed particles are Cooper pairs, the resulting gas is instead a
superconductor. At small velocity no excitations can be created in the superfluid
flow. Indeed, a nonzero critical velocity (vc>0) for the creation of excitations was
predicted by Landau, corresponding to a linear spectrum in the superfluid dispersion
relation.

In the absence of interactions, the bosonic system is not superfluid (vc=0), since
its dispersion is that of free particles, E = p2/2m, with m the atomic mass and p
the momentum. The system is in fact less resistant to excitations. Nevertheless
it is still a BEC, thus delocalized and describable as a coherent quantum state.
The presence of disorder strongly influences the transport properties of the system,
causing its localization. This phenomenon was formerly predicted by Anderson6

5



6 CHAPTER 1. INTERACTING BOSONS IN DISORDER

Figure 1.1: Schematic of the Anderson localization7. (a) Anderson localization can
be though in terms of particles tunneling. In an ordered lattice particles can tunnel
between neighboring sites, freely propagating across the lattice. If the regularity of the
lattice is broken by randomly changing the depth of the potential at each lattice site, the
tunneling is suppressed and particles localize with an exponential decaying wave-function.
(b) From another point of view, Anderson localization can be understood in term of
destructive interference of waves propagating in a medium with large concentration of
randomly distributed scatterers.

in 1958; Anderson studied the transport of generic ‘entities’, originally electrons,
in a crystal by using a single particle tight-binding model with random on-site
energies, finding localized eigenstate. The onset of localization can be understood by
considering the quantum-wave nature of particles. In this wave picture, the Anderson
localization relies on the destructive interference of several multiple scattering paths,
which prevents any diffusion, exponentially localizing in space the wave-functions,
see Fig. 1.1. In fact the Anderson localization is a very general phenomenon and
has been observed in many different physical systems, such as disordered metals
and superconductors55,82, light in random media92,89,83, sound waves48, ultracold
atoms10,79. While in 1D any finite disorder provides localization, in 2D and 3D
systems a metal-insulator transition occurs, and there exist mobility edges for the
particle energy above which the disordered system is delocalized.

In this context the presence of a weak repulsive inter-particles interaction can
weaken the Anderson localization, restoring phase coherence between localized state.
As sketched in Fig. 1.2, the presence of interactions breaks the orthogonality of
localized states; the energies of different states can become degenerate due to the
interaction energy and their shape might change, giving rise to the formation of locally
coherent fragments and allowing the transfer of population between neighboring
states. Generally, if the interaction energy is smaller than the disorder strength
(i.e. the standard deviation of the energies in the disordered potential), phase
coherence cannot be restored in the whole system. In this case a new insulating
phase, composed of many local superfluid puddles, arise from the competition between
disorder and interactions, i.e. the weakly-interacting Bose glass (or sometimes also
called fragmented BEC). This glassy phase is characterized by a large correlation
length, i.e. is coherent on large length scales. Indeed, the main mechanism restoring
coherence in the localized system is the resonant coupling due to the interaction energy,
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Figure 1.2: Schematic of the interaction-induced delocalization26. (a) In a very weakly
interacting system with sufficiently large disorder, the eigenstates are exponentially localized,
populating the lowest-energy states. (b) When the energies of different states becomes
degenerate due to repulsive interactions, their shape modifies, giving rise to the formation of
locally coherent fragments (weakly-interacting Bose glass). (c) The global phase coherence
is restored only at large interaction strengths, where the entire system forms a coherent,
extended state (BEC)

which preferentially couples states near in energy, and in space. As a consequence,
every coherent puddle composing the Bose glass may extend over several unit length
`, with ` the mean inter-particle distance. For large enough interactions (naively,
larger than the disorder strength) all the single-particle states are coupled, thus
restoring superfluidity.

Many theoretical works tried to locate this metal-insulator transition from a
superfluid to a weakly-interacting Bose glass in the disorder-interaction plane. Dif-
ferent approaches have been used. In 1D a Josephson array model considering the
Josephson coupling between coherent puddles, can be used to map the system and
gives a correction to the mean-field approach. In particular in Sec. 5.3.1 we will
briefly describe these two methods for the one-dimensional case, in comparison with
experimental data.

The weakly-interacting Bose glass phase can be found in any dimensionality, in
the presence or in the absence of a lattice, since analogous arguments apply in one,
two or three dimensions. It is a very general phenomenon occurring in disordered
bosonic samples, which has been studied in different physical systems. For example,
the delocalizing effects of a weak interaction was experimentally observed with light
waves in nonlinear media83,56. These experiments investigate the evolution of linear
and nonlinear waves in disordered waveguide lattices. The Anderson transition
results as a transition from ballistic transport to diffusion and eventually exponential
localization for the propagating light-wave, for increasing disorder. Generally, the
presence of a weak positive nonlinearity corresponds to an attractive interaction,
thus it tends to further localize the localized modes; anyway, it was shown56 that
nonlinear perturbations enhance delocalization in the higher-band localized modes,
where, due to the inverted effective mass, they result in a weak repulsion.

In the last years we performed similar experiments, not reported in this thesis, with
ultracold atoms in optical lattices, investigating both the dynamical regime and the
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equilibrium properties of 3D condensates in the weakly-interacting regime26,27,59,60.
In Lucioni et al. 59 we addressed the out-of-equilibrium dynamics of a 3D interacting
BEC in a disordered lattice, showing that the Anderson-localized non-interacting
state slowly expands when a controlled repulsive interaction is added. This expansion
has a peculiar subdiffusive behavior, completely different from the ballistic one
expected for a delocalized Bloch wave, which is induced by the interaction-assisted
hopping between localized states. The ground-state properties of the system can be
also studied. In Deissler et al. 26 we measured the metal-insulator crossover for 3D
weakly-interacting bosons in a quasiperiodic lattice, studying the average local shape
of the wave-function, its spatial correlations and its phase coherence. In this system
a (weak) repulsive interaction energy screens the disorder restoring coherence in the
wave-functions and inducing a Bose glass insulating phase. The boundary of this
regime are experimentally mapped in the disorder-interaction plane, and found in
good agreement with a mean-field theory.

1.2 Disordered phases at strong interactions

Up to now, we focused on the physical properties of weakly-interacting bosons in
disorder. However, the Bose glass phase was initially found in the strongly-correlated
regime. While a weak interaction competes with disorder and restores the coherence
between localized states, at strong interactions the physical picture changes.

Let us consider the case of N bosons in the continuum confined in a d-dimensional
box with volume Ld. Then ` = L/ d

√
N is the mean separation between the particles.

Two energy scales determine the system properties: the average kinetic energy
Ek ∝ ~2/m`2 and the interaction energy between particles, which in general scales
as Eint ∝ gn, where the mean-density n is dimension-dependent (n=N/Ld). Here
g describes the coupling between the particles and depends on their scattering
properties, i.e. is proportional to the d-dimensional scattering length ad. In 3D
n = N/L3; as a consequence Eint ∝ g/`3. Therefore the ratio between the interaction
and the kinetic energy scales as Eint/Ek = a3D/`, i.e. the strongly correlated regime
can be achieved only if the three-body scattering length a3D is comparable the inter-
particles separation `, at large interactions and large density. In our experimental
dilute system, the mean separation is about 500 nm. To enter in the strongly
correlated limit we would need a scattering length of the order of 10.000 a0, with
a0 ∼ 0, 05 nm the Bohr radius. This is the so-called unitary regime; in this regime
the two-body description of the collisions fails, and one deals with a many-body
system. Due to the large three-body (and more) recombinations, this regime is very
difficult to realize experimentally. Usually a 3D system is always weakly-interacting.

On the other hand, in 1D the interaction energy scales as Eint ∝ g1D/`, where
g1D is the one-dimensional coupling constant. The 1D system can be thought as a
3D system with two directions strongly confined by some external potential. As a
consequence the atoms are forced to stay in the ground-state of the two confined
directions, while they can propagate in the other one. In cold atoms experiments the
external confinement is usually a harmonic trap, and the typical dimension of the
confined directions is a⊥ ∼ 50 nm, much larger than a3D ∼ 100a0 ∼ 5 nm. To a first
approximation the collisional properties of the 1D system are three-dimensional and
g1D ∝ a3D/a

2
⊥ (see Sec. 2.4). Therefore Eint/Ek = a3D`/a

2
⊥, i.e. the interactions
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Figure 1.3: Phase diagram for a disordered one-dimensional Bose gas. U is the interaction
energy, D is the disorder strength. In the presence of disorder at strong enough interactions
the ‘fermonized’ Bose gas Anderson-localizes. The green dash-dotted line schematically
indicates the boundary below which an analytical approach can be used to treat the
one-dimensional problem. The blue continuos line represents the strongly-correlated metal-
insulator transition, the blue dashed line argues the weakly-interacting transition. How the
two insulating phases connects is still an open problem. One possibility is that they are two
distinct BG phases, separated by the red dotted line. The picture is taken from Ristivojevic
et al. 76 .

dominate at low densities. In 1D the strongly-correlated regime is easily accessible,
since a⊥ can be very small; indeed one needs scattering lengths even 10 times smaller
than the inter-particles separation to reach Eint ∼ Ek.

In general, in 1D one has two regimes: at weak interactions and high density
Eint < Ek, i.e. the system prefers to lose its energy in interactions rather than into
kinetic energy, in order to minimize the total energy. In general, the kinetic energy
depends on the curvature of the wave-function, Ek = ~2∇2/2m, i.e. it strongly
increases if the wave-function is corrugated. Therefore at weak interactions the wave-
function is smooth, though allowing the interaction between several atoms. On the
other hand at strong interactions and low density, Ek < Eint; then the total energy is
minimized by avoiding interactions between the atoms. The resulting wave-function
is corrugated; bosons minimize their interaction energy by avoiding spatial overlap
and acquire fermionic properties43,67,53. In the absence of any perturbation, the
system is a strongly correlated superfluid (the so-called Tonks-Girardeau gas). This
mechanism is known as ‘fermionization’.

In the presence of disorder the one-dimensional strongly correlated superfluid
undergoes a new phase transition. Indeed, the fermionized Tonks wave-functions
Anderson localize in the disordered potential. The resulting insulating phase is a
compressible Bose glass. Anyway, it is not yet clear whether the nature of this glassy
phase is analogous to the weakly-interacting one. Of course, the correlation length
characterizing its coherence properties is short, of the order of the mean particles
separation `, contrary to the weakly-interacting case. This phase transition was
initially predicted in 1988 by Giamarchi and Schulz 42 , treating the disorder as a small
perturbation onto the one-dimensional bosonic problem. Using a renormalization-
group approach the boundary of the transition was quantitatively established. In



10 CHAPTER 1. INTERACTING BOSONS IN DISORDER

Sec. 3.3 we will briefly discuss more in detail the phase transition, in the context of
the Luttinger liquid theory. A sketch of the phases of the 1D disordered bosons is
plotted in Fig. 1.3. Here U is the interaction energy energy per particle, while D is
the disorder strength. The theoretical diagram shows the typical reentrant shape
of the Bose glass phase for increasing interactions. The continuos line represents
the strongly-correlated metal-insulator transition, described by universal exponents,
while the dashed line argues the weakly-interacting transition; how the two glassy
phases connects is an open problem.

1.3 Bosons in a disordered lattice

As shown in Fig. 1.4a, the presence of a lattice introduces a new length and energy
scale, i.e. the lattice periodicity `0 and the tunneling energy between neighboring
sites J , which depends on the lattice depth s. In general s expresses the lattice depth
in units of recoil energy Er=π2~2/2m`20 (see Sec. 2.3). In the periodic potential the
single-particle dispersion relation shows a band structure. For a vanishing lattice
depth, the dispersion equals the free particle energy-momentum parabola; as already
said, in a box the energy is 1/L2 < Ek < 1/`2, with 1/L2 → 0 since L� `. When
the lattice depth is increased, some gaps open and widen in the energy dispersion,
and the width of the energy bands becomes exponentially smaller, see Fig. 1.4b. The
total energy of the system is minimized if the wave-function is an extended (Bloch)
state. In the tight binding limit (s > 5), the single-particle energy dispersion in
the first band reads: E(q) = E0 − 2dJ cos(q`0), where E0 = ~ωlat/2 ∝ ~2

√
s/m`20

is the ground-state energy in the single site, q is the quasi momentum of particles
and d the lattice dimensionality. E0 depends on the lattice periodicity `0 (about 500
nm in our experimental setup) and on the lattice depth s (about 8 in our typical
experiment), thus increases for increasing s. The kinetic energy of a Bloch wave is
thus larger than the typical kinetic energy for particles in the continuum (~2/2m`2),
since the wave function readapts to follow the lattice periodicity. On the other hand,
in a lattice the energy is bounded and particles can not have kinetic energy larger
than E0 + 2dJ or smaller than E0 − 2dJ . The width of the first band is 4J and
depends only on the tunneling energy which decreases for increasing s. Therefore,
the interaction energy required to enter the strongly correlated regime is a function
of J , which defines the bandwidth (i.e. the separation between the minimum and the
maximum of energy). Roughly speaking, for interactions larger than the bandwidth
the system is strongly correlated, i.e. Eint > Ek. The interaction energy in the single
lattice site is still proportional to the density. It can be written as Eint ∝ U(n− 1),
where U is proportional to g and quantifies the energy-cost to put two atoms in the
same lattice site, while n is the average atom number per site.

At weak interactions U < J , a delocalized wave-function minimizes the dominant
kinetic energy, therefore minimizing the total energy of the many-body system. In
the presence of disorder the physical picture is as described before: a finite disorder
induces Anderson localization in the single particle problem but can be screened by
a weak interaction, restoring coherence between particles. Two competing terms,
the interaction energy Eint and the disorder strength, determine the phases of the
system in any dimensionality.

In the opposite limit, when the repulsive atom-atom interactions are large com-
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(a)

(b)

Figure 1.4: (a) In a regular lattice with periodicity `0 and tunnel coupling between
neighboring sites J , the single-particle dispersion has a band structure (green region). The
eigenfunctions are delocalized. The minimum kinetic energy is Ek ≈ E0 − 2J , with E0 the
ground-state energy in the single hole (green line). (b) Band structure in a lattice. Energy
of the Bloch state versus quasi momentum q in the first Brillouin zone, plotted for different
lattice depths between 0 and 6 Er. For deep lattices the lowest band flattens and the width
of the first band gap corresponds to the level spacing ~ωlat on each lattice site.
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pared to the tunneling (U � J), the system enters the strongly correlated regime and
‘fermionizes’. The interactions are larger than the bounded kinetic energy. Therefore
the system prefers to localize increasing the (small) kinetic cost, in order to avoid
(large) interactions between particles. The resulting ground-state is no longer a Bloch
wave. A new metal-insulator transition arises already in the absence of disorder and
the total energy is minimized when each lattice site is filled with the same number
of atoms. This interaction-induced insulating state, known as Mott insulator (MI),
occurs in any dimensionality as a consequence of the presence of the lattice. As the
fermionic Mott insulator found in solid state systems because of the electron-electron
interaction, it is characterized by the opening of an energy gap in the excitation
spectrum, due to the competition between the interaction energy U end the tunnel
coupling J . Indeed, a finite energy is required to create a particle-hole excitation. In
Sec. 3.1 we will discuss this phase transition in the context of the Bose-Hubbard
model, and its experimental realizations in the context of cold atoms.

The presence of disorder has a dual effect on the strongly interacting (U � J)
lattice system37. On the one hand, it induces a disordered Mott insulator in regions
with commensurate n particles per site. On the other hand, in regions where the site
occupation is not commensurate, i.e. each site contains n or n+1 bosons which can
hop to neighboring sites for non-zero tunneling J , perturbative arguments similar to
those used for the strongly correlated 1D system in the continuum can be applied
to the lattice system. Once again, the repulsive interactions dominate the kinetic
energy and play a role analogous to the Pauli exclusion between fermions37; the
‘fermionized’ system localizes in the disorder, causing a Bose glass phase. In a lattice,
where the kinetic energy is bounded, the Bose glass phase arises in any dimensionality.
This phase is expected to be in intermediate between the gapped Mott phase and
the superfluid phase37, even though the topic is highly debated. Once again the
correlation length of this new insulating phase will be quite short, of the order of the
lattice spacing `0, contrary to what happens at weak interactions.

In this context, one can discuss the effects of a finite temperature onto these
zero-temperature phases71,72,51. Generally, in one-dimension the presence of a finite
temperature transforms the phase transition into crossover. This topic is not easily
addressable either with analytical arguments or numerical simulations. Anyway
a simple picture might be the following. While at strong interactions a finite T
introduces a new energy scale (Eth ≈ kBT ) which breaks the zero-T insulating
phases (the MI and the BG), restoring (normal) conductivity, at weak interactions
the temperature may have an opposite effect. In fact in this regime the thermal
energy may compete with the interaction energy, since, at not too high T , the
increase of the temperature causes the decrease of the mean density. Therefore the
temperature effect would be to reduce the interactions, helping the localization of
the system. This phenomenon, much debated in theory2, is known as many-body
localization, and could be observed in weakly-interacting disordered systems.

1.4 Experimental observation of the Bose glass

The experimental observation of the Bose glass phase is a very difficult task. As
already mentioned, bosons with disorder can be realized in a number of different ways,
including Cooper pairs in thin superconducting films, Josephson junction arrays
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Figure 1.5: Excitation spectra in a disordered lattice at fixed tunneling J and increasing
disorder. s2 is proportional to the disorder strength32. The progressive vanishing of the
Mott insulator excitation peaks is clearly visible.

and 4He in porous media and on substrates, but none of this methods provided
the unambiguous detection of this glassy phase, rather suggested indications of its
presence.

Cold atoms. Cold atoms experiments are good candidates to study disorder-
related phenomena. No phase transitions can be observed with cold atoms systems,
since they are always confined in harmonic potentials causing inhomogeneous samples
and their temperature is not zero. Anyway, they give access to several experimental
observables, which can be used to distinguish the different phases. Furthermore,
they allow to engineer controllable disordered potentials using laser light (laser
speckles or bichromatic potentials has been successfully used), and to tune the
interaction energy with Feshbach resonances, thus giving access to all the regions in
the disorder-interaction plane.

Up to now, only few regions in the disorder-interaction diagram were studied.
Using time-of-fight interference images and transport measurements, few experi-
ments68,39 explored the strongly-interacting region, distinguishing between insulating
and superfluid phases. An important experimental observation towards the Bose
glass was performed in Florence in 2007 by Fallani et al. 32 . Here the authors used a
spectroscopic technique to study the energy excitation spectrum of disordered bosons
at strong interactions. Furthermore, they characterized the system phase-coherence
with a time-of-flight technique, detecting a strongly interacting insulator. An ex-
ample of the system response to the excitation is shown in Fig. 1.5. For increasing
disorder the gapped Mott-insulator resonances clearly broaden, giving the evidence
of a disordered insulating phase, the first prerequisite for the formation of a Bose
glass. However this spectral response does not allow to distinguish this phase from a
disordered Mott insulator.

