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Introduction

After the achievement of Bose-Einstein condensation (BEC) in dilute gases of alkali
atoms [1–3], many experimental efforts were dedicated to the study of the funda-
mental properties of the condensate. The most attractive feature of such a system
is that it can be completely described theoretically [4] due to the weakly interacting
nature, and thus it represents a testing ground for studying more general physi-
cal phenomena, such as superfluidity and coherence. Indeed, since Bose-Einstein
condensation is the macroscopic occupation of the lowest available quantum state,
the system is described by a single wavefunction. Bose-Einstein condensate is thus
phase-coherent as an optical laser field and it shows all the features related to su-
perfluidity, as experimentally observed [5; 6]. Bose-Einstein condensation in dilute
gases shows up at very low temperatures. These sub-microKelvin temperatures
are reached by combining two cooling procedures, laser cooling and evaporative
cooling, which have allowed so far the observation of BEC in samples of Rb [1; 7],
Na [2], Li [3], H [8], He [9], Cs [10].

In recent years, considerable interest has been devoted to extend these ex-
perimental techniques to the production of other degenerate systems composed
by fermionic atoms and by more exotic species like molecules. In particular, the
quest of Cooper-pairing transition in a dilute gas of fermions and the realization of
molecular BEC pose the challenge of new and exciting developments in this area
of physics.

The work of this thesis takes place inside this new context of research. We
have produced degenerate mixtures composed by isotopes of potassium and by
rubidium atoms. The novelty of this system relies on the possibility of investigating
the properties of samples consisting either of two Bose-Einstein condensates or of
a Fermi gas interacting with a Bose condensate. Potassium atoms are cooled to
quantum degeneracy by means of sympathetic cooling with rubidium atoms. In
this way it has been possible to achieve for the first time a BEC of 41K atoms, so far
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prevented by the inefficacy of the standard cooling techniques in cooling potassium
[11]. The study of the boson-boson 41K-87Rb mixture has allowed the realization
of a binary Bose-Einstein condensate of two different species [12]. This system
composed by two strongly interacting superfluids appears very suitable for the
production of ultracold dipolar molecules [13], whose main and more interesting
feature relies on the long-range character of the dipole-dipole interaction. These
interactions are indeed partly attractive and partly repulsive and they can be
much stronger than the usual Van der Waals forces. In case of dipolar bosons new
quantum phase-transitions have been predicted and it has been also suggested
that bosonic dipoles can represent a promising system for implementing quantum
computing [14].

Sympathetic cooling of the fermionic 40K with 87Rb atoms has instead permit-
ted us to produce a Fermi gas of potassium interacting with the BEC of rubidium,
overcoming the fundamental limitations in cooling identical fermions due to the
suppression of collisions at ultralow temperatures [15]. The possibility of having
a degenerate gas where the interactions between the particles are absent is impor-
tant, for example, for increasing the precision and the stability of atomic clocks
[16], actually limited by the frequency shifts induced by collisions between parti-
cles. While the interactions between the atoms in the Fermi gas are not relevant,
the ones between the degenerate fermions and the Bose-Einstein condensate has
been suggested to strongly influence the stability of the mixture [17]. In our sys-
tem, we were actually able to observe the collapse of the Fermi gas of 40K, driven
by the presence of the Bose gas of rubidium [18]. This observation shows that
the interactions between fermions can be effectively manipulated with the use of a
BEC and this is particularly important for the quest of superfluidity in a dilute gas
of fermions. Indeed, it has been proposed [19] that such boson-fermion interaction
is likely to induce an effective attraction between fermions. This attractive inter-
action is similar to the phonon-induced correlation between pairs of electrons in
superconductors and it is predicted to largely favour the pairing between fermions.
The optimal conditions for observing BCS-like transition occurs at the onset of
collapse where the critical temperature for achieving fermion superfluidity is com-
parable with the Fermi temperature of the system.



The outline of this thesis is the following.
In the first chapter we briefly introduce the physics of ultracold interactions, point-
ing out the substantial differences between fermionic and bosonic systems. We also
give the theoretical background on degenerate trapped fermions and bosons, and
we describe the experimental techniques to achieve the degenerate regime in such
systems. The second chapter is dedicated to the description of the experimental
apparatus we have used for producing the potassium-rubidium mixtures and also
to the physical properties of potassium and rubidium atoms.
In the third chapter we report on the achievement of Bose-Einstein condensation
of 41 by means of sympathetic cooling with rubidium atoms. In particular, the
efficiency of sympathetic cooling is assured by the large interspecies interaction
between potassium and rubidium. We also discuss the experimental results of ac-
curate collisional measurements performed on the 41K-87Rb mixture from which we
have been able to deduce the interaction properties of all the potassium-rubidium
isotopic pairs.
In the fourth chapter we describe the experimental realization of the binary BEC
composed by a Bose-Einstein condensate of 41K interacting with a Bose-Einstein
condensate of 87Rb, and we also give the theoretical tools which describe such
mixture. The stability against collapse of such degenerate mixture depends on
the large and repulsive character of the 41K-87Rb interaction. We present also
the results of our investigations on the dynamics of these two superfluids in the
magnetic trap, showing how it has been possible to induce scissors-like oscillations
by forcing collisions between the two BECs.
The last chapter is dedicated to the 40K-87Rb degenerate mixture. We produce
a system composed by a Bose-Einstein condensate of 87Rb immersed in a Fermi
sea of 40K. Also in this case, the efficiency of sympathetic cooling is assured by
a large interaction between potassium and rubidium atoms, which is predicted
to be attractive. We also present the main theoretical issues which describe the
mixture. We report on the observation of the collapse of the Fermi gas, induced
by the large and attractive interaction with the Bose gas of rubidium, discussing
the implications of such an observation for the achievement of superfluidity state
in a gas of potassium atoms.





CHAPTER 1

Trapped Quantum Gases

All the particles in nature belong to two families: the bosons and the fermions.
The spin of the bosons is a multiple integer of ~, while the one of the fermions is a
half-integer of ~. This characteristic determines the different quantum behaviour
of the two classes.
The quantum nature of bosons and fermions becomes evident as soon as the spread
of the wavepacket associated at each particle becomes comparable with the mean
distance between two of them. At this point the system is said to be degenerate. As
a direct consequence of the different statistics, bosons can occupy macroscopically
the ground state of the system, while fermions arrange themselves individually in
each quantum state.

In this chapter we show how the different statistics largely affects also the col-
lisional behaviour of fermions and bosons. In particular, in the regime of ultracold
temperature and weak interactions identical fermions do not collide while the col-
lisional properties of a gas of bosons are determined by only one parameter, the
scattering length a.
We also discuss the main characteristics of trapped Fermi and Bose gases and
the experimental procedures by which it is possible to produce and investigate such
systems.
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1.1 Principles of scattering theory

Consider two particles of mass M interacting via a potential V (r1 − r2) [20]. The
Hamiltonian which describes this system is given by:

H =
P 2

1

2M
+
P 2

2

2M
+ V (r1 − r2) (1.1)

It is worth to consider the same problem in the center of mass frame, introducing
the following variables:

RG = (r1 + r2) /2 (1.2)
PG = p1 + p2 (1.3)

and

r = r1 − r2 (1.4)
p = (p1 − p2) /2 (1.5)

Substituting these new variables inside the Hamiltonian, one gets:

H =
P 2

G

4M
+
p2

M
+ V (r) (1.6)

