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teri dell’eternità, della vita, della meravigliosa struttura della realtà. Basta cercare

di capire un po’ di questo mistero ogni giorno. Non perdere mai una sacra curiosità.
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Chapter

1 Introduction

When approaching the topic of Anderson localization, one is certainly prejudiced in favor of it

by a simple fact: this phenomenon has been discovered more than 50 years ago and intensively

studied during all this time; nonetheless it is still at the center of a lively debate and a number

of works concerning with it continue to be published unabated. During the three years of my

PhD I have had the opportunity of taking on the question about the origin of this huge interest

about AL. I must confess that I came in something much richer than I expected.

In 1958 P. W. Anderson found out that the presence of disorder in crystal lattices can

have dramatic effects on the electronic transport properties, such that it can turn a metallic

material into an insulator [1]. The origin of this is a purely quantum effect: the multiple

scattering of a single electron by randomly distributed defects causes a destructive interference

effect on its wavefunction, leading to localization on a finite region of space. It is then a single-

particle phenomenon, simply related to the wave nature of quantum particles. It took quite

some time to understand the importance of this discovery, but, since the time it started to be

carefully considered, it became the focus of a lively and widespread interest. The reasons for

this are various. On one side there is undoubtedly the relevance of an investigation about it to

understand a number of insulating regimes in condensed matter physics. On the other hand,

the peculiar properties of this phenomenon, ranging from its ubiquitous nature to the quantum

phase transition related to it, gave rise to a fundamental interest about it [2].

The fact that, after almost 60 years of intense study, researchers are still debating about AL

highlights also another point: it is not simple at all to investigate it. From a theoretical point of

view, disordered systems are certainly more demanding than ordered ones, due to the increased

degree of complexity. On the experimental side, while disorder is not so difficult to get, it is

much more intricate to control and characterize it (just think for example to the case of disorder

in crystal lattices).

A clear example of the difficulty in answering some crucial questions about AL takes us to

the main theme of the present thesis. One of the aspects immediately identified in the very first

paper by Anderson [1] was the existence of a critical condition for localization. In the specific

case considered there he noticed that, given a certain amount of disorder in the system, the

occurence of localization depends on the electronic concentration. Later on, N. Mott conceived

the idea of a mobility edge, that is an energy threshold separating localized low-energy states

from extended ones [3]. We can therefore say that the problem of the localization threshold is

the oldest issue concerning with AL but it is still eluding a full understanding.

The work of this thesis engages in this long-standing debate, trying to provide a signifi-

1



2 Chapter 1. Introduction

cant contribution to the solution of this fundamental problem: what is the critical energy for

localization and how does it depend on the disorder strength?

The basic resource in this endeavour is the employment of ultracold quantum gases. In the

past few decades these physical systems have proved to be an extremely versatile tool for the

investigation of complex quantum phenomena. They are indeed increasingly used as “quantum

simulators”, since they offer an unprecedented control on the fundamental parameters of the

system, allowing to reproduce the main features of other physical systems under well known

conditions.

This is exactly the spirit of the work I am going to present. The original context of the

discovery of AL, and also the one in which it is most relevant, is that of disordered electronic

systems. Nontheless an experimental study of AL with electrons has proved to be difficult, due

to the effect of Coulomb interactions, which turn the Anderson single-particle phenomenon into a

much more intricate one [4]. Using ultracold atoms, we dispose of a sample of quantum particles

whose mutual interactions can be tuned to zero. Placing them in a disordered optical potential

we can study their transport properties and detect the occurrence of the Anderson transition.

A full assessment of the non-interacting problem is a prerequisite for the even more interesting

issue of the interplay between disorder and interactions. This is the realistic situation of electrons

in solids and it can be again simulated with ultracold atoms, by tuning the scattering length to

finite values.

In Chapter 2 I draw an essential picture of the rich context of the study about Anderson

localization, focusing in particular on the problem of the mobility edge. I report the main theo-

retical and experimental results about the Anderson transition, which represent an instrumental

background to our work. In Chapters 3 and 4 I describe the experimental setup we used, i.e.

a Bose-Einstein condensate of potassium-39 atoms placed in a disordered optical potential re-

alized by means of laser speckles. In Chapter 5 I present the novel experimental techniques we

designed to determine the position of the mobility edge and I report the results we obtained. I

also report some preliminary results about the effects of weak interactions on the localization

problem. Finally in Chapter 6 I draw the conclusions of this work and its main outlook.

An exemplary demonstration of the versatility of ultracold gases to investigate quantum

phenomena is provided by the fact that during my PhD I actually studied, with the same

experimental setup, two other major topics besides Anderson localization, i.e. the Efimov effect

in the collisional properties of 39K [5] and the observation of a quantum phase transition with

parity-simmetry breaking in a double-well potential [6]. In order to preserve the coherence of

this thesis, I decided to concentrate the discussion presented here on the work in which I was

the main participant, referring the reader to the cited papers for an insight on the other topics.
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During the rich history of Anderson localization (AL), a number of excellent reviews have been

written to account for the many results obtained in the field. For this reason it is certainly no use

for me to try and provide a complete overview on the many interesting aspects of it. Nonetheless,

in the work I carried out during my PhD, I found out that dealing with AL requires to be

aware of the ample context of this research field. AL interested theoretical and experimental

groups from all over the world since the half of the past century, who developed a number

of theoretical approaches and investigated a variety of physical systems to answer the many

questions concerning with it. Keeping trace of this rich past is useful on one side to draw a clear

picture of the knowledge reached about the phenomenon, and on the other hand it surely helps

in understanding the lively interest about it at the present time. I will then try to retrace a

path through the research about AL in the past few decades, in order to focus the main results

obtained about the specific topic of this thesis, i.e. the Anderson transition and the problem

of the mobility edge, which is certainly one of the fundamental and most interesting features of

AL.

One of the most fascinating aspects of AL lies in its universality. Being its microscopic

origin related to wave interference in a medium with a certain degree of randomness, AL needs

few essential ingredients to occur. For this reason it has been observed in a variety of systems,

ranging from quantum particles to classical waves. Despite the discovery of AL initially concerned

electrons in disordered lattices, since the end of the 1980s the phenomenon has been investigated

in many different contexts. In the following there will be no discontinuity in the presentation of

the resuls obtained in one or the other of this contexts, since the majority of them equally holds

3



4 Chapter 2. Anderson localization and the problem of the mobility edge

in every physical system, provided that some basic conditions are verified.

In Sec. 2.1 I introduce how P. Anderson figured out the dramatic effect of disorder on the

conduction properties of solids and the following success of the phenomenon in the context of

metal-insulator transitions. In Secs. 2.2 and 2.3 I provide a brief overview of the theoretical and

experimental results that have been relevant for the comprehension of the Anderson transition

and that are useful for a comparison to our results. Finally in Sec. 2.4 I summarize what is

the state-of-the-art, thus clarifying which are the firm points and the open questions about the

mobility edge and the critical behaviors in its vicinity.

2.1 From 1958 to 1970s: discovery and success of Anderson localization

2.1.1 1958: “Absence of diffusion in certain random lattices”

The discovery of AL dates back to almost 60 years ago. In the mid-fifties G. Feher’s group at Bell

Labs was performing experiments on doped semiconductors, where they observed the anomalous

localization of a spin excitation [7]. This observation stimulated P. W. Anderson to work out the

first systematic treatment of the effects of a disordered potential on the transport of particles. In

his famous paper from 1958 [1], he presented a simple model to study the transport of electrons

or excitations in a cubic lattice with random on-site energies. This work had to completely

change the established understanding of electronic transport in solids. It was of course already

known that randomness was a relevant feature in solid state systems, connected with the presence

of impurities, vacancies and dislocations in the otherwise ordered structures of crystal lattices.

The traditional view was that the presence of disorder in the lattice caused the Bloch waves to

lose phase coherence on the length scale of the mean free path, but the wave function remained

extended throughout the sample. Anderson found out that something different can happen, i.e.

that for strong enough disorder the wave function may become localized. In this concept of

“strong enough disorder” we can identify the first primordial definition of what was later called

mobility edge. He indeed discovered that there is a critical condition for localization to occur,

which is defined as a relation between the ability of the particle to move through the lattice, in

this case determined by the hopping between neighbouring sites, and the disorder strength.

In the introduction of his paper, Anderson stated:

“In this paper, in fact, we attempt only to construct, for such a system, the simplest

model we can think of which still has some expectation of representing a real physical

situation reasonably well, and to prove a theorem about the model. The theorem is that

at sufficiently low densities, transport does not take place; the exact wave functions

are localized in a small region of space.”

The simplest model he could think of was that of a cubic lattice in tight-binding approximation,

where each electron is preferably bound to one ion of the lattice and it has a certain probability
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to hop from one site to the next by quantum tunneling. The system Hamiltonian can be written

as:

H = −V
∑
〈i,j〉

(a†iai + h.c) +
∑
i

εia
†
iai, (2.1)

where i, j are the indexes for the lattice sites, ai and a†i are the annihilation and creation operators

of the electron on site i, V is the hopping amplitude between next-neighbouring sites, 〈i, j〉 are

the pairs of next-neighbouring sites and εi is the on-site potential energy. Disorder is inserted in

the system by considering that the on-site energies are random variables uniformly distributed

between −W/2 and W/2, where W is the disorder amplitude.

Figure 2.1 | The critical parameter for localization in Anderson’s paper fom 1958. The critical value
of W/V is plotted as a function of the connectivity K. The figure is taken from [1].

Anderson provided numerical estimations of the critical parameter for localization, defined

by the ratio W/V . I report in Fig. 2.1 the plot of the critical W/V as a function of the system

parameter K, defined as the “connectivity” of the localized electronic states. I am not interested

in the exact meaning of these results, since the curves plotted there have little to do with the

present concept of mobility edge. The graph I report here has the only purpose to show that

the problem of determining the critical conditions for localization is at the heart of the same

discovery of Anderson localization.

2.1.2 The idea of mobility edge and metal-insulator transitions

The importance of Anderson’s work was not immediately understood, not even by Anderson

himself. It was only in the 1970s, mainly thanks to the work carried out by N. Mott, that

the Anderson mechanism for localization started to be appreciated and intensively studied.
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Mott’s merit in understanding the importance of Anderson’s discovery was so significant that

the two shared the Nobel Prize in 1977 for their work on disordered systems. Among many

contributions that Mott brought to this field is the concept of mobility edge. He was indeed the

first who focused that, for a fixed amount of disorder in a system, there exists an energy threshold

separating localized low-energy states from extended ones. The name he gave to this critical

energy manifests the connection between the nature of the energy eigenstates and the conduction

properties of the whole system. Below the threshold the mobility of electrons is inhibited and

no current flow can occur in the sample, at least at zero temperature. This idea immediately

revealed the possible relation between AL and the metal-insulator transitions observed in solids.

It was indeed the prospect that the newly discovered phenomenon could help to answer a number

of unsolved questions in that field that determined the success of AL.

I find it useful here to briefly recall the problem of metal-insulator transitions (MITs) as it

was known at the time, since it allows to understand the big efforts that followed Anderson’s

work and that tried to explore the connection between AL and the conduction properties of

certain materials. Besides the historical interest, this also introduces us to one of the oldest but

still least understood problems of condensed matter, where our investigation on ultracold gases

could help to find long-awaited answers.

In the two decades before Anderson’s discovery, it became apparent that the band theory of

solids, who had had a great success in explaining the general behavior of condensed matter, failed

to describe phenomena relative to the conducting/insulating nature of certain materials. There

is indeed a class of compounds which according to band theory should be metallic conductors

and are in fact insulators. The question about the origin of this unexpected behavior became

even more urgent due to the fact that the materials affected by this kind of phenomena are often

the most relevant for technological purposes, as it is the case for doped semiconductors or silicon

MOSFETs.

The lively debate about the mechanisms underlying these unexpected insulating regimes led

to the conviction that the states of electrons had to be qualitatively different in conductors

and insulators, at least at sufficiently low temperature. A signature of that is the different

zero-temperature limit of the conductivity. In nonmagnetic metals the conductivity tends to a

finite value, whereas in many insulators it drops to zero exponentially with the inverse of the

temperature. The origin of this discrepancy was ascribed to the extended or localized nature

of the charge carriers in metals and insulators respectively. The distinction between metals and

insulators becomes then sharp at zero temperature, indicating that metal-insulator transitions

have to be classified as quantum phase transitions.

A first mechanism driving certain MITs was discovered in 1949 by N. Mott, who argued that

the correlation effects associated with electron-electron interactions could lead to localization of

the electronic eigenstates on the single sites of the periodic lattice. When the lattice has integer

filling per unit cell, then the electrons can be mobile only if they have enough kinetic energy
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to overcome the Coulomb energy which repels them from hopping to neighbouring sites. In the

narrow band limit, when tunneling is much smaller than Coulomb repulsion, the electrons do not

have enough kinetic energy, and a gap opens in the single-particle excitation spectrum, leading

to the so-called Mott insulating phase.

Mott’s discovery helped in understanding a number of insulating regimes, but it could not

complete the picture for all the observed phenomena. Given this scenario one can better un-

derstand why N. Mott became so enthusiastic about Anderson’s work. He had just found out

a different mechanism able to localize the electronic eigenstates. Thanks to their joint efforts it

was then possible to identify Anderson localization as a second mechanism at the basis of MITs.

While in the first case localization was due to Coulomb interactions, in this case the transition

is driven by disorder.

One of the main differences between Mott and Anderson transitions is that, while the first

presents a gap related to the energy cost of hopping in an occupied site, the second is gapless.

This is indeed a distinctive feature of the Anderson transition, which displays a number of related

phenomena, among which the so-called “variable range hopping conductivity” [2].

2.2 Theoretical approaches to Anderson localization

The experimental investigation of AL in solid state systems immediately proved to be challeng-

ing, since the presence of Coulomb interactions significantly modifies the single-particle picture

of the Anderson model. For this reason, most of the intial efforts to better understand the An-

derson phenomenon were performed from the theoretical point of view. In the present Section

I will introduce two of the main theoretical approaches that gave significant contributions to

the field. The first one, which is also the earliest, is the scaling theory of localization. It will

help in clarifying a general picture of the phenomenon, introducing the role of dimensionality

and the different expected regimes. The second is the self-consistent theory of localization. It

contributes to catch the microscopic mechanism at the origin of AL, providing an analytic, albeit

perturbative, description of it. Furthermore, I briefly report some early results of the numerical

simulations, which are a powerful tool for the predictions about the mobility edge.

2.2.1 Scaling theory of localization

In general terms, scaling theories are those which describe the relevant properties of a system

by considering their behavior under changes of the system size. In this way they can capture

those features that are important on a macroscopic scale, without taking care of the microscopic

details. In the 1960s scaling arguments started to be used for describing phase transitions and

critical phenomena, which are an exemplary case where macroscopic changes of a system occur,

driven by some control parameter.

An early formulation of a scaling approach to AL was proposed by Thouless and coworkers in

the mid-seventies [8]. Their ideas were then took up by the so-called “gang of four” (Abrahams,
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Anderson, Licciardello and Ramakrishnan), who combined them with perturbation theory and

worked out the first complete formulation of a scaling theory of localization [9].

The idea at the basis of this theory is very simple. A solid sample in any dimensions d

is thought of as made of nd elementary building blocks of size Ld. The scaling hypothesis

assumes that the properties of the (nL)d hypercube is only a function of the properties of the

elementary Ld one. Moreover, they assume that the metallic/insulating regime of the system

can be identified by making use of a single parameter, i.e. the dimensionless conductance g. It

is defined as the ratio g = G/(e2/~), where G is the conductance and e is the electron charge.

If one considers a single block as in Fig.2.2, the value of its conductance will be proportional to

the ratio:

g ∝ ∆E

δW
, (2.2)

where ∆E is the coupling strength between eigenstates in neighbouring blocks and δW is the

average spacing between the energy levels. The conductance was argued to be determined by the

interplay of these two energy scales. ∆E couples the states in neighbouring blocks and favors

propagation. It therefore dominates in the regime of weak disorder, allowing the admixtures of

electronic states and thus the conduction of currents through the sample. On the other hand

δW increases as the disorder gets stronger and it weakens the coupling between neighbouring

blocks, thus favoring localization of the electronic wavefunctions.

E

L

E

ΔE

δW

a

b g∝ΔE/δW

Figure 2.2 | Scheme of the basic idea of scaling theory. The conductance g of a large system can be
deduced from the value of g of its elementary components of mesoscopic size Ld. g(L) is measured by the
ratio of the coupling to neighbouring blocks ∆E to the average distance of the energy levels δW . The value
of g gives a measure of the disorder in the system, since it is small for large disorder and conversely.

The two situations briefly sketched here correspond to two limiting cases for the dependance

of g on the system size L. The powerful intuition underlying scaling theory lies indeed here:

the value of the conductance of the single Ld block provides a microscopic measure of disorder,

being small if the disorder is strong and conversely; at the same time it also defines the scaling

of g when the system size is increased from Ld to (nL)d.

v In the first case, when the disorder is weak and the coupling between neighbouring blocks is

good, the electron wave function is extended and nearly plane-wave like. The dependance
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of g on the size L is then provided by Ohm’s law:

g(L) ∝ Ld−2 (2.3)

v If the random potential is strong enough to dominate over the coupling to neighboring

blocks, the electronic states are localized and the charge transport through the sample can

only occur by an electron’s hopping to an unoccupied state close in energy to the intial

one. However, localized states close in energy are usually far apart in space, so that the

hopping matrix element between them is exponentially small. In this regime the expected

behavior for g(L) is

g(L) ∝ e−L/ξ (2.4)

where ξ is the localization length of the electronic wavefunction.

The key quantity that allows to catch all these scaling arguments at a glance is the scaling

function β(g), defined by the logarithmic derivative

β(g) =
d ln g

d lnL
. (2.5)

It was indeed argued that this quantity is a function of the conductance g alone, which reflects

the idea introduced above: the change of g when the size of the system increases from L to

L+ δL is solely determined by its value at the previous length scale. The two limiting cases of

Eqs. 2.3 and 2.4 obviously reflect in two limiting cases for β(g):

v If g > gc, where gc is a certain critical value of the conductance, the system is a conductor.

From Eq. 2.3 one derives

β(g) = d− 2. (2.6)

v In the opposite case, when g < gc, the electronic states are localized. We deduce from Eq.

2.4 that

β(g) = ln(g/gc) + cd, (2.7)

where cd is a constant which depends on the dimensionality. In this case β(g) is always

negative, indicating that g decreases as L increases.

Under the assumptions that β(g) is continuous and monotonic, the scaling curves of Fig. 2.3

are deduced from the two asymptotic behaviors just described, as a function of the dimensionality

d.

In 3D, β(g) cuts the zero axis at a critical point ln gc. If the disorder is weak such that

on a certain length scale L the conductance g(L) > gc, then β(g(L)) > 0 and when the size

of the system increases, g increases too (the point moves right on the curve), and reaches the

asymptotic behavior β(g) = 1, i.e. g ∝ L. The system is therefore metallic at large scales. On

the other hand, if the disorder is strong enough, on the length scale L one has g(L) < gc. Then
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INSULATOR

CONDUCTOR

CRITICAL
POINT

Figure 2.3 | Scaling Theory of Localization. Plot of the β-function versus ln(g) adapted from the original
paper by the “gang of four” of 1979 [9]. For d ≤ 2, β(g) is always negative, indicating that the system is
always localized. In higher dimensions, the system passes from an insulating phase, for g < gc to a conducting
one. The critical point gc, where β crosses zero and becomes positive, indicates the occurrence of the Anderson
transition.

β(g(L)) < 0 and the point moves to the left when L increases, so that g → 0. The system

has an insulating behavior. The critical point gc is therefore an unstable fixed point, while the

metallic and insulating phases are stable. It is then found that the scaling theory predicts a

metal-insulator transition in 3D. It also gives some predictions about the critical behavior [10].

Near the critical point one finds:

Lloc ∝ (Ec − E)−ν and σ ∝ (E − Ec)s (2.8)

where the critical exponents ν and s were found to be related by

s = (d− 2)ν. (2.9)

For d = 3, one has s = ν. Scaling theory does not provide any estimation of the exact value of

the critical exponents. The most accurate estimations for them were later provided by numerical

calculations of the Anderson model as I report in Sec. 2.2.2.

In 1D and 2D, β(g) is always negative and therefore the conductance always flows to g = 0

when the size of the system increases. Scaling theory thus predicts that at low dimensionalities

the system is always in the insulating regime.
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The power of the scaling approach to AL lies in the fact that, starting from simple qualitative

arguments, it could provide a first complete picture of the localization phenomenon and of its

implications. It correctly predicted the different behaviors as a function of the dimensionality,

detecting the presence of a critical point only for d > 2, and it defined the critical exponents at

the transition.

Many of the predictions of the scaling theory have been later confirmed by a number of

different theoretical approaches to the AL problem, as renormalization group calculations [12, 20],

perturbation theory [2], self-consistent theory [21, 11], random matrix theory [13] and field-theory

approaches [14, 15]. At the end of ths Section, I will report a test of the consistency between

scaling and self-consistent theories, referring the readers to the cited references for an insight on

the other theories.

2.2.2 Numerical simulations of the Anderson transition

Together with the attempt to find a suitable analytic formulation of localization, big efforts were

performed in order to provide a quantitative description of the phenomenon using numerical

calculations. The attention was mainly focused on the 3D case, which was clearly highlighted

by scaling theory as the most interesting one, due to the presence of the transition.

Simulating the behavior of electrons according to the 3D Anderson model, numerical calcu-

lations proved to be very useful to locate the Anderson transition and to characterize the critical

behavior close to it. The early results confirmed the predictions of scaling theory as it is shown in

Fig. 2.4. The scaling function β(g) switches from positive to negative, crossing zero for a critical

value of the conductance. Besides confirming the existence of the two regimes, these results show

that β(g) behaves smoothly across the transition, which is a proof that the Anderson transition

is a continuous phase transition of second-order.

Another important contribution coming from numerical results is the calculation of the criti-

cal exponents at the transition. The best current estimate for 3D systems is s = ν = 1.58± 0.01

[17, 10].

Finally, I report those results that can be seen as the first analogous of the main result of

this thesis, i.e. the determination of the mobility edge trajectory in the disorder-energy plane.

This has been the subject of a number of works that have brought to a clear assessment of

the mobility edge in the Anderson model [10]. I report in Fig. 2.5 the latest results from [18],

which show the calculated critical point for the Anderson transition as a function of the disorder

strength W and of the energy E.

This brief overlook about the earlier outcomes of numerical simulations on electronic systems

has just the purpose to prove the validity of this tool to provide quantitive results close to

the transition. Since the time of the calculations reported here, computation techniques have

greatly improved and a number of interesting results have been obtained, also from simulations

on physical systems different from electrons in disordered lattices. I will take over this discussion
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Figure 2.4 | Numerical calculation of the scaling function β(g) for the 3D Anderson model. The solid
line is for d = 1, the triangles for d = 2 and the crosses for d = 3. The results reported here perfectly match
with the expected behavior of Fig. 2.3. The figure is taken from [16].