In Pasienski et al. 68 the authors studied the effect of disorder on the transport
properties of 87Rb gas in a speckle potential superimposed on a clean lattice. Fig
1.6 shows the centre-of-mass velocity of the gas along the transverse (vT ) and
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Figure 1 | Effect of disorder on transport. The overall COM velocity v of the
gas after an impulse is applied as the lattice depth s is varied for three
disorder strengths: �= 0 (black), 0.75 (dark blue) and 3.0 ER (light blue);
data are shown for the longitudinal (top) and transverse (middle)
directions. Data are also shown for high-temperature transport in a clean
lattice (red); according to a site-decoupled mean-field theory27 the
temperature for these data ranges from 15 nK at s = 10 to 6 nK at s = 14.
The top inset shows how disorder affects vL for s = 14; the colour scale for
the points follows the main figure for reference. Sample slices through the
measured speckle-intensity profile are shown in the bottom inset along
with the experimental geometry; the autocorrelation of speckle potential is
cylindrically symmetric with characteristic speckle sizes 570 nm and 3 µm
along the transverse and longitudinal directions to propagation. Within the
region marked in light grey, a spherical core of unit-filling MI exists in the
centre of the clean lattice (according to three-dimensional mean-field
theory). The dark-grey band indicates the systematic uncertainty in
determining zero velocity (see Methods). The error bars represent the
statistical uncertainty in the (typically) seven measurements averaged for
each point. The error bars for v also include the statistical uncertainty in
determining zero velocity, and the error bars for N0/N include a systematic
error that reflects our inability to measure condensate fraction above 95%
and below 5%.

arrow) at approximately s = 12, corresponding to U/t = 25 and
�/t =250. This transition agrees within our systematic uncertainty
(see Methods) in U/t and t with the prediction for an SF–Bose-
glass phase boundary from recent quantum Monte Carlo work5.
Measurements of the excitation spectrum and compressibility22
will be required before this insulator can be identified conclusively
as a Bose glass. Within the systematic uncertainty in determining
zero velocity (see Methods), the superfluid-to-insulator (SF–IN)
transition occurs at the same s for the longitudinal and transverse

∆
c d
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e
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U
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Figure 2 | Effect of disorder on atomic quasimomentum distribution.
a–d, Images taken after band-mapping from the disordered lattice and TOF
are shown in false colour for s = 6, �= 0 (a), s = 6, �= 3 ER (b), s = 12,
�= 0 (c) and s = 12, �= 3 ER (d). The TOF is 25 ms for s = 6 and 15 ms for
s = 12; the field of view for each image is 0.6 mm. The images are fitted to
two-component Gaussian distributions to determine condensate fraction
and the sizes and locations of the condensate and NC. The black and white
bars correspond to twice the fitted r.m.s. radius for the condensate and NC
components. e, A simple model—suggested by the behaviour in b—that
may be used to understand the effect of disorder on the quasimomentum
distribution. Atoms (blue spheres) localize to regions (blue curves) to
screen the disordered potential and create a more uniform
effective potential.

directions. The region of U/t and effective chemical potential µ
that we determine as insulating is shown superimposed in blue on
the phase diagram for the clean system in the middle inset to Fig. 1.
Because of the confining harmonic potential, we sample a range
of fillings and corresponding µ—we assume that the gas must be
globally insulating for v to vanish after the impulse. This insulating
region is consistent with an early, qualitative prediction for theDBH
phase diagram23. The plot of N0/N for � = 0, 0.75 and 3 ER in
Fig. 1 shows that the emergence of the disordered insulating state
coincides with the obliteration of the condensate by disorder. To
assess the impact of finite temperature, we measure the transport
properties for atoms in the clean lattice (� = 0 ER) at sufficiently
high temperature to match the condensate fraction observed at
�= 3 ER. Even though at this temperature the entropy per particle
in the clean lattice is higher than for �= 3 ER (see the discussion
that follows), the gas is not insulating, therefore indicating that
the observed SF–IN transition is not caused exclusively by heating
introduced by the speckle field.
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Figure 1.6: Effect of disorder on the transport of interacting bosons68. Dependence of the
center of mass velocity on the interaction energy for increasing disorder strengths (black,
dark blue, light blue) along the transverse (vT ) and longitudinal (vL) speckle directions.
The conductor-insulator transition is shifted towards smaller value of U/J as the disorder
increases. Red points refer to high temperature transport in a clean (without disorder)
lattice. The top inset shows how disorder affects vL for s=14

longitudinal (vL) speckle directions immediately after an applied impulse for three
disorder strength, ∆=0, 0.75 and 3 ER (black, dark blue and light blue points
respectively) and for a range of interactions U/J spanning the superfluid and Mott
insulator regimes in a clean lattice. Here the disorder transforms the clean superfluid
phase to an insulator, as indicated by the vertical green arrow. The impact of
finite temperature is assessed by measuring the transport properties in the clean
lattice at higher temperature (red points); the gas is not insulating, indicating
that the observed metal-insulator transition is not exclusively caused by heating
introduced by the speckle field. In fact, the disorder-induced insulating phase found
at strong interactions is compatible with a Bose glass. However, the gapless nature
of this insulating phase was not successfully addressed. Disentangling the strongly-
correlated Bose glass from the Mott insulator with cold atoms experiments was so
far not possible, in particular because of the inhomogeneity due to the confining
potentials.

As already mentioned, Deissler et al. 26 exploited the possibility to tune the
interactions in a 39K BEC with a Feshbach resonance, and experimentally probed
the coherence properties of disordered bosons at weak interactions, by detecting their
momentum distribution. However, this experiment was performed with an essentially
3D system which did not allow to explore the strongly-correlated regime.
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(a) DNT, H=0. (b) DNT, H>0.

(c) Br-DNT, H>0. (d) Br-DNT, H �0.

Figure 1.7: Sketch of the bosonic phases93 of DTN and Br-doped DTN. In the undoped
case, an increasing magnetic field (purple arrow) drives the system from a Mott insulator
(a) to a BEC phase (b) by injecting delocalized excess bosons (indicated in cyan). (c) In the
doped case, an arbitrarily weak magnetic field can inject extra bosons in the rare Br-rich
regions (the orange bonds) which are localized and incoherent in the (low-field) Bose glass
phase. The corresponding local orientations of the spins are sketched by the arrows (the
darker the arrow, the larger the fluctuating transverse moment induced by the field). (d)
Further increasing the magnetic field leads to the percolation of phase coherence via coherent
tunneling of the excess bosons between the localized regions, giving rise to an inhomogeneous
BEC.

Quantum magnets. The first experimental observation of a strongly-correlated
Bose glass phase was achieved only in 2012 by Yu et al. 93 , with a completely different
system. The authors observed a Bose glass of quasiparticles in a doped quantum
magnet (bromine-doped dichloro-tetrakis-thiourea-nickel, DTN). The physics of pure
DNT in a magnetic field H is equivalent to that of a lattice gas of bosons in the
grand canonical ensemble (see Yu et al. 93 and references therein). The ground-state
of such a system without disorder and in zero field, is a S=1 quantum paramagnet
in the |mS = 0〉 state (with mS the S eigenvalue), corresponding to a gapped Mott
insulator of bosons with n=1 particles per site, see Fig 1.7a. By applying a critical
magnetic field which overcomes the MI gap one can inject extra bosons into the
system, driving a transition to a superfluid state (a magnetic BEC), see Fig. 1.7b.
The pure DNT temperature-magnetic field phase diagram is plotted in Fig. 1.8a,
showing the MI-SF-MI (with n=2 particles per site) transition at zero temperature
for increasing fields.

In this system disorder is introduced by substituting Cl with Br atoms. Bromine
doping produces disorder into the hopping and interaction strength of the bosons,
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(a) Pure DNT phase diagram. (b) Br-DNT phase diagram.

Figure 1.8: Phase diagrams in the field-temperature plane93. (a) Experimental phase
diagram of pure DTN, based on specific heat and the magnetocaloric effect. (b) Experimental
phase diagram of Br-doped DTN from specific heat and susceptometry, compared to QMC
data.

due to the larger atomic radius of Br respect to Cl. At nonzero magnetic field a Bose
glass phase occurs as shown in Fig. 1.7c: when the magnetic field is applied, excess
of bosons are injected, and Anderson localize around the rare Br-rich regions. In the
spin language, spins in the Br-rich regions acquire a finite magnetization, and their
transverse components correlate antiferromagnetically over a finite range, but the
local phase of the antiferromagnetic order is different from region to region so that
the system remains globally paramagnetic. As shown in Fig. 1.7d the further increase
of the magnetic field leads to coherent tunneling of bosons between neighboring
localized states, resulting in a highly inhomogeneous BEC.

The µ-T phase diagram of Br-DNT is shown in Fig. 1.8b. The gapless nature of
the Bose glass is probed by measuring the magnetic susceptibility (corresponding to
the compressibility of quasiparticles), and the low temperatures specific heat, which
in the MI regime are expected to vanish exponentially for T → 0, due to the presence
of the finite energy gap. As shown in Fig. 1.8a-1.8b, Br doping deeply affects the
pure DNT phase diagram: both the lower and the upper critical fields for the onset of
the magnetic BEC at T → 0 are shifted. Most importantly, the magnetic behavior of
Br-DNT outside the BEC region is completely different from that of the pure system,
showing a finite uniform magnetic susceptibility and a non-exponential decay of the
specific heat at low temperatures. This corresponds to a gapless bosonic insulator,
i.e. the Bose glass. The experimental results are confirmed by quantum Monte Carlo
simulations, which allow to trace boundaries for the different phases.

Quantum magnetic systems allows to investigate the Bose glass properties in the
µ-T plane at fixed disorder and interaction, addressing the dirty-bosons problem from
a point of view orthogonal and complementary to that carried out with ultracold
atoms experiments. They can study the properties of the homogeneous system at
zero temperature, observing quantum phase transitions. On the other hand these
systems do not have the possibility to tune the disorder and the interaction strength
exploring the whole disorder-interaction diagram from weak to strong interactions.



Chapter 2

Experimental procedures

The main tool we use to investigate the physics of interacting particles in disor-
dered media is a Bose-Einstein condensate (BEC) of 39Potassium confined in optical
potentials. In this chapter we briefly present the experimental techniques to produce
the 39K BEC, and to create and control the one-dimensional disordered systems. The
chapter is organized as follows: first of all, we summarize the experimental methods
we used to produce the 39K condensate, the starting point of all the experiments
performed in this thesis. In Sec. 2.2 we present a model treating the two-body interac-
tion in a dilute cold gas; then, we introduce the Feshbach resonance phenomenon, as
the method used to tune the atom-atom interaction. In Sec. 2.3 we review few basic
concepts concerning the dipole interaction between atoms and the electromagnetic
field, giving rise to the possibility to trap atoms into optical potentials. Exploiting
optical lattices, we can experimentally tune the system dimensionality, as described
Sec. 2.4, in particular we focus on the realization of the one-dimensional setup. The
experimental realization of a disordered potential is discussed in Sec. 2.5; especially,
we concentrate on the particular features of the quasiperiodic lattice, the kind of
disorder we employ in the experiment.

2.1 Experimental realization of the 39K BEC

The particular level structure of 39K and its collisional properties at zero mag-
netic field do not favor direct evaporative cooling; we therefore employ 87Rb to
sympathetically cool 39K atoms. In spite of the small heteronuclear scattering length
for Rb-K collisions, the sympathetic cooling has been proven to work efficiently78.
Recently, a new experiment in Florence57 however showed how it is possible to
condense 39K without employing other atomic species, by performing an efficient
sub-doppler cooling and using deep optical dipole traps.

The apparatus and experimental procedure used to produce the 39K condensate
is accurately described in previous thesis77,34,28,94 of our group. In the following I
will shortly list the main steps required.

• 87Rb and 39K atoms are laser cooled in two magneto-optical traps, producing
samples at temperatures T ≈ 100 µK and densities of about 1010 atoms/cm3.

• The two species are prepared in their low-field seeking state |F = 2,mF = 2〉,

17
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Figure 2.1: Schematic representation of the experimental setup. The 39K Bose-Einstein
condensate is achieved in a crossed optical dipole trap obtained with two perpendicular
focused laser beams. The laser wavelength, λ=1064nm, is red-detuned with respect to
the atomic transition. A couple of coils in Helmoltz configuration provide a homogeneous
magnetic field (Feshbach field) used to tune the inter-particle scattering length. Another
couple of coils creates a magnetic field gradient used compensate gravity.

and trapped in a QUIC magnetic trap. A forced, selective microwave evap-
oration of Rb atoms to the |F = 1,mF = 1〉 state cools the both samples to
T ≈ 1.5 µK.

• To further cool and finally condense the sample, it is required to tune the
atomic scattering length. This can be done using a magnetic Feshbach resonance
(see Sec. 2.2). The mixture is thus loaded into an optical dipole trap (see
Sec. 2.3) and both the species are transferred in their absolute ground state
|F = 1,mF = 1〉, which presents a broad Feshbach resonance around 400
G. The optical trap is produced with two focused laser beams at wavelength
λ = 1064 nm.

• An homogeneous magnetic field is applied in order to tune inter- and intra-
species interactions. The atoms are further cooled by reducing the intensity
of the optical trap. The evaporation in the optical trap is performed in two
steps. During the first step the magnetic field is set to about 316 G, where a
heteronuclear Feshbach resonance exists78, thus enhancing collisions between
Rb and K atoms. The evaporation is performed such that the atoms are lost
in the vertical direction, in order to evaporate mainly the heavier Rb atoms,
and sympathetically cool K atoms. When K is close to quantum degeneracy,
the magnetic field is tuned to the homonuclear Feshbach resonance around 400
G, in order to set a positive value for the K-K scattering length. In this second
step, K is cooled only through intra-species collisions. The final vertical depth
of the trap does not compensate gravity for Rb atoms, which are lost. We thus
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(a) Feshbach resonance mechanism. (b) 39K Feshbach resonances.

Figure 2.2: (a) Basic two-channel model for a Feshbach resonance. The phenomenon
occurs when the scattering collision energy (blue line) is resonantly coupled with a molecular
bound state (red line) by the application of an homogeneous magnetic field B. (b) Magnetic
field dependence of the scattering length a for |1, 1〉 + |1, 1〉 39K collisions. Dashed lines
indicate the resonance positions. A broad Feshbach resonance is centered at B0=400 G; a
vanishes at the zero-crossing magnetic field Bzc≈350 G. The picture is taken from D’Errico
et al. 30 .

achieve a pure 39K condensate. The final trap average frequency is around
50 Hz. The typical number of atoms in the condensate is around 3×104 at a
temperature of few tens of nK.

2.2 Tuning the interactions in dilute Bose gases

An important tool available in cold atoms experiments is the possibility to easily
tune the interactions between atoms. Here we briefly discuss the method used to
tune the atom-atom interaction in 39K condensates.

In a bosonic gas at low temperature and in a dilute regime, only binary collisions
are relevant; consequently, the two-body interaction potential can be written in terms
of a contact pseudo-potential:

v(r − r′) = gδ(r − r′) with g =
4π~2

m
a. (2.1)

The contact interaction between atoms is thus described by a single parameter,
the s-wave scattering length a, which depends on the details of the interatomic
potential. The sign of a determines the type of interaction: positive values of the
scattering length correspond to repulsive interaction between atoms, negative values
to attractive ones. The possibility to tune the interaction in these systems, or rather
to tune the value of a, is offered by the presence of magnetic Feshbach resonances.

The Feshbach resonances phenomenon has been initially studied in nuclear
physics36,33 and has become successively important in atom physics49, since it offers
the great opportunity to control the interatomic interaction in a resonant way. A
Feshbach resonance occurs in the process of scattering between two atoms when the
collision energy is tuned to resonance with a molecular bound state by the application
of an homogeneous magnetic field (Fig. 2.2a). In this case the possibility to have a
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transition of the atoms pair to the molecular state produces an enhancement of the
collisional cross section. Near a Feshbach resonance, in fact, the scattering length
varies dispersively as a function of the magnetic field B:

a(B) = abg

(
1− W

B −B0

)
, (2.2)

where B0 is the resonance center, W is the resonance width and abg is the background
scattering length. Applying an homogeneous magnetic field, it is then possible to
control the interatomic interaction from strongly attractive to strongly repulsive,
passing from zero.

39K is characterized by several magnetic Feshbach resonances30. Its natural
scattering length is negative, abg ≈ −29 G, corresponding to an attractive interaction,
which would induce the BEC to collapse. Feshbach resonances allow not only to
achieve and stabilize the BEC, but also to tune the interactions between the condensed
atoms at will. In particular, we use the broad Feshbach resonance that 39K shows
in its absolute ground state |F = 1,mF = 1〉, centered at B0 ≈ 402 G, with width
W ≈ 52 G, as shown in Fig. 2.2b.

2.3 Optical dipole potentials

A second powerful tool is given by the possibility to address cold atoms with
optical potentials. Laser light can be exploited to trap neutral atoms in attractive or
repulsive conservative potentials, whose shape and depth can be easily engineered
and dynamically controlled. The mechanism underlying this property is the dipole
force, i.e. the conservative force arising from the dispersive interaction between the
intensity gradient of a light field E and the induced atomic dipole moment d. It can
be shown from a semiclassical approach46, that if the laser beam is far-off resonance,
i.e. the detuning ∆ = ω−ω0 between the field frequency ω and the atomic resonance
frequency ω0 is much larger than the atomic radiative line-width Γ, the dipolar
potential generated by the beam can be expressed as,

Vdip(r) =
3πc2

2ω2
0

Γ

∆
I(r), (2.3)

where c is the speed of light in vacuum and I(r) = 2ε0c|E(r)|2 is the light intensity.
On the other hand, the scattering rate due to the far-detuned photon absorbed and
subsequently spontaneously remitted by the atoms, is

Γsc(r) =
3πc2

2ω2
0

(
Γ

∆

)2

I(r). (2.4)

If, as it happens in the experimental situation, ∆ is much larger than the line-width
Γ, Γsc can be neglected and the optical potential is conservative.

Optical traps are commonly realized in cold atoms experiments by focusing a
gaussian laser beam on the atomic cloud. In particular, in our experiment we use a
solid state Nd:YAG laser pumped by a diode laser, with wavelength λ=1064 nm and
spectral linewidth ∆ν ≤ 1 kHz. The typical trap depth is in the millikelvin range,
orders of magnitude smaller than the thermal energy of atoms at room temperature.
Anyway, Bose-Einstein condensates can be easily trapped in these weak potentials.
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Optical lattices. The dipole potential can be used to create periodic potentials for
the atoms, for example generating a standing wave as the interference of two counter-
propagating beams. This configuration is called optical lattice. The optical potential
felt by the atoms can be derived considering two sinusoidal counter-propagating
fields E1 and E2 with the same wave number k, amplitude E0 and polarization. The
time-averaged interference pattern is given by I(x) ∝ |E1 + E2|2 = I0 cos2(kx), with
I0 = 2ε0cE

2
0 . Replacing this expression in (2.3) we obtain the potential exerted by

the standing wave on the atoms,

Vl(x) =
3πc2

2ω2
0

Γ

∆
I0 cos2(kx) = V0 cos2(kx). (2.5)

This corresponds to a perfect sinusoid whose spatial periodicity π/k = λ/2 depends
on the wavelength of the laser light λ. Commonly the lattice depth is expressed in
terms of energy recoil Er = ~2k2/2m:

s = V0/Er. (2.6)

In deep lattices, it is possible to approximate the potential well of each lattice site
with a harmonic well, Vlat(x) = V0 cos2(kx) ' sErk

2x2. The oscillation frequency
ωlat of the lattice site can be obtained solving the equation, sErk2x2 = mω2

latx
2/2,

resulting

ωlat =
2Er
~
√
s. (2.7)

Various techniques62 allow to directly calibrate the lattice depth s in cold atoms
experiments, measuring the magnitude of a well-understood effect of the optical
standing wave on the atoms. In particular, we exploit two methods based on the
Raman-Nath diffraction and the Bragg oscillations of atoms in the lattice, respectively.

2.4 Low-dimensional systems

For a system in thermal equilibrium, the condition for the motion in a particular
direction to be frozen out is that the energy difference between the ground state
and the lowest excited state for the motion must be much greater than the thermal
energy kBT . In harmonic traps, this energy difference in the i-th direction is ~ωi; the
condition for motion to be frozen out is thus ~ωi � kBT . Optical lattices can be used
to freeze out the motion in one or two directions, tuning the dimensionality of the
system. This occurs when the tunneling from site to site is small enough to prevent
hopping from one site to the others on the experimental time scales. At strong
lattice depths, the trapping frequency in the single site is large enough to confine
the system into the ground-state, see Fig. 2.3. When a three-dimensional BEC is
loaded into a strong one-dimensional optical lattice, an array of two-dimensional
systems is created. In the experiments described in this thesis, we realize a matrix of
one-dimensional (1D) systems (tubes), loading the three-dimensional condensate into
a pair of orthogonal optical lattices aligned along horizontal directions, as shown in
Fig. 2.4.

At typical lattice depths of 30 recoil energies, the radial trapping frequency of
each tube ω⊥ can be estimated using Eq. 2.9 and is of the order of 2π×50 kHz.
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Figure 2.3: Schematics of a system confined to one dimension. An optical lattice can
be used to freeze some directions: if the coupling J is small enough every 1D system is
independent from the others. Due to the strong confinement, the transverse degrees of
freedom are frozen and only transverse ground-state level is occupied, in contrast to what
happens in the axial direction. Occupied levels are represented in red; empty levels in gray.