As we see from (1.6), the center of mass moves as a free particle of mass 2M ,
while all the collisional physics is contained inside the second term of (1.6), that
corresponds to the scattering of a particle of mass mr = M/2 by the potential
V (r). Then the study of this scattering process reduces to find the eigenstates of
the Hamiltonian of the relative motion:(

p2

2mr
+ V (r))ψk(r

)
= Ekψk(r) (1.7)

where Ek = ~2k2/2mr and we suppose V (r) → 0 when |r| → ∞. We look for the
asymptotic solutions of (1.7) that have the following form:

ψk(r) ∼ eikr + f(k,n,n′)eikr/r (1.8)

where n = k/k and n′ = r/r. This kind of solutions has an intuitive meaning: the
first part of (1.8) represents an incident plane wave propagating with wave-vector
k, while the second one is the diffuse wave. The amplitude of the diffuse wave,
f(k,n,n′) is called ”scattering amplitude” and it is related in a very simply way
to the scattering cross-section for this potential:

σ(k,n) =
∫
|f(k,n,n′)|2d2n′ (1.9)



To solve the 3D Shrödinger equation and to find the scattering amplitude, is
usually a very difficult task and only in few cases it is possible to get the exact
solution. To considerably simplify our problem, it is possible to consider the
special case of a spherical symmetric potential V (r) = V (r). Indeed, as we will
show soon, our 3D problem is then reduced to a 1D problem for which it is easy to
write the exact solution. To take advantage of the new symmetry of the problem,
it is useful to expand the incident and the scattered wave functions on a basis set
of the relative angular momentum operators L2 and Lz, where we defined z as the
direction of the incoming wave.

ψk(r) =
∞∑

l=0

m=l∑
m=−l

Y m
l (θ, φ)

uk,l,m(r)
r

(1.10)

where φ is the azimuthal angle and Y m
l (θ, φ) are the spherical harmonic functions.

The scattering state ψk(r) is asymptotically the sum of the incoming wave and
the diffuse wave f(k, θ)eikr/r:

ψk(r) ∼ 1
2ikr

∞∑
l=0

(2l + 1)(cosθ)((−1)l+1e−ikr + e2iδl eikr) (1.11)

where the phase shifts are real, and they have to be determined in order to solve our
initial scattering problem. In order to do this, we have to solve the 1D Schrödinger
equation for the radial function uk,l,m(r):

u′′k,l,m(r) + (k2 − l(l + 1)
r2

− 2mrV (r)
~2

)uk,l,m(r) = 0 (1.12)

We consider as asymptotic expression for uk,l,m(r) the following:

uk,l,m(r) ∝ (−1)l+1e−ikr + e2iδleikr (1.13)

Then the scattering amplitude becomes:

f(k, θ) =
1

2ik

∑
l

(2l + 1)(e2iδl − 1)Pl(cosθ) (1.14)

where l = 0, 1, 2, .. for the s, p, d, .. partial waves contribution. The scattering
cross-section σ(k) reads as:

σ(k) =
∞∑

l=0

σl(k) (1.15)

with

σl(k) =
4π
k2

(2l + 1)sin2δl(k) (1.16)



The expressions we have written so far have implicitly assumed that the particles
were distinguishable, since we could separate the contribution of positive and neg-
ative momenta +k and −k. To consider the case of identical particles, we have
to (anti)symmetrize the two particles wavefunction of identical (fermions) bosons
respectively. It is possible to show that this corresponds to change the angle θ in
π − θ, so that (1.11) becomes:

ψk(r) ∼ eik·r + εe−ik·r + eikr/r (f(k, θ) + εf(k, π − θ)) (1.17)

where ε = −1, 1 for fermions and bosons respectively. The differential cross-section
becomes then:

dσl(k)
dΩ

=
1

2k2
|

∑
leven, lodd

(2l + 1)(ei2δl − 1)Pl(cosθ)|2 (1.18)

and

σ(k) =
8π
k2

∑
leven, lodd

(2l + 1)sin2δl (1.19)

As we can read from (1.19), in the case of identical bosons and fermions, the
partial cross-section is twice as large as the one for classical particles. Furthermore,
due to the parity of the Legendre Polynomials (−1)l, only few partial wave give
contribution to the scattering cross-section. In the case of identical bosons, only
the partial waves with l even contribute, while for identical fermions are non zero
only the odd ones. Consequently the scattering cross-sections can be written as:

σ(k) =
8π
k2

∑
leven

(2l + 1)sin2δl (1.20)

σ(k) =
8π
k2

∑
lodd

(2l + 1)sin2δl (1.21)

for bosons and fermions respectively.

1.1.1 Low-energy limit and unitary limit of the scattering length
So far we do not have considered any effect of the temperature on the scattering
process. In fact, the collisional properties are strongly affected by the temperature.
In particular, the quantum features of the scattering become evident at very low
temperatures, typically T � 1 mK, which are however accessible in the standard
cold atoms experiments [5; 6]. To gain a more quantitative insight to this depen-
dence, consider the equation (1.12). The effective potential is composed by two
terms: one, V (r) is simply the atom-atom interaction and it is the cause of the
phase shifts that we have seen before. The second one, ~2l(l + 1)/2m2

r describes
instead the centrifugal barrier due to the relative angular momentum between the



two particles and it is zero only in the case of the l = 0 partial wave. Suppose now
that l 6= 0: if the relative particle has an energy E lower than the height of this
effective potential, it will not feel any potential V (r) and it will be then reflected
by the centrifugal barrier. Subsequently, we expect that only the contribution of
the l = 0 partial wave will survive at very low temperatures. It is possible to show
[20], that for k → 0:

δl(k) ∝ k2l+1 (1.22)

so that the scattering cross-section becomes:

σl 6=0 =
8π
k2

(2l + 1)sin2δl ∝ k4l → 0 (1.23)

In the case of l = 0, we find that:

limk→0σl=0(k) = 8πa2 (1.24)

for bosons, where the scattering length a is defined by:

a = −limk→0
tanδ0(k)

k
(1.25)

From equation (1.23), we see that the contribution of all the partial waves with
l 6= 0 goes to zero as T 2l as observed experimentally in the case of the fermionic
40K [21] and this behaviour is particularly crucial in the case of identical fermions.
It is possible to derive [22] the energy dependence of the total scattering length in
the effective range theory:

σ(k) =
8πa2

(1− 1/2k2are)2 + k2a2
(1.26)

where re is the effective range of the potential. For large ka, the elastic cross-
section saturates to the so called ”unitary limit” for s-wave collisions σ = 8π/k2.
This energy dependence of the cross-section has been demonstrated in the ex-
periment of J. Dalibard on cold Cs atoms [23]. Only few words to comment on
the physical meaning of the unitary limit. The unitary limit is reached when the
magnitude of the scattering length becomes larger than the deBroglie wavelength
associated to the atoms: in this case, the scattering cross-section is independent
from the scattering length but proportional to the square of the deBroglie wave-
length and it reaches its maximum value.

Comments

The most important results we have obtained from the previous discussion is that
at, very low temperatures, identical fermions do not collide, while the scattering
cross-section for identical bosons is described by a single parameter, the scattering
length a by σ = 8πa2.



Indeed, in the case of fermionic atoms, only the odd l partial waves contribute to
the scattering cross-section, but these ones are highly suppressed in this tempera-
ture regime, since the contribution of all the partial waves with l 6= 0 goes to zero
as T 2l. This peculiar behaviour strongly affects the possibility of cooling fermions
down to quantum degeneracy. Indeed because of this suppression in the collisional
processes, it is not possible to perform the standard technique of evaporative cool-
ing by which it is has been reached the degeneracy in dilute atomic systems [5].
However, this strong limitation in cooling fermions can be circumvented using
essentially two different strategies. The first is to use a system composed by
distinguishable fermions as in the experiment running at Jila [24] and at Duke
University [25; 26]. In both cases, mixtures of two spin states of 40K and 6Li
atoms respectively were brought to quantum degeneracy by exploiting allowed
s-wave collisions between particles trapped in two states.