METAL

INSULATOR

Figure 2.5 | Phase diagram for the 3D Anderson model. The mobility edge trajectories Wc(E) are
calculated for the 3D Anderson model, considering different probability distributions of the on-site energies.
Below the mobility edge is the metallic phase, above it the insulating one. The figure is adapted from [18].

at the end of Chapter 5, when comparing our experimental results with the most advanced

calculations relative to ultracold atomic systems.
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2.2.3 Self-consistent theory of localization

Up to the 1980s a genuine microscopic theory for AL was still missing. The metallic/insulating

regimes identified by scaling theory were still lacking a physical explanation on the microscopic

scale. Realizing that all the efforts to develop an exact theory of the phenomenon ended up to fail,

D. Vollhardt and P. Wölfle decided to consider an approximation scheme [21]. They developed

a theoretical tool which, starting from an analytical description of the system, keeps trace of all

its specific microscopic properties, but accounts approximately for the critical behavior at the

transition. The main advantage of this strategy lies in its versatility, since it can be applied to

every kind of disordered system, provided few basic conditions are complied with. On the other

hand, the main drawback in this scheme is its perturbative nature: most results are obtained from

an expansion in powers of the disorder, hence valid only for small enough potential strength. This

means that suitable strategies needs to be found to extend its validity close to the localization

transition, where the disorder is necessarily strong.

The formulation of the so-called self-consistent theory (SC theory) of localization by Vollhardt

and Wölfle certainly made a great contribution in the understanding of AL, since it first shed

light on the microscopic origin of the phenomenon and provided a helpful theoretical tool for

the comparison with experimental results. For these reasons, it worth to spend some time to

introduce the basic ideas about the theoretical approach they proposed and its main results [22].

This is especially interesting in the context of this thesis because many of the theoretical results

we can compare with are developped in the form of SC theory, so that a basic knowledge of this

formalism is of fundamental importance.

Diagrammatic perturbation theory

The point of the game is to draw a description for the quantum transport of a particle in a

disordered medium. The language used is that of a diagrammatic perturbation theory in the

disordered potential. The starting point is a Hamiltonian of the form

H = H0 + V, (2.10)

where H0 describes regular propagation in an ordered structure and V is the disordered potential.

The simplest example described by this kind of Hamiltonian is that of a single quantum particle

in an external potential: H = p2/2m+ V (r).

Assuming that H0 is translation-invariant, we can write the equivalent of Eq. 2.10 in Fourier

space:

H =
∑
k

ε0ka
†
kak +

∑
k,q

Vqa
†
k+qak, (2.11)

where k are the wave vectors used to label the eigenstates of H0, ak and a†k are the annihilation

and creation operators, ε0k is the free dispersion relation (ε0k = ~2k2/2m for matter waves) and Vq

is the scattering amplitude, given by the Fourier component of the potential: Vq = 〈k + q|V |k〉.
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A simple representation of Vq is provided by the Feynman diagram:

Vq =

q

k k' (2.12)

In Eq. 2.11 we can immediately note that the formalism we are introducing here is of general

validity for every kind of system, provided one knows the appropriate free dispersion relation ε0k
and the scattering potential Vq. As we will see in the following, SC theory has been successfully

used in the case of electrons, but also of classical waves and ultracold atoms.

The basic tool I need to introduce here is the Green function for the single-particle Hamil-

tonian, which is the appropriate quantity to describe the time evolution of a state |ψ〉 according

to the Schrödinger equation i~∂t|ψ〉 = H|ψ〉. The forward-time evolution operator is thus pro-

vided by the retarded Green function GR(t) = − i
~θ(t) exp(−iHt/~), which is the solution for

the differential equation

[i~∂t −H]GR(t) = δ(t). (2.13)

It is usually more comfortable to work in the Fourier space, going from time to energy domain:

GR(E) = lim
η→0+

∫
dtei(E+iη)t/~GR(t) = lim

η→0+

1

E −H + iη
=:

1

E −H + i0
. (2.14)

In the basis where H is diagonal, GR(E) is diagonal too, so that one can write the spectral

decomposition G(E) =
∑

n |n〉(E − εn)−1〈n|, where |n〉 are the eigenstates of H. The matrix

elements of GR(E) are the so-called “propagators”. As an example, we can write a propagator

in the position representation 〈r|n〉 = ψn(r):

GR(r, r′;E) = 〈r′|GR(E)|r〉 =
∑
n

ψn(r′)ψ∗n(r)

E − εn + i0
= r r' (2.15)

The propagator is a crucial quantity since it contains precious information: its singularities on the

real axis correspond to the spectrum of H, thus encoding all the possible evolution frequencies,

while the residues at these poles provide information about the corresponding eigenfunctions.

We cannot write down analytically the propagators for H, due to the presence of the disorder

term V . Then we start drawing the announced perturbation scheme. We write the Green

function for the free Hamiltonian H0, using the momentum representation where H0 is diagonal:

GR0 (k;E) =
1

E − ε0k + i0
=

k
(2.16)

Then we insert the perturbation due to V . Being G(E) = [E−H0−V ]−1 = [(E−H0)(1− (E−
H0)

−1V )]−1, we can write the Born series in powers of V :

G(E) = [1−G0V ]−1G0 = G0 +G0V G0 +G0V G0V G0 + ... (2.17)
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It is useful to write down the propagators 〈k′|G(E)|k〉 using the graphical representation of

Feynman diagrams:

〈k′|G(E)|k〉 = δkk′
k

+
k k'

+
k k' k''

+ ... (2.18)

Since we are dealing with a disordered potential, we are not interested in the evaluation of

the propagators for each different realization of the potential, but we want to calculate suitable

expectation values. We need therefore to perform the ensemble average of the above quantities

over the disorder distribution. The potential V (r) is completely characterized by its correlation

functions 〈V1〉, 〈V1V2〉, 〈V1V2V3〉, etc., where Vi = V (ri) and the brackets 〈·〉 represent the

ensemble average. We assume that V (r) is statistically homogeneous, so that the correlation

functions only depend on the distance rij = ri−rj . We define the following correlation functions:

〈V1〉 = 〈V 〉 (2.19)

〈V1V2〉 = P (r12) =
1 2

(2.20)

〈V1V2V3〉 = T (r12, r23) =
1 2 3

(2.21)

and so on for arbitrary n-point correlation functions. One may always take 〈V 〉 = 0 by defining

a centered potential V 7→ V − 〈V 〉, while redefining the zero of energy E − 〈V 〉 7→ E. In Fourier

representation the correlation functions above become:

P (q) =

q

, T (q, q′) =

q q'

, etc. (2.22)

The specific form of these general correlation functions depends on the type of disorder in the

system.

Now that we have defined the correlation functions of the disorder, we can go back to the

problem of writing the ensemble average of the single-particle propagator in Eq. 2.18. We find:

〈G〉 = G0 +G0〈V G0V 〉G0 +G0〈V G0V G0V 〉G0 + ... (2.23)

or equivalently

〈G〉 = + + + ... (2.24)

Another quantity typical of diagrammatic expansions comes now to our aid. It is the self-energy

Σ(E), which is defined by the Dyson equation:

〈G〉 = G0 +G0Σ〈G〉. (2.25)
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It worth here to briefly comment about the information encoded in Σ(E) and on its physical

meaning. By iterating the Dyson equation in Eq. 2.25, one finds that the average propagator

〈G〉 expands as

〈G〉 = + Σ + Σ Σ + ... (2.26)

It is visible here that the self-energy contains exactly all disorder correlations that cannot be

completely factorized by removing a free propagator G0 in between. These non-factorizable terms

are called “one-particle irreducible”. Moreover, the self-energy contains only the correlations and

internal propagators, but all the external propagator lines are removed. This makes the self-

energy the simplest object describing all relevant disorder correlations.

Let us try to understand which is the physical meaning of Σ(E). We can rewrite the Dyson

equation and solve it formally for the average operator: 〈G〉 = [1 − G0Σ]−1G0 = [G−10 − Σ]−1.

Its matrix elements are:

〈GR(k,E)〉 =
1

E − ε0k − Σ(k,E)
. (2.27)

Comparing it with Eq. 2.16, we recognize that the self-energy effectively modifies the free

dispersion relation. Generally, Σ(E) is a complex quantity with a real and an imaginary part.

The modified dispersion relation coming from Eq. 2.27

Ek = ε0k + ReΣ(k,Ek) (2.28)

is an implicit equation for the new eigen-energy Ek of the mode k. So one effect of the disorder

is to shift the energy levels. But plane waves with fixed k are no longer proper eigenstates

of the disordered system. This is encoded in the imaginary part of Σ(E). We define Γk =

−2ImΣ(k,Ek). The spectral density is then

A(k,E) = −2Im〈GR(k,E)〉 =
Γk

(E − Ek)2 + Γ2
k/4

. (2.29)

The spectral function is the probability density that an excitation k has energy E. The integral

over k therefore gives the average density of states per unit volume:

N(E) =
1

2π

∫
ddk

(2π)d
A(k,E). (2.30)

Comparing Eq. 2.29 with the spectral function for the free Hamiltonian A0(k,E) = 2πδ(E−ε0k),
one recognizes that the disorder introduces a finite spectral width Γk, which implies a finite

lifetime ~Γ−1k . The finite lifetime translates in turn into a finite scattering mean free path ls for

the spatial matrix elements of the average propagator:

〈G(r − r′, E)〉 =

∫
ddk

(2π)d
eik·(r−r

′)〈G(k,E)〉 = G0(r − r′, E)e−|r
′−r|/2ls , (2.31)

showing an exponential decay with ls = kΓk/(2E) evaluated at k =
√

2mE/~.
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Now that we have introduced most of the relevant tools for our perturbation theory, we

start to approach the heart of the problem. The relevant quantity to describe the transport

of a quantum particle is the density n(r, t). In the case of our disordered system, we consider

the ensemble-averaged density n(r, t) = 〈〈r|ρ(t)|r〉〉 in the long-time limit. This is indeed the

quantity that tells us if the particle is able to spread all over the space or it is confined to a limited

region and thus localized. Substituting the time evolution operators with the corresponding

Green functions, one finds that the relevant quantity to be calculated is the average intensity

propagator 〈GA(E)GR(E′)〉, where GA(E) is the advanced Green function corresponding to

the backward-time evolution. In analogy to the Dyson equation for the average single-particle

propagator (Eq. 2.25), one can write a structurally similar equation for the intensity propagator

Φ = 〈GAGR〉, known as the Bethe-Salpeter equation:

Φ = 〈GA〉〈GR〉+ 〈GA〉〈GR〉UΦ, (2.32)

where the idea is to separate the evolution with the uncorrelated average amplitudes

〈GR(k,E)〉〈GA(k′, E′)〉 =

k

k'

(2.33)

from all the scattering events that couple these amplitudes. All these terms are contained in the

intensity scattering operator U . Its detailed form again depends on the model of disorder. In all

cases, Ukk′(E) is essentially the differential cross-section for scattering from k to k′ and has the

following structure:

U(k, k′;E) =

k

k'k

k'

= + + + + ... (2.34)

From linear response theory one can see that this scattering vertex allow to calculate the transport

mean free path l, in close analogy to the calculation of the scattering mean free path ls from the

self-energy. The ratio between the two length scales is found to be

ls
l

= 1− 〈cos(θ)〉U (2.35)

where θ is the scattering angle between k and k′, and the brackets 〈·〉U indicate an average over

the scattering cross-section U . The physical interpretation of the two length scales l and ls is the

following: the scattering mean free path ls measures the distance over which the particle loses

memory of its initial phase; the transport mean free path l is instead the distance over which

the direction of propagation is randomized.
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Here we are at the final crucial step. We need a quantity that allows to catch the macroscopic

transport properties of a system, i.e. to characterize the expansion of n(r, t). Let us consider

the generic behavior that one may expect for transport in a disordered environment, that is

diffusion. Diffusive transport derives from two very basic hypotheses: 1) the local conservation

law ∂tn+∇ · j = s, with j(r, t) the current density associated with n(r, t) and s(r, t) the source

function; 2) the linear response j = −D∇n, saying that a density gradient induces a current

to reestablish global equilibrium. The diffusion constant D is thus defined as a linear response

coefficient. As immediate consequence of these two conditions, we find the diffusion equation:

[∂t −D∇2]n(r, t) = s(r, t). (2.36)

The solution for a unit source s(r, t) = δ(r)δ(t) is provided in the Fourier space by the Green

function of this problem (also called density relaxation kernel)

Φ0(q, ω) =
1

−iω +Dq2
. (2.37)

By Fourier transforming, one finds that in real space and time

Φ0(r, t) = θ(t)(4πDt)−d/2 exp(−r2/4Dt). (2.38)

The relaxation kernel Φ0(r, t) then describes diffusive spreading with 〈r2〉 = 2dDt.

We have then seen how the description of the dynamics on large distances and for long times

is defined by the diffusion constant D. What we only need to access the transport properties of

the system is then a microscopic theory to calculate D. The idea of SC theory of localization

is to use the diagrammatic perturbation theory presented so far to predict the value of D.

In the following I report how, by taking into consideration the intensity scattering operator

U at different perturbative orders (Eq. 2.34), one can reconstruct classical diffusion and weak

localization, and finally get closer to the Anderson transition for strong disorder by implementing

a self-consistency scheme.

Diffusion

The first order contribution to U in Eq. 2.34 describes a single-scattering process. We switch

to the real space representation in order to better identify the scattering process encoded in it.

The conversion is as follows: we draw a full line for every amplitue ψ propagated by GR (upper

lines in 2.34) and a dashed line for every ψ∗ propagated by GA (lower lines). Impurities are

represented by black dots.

UB :

r

r'

r1 (2.39)

This process is insensitive to phase variations and could just as well take place for classical

particles. So this Boltzmann contribution UB describes classical diffusion with diffusion constant

DB =
vlB
d

(2.40)
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The Boltzmann transport mean free path is calculated by inserting UB in Eq. 2.35. Depending

on the microscopic scattering process, lB can be longer than ls, if forward scattering is dominant

(this is for example the case for matter waves in spatially correlated potentials), or, in the case

of isotropic scattering, one finds ls = lB.

In this first simple case we have verified that the perturbation theory developed above allows

to calculate ls and thus DB in the Boltzmann approximation, i.e. to the first perturbative order,

using only micorscopic ingredients: the dispersion relation in free space and the correlation

function of the scattering potential.

Weak localization

The first corrections to the classical scattering process UB shown in Eq. 2.34 involve one or

more scatterer and several possibilities of intermediate propagation. The most well-known type

of correction stems from the diagram with two crossed lines. In real space, the scattering process

is
r

r1

r2

r'

(2.41)

Here interference comes into play, due to a phase shift ∆φ between ψ and ψ∗, that depends

on the positions of the impurities r1 and r2. Contributions of this type are ensemble-averaged

to zero, apart from those where r = r′. In this case the phase shift picked up by the two

counter-propagating amplitudes goes to zero:

r = r'

r1

r2

(2.42)

The vanishing phase difference implies constructive interference and therefore enhanced proba-

bility to stay at the original position. This holds true for every closed loop, no matter how many

scatterers are visited on the path. One can then consider all maximally crossed diagrams:

UC = + + ... (2.43)

This class of diagrams is usually known with the name of Cooperon contribution. This contribu-

tion is peaked around backscattering k = −k′. One can now introduce a further approximation,

considering that the propagation between successive scattering events is purely diffusive, and sum

up all contributions with the help of the diffusive kernel in Eq. 2.37 to calculate the corrected
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diffusion constant. The weak localization correction is found as

1

D
=

1

DB

[
1 +

1

πN0DB

∫
ddq

(2π)d
1

q2 − i0

]
(2.44)

where N0 is the free density of states. The quantum correction coming from constructive inter-

ference in the closed scattering loops (Cooperon contribution) makes D < DB, thus providing

the microscopic reason for the so-called weak localization.

We consider the d = 3 case and matter waves with dispersion relation ε = ~2k2/2m. Con-

sidering that the Cooperon is isotropic, we can rework Eq. 2.44 and obtain

1

D
=

1

DB

(
1 +

~
πmkDB

∫ ∞
0

q2

q2 − i0
dq

)
. (2.45)

Evaluating the integral with a large-q cutoff at 1/l, we find:

D ≈ DB

(
1− 3

π(kl)2

)
. (2.46)

The correction found here scales as 1/(kl)2. However, this is not the whole story, since other

diagrams, not included in UC , give contributions that are actually more important for small

disorder kl� 1.

From Eq. 2.46 one can derive an approximate criterion for the onset of Anderson localization,

since D → 0 when (kl)c = O(1). This is the well-known Ioffe-Regel criterion for localization.

However, the precise calculation of the critical point is a delicate task, requiring to go further

the simple lowest-order perturbations considered so far.

Self-consistent theory: towards the Anderson transition

The study of weak localization certainly helped us to focus how diffusive transport is affected

by interference. However, weak localization is essentially a perturbative result: first, because

the Cooperon contribution is evaluated considering diffusive propagation, which is strictly valid

only in the absence of interference; second, because this simple approach takes into account only

a specific type of diagrams. A weak-disorder perturbation theory in powers of 1/kl alone would

never be able to describe the Anderson transition in 3D for strong disorder, nor the crossover

from weak to strong localization in 1D and 2D.

The self-consistent theory of localization developed by Vollhardt and Wölfle [21] is an attempt

to go further this first basic approximation, by applying a suitable self-consistency scheme, as

often employed with success to describe phase transitions in statistical physics. Rather then a

theory with controlled approximations, it can be thought of as a guess about the most important

contributions of diagrams to all orders.

The basic observation is that the diffusive contribution of large closed loops considered in UC

must itself be modified by weak localization: inside a large loop the wave explores smaller loops,

leading to a decreased diffusion constant for propagation along the large loop. This argument
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can be repeated, so that one comes to consider loops within loops within loops..., all the way

down to the smallest loops, stopping at the scale of the transport mean free path l.

The simplest idea to implement this is to replace the Boltzmann diffusion constant DB in

Eq. 2.45 with the renormalized diffusion constant D itself, thus generating an implicit equation

for D. It turns out that this is not enough, since the single quantity D cannot describe the full

dynamics of the particle both for short times, where it is diffusive, and for long times where

localization may eventually set in. So the idea is to use a scale-dependent diffusion constant,

and it turns out that it is simpler to consider a dependence on the time scale rather than on the

spatial one. We thus consider a diffusion constant D(ω) which depends on frequency ω. The

self-consistent expression for D(ω) is then derived from Eq. 2.45 replacing DB with D(ω) and

reintroducing the ω dependance:

D(ω) +
~

πmk

∫
q

q2 − (iω/D(ω))
dq = DB. (2.47)

In the short-time limit ω → ∞, one gets back to classical Boltzmann diffusive propagation, as

expected. The most interesting part takes place at long times, in the limit ω → 0. The implicit

equation for D(ω)/DB has different solutions depending on the value of kl:

v if kl < (kl)c =
√

3/π, D/DB tends to a finite value as ω → 0. This means that the system

is in a diffusive regime, but the diffusion constant is reduced with respect to the classical

one.

v if kl > (kl)c, the ratio D/DB → 0 when ω → 0, which means that diffusive transport is

inhibited. More precisely, one finds an exponential localization:

D(ω) ≈ −iωξ2loc with ξloc ∼
1

(kl)c − kl
(2.48)

immediately below the transition point, on the insulating side. This means that the critical

exponent predicted by SC theory is ν = 1, thus different from ν = 1.58 found in numerical

simulations. The reason lies in the approximate character of the self-consistent approach,

which cannot account for the large fluctuations close to the transition.

v at the critical point kl = (kl)c, one find D(ω) ∼ (−iω)1/3. As a consequence, the critical

behavior is anomalous diffusion: 〈r2(t)〉 ∝ t2/3.

Early results of self-consistent theory

It is intrinsic to the perturbative nature of this theory that its results may be not quantitatively

accurate close to the transition. For this reason it is of fundamental interest to compare its

predictions to other reliable results coming from numerics, experiments or controlled theoretical

models. I report here two notable examples which contributed to prove the reliability of SC

theory under certain circumstances.



22 Chapter 2. Anderson localization and the problem of the mobility edge

The first one is a check of the consistency of self-consistent theory results with the predictions

of the scaling theory. In particular, they derived the β-function introduced in Sec. 2.2.1 from

the self-consistent equation for the diffusion coefficient [23]. The results for different values of

d are reported in Fig. 2.6. The visible agreement of the curves obtained here with the ones of

Fig. 2.3 indicates that, when combining scaling arguments with the microscopic description from

SC theory, one gets the same behavior of the system deduced from more qualitative arguments.

This first test thus proves that self-consistent theory is able to reproduce the relevant physical

properties of the disordered systems under consideration.

Figure 2.6 | Consistency of self-consistent and scaling theories. The scaling function β(g) is calculated
starting from the microscopic description of SC theory. The result perfectly matches with the predictions of
scaling theory that were based on qualitative arguments, insensitive to the microscopic details of the system.
Figure from [23].

A second test consists in the comparison with numerical results for the mobility edge. The

same data reported in Fig. 2.5 from [18] are considered. The analytic expression for the phase

boundary separating localized and extended states has been derived using the SC theory applied

to the same Anderson model used in the numerical simulations. The results are shown in Fig.

2.7: the agreement is seen to be very good.

In conclusion, we can say that the contribution of self-consistent theory is to provide a ver-

satile tool to investigate problems related to transport in disordered media. Its specific merit

with respect to pre-existing theoretical approaches is the possibility to incorporate the detailed

characteristics of the system under consideration.
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Figure 2.7 | Numerical and analytical results for the mobility edge in disordered cubic lattice. The phase
diagram showing the metallic (M) and insulating (I) regimes in the tight-binding model with on-site disordered
energies is reported. Black dots are the numerical results, while the solid line comes from self-consistent theory.
The other lines are bounds on the energy spectrum. Figure from [21].

2.3 Experimental investigation of the Anderson transition

2.3.1 Solid state systems

In parallel to theory and numerical simulations, experiments on solid-state systems have tried

to observe and characterize the Anderson transition. A notable example are those performed

on doped semiconductors, where the amount of disorder and the electronic concentration can be

varied within certain ranges. Although a localization transition could be detected unambiguously,

the comparison with theory is quite hard. The reason is that in real electronic systems the

Coulomb interaction plays a major role and definitely changes the localization problem with

respect to the single-electron Anderson picture.

Figure 2.8 shows the experimental mesurement of the conductivity in a Si-doped AlGaAs

crystal as a function of the electron concentration n, which in this case essentially represents

the electronic Fermi energy [19]. A clear metal-insulator transition is observed, since the con-

ductivity is flat around zero for small values of n and at a certain critical value it rises to finite

values, increasing linearly with n. The linear behavior of conductivity above the transition point

indicates a significant deviation from the theoretical predictions about AL. The linear scaling is

indeed compatible with a critical exponent ν ≈ 1, which is different from the exponent of the

pure Anderson transition ν = 1.58, indicating that interaction effects are probably important.

2.3.2 Classical waves

Despite all the intial interest concerning AL was addressed to the problem of disorder in electronic

systems, as it became clear that the role of Coulomb interactions could not be neglected, the
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Figure 2.8 | Localization transition in doped semiconductors. The conductivity σ is measured for a
Si-doped AlGaAs crystal as a function of the electron concentration n. The linear increase of σ take off at a
certain critical value of n, indicating the occurrence of the Anderson transition. The figure is adapted from
[19].

question about other physical systems where the pure AL could be observed started to be raised.