The radial energy is larger than any other energy scale, including the axial trapping
frequency (typically ωx ≈ 2π×150 Hz) always present in cold atoms experiments,
~ω⊥ � Eint, kBT ≥ ~ωx; therefore atoms occupy only the radial ground-state. The
transverse direction is thus frozen out, and the system is effectively one-dimensional.
Moreover, the tunneling rate from tube to tube is about 2 Hz, negligible on the
experimental timescale (few-hundred milliseconds). As a consequence, each tube can
be considered as an independent system.

The atom number per tube can be determined by integrating the Thomas-Fermi
profile of the interacting sample along the tubes. In the tube (i,j ) the number of
atoms is

Ni,j = N0,0

[
1− 2πN0,0

5Ntot
(i2 + j2)

]3/2
(2.8)

where Ntot is the total atom number, N0,0 = 5Ntotd
2/2πRzRy is the atom number in

the central tube, Rz,y are the Thomas-Fermi radii in the horizontal directions, which
depend on the atomic scattering length a set by the Feshbach field, and d = λ/2
is the spacing of the tubes. For typical Ntot=3×104 and a=210a0, we estimate an
upper limit of N0,0 = 96, and an average Ni,j ≈ 60.

One-dimensional bosons. When a strong transverse confinement is applied to an
ultracold bosonic sample, the interaction potential between the atoms is modified, as
pointed out by Olshanii 65 . Anyway, in cold atoms experiments the typical dimension
of the confined directions a⊥ =

√
~/mω⊥ ≈ 70 nm (for ω⊥=2π×50 kHz) is much

larger than the three-dimensional scattering length a=100a0 ≈ 5 nm. Here a⊥ is
the harmonic oscillator length in the transverse direction. To a first approximation
the collisional properties of the 1D system are therefore three-dimensional. The
asymptotic scattering states have the form ψ0(y, z) exp(±ikx), where ψ0(y, z) is
the Gaussian ground-state wave-function for the transverse motion and k is the
wave-vector for the motion along the axial direction11. In this weak-confinement
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Figure 2.4: Schematic representation of the experimental configuration. Two tight lattices,
aligned along ẑ and ŷ, form a two dimensional array of one dimensional tubes. The
quasiperiodic lattice propagates along x̂, the axial direction of the tubes.

limit, |a| � a⊥, the effective 1D interaction is obtained by integrating the 3D
pseudo-potential (2.1), g

∫
d3x|ψ0(y, z)|2δ(x−x′), over the ground-state density of the

transverse motion. The resulting effective 1D interaction is then v(x−x′) = g̃δ(x−x′),
with g̃ = 2~2a/ma2⊥. Near a Feshbach resonance the weak-confinement assumption
breaks down; in this case the presence of confinement-induced bound states modifies
the expression of g̃ in:

g̃ = ~2/ma1D with a1D =
a2⊥
2a

(
1− C a

a⊥

)
, (2.9)

where C=1.0326 and a1D is the effective 1D scattering length. This formula is valid
at any value of a/a⊥.

An important parameter describing 1D bosons in the continuum58, is the ratio
between the mean-field interaction energy (Eint ≈ g̃n1D, with n1D the 1D mean
density) and the kinetic energy required to bring particles at distance n−11D (Ek ≈
~2n21D/m),

γ =
mg̃

~2n1D
. (2.10)

γ scales inversely with n1D, leading to the peculiarity that in one-dimensional systems
the interactions grow with respect to the kinetic energy as the density decreases,
in direct contrast to the three-dimensional situation. As introduced in Sec. 1.2,
the parameter γ characterizes the peculiar regimes of degeneracy in the trapped
1D bosonic gas at low temperature (T < Td, with Td ≈ N~ωx the 1D degeneracy
temperature), see Petrov et al. 71 and Petrov et al. 72 . When γ → ∞ the sample
behaves as a gas of hard-core bosons (Tonks-Girardeau gas43); in this limit the
1D boson problem can be mapped onto a system of non-interacting fermions. The
infinitely strong contact repulsion between atoms imposes the constraint that the
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many-body wave-function must vanish each time two particles meet at the same
point. In general, for γ � 1, i.e. for sufficiently large inter-particle interactions or
for small enough mean density, a trapped Tonks gas occurs, with a typical Fermi-gas
density profile. On the other hand, γ = 0 corresponds to the free bosons limit. In
general, for γ � 1 the gas is weakly interacting. At relatively high temperature (still
below Td), the system is a quasicondensate, i.e. a Bose-condensed state where density
fluctuations are suppressed but the phase still fluctuates. At very low temperature,
also the long-wave fluctuations of the phase are suppressed due to a finite size of the
system, and there exist a true condensate.

Exploiting the ability to widely tune the three-dimensional scattering length with
a Feshbach resonance in 39K atoms, in the experiment we can reach high values of γ,
up to 5. Indeed, we can tune both the scattering length a, therefore the coupling
g̃ (2.9), and the number of particle per unit length n1D, since the Thomas-Fermi
radius change with the interaction. As a consequence, we can explore several regimes
of degeneracy.

2.5 Disordered optical potential

The optical dipole force can be used to engineer also disordered potentials for the
atoms. In natural systems, disorder is intrinsically present and cannot be removed
or controlled; ultracold atoms setups give the remarkable possibility to artificially
add a controllable disorder to ‘clean’ systems. Many techniques have been exploited
to create disordered potentials; a standard way is to employ the speckle pattern44

produced by a laser beam shined onto a rough surface. The typical length-scale ` of
the speckle grains strongly depends on the numerical aperture (NA) of the optical
system, ` ' λ/NA, with λ the laser wavelength (1064 nm, in our case). In our setup
this limits the minimum speckle size achievable to about 10 µm, reducing the disorder
efficacy. Another possibility is to use a quasiperiodic lattice, which introduces an
energy disorder on each minimum of a main lattice; in this case the typical size of the
disorder is given by the periodicity of the main lattice. This is the kind of disorder
we use in the experiments described in this thesis.

A quasiperiodic potential is realized by a bichromatic lattice, i.e. by two over-
lapping lattices with incommensurate wavelength, as shown in Fig. 2.5. It is
obtained by superposing to the primary optical lattice a weaker secondary one with
incommensurate wavelength λ1/λ2 ∈ R/Q

Vb(x) = s1Er1 sin2(k1x) + s2Er2 sin2(k2x), (2.11)

with ki = 2π/λi the lattice wavenumber and si the lattice heights in unit of recoil
energy Eri . Generally, if the depth of the two lattices is comparable, the perturbation
induced by the secondary lattice on the primary one results in a non-periodic
modulation of the potential energy minima, and in an inhomogeneous shift on its
minima positions. When instead, the secondary lattice is a small perturbation to
the first one, i.e. V2 � V1, the lattice spacing of the bichromatic potential is to
good approximation given by that of the primary lattice, d = λ1/2. The essential
features of such a potential are visible in Fig. 2.5. The potential energy minima of
the primary lattice are modulated by the second one, giving rise to characteristic
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Figure 2.5: Quasiperiodic potential. The quasiperiodic potential is experimentally realized
for lattice incommensurability β=1.238... by superimposing two lattices with wavelengths
λ1=1064 nm and λ2=859 nm, respectively. The quasiperiodic lattice is characterized by
potential wells approximately every D=d/(β − 1)=4.2 lattice sites, which arise from the
beating of the two lattices.

wells separated on average by the quasi-period D = d/(β − 1), where β = k1/k2
measures the incommensurability.

In the experiment a Nd:YAG laser with wavelength λ1=1064 nm creates the main
lattice and a Ti:Sapphire laser with wavelength λ2=859 nm generates the secondary
one. The quasi-period is thus approximatively D=4.2 lattice sites. We note that
the disorder introduced by the bichromatic lattice is not a random disorder because
of its quasiperiodic structure. In fact, the correlation function of the bichromatic
potential shows a well defined sinusoidal shape, resulting in a deterministic and
spatially correlated distribution of the energy across the lattice sites. Anyway, the
translational symmetry of a perfect lattice is broken in a non-trivial way and it is
thus suitable for the study of disorder physics.

The single particle properties of the bichromatic potential (2.11) have been
discussed in literature61 and can be obtained by diagonalizing the Hamiltonian
H = −(~∇x)2/2m+ Vb(x). In the tight-binding limit, the system can be mapped
onto the Aubry-André model, which predicts an Anderson-like transition from
extended to localized state for a finite value of the secondary lattice s2. The details
of this model will be discussed in Sec. 3.2, in the framework of the Bose-Hubbard
model.





Chapter 3

Theoretical framework

In this chapter we introduce few analytical methods which describe disordered
interacting bosons, providing the theoretical framework for the experiments performed
in this thesis. In Sec. 3.1, we introduce a microscopic approach for bosons in a lattice,
resulting in the Bose-Hubbard Hamiltonian, which relates the system local properties
to the experimental parameters. The two limiting cases of interacting bosons in a
periodic lattice and non-interacting particles in a disordered (quasiperiodic) potential
(Sec. 3.2) are discussed within this Bose-Hubbard framework, showing the well known
metal-insulator transitions driven respectively by interactions (Mott transition) and
disorder (Anderson and Aubry-André transition). The competition between disorder
and interactions is instead taken into account in Sec. 3.3, within a specific model,
the Haldane’s harmonic fluid approach. This peculiar description, well describing 1D
systems, allows to re-express the Hamiltonian in a simple quadratic form, providing
a convenient starting point to study the effects of various external potentials, such
as disorder.

3.1 The Bose-Hubbard Hamiltonian

When a Bose-Einstein condensate is loaded into an optical lattice its local prop-
erties can be microscopically traced out, and related to the experimental parameters.
The Hamiltonian describing the system of bosons interacting through the contact
pseudo-potential (2.1) in the optical lattice (2.5), superimposed onto a generic
external potential Ve, reads:

Ĥ =

∫
drψ̂†

(
−~2∇2

2m
+ Ve(r) + Vl(r)

)
ψ̂ +

g

2

∫
drψ̂†ψ̂†ψ̂ψ̂. (3.1)

If the periodic potential is deep enough, i.e. V0 is the largest energy scale in the
problem (tight-binding approximation), it is more convenient to project the Bose field
operator on the basis of the Wannier orbitals w(x) belonging to the lowest Bloch
band,

ψ̂(r) '
∑
i

wi(r)b̂i. (3.2)

Here wi(r) is the Wannier function localized at the i-th lattice site and b̂i is the
operator annihilating one boson at site i. In the tight-binding regime (for s > 5)

27
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one can consider only the superposition of the nearest neighbor Wannier orbitals.
The above approximation neglects the ψ̂ projection on higher bands (single band
approximation); for small lattice depth, it may become necessary to take into account
the higher bands Wannier orbitals. By replacing the field operator in the Hamiltonian
(3.1) with (3.2), one obtains the Bose-Hubbard Hamiltonian:

Ĥ = −J
∑
i

(b̂†i b̂i+1 +H.c.) +
U

2

∑
i

n̂i(n̂i − 1) +
∑
i

(εi − µ)n̂i, (3.3)

where n̂i = b̂†i b̂i is the site occupation operator and µ is the chemical potential. Let
us now discuss the three energy scales characterizing the Hamiltonian.

The first term expresses the kinetic energy of the particles in the tight-binding
approximation; the parameter J represents the energy scale for the kinetic energy, as
the energy dispersion law in the lowest lattice band is ε(q) = −2J cos(qd). Essentially,
it is the tunneling rate between nearest neighboring sites:

J = −
∫
drw∗i (r)

(
−~2∇2

2m
+ Vl(r)

)
wi+1(r). (3.4)

J can be expressed as a function of the lattice parameter s, numerically solving the
above overlapping integral:

J

Er
= 1.43s0.98e−2.07

√
s. (3.5)

The tunneling energy J is thus strictly related to the depth of the optical lattice
which creates the periodic potential, and can be controlled tuning the laser intensity.

The second term of the Hamiltonian describes the interactions between particles
on the same lattice site. The parameter U is given by the interaction matrix element
between the Wannier functions

U = g

∫
dr|w(r)|4. (3.6)

U is the second important energy scale; it quantifies the energy-cost to put two
atoms in the same lattice site compensating the collisional interaction. Here g is the
coupling term expressed in Eq. (2.1). In one-dimension g should be replaced with g̃,
expressed by Eq. (2.9). In any case, in the experimental setup U can be tuned and
controlled, tuning the scattering length a on a Feshbach resonance.

The last term in the Hamiltonian takes into account the effect of the external
potential Ve, which, in a local density approximation, produces an energy offset εi at
the site i. In experiments with optical lattices an unavoidable harmonic trapping
potential is always present:

εi =
α

2

∑
i

(i− i0)2. (3.7)

Here α represents the strength of the harmonic potential and i0 is the center of the
harmonic trap; in the specific case of our experiment the typical trapping frequency
is 150 Hz.
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Figure 3.1: Zero-temperature phase diagram of the superfluid (SF) to Mott insulator (MI)
transition for the homogeneous Bose-Hubbard model. The MI lobes are characterized by
integer site filling n. At larger average occupancy 〈N〉, a larger critical interaction energy is
required to enter the MI phase. In the inhomogeneous case, the system alternates different
phases averaged over an extended range of local chemical potential (dashed vertical red line).
The picture is rearranged from Fisher et al. 37 .

Superfluid to insulator transition. As introduced in Sec. 1.3, the Bose-Hubbard
model (3.3) presents a quantum phase transition from a superfluid state at weak
interactions to an insulating state at strong interactions. This transition has been
widely studied in theory37 with many different methods, and has been probed during
the last years by different cold atoms experiments45,88. It is the consequence of the
competition between the delocalizing effects of the kinetic term J , which reduces the
phase fluctuations, and the localizing effects of the interaction term U , which reduces
the on-site particle fluctuations. The interacting-induced insulating state is known
as Mott insulator (MI) and is characterized by an energy gap (the energy required to
add or remove a particle), which leads to a vanishing compressibility. The transition
occurs only at integer filling whose value depends on the chemical potential µ. The
phase diagram of this model is qualitatively similar in all spatial dimensions. An
example is shown in Fig. 3.1. In the inhomogeneous system, the effect of the trapping
potential can by understood in terms of a local density approximation (LDA). In this
framework, one approximates local quantities in the inhomogeneous system by the
corresponding quantities in a homogeneous system with a local chemical potential
µi ≡ µ0 − εi, as done in the Hamiltonian (3.3). For a harmonic trap εi is given by
Eq. (3.7). The density profiles in the trap can thus be constructed from vertical cuts
across the homogeneous phase diagram 3.1, starting from µ0 and moving towards
the point µ where the density vanishes. This leads to a wedding cake structure in
which superfluid and Mott insulating domains coexist space separated. Such peculiar
distribution as been experimentally observed84, as shown in Fig. 3.2.
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Figure 3.2: Fluorescence images of atoms in a two-dimensional lattice in the Mott insulator
regime84. The typical wedding-cake structure is observed. Moving from the center towards
the edges, alternating MI shells with even (full) and odd (empty) site occupation are shown.
The images are taken for increasing number of atom.

3.2 The Aubry-André model

In Sec. 2.5 we introduced the bichromatic potential Vb (2.11), as the experimental
realization of a disordered external potential. The Hamiltonian obtained inserting
this expression in Eq. (3.1) can be solved within the framework of the Bose-Hubbard
model, giving rise to a disordered Hubbard Hamiltonian. In particular, it can be
demonstrated that the presence of the secondary lattice does not substantially alter
the position of the minima or the shape of the Wannier functions, while it shifts the
on-site energies. Thus, the quasiperiodic lattice does not modify the expressions for
the tunneling energy J and the on-site interaction U , resulting only as a perturbation
on the on-site energies of the lattice. In general, the distribution of εi depends on the
specific realization of the disorder. Other types of disorder, as random interactions
Ui or random hopping Ji can in principle be realized, but will not be discussed here.

The properties of the non-interacting bosons in the quasiperiodic potential can
be obtained by diagonalizing the Hamiltonian H = −(~∇x)2/2m + Vb(x). In the
tight-binding limit, the system can be mapped onto the Harper or Aubry-André
model61

Ĥ = −J
∑
i

(b̂†i b̂i+1 +H.c.) + ∆
∑
i

cos(2πβi+ φ)n̂i, (3.8)

where J is the Bose-Hubbard tunneling rate (3.5), while ∆ measures the disorder
strength and can be obtained from numerical calculations,

∆

Er
=
s2
2
β2 exp

(
−2.18

s0.61

)
. (3.9)

Therefore ∆ directly depends on both the lattice depths s2 and s1, and can be easily
controlled tuning the lasers intensity.

Disorder induced localization. The Aubry-André model9 predicts a transition
from extended to localized states for a finite value of the disorder, ∆ = 2J . This
can be explained as follows. In a perfect periodic potential all the eigenstate are
extended Bloch waves, therefore the system is conducting. The single-particle energy
dispersion shows a band structure, in particular E(q) = E0 − 2J cos(qd) in the
first band, where E0 is the ground-state energy in the single hole, q is the quasi
momentum of the particles and d is the lattice spacing. In a pure random potential
(random distribution of εi, δ-function correlation) any trace of translational symmetry
is lost and all the eigenstates are exponentially localized for any disorder, leading
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(a) Anderson localization (b) Quasiperiodic spectrum

Figure 3.3: (a) Experimental observation of Anderson localization in a quasiperiodic
lattice79. From top to bottom is shown the time evolution of the atomic cloud for increasing
value of the disorder strength ∆. For large enough disorder the cloud does not expand in
the lattice revealing localized. (b) Single-particle spectrum of the quasiperiodic potential at
∆ = 4J . The minibands structure clearly appear in the spectrum. In the inset is shown the
Anderson-like localized experimental profile at ∆ = 15J fitted with an exponential decaying
function (in red).

to the Anderson localization, as introduced in Sec. 1.1. Instead, the quasiperiodic
lattice shows non-vanishing spatial correlations. In a quasiperiodic lattice the on-site
energies are shifted of about ∆; if ∆ < 2J the on-site energies still belong to the
conducting band. For ∆ > 2J some on-site energies are out of the band, inducing
localization in the whole sample. As a consequence a metal-insulator transition
occurs at ∆ = 2J . From another point of view, the metal-insulator transition at
∆ = 2J can be understood by considering the duality of the Aubry-André model,
which predicts localization both in the real and the momentum space29. In this
context, the point where the system localizes in the real space, has to be the same
point where it delocalizes in the momentum space. It is possible to see that the only
self-dual point is ∆ = 2J . The disorder-induced Aubry-André transition has been
experimentally proved79 with cold atoms experiments, as shown for example in Fig.
3.3a.

In the quasiperiodic lattice the Anderson-like localized eigenstates display a
localization length which varies with disorder as ξ ≈ d/ ln(∆/2J), where d = λ1/2 is
the lattice site spacing. No mobility edges exist in the lowest band of the quasiperiodic
lattice, i.e. all the states are either localized or extended, depending on the disorder
strength. The spectrum of such a potential can be easily calculated, by diagonalizing
the Hamiltonian. A striking feature of the spectrum is the appearance of minigaps
splitting the first lattice band above the critical disorder; the bandwidth (which is
4J in the regular lattice) spreads to approximately 4J + 2∆, as shown in Fig. 3.3b.
The lowest-energy eigenstates, i.e. the ones populating the lowest ‘miniband’, result
separated by approximately D, since the quasiperiodic correlation function has a
sinusoidal shape, with maxima of its autocorrelation separated by a quasi-period D.



32 CHAPTER 3. THEORETICAL FRAMEWORK

3.3 Disorder and interactions in 1D

In Chapter 1 we introduced the dirty-bosons problem, giving the physical pictures
of its phases. Besides the standard (Mott) interacting-induced and (Anderson)
disordered-induced localized phases, a new compressible insulator is expected to
appear, the Bose glass. Here we focus on the one-dimensional problem at strong
interactions, describing a particular model (the original Bose glass model developed
in Giamarchi and Schulz 42) which treats the effect of disorder on interacting bosons.