Another way of proceeding is to mix together the fermionic atoms with bosons,
belonging to the same atomic specie [28], [29], or to a completely different one
[15; 30]. By cooling selectively the bosonic component it is possible to cool down
the fermionic one by means of elastic interspecies collisions (sympathetic cooling).
The general advantage of this cooling method is that it allows the production of
degenerate mixtures composed either by two interacting Bose-Einstein condensates
[12; 27] or by a Fermi gas interacting with a BEC [15; 28–30].

1.2 Cooling atoms by elastic collisions

In the previous sections we have derived the relevant results of the scattering
theory in the case of dilute atomic systems, for which the range of the interatomic
force is small compared to the mean distance between particles and the scattering
involves only pairs of atoms (binary collisions). We have shown that at sufficiently
low temperatures (in the range of µK), the scattering cross-section for identical
bosons is simply σ = 8πa2 while identical fermions do not collide.

In the first part of this section, we describe the mechanism of evaporative cooling
which directly exploits elastic collisions between atoms and which is the only cool-
ing method which allows to reach the degeneration regime in dilute gases. In the
last part, we instead discuss the other cooling technique, sympathetic cooling , by
which it is possible to obtain degenerate mixtures of atoms of different species,
and also the achievement of the degenerate regime for identical fermions.

1.2.1 Evaporative cooling

Evaporative cooling is a quite familiar phenomenon. Indeed, everybody exploits
it, for example, for cooling a cup of tea. The main idea is that, for decreasing
the temperature of a system, the easier thing to do is to continuously remove
the particles with higher energy. In this way, after the subsequent thermalization



mediated by elastic collisions between the remnant atoms, the temperature of the
system will decrease.

The first developing of evaporative cooling in the context of cooling atomic
gases was proposed and then realized at MIT as a method for cooling atomic
hydrogen [31; 32], and later was used for cooling below microKelvin every alkali
atoms [5; 6].
Evaporative cooling of dilute gases is usually performed in magnetic or in op-
tical traps. In the former case, the atoms previously all pumped in one speci-
fied low − field seeking internal state are trapped in a minimum of the magnetic
field. The coupling energy between the particles and the external potential is
U = gFmFµB |B|, where mF is the Zeeman level, gF is the Lande’ factor and
µB is the Bohr magneton. Since not every atomic internal state is trapped by
the potential (the so called high − field seeking internal state), the removal of the
atoms is performed by driving RF or µ-wave transitions from the trapped to the
untrapped states. The selectivity in the energy is achieved since the resonances of
these transitions depend from |B| due to the Zeeman effect. Different classes of
atoms can thus be cut out from the trap by the knife depending on their spatial
position inside the trap and hence on their temperature.
One of the most important parameter which characterizes the efficiency of the
evaporation is η = Ec/kBT , the ratio between the cutting energy Ec and the
temperature of the system. The evaporation works well if η ranges from 4 to 10:
indeed if we cut too hard inside the thermal distribution of the sample we induce
losses, since we do not allow an efficient thermalization between atoms. Evapo-
ration decreases the temperature of the system, but also decreases the ability of
the system to thermalize. Indeed, by writing the relation between the elastic colli-
sional rate and the temperature as Γ = nσvT where σ ∝ a2 and vT ∝

√
T we see

that a reduction in the temperature corresponds to a reduction in the collisional
rate. This is the reason why the evaporation must be forced by keeping the η pa-
rameter constant. Anyway, since the elastic collisional rate depends also from the
atoms number, the rate at which temperature is reduced must be accomplished
by a similar and if possible smaller decrease in the number of atoms.
Since inside the trap we do not have only elastic collisions between atoms, but
also inelastic collisions which cause losses and heating of the sample, evaporative
cooling mechanism is efficient only if the number of elastic collisions exceeds the
number of inelastic processes Γel/Γin > 200 [33]. In this regime, called runaway
evaporation, Γel increases during the time, while increasing the efficiency of the
evaporative cooling.

1.2.2 Sympathetic cooling
We have seen that evaporative cooling works efficiently if the elastic collisional rate
is large enough to allow fast thermalization and to exceed the inelastic processes
that limit the lifetime of the sample. However, if this elastic rate is not sufficiently
high, because the scattering length is too small or the initial density of the sample



is too low (as for 41K [34]), this cooling mechanism is not efficient. The same
limitation occurs for identical trapped fermions, for which the elastic scattering
cross-section is suppressed.
In both cases, another cooling technique can be exploited, the sympathetic cooling.
The idea of sympathetic cooling is to take advantage of elastic collisions between
the atomic sample that we want to cool and another gas, easily coolable, which
acts like a thermal bath.
This method, initially proposed for the cooling of ions [35], at the beginning has
allowed the achievement of quantum degeneracy in a sample of rubidium atoms in
two different internal states [27]or in case of the two isotopes of lithium [28], [29].
Recently, [11; 12; 15; 30], by means of sympathetic cooling it was also possible
to achieve the quantum degenerate regime in mixtures composed by atoms of
two different atomic species, opening in this way new directions in the field of
ultracold and degenerate matter, for example in the context of producing ultracold
heteronuclear molecules [36].

Sympathetic cooling exploits elastic collisions between distinguishable atoms
and the important parameter to consider is the interspecies scattering cross-section
is σ = 4πa2

ij , where aij is the interspecies scattering length. The larger is the
magnitude of the scattering length and the better and more efficiently works sym-
pathetic cooling.
The mixtures composed by 41K-87Rb and 40K-87Rb atoms present an interspecies
interaction quite large in both cases and sympathetic cooling is very efficient.

Also the sign of the interspecies scattering length plays a relevant role in the
efficacy of this cooling mechanism. Indeed, in the case of ultracold thermal gases,
the mean-field interaction between the specie i and j, proportional to aij is negli-
gible respect to the kinetic energy of the particles. When the system approaches
to the degenerate regime this is no more true. In fact the sign of aij determines
if the two degenerate clouds continue to overlap, aij < 0, or they spatially sepa-
rate, aij > 0. In the former case the thermal contact is preserved and sympathetic
cooling is still efficient, while if phase-separation occurs the minimum temperature
achievable is lower [37].

In the experiments, sympathetic cooling is realized by loading simultaneously
inside the magnetic trap two different atomic species (by now, for simplicity we
consider only the case of two separate atomic species, like in the experiments
running at LENS, JILA and MIT). Since one of the two species must be directly
cooled, i.e. continuously lost, its atom number must be sufficiently higher than the
one of the other sample. Sympathetic cooling woks efficiently until the thermal
capacity of the thermal bath is higher than the one of the specie that must be
cooled. For understanding this, we indicate with i the thermal bath and with
j the other specie, and with Ci and Cj the corresponding thermal capacities.
Sympathetic cooling is efficient only if Ci > Cj and this condition must be kept in
all the stages of the evaporation. In the case of thermal gases, since Cα/kB = 3Nα,
where α = i, j, this condition becomes simply Ni > Nj .

In the case of Bose and Fermi gas, the expressions for the thermal capacities



are given by [4; 38]:

CB = 12
ζ(4)
ζ(3)

NBkB(
T

TC
)3 (1.27)

CF = π2NF kB
T

TF

that are valid for T ≤ TC and T ≤ TF respectively and where ζ is the Reiman
zeta function. To comment (1.27), it useful to describe the two different situations
met in our experiments: the Bose-Bose system and the Fermi-Bose system. In
our Bose-Bose system, the 41K-87Rb mixture, due to the different mass (mRb ∼
2mK) Bose-Einstein condensation is reached before for potassium atoms and then
for rubidium sample. The typical transition temperatures are T=120 nK, and
T=80 nK for potassium and rubidium respectively and for NK = NRb = 104

atoms in the condensates. In the temperature interval 80-120 nK we have then
a potassium BEC interacting with a thermal gas of rubidium. If we evaluate the
thermal capacities at T = TC(K) = 120 nK, we find that CB(K)/Cc(Rb) ∼ 3 at
T = TC(K) > TC(Rb): this means that at this stage of evaporation the number
of Rb atoms must be almost three times the one of K for still having an efficient
sympathetic cooling.