The idea was certainly supported by the formulation of self-consistent theory, which, clarifying

the microscopic mechanism at the basis of AL, pointed out that it was not at all specific of

electronic systems. It was indeed clear that the formulation of self-consistent theory could be

similarly applied both to the case of the Schrödinger equation for quantum particles(
− ~2

2m
∇2 + V (r)− E

)
ψ(r) = 0 (2.49)

or to the wave equation for classical monochromatic waves of frequency ω(
ω2

c2(r)
+∇2

)
ψ(r) = 0, (2.50)

where c(r) is the wave velocity at position r in an inhomogeneous medium, assumed to be a

randomly fluctuating quantity. The main difference between Eqs. 2.49 and 2.50 is that in the

latter the random potential 1/c2(r) is multiplied by ω2, so that disorder is suppressed in the

limit ω → 0. By constrast, in the quantum case disorder will be dominant in the limit of low

energy E. Apart from this and few minor details, the physics of non-interacting quantum wave

packets and classical wave packets is exactly the same.

The great advantage related to classical waves is that they are intrinsically non interacting.

Furthermore, they are usually easy to control at room temperatures and they allow to access
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other physical quantities, in addition to conductance, which are also influenced by the occurrence

of localization, as fluctuations in the field amplitude or long-range correlations. The role of energy

as the critical parameter to distinguish between localized and extended states is here taken over

by frequency. The main drawback in using classical waves is that they do not localize at small

frequencies, so that the experimental conditions where to look for AL have to be carefully chosen.

The typical strategy used to detect the occurrence of AL for classical waves is to study how the

transmission of an incoming wave scales with the system size. In the diffusive regime the intensity

of the output signal is expected to scale linearly with the thickness of the medium, while, in the

localized regime, transmission should decay exponentially with the length. Particular attention

has to be paid to the possibility of absorption in the medium. In the strong scattering regime

where AL occurs, absorption effects are usually strong. The problem concerning the presence of

absorption is mainly due to the fact that it also manifests as an exponential decay of the output

signal with the system size. One then needs to carefully distinguish the two phenomena in order

to unambiguously detect AL.

Starting from the 1990s several experiments trying to detect AL were performed on a rich

variety of systems, ranging from light, microwaves, ultrasound and photonic crystals. Here I will

only present the results of our interest, i.e. the one concerning the Anderson transition in 3D

systems, referring to [24, 25] for a review about the broader context of AL in classical waves.

Detection of the Anderson transition

The detection of the Anderson transition with classical waves hails back to a fairly recent past.

The two experiments I briefly report here have had the great merit to report the first unambigu-

ous observation of pure Anderson transitions. The physical systems employed are ultrasound

and light.

In order to study the localization of ultrasound, in 2008 J. Page, S. Skipetrov and coworkers

employed a 3D elastic network of aluminum beads [26]. At the entrance of the sample they

placed a point-like source of ultrasound energy and they measured the expansion of the elastic

energy in the transverse directions. In diffusive samples the expansion would be proportional

to the square root of time, so that the observation of a transverse confinement of the elastic

energy is the clear signature of sound localization. In Fig. 2.9 is reported the measurement of

the transverse expansion, where a clear deviation from the diffusive behavior can be seen: the

data do not follow the linear increase indicated by the dashed lines but apparently tend to a

saturation at large time. The results are well interpreted by making use of the self-consistent

theory, adapted to the specific parameters of the experimental system. Thanks to comparison

with the theoretical model, the authors were able not only to detect the existence of a localized

regime, but also to deduce the critical parameters of the transition, i.e. the specific value of (kl)c

at which localization occurs.
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Figure 2.9 | Transverse localization of ultrasound in a 3D disordered medium. Time evolution of the
squared width w2

p(t) of the transmitted intensity for two different values of the thickness L of the sample.
Different colors correspond to different transverse displacements of the detector. The curves clearly deviate
from the diffusive linear behavior represented by the dashed lines, which indicates the occurrence of localization.

b c

a

Figure 2.10 | Evidence of localization of light in a 3D disordered medium. In a are reported the raw
data for the transmitted light in a high turbidity sample at three different times (time increases from left to
right). The contours displaying the fit of the intensity distributions help to notice that the width increases
from the first to the second image, but remains constant from the second to the third. This is even more clear
when looking at the plot in c, where, after an initial increase of σ2 with time, the width apparently saturates
to a finite value, differently from what happens in b for a sample with lower turbidity. The different colors in
b and c correspond to different slab thicknesses. The figures are adapted from [27].
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Figure 2.11 | Anderson transition for light. The inverse of the squared localization length is plotted versus
the turbity for different samples. The sudden drop of 1/σ2 to zero around kl ≈ 4.5 indicates the transition to
localization.

The experiment reporting 3D AL of light was performed in 2013 by the group of G. Maret

[27]. There they studied the transmission of light in 3D open, highly scattering TiO2 powders.

In order to study the dependance of the transport properties of light on the amount of disorder

in the system, they vary the turbidity kl of the sample and the slab thickness. Measuring the

width of the transmitted light σ as a function of time (similarly to the the case of ultrasound

reported above), they observe how the system switches from diffusive to localized as the turbidity

is increased (Fig. 2.10). The signature of localization is again the deviation from the diffusive

linear behavior and the appearance of a plateau in the time evolution of the squared width.

The saturation value of σ is taken as the localization length. In Fig. 2.11 they report the

inverse of the localization length as a function of kl, where one can clearly detect the occurence

of the Anderson transition around (kl)c ' 4.5, as the localization length diverges.

For completeness I have to mention that some doubts have been raised about the validity of

these results, concerning the role of inelastic scattering in the system. For a discussion about

this one can refer to [28, 29].

2.3.3 Ultracold atoms

With the advent of laser cooling of atoms, a new type of system to study AL has appeared

on the scene. Since the time of the first BECs in 1995, ultracold atoms had proved to be an

optimum tool to investigate open problems related to quantum systems. For this reason they

immediately appeared an extremely appealing context where AL could be studied under well

controlled conditions.
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Localization in momentum-space

The first experimental investigation of AL with ultracold atoms was performed achieving lo-

calization in momentum space. The idea is to have atoms placed in an optical lattice, which

is modulated in time to produce a quasi-random potential. This is realized by using a train

of short pulses and an additional sine function of incommensurate frequency. This system is

known as the quasi-periodic atomic kicked rotor and realizes a momentum-space analogue of the

Anderson Hamiltonian. The advantage coming from the fact that the measurements are taken

in momentum-space is that one can use very diluted samples, where interactions do not matter.

Changing the number of modulating frequencies it is possible to study AL from 1D to 3D or

even in higher dimensions [30, 31].

a b

Figure 2.12 | Ultracold atoms: the Anderson transition in momentum space. Panel a shows the phase
diagram for the quasi-periodic kicked rotors. The black dashed black line shows the trajectory probed in the
experiment in [32], so that they could measure the critical parameter on a single point of the (K, ε) space. In b
one can observe the different time evolution of 〈p2(t)〉 above (red) at (purple) and below (blue) the transition.
The system goes from diffusive to localized passing through the critical subdiffusive expansion.

Using atomic kicked rotors, it was recently possible to observe the Anderson transition and

to measure the analogue of the mobility edge in the specific parameter space of the system.

The result was published in 2008 and the experimental system consisted in a sample of cold

cesium atoms exposed to a pulsed optical lattice along one spatial direction [32]. The system

Hamiltonian is

H =
p2

2m
+K cosx[1 + ε cos(ω2t) cos(ω3t)]

N−1∑
n=0

δ(t− n) (2.51)

where x is the atom position along the laser axis, p is its momentum, K is the pulse intensity,

ε the modulation amplitude and ω2,3 are incommensurate frequencies. The main parameters

controlling the dynamics of the system are K and ε. The analogue of the mobility edge trajectory

in the disorder-energy plane for localization in real space is here provided by a critical line in

the (K, ε) plane (Fig. 2.12a). In the experiment reported in [32] they probe the Anderson

transition changing the parameters K and ε, so as to move along the dotted line in Fig. 2.12a.

In the localized regime, the evolution of the momentum distribution as a function of the number
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of kicks “freezes” into an exponential curve ∼ exp(−|p|/ploc) after a certain localization time.

In the diffusive regime, the intial Gaussian shape is preserved and its squared width increases

linearly with the number of kicks. In Fig. 2.12b are reported the data taken at different points

on the (K, ε) plane, which clearly show a transition from the localized to the diffusive regime.

Besides providing a measurement of the critical point, the authors also deduce the critical

exponents for the divergence of the localization length below the critical point and for the

vanishing of the diffusion constant above it. They obtain s = ν = 1.6 ± 0.05 which is in

agreement with the numerical result ν = 1.58± 0.01 [17, 10].

Localization in real space

In the past decade, ultracold gases have proved to be an even more interesting tool for the explo-

ration of disorder-related topics, when one let them interact with spatially disordered potentials.

In this case one can realize truly random potentials with almost arbitrary statistical properties,

by properly shaping laser light. Exploiting Feshbach resonances, one can tune the atom-atom

interaction down to the level of creating an ideal gas of independent particles as in the Anderson

Hamiltonian, or use finite attractive or repulsive interactions to investigate the interplay of dis-

order with nonlinearities. What is also extemely appealing is the possibility of imaging directly

the atomic wavefunction. In a study about AL this allows to have direct access to the localized

or extended nature of the atomic states, with no need to deduce it from macroscopic observables

as the conductivity. From a general point of view, ultracold atomic systems in random optical

potentials have all the necessary ingredients to realize the long-awaited quantum simulator of

the original Anderson problem, where non-interacting quantum particles move in a disordered

potential. Such systems could also allow to simulate how the localization problem changes in

presence of interactions, closing the gap with the original problem of disordered electronic sys-

tems.

The first series of experiments with ultracold atoms culminated with the observation of AL

in 1D in 2008 [33, 34]. Since then the attention has shifted to the 2D and 3D problems, which

are more delicate to treat but also much more interesting, since in 3D there is an Anderson

transition between localized and diffusive states, and 2D is the critical dimensionality for the

transition. Two recent experiments in 3D have reported a clear observation of the Anderson

transition, i.e. a dramatic change of the transport properties around a critical energy range

[35, 36, 37]. However, a direct determination of the mobility edge has so far not been possible,

because of an important missing ingredient, i.e. the capability to control and measure the energy

distributions. The experiment reported in this thesis was designed to fill this gap and, through

a simultaneous control of the energy distributions of both disorder and atoms, provide the first

experimental measurement of the mobility edge in atomic systems.

The two previous experiments on cold atoms in 3D disorder mentioned above have been the

first significant results in this context, and have surely inspired the work I am going to present.
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It is therefore mandatory for me to briefly report here the main results they achieved.

a b

c

d

e

Figure 2.13 | 3D Anderson localization of cold atoms: experiment by the Urbana-Champaign group.
In a,b,c is showed the dynamics of a localized sample. a and b are the density profiles at different times
(increasing from black to red to blue) along two spatial directions. In c is the time evolution of the fitted
widths, showing a flattening with respect to the classical evolution (solid lines). In d are the data of the
localized fraction as a function of the disorder strengths ∆ for different temperatures (decreasing from blue
to red). Finally, in e is the plot of the mobility edge deduced from d versus the disorder strength ∆. Figures
from [35].

The first experiment was performed in Urbana-Champaign by the group of B. DeMarco [35].

They use fermionic 40K atoms in a single tightly focused speckle beam creating a repulsive

disordered potential. They probe the localized/diffusive nature of the atoms by imaging the

density profiles after the gas has expanded for a variable time in the speckle potential. For every

finite value of the disorder strength ∆ they observe double-component profiles, where a fraction

of the atoms expand according to a diffusive behavior, while the rest of the atoms get localized by

disorder. Using a heuristic fit of the experimental profiles to separate the two components, they

reconstruct the localized fraction for different values of the disorder strength and of the initial

temperature. The mobility edge is hence deduced from the measured localized fractions assuming

that the energy distribution of the atoms is not affected by the disordered potential, thus simply

considering the thermal distribution they had before switching on the speckle potential. The

results are reported in Fig. 2.13. They find that the mobility edge increases with ∆ according to

Ec ∝ ∆0.59±0.02. For completeness, I must say that there are several doubts about the validity

of these results [38, 39]. They concern in particular: 1) the waiting times used to observe

localization, which seem too short to allow a proper distinction between localized and extended

states, probably leading to an overestimation of the localized fraction; 2) the assumption that the
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switching on of the disordered potential does not perturb the atomic energy distribution. The

two raised concerns are so significant that they can compromise the validity of the results. For

this reason the conclusions reported in [35] about the position of the mobility edge are usually

not considered as a conclusive result.

a b

Figure 2.14 | 3D Anderson localization of cold atoms: experiment by the Palaiseau group. In a
the time evolution of the squared width along two spatial directions (red and blue) for two different disorder
strengths. The diffusion coefficients deduced from the linear fits (solid lines) are reported in b. D decreases
for increasing disorder strengths, finally reaching values of the order of the quantum limit ~/3m.

The second experiment was performed in Palaiseau by the group of A. Aspect and V. Josse

[36]. They use bosonic atoms of 87Rb placed inside an optical disordered potential, realized by

means of two coherent speckle beams. Also in this case they study the expansion of the cloud in

the speckle potential for different values of the disorder strength. For sufficiently high disorder

strengths they observe a double-component behavior in the time evolution of the density profiles.

A steady localized part is the replica of the initial profile at all times, while a diffusive fraction

continues to evolve. The localized fraction is obtained as the asymptotic limit for t → ∞ of

n(0, 0, t)/ni(0, 0), that is the ratio of the central peak amplitude at time t over the initial one.

The maximum localized fraction they find is 22%. The experimental results are compared with a

self-consistent theory calculated for the specific parameters of the experimental setup. They find

a qualitative agreement between the two, but a quantitative agreement is restored only by adding

a heuristic shift to the energy distribution obtained by simulating the experimental procedure to

switch on the disorder. In the absence of an independent determination of the energy distribution

they could not provide any estimation for the mobility edge. This second experiment is performed

under well controlled experimental conditions and reports a careful analysis of the data, which

allows to clearly demonstrate the occurrence of the Anderson transition.

2.4 In summary: results and open quetions about the mobility edge

In the path traced so far I have tried to recall, among the many studies performed about Anderson

localization, those results that are most significant to better understand and appreciate the
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experiment reported in this thesis. Let us briefly summarize which are the questions about

the Anderson transition that have been fully or partially understood and those which are still

considered open problems.

From the formulation of the scaling theory we have clearly focused the role of dimensionality

in AL. For d ≤ 2 there exists no metallic regime, so that whatever small amount of disorder

in the system causes localization. In 1D and 2D there is no Anderson transition and the only

effect of an increasing particle energy is a weakening of the localization (the localization length

increases with the energy). On the contrary, in 3D the system can be found to be a metal or

an insulator. The two phases are separated by a second-order quantum phase transition, which

occurs at a critical energy, the mobility edge, whose value depends on the disorder strength.

The critical behavior at the transition is characterized by two critical exponents, defining the

divergence of the localization length below the mobility edge and the vanishing of the diffusion

constant above it. The two critical exponents, which are equal for d = 3, have been predicted

by numerical simulations and measured in kicked-rotors experiments.

What is still to be investigated is the occurrence of AL in the critical dimension d = 2.

Experimental results about it are still few. Some of the open questions in this context concern

how the phase diagram changes when time-reversal symmetry is broken and how the Anderson

transition emerges at d = 2 + ε. Further investigations are also required about the universality

of critical exponents in 3D, in order to verify if they are affected or not by the specific statistical

properties of the disorder potential.

The main issue always remains the position of the mobility edge. Some results have been

obtained, but a full assessment of the problem is still missing. Experiments performed with

classical waves and atomic kicked rotors have confirmed the qualitative Ioffe-Regel criterion for

localization and have measured the critical parameters in a single point of the relative phase

diagrams. Theoretical calculations have provided reliable predictions for the mobility edge in

the Anderson model but these results could not be tested in any experimental system, since

it does not fit with the realistic conditions of electrons in solids. Several improvements have

been recently obtained with numerics and perturbative approaches to locate the threshold for

realistic experimental conditions, e.g. for ultracold atoms in optical random potentials. These

predictions anyway need a confirmation from experiments, since the effect of the finite size in

numerical simulations and of approximations in the perturbative theories need to be verified.

Recent investigations on ultracold atomic systems in 3D disorder have provided evidence of the

Anderson transition. The experiment I am going to present has been designed to have the

suitable control on the system parameters to allow a deep characterization of the full 3D phase

diagram. I will then show how it allowed to probe the localization threshold on a broad range of

disorder strengths so as to provide the first experimental characterization of the mobility edge

trajectory in the disorder-energy plane.
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In the Introduction of this thesis I anticipated that the principal resource of this work is the use

of an atomic Bose-Einstein condensate (BEC). In the last part of the previous chapter I also

showed that the most promising results in the recent research about Anderson localization have

been obtained in the context of quantum gases. In this chapter I will then present the atomic

system used in the experiments of this thesis, introducing the peculiar properties that make it

suited for a study about AL and describing the experimental apparatus to produce it.

In order to understand the relevance that cold atoms have had, and still can have, in the study

of disorder-related phenomena, it can be useful to briefly mention their importance from a more

33
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general point of view. Few years after the first realization of atomic BECs, the Nobel laureate

W. Ketterle defined ultracold atomic systems as “a new window into the quantum world” [40]:

this statement has certainly been proved in the following twenty years. Ultracold gases indeed

offer an unprecedented possibility to study quantum phenomena. This is related: 1) to the high

degree of controllability on the relevant physical parameters: one can have either fermions or

bosons by properly choosing the atomic species, choose the dimensionality of the system, tune

the mutual interactions, control the temperature and arrange the shape and the intensity of

the external potentials; 2) to the detection possibilities: from the first and simplest imaging

techniques that allow to directly access the atomic distributions to the latest single-particle

detection; 3) to the various and extreme regimes that can be reached in this ‘artificial’ systems.

It is then clear that the coexistence of such peculiar properties makes ultracold gases a unique

investigation tool. The research presented in this thesis takes advantage of this, to study the

problem of Anderson localization. I find that the use of cold atoms in this research field is a clear

example of what just said. Anderson localization can indeed be considered as one of the simplest

quantum phenomena, since it relies on few essential ingredients: waves and disorder. This is

apparent in the ubiquity of the phenomenon, which is found wherever these two are present.

Nonetheless they are usually mixed up with other elements, as Coulomb interactions for the

electrons in solids or absorption effects for light in random media. In this context quantum

gases offer their contribution, by allowing to simplify the problem: one can indeed dispose of

non-interacting atoms in a random potential, nothing more. Even more interestingly, cold atoms

allow to gradually reintroduce those “undesired” effects to study how they perturb the simplest

Anderson picture and reproduce the realistic conditions in common materials.

Now that it is clear why to approach ultracold atoms in order to study AL, let us consider the

specific case of our interest. For the study we want to carry out, the choice of the atomic species

is ditacted by a main requirement: we need to control the atomic interactions. For this reason

we decided to employ potassium-39, since it displays convenient magnetic Feshbach resonances

that allow to achieve the purpose. It is a bosonic sample which is cooled down to quantum

degeneracy and loaded in a random potential. In this chapter I will present the experimental

setup for the production of BECs (for a detailed description see Refs. [41, 42, 43]), while the

disordered potential is presented in details in Chapter 4.

Here I first recall the essential concepts related to Bose-Einstein condensation and to cooling

and manipulation of ultracold atoms (Sec. 3.1). In Sec. 3.2 I introduce the main properties

of 39K which are relevant to our study. In Secs. 3.3 and 3.4 I describe the apparatus and the

experimental sequence used to produce the BEC. Finally in Sec. 3.5 I introduce the imaging

techniques used to detect the atoms.

3.1 Quantum degeneracy and manipulation of neutral atoms: basic concepts

In order to present the setup used to produce our 39K BEC, it is useful to recall the main

concepts underlying Bose-Einstein condensation and the techniques to cool and trap the atoms.
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3.1.1 Bose-Einstein condensation

Bose-Einstein condensation corresponds to a macroscopic occupation of bosonic particles in the

lowest energy state of a quantum system. This condition is achieved when atoms are cooled

below a certain critical temperature Tc. Atoms at a temperature T and with mass m can be

regarded as quantum-mechanical wavepackets that have a spatial extent on the order of the

thermal de Broglie wavelength

λdB(T ) =

√
2π~2
mkBT

. (3.1)

The value of λdB is the position uncertainty associated with the thermal momentum distibution

and increases with decreasing temperature. In a sample with atomic density n, when atoms are

cooled to the point where λdB is comparable to the interatomic separation, that is when the

phase-space density nλ3dB ' 1, the atomic wavepackets overlap and the gas starts to become

a ‘quantum soup’ of indistinguishable particles. Bosonic atoms undergo a quantum-mechanical

phase transition and form a Bose-Einstein condensate, a cloud of atoms all occupying the same

quantum mechanical state.

In cold atoms experiments, Bose-Einstein condensation is typically obtained with atoms held

in a harmonic trap. In this case the phase-space density is given by

nλ3dB =

(
~ω
kB

)3 N

T 3
(3.2)

where ω is the geometric average of the trapping frequencies along the three spatial directions

and N is the atom number. The condition for condensation nλ3dB ' 1 is then equivalent to

Tc '
~ω
kb
N1/3. (3.3)

In the regime where BE condensation occurs, the system reaches densities high enough to make

two-body collisions non-negligible. It is then necessary to take into account atom interactions

to properly describe the system. In the case of cold dilute gases the interaction problem can

be treated with a mean-field description, so that Vint(r) = g · n(r). The coupling constant g is

defined by a single parameter, the scattering length a, which describes the effective size of the

atom for s-wave scattering: g = 4π~2
m a [44].

The evolution of the wavefunction ψ(r, t) for a weakly interacing condensate with N atoms in

an external potential V (r) is governed by the time-dependent Gross-Pitaevskii equation (GPE):

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + V (r) + g|ψ(r, t)|2

]
ψ(r, t). (3.4)

This equation simplifies by considering the stationary regime, where the wavefunction is written

as ψ(r, t) = φ0(r)e−iµt/~, with µ the condensate chemical potential, which describes the increase

of the total energy by adding an atom to the condensate. The stationary GPE becomes[
− ~2

2m
∇2 + V (r) + g|φ0(r)|2

]
φ0(r) = µφ0(r). (3.5)
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The terms in the square brackets corresponds, from left to right, to the kinetic energy of the

condensate, to its potential energy and to the interaction energy.

When the atom number is large, the interaction energy dominates, so that we can neglect

the kinetic term to solve the GPE. This is the so-called Thomas-Fermi regime, where Eq. 3.5

becomes an algebraic equation from which we get the condensate density distribution

n0(r) = |ψ0(r)|2 =
1

g
[µ− V (r)] (3.6)

valid for µ > V (r). Considering the harmonic trapping potential used to hold the atoms, we

find that the BEC density distribution assumes the shape of an inverted parabola

n0(r) =
µ

g

1−
∑

i=x,y,z

(
i

rTFi

) (3.7)

where

rTFi =

√
2µ

mω2
i

(3.8)

is the Thomas-Fermi radius in the i direction.