In fact, while the effect of disorder on non-interacting systems is well understood,
taking into account the combined effects of disorder and interactions is a tough
problem. For fermions, the non-interacting system is a good starting point; the
effects of interactions can be introduced in a perturbative way. Such approach is
impossible with bosons, since the non-interacting bosonic case is pathological. In this
case, the ground state is a highly inhomogeneous Bose-Einstein condensate, with all
the particles in the lowest (localized) eigenstate of the Hamiltonian. In the absence
of repulsion, a macroscopic number of particles is then in a finite region of space.
Such a state is unstable to the introduction of even the weakest interaction. The
interactions should thus be included into the problem from the beginning15.

In one-dimension, one way to tackle the problem is to start from the Luttinger
liquid (LL) description of a uniform interacting Bose gas, then add disorder as a
small perturbation. In fact, the LL theory incorporates all the interactions in a
relatively simple quadratic Hamiltonian, providing a convenient starting point to
study the problem. In the following, after introducing the notion of Luttinger liquids,
we briefly discuss the effect of disorder within the LL framework. This description
provides the evidence the Bose glass phase. A detailed description of the LL theory
can be found in Cazalilla et al. 15 , and in the references therein contained.

3.3.1 The Tomonaga-Luttinger liquid

Interacting one-dimensional fluids, no matter if the particles are fermions or
bosons, belong to a universality class of systems which Haldane47 named ‘Luttinger
liquids’. The general property characterizing a Luttinger liquid is that its low energy
excitations are collective modes with linear dispersion. The collective nature of the
low energy excitations in 1D fluids can be understood as follows: in 1D, interacting
particles must push their neighbors away in order to propagate; any individual motion
is thus converted into a collective one. One-dimensional fluids are therefore described
in terms of collective fields; this choice is behind the most successful theory treating
1D systems, the so-called bosonization technique41,15.

In the case of bosons the collective fields describing the 1D fluid, are the density
ρ̂(x) and the phase θ̂(x) of boson field operator, ψ̂†(x) =

√
ρ̂(x)e−iθ̂(x). In general,

the density operator can be written as follow

ρ̂(x) =

(
n1D −

1

π
∂xφ̂(x)

)∑
m∈Z

αme
2im(πn1Dx−φ̂(x)) (3.10)

Here φ̂(x) is a slowly varying quantum field, n1D = 〈ρ̂(x)〉 = N/L is the ground state
density (constant in translationally invariant systems) and αm is a non-universal
coefficient depending on the microscopic details of the model. The first term in
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the right hand side of this expression describes the small density deviations from
n1D at small excitation energies. The second oscillating term reflects instead the
discreteness of the particles constituting the system, which locally (but not globally)
tend to develop a crystal-like ordering with lattice spacing ∼ n−11D.

A representation of the Hamiltonian for the 1D interacting bosons, can be obtained
introducing 3.10 in 3.1 (imposing Vl = Ve = 0):

ĤLL =
~

2π

∫
dx

[
vK

(
∂xθ̂(x)

)2
+

v

K

(
∂xφ̂(x)

)2]
. (3.11)

As already said, the Hamiltonian has a simple quadratic form. All the interaction
effects are encoded in the two model-dependent parameters v and K. In particular, it
can be shown that K controls the behavior of the correlation at long distances, while
v is the velocity of propagation of density disturbances. In systems with purely local
interactions, 1 < K <∞, where K →∞ is the non-interacting limit, while K = 1
represents the Tonks-Girardeau gas. In the absence of external potentials the system
is always superfluid; in the case of bosons K and v are related to the Lieb-Liniger
parameter γ (2.11) through known analytical expressions. Also the Bose-Hubbard
model describes a Luttinger liquid for non integer filling or for sufficiently weak
interactions at integer filling. Anyway, no analytical expressions relates the Luttinger
parameters K and v to the BH energy scales.

3.3.2 Perturbation on 1D superfluids

Periodic lattice. Luttinger liquids are extremely fragile to external perturbations.
If the perturbation is a weak periodic potential Ve(x) = V0 cos(Gx), the system
realizes the so-called sine-Gordon model20. The sine-Gordon Hamiltonian can be
obtained using the expression (3.10) for the density, and reads:

ĤsG = ĤLL +
gu
π

∫
dx cos

(
2pφ̂(x) + δx

)
. (3.12)

For a weak potential gu is the bare coupling and depends on the lattice depth
V0. The doping δ ≡ nG− 2pπn1D (n, p are integer numbers) measures the degree
of incommensurability of the potential: δ = 0 corresponds to a commensurate
number of bosons per site. For p = 1 there is an integer number of bosons per
site (n1D = nG/2π), while higher values of p, such as p = 2, correspond to integer
numbers of bosons every two sites, etc. At integer filling, this Hamiltonian shows
the same phase transition found in the Bose-Hubbard limit from a superfluid to a
Mott insulating phase (see Sec. 3.1), allowing to study also the vanishing lattice case
(V0 = 0). The Hamiltonian can be quantitatively studied through a renormalization
group (RG) approach. The phase transition is found at a universal value of the
Luttinger parameter Kc = 2/p2, which reduces to Kc = 2 for systems with purely
local interactions. The system is a superfluid for K > Kc, where any shallow lattice
is an irrelevant perturbation, while a Mott-gap opens for K < Kc, signaling the
presence of an incompressible localized Mott phase.

Disorder. When the external perturbation is an on-site random disorder V (x),
such that V (x)V ∗(x′) = ∆δ(x− x′), where ∆ is the disorder strength, the perturbed
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Figure 3.4: Phase diagrams for a disordered one-dimensional Bose gas. The dashed lines
are for parts of the diagram that cannot be obtained by the bosonization technique. In
the region where bosonization works (i.e. for disorder smaller than the chemical potential)
the superfluid-Bose glass transition, denoted by the solid line, is described by universal
exponents, and takes place at K−1=2/3. The picture is taken from Giamarchi and Schulz 42 .

Luttinger Hamiltonian reads:

Ĥd = ĤLL +

∫
dxV (x)

[
− 1

π
∂xφ̂(x) + n1D

(
e2im(πn1Dx−φ̂(x)) +H.c.

)]
. (3.13)

The term ∂xφ̂ corresponds to a slowly varying chemical potential, thus describes
the ‘forward’ scattering by the random potential which does not affect the system
conductivity. The main disorder effects come from the ‘backscattering’ term, i.e.
the term for which the momentum exchanged with the impurities is of the order
of 2πn1D. This term can be treaten by a RG procedure. Using this RG approach
Giamarchi and Schulz 42 predicted a new phase transition at the universal value of
the Luttinger parameter K∗ = 3/2. The system is superfluid at weak interactions
K > K∗, while it localizes for K < K∗, in analogy with the Tonks limit K = 1
(contained in the phase K < 3/2), for which the bosons behave as free fermions,
thus (Anderson) localize in the presence of disorder. Contrarily to what happens
for the periodic case the system remains compressible in the localized phase, as one
can see again from the fermionic limit, thus no excitation gap opens. This localized
gapless phase is the Bose glass (BG). Disordered bosons in 1D, whose qualitative
phase diagram is shown in Fig. 3.4, provided the first derivation of the BG phase.

Until now, we have considered the case of bosons in the continuum. If the
disorder perturbs a lattice, at strong enough interactions there will be a competition
between Mott (commensurate) and Anderson (incommensurate) localization. This
competition can be described adding to the Hamiltonian (3.13) a term as in Eq. (3.12)
with δ = 0. In this case, two effects must be considered. First, the ‘forward’ scattering
term, which acts as a slowly varying chemical potential, is now in competition with
the commensurate term cos(2φ), thus reducing the Mott gap, and eventually, for
strong enough disorders, destroying the commensurability. Therefore, the presence
of disorder will reduce the stability of the Mott region, leading to a delocalization by
the reduction of the Mott effects. On the other hand, the effect of the ‘backward’
term is to induce Anderson localization on the superfluid flow and leads to the Bose
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Figure 3.5: Phase diagram for disordered interacting bosons in a lattice. Depending on
the ratio between tunneling energy J , interaction energy U , and disorder ∆, the system
forms a superfluid (SF), a Mott insulator (MI), or a Bose glass (BG). The picture is taken
from Fallani et al. 32 .

glass phase, as discussed previously. As a result, when the disorder is increased one
can naively expect a transition between a Mott insulator, which is incompressible and
localized to a Bose glass, which is compressible and also localized. The qualitative
diagram describing this transition is shown in Fig. 3.5. As shown in Chapter 1, in
the presence of a lattice the SF-BG transition occurs in any dimension37.

Quasiperiodic lattice. A quasiperiodic lattice is somehow an intermediate case
between a single lattice and a random potential. In fact, a random disorder can
be described as a potential containing all the Fourier harmonics. In the case of the
bichromatic potential only two incommensurate frequencies are present. A phase
diagram of the bichromatic BH model has been numerically studied by Roux et al. 81 ,
and will be discussed in Sec. 4.4 in comparison with experimental measurements.
Anyway, the phases of this system can be argued using similar arguments as before.
For fillings commensurate with either the primary or the secondary lattice, the simple
quadratic Luttinger Hamiltonian changes into a sine-Gordon Hamiltonian. A Mott
insulator is obtained for filling commensurate with the primary lattice, and a pinned
incommensurate density wave (ICDW) for filling commensurate with the secondary
lattice. For fillings incommensurate with both lattices the transition towards the
Bose glass phase is instead expected at a critical disorder ∆ ≥ 2J , in agreement with
the limiting case of free and hard-core bosons described by the Aubry-André model.
For vanishing quasiperiodic potential the system should remain SF, and no Bose
glass phase should exist; anyway, the fate of the localized phase in this particular
regime is still under debate.

3.4 Open questions

In summary, the phase diagram of one-dimensional interacting bosons in disor-
dered media appears very rich. The bosonization technique indicates the presence
of a new glassy phase at strong interactions, and predicts the critical properties
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of the phase transition. In the strongly correlated regime this Bose glass phase
is rather analogous to the Fermi glass phase of interacting fermions in strongly
disordered potentials, with the repulsive interactions playing the role of Pauli ex-
clusion. Anyway, a direct link with the local properties of the microscopic (BH)
model describing experimental systems is not straightforward. Furthermore, this
perturbative approach is justified a priori only in the weak disorder limit, i.e. if the
chemical potential set by the interactions is much larger than the disorder strength.
The fate of such a transition in the opposite limit, i.e. at weak interactions, is still
debated, even though, recently, promising beyond mean-field approaches4,91 have
been developed. As introduced in Sec. 1.1 at weak interactions the system seems to
exhibit a different glassy phase, composed by many coherent puddles weakly coupled
through the disorder potential. How the two glassy phases connects is still unknown.



Chapter 4

Coherence

The first experimental observable we address to study the dirty-bosons problem is
the condensate correlation length, which gives indications on its coherence properties.
Generally, coherence is one of the peculiar features of a Bose-Einstein condensate.
In fact, for non-interacting particles, the criterion for Bose-Einstein condensation
is that the occupation number for one of the single-particle energy levels should
be macroscopic. When this happens all the condensed particles can be described
by a single order parameter and spontaneous coherence develops between them.
These coherence properties translate into a characteristic behavior for the correlation
function. In particular it was demonstrated69 that Bose-Einstein condensation in a
three-dimensional system occurs when the single particle density matrix ρ(r, r′) =
〈ψ̂†(r′)ψ̂(r)〉 exhibits off-diagonal long range order,

lim
|r−r′|→∞

ρ(r, r′) = N0 > 0. (4.1)

In one dimension things change. Arguments similar to the three-dimensional
case provide a degeneracy temperature T1D = ~2n21D/mkB, at which the effects of
quantum statistics set in, i.e. the de Broglie wavelength become comparable to the
inter-particles separation. By the way, in one dimension phase fluctuations associated
with phonons, the long-wavelength excitations of the condensate, can destroy Bose-
Einstein condensation and affect its correlation properties. At finite temperature,
T < T1D, the mean square fluctuations of the phase for the uniform one-dimensional
system are expected70 to diverge linearly at large separation x = x′ − x′′,

〈∆φ(x)2〉 = 〈[φ(x′)− φ(x′′)]2〉 =
mkBT

n1D~2
|x|, (4.2)

where n1D = N/L is the number of particles per unit length. As a consequence the
one-dimensional correlation function is expected to decay exponentially,

ρ(x) ' n1De−|x|/2Lφ . (4.3)

In the uniform system and in the absence of external potentials (as a periodic lattice)
the correlation length is Lφ = n1D~2/mkBT . The fact that the density matrix tends
to zero as x→∞ shows that there is no Bose-Einstein condensation. Despite the
absence of long range order, coherence is not yet destroyed. The physical picture

37
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is that of finite regions where the phase is well correlated, but with relatively weak
phase coherence between different regions. The length Lφ gives the typical distance
over which there is good phase correlation, and is of the order of the square of the
thermal de Broglie wavelength divided by the mean separation between particles.
In general one speaks of a ‘quasicondensate’ to indicate the behavior of the density
matrix in intermediate between that of a BEC, for which ρ(x) tends to a constant
value at large x, and that of a normal system, in which ρ(x) drops towards zero over
a typical microscopic distance.

The presence of disorder can strongly affect the correlation properties of a bosonic
system, even for quasicondensates in one dimension. In the absence of interactions,
the disorder induces exponential localization of the one-particle wave-functions thus
destroying coherence between neighboring particles. Depending on the kind and
on the strength of disorder the characteristic localization length can be even much
smaller than the quasicondensate correlation length Lφ. The resulting correlation
function will decay exponentially on shorter correlation lengths. On the other hand
also the presence of strong interactions can affect the correlation properties of the
quasicondensate, forcing particles to stay apart from each other. An experimental
mapping of the evolution of the correlation length of an interacting disordered one-
dimensional Bose gas can give important indications on the different phases of the
system.

4.1 Momentum distribution and correlation function

The experimental observable enabling the study of the correlation properties is
the momentum distribution. Cold atoms experiments give the possibility to image the
atomic distribution after a time of flight, i.e. after releasing atoms from the trapping
confinement and letting them free to expand. If the time of flight is sufficiently
large and the interactions between atoms can be neglected, the image of the atoms
is acquired in the ‘far-field’ limit and it approximatively reproduces the in-trap
momentum distribution, nTOF (r) ≈ ρ(p) = 〈ψ̂†(p)ψ̂(p)〉, where the position r and
the momentum p are related by the ballistic expansion condition p = mr/~t, m is
the atomic mass and t is the time of flight. Using the Wiener-Khinchin theorem,
since ψ̂(p) ∝ F [ψ̂(r)], is possible to directly relate the spatially averaged correlation
function to the inverse Fourier transform of the experimentally measurable momentum
distribution

g(r) =

∫
ρ(r′, r + r′)dr′ = F−1[ρ(p)]. (4.4)

As already said in one dimension the correlation function of a trapped gas at finite
temperature decays exponentially in space, whatever the phase of the system. For a
quasicondensate the correlation length is Lφ. More generally the correlations decay
on a typical length ξ. The atomic momentum distribution is therefore a Lorentzian
distribution whose width is inversely proportional to the correlation length of the
system

ρ(p) =
1

p2 + (1/ξ)2
. (4.5)

Measuring the momentum width of a trapped gas is then possible to extract infor-
mation on the coherence length of the system.
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Figure 4.1: Experimental sequence. The loading ramp for the 2D lattice (purple) is
s-shaped and last 400 ms. Half of the total depth is reached with a 200 ms exponential ramp,
with time constant τ=80 ms; the final depth is then reached with an inverted exponential
with the same τ . The main lattice raises 100 ms after the 2D lattice. Its ramp (red) is
s-shaped and last 300 ms. One third of the total depth is reached in 150 ms with an
exponential ramp with τ=30 ms; the final depth is reached with an inverted exponential
ramp with τ=-70 ms. The secondary lattice (orange) raises during the last 200 ms, with an
exponential ramp with τ=60 ms. The scattering length (black) is linearly changed to the
desired value after 300 ms, when the radial confinement is sufficiently strong to freeze the
number of occupied tubes.

4.2 Experimental procedure

In this section we describe the experimental techniques used to prepare the
disordered one-dimensional system at different interaction energies, and to detect its
coherence properties. The main result of this experimental procedure is the diagram
shown in Fig. 4.3: thanks to the ability to simultaneously control disorder and
interactions, we could trace the complex evolution of the momentum width across
the U -∆ plane, thus measuring the system’s correlation properties.

Loading an array of 1D traps. As introduced in Chapter 2, the experiment
starts with a condensate prepared in the ground state of a three-dimensional optical
trap with mean frequency ω = 2π × 80 Hz, at a scattering length a = 210a0. The
total number of atoms Ntot ranges from 2 to 4 × 104, depending on the specific
dataset, and no thermal component is discernible, thus T is well below the critical
temperature for Bose-Einstein condensation in three dimensions.

The experimental sequence used to load the one-dimensional traps at different
disorder and interactions is sketched in Fig. 4.1. The BEC is adiabatically transferred
from the dipole trap into an array of 1D tubes by ramping up the strong two-
dimensional optical lattice with 400 ms s-shaped ramps. We remind that at typical
lattice depths of 30 recoil energies, the radial trapping frequency of each tube
ω⊥ = 2π× 50 kHz, is larger than any other energy scale (including the axial trapping
frequency, typically ωx = 2π × 150 Hz), and tunneling between neighboring traps
is suppressed on the experimental timescale (h/J⊥ ∼ 0.5 s). Each tube behaves as
an effective one-dimensional system. The atom number per tube can be determined
using Eq. 2.8, as discussed in Sec. 2.4
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Figure 4.2: Typical experimental picture at U=J, ∆=0. The momentum distribution
is integrated along the radial direction and fitted with three Lorentian peaks. The root
mean square (rms) width Γ of the central peak gives information on the system correlation
properties.

Inside the tubes. When the tunneling between tubes is small enough, the
quasiperiodic lattice is adiabatically raised up, and the 3D scattering length is
slowly changed to a final tunable value a with a magnetic Feschbach resonance, as
shown in Fig 4.1. The depth of the main lattice (with spacing d = λ1/2, λ1 = 1064
nm) is kept fixed at around 9 recoil energies, and sets the typical tunneling energy
J/h ∼ 110 Hz. The depth of the secondary lattice (with λ2 = λ1/β = 856 nm) can be
varied and sets the quasi-disorder strength ∆. Since the depth of the primary lattice
s1 is quite large, the system is well described in the Bose-Hubbard limit, as discussed
in Sec. 3.1; the Hubbard Hamiltonian describing the experimental realization in the
single tube reads:

Ĥ =− J
∑
i

(b̂†i b̂i+1 +H.c.) +
U

2

∑
i

n̂i(n̂i − 1)

+ ∆
∑
i

cos(2πβi+ φ)n̂i +
α

2

∑
i

(i− i0)2n̂i,
(4.6)

with J , U and ∆ given by the expressions 3.5, 3.6 and 3.9 respectively. The strength
of the interaction energy U depends on the final scattering length a. α represents
the harmonic confinement in the axial direction (ωx = 2π × 150).

Momentum distribution detection. The coherence properties of the system
are captured by performing time of flight imaging. All the trapping potentials are
suddenly switched off and the atoms are let free to expand for 16.5 ms.

A typical experimental picture is shown in Fig. 4.2. Even in the absence of
disorder, the atoms are confined in a lattice, whose periodic properties are reflected
in the momentum distribution. In the superfluid phase the (Wannier) wave-functions
centered in each lattice site are phase-locked on length scales of the order of the
correlation length; when all the trapping potentials are switched off, the wave packets
overlap and interfere giving rise to sharp peaks in the momentum distribution. The
distance between the peaks is 2~k1, and depends on the reciprocal lattice vector
2k1 = 2π/d, where d is the main lattice spacing. While the envelope of the whole
distribution is proportional to the square of the Fourier transform of the single site
Wannier function, the peak shape reflects the coherence properties of the system.
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Figure 4.3: Coherence diagram. Evolution of the root mean square momentum width Γ
experimentally measured in the U -∆ plane. The diagram is constructed by interpolating 94
data points, indicated with white crosses. Each point is the mean value of four measurements,
with a standard deviation between 2% and 5%.

As already said, in 1D systems the correlation function decays exponentially, and
each peak is a Lorentzian distribution, whose width is inversely proportional to the
correlation length ξ. In less coherent samples, the correlations decay on smaller
length scales (even smaller than the lattice spacing), resulting in a broadening of the
Lorentzian distribution.