The same must occur in the case of the Fermi-Bose system, the one composed
by 40K and 87Rb atoms. Indeed, since in our system, the Fermi temperature is
higher than the one for Bose-Einstein condensation, we have that at T = TF the
thermal capacity of the Fermi system is CF /kB = π2NF , while the one for the
thermal bosons is still the classical CB/kB = 3NB . This means that for decreasing
furthermore the potassium temperature we must have NB > π2/3NF ∼ 3NF .
When both the species are degenerate, for T ≤ TC , only the thermal fraction
of the Rb sample contributes to the thermal capacity of Rb. If the number of
thermal atoms is not sufficiently high to balance the heat capacity of the Fermi
gas, sympathetic cooling does not work anymore and the cooling of the fermion
stops.

1.3 Properties of trapped atoms

In the first part of this chapter, we have derived the main results of the scattering
theory in the case of ultracold atoms and we have seen how the collisional prop-
erties are deeply modified by the quantum nature of the particles. We have also
described the standard experimental techniques, namely evaporative cooling and
sympathetic cooling, by which it is possible to produce such degenerate systems.
In this last part of the chapter, we will discuss in more detail the features of these
quantum gases, describing the main physical properties that distinguish them from
classical gases.



1.3.1 Properties of trapped fermions
Consider N identical fermions of mass m, trapped in a cylindrical harmonic po-
tential [38],

V (ρ) =
1
2
mω2

rρ
2 (1.28)

where ρ is defined as ρ2 = (x2 + y2 + λz2), and λ = ωa/ωr is the ratio between
the two trap frequencies ωr and ωa along the radial and the axial directions re-
spectively. Since the Pauli exclusion principle forbids the multiple occupation of a
single energetic level, the fermions go to occupy one by one all the energy levels of
the system. The energy of the highest level is called the Fermi energy EF , and it
corresponds to the Fermi temperature TF =EF /kB , where kB is the Boltzmann’s
constant. The ratio between the temperature T and TF , T/TF , defines the degree
of degeneration of the system. Indeed, if T/TF�1, the probability that a single
quantum state is occupied is low and the system is said to be classical, while if
T/TF≤1 the system enters in the degenerate regime. The Fermi-Dirac distribution
function is given by:

fF (ε) =
1

eβ(ε−µ) + 1
(1.29)

where β = 1/kBT and µ is the chemical potential. In the following, we consider,
for simplicity, the case of T = 0, when the system is completely degenerate. In this
particular situation, the chemical potential is just the Fermi energy, µ = EF and
the Fermi distribution is one for ε ≤ EF and zero otherwise. In the momentum
space, this corresponds to define a sphere of radius kF ≡ (2mEF /~2)1/2: at T = 0,
all the particles of the system must have momentum k ≤ kF and all momentum
states with k ≤ kF are occupied. If ~ωr, ~ωa � kBT , it is possible to neglect
the discrete structure of the harmonic oscillator levels, and to write the density of
states as follows:

g(ε) =
ε2

2(~$)3
(1.30)

where $ is the geometrical average of the oscillation frequencies of the trap, $ =
(ω2

rωa)1/3 = ωr(λ)1/3. The total number of atoms of the system is directly related
to the Fermi energy by:

N =
∫
dε

g(ε)
eβ(ε−µ) + 1

(1.31)

from which follows the explicit expression for the Fermi energy:

EF = ~$[6N ]1/3 (1.32)

The first important information it is possible to get from (1.32) is the radial size
of the Fermi gas, given by:

RF ≡ [2EF /Mω2
r ]1/2 (1.33)



Comparing the Fermi radius RF with the radial width of the harmonic oscillator
ground state of the trap ar0 = (~/mωr)1/2,

RF = ar0(48λN)1/6 (1.34)

we observe that if the number of fermions N � 1, the size of the trapped Fermi
cloud is much greater than ar0: this is a consequence of the Pauli exclusion princi-
ple. Indeed the Pauli exclusion principle induces an effective ”repulsion” between
fermions in the trap (Fermi pressure), leading to a size bigger than the quantum
length ar0. This characteristic differentiates the Fermi gas both from Bose gas
and from a ”classical” gas. Indeed, the size of a noninteracting gas of bosons is
exactly ar0, because at T = 0 they all occupy the lowest state, while the width of
a classical gas at T = 0 continuously shrinks by decreasing the temperature.

Spatial and momentum distribution of trapped fermions

In the experiments, most of the information about the sample are obtained looking
to the absorption signal of the cloud, after the sudden release from the trap [1]. In
particular, it is possible to measure the density and the temperature of the atoms
and directly reconstruct the spatial and the momentum distributions inside the
trapping potential. The features of these distributions are strictly related to the
different statistics and then are different in the case of degenerate Fermi or Bose
gas. In the following, we will first compare the results obtained for a Fermi gas at
T = 0 with the ones for a classical gas at the same temperature. The comparison
with the Bose gas will be shown later on the chapter.

We start briefly recalling the properties of a classical gas composed by distin-
guishable particles, trapped in the same cylindrical potential (1.28). The distri-
bution function that describes such a system is the Boltzmann distribution [39],

fc(ε) = Ae−βε (1.35)

where A is a normalization constant to be determined, and β = 1/kBT . Since the
Hamiltonian that describes the system is

H =
(~~k)2

2m
+ V (ρ) (1.36)

it is possible to evaluate the normalization constant A, simply solving

N =
∫
d3~kd3~rf(H(~k, ~r), T ) (1.37)

and obtaining A = Nλ/(2πσrσk)3, where σr = (kBT/mω
2
r)1/2 and σk =

√
2π/λdb,

with λdb =
√
h2/2πmkBT the deBroglie wavelength. Then after substituting the

value of A inside 1.35 we can finally write the expression for the spatial and the
momentum distribution of a classical gas as:



fc(~r,~k, T ) =
Nλ

(2πσrσk)3
exp

[
−β ~2~k2

2m

]
exp

[
−βmω

2
r

2

]
(1.38)

As we see from 1.38, the momentum distribution of a classical gas is isotropic and
Gaussian (Maxwell velocity distribution) and the width is σk. On the contrary, the
spatial distribution of the atoms inside the harmonic trap, reflects the anisotropy
of the trap, with aspect ratio λ The radial size of the distribution is just σr =
(kBT/mω

2
r)1/2, and as said before, for T → 0, it goes to zero .