The Thomas- Fermi description usually holds in the typical situations of atomic BECs. It is

also the case of our experiment, where we use finite repulsive interaction to increase the efficiency

of the cooling sequence to quantum degeneracy.

I have then introduced the basic idea of Bose-Einstein condensation, defining the critical

condition for its occurrence in usual experimental situations and the effect of weak interactions

on the condensate wavefunction. It is now interesting to consider which are the typical regimes

of temperature and spatial density we want to achieve, in order to understand the constraints

we deal with and the experimental techniques that need to be implemented.

For a normal gas at room temperature and atmospheric pressure, the de Broglie wavelength

of the atoms is smaller than the atomic radius and the phase-space density of the gas is around

10−7: this is our starting point. We have then to consider how to increase the phase-space

density to reach condensation. The first consideration to do concerns with the atomic density.

The BEC transition occurs in a region of the phase diagram in which the equilibrium state of

matter is a solid. This means that all BECs are metastable states, the solid state being the

real ground state of the system. The first process that leads to solidification is the one in which

three atoms collide, two of them forming a molecule and the third ensuring the conservation of

momentum. The energy gained from the molecule formation is converted into kinetic energy,

leading to the loss of all three atoms from the trap: this phenomenon is hence called three-body

loss. If the sample is dilute the probability of finding three atoms close enough to determine

such a loss is negligible and the lifetime of the BEC can be long. This fact gives us a limit to the

density we can achieve in the system, if we want to avoid losses: this value is set around 1014

atoms/cm3, which corresponds to a 10 s lifetime for the condensate. This also means that there
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is a maximum value for the transition critical temperature: at this density, no BEC will appear

as long as temperature is higher than 100 nK. There is then a long way from room temperature

to Tc.

Another fact to be considered in the design of the experiment is that the atoms must be

thermally isolated from all materials walls. This is done by trapping atoms with magnetic fields

or with laser light inside ultrahigh vacuum chambers. Such traps can store atoms for seconds or

even minutes, which is enough time to cool and manipulate them. Pre-cooling is a prerequisite

for trapping, because conservative atom traps can only confine neutral atoms with a maximum

energy of one kelvin at best (in our specific case the trap depth is just a few millikelvin).

In the following I will then recall the main concepts relative to the interaction of atoms with

light and magnetic fields. These are indeed necessary for cooling, trapping and also for tuning

inter-atomic interactions via Feshbach resonances.

3.1.2 Atom-light interaction

The first phenomenon that is crucial for the manipulation of neutral atoms is the interaction

exerted by laser light on matter [45]. This is relevant both in the cooling process and in the

production of conservative potentials. The mechanical effects that light produces on the atom

are due to the coupling of the electric dipole of the atom with the electric fields of light and

vacuum. The atom is submitted to a force that is the sum of a dissipative term, the so-called

radiation pressure, and a conservative one, the dipole force. The dissipative term is at the origin

of laser cooling, while the conservative term is used to produce arbitrary potentials for the atoms.

We can understand these two effects by thinking of the atom as a two-level system, with

a transition frequency ω0/2π and lifetime of the excited state Γ−1. Considering a laser with

wavelength λL, frequency ωL/2π and intensity I(r), we can define the generalized detuning of

the laser to the atomic resonance as

δ̄ =

(
1

ω0 − ωL
+

1

ω0 + ωL

)−1
(3.9)

Radiation pressure

A laser propagating towards the atom changes the atomic momentum by ~kL at each absorption

of a photon, due to momentum conservation. Once excited, the atom emits the photon at a rate

Γsc =
Γ

2

s(r)

1 + s(r)
, (3.10)

where s(r) is the saturation parameter

s(r) =
I(r)/Isat

1 + 4δ̄2/Γ2
(3.11)
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and Isat is the saturation intensity. As the photon is emitted in a random direction, the repeated

absorption of photons results in a dissipative force along the direction of the laser beam with

intensity

Frp(r) =
~kLΓ

2

s(r)

1 + s(r)
. (3.12)

The optimal condition to have strong radiation pressure is to have the laser on resonance with

the atomic transition so as to enhance the probability of photon absorption.

Dipole force

The so-called dipole force is related to a spatial variation of the light amplitude. The origin of

this effect lies in the shift induced by light on the energy levels of the atom. The gradient of

this energy shift, due to a gradient in the light intensity, is then felt by the atoms as a force. If

the laser is red-detuned with respect to the atomic transition, ωL < ω0, the atom is attracted to

the region of highest intensity, where the light shift provides the lowest energy state. In the case

of blue-detuning, ωL > ω0, the atom is instead repelled from the high intensity regions. This

means that red/blue-detuned light corresponds to attractive or repulsive forces respectively.

This type of force is a conservative one and can thus be expressed in terms of a dipole

potential

Vdip(r) = −3πc2

2ω2
0

Γ

δ̄
I(r). (3.13)

The dipole force exerted by light is of fundamental importance, since it offers the opportunity

to design conservative potentials for the atoms, simply proportional to the light intensity. In our

experiment it is used both to trap the atoms during the last part of the cooling sequence (Sec.

3.3.3) and to produce a disordered potential for the atoms (see Chapter 4).

3.1.3 Laser cooling

The basic idea of laser cooling is to exploit the radiation pressure of Eq. 3.12 to slow down, and

hence cool, the atoms in a gas. Consider a laser beam red-detuned with respect to the atomic

transition. The Doppler effect enhances the absorption of light by atoms moving opposite to

the laser propagation, for which the light is shifted up and hence closer to resonance. Photon

absorption corresponds to a transfer of momentum ~kL opposite to the initial atom velocity,

so that atoms moving towards the laser source experience a friction force that effectively slow

them down. In order to have cooling along all three spatial directions, one has then to use three

pairs of counter propagating beams along the three axes. This cooling technique is called optical

molasses. The limit in the cooling power of this strategy is related to the re-emission processes

mentioned above (Eq. 3.10). They do not contribute to the mean atom velocity because they

occur in random directions, but they generate a random walk in momentum space that results

in a minimum attainable temperature, the so-called Doppler temperature kBTD = ~Γ/2. This

minimum value is reached for a detuning δ = Γ/2.
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A further development of this cooling technique allows to simultaneously cool and trap the

atoms: it is the so-called magneto-optical trap (MOT). The arrangement of laser beams is the

same as in the optical molasses and a quadrupole magnetic field is used to provide the additional

trapping. The Zeeman shift induced by the presence of the magnetic field on the atomic energy

levels increases with the radial distance from the centre of the trap. This implies that, for an

atom moving away from the centre, the atomic resonance is shifted closer to the laser frequency,

enhancing the probability of absorbing a photon that kicks the atom towards the centre of the

trap. The atoms are then cooled and collected at the centre of the quadrupole field.

3.1.4 Magnetic trapping

Aside from optical dipole traps which exploit the conservative potential generated by suitably de-

tuned laser light (Sec. 3.1.2), atomic traps can be realized by taking advantage of the interaction

of atoms with magnetic fields.

Consider an atom with a finite magnetic moment µ. When it is placed in a magnetic field

B(r), the field induces a shift on its energy levels provided by

∆E(r) = −µ ·B(r). (3.14)

According to the sign of µ, the atoms can be low-field seekers if the lowest energy levels are those

at the lowest magnetic field, or high-field seekers in the opposite case. Low-field seeker states can

then be trapped in the minimum of a suitable spatially varying magnetic field. It is for examble

the case of a quadrupole magnetic field generated by coils in anti-Helmholtz configuration, i.e.

with current flowing in opposite directions in Helmholtz coils. This technique is used in our

experiment to confine the atoms in the first stages of the cooling sequence (see Sec. 3.4).

3.1.5 Evaporative cooling

Laser cooling techniques introduced above (Sec. 3.1.3) typically allow to reach temperatures of

few hundreds of µK. The additional cooling strategy to reach BEC is provided by evaporative

cooling [46].

Evaporative cooling is done by continuously removing the high energy tail of the thermal

distribution from the trap. The evaporated atoms carry away more than the average energy,

which means that the temperature of the remaining atoms decreases. The high energy tail must

be constantly repopulated by collisions, thus maintaining thermal equilibrium and sustaining

the cooling process. The atoms remaining in the trap have much lower average energy and so

they occupy a smaller volume near the bottom of the trap, thereby increasing their density. For

trapped atoms (either in optical or magnetic traps), this process can be achieved by lowering

the depth of the trap, thereby allowing the atoms with energies higher than the trap depth to

escape. Since both the temperature and the volume decrease, the phase-space density increases,

finally leading to BE condensation.
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3.1.6 Feshbach resonances

At the beginning of this chapter I mentioned that the main reason underlying our choice for the

atomic species to use is the possibility to control the interatomic interactions. I conclude this

brief overview about the theory related to cold atoms experiments by introducing the physical

phenomenon at the origin of the tunability of interactions. This opportunity is provided by

magnetic Feshbach resonances, which allow to change the scattering length a by applying a

uniform magnetic field. I report here a simple intuitive idea of the origin of Feshbach resonances,

referring the reader to [47] for a detailed description.

A Feshbach resonance is a scattering resonance that occurs when two free scattering atoms

can couple to a bound state during the scattering process. The atoms scatter in the so-called open

channel, which corresponds to a certain spin configuration. For a different spin configuration,

called the closed channel, there is a bound molecular state close to the scattering continuum. Due

to energy conservation, the atoms cannot enter the closed channel, which has a larger continuum

energy. However, when the energy difference ∆E between the incident energy and the bound

state becomes small, they can couple to that state during the scattering process. For ∆E → 0,

the scattering length diverges. It is positive when the bound state lies below the scattering

continuum, and negative when it lies above. If there is a difference ∆µ in the magnetic moments

of the two channels, ∆E and thus a can be tuned with the help of a homogeneous magnetic field.

The resulting dependence of a on the field B can be modeled by

a(B) = abg

(
1− ∆

B −B0

)
(3.15)

where abg is the background scattering length in absence of coupling with the molecular state,

B0 is the center of the resonance and ∆ is the width of the resonance, defined as ∆ = B0 −Bzc
with Bzc the field at which the scattering length vanishes. In proximity of the zero-crossing

B ≈ Bzc , the behavior of a(B) is approximately linear, according to

a(B) ∼
abg
∆

(B −B0). (3.16)

In our experiment Feshbach resonances are exploited for two main reasons: during the cool-

ing sequence, and in particular during the evaporative cooling, they are used to increase the

collisional rate and improve the evaporation efficiency, while, in the last part of the experimental

sequence they are used to achieve a desired interaction strength according to the experiment we

want to perform.

3.2 Potassium-39

Most of the existing quantum gases experiments make use of alkali atoms. The main reason

for this lies in their optical properties. They indeed have closed transitions with strong dipole

moments in a convenient spectral range (visible or near infrared), so that they can be easily
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manipulated with laser light. In addition to this, they display strong enough magnetic moments,

of the order of a Bohr magneton, which allows a good coupling with magnetic fields.

Potassium belongs to this class of atoms. In this experiment we use the most naturally

abundant of its bosonic isotopes, i.e. 39K. The optical properties of this atomic species are

analogous to those of all the alkalis, while its peculiarity lies in the scattering properties. It

indeed presents many convenient Feshbach resonances at easily accessible magnetic fields, which

allows to tune the strength of the contact interactions at will.

3.2.1 Optical properties

In Fig. 3.1 I report the relevant hyperfine structure of 39K. The 2S1/2 ground state has two sub-

levels, which are labeled by the value of the total angular momentum F = 1, 2. The strongest

spectral lines of the ground state are the D1 (2S1/2 → 2P1/2) and D2 (2S1/2 → 2P3/2) lines.

Among these, the D2 line is the one with the strongest dipole moment and is therefore the most

suitable for cooling. Its natural line width is Γ2/2π = 6.035(11) MHz. The Doppler temperature

associated to this line is TD = 145µK and its saturation intensity is 1.75 mW/cm2.
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Figure 3.1 | Optical transitions. I report the relevant atomic levels and the corresponding spectral lines of
39K. In red and blue are highlighted the transitions exploited for cooling.

The narrow hyperfine structure of the excited level causes strong out of resonance transitions

and thus prevents the use of a single frequency for cooling, which would result in a fast accumula-
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tion of atoms in the uncoupled ground state. For this reason we also exploit the F = 1→ F ′ = 2

transition to repump the atoms out of the F = 1 state.

3.2.2 Zeeman sublevels

In presence of a static magnetic field, the Zeeman effect causes a splitting of the atomic energy

levels which depends on the field strength. In Fig. 3.2 I report the structure of these sublevels

for the F = 1 and F = 2 manifolds, which is important both for magnetic trapping and for the

implementation of radio-frequency transitions among different hyperfine states. Note that, at

low field, the only low-field seeker state in the F = 1 manifold is mF = −1.

Figure 3.2 | Magnetic field dependence of the hyperfine states of the 2S1/2 ground state. The energy
levels are labeled by their quantum numbers |F,mF 〉 at low field B, where the level splitting is well described
by the Zeeman effect. For fields higher than 50 G a partial Paschen-Back picture would be more appropriate.

3.2.3 Scattering properties

The natural scattering length of 39K is −30 a0, where a0 is the Bohr radius. Such a small

and negative scattering length would normally prevent to reach Bose-Einstein condensation.

The interesting property of 39K is that it displays a number of magnetic Feshbach resonances

that allow to tune the scattering length under achievable experimental conditions. The good

properties of a Feshbach resonance for a fine tuning of the scattering length are a small abg and

a large ∆B.

The main resonances of 39K relative to the Zeeman sublevels of the groundstates have been

detected in [48] and are listed in Table 3.1. In Fig. 3.3 I report the behavior of a(B) for the

Feshbach resonance which is most relevant for our experiment, i.e. the one for the mF = 1 state

centered at B0 = 403.4 G.
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mF1
, mF2

B0(G) −∆B(G) abg(a0)

+1, +1 25.85 ± 0.1 0.47 -33
403.4 ± 0.7 52 -29

(745.1) 0.4 -35
752.3 ± 0.1 0.4 -35

0, 0 59.3 ± 0.6 9.6 -18
66.0 ± 0.9 7.9 -18

(471) 72 -28
(490) 5 -28
(825) 0.032 -36
(832) 0.52 -36

-1, -1 32.6 ± 1.5 -55 -19
162.8 ± 0.9 37 -19
562.2 ± 1.5 56 -29

Table 3.1 | Feshbach resonances for 39K. Numbers in brackets correspond to theoretical predictions. All
values are taken from [48].
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Figure 3.3 | Example of a broad Feshbach resonance of 39K. Magnetic field dependance of the scattering
length for the mF = 1 state close to the Feshbach resonance centered at 403.4 G.

3.3 Experimental apparatus

Quantum degeneracy is reached via three successive cooling stages performed in three different

vacuum chambers. The basic structure of the experimental apparatus is reported in Fig. 3.4.

In the first chamber the atoms are collected from the background gas into a two-dimensional

magneto-optical (2D MOT) trap. An atomic beam is then pushed in the following chamber,

where the atoms are loaded in a three-dimensional magneto-optical (3D MOT) trap and cooled

to sub-Doppler temperatures. The atoms are then transferred to a magnetic trap which is

moved, thanks to a motorized translation stage, to the final science chamber. There the sample

is loaded into a dipole trap, where we perform evaporative cooling. During this last cooling

stage we exploit the Feshbach resonances of 39K, in order to increase the elastic collisional rate
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Figure 3.4 | Scheme of the experimental apparatus. Top view of the three vacuum chambers, with related
vacuum pumps. The cooling laser beams on the horizontal plane are indicated by red arrows, while the main
trasport stages are reported in green.
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and optimize the efficiency of the cooling process, which finally leads to BEC. In the rest of this

Section, I will describe the main parts of the experimental apparatus, i.e. the vacuum chambers,

the lasers for cooling and trapping the atoms and the magnetic field coils. The experimental

procedure to reach BEC is described in details in Sec. 3.4.

3.3.1 Vacuum chambers

The basic scheme of the experimental apparatus was designed according to two main require-

ments: a long lifetime and a good optical access onto the atoms in the final science chamber.

To this purpose the experiment was built with three different vacuum chambers, each connec-

tion between adjacent cells hosting a differential pumping stage that reduces the pressure and

increases the lifetime of the atomic sample.

In the 2D MOT chamber we use an ion pump that achieves an effective pumping speed at the

chamber of 6.8 l/s. During normal operation, the vapor pressure of potassium is anyway limited

by the fact that we continuously release potassium in the chamber, either by using current-driven

dispensers or by heating up a solid sample. The estimated pressure there is p ≈ 10−8 mbar.

In the 3D MOT chamber a second ion pump achieves an effective pumping speed of 17 l/s.

Considering the leading contributions to the outgassing rate, we estimate an attainable pressure

of p ≈ 7 × 10−10 mbar. This pressure is compatible with the measured lifetime of the atomic

sample which is around 3-4 s.

The last pumping stage is achieved thanks to the combined action of an ion pump and a

titanium sublimation pump. Considering the pumping speed at the science chamber and the

outgassing rate of the glass composing the cell, we get an achievable pressure of 10−11 mbar.

Due to the small section of the glass pipe, the pumping speed at the final position of the atoms

is quite low, of the order of 5 l/s. Our strategy consists in achieving a high pumping speed

at the conjuction of the glass pipe to the main body of the vacuum system, i.e. to realize a

high differential vacuum with respect to the previous chamber. This strategy relies on the low

outgassing rate of the materials employed in the final part of the apparatus. The measured

lifetime of the atoms in the science chamber confirms the validity of this approach: atoms held

by the quadrupole magnetic trap have a lifetime of about 80 s.

A good optical access in the science chamber is granted by the shape of the glass cell and

by the absence of MOT beams, which allows to position a large number of additional trapping

beams on the atoms.

3.3.2 Cooling laser system

Laser light for both the 2D and the 3D MOT is derived from a single master laser, a Toptica DL

Pro 780, which is very stable but provides only 50 mW at our working wavelength. The laser is

then amplified by four Master Oscillator Power Amplifiers (MOPAs).

The laser wavelength is locked on the atomic resonance by performing modulation transfer

spectroscopy. The cooling and repumping light frequencies of Fig. 3.1 are then obtained from
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the same source light, using acousto-optical modulators (AOMs) in double-pass configuration to

get the desired 460 MHz shift.

A scheme of the laser setup for cooling light is reported in Fig. 3.5.
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Figure 3.5 | Scheme of the optical setup for the production of cooling light. The light used in the 2D
and 3D MOTs is derived from the same laser source, which is locked to the atomic resonance, amplified by
four MOPAs and tuned to the proper cooling (red) and repumping (blue) wavelengths by means of double-pass
AOMs. Both wavelengths are collected in two separate optical fibers that bring light to the 2D and the 3D
MOTs.

3.3.3 Laser light for dipole potentials

As I introduced in Sec. 3.1.2, red/blue-detuned laser light provides an attractive/repulsive

potential for the atoms, proportional to its intensity profile according to Eq. 3.13. In the

experimental procedure to produce atomic BECs, we use two red-detuned laser beams to create

a crossed optical dipole trap to confine the atoms. In the final phase of the experiment, we use

instead blue-detuned laser light to produce a disordered potential. I present here the three laser

sources used for these purposes.
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Main dipole trap

The main trapping beam enters the cell on the horizontal plane at an angle of 45◦ with respect

to the longitudinal axis of the cell (see Fig. 3.6). It is derived from a IPG-photonics YLR-100-

LP-AC ytterbium fiber laser. This laser can provide up to 100 W of laser power at a central

wavelength λ = 1064 nm, with an emission linewidth of 2 nm. We typically operate this laser

at around 30 W output power, since at higher power we observe strong photo-association losses

caused by the wide emission of the laser. Its spectrum largely exceeds the hyperfine splitting of

the ground state. For this reason, Raman transitions, in which a photon is absorbed from one

beam and emitted into the other, are allowed and can lead to heating of the sample.

The laser is coupled into an AOM for power control, sent to a system of lenses and focused

onto the atoms. It is used to capture the atomic cloud from the quadrupole trap and to perform

most of the evaporative cooling (see Sec. 3.4).

Vertical dipole trap

The second dipole trap is aligned on the vertical direction and placed such that its focus is nearly

superimposed to that of the major horizontal trap (see Fig. 3.6). It is generated from a Nufern

ytterbium fiber amplifier seeded by an Innolight Mephisto S S200 NE. The amplifier can provide

up to 10 W laser power. It is used in the final part of the evaporation in order to produce the

BEC in a crossed dipole trap, tightly confined along all directions (see Sec. 3.4). It is also left

on during the whole experimental sequence, but at lower intensity, to compensate for a spurious

magnetic gradient (see Sec. 3.3.5).

Disordered optical potential

The laser used to produce a random potential for the atoms is a home-made Ti-Sa. Its main

advantage consists in the tunability of the wavelength between 740 and 860 nm. This allows

in principle to detune it both on the red and on the blue side of the atomic transition, so as

to vary both the intensity and the statistics of the disordered potential. In the experiments

reported in this thesis we normally use it at λ = 762 nm. All the details about the design and

characterization of the disordered potential can be found in Chapter 4.

3.3.4 Magnetic field coils

Several magnetic field coils are used in the experiment. Most of them are used to provide a

confining potential for the atoms, apart from the coils that produce the so-called “Feshbach

field”, i.e. the uniform field used to tune the interaction strength. Here I will briefly summarize

the main magnetic field coils used and the properties of the fields they generate.
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Figure 3.6 | Spatial arrangement of the dipole potentials onto the atoms. The main dipole trap produced
by the IPG laser beam is placed horizontally and enters the cell at an angle of 45◦. The additional dipole trap
is disposed vertically, so as to confine the atoms also along the longitudinal direction of the IPG beam, where
it provides only a weak curvature. The two speckle beams enter the cell on the horizontal plane at an angle
of 90◦ one with respect to the other. The position of the Feshbach field coils and of the principal imaging
direction are also reported.

MOT coils

In the 2D MOT configuration one needs a magnetic field gradient along the directions of the

cooling beams and zero field along the longitudinal axis z. This is realized by means of two pairs

of rectangular coils parallel to z and with orthogonal axes (see Fig. 3.7). The current in the

four coils flows in such a way that the field gradient generated by each of them sum to the other

along the radial directions, while it subtracts to zero along the longitudinal one.

The magnetic field gradient necessary to the 3D MOT operation is produced by a pair of

circular coils with their axes along the vertical direction (see Fig. 3.8). They are used in anti-

Helmholtz configuration, i.e. with current flowing in opposite directions. In this way one has

zero offset field in the center, but a strong field gradient. The gradient on the radial direction is

half of that on the vertical one.