The simpler experimental observable one can extract from the measured distri-
bution is the root mean square (rms) width Γ of the central peak. We estimate it
in the first Brilluin zone. This quantity is linked to the Lorentzian width 1/ξ, it is
fit-independent and can be directly measured from the bare experimental profiles.
By fitting the measured distribution with a Lorentzian function is also possible to
directly derive the correlation length ξ.

4.3 Experimental U-∆ diagram

The evolution of the root mean square momentum width Γ is shown in Fig. 4.3
The diagram is constructed by interpolating 94 data points taken at different disorder
and interactions and homogeneously distributed. Each point is the average of four
different experimental measurements, with a standard deviation between 2% and 5%.

The momentum width Γ features a clear variation across the U -∆ plane, suggesting
the presence of different disorder/interaction-induced quantum regimes. Coherent
and incoherent regimes are well detectable even though the unavoidable harmonic
trapping (ωz = 2π × 150 Hz) limits the size of the system and transforms sharp
quantum phase transitions into crossovers. Along the ∆ = 0 line, Γ increases with
U due to the progressive formation of an incoherent Mott insulator, which in our
inhomogeneous system coexists with a remaining superfluid fraction. At large U ,
in fact, the Poissonian fluctuations in atom number are energetically costly and
tunneling from site to site is suppressed, as discussed in Sec. 3.1. The coherence is
lost on length scales of the order of the lattice spacing. For increasing disorder along
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the non-interacting line, an Anderson insulator forms above the critical ∆ = 2J
of the Aubry-André model, see Sec. 3.2. The general behavior for finite U and
∆ indicates the presence of a reentrant incoherent regime characterized by small
correlation lengths, extending from small U and ∆ > 2J to large U , surrounding a
more coherent one for moderate disorder and interaction. This observation strongly
reminds the insulating regimes discussed in Chapter 1. At small U the interactions
weaken the disorder-induce localization; a crossover from the incoherent (Anderson
localized) regime towards more coherent regimes is observed when the interaction
energy nU becomes of the order of ∆, in agreement with theoretical predictions. At
stronger U a second crossover towards less coherent regimes occurs. An interaction-
induced Mott insulator is expected to survive in the disordered potentials only
for moderate disorder ∆ < U/2. In this region, the interaction energy cooperates
with disorder in destroying the system coherence, suggesting the presence of a new
insulating regime besides the disordered Mott insulator, which will prove to be the
Bose glass.

Temperature. The experiment is realized at finite temperature. As discussed in
Sec. 1.3, the effect of temperature can be twofold in the U -∆ diagram; at weak
interactions a finite temperature could compete with the interaction energy, reducing
the spatial density of the system, thus not preventing its localization in the disordered
landscape. In this context theoretical studies2 predicted a temperature-independent
metal-insulator transition, up to a crossover temperature T0 ≈

√
nUT1D/kB. On

the other hand at strong interactions the thermal energy should compete with the
disorder, weakening the localization effects. For instance a melting temperature
T0 ≈ 0.2U is expected40 for the Mott insulating phase. To clearly distinguish and
characterize the different quantum regimes, a good estimate and control of thermal
effects is thus required.

A good measurement of the temperature in a lattice is not trivial. In the uniform
system and in the absence of a lattice an experimental indication might be extracted
from the momentum width at zero disorder and weak interactions, where the bosons
form a quasicondensate, relating Γ to the correlation length Lφ. Actually, the
presence of the lattice and the inhomogeneity of the experimental system strongly
affect this relation, changing the evolution of the correlation length with temperature.
Detailed studies on ξ(T ) will be presented in Sec. 4.5, in order to characterize the
role of a finite temperature in the different regimes observed in the experiment. From
finite-temperature simulations we can estimate T ∼ 3J for the quasicondensate,
not larger than the other energy scales characterizing the system (actually smaller
in many regions of the phase-diagram), well below the degeneracy temperature
T1D ∼ 8J . However, in this system the temperature can be estimated only in the
weakly-interacting regime at ∆ = 0; in other regions of the phase diagram a direct
measure of the temperature is not easily available.

Entropy. An experimental observable related to the thermal energy present in
the system is its entropy S. While the temperature is not directly addressable in
the whole U -∆ plane, the entropy can be measured everywhere, giving informations
on the heating in the system. The entropy is measured as follows: in a 3D trap,
the entropy depends explicitly on the temperature of the system14, which can be
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Figure 4.4: Measured entropy per particle, S/NkB. The 2D graph is constructed by
interpolating the data points whose position is shown by the white crosses.

measured by time of flight images. For a condensate S = 4NtotkBζ(4)/ζ(3)(T/Tc)
3,

where Tc is the critical temperature for condensation and ζ is the Riemann Zeta
function. For a thermal cloud, S = NtotkB[4− log(Ntot(~ω/kBT )3)]. In our setup it
is not possible to directly assess the entropy of the one-dimensional system, but we
can measure the entropy after transferring the atoms into the 1D tubes and back
into the 3D trap, and compare it with the initial entropy in the 3D trap. We assume
the mean value of the initial and the final entropies as an indication of the entropy
in the 1D tubes.

The evolution of the entropy along the U -∆ diagram is shown in Fig. 4.4.
Though this observation is not an absolute measurement of the temperature, it gives
indications on the relative heating in the different regions of the phase-diagram.
Generally we measure entropies S ∼ NkB . The overall increase of S towards small U
suggests a slight heating of the sample at weak interactions. This is probably due to
a less adiabatic preparation of the one-dimensional systems at vanishing interactions,
and could lead to an overestimation of the temperature in regions with larger U . For
increasing ∆ the entropy is constant: the presence of the disordered potential does
not affect the temperature of the sample. The strong local increase of S for large ∆
and vanishing U is instead presumably caused by the presence of strongly localized
single particle states keeping the system far from its ground state during the loading
procedure.

4.4 Comparison with theory

Many theoretical works42,37,81,80 studied the quantum phases of an interacting
Bose gas in the quasiperiodic potential. Anyway, most of the theories were developed
at zero-temperature and in the absence of harmonic confinement, i.e in homogeneous
systems. In Roux et al. 81 , density-matrix renormalization group (DMRG) algorithms
were used to treat the soft-core Bose-Hubbard model in a quasiperiodic potential.
Different observables were computed: the correlation length ξ and the superfluidity



44 CHAPTER 4. COHERENCE

Figure 4.5: Phase diagrams of the quasiperiodic Bose-Hubbard model for densities n=1,
n=r (the ratio of the potential wave-lengths, λ1/λ2), and n=0.5. The diagrams are shown
as a function of the interaction strength U and the quasiperiodic potential strength V2,
proportional to ∆, both normalized by the hopping J . Lines are guides to the eyes. The
picture is taken from Roux et al. 81 .

density ρs gave informations on the coherence and the mobility of the system,
suggesting the presence of localized or delocalized phases. On the other hand, the
one-particle gap ∆c (a quantity directly related to the computable chemical potential
µ), gave indications on its compressibility. All the observables were evaluated at
different densities n, and their evolution in the U -∆ plain allowed the detection of
different quantum phases. A summary of the main theoretical results is depicted in Fig
4.5, which gather the phase diagrams for commensurate (n=1) and incommensurate
(n =0.5, n=r) densities. Here V2 is the depth of the secondary lattice, proportional
to ∆, and r = λ1/λ2 the ratio between the bichromatic potential wave-lengths. The
observed quantum regimes strongly depend on the density n. Anyway, generally three
main different phases are found, in agreement with the general discussion developed in
Sec 3.3.2: a superfluid-compressible phase (SF), present at weak interaction and weak
disorder, transforms in an insulating and incompressible Mott phase (MI) at strong
interactions, or in a incommensurate density wave (ICDW), depending on the system
commensurability. For ∆>2J the Bose glass (BG) phase emerges. As introduced
in Chapter 1, this peculiar phase, extending from weak to strong interactions, is
globally insulating, but characterized by local coherence, thus resulting in a finite
compressibility and in a gapless excitation spectrum.

The reentrant shape of the experimental diagram shown in Fig. 4.3 reminds
the behavior of this Bose glass phase found in theoretical studies at T = 0 for the
homogeneous systems. The experimental situation is, however, much more complex.
The experiment is in fact composed by several one-dimensional inhomogeneous
systems with different atomic densities, at finite-temperature. In order to identify the
observed incoherent regimes with predicted theoretical phases, a close comparison
between the experimental data and theory is thus needed. We achieve the closest
experiment-theory comparison by performing a DMRG study of the inhomogeneous
systems described by Hamiltonian (4.6), and then extending the zero-temperature
results to finite T . The calculations have been performed in cooperation with
Guillaume Roux and Thierry Giamarchi, using the experimental parameters given in
Sec. 4.2.
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Figure 4.6: Theoretical coherence at T=0 in the inhomogeneous system. Momentum width
Γ at T=0, calculated for individual tubes, and then averaged over the distribution of tubes.
The diagram is built with 94 data points at the same positions of the experimental data in
Fig. 4.3. The insets show four typical momentum distributions calculated at U=2.3J and
∆=0, U=2.3J and ∆=16J , U=33J and ∆=0, U=33J and ∆=16J .

4.4.1 Zero-T phase diagram in inhomogeneous systems

Zero-temperature DMRG calculations81 give access to all the single-particle corre-
lations gmn = 〈b̂†mb̂n〉 in the ground-state, which are then averaged over the whole dis-
tribution of tubes in order to account the experiment’s inhomogeneity. The T = 0 mo-
mentum distribution is obtained using Eq. (4.4), ρ(p) = |W (p)|2

∑
m,n e

ip(m−n)gmn,
where W (p) is the Fourier transform of the numerically computed Wannier function.
Few representative results, in different U -∆ zones, are displayed in the inset of Fig.
4.6. The overall evolution of the rms momentum width along the U -∆ plane is shown
in Fig. 4.6. The presence of a strong harmonic potential affects the shape of the U -∆
diagram. In fact, different phases are now coexisting at a given disorder and interac-
tion strength, due to the different atomic densities present in each one-dimensional
system. The resulting phase-diagram is thus a ‘combination’ of several theoretical
homogeneous phase diagrams with different occupancies of the lattice sites. As a
consequence, the theoretical sharp transitions of the homogeneous system broaden
into crossovers between different regimes. Moreover, the inhomogeneity washes out
the peculiar finger-like structure of the SF phase found for the homogeneous system;
the overall shape is actually very similar to the experimental one.

Of course, the great difference between theory and experiment is in the values
of Γ: in the experiment we measure much bigger widths than the ones estimated
by the zero-temperature theory, at least at weak interactions (U < 10J). This
suggest the presence of relevant thermal broadening in the weakly-interacting region.
At strong interactions and low disorder instead, experimental and theoretical-zero-
temperature widths are not so different, suggesting negligible thermal effects in this
regime. Finite-temperature simulations we will present in section 4.5, will clarify the
different behavior of the correlation length versus temperature.
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Figure 4.7: Measured and calculated momentum distributions. The experimental mo-
mentum distributions (black) are compared with T=0 DMRG calculations (blue lines)
supplemented by the introduction of a thermal correlation length ξT (red lines), in four
typical regions of the phase diagram

4.4.2 Finite-temperature: a phenomenological approach

A phenomenological account of temperature effects is introduced by multiplying
the correlation function by e−|m−n|/ξT , where ξT is a phenomenological thermal
correlation length. In the superfluid regime, for homogeneous systems, the Luttinger
liquid theory justifies this assumption and predicts ξT ∝ 1/T in the continuum
(i.e. in the absence of a lattice). For the sake of simplicity, we take the same ξT
for all distances and all tubes. This qualitatively amounts to convolve the T = 0
momentum distribution with a Lorentzian of width 1/ξT ; the resulting ‘thermal’
ρ(p) is reproduced by red curves in Fig. 4.7 and compared with the T=0 DMRG
distributions (blue lines) and the experimental profiles (black lines). The evolution
of the ‘thermal’ rms momentum width in the U -∆ plane, is shown in Fig. 4.8b,
and compared with the experimental one (Fig. 4.8a). ξT is left as a free fitting
parameter, which we adjust on the experimental profiles, the black curves in Fig
4.7. As shown in Fig. 4.7a-4.7b-4.7d, this approach well reproduces the experimental
momentum distribution in all regimes, realizing quite good agreement between theory
and experiment in the whole U -∆ plane (see Fig. 4.8a-4.8b), with the exception of
the large-U , low-∆ region. The evolution of ξT is shown in Fig. 4.8c and suggests
the presence of two distinct regions in the U -∆ diagram, one at weak interactions,
say U < 10J , strongly affected by the thermal excitations, the other at strong U ,
weakly dependent on temperature.

In the weakly interacting region ξT is indeed rather short (∼ d), revealing a
relevant thermal broadening of the momentum width, but it is essentially constant.
The presence of a finite temperature results in a reduction of the typical correlation
length, but does not affect the crossover lines between more and less coherent phases.
This suggestis a strong link between the experimental observed regimes and the
theoretically computed quantum phases. As already noticed, the shape of to the
experimental diagram is not different from the computed T = 0, in agreement
with the expectation2 of a temperature-independent metal-insulator crossover for
our temperature T ∼ 3J of the order of T0 ≈

√
nUT1D/kB. In particular, in the

weakly-interacting region at ∆ > 2, interactions tend to restore coherence between
single-particle localized states, thus weakening the Anderson localization and leading
to a delocalization transition from a weakly-interacting Bose glass to a superfluid
phase. Both the experiment and the theoretical study locate this crossover at nU ∼ ∆,
where the interactions are large enough to screen disorder effects, as already observed
in three-dimensional systems26.
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(a) Experimental U-∆ diagram.

(b) DMRG U-∆ diagram.

(c) ξT across the U-∆ plane.

Figure 4.8: Coherent and incoherent regimes across the U -∆ plane. Momentum width
Γ measured (a) and calculated (b) as described in the text. The dominant phases in the
typical system from the T=0 theory are labeled in the calculated diagram. The grey dots
indicate the interaction values above which one finds Mott insulating domains; for large U
this interaction is about 2∆. Both diagrams are built with 94 individual data points. (c)
Fitted ξT across the U -∆ plane.
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At strong interactions, ξT increases substantially (ξT ∼ 7d), thus indicating that
the strongly-correlated phases are only weakly affected by the finite temperature. In
the large-U small-∆ region the thermal broadening approach fails; the theoretical
‘thermal’ phase diagram is not well reproducing the experimental one. Here, in fact,
the situation is more complex; at zero temperature at least two phases coexist in
our inhomogeneous system. The fraction of the atoms which is commensurate with
the lattice periodicity forms a Mott insulator well localized at the lattice sites by
interactions; on the other hand the remaining incommensurate fraction behaves as
a weakly-interacting Fermi gas, i.e., in absence of disorder, as a fluid of fermions
(see Fig. 4.5). The coherence properties and the typical correlation lengths of these
phases are not expected to be equal. In particular we will show that the evolution
of ξ(T ) with temperature behaves quite differently for the commensurate and the
incommensurate phase. Actually, looking at the profiles in Fig 4.7c, the use of
one single correlation length does not perfectly fit the experimental data, probably
leading to an overestimation of the computed theoretical Γ.

For increasing disorder the incommensurate-fluid fraction (Anderson) localizes,
and its correlation properties resembles more and more the commensurate-insulating
one even for T > 0, leading to a better agreement between theory and experimental
data. As already pointed out, the coherence diagram exhibits a new crossover, clearly
different from what would be expected for a simple MI surviving in the presence of
disorder (i.e. U > 2∆, the dashed line in Fig. 4.8b), suggesting the presence of an
additional disorder-induced phase besides the MI, the strongly-correlated Bose glass.
As discussed in Chapter 1, this new phase, predicted by zero-temperature theory,
arises from the localization of the strongly-interacting incommensurate fluid fraction,
thus displaying finite compressibility and gapless response in the excitation spectrum.
Finite temperature simulations, and further experimental observations, such as the
excitation spectrum measurement, will prove this preliminary observation in the next
sections.

4.5 Finite temperature effects

The phenomenological approach described above, suggests a strong link between
the coherent and incoherent regimes observed in the experiment and the quantum
phases predicted by theory at T = 0. To get a rigorous connection between the
measured ρ(p) and theoretical results at T = 0 we realized exact diagonalization
studies of the Hamiltonian (4.6) at finite-T . An extensive numerical study of the
inhomogeneous problem is something very difficult, at present out of reach. We
therefore performed exact diagonalization on small homogeneous clusters with size up
to L = 12d and variable mean site occupations up to n = 1, and then extracted the
characteristic correlation length ξ by exponentially fitting the tails of the computed
correlation function. In this section we discuss the evolution of the correlation length
with temperature in the different zones of the U -∆ diagram.

4.5.1 Weakly-interacting side: an experimental thermometer

The conceptually simpler case is the non-disordered SF phase obtained at ∆=0
and weak interactions (U ∼ J); the evolution of ξ−1(T ) at U = 2J is shown in Fig.
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(a) Clean case. (b) Disordered case

Figure 4.9: (a) Temperature evolution of the inverse correlation length, calculated by
exact diagonalization of small homogeneous systems for ∆=0, U = 2J and various site
occupations. The horizontal scale has been rescaled by n1/2 to show that all the curves
are well reproduced by d/ξ = arcsinh(kBT/2.5Jn

1/2) (dashed black line). (b) Temperature
evolution of 1/ξ for U = 2J , n=0.46 and 3 different disorder strengths.

4.9a, for different densities. Additional numerics suggest little or no dependence on
U , at least in the weakly-interacting regime. Here, the T = 0 correlation length is
negligible, and ξ can be identified with ξT . The presence of a finite temperature
affects the coherence properties of the system, reducing its correlation length, as
noted previously. As a consequence ξ can be employed as a thermometer for the
system. In particular, for temperatures 2J < kBT < 100J and densities n ≤ 1, the
correlation length scales as

ξ =
d

arcsinh
(
kBT
αJ
√
n

) , (4.7)

where α is a numerical constant. This behavior has never been found in previous
studies on bosonic systems; anyway, a similar result, ξ ∼ d/arcsinh(kBT/J), is known
for spinless fermions in a lattice85, representing the U =∞ bosonic limit. The weak
logarithmic temperature dependence of ξ for kBT > J is due to the presence of the
lattice, resulting in a finite bandwidth. For vanishing T , eq. (4.7) tends instead to
ξ ∼ Jd/kBT , showing the usual linear scaling in T of the Luttinger liquid theory.
Presumably, we enter this regime only for kBT << J (see Fig. 4.9a), in contrast to
standard assumptions in previous studies; anyway finite size effects prevent us from
more detailed studies of the low-T phase.

Eq. (4.7) can be used to estimate the experimental temperature from the
correlation length measured in the superfluid phase. We account the experimental
inhomogeneity, employing a local-density approximation and averaging the finite
temperature momentum distribution, ρ(p) ∼ 1/[2πξ(p2 + 1/ξ2)], over the zero
temperature density distribution in the trap. In the experiment, at U = 2.3J , we
measure ξT = 1.38(13)d; exploiting this procedure we obtain kBT = 3.1(4)(3)J ,
where the first uncertainty is the statistical error on ξT and n, and the second one is
the systematic error on the calibration of Ntot (∼ 50%). At lower interaction energies
we observe an increase of the temperature up to kBT = 5.4(8)(4)J for U = 0.4J ,
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suggesting a not fully adiabatic preparation of the system, as already shown by
entropy measurements discussed above.

At finite disorder and weak interactions, we still observe a comparable thermal
broadening, as shown in Fig. 4.9b (in this case U = 2J), confirming a rather strong
impact of thermal fluctuations also on the correlation properties of the weakly-
interacting Bose glass.

4.5.2 Strongly-correlated phases

Fig. 4.10a shows the evolution of ξ−1(T ) at large interaction (U = 44J) and finite
disorder (∆ = 10J) for commensurate and incommensurate densities (n = 1 and
n = 0.46). In the strongly-interacting regime the correlation length ξ is essentially
T -independent at low temperatures, and thermal effects become relevant only above a
crossover temperature T0, both in the commensurate-MI and in the incommensurate-
BG regimes. In fact, the Mott insulator is an incompressible phase, characterized
by an energy gap of the order of the on-site interaction energy, and it is therefore
expected to melt for thermal energies comparable with some fraction of the energy
gap. Surprisingly also the gapless Bose glass shows a similar behavior.