In order to determine the spatial and the momentum distribution of a Fermi
gas trapped in the potential (1.28) we can define, at T = 0, a ”local” Fermi
wavenumber kF (~r) by [38]:

~2k2
F

2m
+ V (ρ) = EF (1.39)

The spatial density n(~r) is given by the volume of the Fermi sea in momentum
space k times the density of state 1/(2π)3, i.e.

n(~r, T = 0) =
k3

F (~r)
6π2

(1.40)

with the assumption that n(~r) 6= 0 only if ρ < RF . If we substitute (1.39) inside
(1.40), we obtain:

n(~r, T = 0) =
m3ω3

rR
3
F

6π2~3

[
1− ρ2

R2
F

]3/2

(1.41)

Remembering that RF =
√

~/mωr(48λN)1/6, follows that

n(~r, T = 0) =
8λN
π2R3

F

[
1− ρ2

R2
F

]3/2

(1.42)

The cloud is an ellipsoid with diameters 2RF and 2RF /λ in the x-y plane and in
the z directions respectively, and the aspect ratio is the same as that of a classical
gas in the same potential. The momentum distribution for a Fermi gas is similarly
obtained like (1.42) and it is:

n(~k, T = 0) =
N

k3
F

8
π2

[
1− |~k|2

k2
F

]3/2

(1.43)

where the maximum wavenumeber populated is kF = (48Nλ/R3
F )1/3. As the

momentum distribution of the classical gas, the momentum distribution of a Fermi
gas is isotropic despite the anisotropy of the trap due to dependence of (1.43) only
from the magnitude of ~k.



Comparison between the expansion of a classical and a Fermi gas.

As said above, in the experiments, all the quantities of interest, such as the number
of atoms and the temperature are extracted from the absorption imaging of the
expanded cloud after the release from the trap. Indeed, this signal is related to the
momentum distribution of the atoms inside the trap. In the case of thermal gas,
as we see from equation (1.38), we expect that the shape of the cloud is well fitted
by a Gaussian because the velocity distribution of a thermal gas is a Gaussian.
Furthermore, if we write the time-dependence of the classical mean square radii,
we find:

< r2r >= r20r (1 + ω2
r t

2) (1.44)
< r2a >= r20a (1 + ω2

at
2)

and if we consider the ratio (”aspect ratio”) of the two,

< =

√
< r2a >

< r2r >
=

1
λ

√
1 + ω2

at
2

1 + ω2
r t

2
(1.45)

we see that it goes to 1 if t→ 0, i.e. the shape of the cloud becomes spherical at
large expansion time t, independently from the initial anisotropy of the trapping
potential.
If now we switch to the noninteracting Fermi gas, the situation remains almost the
same. From equation (1.43), we see that we expect to have a complete isotropic
expansion of the cloud, even if the initial momentum distribution is not Gaussian.
Indeed, solving the Boltzmann transport equation [40] for this case, and then
extracting the temporal evolution of the radii of the Fermi gas, we get:

< r2r >=
1

3N
Erel

2
mω2

r

(1 + ω2
r t

2) (1.46)

< r2a >=
1

3N
Erel

2
mω2

a

(1 + ω2
at

2) (1.47)

where Erel is the release energy Erel = 3/4NEF . If we now calculate the aspect
ratio,

< =

√
r2a
r2r

=
1
λ

√
1 + ω2

at
2

1 + ω2
r t

2
(1.48)

we see that it has the same form and the same asymptotic behaviour of equation
(1.45): it goes to unity at long expansion times.

Consequences of the statistics on the scattering properties of the Fermi gas

So far we have derived the expressions for the main quantities of a gas composed
by identical fermions, without considering any effect due to possible interactions



between fermion themselves. As we have shown in the previous section, identical
fermions are always noninteracting, because, at this ultralow temperature, elastic
collisions processes are forbidden for fermions in the same quantum state. In
real experiment, this feature prohibits the direct cooling of fermions by means
of the ”standard” evaporative cooling technique. Therefore other techniques are
performed for achieving the Fermi degenerate regime, such as mixing together two
different spin states of the same atom [24], or mixing fermions with bosons and
cooling indirectly the fermions through thermal contact with the other coolable
specie [11; 28–30].

This noninteracting behaviour makes similar the Fermi gas to an ideal gas.
Furthermore, the Fermi statistics and the Pauli exclusion principle deeply modify
the dynamic processes in which particles are scattered from a degenerate Fermi
gas. Consider, for example, a scattering process that produces a fermion with final
momentum k < kF : for low T/TF all the momentum state inside the Fermi sphere
are highly occupied and then this scattering event is likely to be suppressed. This
phenomenon is known as Pauli blocking [41; 42]. The degree of the suppression
depends from the degree of degeneration of the system (it is maximum for zero
temperature) and from the energy of the scattered particle. G. Ferrari in [41]
has proposed to study the relaxation in the motion of a test particle inside the
Fermi gas showing that from this kind of measurement it could be possible to
get information on the degeneration of the system. Indeed, the collisional rate is
strongly affected by the Pauli blocking, resulting in to a decrease of the rate Γ of
the collision. In particular, he have pointed out that a reduction of the collisional
rate proportional to T 3 respect to the rate calculated for a classical gas should
be observed: by measuring this behaviour, one could in principle determine in a
direct and completely independent way the ratio T/TF . In our experiment, we
could see this effect of the statistics on the collisional properties of the Fermi
gas, by studying the damping of the dipole oscillation between the Fermi gas of
potassium atoms and a Bose-Einstein condensate of rubidium atoms (see 5.3.1).

Even the scattering of photons is predicted to be strongly influenced by the
Pauli blocking. Several works [43–45] showed that Pauli blocking should cause a
reduction of the width of absorbed light from a degenerate Fermi gas and a modifi-
cation of the angular distribution of the scattered photons. If the recoil momentum
of the incoming photon is less than the Fermi momentum kF , atoms cannot find a
free final state and then the scattering and the absorption mechanism is inhibited.
In fact, this change in the absorption and then the consequent narrowing of the
linewidth is difficult to observe in the experiment, because the density of a Fermi
gas after during the expansion is too low, while the imaging in situ with resonant
light is diffraction limited.



1.3.2 Properties of a Bose-Einstein condensate
Bose-Einstein Condensation (BEC) is the macroscopic occupation of a single quan-
tum state [46–48]. When a system composed by N identical bosons reaches some
critical value for some parameters (temperature and density), it collapses to a
new state of the matter, in which each particle loses completely its identity. In
this case, the whole system can be described by only one ”macroscopic” quantum
wavefunction, namely the order parameter.
In the case of neutral atoms, trapped in anisotropic potential, BEC shows up not
only in the momentum space (as occurs in the homogeneous case), but also in
the real space. Differently to what happens in the case of identical degenerate
fermions that were completely noninteracting, the interaction between atoms in
the condensate is one of the main feature and plays a relevant role in all the ob-
served properties of such a system (for a complete review, see for example [4; 49]).
In the following of this section we will discuss the principal characteristics of Bose
Einstein Condensation in dilute gases, in particular analyzing the quantities that
are usually investigated in the experiments.

The wavefunction describing a system composed by N identical bosons is sym-
metric under the exchange of two particles: the main consequence of this is that
an arbitrarily large number of bosons can occupy the same energy level of the
trapping potential. The energy distribution function for boson is thus given by
[39]:

fB(ε) =
1

eβ(ε−µ) − 1
(1.49)

where µ is the chemical potential. We note that, as for the Fermi distribution
function, at high temperatures the (1.49) is approximately:

fB(ε) ' fc(ε) = e−β(ε−µ) (1.50)

i.e. the Boltzmann distribution (1.35). It is worth to define the fugacity Λ =
exp(βµ), by which (1.49) can be written as:

fB(ε) =
Λ

eβε − Λ
(1.51)

It is evident that 0 < Λ < 1: if we assume that ε = 0 is the energy of the ground
state, then (1.51) becomes:

fB(ε = 0) =
Λ

1− Λ
(1.52)

that is the occupation number fB(ε = 0) of the lowest energy level of the system
can be quite large if the fugacity Λ goes to 1. It is possible to show that the
mean occupation number of all the other energy states with energy bigger than
zero cannot exceed a certain value fixed the temperature T [49]. This means that



all the other atoms that are added to the system must be arranged in the ground
state, whose population becomes then macroscopically large.