Transport coils

The Transport coils are the ones placed on a moving cart and aimed at transferring the atoms

from the 3D MOT to the science chamber (see Fig. 3.4). They are also used in anti-Helmholtz

configuration so that the field gradient at the center produces a strong quadrupole trap for the

atoms. Due to the high currents (∼ 60 A) used to trap the atoms, the Transport coils are

water-cooled, by letting the cooling water flow inside an aluminum box in contact with them.
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Feshbach and Gradient coils

The most important among all the magnetic coils are the ones mounted around the science

chamber. There we need to produce both a strong quadrupole trap and a uniform magnetic

field to tune the atomic interactions via magnetic Feshbach resonances. These two purposes

are realized by means of two pairs of concentric coils. One of them (Feshbach) is close to the

Helmholtz configuration, having the radius approximately equal to the distance between the coils.

The other one (Gradient) has instead half the radius of the first. Both pairs can be used with

current flowing in the same or in opposite directions (Helmholtz/anti-Helmholtz configurations),

thanks to a relay system which allows to change the current direction.

Having the Feshbach coils a larger diameter, they are the most suited to trap the atoms from

the Transport coils. Therefore they are initially used in anti-Helmholtz configuration. Then the

atoms are transferred to the magnetic trap generated by the Gradient coils, so that the first can

be switched to the Helmholtz configuration and are used to tune the scattering length.

The coils are mounted in a plastic box where water continuously flows to achieve active

cooling.

Gravity compensation coils

The last pair of coils is used to compensate gravity. They are also mounted inside the plastic

box around the science chamber and they are used in anti-Helmholtz configuration in order to

produce a vertical field gradient opposite to gravity.

3.3.5 Residual curvatures

During the experiments reported in Chapter 5 the only magnetic fields used are the uniform

Feshbach field to control the interactions and the field gradient to compensate gravity. The

two sets of magnetic field coils generate weak curvatures, which we partially compensate with a

weakly focused laser beam in the vertical direction. It is the same laser beam that is initially

used to produce the crossed dipole trap, which is now set to a lower power (see Sec. 3.3.3). The

first non-negligible terms of the resulting potential around the initial position of the atoms are

Vres(x, y, z) ' 1
2m(−(2π × 3.22Hz)2z2 + (2π × 11Hz)2y2 − (12Hz2/µm)x3), where z is oriented

along the vertical direction, y is the longitudinal direction of the IPG beam and x is orthoghonal

to both. The anti-trapping curvature along z is caused by a nonperfect Helmoltz configuration of

the Feshbach coils. In the x direction the off-center dipole trap cancels a magnetic field gradient

along the same direction. The resulting potential has a cubic spatial dependence, flat around

the atoms position to allow for a free expansion in the disorder. In the y direction the same

optical trap contributes to a weak trapping potential. By noticing that the typical energy scale

in the system is of several tens on nK (see typical energies in Chapter 5), we could define a

spatial region in which the spurious fields stay below ∼ 5 nK, so that if the system remains

within this region, we can consider negligible the effect of the residual curvatures. The size of
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the region amounts to 144 µm along z, 42 µm along y and 112 µm along x. Note that the

potential corresponds to antitrapping in two directions, and to trapping in the third direction,

suggesting that the net effect on the 3D problem is less than that in the individual directions.

3.4 Cooling to degeneracy

3.4.1 2D+ MOT

In the first vacuum chamber we implement a 2D+ MOT, which cools down the atoms in the

radial direction and produces an atomic beam towards the second chamber. The total laser

power used is about 400 mW, which ensures the sufficient velocity capture range and a good

atomic flux. The total power is the sum of the cooling and repumping light, which in the 2D

MOT beams have equal power. For the radial trapping we employ two transverse beams with 9

and 44 mm vertical and horizontal waists respectively. In the 2D+ configuration two additional

laser beams are employed along the atomic beam direction. A “push” beam propagates in the

direction of the atomic flux, while a “retarding” beam propagates in the opposite direction.

These two beams have a waist of 5 mm. The retarding beam comes into the chamber from below

and it is retroreflected by a mirror at 45◦ with respect to the atomic flux direction, placed inside

the vacuum. The mirror has a 1.5 mm diameter hole at its center, through which the atoms

are ejected. The hole is 30 mm long, so as to reduce the conductivity towards the 3D MOT

chamber. Due to the presence of the hole, the retarding beam has a shadow at its center. For

atoms outside the shadow, the radiation pressure is balanced in all directions. Once the atoms

are cooled down radially, and therefore spend most of their time at the center of the beam, they

experience a radiation pressure imbalance due to the shadow and they are pushed towards the

3D MOT chamber. Adjusting the ratio between the power in the “push” and “retarded” beams

we are able to optimize the average velocity of the atomic beam so as to maximize the loading

of the 3D MOT. Optimum performances were achieved with a flux of 2× 1010 atoms/s, with an

average velocity of 25 m/s.

3.4.2 3D MOT

In the second chamber a 3D MOT configuration is used to slow down, trap and cool the atoms

down to sub-Doppler temperatures [41, 42]. The process here can be seen as the result of three

main steps: loading, compression and optical molasses. Also in this case the total power used is

about 400 mW, but the ratio between cooling and repumping light is now different: the repumper

power is about 1/8 of the cooling one. This laser light is split into six independent beams with

a waist of 17.5 mm. During the MOT loading, we estimate a velocity capture range of the order

of 50 m/s, which is twice the average velocity of the atomic beam entering the cell. We can

capture clouds of almost 3× 1010 atoms at a temperature of 2 mK in 5 s.

During the compressed MOT phase, we decrease the repumper intensity and increase the

cooling light detuning to suppress light-assisted collisions that prevent the atoms from getting



3.4. Cooling to degeneracy 51

push beam

retarded beam

MOT beams:
50% cooling
50% repumping

atomic flux towards 
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Figure 3.7 | Scheme of the 2D+ MOT. In grey are the coils used to produce the suitable magnetic field
gradient for the MOT operation. Red and blue arrows represent the laser beams, with the cooling and
rempumping wavelengths respectively. Two pairs of counter propagating beams are used to cool down the
atoms along the radial direction. The other two beams cool the atoms along the longitudinal direction until
they end up in the central part of the cloud where and are pushed towards the 3D MOT cell, thanks to the
radiation pressure imbalance due to the hole at the center of the retarded beam.

too close. This increases the atomic density by a factor 10. Finally, the molasses sequence

cools down the sample to sub-Doppler temperatures. This is achieved tuning the cooling light

frequency to the red of the strong F = 2→ F ′ = 3 D2 optical transition to exploit sub-Doppler

forces, but keeping it sufficiently blue-detuned with respect to the F = 2→ F ′ = 2 one to avoid

negative friction forces. The narrow separation between the excited states F ′ = 3 and F ′ = 2

might lead to high scatteering rates and strong heating. For this reason we have to accurately

tune the light intensity both for the cooling and the repumping wavelengths in order to minimize

the achievable temperature. The optimized sequence allows to get about 1.65×1010 atoms at a

temperature of 25 µK.

At the end of the cooling sequence, we switch off the repumper light so that the atoms are

all in the F = 1 manifold. Then we switch on a quadrupole field gradient of 30 G/cm. In this

way we lose all the atoms which are not in a low-field seeker state, i.e. all the atoms in the

|F = 1,mF = 0,+1〉 states (see Fig. 3.2). The ones in the |F = 1,mF = −1〉 state are instead

magnetically trapped. This is a simple procedure to get a fully polarized sample with a reduction

of the phase-space density of about 30%.
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MOT beams:
90% cooling
10% repumping

Figure 3.8 | Scheme of the 3D MOT. In grey are the coils to produce the suitable magnetic field gradient
for the MOT operation. Three pairs of counter propagating beams are used to cool down the atoms along all
directions: red and blue arrows represent cooling and rempumping wavelengths respectively.

3.4.3 Transfer to the science chamber

In order to transfer the atoms from the 3D MOT chamber to the final glass cell, we ramp up the

current in a pair of coils in anti-Helmholtz configuration which are mounted on a moving cart.

These generate a magnetic field gradient of 165 G/cm, which allows to transport the atoms over

a distance of 540 mm in 2 s with negligible heating. During the trasport phase, we observe atom

losses due to the finite lifetime in the tubes connecting the chambers and to the fact that the

cloud size is comparable with the tube’s cross section. This results in a factor 4 reduction of

the phase-space density. When the transport coils are close to the science chamber, the atoms

are transferred to a magnetic quadrupole trap generated by the Feshbach coils in anti-Helmholtz

configuration. They are finally transferred to the quadrupole trap generated by the Gradient

coils, which are adiabatically ramped to their maximum current (∼ 60 A) in order to produce a

magnetic field gradient of 270 G/cm. At the end of the transfer process we get about 109 atoms

at a temperature of 250 µK.
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3.4.4 Optical dipole trap and evaporative cooling

The last cooling stage to reach Bose-Einstein condensation cannot be performed in a quadrupole

trap, due to the presence of a Ramsauer minimum in the elastic cross section of 39K, which occurs

for collision energies of 400 µK. The strategy implemented to overcome this limitation is to load

the atoms in a dipole trap where we can exploit a magnetic Feshbach resonance to increase the

collisional rate and realize efficient evaporative cooling. We use the IPG far-detuned laser beam

at 1064 nm introduced in Sec. 3.3.3, which is tightly focused to a waist w=25 µm. The beam

is aligned close, but not exactly at, the center of the quadrupole trap to prevent Majorana spin

flips. The laser is switched on abruptly and after an optimum loading time the magnetic trap is

switched off instantaneously. The optimized loading sequence is achieved for 27 W of trapping

laser power and a loading time of 2 s. The number of atoms we can load in the dipole trap is

about 30 × 10 6. The main limitation to the maximum atom number we can achieve is related

to the presence of two-body losses. These are mostly attributed to the presence of light-assisted

inelastic collisions, enhanced by the multimode spectrum of the laser we use for the dipole trap.

The evaporative cooling is performed by reducing the laser power in the dipole trap from 27

W to about 5 mW in 4 s by means of an acousto-optical modulator (AOM). During the last 1 s of

the evaporation sequence, we switch on the vertical dipole trap to increase the trapping frequency

along the longitudinal direction of the IPG beam: the power in the vertical beam is reduced

together with that of the IPG to perform evaporation. The resulting radial and longitudinal

trapping frequencies at the end of the evaporation are 110 Hz and 25 Hz respectively. During

the initial part of the evaporation, the scattering length of the atoms is tuned using the low-field

Feshbach resonance at 33.6 G for the mF = −1 state. Although the intial density of the cloud

is still low, we cannot use too high scattering lengths due to enhanced light-assisted collisional

losses close to the resonance. The initial optimum value is a = 16a0, obtained at 70 G. After

100 ms, the lower intensity of the laser reduces atom losses and allows to tune the scattering

length to 88a0, where the evaporation is more effective. After 1 s, we perform a Landau-Zener

radio-frequency sweep to transfer the cloud to the |F = 1,mF = +1〉 state and perform the

last 3 s of evaporative cooling close to the broad Feshbach resonance at 403.4 G. At the end of

the evaporation we obtain BECs with up to 8 × 105 atoms. The atoms are suspended against

gravity by a vertical magnetic field gradient (see Sec. 3.3.4).

3.5 Imaging techniques

To conclude the presentation of our experimental setup, I briefly introduce the techniques we

use to detect the atoms.

3.5.1 Fluorescence imaging of the 3D MOT

In the 3D MOT chamber we dispose of an imaging system which is normally used to check

the correct functioning of the first two cooling stages. We use in this case fluoresence imaging,
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which consists in shining close-to-resonance laser light onto the atoms and recording the light

re-emitted by them. We implement this by switching on the MOT laser beams at full power for

a very short time and collecting the light emitted by the atoms with a lens placed outside the

chamber.

Imaging the cloud at different times during the experimental sequence, we can measure the

number and the temperature of the atoms so as to verify the efficiency of the different cooling

and trapping steps before the transfer to the science chamber.

3.5.2 Absorption imaging in the science chamber

Detection of the atoms in the glass cell is performed according to the standard absorption imaging

technique, i.e. by illuminating the atoms with a resonant laser beam and recording the shadow

they produce onto a CCD camera. We obtain a first image which provides us the two-dimensional

profile Iout(r). A second image is taken without the atoms, obtaining Iin(r). We can now infer

the density profile of the cloud from the ratio of the two images using the Beer-Lambert law

for absorption. We always work in the condition I/Is � 1, where Is is the saturation intensity

of the atomic transition. In this case the column density of the atomic cloud, i.e. the density

integrated along the direction of the imaging beam, can be obtained as

n2D(r) =
ln(Iin(r)/Iout(r))

σ
(3.17)

where σ is the scattering cross section for the imaging light at wavelength λ, expressed by

σ =
3λ2

2π

1

1 + 4δ2/Γ2
, (3.18)

with Γ the linewidth of the atomic resonance and δ the detuning. All the relevant information

about the atomic sample is then deduced by looking at its spatial density profile, either recorded

in-situ, i.e. with the external trapping potentials still on, or in time-of-flight, i.e. after releasing

the atoms and letting them fly in free space.

In order to let the atoms absorb light and produce a shadow on the laser beam, we use the

following procedure. We first pulse light at the repumping frequency to excite the atoms in the

F = 2 state. Then the cooling light makes the atoms cycle on the F = 2 → F = 3 transition,

which provides the needed absorption. During this sequence all magnetic fields have to be off,

to avoid that the atomic transitions are shifted by the Zeeman effect.

We can perform absorption imaging along two directions, i.e. from above and from one

side of the cell, which allows to reconstruct the three-dimensional profile of the cloud. The

magnifications we get are 6.67 for the vertical direction and 3.36 for the horizontal one, with a

theoretical resolution of 1 µm for both. The effective resolution is anyway limited by the finite

size of the pixels on the CCD camera, which is 6 µm.
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When talking about speckles we refer to the random intensity pattern produced by coherent

light when it is reflected or diffused by a rough surface. They simply consist in a fine granular

pattern of light (see Fig. 4.1) and one could easily come to see them every time a laser beam is

around: speckles are somehow inevitable when dealing with coherent light, since any surface is

rough on some small enough length scale.

Figure 4.1 | Example of laser speckles produced by laser light reflected by a rough surface.

Speckles are such a widespread phenomenon that lots of physicists run into them, mostly

as a trouble, since they introduce undesired noise in the images they deal with and they are

usually focused on how to avoid them. In my case, I will take advantage both of the simplicity in

producing speckles and of the detailed studies performed about them, to implement a disordered

potential for ultracold atoms. Thanks to dipole interaction (Sec. 3.1.2), a light pattern shone

onto the atoms corresponds to an atomic potential proportional to light intensity. Among all

the various possibilities one could think of to produce a random potential, optical speckles offer

55
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two main advantages. The first consists in its flexibility on the experimental point of view: it is

feasible, and in practice quite easy, to change and control the parameters of the disorder. The

second one lies in the possibility of exactly knowing the statistical properties of the potential:

they are theoretically well modeled and experimentally measurable.

In this chapter I first introduce some general properties of a speckle potential (Section 4.1).

In Section 4.2 I describe the experimental setup I designed to produce it and the ex-situ measure-

ments for its characterization. Finally in Section 4.4 I report the in-situ calibration performed

to test the alignment of the speckle beams on the atoms.

4.1 The speckle field: statistical properties

In order to understand the properties of this disordered pattern of light, let us look at the origin

of a speckle field. Consider a laser beam transmitted through a diffuser: take for example a

glass plate with a rough surface. The glass plate being rough, the light propagates through a

random distribution of depths. The outgoing radiation gains randomly distributed phases along

the transverse plane, each grain of the glass surface corresponding to a different optical path

for light. All the partial waves produced in this way some up at any spatial position r after

the plate, leading to constructive or destructive interference. This produces a high-contrast pat-

tern of randomly distributed grains of light on every screen placed at any distance from the plate.

Let us make this description a bit more quantitative in order to recover the detailed statistics

of the speckle field [49]. This will provide us all the relevant properties of the atomic potential

we want to produce. In order to simplify the description, we model the surface of the glass plate

as an ensemble of N independent point-like diffusers. The condition for doing this is that the

typical transverse size of the grains on the glass surface is much larger than the laser wavelength,

δglass � λ. Within a region smaller than δglass, the glass depth does not change significantly and

the light diffuses uniformly through it. On the other side, two points on the glass at a distance

larger than δglass give rise to independent scattering events.

The N partial waves arising from the different diffusers have random amplitudes and phases

and they interfere, constructively or destructively according to their propagation, in any point

of space r. Neglecting possible polarization effects, we consider here what happens to the field

amplitude A(r). The field is calculated as the sum of N scattered waves with random amplitudes

ak/
√
N and phases φk, i.e.

A(r) =
1√
N

N∑
k=1

ake
iφk . (4.1)

If the roughness of the diffusing surface is such that the scattered partial waves have phases

uniformly distributed between 0 and 2π, all the light hitting the surface is diffused and the zero

order component cannot be distinguished from all the others. In this situation the speckle field

is called fully developed. This condition is satisfied in the case of diffusion through a glass plate,

if the variance of its depth distribution σd is much larger than the laser wavelength: σd � λ.



4.1. The speckle field: statistical properties 57

w

Δr

r

r

z

f

diffusive 
plate

converging 
lens

Figure 4.2 | Geometry of the optical system for the production of a focused speckle field. A laser
beam transmitted through a diffusive plate is then collected by a converging lens. The speckle pattern that
forms on the lens focal plane has width w related to the diffusion angle of the glass plate and correlation length
∆r defined by the diffraction limit of the lens.

4.1.1 The intensity probability distribution

Assuming that the phases φk and the amplitudes ak in Eq. 4.1 are independent random variables

and that the phases φk are uniformly distributed in the interval [0, 2π], the real and the imaginary

part of A(r) can be calculated using the Central Limit Theorem. The field amplitude is then the

result of a random walk in the complex field, and the amplitude and phase of A(r) are indepedent

random variables with a Gaussian probability distribution. From this result we can derive the

probability distribution of the field intensity I = |A|2, which has an exponential behavior:

P (I) =
1

〈I〉
e
− I

〈I〉 . (4.2)

From this derives a peculiar property of fully-developed speckle fields: the intensity mean value

is equal to its standard deviaton:

σI = 〈I〉. (4.3)

This implies that the contrast of a speckle field, defined as C = σI/〈I〉 is equal to 1, i.e.

maximum.

From Eq. 3.13, we find that the amplitude of the disordered potential VR is directly related

to 〈I〉 via

VR =
~Γ2

8δ

〈I〉
Isat

(4.4)

where Γ is the linewidth of the atomic resonance, δ is the detuning of the laser from the atomic

resonance and Isat is the saturation intensity of the transition.
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4.1.2 The spatial properties

Before defining the characteristic length scales of a speckle field, it is necessary to further specify

the structure of the optical system we want to study. In the experimental setup we use, we

shine a laser beam on a diffusive plate and then focus the scattered light with a converging lens

(Fig. 4.2). We are hence interested in the properties of the speckle field produced in the focal

plane of the lens. In principle, to reconstruct the final field it would be necessary to study the

whole propagation of light, from the diffuser to the lens and then to the focal plane. It is anyway

possible to simplify the description, treating the lens pupil itself as the effective scattering source

and then studying only the propagation from the lens to its focus. It is proved that the results

of this simplified model are equivalent to those for the full propagation [49]. The intensity

distribution in the focal plane of the lens is then obtained as the Fourier transform of the laser

intensity across the lens.

There are two principal length scales we are interested in: a large one, which is the spatial

extension of the whole speckle field, and a fine one, which is the typical size of the light grains in

the disordered pattern. Since the field in the focal plane is related to the one on the lens plane

by a Fourier transform, the fine details in f are determined by the large scales on the lens, i.e.

by the width of the incident beam, while the large scale in f is defined by the fine details on the

lens, i.e. by the size of the scattering grains.

The size of “a speckle”

In order to calculate the typical size of the small structures in a speckle field, we define the

intensity autocorrelation function

ΓI(δr) = 〈I(r)I(r + δr)〉. (4.5)

Considering the case of a circular beam of diameter D hitting the scattering surface, it is possible

to deduce the expression of ΓI(δr) [49]. We decompose the problem on two principal directions,

transverse and longitudinal to the light propagation:

ΓI,⊥(δr⊥) = 〈I〉2
∣∣∣∣ 2λf

πDδr⊥
J1

(
πDδr⊥
λf

)∣∣∣∣2 (4.6)

ΓI,‖(δz) = 〈I〉2 sinc2
(
D2δz

8λf2

)
(4.7)

where J1(x) is the Bessel function of the first kind.

We define the correlation length as the position of the first zero in the autocorrelation func-

tion. We obtain:

∆r⊥ = 1.22
λf

D
(4.8)

∆z = 8
λf2

D2
(4.9)



4.2. Experimental setup for a 3D disordered potential 59

It is interesting to note that the transverse size of the speckles corresponds to the diffraction

limit of the lens. It is also apparent that the longitudinal size is much larger than the transverse

one, each speckle looking like a sort of “tube”. We will need to consider this strong anisotropy

when designing the experimental setup.

The extension of the speckle field

The width of the speckle field depends on the diffusion angle of the scattering surface. Due

to the phenomenon of diffraction, the angle of the light cone emitted by each scattering point

depends on the size of the scatterer itself: θ ∝ λ/δglass. The envelope of the speckle field in the

focal plane of the lens is hence determined by the diffusion angle of the glass plate and by the

numerical aperture of the lens.

4.2 Experimental setup for a 3D disordered potential

When thinking of how to design the experimental setup for the production of the disordered

potential, we had to take into account some basic, though crucial, requirements.

v First of all, we want to realize a three-dimensional disorder for the atoms. This means that

the correlation lengths of the potential along the three axes need to be comparable with

the de Broglie wavelength of the atoms, so that they undergo random scattering events in

all directions.

The typical temperature of the atoms in our experiment is of the order of 10 nK, so that

the de Broglie wavelength λdB is of the order of few µm. As shown in Eq. 4.8, the

transverse correlation length ∆r⊥ of the speckle field is determined by the diffraction limit

of the converging lens. Given the optical access on the atoms and the laser wavelengths

we despose of, a ∆r⊥ of the order of few µm is easily achievable. As already noticed,

the spatial correlations of the speckle field are strongly anisotropic, and the longitudinal

correlation length ∆z we can experimentally achieve is of the order of few tens of µm,

hence ∼10 λdB. We then need to reduce it. To this purpose we decided to implement the

same experimental scheme already used in [36], where two coherent speckle fields crossing

at 90◦ are used. Interference fringes cut the speckle tubes on a plane at 45◦ with respect

to the longitudinal axes of the beams. The resulting correlation lengths are of the correct

order of magnitude along all directions (see Sec. 4.3.2).

v To achieve Anderson localization we need strong disorder.

Of course we do not know a priori the position of the mobility edge, but it is expected to

be of the same order of the disorder amplitude VR. To obtain significant localized fractions

we thus need to reach values of VR that exceed the mean energy of the atoms. The laser

wavelength and the maximum intensity we can have on the atoms are such that VR/kB

can be tuned from 0 to 100 nK.
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v The disordered potential has to be homogeneous on the whole volume occupied by the

atoms, so that we can assume a uniform disorder strength.

The typical distance on which the atoms propagate during the experiment is of the order

of few hundreds of µm. We thus need that the Gaussian envelope of the single speckles has

a width of the order of 1 mm, so that the average light intensity is effectively flat on the

region occupied by the atoms. This constraint has been taken into account in the choice

of the diffusion angle of the glass plates and in the design of the whole optical paths for

the two beams.

v Spurious localization effects different from Anderson localization have to prevented.