In Fig. 4.10b we plot the evolution of T0 with ∆ for one representative interaction
(U = 44J) in the commensurate and incommensurate cases. At ∆ = 0, the crossover
temperature is kBT0 = 0.23(6)U for the MI, in agreement with the predicted ‘melting’
temperature kBT ∼ 0.2U 40, while it decreases with increasing ∆, consistently with
the predicted reduction of the energy gap in presence of a finite disorder. In the
BG phase the crossover temperature shows instead a linear increase with ∆. This
apparently surprising result was already observed in numerical simulations64, and
could be intuitively justified by considering the ∆-scaling of the effective Fermi energy
in the Bose glass phase.

We experimentally verified the existence of a large T0 for the coexisting BG and
disordered-MI phases. Amplitude and phase fluctuations of the optical lattices induce
on the experimental system a background heating approximately linear with time,
with rate 8.5(1.4)Js−1 at U = J . Exploiting this heating mechanism, we measured
the evolution of the width of ρ(p) as a function of the system entropy (our temperature-
related observable) in the strongly-interacting regime (U = 23.4J and ∆ = 6.6J).
As shown in Fig. 4.10c, at low entropy Γ is constant for increasing entropies, before
reaching the regime of thermal broadening. In this strongly-correlated phase we
cannot reliably associate a temperature to the measured entropy; we can only state
the corresponding range of temperatures in the SF regime, kBT = 3.1(1)− 4.7(2)J .
This observation, in cooperation with theory, indicates that, for large enough disorder,
the T = 0 quantum phases should persist in the experimental range of temperatures.

4.5.3 Thermal effects in the U-∆ plane

An overview of the thermal effects across the whole U -∆ plane, is shown in Fig.
4.11. Here we plot the evolution of the computed momentum width (the analogous
of our experimental observable) for commensurate and incommensurate fillings at
two different temperatures, T = 0 and kBT = 4J .

In the weakly-interacting side of the phase diagram thermal effects are quite
important, as revealed by the widening of the momentum width at kBT = 4J .
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(a) ξ−1(T ), theoretical evolution.

(b) T0 vs. ∆

(c) ξ−1(S), experimental observation.

Figure 4.10: (a) Temperature evolution of the calculated 1/ξ for U = 44J and ∆ = 10J
for 2 different densities. 1/ξ is essentially constant up to a crossover temperature T0, which
is identified with the location of the zero of the first derivative of 1/ξ (arrows). (b) Evolution
of T0 with the disorder strength for U = 44J and 2 different densities. The error bar is set
by the discretization of the data in (a). (c) Experimentally measured width for U = 23.4J
and ∆ = 6.6J vs the entropy per particle. The corresponding temperature in the SF regime
varies from 3.1(1)J to 4.7(2)J . The line is a guide to the eye. The error bars are the s.d. of
about 10 measurements.
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Figure 4.11: Coherence from exact diagonalization. Width Γ of the momentum distribution
calculated with exact diagonalization for a small system with length L, for two different
densities n=1 (L=8d) and n=0.46 (L=13d), for T=0 and finite-T . The width still captures
the main regions of the phase diagram.

Anyway, the large thermal broadening of ρ(p) does not necessarily prevent a connec-
tion between the finite temperature experimental results and the T = 0 properties.
As already said, theory predicts a T -independent fluid-insulator transition for 1D
systems in a relatively large range of temperatures2, up to a crossover temperature
of the order of

√
nUT1D/kB, comparable with the temperature in the experiment.

In the following chapter we will show transport measurements consistent with these
predictions. In the weakly-interacting regime, the shape of the experimental diagram
is substantially equal to the theoretical one calculated at zero-temperature, and
the phenomenological thermal correlation length is constant at weak interactions;
all these observations strongly indicates that the observed crossover towards less
coherent phases in the U -∆ diagram is not induced by temperature, but by the
interplay between disorder and interactions.

On the other hand, in the large-U regime, finite-T and zero-T widths are generally
very similar, confirming that temperatures of the order of 4J does not affect the cor-
relation properties of the MI and strongly-correlated BG phases. The only exception
is the weakly-disordered incommensurate case, where even at large interactions the
SF regime is dominated by the thermal correlation. In fact, at large interactions and
small disorder two different crossover temperatures are estimated for the SF/BG
(incommensurate) phase and the MI (commensurate) phase, therefore the single-ξT
phenomenological approach used in Fig. 4.8b does not reproduce the observed ρ(p).



Chapter 5

Transport

The existence of a Bose-Einstein condensate – or, in one dimension, of a quasi-
condensate – i.e. a macroscopically occupied quantum state, is intimately connected
with the macroscopic quantum phenomena of superfluidity and superconductivity.
While a microscopic definition of BEC is straightforward, at least in principle, the
notion of superfluidity is more subtle. Generally, superfluidity is a state of matter
which behaves as a fluid with zero viscosity. On a phenomenological level, the
basic properties of superfluids may be explained by introducing a complex order
parameter73 ψ(x) =

√
nse

iφ(x), whose magnitude squared gives the superfluid density
ns, while the phase φ(x) determines the superfluid velocity via vs = (~/m)∇φ(x).
This relation immediately implies that the superfluid flow is irrotational and its
circulation is quantized in an integer number of circulation quanta h/m. According
to a perturbative mechanism proposed by Landau, superfluidity is broken when the
velocity of the flow exceeds a critical value at which it is energetically favorable to
emit elementary excitations. This mechanism has been explicitly verified in 4He3,
3He-B13, and Bose-Einstein condensates3,16.

Anyway, the presence of defects or even a periodic lattice can affect the transport
properties of physical systems, due to the occurrence of phase slips. In low-dimensional
systems especially, phase fluctuations play a crucial role, strongly affecting the
superfluid and superconducting phases. Quantum and thermal fluctuations allow
the amplitude of the superfluid order parameter to vanish and its phase to unwind,
destroying the coherent motion of particles already at small velocities and eventually
inducing localization.

On the other hand, the quantum transport properties of a system are intimately
related to the underlying symmetries of the Hamiltonian. In disordered potentials,
where every trace of translational symmetry is lost, the one-particle wave-functions at
zero temperature are expected to exponentially localize. More precisely, this means
that, on the average, depending on the strength of disorder, their amplitudes are
exponentially decaying in space, thus inhibiting transport and destroying conductivity.

Measuring the dynamical properties of the one-dimensional bosonic system in the
presence of disorder and interactions, can give deeper indications on the nature of the
coherent and incoherent regimes already observed from equilibrium measurements
in Chapter 4. Are these incoherent regimes insulators? How does the conducting
phase depend on the condensate velocity? How does disorder affect the superfluid?
In this Chapter, after describing the experimental procedure (Sec. 5.1), we first

53
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(a) Experimental sequence. (b) Typical profiles.

Figure 5.1: (a) The dynamics is induced shifting the harmonic potential confining the
atoms by controlling a gravity-compensating a magnetic-field gradient. (b) Momentum
distribution at t=0 (orange) and t=0.8µs (red), for a non-disordered lattice at U/J=1.26.

discuss the transport in the non-disordered case (Sec. 5.2). A close comparison of
the experimental results with theoretical studies suggests a phase-slip mechanism
destroying superfluidity at an interaction-dependent critical momentum already in
the absence of disorder. In Sec. 5.3, we use a similar approach to study the dynamics
in the disordered system, in order to locate the metal-insulator transition driven by
disorder at weak interactions. Some of the results here reported have been published
in Tanzi et al. 90 . Finally, in Sec. 5.4, we report mobility measurements performed
from weak to strong interactions.

5.1 Experimental procedure

The transport properties of the disordered system are studied exciting a collective
oscillation of the one-dimensional quasicondensates of 39K atoms trapped in the
quasiperiodic lattice. The loading procedure of the 1D traps has been already
described in Sec. 4.2 (see Fig. 4.1). A 3D Bose-Einstein condensate is split into
a few hundreds 1D quasicondensates with a deep two-dimensional lattice in the
horizontal plane. Each subsystem contains on average fifty atoms and its longitudinal
(transverse) trapping frequency is ωx = 2π × 150 Hz (ω⊥ = 2π × 50 kHz). The
quasiperiodic lattice is loaded along the longitudinal direction. The typical tunneling
energy, set by the primary lattice, is J/h ∼ 150 Hz. The mean atom number per site n,
which scales approximately as U−1/3, varies in the range of 2 (at strong interactions)
to 4 (at weak interactions). From the width of the momentum distribution of the
weakly interacting quasicondensate, we estimate an equilibrium temperature of the
order of kBT ∼ 3J . The oscillation is induced using a controllable magnetic-field
gradient able to shift the trap center respect to the atomic position in the vertical
direction.

In order to study the dynamics of the system, we apply an impulse on the trapped
quasicondensate: as shown in Fig. 5.1a, we suddenly displace the trap center along
the vertical direction by the small amount x0 = 3.9 µm, switching off the magnetic-
field gradient. We then let the system free to evolve for a variable time t in the shifted
potential, before detecting the momentum acquired by the atoms. Once again our
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experimental observable is the momentum distribution ρ(p), which we record after
texp=16.5 ms of free expansion. An example of momentum distribution at two different
evolution times t=0 and t=0.8 µs is reported in Fig. 5.1b. We typically observe an
evolving asymmetry of ρ(p), presumably due to the presence of an inhomogeneous
damping rate braking a part of the sample, as we will discuss later. This asymmetry
leads to a systematic shift between the mean position and the peak position of the
distribution. We decided to study the evolution of the peak position, which we
identify with the averaged momentum p0 acquired by the atoms. To reduce the
effect of the experimental noise, we measure p0 by fitting the data with a Lorentzian
distribution plus a slope. As already observed in Sec. 4.1, time-of-flight images
approximatively reproduces the in-trap momentum distribution, nTOF (x) ≈ ρ(p).
More precisely, the position in time-of-flight is related to the in-trap momentum by
xTOF (t) = x(t) + texpp(t)/m+ t2expg/2, where x(t) and p(t) are the in-situ position
and momentum of the atoms at time t. Therefore, the peak position in TOF at
time t, moved from the initial position of xTOF (t)− xTOF (0) = x(t) + texpp(t)/m,
since our initial conditions are x(0) = 0, p(0) = 0. Actually, the contribution of the
in-situ position x(t) is negligible at short evolution times (of the order of a fraction
of a micrometer), and we can safely identify the measured nTOF (x) with ρ(p), and
[xTOF (t)− xTOF (0)] ∝ p0.

5.2 Dynamics in a clean lattice

5.2.1 Physical picture and theoretical expectations

The first, fundamental case we investigate is the non-disordered one. In a single
lattice, the system at the equilibrium is superfluid even in one dimension; anyway,
a dynamical phase transition is expected to occur for increasing velocities86, when
the wave vector associated with the condensate momentum exceeds a critical value
pc — one-quarter of the reciprocal lattice constant, i.e. pc = π/2, at zero interactions.
For p > pc the coherent motion of the condensate becomes unstable, causing the
loss of superfluidity. This transition, experimentally measured in 3D systems31, is of
classical origin, resulting as an instability in the Gross-Pitaveskii equations of motion
in the presence of a single lattice.

For increasing interactions, quantum fluctuations enhance, inducing a ground-
state transition from superfluid to insulator, and drive the system towards the Mott-
insulating state. As p increases, the single-particle effective mass grows resulting in
a reduction of the effective hopping amplitude Jeff along the current direction. As
a consequence, quantum fluctuations, which are determined by the ratio U/nJeff,
become stronger with p, implying a concomitant increase of quantum depletion and
of the superfluid density ns. In the presence of interactions, the dynamical phase
transition is thus expected to occur at smaller critical momenta pc < π/2, already at
the mean-field level. In particular, near the superfluid-insulator transition, ns is both
very small and very sensitive to variation of Jeff, and pc is expected to be close to zero.
A theoretical mean-field phase diagram, separating regions of stable and unstable
motion for the condensate, has been estimated in Altman et al. 5 and is shown in
Fig. 5.2a, as a function of the interaction energy and at different dimensionality.
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(a) Mean-field diagram. (b) Crossover phase diagram. (c) Phase slip scheme.

Figure 5.2: (a) Mean-field phase diagram separating stable and unstable motion for a
condensate. The vertical axis is the condensate momentum in the inverse lattice units and
the horizontal axis is the normalized interaction. The results have been obtained for integer
filling n=1 at different spatial dimensions. (b) Zero-temperature phase diagram for the
non-equilibrium superfluid-insulator transition. The dashed line represents the mean-field
transition at p = π/2. The shaded regions correspond to the tunneling action satisfying
1 ≤ S ≤ 3, obtained within the discrete phase model in different spatial dimensions. Below
the shaded regions the tunneling action is large and the current decay is slow, so the
superfluid state is stable for long time scales. Above the shaded regions the current decays
very fast and the superfluid state is unstable. (c) Schematic representation of a phase slip.
Dots represent phases on different sites for uniform and perturbed systems, the lines are
guides to the eye. All the figures are adapted from Polkovnikov et al. 74 .

Beyond mean-field approach. In one dimension the mean-field approach fails.
Quantum and thermal fluctuations are strongly enhanced, thus generating phase
slips which induce a decay of the superfluid (or superconducting) flow at even smaller
critical momenta. An illustrative phase configuration for a particular phase slip
is shown in Fig. 5.2c. Basically a phase slip corresponds to the generation of a
large phase difference on a particular link (or close to this link) and a simultaneous
reduction of the phase gradient (proportional to the superfluid velocity vs = p/m) in
the rest of the chain. As a consequence, by generating phase slips the system reduces
its superfluid current, causing a broadening of the mean-field transition.

The nucleation rate of quantum and thermal phase slips in one-dimensional
systems has been calculated in Polkovnikov et al. 74 . Here the authors mapped the
Bose-Hubbard Hamiltonian (3.3) into the O(2) quantum rotor model

H =
∑
〈jk〉

−2Jn cos(φk − φj) +
∑
j

U

2
n2j , (5.1)

with φj and nj the conjugate phase and particles number on the site j, and used
the celebrated instanton formula19,12 Γ ∝ e−S to analytically predict the phase slips
nucleation rate. Here S is the action for the bounce solution (instanton) of the classical
equations of motion. When the temperature is low enough, thermal fluctuations
are suppressed and the nucleation of phase slips is due to quantum tunneling. At
temperature higher than a characteristic value T0, phase slips are instead thermal
activated. The above-mentioned theories74 estimates this crossover temperature of
the order of the Josephson energy, kBT0 = c

√
nJU , with c a momentum-dependent

factor smaller than unity. The quantum phase slips nucleation rate is found to scale
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in interaction energy, density and momentum as,

Γq = e
−7.1

√
nJ
U

(
π
2
−pλ1

2~

) 5
2

, (5.2)

in the limit p→ π/2. On the other hand, the thermal nucleation rate scales as,

Γt ∝ e
− 4nJ

3kBT

(
π
2
−pλ1

2~

)3
. (5.3)

The complete description and mathematical derivation of Eqs. (5.2-5.3) is in Danshita
and Polkovnikov 25 . As already noticed, for small enough nJ/U , quantum fluctuations
start to dominate and the phase slip nucleation rate exponentially grows, thus
destroying superfluidity, whatever the momentum p. In fact, a strong inhibition of
transport already at small momenta has been observed in experiments with low-
density (n ' 1) 1D bosons in a lattice35,63. The zero-temperature crossover phase
diagram in Fig. 5.2b, shows that the classical transition from stable phases (where
the nucleation rate is small, and the tunneling action is large, say S > 3) to unstable
ones (where there is no exponential suppression of the phase slip rate, say S < 1)
broadens, at least in 1D, turning into a wide crossover (the shaded region).

5.2.2 Experimental observation

A typical observation of the evolution of p0 in the single lattice is shown in Fig.
5.3a, at the specific interaction energy U = 1.26J and density n = 3.6. Surprisingly,
we clearly observe a rather sharp transition from a weakly dissipative regime at low
momenta to a strongly unstable one at large p. In order to quantitatively comprehend
the experimental observation, we perform a close comparison with the theoretical
solution of the semiclassical equations of motion.

The motion of the atoms in the harmonic oscillator in the presence of a lattice
can be modeled by solving the system of equations:{

ṗ = −mω2
xx− 2mγẋ

ṗ = m∗(p)ẍ
(5.4)

where m∗(p) = ~2 cos(pd/~)/2Jd2 is the atomic effective mass in the lattice. In
the absence of any dissipation, the atoms would oscillate with a frequency ω∗ =
ωx
√
m/m∗ ' 2π × 90 Hz, where m∗ = m∗(0) ' 2.8m. For non vanishing dissipation

γ, the displacement of the peak momentum p0 could instead be approximated with
a damped oscillation p0(t) = m∗ω∗2x0/ω

′ sin(ω′t)e−γ
∗t, where ω′ =

√
ω∗2 − γ∗2 and

γ∗ = γm/m∗.
We fit the evolution of the peak momentum p0 with the function x(t)+p(t)texp/m

(as explained in Sec. 5.1), where x(t) and p(t) are the solution of Eqs. (5.4), leaving
γ as a free fitting parameter. We identify two different regimes in the dynamical
evolution of the system. At short times we find almost constant damping rates
γ = 2π×(20-300) Hz, depending on the interaction energy. At longer times, as p0
increases towards the center of the Brillouin zone (p = h/2λ1), we observe a sudden
increase of γ which stops the growth of p0. The following decay of p0 towards zero
momentum can be again fit with a constant damping rate of the order of 1 kHz.
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(a) Time-evolution of p.

(b) Difference between fit and experimental data.

(c) Time-evolution of the rms width.

Figure 5.3: Transport in nondisordered lattices. (a) Time evolution of the peak momentum
for U=1.26J and n=3.6. The experimental data (dots) are fitted at short times with
a damped oscillation with γ/2π = 135(10) Hz (continuous line) and at long times with
γ/2π = 600(50) Hz (dashed line). The dash-dotted line is the expected oscillation in the
absence of damping. (b) The difference between the fit to the initial damped motion and
the experimental data (dots) is fitted (continuous line) to estimate the critical momentum.
(c) Time evolution of the momentum rms width.
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(a) Critical momentum. (b) Comparison with theory.

Figure 5.4: (a) Critical momentum for non disordered lattices (dots) versus the interaction
energy. The continuous line is a linear fit, the arrow marks the critical U/J required for
the superfluid-Mott insulator transition at n=2. In the inset is plotted the evolution of
the initial damping rate γ versus the interaction energy. (b) The critical momentum (dots)
is compared with the predictions for the phase-slip nucleation rate in the quantum (blue
dashed line) and thermal (orange dash-dotted line) regimes.

This change of behavior is accompanied by a sudden increase of the width of ρ(p), as
shown in Fig. 5.3c, followed by a steady broadening for increasing time.

This observation is in contrast with what has been previously observed in low-
density experiments63. This is probably a consequence of the high density n present
in our inhomogeneous system; while the low-density fraction of the system stops
already at small momenta, the observed sudden instability is induced by the higher-n
component, for which the theoretical expressions (5.2-5.3) predict a fast exponential
increase of Γ with p. In fact, Eqs. (5.2-5.3) strongly depend on n, which appears in
the exponent of the function. The hypothesis of an inhomogeneous nucleation rate
is actually supported by the observation of asymmetric momentum profiles ρ(p) at
large p, as shown for example in Fig. 5.1b.