For better understanding the physics of Bose Einstein condensation, it is con-
venient to start from the case of noninteracting bosons trapped in a harmonic
potential, and then to switch to the interacting case.
The starting point is the relation that sets the critical values for the parameters
for achieving degenerate regime,

nλ3
DB = ζ(3/2) = 2.6 (1.53)

where n is the density of atoms, while λDB is the deBroglie wavelength given by
λDB = (h2/2πmkBT )1/2, that gives the quantum size of a classical object. The
equation (1.53) shows that when the mean interparticle distance d ∝ (n)−1/3 is
bigger than the DeBroglie wavelength λDB then we lose completely the possibility
of distinguish the particles, because the wavepackets associated to each atom start
to interfere. The system must be described by quantum mechanics laws and in
particular, in the case of N identical bosons by a single wavefunction. It is possible
to show ([4]) that in the case of a cylindrical potential (ωa = λωr),

N −N0 =
ζ(3)
λ

(
kBT

~$
)3 (1.54)

where N0 is the condensate fraction and ζ(x) is the Riemann function. If we set
N0 = 0, then we can obtain the expression for the critical temperature TC :

TC =
~ωr

kB
(
Nλ

ζ(3)
)1/3 = 0.94 ~ωr (Nλ)1/3 (1.55)

Combining equation (1.54 and 1.55) we get the T-dependence of the condensate
fraction:

N0

N
= (1− T

TC
)3 (1.56)

The wavefunction describing a noninteracting BEC trapped in a harmonic is sim-
ply the ground state wavefunction of such a potential, thus is a Gaussian, with
width given by the harmonic oscillator length, aho = (~/m$)1/2. The width is
independent from the number of atoms, N, while the central density (related to
the modulus square of the wavefunction) turns out to be proportional to N.

The situation changes completely if we ”turn on” the interaction between the
atoms in the condensate. We must say that the dilute nature of these systems (the
mean interparticle distance is almost ten times the range of the interatomic force),
allows to describe the interaction between atoms by a single parameter, the s-wave
scattering length, a. This means that for taking into account the interaction is
”sufficient” to insert a mean-field potential inside the many body Hamiltonian,
given by



U =
4π~2a

m
n(~r) = gn(~r) (1.57)

where we have defined the coupling constant g = 4π~2a/m. We note that the
sign of the scattering length gives the nature of the interaction. Indeed in case of
positive sign of a, the interaction between atoms is repulsive, while it is attractive
if a < 0. In the following we will consider always the case of positive a, in which
the system is stable against collapse whatever is the number of particles inside the
condensate ([50]).
In this mean-field approximation, the ground state of the system it is obtained by
solving the following equation, the Gross-Pitaevskii equation (GPE):

∂

∂t
Φ(~r, t) = (−~2∇2

2m
+ Vext(~r) + g|Φ(~r, t)|2)Φ(~r, t) (1.58)

with n(~r) = |Φ(~r, t)|2. In this approximation is possible to write the wavefunction
as Φ(~r, t) = φ(~r)exp(−iµ/~) and the (1.58) as:

(−~2∇2

2m
+ Vext(~r) + gφ2(~r))φ(~r) = µφ(~r) (1.59)

where µ is the chemical potential and must be normalized to the total number
of atoms. The solution of (1.59) is particularly simple if the mean-field energy is
larger than the kinetic energy (Thomas-Fermi regime):

n(~r) = φ2(~r) = g−1[µ − Vext(~r)] (1.60)

Since the trapping potential is quadratic, the shape of the density profile is an
inverted parabola, as observed in the experiments. The Thomas-Fermi (TF) ap-
proximation is valid only if Na/aho � 1, thus for large number of atoms. From
the normalization on the number of atoms, it is possible to obtain the expression
for the chemical potential µ:

µ =
~$
2

(
15Na
aho

)2/5 (1.61)

It is also possible to write down the expression for the radius of the condensate in
the TF regime,

Ri = (
2µ
mω2

i

)1/2 ' aho (
Na

aho
)1/5 (1.62)

The effect of the interaction is then to increase the size of the condensate respect to
the noninteracting case and to give a dependence of the radius from the number of
atoms. Furthermore, the value of the density in the centre of the trap is n(0) = µ/g
and if we compare it with the one found in the noninteracting regime, we get:

n(0)
nho

∝ (
Na

aho
)−3/5 (1.63)



i.e. n(0) decreases if N increase: this is another effect due to the repulsive inter-
action between the atoms in the BEC.

Expansion of a Bose-Einstein condensate

The last results have shown that the role played by the interaction in a degenerate
gas of bosons is particularly important. But one of the most evident effect of
the mean-field interaction is the ballistic expansion of a trapped Bose Einstein
condensate [4]. By solving the hydrodynamic equations for the BEC [52], it is
possible to find the dependence of the condensate’s radii from the expansion time:

Rr(t) = Rr(0)
√

1 + τ2 (1.64)

Ra(t) = Ra(0) (1 + λ2[τ arctan τ − ln
√

1 + τ2])

where τ = ωrt. The velocity of the expansion is determined from the initial
confinement of the cloud. The most confined directions expand faster. Consider
the GPE: the interaction term is density depend (U = gn) and in particular, if
we consider ∇U ≈ g∇n we see that the ”force” acting on the atoms when the
trapping potential is switched off, is proportional to the gradient of the density
thus larger in the more confined direction.
This means that if the initial shape of the condensate is a cigar-like, as in our
system, it first becomes spherical after an expansion time τ ∝ 1/ωr and finally
it inverts completely the shape becoming pancake shaped. This change in the
ellipticity is a clear signature of the BEC regime.

1.4 Mean-field interaction in the mixtures

As we have seen in the previous section, the mean-field interaction plays an impor-
tant role in the stability of a BEC, and many of the features of the condensate are
strictly related to this interaction between the atoms [6]. On the contrary, due to
the suppression of any collisional processes, the characteristics of a Fermi gas are
determined only by the quantum statistics rather than a real interaction between
the atoms.

The situation is quite different when we go to consider a mixture composed by
different atoms. Indeed, in this case both the Gross-Pitaevskii and the Thomas-
Fermi equations, which describe the Bose and the Fermi gas must contain an
additional term of interaction between the atoms composing the mixture. This
additional term is proportional to the interspecies scattering length aij and de-
pending from its magnitude and sign the mixture will be stable or will collapse
[17; 104].

Since in our experiments we have studied both mixtures composed either by two
different bosonic species 87Rb-41K or a boson-fermion mixture 87Rb-40K [12; 15],
in the following of this section, we will illustrate the main features of these systems
and we will write the mean-field equations which describe them.



1.4.1 Bose-Bose quantum mixture
The equation that describes a Bose Einstein condensate is the Gross-Pitaevskii
equation: [

− ~2

2m
∇2 + U(r) + g|ψ|2

]
ψ = µψ (1.65)

where the coupling constant g is related with the scattering length a:

g =
4π~2a

m
(1.66)

In our experiment we were able to bring to the degenerate regimes simultaneously
potassium and rubidium atoms, producing a double BEC. The ground state of
such a system can be obtained by solving a system of two coupled Gross-Pitaevskii
equations for the individual condensate wave functions ψi [104]:[

− ~2

2m1
∇2 + U1(x) + u11|ψ1|2 + u12|ψ2|2

]
ψ1 = µ1ψ1 (1.67)[

− ~2

2m2
∇2 + U2(x) + u21|ψ1|2 + u22|ψ2|2

]
ψ2 = µ2ψ2 (1.68)

where as above:

g11 =
4π~2a11

m1
> 0 (1.69)

g22 =
4π~2a22

m2
> 0 (1.70)

g12 = 2π~2a12(
m1 +m2

m1m2
)

are the coupling constants. Respect to the case of a single condensate, as we can
see from equations (1.67) and (1.68), we have an additional term inside the GPE
that describes the interaction between atoms belonging to different condensates
with a coupling constant proportional to the interspecies scattering length a12.
As the stability of a single BEC is assured by the negative sign of the scattering
length (aii > 0), so in the case of a mixture of two BECs, the stability of the
system is strictly related to the magnitude and the sign of a12 to respect to the
individual scattering lengths aii. Indeed, defining the quantity,

∆ =
g12√
g11g22

(1.71)

the stability of this double degenerate sample is assured only if ∆ > −1. In fact, if
∆ < −1, the mean-field attraction between atoms of the two separate condensates
would overwhelm the corresponding repulsion between atoms of the same specie,
leading to an instability and then to the collapse of the whole system.