The main “classical localization” effects that could mask the quantum AL are classical per-

colation and trivial trapping in single deep potential wells. The probability of localization

via classical percolation is strongly reduced by using blue-detuned speckles. In this case

the potential is repulsive and the atoms are attracted by the low intensity regions. Thanks

to the high probability of low I in a speckle pattern, the percolation threshold is then

found around 4 · 10−4VR, hence much smaller than the energy scale of the mobility edge

[50]. We then tune the wavelength of laser light to the blue side of the transition, namely

at λ = 762 nm. Trivial trapping in the single speckle wells is reduced by suitably tuning

the ratio between the disorder amplitude VR and the correlation energy ER = ~2/mσ2R,

where m is the atomic mass and σR is the average correlation length. If VR/ER < 1, a

typical well is to weak to bind a particle. In our experiment we can explore a broad range

of VR, passing from a regime where the spatial correlations of the disorder are not relevant

to that where they start to play a role.

The optical system we designed for the production of our 3D disordered potential is reported

in Fig. 4.3.

4.3 Ex-situ characterization of the potential

The first characterization of the disordered potential is performed ex-situ. We mounted the whole

optical system far from the atoms and imaged the intensity distribution in order to measure: 1)

the spatial extension of the potential at the position of the atoms; 2) the correlation lengths; 3)

the probability distribution of the intensity.

4.3.1 Spatial extension of the disordered potential

We image the single speckle patterns on a plane transverse to their propagation direction by

placing a CCD camera in front of the last lens. We also place a glass 4 mm thick between

the lens and the camera, so that we can simulate the effect of the glass cell in the experiment.

The glass used here is exactly the same kind of glass used for the cell. We use it for all the

measurements in this section. The camera is mounted on a micrometric translation stage, so
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Figure 4.3 | Optical setup for the production of the disordered potential. The light emitted from the
Ti-Sa laser (see Sec. 3.3.3) is injected into an optical fiber that brings it on the experiment table. At the
output of the fiber a first polarizing beamsplitter cleans the light polarization. A λ/2 waveplate and the next
polarizing cube are used to split the light in two beams of equal intensities. Both of them go through a diffusive
plate that originates the speckle pattern. A last polarizing cube for each branch is then used to reflect the
speckle light towards the atoms. Along the light path a number of diverging and converging lenses are placed
to adjust the beam waists on the two crucial positions, i.e. on the final lenses and on the atoms. The size
and the divergence of the beams on the final lenses indeed determine the speckles correlation lengths and the
width of the speckle envelope respectively. The optical paths are designed in such a way that the statitical
properties in the focus of the two beams are as similar as possible, even if the last lenses have to be placed at
different distances from the atoms. A glass plate, placed before the bifurcation of the two beams, sends a small
amount of light to a photodiode, which is used for the intensity stabilization of the laser. Note that one of the
diffusive plates is mounted on a mechanical rotating stage which allows to change the disorder configuration
at every experimental run.

that we can move it along the propagation direction of the beam and look for the position of

minimum waist, that is the position where we want to place the atoms in the final configuration.

There we record an image of the speckle field, as reported in Fig. 4.4 b. We integrate the two-

dimensional intensity distribution along the two directions and fit the one-dimensional profiles

with a Gaussian. We repeat the same procedure for both beams. We measure the beam waists

as the width of the Gaussian at 1/e2 and we obtain: w1 = 1305(10) µm and w2 = 1306(10) µm.
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Figure 4.4 | Gaussian envelope of the speckle beams. a) Scheme of the imaging system to measure the
spatial extension of the single speckle beams. b,e) Image of the speckle patterns in their focus position. In
c,f and d,g are reported the 1D profiles obtained as the integral of the intensity along x and y respectively
(blue dots) and the corresponding Gaussian fits (red lines). The widths of the beams along the two directions
are extracted from the fit and then averaged to obtain the values of w1 and w2 reported in the text.

4.3.2 Correlation lengths

Correlation lengths of the single speckle beams

In order to detect the fine structure of the speckles, we need to use a different imaging system

with a higher resolution. To this purpose, we use a telescope made of a microscope objective

with a working distance of 17 mm and a converging lens with focal length f = 150 mm. The

magnification we obtain is 35x. We place the microscope objective a working distance away from

the focus of the speckle beam, so that we can study the fine structure of the speckle pattern at

that position. In Fig. 4.5 we report a typical image of the speckles recorded with this optical

setup. From these images we calculate the spatial autocorrelation function of the intensity, as

reported in Fig. 4.5 c,d. We fit it with the theoretical profile ΓI(δr⊥) = A
[ ξ
π

1
δr⊥

J1(
π
ξ δr⊥)

]2
,

where the amplitude A and the width ξ are free parameters and J1(x) is the Bessel function

of the first kind. From the position of the first zero in the autocorrelation functions ∆r⊥1 and

∆r⊥2 we deduce the transverse correlation lengths of the two speckles σ⊥1 = ∆r⊥1/π = 0.73 µm

and σ⊥2 = ∆r⊥2/π = 0.8 µm.
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Figure 4.5 | Autocorrelation function of the speckles. a) Scheme of the imaging system to measure
the small details in the speckle pattern. b) Example of a picture of the speckle pattern taken with the high
resolution imaging system. c, d) The measured autocorrelation functions for the two speckle beams (blue
dots) are fitted with the theoretical profile (blue lines).

Correlation lengths of two interfering speckles

After characterizing the properties of the single speckles, we want to study the behavior of two

interfering speckle patterns. We let the two speckle beams cross at an angle θ =50◦ and we place

the microscope objective parallel to the interference fringes, i.e. along the y axis (as showed

in Fig.4.6 a). In this way we record images as the one reported in Fig.4.6b, where one can

clearly see how interference effectively reduces the size of the grains in the disordered pattern.

Although the angle used here is different from the one we chose for the final configuration on

the atoms, this measurement allows us to verify that the autocorrelation function along the x

direction has the expected profile. We could not do the measurement with the correct angle of

90◦ because of the limited numerical aperture of the microscope objective we use. In Fig.4.6c

we report the measured autocorrelation of the intensity along the x direction and the fit with

ΓI(δy) = A
[ ξ
π

1
δyJ1(

π
ξ δy) cos(4πδyd )

]2
, where the amplitude A, the width of the Bessel function ξ

and the periodicity of the interference fringes d are free parameters. From the fit we measure

d = 1.1(1) µm, which is in agreement with the calculated distance between two interference

minima d = λlaser/2 sin(θ/2) = 1.0 µm (the laser wavelength during this characterization stage

is λlaser = 810 nm). The agreement observed allows us to deduce the correlation length of our

potential along the x direction from the theoretical interference pattern at the correct angle of

90◦.
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Figure 4.6 | Interfering speckles. a) Scheme of the optical system used to measure the correlation length
of two interfering speckles. b) Image of the interfering speckles on the y, z plane. c) The measured intensity
autocorrelation ΓI(δy) (blue dots) is fitted with the theoretical profile (blue solid line).

Resulting correlation lengths of the 3D potential

Given the results of the measurements reported above, we can deduce the correlation lengths

of the disordered potential generated with the optical scheme of Fig. 4.7. The principal axes

of the problem are taken as showed in Fig.4.7a. In the y direction, where interference fringes

split the speckles into smaller substructures, the first zero in the correlation function ∆y is

given by half the distance between two interference minima, so that σy = ∆y/π = λ/(2
√

2π) =

0.09 µm. Along z we calculate the average of the transverse correlation lengths of the two

speckles σz = (σ⊥1 + σ⊥2)/2 = 0.76 µm, while σx is the projection at 45◦ of the same average:

σx = σz
√

2 = 1.08 µm. From the geometric average on the three directions we get σR = 0.41 µm.

4.3.3 Intensity distribution

In order to measure the probability distribution of the intensities in the single speckle patterns,

we use the same optical setup as in Fig. 4.5 a, i.e. the one with the higher resolution. From

the images as in Fig. 4.5 b we measure the probability distribution as reported in Fig. 4.8. We

find the expected exponential decay as in Eq. 4.2. The deviation from the exponential fit at low

intensities is due to the finite resolution of the imaging system.

As for the two interfering speckles, P (I) is predicted to preserve the same exponential di-

stribution with 〈Itot〉 = 〈I1〉+ 〈I2〉, where 〈I1,2〉 are the average intensities of the single speckles
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Figure 4.7 | Spatial correlations of the 3D speckle potential. a) Geometry of the 3D speckle potential.
The two speckle beams cross at the atoms position with an angle θ =90◦. Interference fringes are parallel to
the x axis. We report here the calculated autocorrelation function along two axes. b) Autocorrelation function
along the z axis: it has the typical profile of the single speckle correlation function on its transverse plane.
The correlation length σz results from the average of the transverse correlation lengths of the two speckles.
The autocorrelation function along the x axis follows the same profile, but it has a larger correlation length
σx resulting from a projection at 45◦ of σz. c) Autocorrelation function along the y axis: interference fringes
add up to the usual Bessel type profile and reduce the resulting correlation length σy, calculated as half the
distance between two interfering minima.

[49]. An angle ∆θ between the polarizations of the two speckles would reduce the contrast in

the interference and hence modify P (I) at low I. Considering the geometry of our experimental

setup, we estimate ∆θ < 5◦. For small ∆θ, the position of the maximum in P (I) is expected

to move to ∆θ2/4 ln(4/∆θ2)〈Itot〉, which in our case corresponds to ∼ 0.01〈Itot〉. Such a small

modification is not expected to affect the localization properties of the system, since the typical

energies in the experiment range from VR/2 to VR, hence far from this low I region.
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Figure 4.8 | Measured intensity distribution of a speckle pattern. Blue dots represent the measured
P (I) in a single speckle field imaged on its transverse plane at the focus position. Data are fitted with an
exponential function (orange dashed line).
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4.4 In-situ calibration of VR

The mean amplitude of the disordered potential VR is first computed from the light intensity of

the speckles, obtained from the measurement of the spatial envelope of the individual speckles

(as reported in Sec. 4.3.1) and of their total optical power. For this optical calibration V opt
R

we estimate a relative uncertainty of 10%. After placing the optical system for the production

of the speckles on the experiment table, we wanted to perform an in-situ calibration of VR.

Whatever misalignment of the speckles light on the atoms would indeed produce a deviation of

VR with respect to the expected value V opt
R . The in-situ calibration is deduced from a study of

the dynamics of the atoms. Since our 3D disorder is the superposition of two separate speckle

patterns, we calibrate them independently. We apply a short pulse of the speckle potential to a

non-interacting condensate in free expansion, and we measure its final momentum distribution.

Using a single speckle beam at a time, the problem is effectively 2D, being the longitudinal

correlation length much longer than the atomic displacement on the short time scale we consider

(see Sec. 4.1.2). We observe the formation of a bimodal momentum distribtion (Fig. 4.9),

meaning that only a fraction of the atoms gets accelerated by the pulse. From a 2D numerical

simulation we indeed observe that the momentum distribution should develop a high-energy

component , with a mean kinetic energy transferred by the speckle pulse ∆Ekin = 0.19(2)VR.

The behavior we observe in the experiment is in agreement with the simulations. The evolution

of Ekin of the excited part is approximately linear with V opt
R , with a slope within 17% of the

theoretical one. This confirms the validity of the optical calibration. The values of VR I report

from this point on will always correspond to the calculated V opt
R .
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Figure 4.9 | Calibration of VR. a) Scheme of the experimental sequence used for the calibration measure-
ments. We switch off the dipole trap and reduce the interaction strength to zero, we let the atoms expand
for 10 ms in free space and then we pulse the light of a single speckle beam for 1 or 2 ms. We let the atoms
expand for another 30 ms and finally we image the cloud. A typical 1D profile of the atomic density is reported
in b). In the bimodal profile we can distinguish a central unpertubed fraction of atoms (grey) and an excited
one (red). In c are reported the kinetic energies gained by the excited fraction as a function of the disoder
amplitude, as obtained in the simulations. Different colors correspond to different durations of the speckle
pulse. All the data are on the same line which corresponds to ∆Ekin = 0.19(2)VR. In d I show the measured
kinetic energy of the excited fraction for the two speckle beams (blue and orange circles). The dashed orange
and blue lines correspond to the linear fits of the two datasets. The grey dotted line is the one obtained from
simulations. The fitted lines are compatible with the simulated one within the 17%.
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In Chapters 3 and 4 I introduced the two main characters of this experiment, which are the non-

interacting matter waves and the disordered optical potential. We are now ready to get to the

heart of our topic and observe how the atoms behave when moving in a disordered environment.

The main results is this chapter are published in [51].

As I introduced in Chapter 2, in order to perform a study about Anderson localization,

the crucial issue lies in the ability to control and measure the energy distributions both of the

disordered potential and of the atoms. In the present Chapter I will present the results concerning

the measurement of the mobility edge, first introducing step by step the strategy employed to

achieve the goal. In Section 5.1 I describe the procedure we designed to load the atoms in the

low-energy states of the disordered Hamiltonian. In Section 5.2 I describe the measurements we

performed to detect the onset of localization and provide a characterization of it. In Sections

5.3 and 5.4 I report the strategy we implemented to determine the energy distribution of the

atoms and the spectroscopic technique used to locate the threshold for localization. In Section

5.5 I present the results about the mobility edge and compare them with available theoretical

predictions. Finally, in Section 5.6 I report some preliminary results about the effects of finite

69
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interactions on the localization problem.

5.1 Preparation of low-energy states

The first crucial step in an experiment about AL concerns the preparation of the atomic sample

inside the disorder. AL affects the atoms in the low-energy eigenstates of the disordered Hamil-

tonian. The main requirement to observe the phenomenon is then the ability to populate the

lowest states of the energy spectrum, which is far from trivial.

In order to transfer the atoms in the disorder, we have to change the external potential

from the harmonic confinement of the dipole trap where we produce the BEC (Sec. 3.4) to the

speckle potential. A proper adiabatic process that transfers the atoms from the initial to the

final ground state cannot be realized. This is somehow inevitable when dealing with disordered

systems, since the ground state of the disordered Hamiltonian could be placed far away from

the initial position of the atoms, so that they cannot reach it in a finite time. Although it is

not possible to load the atoms in the lowest energy states for every possible configuration of

the speckles, we have studied how to perform a quasi-adiabatic process that minimizes the final

energy of the atoms. This can be done by exploiting the tunability of the interactions. The

idea is to use a finite repulsive interaction while changing the external potential, so that the

coupling between the initial and the final eigenstates is increased and the atoms can explore a

larger region of the phase-space. In particular we slowly switch on the speckle potential while

we ramp down the dipole trap and reduce the interaction strength to zero. In order to optimize

this loading procedure we measure the final kinetic energy of the cloud and try to minimize it.

The resulting sequence consists in a linear increase of VR in 100 ms, a linear decrease of the trap

strength to zero in 200 ms and a decrease of the interaction strength proportional to 1/t down

to a scattering length |a| 6 0.2 a0 in 200 ms, all the three ramps starting at the same time (see

Fig. 5.1).

Trap

Interaction

Disorder

Time

a

100 ms

200 ms

Absorption
imaging

Variable waiting time t

Loading phase

Figure 5.1 | Experimental sequence to load the atoms in disorder and detect the onset of localization.
The loading phase consists of two linear ramps to switch on the speckle potential and switch off the trapping
beams, and a 1/t ramp to reduce the scattering length to zero. In the following variable waiting time the
atoms are free to move in the disordered potential. After that we perform absorption imaging to detect the
intensity distribution n(r, t).
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5.2 Evidence of localization

5.2.1 Expansion in the disordered potential

At the end of the loading sequence, the harmonic potential is off and the atoms are free to expand

in the disordered environment realized by the speckles. To investigate their transport properties,

we record the atomic density distribution after a variable waiting time t via absorption imaging.

We can image the cloud along two orthogonal directions as described in Sec. 3.5, which allows

to reconstruct the dynamics along the three orthogonal axes of Fig. 4.7. In order to simplify the

discussion, I will first present the results relative to the expansion along a single axis, namely x,

and then discuss the behavior along the other two.

We consider the images taken from the vertical imaging direction, i.e. along z, and we

reconstruct the one-dimensional profile n(x) from the integration along y. We measure the

second moment of the distribution 〈x2〉 =
∫
x2 n(x) dx. The time evolution of 〈x2〉 is reported

in Fig. 5.2 for some typical values of VR. The measurements reported there are averaged over

different realizations of the disorder, obtained by rotating in steps one of the diffusive plates

creating the speckles (see Fig. 4.3). We found that 5 realizations are typically enough to obtain

stationary results, presumably because each sample contains a relatively large number of states,

resulting in a self-average. By increasing the disorder strength VR, we observe the transition

between two extreme transport regimes. For the smallest values of VR the second moment of the

distribution scales linearly with time, which is a signature of diffusive behavior (see Sec. 2.2.3).

The data for VR/kB ≤ 8 nK are hence fitted with ∆〈x2(t)〉 = 〈x2(t)〉−〈x2(0)〉 = 2Dt, where D is

the diffusion coefficient. The opposite situation occurs for the largest VR/kB = 94(9) nK, where,

after a small initial increase, ∆〈x2(t)〉 saturates to a fixed value, indicating that the sample is fully

localized. For intermediate values of VR there is an apparent deviation from the pure diffusive

behavior, but no clear saturation of 〈x2〉 is detected. This suggests that the atoms occupy the

spectrum of the disordered Hamiltonian with a finite energy distribution: some of them lie below

the mobility edge and, after a variable transient time, they reach a steady configuration, not

contributing to any further increase of 〈x2〉; another fraction of the atoms is instead above the

mobility edge and keeps on expanding, though very slowly.

This first qualitative discussion about the results reported in Fig. 5.2 allows to draw some

first conclusions:

v The experimental setup and the loading procedure we implemented are able to achieve 3D

Anderson localization of ultracold atoms.

v By increasing the disorder strength VR, we are able to move the position of the mobility

edge with respect to the energy distribution of the atoms, allowing to pass from diffusion

to full localization.

Let me briefly note that these first results represent one of the crucial improvements with

respect to previous experiments about 3D AL with ultracold atoms [35, 36]. The implementation
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Figure 5.2 | Expansion in the disordered potential. The time evolution of ∆〈x2〉 is reported for different
disorder strengths. The error bars represent the statistical uncertainty and correspond to one standard deviation.
Dotted lines correspond to a linear fit for VR/kB = 2, 8 nK and are a guide to the eye for the largest VR.

of a quasi-abiabatic switching on of disorder allows to control much better the energy distribution

of the atoms and to obtain large localized fractions, in contrast for example with the situation

of [36], where the speckle potential had to be instantaneously switched on. The main difference

lies in the possibility of tuning the atomic interactions, provided by the optimum scattering

properties of 39K.

5.2.2 Onset of a quantum transport regime

A quantitative analysis of the short-time dynamics in Fig. 5.2 provides a further proof of the

onset of localization. We perform a linear fit of the evolution of 〈x2〉 on the first 300 ms and we

extract an initial diffusion coefficient D. The results are reported in Fig. 5.3. The breakdown

of the linear diffusive behavior observed for VR/kB > 8 nK corresponds to an abrupt reduction

of D below ~/3m, which is the transport regime where quantum interference is predicted to

suppress diffusion and lead to localization [50].

5.2.3 Time evolution of the density profiles

The physical quantities discussed so far, i.e. 〈x2(t)〉 and D, provide information about the behav-

ior of the system necessarily averaged over the whole energy distribution. It is then interesting to

give a closer look to the time evolution of the density profiles n(x), since it allows to distinguish

different transport regimes inside the same atomic sample. We take as an exemplary case the

evolution for VR/kB =47(5) nK, which is reported in Fig.5.4. The central part of the cloud is
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Figure 5.3 | Initial diffusion coefficient. The values of D reported here are obtained from a linear fit of
∆〈x2〉(t) in the first 300 ms. The blue region corresponds to the limit of quantum transport, achieved when
D ≤ ~/3m. The onset of the quantum regime at VR/kB ∼ 20 nK correponds to the breaking of diffusive
transport in Fig. 5.2.

essentially stationary, while the tails expand in the first one second and then reach a steady

configuration. The localization length being a function of the energy, the different energy states

in the cloud spread on different length scales and the localization time scales accordingly. This

observation confirms the coexistence of many energy states at different distances from the mo-

bility edge and it allows to better understand the evolution of 〈x2〉 in the region of intermediate

disorder.

t = 100 ms t = 500 ms t = 1000 ms t = 1500 ms t = 2000 ms

Figure 5.4 | Time evolution of the density profiles. The atomic density n(x, t) at VR/kB = 47(5) nK is
reported. Grey lines on the background correspond to the profile at earlier times.

5.2.4 Localization lengths

The coexistence of a large number of energy states makes it quite difficult to measure localization

lengths, since they are properly defined only for the single energy states. It is anyway interesting

to estimate the order of magnitude of the localization lengths in our sample by fitting the tails

of the distribution n(x) at large time. Since the predicted profile for an Anderson localized state

is an exponential (see Sec. 2.2.3), we fit the one-dimensional profiles with the integral along two

directions of a 3D exponential function with localization length l: n(x) = 2πl2 Γ(2, |x|/l), where
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Γ(n, x) is the incomplete gamma function of order n. We consider the same example of Fig.5.4

for VR/kB = 47(5) nK and we fit the tails of the profile at t = 1000 ms. By fitting separately

the left and the right tails of the distribution we obtain lR = 32(1) µm and lL = 28(1) µm (see

Fig. 5.5).

Notice that this estimation of l might be affected by the presence of rather long tails even

in the initial spatial distribution (see the profile at t=100 ms), which are probably due to the

quasi-adiabatic loading procedure we use: during the slow ramps we use to switch from the

harmonic trap to the speckle potential, the most energetic atoms start expanding and occupy

the large tails of the spatial distribution visible in Fig. 5.4. This means that the values of l we

obtained should be considered more appropriately as an upper bound to the effective localization

length. Anyway, we are simply interested in using this result as a basis for rough comparison

with theory. In Ref. [52], self-consistent theory is applied to a disordered potential similar to

ours, created by two interfering laser speckles. The localization legth is predicted to change from

about l ∼ σ⊥ around Ec/3 to l ∼ 100σ⊥ above 5/6 Ec, where σ⊥ is the transverse correlation

length of the individual speckle patterns and Ec is the mobility edge. The localization lengths

we measured correspond in our case to l ∼ 30σ⊥. This seems to be the right order of magnitude,

since for this value of VR we observe an initial evolution of the cloud at short times and a very

slow increase of its size for longer times, which might be justified by a finite, though small, energy

distribution close to Ec.

Figure 5.5 | Estimation of the localization length. The black solid line corresponds to the density profile
at VR/kB = 47(5) nK after 1 s, while the grey dotted profile is the initial one at 100 ms. The red lines
correspond to the independent fits performed on the left and right tails of the distribution at the longer time.