Critical momentum. We estimate the critical momentum pc separating the initial
regime of weaker dissipation from the strongly unstable one, by linearly fitting the
difference between the experimental data and the fit of the initial oscillation, as
shown in Fig. 5.3b. We performed similar dynamical measurements for different
interaction energies U . The measured pc features a clear decrease for increasing U at
constant J , as shown in Fig. 5.4a. Eventually, pc approaches zero as U approaches
the predicted critical value for the Mott insulator (Uc/J=2×2.674 for the calculated24

mean occupation n=2). Actually, even deep into the insulating regime we observe
a small but finite pc of the order of the inverse size of the system, as previously
observed63. A piecewise fit of the data, gives us a critical interaction comparable
with theoretical expectation: Uc/J=5.9(2)(4), where the uncertainties are statistical
and systematic, respectively, allowing us to precisely determinate the onset of the
Mott insulating regime by measuring a vanishing transport even in 1D, as already
observed in 3D systems63.
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Damping rate. From the evolution of the peak momentum p0 at momenta smaller
than pc, i.e. before the system breaks, we can extract the oscillation damping rate γ,
a quantity strictly related to the phase slip nucleation rate Γ, via γ ∝ Γ/p, at least
for vanishing momenta23. No theoretical models estimate the phase slip nucleation
rate for our specific regime of time-dependent large momenta p, and inhomogeneous
density. We then try to compare the experimental observations with the existing
theoretical models discussed in Sec. 5.2.1. For our experimental parameters the
Josephson energy is in the range (1− 4)J , depending on the interaction energy, of
the same order of the system temperature ∼ 3J . We therefore expect that both
the thermal and the quantum mechanisms are significant in the activation of the
phase-slip processes.

The evolution of the fitted damping with the interaction energy is plotted in the
inset of Fig. 5.4a; as already noticed γ increases for increasing U , since quantum
and thermal fluctuations become important. Anyway, a direct comparison between
our measured damping γ and the calculated nucleation rates (5.2-5.3), cannot be
easily performed: in the experiment in fact, p is rapidly changing from zero to large
values, strongly affecting the nucleation rate, thus preventing a precise measure of
Γ. We thus employed the two models (5.2-5.3) to estimate the critical momentum
required to enter the strongly dissipative regime at different interactions, i.e. pc(U)
such that γ(pc)/2π '1kHz, as in the experiment. In the calculation we use the
experimental parameters, we impose T=3J , and we adjust an arbitrary constant to
reproduce the observed pc at U/J=4.5. The experimental data and the theoretical
predictions for pc are shown in Fig. 5.4b. While the quantum nucleation rate capture
the observed evolution of pc(U), the thermal rate at constant temperature shows
only a weak dependence on U , thus suggesting a more relevant role of the quantum
mechanism. Anyway, these are preliminary results; a more precise investigation on
the quantum/thermal origin of phase slips could be obtained studying the evolution
of γ with p at variable temperatures.

5.3 Dynamics in a disordered lattice

In the previous section we analyzed the motion of one-dimensional quasicon-
densates in a periodic potential; here repulsive interactions and lattice effects can
generate quantum fluctuations able to drive the system into an insulating phase.
We now investigate the impact of disorder on this superfluid-insulator transition,
studying the dynamics of one-dimensional bosons moving in a quasiperiodic lattice.
Disorder, in fact, is considered the main source of dissipation in many physical
systems, ranging from superconductors to superfluid Helium. Experiments employ-
ing strongly disordered nanowires close to the superconductor-insulator transition,
observed phenomena related to the quantum phase-slip nucleation mechanism8, and
few models of dissipation due to disorder have been developed52,1. We exploit our
ability to control simultaneously disorder and interactions to address the dynamics
of a superfluid state in disordered potential. In particular, here we focus on the
weakly interacting regime U/J <3, where pc for the non-disordered lattice can be
very precisely measured. In the next section we will study the bosonic transport
from weak to strong interactions.

The experimental scheme is described in Sec. 5.1; a finite disorder ∆ is now loaded
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(a) Time-evolution of p. (b) Critical momentum vs. disorder.

Figure 5.5: Transport in disordered lattices. (a) Time-evolution of the peak momentum
at U=1.26J for ∆/J=0 (dots), ∆/J=3.6 (triangles) and ∆/J=10 (squares). The lines are
fits to the initial oscillation with the semiclassical equations of motion. The fitted damping
rates are γ/2π=130(10)Hz, γ/2π=250(30)Hz and γ/2π=1.1(6)kHz, respectively. (b) Critical
momentum pc (full circles) and initial rms momentum width δp (open circles) for a fixed
interaction energy (U/J=1.26) and increasing disorder strength. A linear fit (continuous
line) is used to estimate ∆c, while the dashed line is a sigmoidal fit of δp.

together with the main lattice, and the system evolve in a quasiperiodic potential.
Fig. 5.5a shows the impact of increasing disorders on the evolution of p0 at fixed
U ; the experimental data are analyzed as in Sec. 5.2.2: again we clearly distinguish
two dynamical regimes, and we extrapolate the average damping rate γ of the stable
regime and the critical momentum pc. A small disorder ∆ results in a moderate
increase of γ, and in an anticipated instability; at large disorder, γ drastically increase
and the system immediately breaks. A summary of the evolution of the critical
momentum pc at different ∆ and fixed U is shown in Fig. 5.5b; pc features a clear
decreasing trend for increasing disorder. Above a critical disorder strength ∆c of the
order of the total interaction energy per atom nU , pc stops decreasing and stabilize
around a small value close to zero, as observed for the Mott-insulator regime. This
is actually the regime where a weakly interacting Bose glass is predicted to appear,
i.e. where the disorder induces a new localized regime, overcoming the delocalization
effect of the interaction.

Both the increase of γ and the reduction of pc with increasing ∆, can be justified
by the following heuristic picture: in the presence of disorder, the hopping amplitude
J reduces, resulting in an effective tunneling Jeff(∆) < J , thus inducing an increase
of the phase-slips nucleation rates (5.2-5.3) which exponentially depend on J . In
fact, a related phase-slip model52 developed for disordered superconductors suggests
nucleation rates scaling exponentially with ∆. Anyway, to our knowledge, the existing
theoretical models only concern weakly interacting systems in absence of a lattice
and at small momenta, thus preventing a direct comparison to our experimental case.
The development of rigorous theoretical models calculating the phase-slips nucleation
rate in the disordered case is clearly necessary.
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Figure 5.6: Critical disorder to enter the insulating phase vs interaction energy. The
experimental data from the critical momentum (dots) are fitted with the model described in
the text (line). The uncertainty is dominated by a 20% error on the calibration of ∆.

5.3.1 Transport diagram

Motivated by the possibility to discriminate the fluid regime from the insulating
one, thus locating a transition line in the U -∆ diagram, we studied how ∆c evolves
with U . For each U , we estimate ∆c by fitting the evolution of pc(∆) with a piecewise
function, as already shown for U = 1.26J in Fig. 5.5b. The summary of these
measurements is reported in Fig. 5.6, and compared with the coherence diagram in
Fig. 4.3. ∆c clearly increases with the interaction energy, confirming that, as the
interactions grow, the critical momentum (which measure the conductivity of the
system) is less affected by disorder. The large uncertainty on the experimental data is
due to the unavoidable 20% error on the calibration of ∆; anyway, the experimental
transition is clearly visible, and can be compared to known theoretical models.

Comparison with theory. The transition from fluid to (BG) insulating phases in
a weakly-interacting system of disordered bosons has been studied in many theoretical
works, using different approaches. All the theoretical studies considered random
or gaussian correlated disorder, no one ever focused on the bichromatic case. In
Fontanesi et al. 38 the quantum phase transition was studied in the framework of
the Bogoliubov theory, i.e. linearly expanding the solution of the mean-field Gross-
Pitaevskii equation. As shown in Fig. 5.7a, the mean field phase transition at
zero temperature exhibits two different trends, depending on the ratio between the
interaction energy and the characteristic energy associated to the correlation length
of the disordered potential η, Ec = ~2/(2mη2). In the limit Eint � Ec, the healing
length is much longer than the disorder correlation length; as a consequence the
disorder is effectively an uncorrelated white noise (WN) potential. The opposite
case Eint � Ec marks the Thomas-Fermi (TF) regime, where the healing length
is smaller than η. The numerical results give two power-law dependencies of the
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(a) Mean-field diagram. (b) Beyond mean-field diagram.

Figure 5.7: Theoretical phase diagrams. (a) Sketch of the mean-field phase diagram of the
1D Bose gas as a function of interaction and disorder. Triangles represent the Bose glass,
circles the quasicondensate. Picture taken from Fontanesi et al. 38 . (b) Beyond mean-field
disorder-interaction diagram. The continuos blue boundary at weak interactions corresponds
to the set of points mapped to the separatrix of the RG flow. The dashed red line marks
the points where the classical theory predicts a transition. The phase boundary at strong
interactions is obtained from the weak disorder theory of Giamarchi and Schulz 42 . Picture
taken from Vosk and Altman 91 .

fluid-to-insulator transition in the two limiting cases:

∆

Ec
= A

(
Eint

Ec

)α
, (5.5)

with α equal to 3/4 and 1, respectively, and A ∼ 1.
Quantum corrections to the mean-field approach, were obtained by Vosk and

Altman 91 . Here the authors studied the superfluid to insulator transition in the
one-dimensional disordered system using a real-space renormalization-group (RG)
approach4. The RG flow was computed by deriving an effective quantum Josephson
array model (conventionally described by the O(2) quantum rotor Hamiltonian (5.2))
for the weakly-interacting condensate fragmented into many puddles weakly coupled
by the disorder potential

H =
∑
i

−Ji cos(φi+1 − φi) +
∑
i

Ui
2
n2i , (5.6)

and estimating the distribution of Ui and Ji, both in the WN and TF regimes. Here
Ui is the charging energy of the puddle i and Ji is the Josephson coupling between
puddle i and puddle i+ 1. Actually, the physical model is the same one used in Sec.
5.2.1 to evaluate the evolution of the phase-slip nucleation rate via the instanton
method, and assumed to be responsible of the observed damped dynamics in the
absence of disorder. The beyond-mean field phase diagram is shown in Fig. 5.7b.
Here the continuos line represents the RG transition, while the dashed line shows
the mean-field transition; the diagram is given in terms of dimensionless disorder D̃
and interaction ũ. The predicted exponent is α = α(U) < 1.

A close comparison between the experimental transition observed in Fig. 5.6
and these theoretical models is not straightforward. Theoretical studies deal with
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zero-temperature homogeneous systems in gaussian correlated random potentials. In
the experiment, besides the finite-temperature problem, we investigate a particular
kind of spatially correlated disorder, the quasiperiodic lattice, which shows specific
properties (see Sec. 2.5). As shown in Sec. 3.2, the single-particle fluid to insulator
transition in the quasiperiodic potential, is at a nonzero critical disorder ∆ = 2J ,
affecting the shape of the expected phase diagram, at least for vanishing interactions.
In the absence of any analytical model for the SF-BG transition in the quasiperiodic
lattice, we fit the experimental data with the function (∆c − 2)/J = A(nU/J)α, in
order to account the critical ∆/J ' 2 required to localize the non-interacting system.
This choice is supported by the results of the DMRG study in Roux et al. 81 , already
discussed in Sec. 4.4.1. The fit gives an exponent α = 0.86(22) and a coefficient
A = 1.3(4). We exclude from the fit the data point at ∆/J < 2, which should be
described by a different mechanism of competition between the mini-band structure
of the quasiperiodic lattice and the interaction energy.

The correlation function of a quasiperiodic potential is non-decaying, which
implies a vanishing correlation energy Ec on a system with infinite length. Anyway,
the actual length of the experimental system is relatively small; we can thus estimate
an upper bound for Ec from the half-width of the first oscillation of the correlation
function, Ec ' 8~2(β − 1)2/mλ21 ' J , where β = λ1/λ2. For our parameters,
Ec/J ' 0.7, almost one order of magnitude smaller than the explored range of
Eint = nU , therefore the experimental problem is the TF (or smooth disordered)
limit. The experimental exponent is compatible with both the mean-field prediction
α=1 for correlated Gaussian disorder in the Thomas-Fermi regime, and the beyond
mean-field expectation α = α(U) < 1. Unfortunately the large uncertainty on the
experimental data does not allow us to discriminate between the two approaches.
Anyway, a careful assessment of finite-size and finite-T effects and a theoretical
study considering the quasiperiodic disordered landscape is required to establish a
direct relation between the observed critical line and the theoretical fluid-insulator
transition.

Transport and coherence. The existence of a critical disorder ∆c above which
the system is insulating, whatever the impulse, is a signature of the presence of a
weakly interacting Bose glass phase. In fact, the decrease of pc is accompanied by
the increase of the equilibrium (i.e., t = 0) rms momentum width δp – essentially
the inverse correlation length ξ−1 (see Sec. 4.1). As shown in Fig. 5.5b, at fixed
interaction, δp starts to increase already at disorder smaller than ∆c, signaling the
progressive crossover of the system into a regime with reduced correlation length.
For disorder larger than ∆c, when pc is almost zero and the system is insulating,
the coherence is lost and the correlation length is of the order of the lattice spacing,
ξ ' d.

In Fig. 5.8 we compare the complementary information obtained by measuring
the dynamical properties of the system – signaling a fluid to insulator transition,
with the evolution of its momentum width (measured in Fig. 4.3) – revealing its
coherence properties. In the weakly-interacting side of the phase diagram, the
two quantity evolve similarly, following the same crossover line. While transport
measurements allow the direct detection of fluid and insulating regimes, the evolution
of the correlation length suggests a broad crossover between coherent and incoherent
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Figure 5.8: The experimental dynamical diagram shown in Fig. 5.6 signaling the onset
of the fluid-insulator transition is compared with the coherence diagram, revealing the
crossover from correlated to uncorrelated regimes. The points in the coherence diagram are
adapted from Fig. 4.3, rescaling U/J with nU/J , where n is the mean site occupation at
the interaction U .

regimes, as already discussed in Sec. 4.3. Anyway, the conducting/insulating nature
of the system results intimately related to its coherence properties. Once again the
physical picture is that of a weakly-interacting condensate fragmented into many
puddles weakly coupled through the disorder potential. Every puddle has a well
defined phase, and phase coherence between puddles, which define the coherence
properties of the system, depends on the local interaction energy, i.e. on the local
density. Disorder tends to uncouple different puddles. When coherence is locally
broken, the superfluid phase unwinds, and the superfluid flow vanishes, as shown
for example from RG calculations, affecting the transport properties of the system.
In the experiment we deal with a strongly inhomogeneous system. In a generic
point of the U -∆ diagram, depending on the local density, coherence is broken in
some tubes, while it survives in others (where most of the puddles is still coherently
coupled). The fraction of coherent tubes contributes to transport, thus resulting
in a finite conductivity when some external force is applied to the system. When
instead coherence is broken in most of the tubes (for example at strong disorder,
or at vanishing interactions), transport is completely suppressed, and the system
acts as an insulator. In other words, transport techniques measure a property of
the conducting part of the system; in fact, we observe a sharp transition separating
fluid and insulating phases, even in the inhomogeneous setup. On the other hand
the momentum width measures an averaged correlation length of the system, which
depends on the fraction of coherent and incoherent tubes; as a consequence in the
coherence diagram sharp transitions broadens into smooth crossovers.

5.4 Mobility from weak to strong interactions

In Sec. 4.3 we plotted a diagram of the momentum width in the U -∆ plane,
showing crossovers from coherent to incoherent regimes, at both weak and strong
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Figure 5.9: Effective mobility vs disorder and interaction. (a) Mean momentum p0 acquired
by the system after a fixed evolving time t = 0.9ms in the tilted potential for three different
disorder strengths, ∆=0 (black triangles), ∆=6.2J (red squares) and ∆=8.8J (orange circles).
The lines are a guide to the eye. The error bars are the standard deviation of typically 5
measurements. (b) The ∆=6.2J measurements is acquired for two temperatures of the SF
component, kBT=3.1(4)J (red) and kBT=4.5(7)J (grey).

interactions, see Fig. 4.3. In order to confirm the insulating nature of the observed
incoherent regime in the whole U -∆ diagram, we performed transport measurements
from weak to strong interactions, in the same experimental conditions of Sec. 4.2.
The experimental technique used to transfer an impulse to the trapped atoms is
as described in Sec. 5.1. We apply a sudden shift to the harmonic confinement by
x0 = 3.9 µm, which corresponds to a force F ∼ mg/3 (with g the gravity acceleration).
At large U the system is strongly incoherent and its momentum width broadens, thus
making the transport measurement dirtier. To simplify the experimental procedure,
we decided to acquire the accumulated mean momentum p0 after a fixed evolving
time t = 0.9ms, just before the breaking of the clean system at vanishing interactions.
Once again, p0 essentially measures the drift velocity in presence of the force F, and
it can thus be related to an effective mobility of the system.

Fig. 5.9a shows the evolution of p0 with U for three different values of ∆. In
the clean case (∆ = 0) p0 reduces smoothly across the superfluid-Mott insulator
transition, due to the progressive enhancement of (quantum and thermal) phase
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slips for increasing interactions. At finite ∆ and vanishing interaction energy, the
system is an Anderson insulator, featuring a reduced mobility (which is however not
zero, because of the finite F ). The presence of a weak interaction restores coherence,
as described in the previous section, inducing an increased mobility. At strong
interactions the physical picture drastically change. As discussed in Sec 1.2 ,the
strongly-correlated Bose gas can be localized in the presence of a finite disorder. This
is confirmed by the experimental observations: at large U disorder and interactions
cooperate in destroying mobility; the resulting disordered insulating state is even
less mobile than the standard Mott insulator. The measurements here reported
are not exhaustive, and clearly cannot be compared to theoretical predictions. A
more detailed experimental study, using for example the experimental techniques
introduced in the previous sections, thus measuring the time-evolution of p0 even
in the strongly correlated regime, is required. Anyway, these observations give a
first indication of the mobility across the whole U -∆ plane, confirming that both the
incoherent regimes at small and large U are actually insulating regimes, not simply
incoherent excited phases.

By exploiting an experimental heating mechanism (see Sec. 4.5.2), we measured
the transport properties of the system also at a higher temperature. The measurement
is shown in Fig. 5.9b, and indicates that the mobility for intermediate disorder
strength is essentially T -independent in the explored range kBT = (3.1− 4.5)J , as
expected by theory2. This measure, combined with the observation of a constant
thermal correlation length at weak interactions, confirms the idea that the thermal
regimes observed in the experiment are effectively related to zero-T phases.





Chapter 6

Excitation spectrum

A crucial ingredient to characterize the quantum phases composing a many-
body system is the low-energy excitation spectrum, i.e. the system response to
a weak perturbation. As shown in Sec. 3.3, at low temperatures disorder and
interactions deeply affects the phases of condensed bosons. In the absence of disorder,
the quasicondensate is in a superfluid phase, characterized by the typical phonon
dispersion relation at low energies. In a lattice, strong interactions localize the
system, opening a Mott gap; the elementary excitations are then particles and holes
and the absorption occurs only at frequencies of the order of the interaction energy
(hν ∼ U , with U is given by Eq. 3.6 in the Hubbard regime). On the other hand, in
the presence of disorder, even the incommensurate part of the system (Anderson)
localizes, but now the excitation spectrum is expected to be gapless. The resulting
general picture of the excitation spectrum predicted in the lattice-disordered system
is depicted in Fig. 6.1. The low frequency absorption 0 < hν < W , with W the
effective lattice bandwidth, is a consequence of the formation of a Bose glass at
incommensurate fillings. The second distribution centered at frequency hν ≈ U ,
comes from particle-holes excitations generating doubly occupied sites.

In Chapters 4-5 we investigated the coherence and transport properties of the sys-
tem of disordered interacting bosons, revealing the presence of a reentrant incoherent-
localized regime at strong interactions. In this Chapter we will focus on its excitations
properties from weak to strong interactions, in order to eventually probe the nature
of the observed insulating phases.