1.4.2 Fermi-Bose quantum mixture
The ground state properties of a degenerate system composed by a Fermi gas
interacting with a Bose-Einstein condensate, trapped in a harmonic potential, is
obtained solving the coupled equations [17] :

nF (r) =

√
2m3

F

3π2

[
µF − UF (r)− 4πaBF

mBF
nB(r)

]3/2

(1.72)[
− 1

2mB
∇2 + UB(r) +

4πaBF

mBF
nF (r) +

4πaB

mB
φ2(r)

]
φ(r) = µBφ(r) (1.73)

where φB(r) =
√
nB(r), MBF = 2mFmB/(mB + mF ) is twice the reduced

mass of the pair, and the coupling between bosons is as usual given by the s-
wave scattering length aB , that in the following we consider positive. By solving
simultaneously the coupled equations (1.72,1.73), we obtain the density profile of
the two species. As in the case of the Bose-Bose quantum degenerate mixture, the
additional term 4πaBF /mBF which describes the interspecies interaction, is the
key parameter for determining the stability or the instability of this system.
In particular, it is possible to consider two different situations, if the interaction
between bosons and fermions is repulsive or attractive. In the first case aBF > 0.
This is the situation met in the experiments with the mixtures 6Li-7Li [28; 29] and
6Li-11Na [30]. In these systems, the repulsion between Bose and Fermi gas is likely
to cause spatial separation between the two clouds, strongly limiting the efficiency
of the cooling and the lower temperature achievable for the fermionic component
[53; 54].

The situation is completely different if the interaction between the two species is
attractive, as we find in the 40K-87Rb mixture [55], [15]. Indeed, we do not have any
phase-separation of the two components that remain in thermal contact even in the
degenerate regime. Furthermore, if the density of the two species exceed a critical
value, the system is no more stable and it collapses [17], [18]. Indeed, despite the
repulsive interaction between bosons and the non-interaction between fermions
themselves, the bosons-fermions interaction generates an attractive mean field for
bosons proportional to the density of fermions and one for fermions proportional
to the density of bosons. In this way, both the densities increases in the overlap
region and if the strength of this attraction is sufficiently big, the system is no more
stabilized by the kinetic-energy contribution due to the bare repulsions between
bosons and it collapses. Roth and Fedelmeier [17] have found the expression for
the critical density in the case of a symmetric trap:

N1/6
cr (aB , aBF , l) =

0.863
|aBF /l|0.281

+
0.087(aB/l)1.91

|aBF /l|3.49
(1.74)

where l = (mω)−1/2 is the harmonic oscillator length.



1.4.3 BCS-like transition in a dilute mixture of fermions
At low temperatures, electrons in superconductor metals undergo a phase transi-
tion to the superfluidity state, characterized by frictionless flow. The same transi-
tion is expected to take place in a dilute gas of fermions at temperatures typically
much lower than the Fermi temperature of the system [56]. In particular, super-
fluidity in a Fermi dilute gas requires an attractive interaction between fermions
with opposite momentum. Differently from the case of BEC in which all the parti-
cles in the ground state participate to the superfluidity, in this case only atoms at
the Fermi surface can form Cooper pairs at finite temperature, although a T = 0
the system is completely superfluid. At these ultralow temperatures, the pairing
is achievable only through s-wave interaction [58] and consequently only between
two different fermionic species or fermions in two separate and equally populated
hyperfine levels. This requirement is particularly important, since a different pop-
ulation implies different Fermi energy between the ”systems”: if the difference
between the two Fermi energies overcomes the typical energy gap ∆ [56], then the
pairing is prevented.
If all the conditions are satisfied, it is possible to show [57] that the critical tem-
perature for BCS-like transition is given by:

TC =
2
e

7/3

TF e

h
−π

2kF |a|

i
(1.75)

where kF =
√

2mTF /~2 is the Fermi momentum and a is the negative scatter-
ing length. In the dilute regime kF |a| � 1 and then BCS transition temperature
is much lower than the corresponding Fermi temperature, making the achieve-
ment of the pairing experimentally a difficult task. However, several theoretical
schemes have been proposed in order to increase the critical temperature for BCS,
by considering Feshbach Resonances coupling [60], [61], [62], [63], [64], [65], highly
confining potential [66], and in the case of mixtures composed by bosonic and
fermionic atoms, the attractive interaction between fermions induced by the pres-
ence of a Bose gas [67], [68].
In this last case, L. Viverit [19] have shown that the critical temperature for the
formation of Cooper pair have the following behaviour:

TC ∝ TF e
1/λ (1.76)

where TF is the Fermi temperature, while the parameter λ is directly related to
the scattering length boson-fermion and it reads:

λ =
(mF kF )
2π2~2

UFF

[
1− U2

BF

UBBUFF

]
(1.77)

where UBF ∝ aBF , UBB ∝ aBB and UFF ∝ aFF . In the case of U2
BF /UBBUFF �

1, the critical temperature for the pairing can be only a fraction of the Fermi tem-
perature. In particular, in the case of 40K and 87Rb, due to the large and attractive



interspecies scattering length, we have that TC can be of the order of the Fermi
temperature, TC ' 0.1 TF .



CHAPTER 2

How to produce the mixtures

In this chapter we present the experimental apparatus we have used for the pro-
duction and the characterization of the degenerate potassium-rubidium mixtures.
We start by illustrating the general properties of these atomic species, pointing
out which is the state of the art in cooling these atoms, especially in the case of
potassium. We then describe the experimental set-up, giving particular attention
to the laser sources and to the magnetic trap.

2.1 Potassium and rubidium atoms.

Potassium is an alkali atom and in nature it is present in three different stable
isotopes, 39K, 41K and 40K with natural abundance of 93.26%, 6.73% and 0.012%
respectively. Two isotopes, the 39K and the 41K are bosons (nuclear spin I = 3/2),
while the 40K is a fermion (nuclear spin I = 4). Therefore potassium offers the
unique possibility of studying both fermionic and bosonic isotopes and eventually
of investigating the properties of Bose-Bose and Fermi-Bose mixtures.
In particular, we have decided to work with 41K and 40K, because the other bosonic
isotope, the 39K, has a negative scattering length that prevents the formation
of a stable Bose Einstein condensate. Indeed, the potassium scattering lengths,
expressed in Bohr radius unit (a0), are the following: a41K = 60 a0, a39K = −44 a0

[69; 70] and finally a40K = 174 a0 [70].
Also rubidium is an alkali metal and it is present in two stable bosonic isotopes,

85Rb (72.2%), and 87Rb (27.8%). 85Rb is characterized by a negative scattering
length a = −10 a0, that does not allow the formation of a stable BEC, even if, by
means of Feshbach resonances, it was possible to achieve stable 85Rb BEC [7; 72].
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Conversely, the 87Rb has a positive scattering length a = 99 a0 [71] and it was the
first atom brought to quantum degeneracy in 1995 [1]. Differently from potassium,
87Rb is an easily and efficiently coolable atom and this is the reason why we have
decided to use it for the sympathetic cooling of K atoms.