5.2.5 Expansion along three spatial directions

Due to the anisotropy in the spatial correlations of the speckle potential (Sec. 4.3.2), we expect

to see a difference in the dynamics of the atoms along the three spatial directions. To estimate

this effect, we look at the time evolution of the squared width of n(r) along the three axes for
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an intermediate value of the disorder amplitude, where the dynamics is still clearly visible. We

choose VR/kB = 23(2) nK (see Fig. 5.6). At short times the system expands both along x and

z, eventually reaching a larger size along x, where the disorder correlation length is a factor
√

2

larger than along z. Along y we observe just a slight increase of the width. This is consistent

with the fact that the cloud is initially larger along this direction, due to the anisotropy of the

dipole trap, and the correlation length of the speckles is much smaller. The behavior we observe

is then justified by the fact that shorter correlation lengths correspond to stronger disorder, thus

to shorter localization lengths and slower dynamics.

In order to have the highest sensitivity to changes in the diffusion/localization evolution, we

consider for simplicity the behavior along x, where the dynamics is more prominent, knowing

that the behavior on the other directions is equivalent to the first except for a scaling factor.

Figure 5.6 | Expansion along three directions. The time evolution of 〈x2〉 (green), 〈y2〉 (red) and 〈z2〉
(black) is reported for VR/kB = 23(2) nK. The error bars represent the statistical uncertainty and correspond
to one standard deviation. Dotted lines are guides to the eye.

5.3 Energy distribution of localized samples

Studying the evolution of the atomic cloud in the disordered potential has demonstrated the

occurrence of partial or full localization in a certain range of VR. To reach the goal of measuring

the mobility edge, we need to determine the energy of the atoms, so as to infer the relation

between the energy distributions and the localized/diffusive behavior observed. In cold atoms

experiments it is possible to measure the kinetic energy of the atoms, but determining their

potential energy is a more difficult task. The potential term is indeed usually calculated from

the knowledge of the external potential applied to the atoms, as it can be easily done in the case

of harmonic traps. Dealing with disordered potentials makes it impossible to follow the same

procedure, since we have no direct access to the exact properties of the light pattern seen by
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the atoms for each configuration of the disorder. On the other hand it is the total energy of the

atoms, i.e. the sum of the kinetic and potential terms, that is relevant for the determination

of the mobility edge. We hence designed a novel technique for the determination of the energy

distribution, which combines experimental measurements and numerical calculations to reach

the purpose. The idea is the following. We measure the momentum distribution of the atoms

n(k) through the standard time-of-flight imaging technique. We perform a numerical study

of the low-energy eigenstates of our disordered Hamiltonian to calculate the spectral function

ρ(E, k), which represents the probability for a state at energy E to have momentum k. Finally

we combine this two quantities to deduce the average occupation probability of the energy states

f(E), since they are related to each other by
∫
ρ(E, k)f(E) dE = n(k). The energy distribution

is then determined as n(E) =
∫
ρ(E, k)f(E) dk, i.e. by multiplying the occupation probability

f(E) by the density of states
∫
ρ(E, k) dk. In the rest of this Section I go through the method

outlined here, presenting it step by step.

5.3.1 Measurement of the momentum distribution

The experimental measurement of the momentum distribution is performed with the standard

technique of recording the atomic density of the atoms in time of flight, i.e. as they expand

in free space. The study of their expansion when released from every external potential indeed

allows to determine their initial momenta. In our case, we load the atoms in the disordered

potential with the same procedure depected above (Sec. 5.1) and then we switch off the speckles

and perform absorption imaging at two different times of flight t1 and t2. In Fig.5.7 a I report the

1D profiles of the cloud for VR/kB=47(5) nK. The momentum distribution is deduced from the

two density distributions using a deconvolution procedure. The spatial density at the longer time

t2, integrated along y and z, is given by n(x, t2) =
∫
dk dx1 n(x1, t1) n(k) δ(x−x1− ~k

m (t2− t1)),
where k = kx and n(k) is the momentum distribution integrated along ky and kx. We have

assumed the momentum and spatial distributions to be factorizable, since the system occupies

a large number of states and we can reasonably assume that there are no relevant correlations

in the average distributions. We found that using a Gaussian form for n(k) well reproduces the

data. We then substitute n(k) ∝ exp(−k2/(2σ2)) in the previous formula and we get

n(x, t2) =

∫
dx1 n(x1, t1) exp

[
− 1

2

(m(x− x1)
σ(t2 − t1)

)2 ]
. (5.1)

Including the experimental n(x1, t1) in the integral we obtain a fitting function for the density

distribution at t2, where the width of the Gaussian σ is the only free parameter. The result of

the deconvolution procedure is the momentum distribution reported in Fig.5.7 b.

From the measured value of σ2 = 〈k〉2 we can calculate the mean kinetic energy as Ekin =

3(~2〈k2〉/2m), which for the dataset used here as example is 16.5 nK.
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ba

Figure 5.7 | Measurement of the momentum distribution. In a are reported the time-of-flight density
profiles at 20 (blue) and 40 (red) ms of expansion. The red solid line is a fit of the experimental data at t2
using the convolution of n(x, t1) with a Gaussian n(k). The momentum distribution obtained from the fit is
reported in b.

5.3.2 Calculation of the spectral function

It is well known that performing numerical calculations for energies close to the mobilty edge is

very hard. The reason for this is the divergence of the localization length when approaching the

mobility edge, which comes up against the finite spatial size in the simulations. Nevertheless, we

found that performing calculations on a box with side length of about 10πσR could give reliable

results in the low-energy region of the spectrum, where localization lengths are smaller. This

means that we cannot reconstruct the energy distribution for all the samples studied in Sec.

5.2, but we can reliaby deduce it for all the cases where a consistent fraction of the atoms lies

well below the mobility edge. We hence take into consideration the range of disorder strengths

VR/kB ≥ 18 nK.

We solve the single-particle Schrödinger equation by exact diagonalization of the system.

The Hamiltonian is H = p2/(2m) + Vspeckle(r), where Vspeckle(r) is a 3D potential generated by

the interference of two synthetic speckles with transverse correlation length πσR = 2.4 µm, cor-

responding to the average of the experimental ones (see Sec. 4.3.2). We neglect the longitudinal

evolution of each speckle field, which is on a much longer length scale. The typical system is a

cubic box with side length L = 12.5 µm and a discretization length of 0.25 µm. The axes of the

cube are along the three principal axes of the crossed speckle field as in Fig. 4.7. All results are

averaged over at least 50 different realizations of the disorder.

We evaluate the momentum distribution of each single eigenstate ψ(Ei, r) by Fourier trans-

form. We integrate it along two spatial directions as in the experiment to obtain |ψ(Ei, k)|2. The

disorder-averaged collection of all |ψ(Ei, k)|2 is, besides a normalization constant, the spectral

function ρ(E, k).

The average density of states g(E) =
∫
ρ(E, k) dk shows a power-law scaling for energies

larger than a certain minimum energy E0: g(E) ∝ |E − E0|α. The typical exponents for g(E)
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Figure 5.8 | Numerical simulation of low-energy states. In a I report the average density of states obtained
from the simulated spectral function ρ(E, k) for VR/kB = 47(5) nK. The red line corresponds to a power-law
fit g(E) ∝ |E − E0|α. An exponent α = 1 is obtained for this specific disorder amplitude. The plot in b
represents a test of the validity of our numerical results. I plot the estimated value of Em (see Fig. 5.9)
obtained from the spectral function calculated with different sizes of the simulated system. The saturation
observed above 10 µm confirms that the finite size available in simulations is not affecting our results.

are between 1 and 2, and they grow with VR. In the example reported in Fig.5.8 a for VR/kB = 47

nK, we find α ' 1 .

5.3.3 Reconstruction of the energy distribution

Now that we dispose of the information about the momentum distribution and the spectral

function, we can proceed to reconstruct the average occupation probability of the energy states

using the realtion
∫
ρ(E, k)f(E) d(E) = n(k). We thus search for the f(E) that, weighted by the

spectral function and integrated over the energies, best reproduces the experimental n(k). We

find a very good agreement with data by using an exponential form f(E) ∝ exp(−E/Em). The

parameter Em, which can be seen as an effective temperature of the system, is found by fitting the

integral form for n(k) to the experimental one, as shown in Fig. 5.9 a. The energy distribution

is then found as n(E) =
∫
ρ(E, k)f(E) dE = g(E)f(E). Fig. 5.9 b shows the measured n(E)

for a relatively strong disorder, i.e. VR/kB = 47(5) nK. According to the scaling of g(E) found

in the simulations and already discussed above, we fit the measured energy distributions with

n(E) = g(E)f(E) = (E − E0)
α exp(−(E − E0)/Em). The parameter Em was deduced in the

reconstruction process of Fig. 5.9 a and the free parameters are E0 and α.

Note that the profile of n(E) we obtain is compatible with the observations relative to the

expansion in the disorder (Fig. 5.2). For VR/kB = 47(5) nK we indeed observed a long-time

behavior compatible with a plateau and we find here that the corresponding n(E) is narrow

and peaked at an energy Ep not far from the lowest significant energy E0. Assuming Ec ≈ VR,

as predicted by theory, this energy distribution is consistent with a large localized fraction, as
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Figure 5.9 | Reconstruction of the energy distribution. a) Schematic of the reconstruction process of n(E)
for VR/kB = 47(5) nK: the occupation probability f(E) is found so that the values of

∫
ρ(E, k)f(E)dE (red

dots) from the calculated ρ(E, k) match with the experimental n(k) (red line). The calculations are performed
on a discrete grid with spacing of 0.5 µm−1 and 2 nK in momentum and energy, respectively. b) Expanded
view of the reconstructed n(E). The data (dots) are fitted with the model described in the text (line).

suggested by the measurement of ∆〈x2〉(t).

5.3.4 A posteriori check of the numerical results

In order to estimate finite size effects on our numerical results, we have performed the simulations

for various box sizes L and then we have studied how the calculated quantities in momentum

space evolve with L. In Fig. 5.8 b we report for example the values of Em obtained from

the fit of n(E) as a function of the box size. The disorder strength is VR/kB = 47 nK and

the discretization lengths are in the range (0.2-0.3) µm. For small box sizes Em shows a clear

evolution with the size, while for the larger sizes it tends to saturate. This indicates that boxes

of (12-16) µm are large enough to correctly describe the evolution in momentum space of the

eigenstates in the energy range of our interest.

We note that if we perform a similar analysis in real space, for example by evaluating the
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one-dimensional participation ratio 1/
∫

(
∫
ψ(x, y, z)2 dydz)2 dx, which is a measure of the char-

acteristic length of the eigenfunctions, we find instead that our typical box of 12 µm gives reliable

results in real space only up to energies of the order of VR/3.

We thus conclude that, even if our finite-size simulations allow to properly describe only

the lowest states in the energy spectrum, their computing capability is sufficient to catch the

information relevant to our purpose. Data reported in Fig. 5.8 b indeed demonstrate that the

typical energy content of our system is well reproduced.

5.4 Spectroscopic technique to measure the mobility edge

Let us briefly summarize the steps made so far. We first implemented a loading procedure able

to populate the low-energy states of the disordered Hamiltonian. This allows to reconstruct the

energy distribution of the atoms, combining the experimental measurement of the momentum

distribution and the numerical calculation of the spectral function, the last giving reliable results

only in the low-energy part of the spectrum. In order to measure the position of the mobility

edge, there is only one step missing, which is the subject of the present section.

5.4.1 Perturbation scheme

The idea (sketched in Fig. 5.10) is to start from an atomic sample which is mostly localized and

with a known energy distribution and to excite a fraction of it with controlled energy. Studying

the energy needed to promote the excited fraction to diffusive states, we can determine the

position of the mobility edge.

Figure 5.10 | Scheme of the spectroscopic technique.
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Controlled energy excitations can be produced by applying a time-dependent perturbation

to the external disordered potential. In particular, we load the atoms in the disorder with the

desired amplitude VR, and then we apply a weak sinusoidal modulation VR(t) = VR(1+A cos(ωt)),

with A ' 0.2 and variable modulation frequency ω. In the limit of weak perturbations, we can

apply the well-known Fermi golden rule to calculate the excitation probability, which results to

be

p(E,ω) = A2
∑
i,f

|〈f |V (r)|i〉|2 δ(Ei − E) δ(Ef − (E + ~ω)), (5.2)

where E is the initial energy of the atoms and i,f are the labels for the initial and final states

which span over the whole energy spectrum. The excitation probability p is then in principle

depending both on the initial energy E and on the modulation frequency ω via the matrix

element |〈f |V (r)|i〉|. We estimated through numerical simulations that in the relevant range of

energies this dependence is sufficiently weak to allow the assumption that p is constant. I will

take over this point later and discuss the legitimacy of this assumption, also estimating its effect

on our results. The excited energy distribution is given by

n′(E, ~ω) = (1− p) n(E) + p n(E − ~ω), (5.3)

where n(E) is the initial energy distribution.

We apply the sinusoidal modulation to the speckles for 500 ms, then we leave the potential

at the fixed value VR and let the atoms expand into it. After a sufficiently long waiting time, the

atoms trasferred to diffusive states have spread enough to be effectively not visible to our imaging

system. The transfer to diffusive states is then detected as atom losses. We fix the waiting time at

twait = 500 ms, on the basis of the dynamics observed in Fig. 5.2. The diffusion coefficients from

500 ms up to the largest times are well below the diffusion quantum limit ~/3m. This means that

the residual dynamics we observe in this time interval can be associated both to diffusive atoms

very close in energy to the mobility edge and to localized atoms with long localization lengths

that are still adapting to their equilibrium configuration. Also after the excitation process, we

expect that if some diffusive component is still detectable on this timescale, it can only induce

a small shift in the estimation of Ec. In order to estimate a possible systematic shift, we will

perform the same measurement with a doubled waiting time and compare the results (see Sec.

5.4.3).

5.4.2 Excitation spectra

We measure the final atom number as a function of the modulation frequency ω and we find the

results showed in Fig. 5.11 for VR/kB = 47(5) nK. These data are used to deduce the position

of Ec by fitting them with

Nloc(ω) =

∫ Ec

0
n′(E, ~ω) dE =

∫ Ec

0
(1− p) n(E) + p n(E − ~ω), (5.4)
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where n(E) is the unperturbed energy distribution found in Fig. 5.9, while p and Ec are free

parameters. For the dataset reported in Fig. 5.11 the value of Ec obtained from the fit is

Ec/kB = 50(6) nK.

We find a very good agreement between the data and the model until a large-ω regime,

where we observe an unexpected increase of N . This behavior can be justified by considering

the reduced overlap in momentum space between deeply localized states and the essentially free

states high in the continuum, which reduces the excitation probability p. In the absence of a

precise model, we exclude the data at high frequency from the fit.

Let us take a closer look at the excitation spectrum in Fig. 5.11. The initial decrease of

N(ω) from 1 to 0.5 corresponds to shifting the excited fraction from the unperturbed one until

the minimum energy E0 is brought to Ec. In a sense Ec could be simply deduced from the onset

of the plateau ~ω2 in N(ω) as Ec = ~ω2 − E0.

A further check of the consistency of the model used to interpret N(ω) is found in the

behavior of two additional observables: the system size and the kinetic energy, both measured at

the end of the excitation process, like N(ω). The data are reported in Fig. 5.11 c,d. We observe

that they have a maximum value around the same excitation energy ~ω1. This excitation energy

perfectly matches with the energy needed to bring the peak of n(E) just below the position of

the mobility edge obtained from the fit of N(ω) in Fig. 5.11. This is indeed the condition to

have the largest fraction of atoms close to Ec, thus with the largest localization lengths and

the maximum energy. Furthermore, the maximum size reached after the modulation leads to

an estimation of an effective diffusion coefficient D = ∆〈x2〉/2∆t ' ~/2m. This value of D is

comparable to the one we measure for systems that have a peak energy Ep close to the mobility

edge from the very beginning, as for example the sample at VR/kB = 23(2) nK in Fig. 5.3,

confirming that at ~ω1 we realize an optimum transfer of atoms at the mobility edge.

5.4.3 Test of the main assumptions in the model

At the end of this section we want to verify the validity of the the main assumptions used in

the model of the excitation process, i.e. that we work in the weak perturbation limit and hence

in the framework of the Fermi’s golden rule, that the excitation probability can be considered

constant in the relevant range of energies and finally that the waiting time we used is sufficient

to lose diffusive atoms.

Linear response regime

To test the validity of the perturbative approach, we verify that the atom number at the end of

the excitation sequence, which is proportional to 1−p(E,ω), scales linearly with A2, as expected

from Eq. 5.2. The measurements shown in Fig. 5.12 are taken for two different values of ω at

VR/kB= 47(5) nK: the linear scaling we observe confirms that we are in the linear response

regime, hence the validity of Eq. 5.2.
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Figure 5.11 | Excitation spectra. a) During the time modulation of the disordered potential, a fraction of
the initial energy distribution gets shifted to higher energies by ~ω, where ω is the modulation frequency. For
sufficiently high ω, part of n(E) is excited above Ec and then diffuses away during the following waiting time.
b–d) At the end of twait we record the atom number (b), the kinetic energy (c) and the spatial size (d) of
the cloud as a function of ω. The data reported here are for VR/kB = 47(5) nK. The error bars represent
statistical uncertainties and correspond to one standard deviation. A fit of the atom number with the excitation
model described in the text (yellow line) gives the mobility edge at Ec/kB = 50(6) nK. Placing this threshold
on the energy distributions in b one can realize that the positions of the maximum size and kinetic energy
(at ~ω1) and of the minimum atom number (at ~ω2) in the spectra are consistent with the features of the
corresponding n(E, ~ω1,2) as explained in the text.

Constant excitation probability

We use numerical simulations to estimate the dependence of the excitation probability p on the

initial energy E. In order to stay in the low-energy regime where simulations are reliable (see Sec.

5.3.4) we consider low modulation frequencies. We find a typical linear scaling p(E) = p0 + cE
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Figure 5.12 | Validity of the perturbative approach. The atom number at the end of the excitation
sequence is measured for different values of the modulation amplitude A. The linear scaling with A2 confirms
the linear response regime and then the validity of the perturbative approach we used.

with p0 ' 0.5 and c ' 0.2 nK−1. If we consider this dependence in the calculation of n′(E, ~ω)

and hence in the fitting function for N(ω) (Eq. 5.4), we find a very small shift of Ec with respect

to the one obtained in the assumption of constant p. Actually, even a 3 times larger slope c

than the one we get in the simulations would not change Ec by more than 2 nK. This very

weak dependence of Ec on the actual form of p is probably due to the fact that the shape of

the excitation spectrum N(ω), and hence the result of the fit, are mainly determined by the

low-energy part of n(E), namely between E0 and Ep. This means that the method used to

determine Ec is only sensitive to the value of p in a small range of energy, thus insensitive to its

changing on a larger scale.

We therefore conclude that the approximation p(E,ω) = const provides reliable results for

the mobility edge and that a possible reduction of the excitation probability at high frequencies

does not affect the estimation of Ec.

Finite waiting time

In order to estimate the effect of the finite waiting time after the excitation sequence, we repeat

the measurement of the final atom number with a doubled waiting time twait = 1 s. The data

for the two different twait are reported in Fig. 5.13. We observe a small shift in the position of

the minimum atom number, then we build a simple model to estimate the asymptotic value of

Ec for an infinite waiting time. We start from the hypothesis that we are overestimating the

position of the mobility edge because of the presence of slow diffusive atoms still visible in the

imaging field of view, as suggested by the shift of the minimum atom number to lower energy

for longer twait. We suppose that the value of Ec(twait) measured after a finite waiting time is

shifted with respect to the true value Ec(twait →∞) by an amount that decreases exponentially
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with time: Ec(twait) = Ec(twait → ∞) + C exp(−twait/τ). We plug this into the expression of

Eq. 5.4, which becomes a two-variable function: Nloc(twait, ~ω) =
∫ Ec(twait)
0 n′(E, ~ω) dE . We

use this formula to perform a simultaneous fit of the two datasets, with Ec(twait → ∞), τ and

C as free parameters. The black and red lines in Fig. 5.13 represent the result of the fit at 500

ms and 1 s respectively. We find Ec(twait → ∞) = 44(3) nK, C = 0.5(1) nK and τ = 0.3(1) s.

This implies a shift of the mobility edge with respect to the one measured at twait = 500 ms of

6 nK. Since we cannot support the model for Ec(twait) with a complete set of data as a function

of time, we think it is more appropriate to use this result as a systematic error rather than as a

proper determination of the asymptotic value. A systematic error of -6 nK is then added to the

statistical uncertainties in the results for Ec (see Fig. 5.14).

Figure 5.13 | Effect of the finite waiting time. The same excitation spectra of Fig. 5.11 is measured for
two different waiting times. The two are fitted with the model explained in the text to estimate a possible
shift of the asymptotic mobility edge at infinite waiting time. Solid lines represent the fitted curves.

5.5 Mobility edge vs Disorder strength

Repeating the excitation procedure for several disorder strengths, we obtain the trajectory of the

mobility edge in the disorder-energy plane reported in Fig. 5.14. The range of disorder strengths

we could investigate allowed us to explore two different regimes and the crossover between them.

The most interesting regime for Anderson localization has always been considered that with

VR < ER, since in this case there is a very small probability that the atoms are trapped in

the single deep wells of the disordered potential, so that any localization effect can definitely

be attributed to quantum interference between multiple scattered waves, i.e. to pure Anderson

localization (see the discussion about this in Sec. 4.2). In this regime the spatial correlations

of the disorder should not have a dominant role, because Ec is smaller than the correlation

energy ER. When VR & ER the spatial correlations of the potential start to play a role and the

localization mechanism gets more intricate and related to the specific statistics of the random



86 Chapter 5. 3D Anderson localization and measurement of the mobility edge

potential we are using.

We observe that in the range of small VR, i.e. up to VR/kB= 47(5) nK our data are consistent

with a linear scaling of Ec with VR. When VR is increased above ER there is a clear reduction

of the slope of Ec.

0 2 0 4 0 6 0 8 0 1 0 00

2 0

4 0

6 0

8 0

1 0 0 D i f f u s i v e

 

 E  =  E R

E /
 k B (n

K)

V R  /  k B  ( n K )

E  =  V R

L o c a l i z e d

Figure 5.14 | Measured mobility edge versus disorder strength. Trajectroy of Ec (circles) separating
localized from diffusive states. White diamonds are the peak energies Ep of n(E) and white triangles are the
lowest energies E0. The error bars for Ep represent the statistical uncertainty in the determination of n(E).
The vertical error bars for Ec contain the statistical uncertainties in the determination of n(E) and in the fit
of N(ω), and also the systematic uncertainty from the finite waiting time; the horizontal ones represent the
10% uncertainty in the determination of VR (Sec. 4.4). All error bars correspond to one standard deviation.

5.5.1 Comparison with analytical and numerical results

Being our results the first experimental measurement of the mobility edge with ultracold atoms,

it worth carry out a detailed comparison with the available theoretical results. There are mainly

two class of theoretical works we can compare to: analytical results from self-consistent theories

and numerical simulations. I briefly describe the methods they use and their main outcomes and

then I compare them with our results.