6.1 Inelastic scattering and Bragg spectroscopy

In general, the information concerning the excitation spectrum of a many-body
system are extracted from inelastic scattering experiments. In condensed-matter
systems, scattering neutrons off crystalline samples provided fundamental insights
into the microscopic and the energetic structure of matter; for example, neutrons
scattering was used in the early sixties to measure the energy-momentum phonon-like
dispersion relation for the superfluid 4He. A schematic of such experiments is shown
in Fig. 6.2a: a monochromatic neutron beam (i.e. a beam of neutrons with a
single wavelength or energy) is sent onto the sample. When the neutrons penetrate
the sample they scatter the atoms; if the neutrons excite the atoms they lose the

69
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Figure 6.1: Sketch of the full absorption spectrum of disordered lattice bosons. The peak
at ω ∼ U stems for the particle-hole excitations, whereas the low-frequency absorption
appears as a consequence of the presence of a Bose glass at incommensurate filling. W is
the effective lattice bandwidth. The image is taken from Orso et al. 66

energy ~ω absorbed by the excitation, and acquire a momentum ~q, diverting their
output direction. A detector placed at some angle beyond the sample, allows to
count the number of remaining neutrons and to analyze possible changes in their
energy, thus measuring the partial differential cross section for the overall process,
i.e. the number of neutrons scattered per second into a certain small solid angle
and within a certain small energy range. This number, the scattering cross section,
is proportional to the dynamical structure factor S(q, ω), which is essentially the
Fourier transform of the density-density correlation function, a central quantity in
the theoretical description of many-body systems. Therefore, inelastic scattering
experiments allow to directly measure the dynamical structure factor. Generally
S(q, ω), at fixed transferred momentum ~q and for varying transferred energies ~ω,
measures the energy of the elementary excitations in the system, thus allowing us to
extract its excitation spectrum.

In the context of cold atoms, inelastic scattering experiments are realized in
a different way: instead of diffracting particles on a grating of atoms, atoms are
diffracted on a grating of coherent light. This process induces Bragg scattering,
a stimulated two-photon transition connecting two different momentum states of
the same internal ground state. The schematics of the Bragg transitions is shown
in Fig. 6.2b: the atomic gas is shone with two simultaneous off-resonant light
pulses (Bragg beams), with a tunable frequency-difference δν. The wavelength of
the Bragg beams and the angle θ between them set the momentum q imprinted
on the sample. During the Bragg pulse, the atoms absorb photons from one beam
and are stimulated to emit photons in the second beam, crossing a virtual state.
The initial and final momentum states form an effective two-level system coupled
by a two-photon Raman process. The transition is resonant provided that energy
and momentum are conserved: atoms with initial momentum pi end up in the same
internal state with a final momentum pf = pi + ~q, while the energy difference
between the initial and final states is given by the frequency-difference between the
two Bragg beams (~ω = hδν). Therefore, changing the relative detuning of the
two Bragg beams at fixed transferred momentum q, one can tune the energy of
the excitation created into the system. As neutron scattering in condensed-matter
experiments, this process directly measures the dynamical structure factor S(q, ω); it
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(a) Inelastic neutron scattering. (b) Bragg scattering.

Figure 6.2: (a) Schematic of an inelastic neutrons scattering experiment. A monochromatic
neutron beam hit the sample exciting the atoms. A detector counts the number of neutrons
scattered per second into a certain small solid angle and within a certain small energy range
thus measuring the scattering cross section for the overall process. (b) Schematic of the
Bragg scattering. Two off-resonant light pulses (Bragg beams), with frequency-difference δν
and angle-displacement θ are shone onto the atomic gas, inducing a Bragg transition (inset),
as explained in the text. Picture readapted from Clément et al. 18

can therefore be used (and actually has been used) to probe the density fluctuations
of the system87 and its excitation spectrum88,32,17.

6.2 Experimental procedure

A simple way to realize a two-photon Bragg scattering experiment is to modulate
in amplitude the external lattice potential (2.5), thus performing, in some sense, a
lattice modulation spectroscopy experiment. This is the kind of spectroscopy we use
to investigate the system excitations. The experimental sequence is the following:
after the standard loading procedure of the interacting one-dimensional system in
the quasiperiodic lattice (see Sec. 4.2), the primary lattice is modulated in amplitude
for a fixed time tmod. The resulting lattice potential have the form:

V (x, t) = (V0 +Amod sin(2πνmodt)) cos2(kx), (6.1)

where k = 2π/λ is the wave-vector of the optical lattice, while Amod and νmod
are the amplitude and the tunable frequency of the modulation, respectively. The
modulation introduces two sidebands with frequencies ±νmod relative to the lattice
laser frequency c/λ, defining the energy hνmod of the excitation. Because of the
Bragg condition, atoms scattering two photons receive a momentum transfer of 0 ~k
or 2 ~k. Tuning the frequency of the modulation it is then possible to experimentally
measure the excitations of the system at fixed transferred momentum q = 2~k.

After the excitation, the lattice potentials are ramped down in 300 ms with
exponential ramps, allowing the system to re-thermalize via atom-atom collisions.
The absorbed energy is extracted from the temperature increase, which is measured
through standard time-of-flight images. In the BEC regime, the temperature is
estimated from the measured condensed fraction η(ω), with ω = 2πν. Since typically
η<0.3, we use the first order approximation ∆T (ω) = −Tc(η(ω)− η0)/3, where η0 is
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(a) Linear response. (b) Linearity at large U.

Figure 6.3: Linear response. (a) Relative variation of the condensed fraction for ∆=0
and U=5.4J , versus the square of the modulation amplitude. (b) Excitation spectrum for
∆=0 and U=26J , for two different modulation amplitudes, A=0.05 (red) and A=0.1 (blue),
normalized to the square of the modulation amplitude.

the unperturbed condensed fraction. On the other hand, in the thermal regime T/Tc >
1, T is extracted from the thermal width σ(ω): ∆T (ω) = m(σ2(ω) − σ20)/kBt

2
exp,

where texp=16 ms is the expansion time and σ0 is the unperturbed width.
The modulation time tmod=200 ms is chosen as long as possible, as allowed by

the system background heating, in order to have the maximum sensitivity at low
frequencies. Usually, the energy absorption rate can be calculated within the linear
response theory. The modulation amplitude Amod ∼ 0.1, is in fact chosen small
enough to stay in the linear response regime, as shown in Fig. 6.3a, where we plot the
relative variation of the condensed fraction at ∆=0 and U=5.4J versus the square of
the modulation amplitude is plotted. We also checked that the excitation spectrum
in the strongly correlated regime (∆=0, U=26J) is not changing for two different
modulation amplitudes (A=0.05, A=0.1), as shown in Fig. 6.3b.

6.3 Excitations in the strongly-correlated regime

First of all, we investigate the excitations properties of the disordered bosons in
the strongly-correlated regime. As discussed in Sec. 4.5.2, at large interactions, even
in the presence of disorder, the typical correlation length characterizing the system
is small (few lattice sites) and therefore temperature-independent, at least in the
experimental temperature range, kBT ≈ 3J . As a consequence, in this regime the
experimental observations directly reflect the properties of the T=0 quantum phases.

The typical response in the clean case (∆=0) at large U is shown in Fig. 6.4.
The excitation spectrum shows the standard Mott insulator response54,17: at low
frequencies, hν < U , essentially no absorption is visible. A first excitation peak
appears at the Mott-gap, hν=U . This absorption peak is due to particle-hole
excitations in the MI plateaus, that form in the inhomogeneous trapped system. For
our typical densities we estimate MI domains with single site occupation n=1-3,
depending on the trap zone. A second peak is instead centered at hν=2U , and stems
from particles hopping from single- into doubly-occupied lattice site. This peak
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Figure 6.4: (a) Excitation spectrum at U=26J and ∆=0. At low frequencies the system is
not responding; a first excitation peak appears at the Mott-gap, hν=U , and a second one at
about 2U , due to the system inhomogeneity. (b) Schematics of the activation mechanism
of an elementary excitation in the inhomogeneous Mott insulator. When a particle hops
between sites with the same occupancy the energy cost is U . When instead a particle hops
into a lattice site already occupied by two other particles, the energy cost is 2U
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confirms the presence of MI domains with different occupation in individual tubes,
due to the system inhomogeneity (see Fig. 6.4). The MI domains are connected by
additional SF components with density incommensurate with the lattice periodicity
(i.e. n different from an integer), which do not respond to the excitation in the regime
of U � J .

When a finite disorder ∆ is included, the system response to the external pertur-
bation modifies. The typical response for varying ∆ is shown in Fig. 6.5. The MI
peaks broaden of approximately ∆, as already observed in previous experiments32,
since the energy required to create particle-hole excitations is now site-dependent,
and ∆ quantifies the spreading of the on-site energies. More surprisingly, a further
peak appears in the gap, at hν ∼ ∆. This observation strongly reminds the gen-
eral picture discussed in Orso et al. 66 and summarized in Fig. 6.1, predicting a
similar response for the strongly-correlated Bose glass phase at finite disorder. In
fact, at large interactions, the incommensurate fraction composing our experimental
inhomogeneous system is expected42 to behave as a weakly-interacting Fermi gas,
which essentially undergoes Anderson localization, showing such a peculiar response
around the characteristic disorder energy. Even though the experimental unavoidable
finite resolution at low frequencies does not allow us to clearly distinguish a gapless
response, the presence of the extra peak strongly indicates this Bose glass phase.
In the next paragraph we close compare our experimental results with theoretical
expectations, giving evidence of this glassy phase.

Comparison with theory. In Fig. 6.6, the experimental data are compared to the
theoretical prediction for the excitation spectrum, evaluated with a fermionized-boson
model, on the line of Orso et al. 66 . The calculations are performed in the hard-core
limit U � ∆, J , where bosons can be mapped onto non-interacting spinless fermions.
The energy absorption rate (EAR) is derived using the linear response theory50. For
the incommensurate component, which provides the Bose-glass response, the EAR
reads:

Ė(ω) =
δJ2πω

2

∑
a,b

Kab [fFD(εa)− fFD(εb)] δ(~ω + εa − εb), (6.2)

where δJ is the perturbation on the tunneling energy J induced by the primary lattice
modulation (6.1). Here Kab = |

∑
i ψ
∗
a(i+ 1)ψb(i) +ψ∗a(i)ψb(i+ 1)|2 is calculated over

pairs (a, b) of single-particle eigenstates of the quasiperiodic lattice at two different
disorder ∆ = 6.5J and ∆ = 9.5J , while fFD(ε) is the Fermi-Dirac distribution at
finite temperature. The bar represents averages over different realizations of the
potential. Each spectrum is calculated evaluating Eq. (6.2) at different frequencies ω
on a 200-sites lattice confined in a harmonic potential with frequency νx=150 Hz, as
in the experiment. The calculations are performed at finite temperature kBT=3J . In
the experiment the interaction energy U is not infinite, as assumed in the theoretical
model; as a consequence the single site occupation n is often bigger than unity (in
some zones of the harmonic potential we have n=2-3). In the calculations, this is
taken into account employing an extended-fermionization approach75, i.e. neglecting
the coupling between layers with different occupations (n≤1, 1<n≤2, 2<n≤3), and
calculating their response independently. The larger kinetic energy of the fermionic
excited bands is properly taken into account in the numerics. In fact, this approach
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Figure 6.5: Emergence of a strongly correlated Bose glass. Excitation spectrum at U=26J
and SF temperature kBT ≈ 3J , for increasing disorder strengths. (a) ∆=0: the system does
not respond at low frequency, while a first excitation appears at around U , which is the
expected Mott gap energy, and a second one due to the system inhomogeneity at around
2U ; (b) ∆=6.5J : the two Mott peaks are broadened, and a new peak centered around 1.5 ∆
appears; (c) ∆=9.5J : the low-frequency peak shifts and broadens with ∆, and the Mott
peaks are further broadened. The arrows are at hν = ∆ and the lines are a fit with multiple
Gaussians. The insets are the density profiles calculated for N=55.
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(a) ∆=6.5J (b) ∆=9.5J

Figure 6.6: Experiment-theory comparison of the low-frequency response in Fig. 6.5
spectra, for two disorder strengths: (a) ∆=6.5J (b) ∆=9.5J . The red curve is calculated
spectrum at the nominal ∆, and the grey region shows the effect of the 20% uncertainty on
∆. The red arrows mark the disorder strength in frequency units, ∆/h.

is known to work rather well already at relatively small interactions U , provided
that the Mott-gap is open. Each of the excitation spectra shown in Fig. 6.6, is the
average of the spectra calculated for individual tubes over the whole distribution of
tubes in the experiment. Both the theoretical and the experimental peak responses
have been normalized to unity; moreover, we subtracted from the experimental data
a Gaussian background, due to the first Mott peak. Grey shaded areas show how
the experimental uncertainty on ∆ affects the calculated spectra.

As shown in Fig. 6.6, the calculated absorption peak well reproduces the ex-
perimental observation, confirming the qualitative picture depicted in Fig. 6.1.
The systematic shift of the experimental data towards lower frequencies might be
a consequence of the U = ∞ approximation employed in the theoretical model.
Anyway, the appearance of such extra peak experimentally probes the presence of a
strongly-correlated BG coexisting with the disordered MI. Moreover, the theoretical
analysis of the density distribution in the insets of Fig. 6.5 shows the expected
spatial arrangement of the commensurate and incommensurate components in the
typical tube, confirming that the smooth SF density is turned by the disorder into a
strongly varying one, as expected for a Bose glass.

6.4 Excitations from weak to strong interactions

In this section we explore the condensate excitations properties in a disordered
potential from weak to strong interactions. As shown in Sec. 4.3, at weak interactions
the entropy enhances; as a consequence in this regime it is easier to measure the
energy absorption from the increase of the thermal width, once the sample has been
transferred back into the 3D trap. Furthermore, at small U the typical correlation
length of the zero-temperature system is large and the presence of a finite temperature
broadens its momentum width, as shown in Sec. 4.4.2 and deeply discussed in Sec.
4.5. Therefore at low interactions we are dealing with a finite-temperature system,
which however gives strong indications and might be quantitatively connected to the
zero-temperature expected phases. Coherence and transport measurements revealed
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Interac(ons+

Figure 6.7: Excitation spectrum from weak to strong interactions. Top figures: measured
excitation spectrum for fixed disorder, ∆ = 7J , and increasing interaction: U < 0.05J
(top-left), U ∼ 0.2J (top-center), U ∼ 0.3J (top-right). Bottom figures: measured excitation
spectrum for fixed disorder, ∆ = 6.5J , and increasing interaction: U = 20J (bottom-left),
U = 26J (bottom-center), U = 58J (bottom-right). The arrows mark ∆/h. The red line is
the theory for non-interacting bosons and the grey lines are a guide to the eye. Error bars
represent the standard deviation of 5 measurements.
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the presence of a finite-temperature insulator even in this side of the U -∆ diagram.
We now explore its excitations spectrum, comparing it to the characteristic response
at large interactions.

The typical excitation spectra for varying U are shown in Fig. 6.7. The nature of
the excitations at weak interactions contrasts with the fermion-like response observed
in the strongly-correlated regime. At small U in fact, bosons do not behave as
fermions, and the excitations show the typical bosonic response. For vanishing U a
weak excitation peak centered at ∆ appears, as expected for an Anderson insulator;
the system is incoherent and difficult to excite. A non-interacting bosonic model,
built replacing fFD(εa) − fFD(εb) with the Bose-Einstein distribution fBE(εa) in
the fermionic model used previously, captures relatively well the atomic response
at ∆=7J . This response greatly enhances and broadens when a small U ≤ ∆ is
added, signaling the crossover into a weakly-interacting disordered-induced insulating
regime, consistent with a finite-temperature Bose glass. Eventually, at larger U ,
this regime is undistinguishable from a clean superfluid. This behavior, combined
with the evolution of the momentum width (shown in Fig. 4.3) and the transport
properties (see Fig. 5.8), confirms the nature of such weakly-interacting phase: in
the bosonic case, a small repulsive interaction favors the coupling of single-particle
states, gradually restoring the superfluidity. In fact, the low-frequency response
of the system at weak interactions enhances if compared to its strongly-correlated
counterpart, indicating the possibility of longer-distance excitations at small U , while
at large U the excitations occur only on small length scales. As discussed in Chapter
1, the role of the interactions in bosonic samples is different in the weakly- and in
the strongly-correlated limit. While weak interactions compete with disorder and
screen the disorder-induced localization, restoring coherence between particles, strong
interactions act as the Pauli exclusion, ‘fermonizing’ the bosonic sample and favoring
(Anderson) localization in disordered media.

At large U , a peak centered at ∆ appears in the excitation spectrum, signaling
the presence of a strongly-correlated BG. This ∆-peak can be observed only in a
limited region of U -∆ values, as shown for example in Fig. 6.7. Indeed, when ∆ is
comparable with U , the larger MI peak overlaps with the smaller BG one. When
instead U is much larger than ∆, the incommensurate density component that can
form a BG is strongly reduced.



Conclusions

In this thesis we used a one-dimensional Bose-Einstein condensate in a quasiperi-
odic lattice to investigate the very general problem of dirty bosons, i.e. the effect of
disorder in an interacting bosonic sample. Thanks to the ability to tune and control
both the disorder and the interaction strength, we probed the physical properties
of this system in the whole interaction-disorder plane, identifying a Bose glass at
strong interactions, coexisting with a disordered Mott insulator. Three experimental
observables, the system correlation length, its transport properties and the spectrum
of its excitations, give the evidence of the several quantum regimes.

The combination of coherence and transport measurements reveals a reentrant
insulating phase, surrounding a coherent superfluid phase from weak to strong
interactions, besides the well known disorder-induced Anderson insulator (in the
absence of interactions) and interaction-induced Mott insulator (in the non-disordered
lattice).

At strong interactions we spectrally separate a new disordered insulator from the
disordered Mott insulator; the spectral feature is well reproduced by the low-T theory
for the Bose glass, consistently with a gapless insulator. We test the different spectral
response of the insulator on the two sides of the diagram, highlighting the fermionic
nature of the Bose glass phase at strong interactions, and the bosonic nature of the
insulating phase at weak interactions. The combination of these measurements with
the coherence diagram shows the opposite role of a weak or a strong interaction
energy: while a weak interaction couples localized states on large length scales, a
strong interaction ‘fermonize’ the bosonic gas, inducing its localization in disorder.

At weak interactions we study in detail the system dynamics, observing a sharp
crossover from a weakly dissipative regime to a strongly unstable one at a disorder-
dependent critical momentum. In the clean lattice limit these observations suggest
the contribution of quantum phase slips to the dissipation. This method allows us to
locate the fluid-insulator transition driven by disorder at weak interactions, across the
interaction-disorder plane. We find this transition consistent with the broad crossover
observed from coherence measurements, and with the predicted zero-temperature
superfluid-Bose glass transition.

An exhaustive theoretical model for the experimental system is not trivial, since
the experiment is performed in an inhomogeneous setup and at finite temperature.
DMRG simulations done by the group of T. Giamarchi allow to reproduce the T=0
correlation function of the inhomogenous experimental system; a close comparison
with the experimental results suggests the presence of a Bose glass phase also
at weak interactions. The effects of a finite-temperature are assessed in various
ways. We study the evolution of the correlation length with temperature, both
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experimentally and theoretically, employing a phenomenological approach on the
inhomogeneous experiment-like system, and an exact diagonalization technique on
small homogeneous systems. We find that the strongly-correlated regime is not
affected by a finite temperature and we measure a constant correlation length in a
large temperature range. This observation indicates that the T=0 quantum phases
persist in the experimental range of temperatures, confirming the observation of a
strongly-correlated Bose glass. Instead, at weak interactions we predict and observe
a large thermal broadening; anyway we find a constant broadening in the U -∆
plane, suggesting a direct connection with the T=0 phases. Moreover, transport
measurements shows no detectable changes in the mobility with temperature in the
whole range of interactions, suggesting a temperature-independent metal-insulator
transition at the experimental temperatures.

This work opens the way to various future studies. The spectroscopic technique
we used to probe the one-dimensional system can be applied to other types of
disorder and to higher dimensionality. A speckle potential could be used to study
the Bose glass physics in the absence of a lattice, thus avoiding overlaps with the
Mott-insulator physics and effectively decreasing the thermal effects. In this context,
momentum-dependent transport measurements could give informations on the phase
transition at strong interactions and vanishing disorder, establishing a link to the
Luttinger-liquid theory for the superfluid-Bose glass transition. On the other hand,
in higher dimensions, bosons are generally predicted to be much more resistant to
disorder, and the evolution of the insulating phases in the interaction-disorder plane
is still not clear. While in 3D the correlated regime is not easily achievable and a Bose
glass phase could be observed only in the presence of a lattice, in two-dimensional
systems the strongly correlated regime could be experimentally realized. At weak
interactions instead we deal with a finite-temperature insulator; despite the large
thermal effects we still observe an insulating phase. As discussed in the thesis, this
could be the first hint of a many-body localization occurring in this regime. Future
work could characterize this localized phase, studying its evolution with temperature.
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