Self-consistent theories

A first naive application of the self-consistent theory (Sec. 2.2.3) to ultracold atoms in speckle

potentials was developed in [53]. This early version was based on quite strong assumptions that

turned out to be significantly misleading: the scattering amplitude is evaluated at the lowest

order in the Born approximation and the spectral function and density of states are assumed

to be unaffected by the disorder (so-called “on-shell” approximation). The mobility edge was

predicted to be larger than the disorder strength and scaling as V 2
R.
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A first strategy to refine this initial formulation has been performed in [54] and [55]. In

particular, they go beyond the “on-shell” approximation by taking into account the real part

of the self-energy in the calculation of the spectral function. This has a dramatic effect on

the location of the mobility edge, which is now predicted to be below VR, with a dependence

on it which varies for large VR, as the correlation energy starts to play a role. Anyway, these

approaches are still limited to the lowest approximation order, so that their validity is confined

to a narrow range of small disorder strengths.

Figure 5.15 | Mobility edge from numerical calculations. Numerical calculations of the mobility edge
for cold atoms in 3D speckle potential. The thresholds for both blue-detuned (blue) and red-detuned (red)
configurations are measured. The results are compared with the predictions of the available self-consistent
theories: [53] (dotted line), [55] (dashed line) and [54] (dash-dotted line). Figure from [56].

Numerical results

In a recent theoretical work [56] D. Delande and G. Orso applied the transfer matrix method,

already used to simulate the Anderson model, to the problem of atoms in optical speckles.

They consider isotropic speckles and predict the behavior of the mobility edge on a range of

disorder strengths from zero to ER. They find that for blue-detuned speckles the mobility edge

is well below VR and deviates significantly from the predictions of the most recent self-consistent

theories [54, 55]. In particular they find that these approximate theories are able to reproduce

the numerical results for very low VR, namely VR < 0.2ER, but overestimate the threshold for

larger VR. They study also the case of red-detuned speckles and find a very different result: Ec

is initially very close to VR and below it, but for increasing disorder strengths it becomes larger

than VR and keeps on increasing. These results are reported in Fig. 5.15 in comparison with the

estimates from SC theory.

In [57] E. Fratini and S. Pilati apply a different computational method, drawn from quantum-

chaos theory, to estimate the position of the mobility edge, taking into account the effects of

anisotropy in the disorder correlation function. Their method is able to reproduce the same

results of [56] for the case of isotropic speckles, but it is also applied to realistic experimental
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conditions, which typically display anisotropic correlation lengths. They find that in the case of

“elongated” speckles, e.g. for a single speckle beam, the mobility edge is slightly reduced with

respect to the isotropic case. In the opposite case, when the speckles are “squeezed”, e.g. with

two interfering speckles, the mobility edge significantly increases with respect to the isotropic

value, always staying below VR. These two opposite behaviors are reported in Fig. 5.16 for a

specific value of the disorder strength, VR = Eσ, where Eσ is the correlation energy relative to

the transverse correlation length.

Figure 5.16 | Mobility edge as a function of the anisotropy parameter. Figure from [57]. σz and σ are
the axial and the radial correlation lengths, respectively. σz/σ > 1 represents the case of elongated speckles,
while σz/σ < 1 is the “squeezed” case, which also approximately describes the situation of interfering speckles
as in our experiment.

Let us compare the results in Fig. 5.14 with these numerical estimates. Our results are

typically ∼ 40% larger than the values predicted for isotropic speckles in [56]. Anyway, the

results of [57] clearly show the influence of anisotropy on the position of Ec and also predict a

shift of the mobility edge in the same direction of our data. Considering the specific correlation

lengths in our experiment, the predicted shift with respect to the isotropic case should be the

same as for the point at σz/σ = 2/9 in Fig. 5.16. The mobility edge should then be found at

Ec ≈ 0.7Eσ. This is still ∼ 30% smaller than our results in the same range of disorder strengths.

This discrepancy certainly requires further investigations. As the authors state in the conclusions

of [57], the computational technique they developed should be applied to the specific parameters

of our disordered potential to allow a detailed comparison. As they show in the plot of Fig. 5.16,

there is a quite steep increase of the mobility edge on the left side of the isotropic case, so that

the correct anisotropy should be taken into account to provide a significant prediction for our

experimental setup.

Note that the results of [57] are in sharp contrast with the experimental estimations provided

in [35], since in the “elongated” speckle case they predict a mobility edge even smaller than the

one for isotropic correlations, while the measured value is approximately three times larger. This

proves that the assumptions used for that experimental measurement, in particular those con-
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cerning the energy distributions, are not reliable and provide a mobility edge much larger than

the expected one. This fact highlights the importance of the novel technique we designed to de-

termine the energy distributions from experimental measurements and well controlled numerical

estimations, since not careful assumptions about the energy have proved to be highly misleading.

Now that reliable numerical estimations are available, a close experiment-theory interaction

could allow a final assessment of the problem of the mobility edge for correlated disordered

potentials.
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5.6 Outlook: effects of weak interactions

Most of the work of my PhD has been devoted to the study of non-interacting particles. In

what I presented so far, I showed that even the single-particle localization problem, which is

conceptually very simple, is hard to study in a quantitative way. The experimental techniques

developed in the past few years finally allowed us to measure the mobility edge, a property of

disordered systems first predicted by Anderson more than fifty years ago. The most natural

outlook is now the study of how finite interactions affect the behavior of disordered systems.

The problem becomes certainly much harder and the open questions concern even the basic

understanding of the phase diagram arising from the interplay of disorder and nonlinearities.

Inter-particle interactions certainly break the orthogonality of the single-particle states and

tend to couple them, but it is not clear at all if this process should result in a complete

breakdown of Anderson localization or not. There are examples in nature and theoretical

models of disordered systems where the interaction between particles destroys the localiza-

tion effect and gives rise to metallic phases, glassy phases or even to superconducting phases

[58, 59, 60, 61, 62, 63, 64, 65]. However, the existence of an insulating regime in presence of

interactions is not excluded and there are theories predicting the so-called many-body localization

(MBL) phenomenon [66].

The problem is very difficult and the experimental studies are still scarse. In this context,

ultracold atoms could once again provide an optimum investigation tool. So far the interplay of

disorder and interactions has been studied with atoms only in 1D [67, 58, 68, 69, 70, 71, 72, 73]

and 2D [74, 75]. Our experimental setup offers the opportunity of investigating the 3D problem

for the first time, in a system with a well characterized single-particle mobility edge. Using the

same approach as in the experiments of this chapter, we can study out of equilibrium properties,

i.e. the expansion dynamics of an interacting sample in disorder, which allows to detect whether

the system is localized or not.

variable waiting time t

loading phase absorption 
imaging

time

200 ms

100 ms

500 ms

disorder

trap

interaction

Figure 5.17 | Experimental sequence to probe the effects of weak interactions. We perform the same
quasi-adiabatic loading procedure used in Sec. 5.1 to prepare low-energy localized states. After that, we let
the system evolve for 500 ms so that the atoms reach their equilibrium localized configuration. At the end
of this localization time, we abruptly change the value of the scattering length from zero to a finite value a.
After a variable waiting time we image the atoms to investigate their transport properties.

The simplest experiment we can think of consists in preparing a non-interacting localized sam-
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ple, whose properties are now well characterized, and suddenly change the interaction strength to

some finite repulsive value. In order to do this, we follow the same loading procedure described

in Fig. 5.1 and then we instantaneously change the scattering length to a desired value a. We

let the system evolve in the disordered potential and we finally image the atomic cloud after a

variable expansion time (the sequence is depicted in Fig. 5.17).
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Figure 5.18 | Expansion in presence of weak repulsive interactions. We measure the second moment
of the atomic distribution 〈x2〉(t) as a function of the expansion time t for VR/kB = 74 nK and different
values of the scattering length a: 180 a0 (red), 1000 a0 (green), 5200 a0 (blue). The data are fitted with
〈x2〉(t) = 〈x2〉(t = 0) +Dtα (solid lines).

Exactly as in the non-interacting case, we measure the second moment of the one-dimensional

density distribution 〈x2〉(t) =
∫
x2 n(x, t) dx to probe the time evolution of the cloud. In Fig.

5.18 I report the data corresponding to a large disorder amplitude VR/kB = 74 nK and to three

different interaction strengths. We clearly see that the system starts expanding, indicating that

the interaction term triggers transport through the sample. The first qualitative conclusion is

that Anderson localization is broken and the system enters a conducting regime. By giving a

closer look to the kind of evolution we observe, we notice that it is not diffusive, since the squared

width does not grow linearly with time. We find instead a subdiffusive behavior [76, 77], where

the cloud evolves according to 〈x2〉(t) ∝ tα, with α smaller than one. A similar behavior has

already been observed for atoms in 1D [69].

It is interesting to try and reconstruct an intuitive explanation of the expansion we ob-

serve. From a theoretical point of view, a proper description of the interacting system requires

introducing a many-body Hamiltonian. In the limit of weak interactions, one can attempt a

perturbative approach. If the interaction energy Eint = gn, where g is the coupling constant
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g = 4π~2a/m and n is the atomic density, can be considered a perturbation with respect to

the disorder energy scale, the single-particle eigenstates are only weakly modified by interac-

tions. If Eint > δE, where δE is the typical energy distance between single-particle states in a

unit volume, the interaction term couples neighbouring states, i.e. those within a localization

length. The expansion can therefore be interpreted as the progressive coupling of the initially

occupied states to empty states in the periphery of the sample. As the atoms move away from

the intial position, the density decreases and therefore also the interaction energy decreases, thus

reducing the coupling rate. At an intuitive level, this justifies the subdiffusive behavior, since

the instantaneous diffusion coefficient decreases with time. This explanation perfectly fits with

our experimental conditions, since the typical interaction energies we introduce are sufficient to

achieve a good coupling between localized states. The energy separation between the single-

particle eigenstates in the speckle potential is indeed of the order of δE/kB ∼ 1 nK. Taking into

account the typical densities in our non-interacting localized samples and the scattering lengths

of Fig. 5.18, we find that the initial interaction energy ranges from 1 to 10 nK×kB. This means

that the interaction energy is sufficient to couple a significant number of localized single-particle

states, so as to trigger the expansion dynamics.
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Figure 5.19 | Evolution of the kurtosis. The kurtosis k = 〈x4〉/〈x2〉2 − 3 is plotted versus time for
VR/kB = 74 nK and different scattering lengths: 180 a0 (red), 1000 a0 (green), 5200 a0 (blue). A data relative
to the non interacting case (triangle) is reported for comparison. The horizontal dashed line corresponds to
the Gaussian profile, separating the peaked distributions (above it) from the flat-top ones (below). At long
time all the interacting datasets end up in the flat-top region.

A further confirmation of the consistency of our observation with a subdiffusive model is

provided by the time evolution of the shape of the cloud. It was indeed observed in the experiment



5.6. Outlook: effects of weak interactions 93

on 1D systems [70] that the subdiffusive expansion was related to a change in the profile of the

atomic distribution, which turned from Gaussian to flat-top profiles at long time. The coupling

between single-particle states is indeed stronger at the center of the cloud where the density,

and thus the interaction energy, are higher. This implies that the atoms at the center move

faster than those on the tails of the distribution, leading to a progressive change in the overall

shape. This effect is even more prominent in our case, since the atomic distribution is distinctly

peaked in the initial localized configuration and then develops a flat-top profile. A quantitative

estimation of this change is provided by the measurement of the kurtosis, which is derived from

the fourth moment of the density distribution as k = 〈x4〉/〈x2〉2 − 3. The kurtosis is defined in

such a way that k = 0 in a Gaussian distribution, while k > 0 indicates a peaked profile and

k < 0 a flat-top. In Fig. 5.19 I report the evolution of the kurtosis during the expansion of the

cloud for the same values of VR and a of Fig. 5.18. It is clear that for all the cases reported

there the atomic profile goes to negative values of the kurtosis at a certain time, while the data

relative to the non-interacting case is close to k ∼ 1 even at long time.

So far we have presented data relative to the expansion in presence of repulsive interactions.

What happens if the interaction is tuned to some finite but attractive value? We repeated

the same measurement as before for a small negative scattering length a = −14 a0. In Fig.

5.20 I report the behavior of both the second moment of the distribution 〈x2〉(t) and of the

kurtosis. The system behaves very similarly to the repulsive case, showing the symmetry of the

phenomenon we are observing. This is indeed what one would expect by considering the initial

“thermal” distribution of atoms in the non-interacting spectrum.

a b

Figure 5.20 | Expansion in presence of weak attractive interactions. We measure the second moment
(a) and the kurtosis (b) of the atomic distribution as a function of the expansion time t for VR/kB = 74 nK
and a = −14 a0. The solid line in a is the fit with the subdiffusive model reported in the text.

The observations reported so far have proved that the localized regime detected in the non-

interacting case is broken when adding finite repulsive or attractive interactions that couple

a large number of single-particle states. In particular, the dynamics observed is compatible

with subdiffusion, which is the expected behavior for a disordered interacting system out of
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equilibrium. Although the qualitative behavior is well understood by the simple intuitive picture

I presented above, a quantitative description of subdiffusive dynamics is not an easy task. There

are theories [78, 79] predicting the value of subdiffusion exponents in different dimensionalities,

which are based on the estimation of the statistical distribution of states coupled by interaction.

For the 3D case, they predict an exponent α = 1/7. Nonetheless, these theories only partially

account for the specific nature of disordered interacting systems. They do not consider, for

example, the presence of the single-particle mobility edge, thus supposing that the atoms only

move through the sample by transfer between localized states. It is instead possible that the

initially localized atoms couple to extended states above the threshold, which would certainly

increase the expansion velocity. Furthermore, the interaction term is treated in a mean field

approximation, that do not account for many-body localization effects. In the weak coupling

regime, i.e. when the interaction energy is smaller than the energy spacing between the single-

particle states, one can expect that the system remains in a localized regime, different from the

Anderson one, which would be classified as MBL. Such an effect would probably reduce the

asymptotic subdiffusion exponents, which could be a smoking gun for the occurrence of MBL.

This basic considerations prove that even an apparently simple phenomenon as subdiffusion

needs a careful consideration to be properly described!

We perform a preliminary comparison of our data with the theoretical expectations of [78, 79].

We fit the data in Fig. 5.18 and 5.20a with the subdiffusive model 〈x2〉(t) = 〈x2〉(0)+Dtα and we

find the exponents α reported in Fig. 5.21. The results we get are somewhat surprising, since we

observe that α decreases with the interaction energy. This is a counterintuitive behavior, since

one would expect that the dynamics gets faster as the interaction energy is increased. This is

also in contrast with the results obtained in 1D [69], where the exponent was slightly increasing

with Eint. Our results are close to the value predicted in [78] (dashed line) only for the largest

scattering lengths. Anyway, in order to perform a serious comparison with any theoretical pre-

diction, a more careful consideration of some experimental issues is required. One should for

example consider if the expansion times probed so far are sufficient to determine the asymptotic

behavior of the system, which is essential to properly measure the subdiffusion exponent. In

addition to this, we will need to consider the effect of atom losses. When strong interactions

come into play, one has to pay attention to three-body losses, which would contribute to an ad-

ditional decrease of the atomic density with time. Another major issue that manifests as atom

losses is instead related to a detection problem. When the cloud expands beyond a certain size,

the atomic density is so low that our imaging system cannot distinguish the signal from noise.

This is clear if one plots the recorded atom number versus the squared width of the cloud (Fig.

5.22). There we see that the atom number depends on the size of the system, which means that

for the largest clouds we are probably losing signal on the tails of the distribution, thus effec-

tively underestimating the width. These considerations let us conclude that the measurements

performed so far provide a first clear evidence of the delocalizing effect of finite interactions on

a single-particle localized system, but a quantitative description of the dynamics we observe will
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require further detailed analysis.
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Figure 5.21 | Expansion parameters vs scattering length. Fitted parameter α for the expansion reported
in Fig. 5.18 and 5.20a, for VR/kB = 74 nK and different values of the scattering length a. The dashed red
line corresponds to the theoretical value predicted in [78].
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Figure 5.22 | Detection issues for large clouds. We report the measured atom number against the second
moment of the distribution. We clearly see that the signal decreases for increasing widths, which means that
we are probably losing signal on tails of the distribution. The effect does not seem to depend strongly on the
interaction strength.

The preliminary study reported here has certainly remarked the difficulty in exploring the

complex phenomena arising from the interplay of disorder and interactions, but it also showed
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that the experimental setup we used is a promising tool for further investigations, due to the

possibility of tuning both parameters and probe different regimes.



Chapter

6 Conclusions and outlook

In this thesis I first provided a background on the studies about Anderson localization, describing

the emergence of the phenomenon in the context of condensed matter physics and introducing its

relevance in understanding the conduction properties of certain materials. In particular I tried

to highlight how the quantum phase transition related to AL is an aspect of primary importance.

The identification of the critical parameters for the occurrence of localization could indeed clarify

some aspects of metal-insulator transitions occurring in solids, a problem which is as old as

still eluding a complete understanding. Furthermore, the study of the Anderson transition is of

fundamental interest: it is sufficient to leaf through the book “50 years of Anderson localization”

[2] to recognize that there are a number of peculiar features concerning with AL that justify the

huge interest arisen around it in the past few decades.

I have then retraced the milestones of the study of the Anderson transition. On one side I

recalled the main results concerning with a theoretical comprehension of it: from the general

picture provided by scaling theory, to the microscopic analysis of self-consistent approaches and

the crucial contribution of numerical simulations. On the other hand I presented the efforts

performed to detect and characterize it in experiments: from the evidence of localization in elec-

tronic systems, masked by interaction effects, to the observation of the pure Anderson transition

in classical waves and atomic kicked rotors. This path allowed to gain a broad view on the

present understanding of the phenomenon and on the fundamental open questions.

I have then presented the experimental setup we used to try and answer some of these basic

questions. The ultracold gas of 39K atoms provides an ideal tool for the investigation of disorder-

related phenomena, due to the tunability of atomic interactions, which allows to switch from

the perfect non-interacting to the weakly-interacting regime. The random potential needed to

observe AL was then provided by using laser speckles, which have already proved to be a versatile

tool to this purpose.

In this experimental context, we designed a novel experimental technique to study the occur-

rence of the Anderson transition in a system where the energy distributions are well controlled

and measured. The loading procedure into disorder, together with the spectroscopic strategy to

probe the mobility edge, have thus allowed us to measure the localization threshold in a broad

range of disorder strengths, within a model based on well controlled assumptions.

Recent numerical estimations, obtained in the same period of our experiment, have now

provided the first reliable predictions about the position of the mobility edge in a correlated

disordered potential. There is still not a perfect agreement with our results, since the expected

threshold is typically smaller than the one we measured. Anyway, a strict comparison with
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theories is still not possible, since the detailed features of our experimental potential have never

been simulated so far. In fact, a recent work proved the crucial influence of anisotropy in the

spatial correlations of disorder on the position of the mobility edge, which has then to be treated

carefully. The latest improvements in numerical computations, together with the energy-control

technique we designed, are then promising for an early conclusive assessment of the mobility

edge in this kind of systems, i.e. non-interacting matter waves in correlated 3D disorder.

A further characterization of the transition would then imply a measurement of the critical

exponents. This could be realized by trying to get narrower energy distributions so as to improve

the energy resolution when probing the critical point. Another relavant issue to be explored

would be the emergence of the Anderson transition when increasing the dimensionality from

the critical value d = 2, where no transition occurs, to d = 3. This could be implemented by

using a one-dimensional lattice, to confine the atoms in 2D disks, and then varying the tunneling

between neighbouring disks to achieve an effective d = 2 + ε dimensionality.

The most interesting outlook of the experiment presented here is the study of the effects

of interactions on the localization problem. The investigation of the interplay between disor-

der and interactions would indeed close the gap with the original problem of metal-insulator

transitions for electrons and it is relevant to a number of different physical systems, ranging

from superconductors, graphene and light in nonlinear media to biological molecules as DNA.

A first step in this sense has been done in the very end of Chapter 5, where we studied what

happens to a non-interacting localized sample when weak interactions are suddenly turned on.

The first preliminary observations showed that weak interactions break AL triggering transport

in a subdiffusive regime. A more complete experimental characterization and a detailed study

of the existing theoretical predictions will allow to investigate for the first time the phenomenon

of subdiffusion in three-dimensional systems.

The number of phenomena arising from the interplay of disorder and interactions is actually

large and it spans from many-body localization [66] to Bose-Einstein condensation in presence of

disorder [80, 81, 82]. Theoretical approaches to these kind of problems are really hard, due to the

high degree of complexity, which is beyond reach both for analytical and numerical methods. In

the past two decades ultracold gases have been successfully employed as quantum simulators of

complex systems and in the same case of the experiment reported in this thesis they have proved

their value in this sense. For this reason, the experiments on ultracold gases are certainly the most

promising system to tackle the long-standing questions concerning with disorder and interaction.

They offer for example the opportunity of studying both short and long-range interactions, the

first being achievable in an experimental system like ours, the second by making use of newly

explored systems like dipolar atoms/molecules or Rydberg atoms. One would indeed expect

that the two kinds of correlations lead to different kind of regimes, which would be interesting

to investigate.
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[42] M. Landini, S. Roy, L. Carcagǹı, D. Trypogeorgos, M. Fattori, M. Inguscio and G. Modugno,

“Sub-Doppler laser cooling of potassium atoms”, Phys. Rev. A 84, 6 (2011).



102 Bibliography

[43] M. Landini, S. Roy, G. Roati, A. Simoni, M. Inguscio, G. Modugno and M. Fattori, “Direct

evaporative cooling of 39K atoms to Bose-Einstein condensation”, Phys. Rev. A 86, 6 (2012).

[44] C. J. Joachain, “Quantum Collision Theory”, North Holland, Amsterdam (1983).

[45] C. Cohen-Tannoudji, J. DuPont-Roc and G. Grynberg, “Atom- Photon Interactions: Basic

Processes and Applications”, Wiley Science Paperback Series, Wiley (1998).

[46] W. Ketterle, N.J. van Druten, “Evaporative cooling of atoms”, Advances in Atomic, Molec-

ular, and Optical Physics, edited by B. Bederson and H. Walther, Vol. 37, 181-236 (1996).

[47] C. Chin, R. Grimm, P. Julienne, E. Tiesinga, “Feshbach Resonances in Ultracold Gases”,

Rev. Mod. Phys. 82, 1225-1286 (2010).

[48] C. D’Errico, M. Zaccanti, M. Fattori, G. Roati, M. Inguscio, G. Modugno and A. Simoni,

“Feshbach resonances in ultracold 39K”, New J. Phys. 9, 223 (2007).

[49] J. W. Goodman, “Speckle Phenomena in Optics : Theory and Applications”, (Roberts and

Co. 2007).

[50] B. Shapiro, “Cold atoms in the presence of disorder”, J. Phys. A 45, 143001 (2012).

[51] G. Semeghini, M. Landini, P. Castilho, S. Roy, G. Spagnolli, A. Trenkwalder, M. Fattori,

M. Inguscio and G. Modugno, “Measurement of the mobility edge for 3D Anderson local-

ization”, Nat. Phys. 11, 554–559 (2015).
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U. Schneider and I. Bloch, “Observation of many-body localization of interacting fermions

in a quasirandom optical lattice”, Science 349, 842-845 (2015).

[74] M. Robert-de-Saint-Vincent, J.-P. Brantut, B. Allard, T. Plisson, L. Pezzé, L. Sanchez-
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