Before describing our experimental apparatus, it is worth to remember briefly
the history of the cooling of potassium atoms, since it is strictly related with the
one of our experimental group of cold atoms in Firenze. To this purpose, follow-
ing are reported some sentences taken from the contribution of our group to the
”Enrico Fermi International School” (Varenna 1998) [5], from which it is possi-
ble to understand the motivations of our decision of choosing potassium among
all the other alkali atoms: ”Therefore potassium offers the opportunity of inves-
tigating the properties of different bosonic isotopes, for which the different values
of the scattering length and the possibility of observing Feshbach resonances were
predicted, and eventually will allow the comparison of a Bose condensate with a
degenerate Fermi gas. [...] An alternative is sympathetic cooling of the fermions
by interaction with a sample of ultracold bosons atoms. The latter has been the
leading idea of our experiment: achieving BEC for 39K or 41K and using sympa-
thetic cooling to cool 40K.”
Indeed, the initial works [34; 73] on potassium were in the direction of the achieve-
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Figure 2.1: Level structure of 87Rb and 41K. In the case of potassium, the tiny spacing
between the levels in the excited state, compared to the natural width of the line (Γ =
2π × 6.2 MHz) is the main cause of the inefficacy of the laser cooling.

ment of BEC for 39K and 41K. Very soon it was clear that reaching the degenerate
regime for these two isotopes by means of the standard cooling techniques was not



an easy task and, on the contrary, it was not possible at all to reach Bose-Einstein
condensation for bosonic K. The reasons of this difficulty is in the internal level
structure of 41K and 39K. In Fig. (2.1) we show the levels structure of 41K com-
pared with the one of 87Rb.
The internal states are labelled with F , where F is the total angular momentum
of the atom F = J + I, with J total electronic angular momentum and I nuclear
momentum. We also report the two optical wavelength used for laser cooling the
atoms which corresponds to the D2 line (S1/2 → P3/2 transition), with natural
width ΓK = 2π× 6.2 MHz and ΓRb = 2π× 6.6 MHz. As it is possible to see, the
excited state of potassium shows a very tiny spacing between the levels, ∆ν ∼ 4Γ.
This feature is the main obstacle that must be overcome for cooling potassium. As
reported in [34; 73] Sub-Doppler cooling does not work in the case of bosonic K. For
this reason, the minimum temperature obtainable in the pre-cooling stage (essen-
tially the magneto-optical trap MOT stage) is the Doppler temperature T = 150
µK. This limits also the maximum density of the sample before the transferring in
the magnetic trap. Indeed the typical density obtained in the case of 41K, at the
end of the cooling stage, is n = 2× 109 at/cm3 [73]. It is worth to compare these
values with the ones that we typically have in the case of rubidium atoms. Infact,
we can load more efficiently Rb atoms in the magnetic trap, since the temperature
after the compression is a few tens of µK (usually T = 50 µK), and the mean
density is of the order of some parts in 1010 at/cm3.

On the other side, in case of potassium, the transfer in the magnetic potential
results in a further worsening of the conditions for an efficient evaporative cooling:
indeed an increase of the temperature to T = 200 µK is accompanied by a further
decrease in the mean density of the sample n ' 8×108 at/cm3. These parameters
are not suitable for evaporative cooling, due to the lack in the elastic collisions
caused by the low initial density of the gas.

These difficulties in reaching the degenerate regime by means of standard cool-
ing techniques motivated our group to try a different cooling scheme: sympathetic
cooling of bosonic potassium with rubidium atoms. As we will present in the next
chapter, in this way we have overcome the intrinsic obstacles in cooling potassium
and we have achieved Bose-Einstein condensation for 41K atoms.

Also the history of 40K is related with our group in Firenze. Indeed, the first
magneto-optical trapping of 40K was reported by F. Cataliotti et al. in 1998 [74].
In [74] they could observe a MOT of 40K trapping almost 8000 atoms with a
density of ∼ 108 at/cm3, starting from a natural abundance sample. They have
also had some preliminary evidence that the temperature of potassium, already in
the MOT, was lower than the Doppler limit T = 150 µK, proving the efficacy of
the standard laser cooling mechanisms that instead failed for the bosonic K. The
future experimental strategies for trapping and cooling the fermionic potassium
are presented clearly in the conclusions of that paper, in which the authors suggest
two separate ways for achieving the degeneration regime for a sample of 40K, the
mixture of two internal states of potassium, and the sympathetic cooling with
another atomic specie:
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Figure 2.2: Level structure of 40K. With respect to the structure of the boson 41K the levels
separation of the excited state is sufficient large and it is inverted. In this way, it is possible
to have an efficient Sub-Doppler cooling.

”We are presently setting up an apparatus based on a double-MOT scheme. 40K
atoms will be collected in a first MOT and transferred in a second chamber where
they can be accumulated.
... Further cooling can be achieved by simultaneously trapping 40K and either
39K and 41K in a magnetic trap and using sympathetic cooling, or by producing
coexisting 40K subsystems in different hyperfine states. [...] Another possibility
is sympathetic cooling 40K with a different atomic species, such as rubidium, for
which efficient evaporative cooling down to quantum degeneracy conditions is now
a well-developed method.” This is exactly what was realized later in the experiment
of D. Jin at Jila (40K in two different hyperfine states) [24] and in our experiments
in Firenze (sympathetic cooling with rubidium) [15].

The reasons why the fermionic potassium is more suitable for laser cooling
essentially are found in the levels structure of the atom, shown in Fig. (2.2).
Indeed, differently from 39K and of 41K, the hyperfine structure of the excited
state is slightly larger and it is inverted. These properties allow the Sub-Doppler
cooling mechanisms to work efficiently even in the MOT stage, as reported by our
group in 1999 [75]. It follows that, as in the case of rubidium, we are actually able
to load efficiently the cloud in the magnetic trap, typically N ' 5×105 potassium
atoms at T ' 50 ÷ 70 µK, corresponding to a density of the order of some parts



in 109 at/cm3.
However, as discussed in the previous chapter, identical fermions do not collide

at this low temperature. In the case of 40K, the group of D. Jin et al. could observe
the suppression of the p-wave elastic cross-section [21] below 100 µK, in a sample
composed by potassium atoms all trapped in |F = 9/2,mF = 9/2〉 state. The
same group have overcome this limitation by trapping simultaneously a mixture
of two spin states |F = 9/2,mF = 9/2〉 and |F = 9/2,mF = 7/2〉 and, by taking
advantage of elastic collisions in s-wave between different atoms they could reach
the degenerate regime for 40K [24]. The higher degree of degeneration T/TF they
could achieve was T = 0.25 TF , and it was limited by Pauli-blocking (see section
1.3.1) between the two degenerate components.

In our experiment we have decided to follow the second road proposed in [74],
i.e. to achieve the degenerate regime for 40K by sympathetic cooling with a differ-
ent atomic specie, the 87Rb. We can presently produce a Fermi gas of potassium
interacting with a Bose condensate of 87Rb [15]. Furthermore, due to the different
cooling mechanism which does not exploit collisions between fermions themselves,
we can measure temperatures for the fermionic component as lower as T ' 0.2 TF .



2.2 Laser sources and experimental set up

2.2.1 General idea
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Figure 2.3: Experimental apparatus: atoms of both species are cooled and trapped in the
first MOT and then transferred in the second MOT, where they are magnetically trapped.
In the magnetic trap rubidium atoms are evaporatively cooled, while potassium sample is
cooled to quantum degeneracy by means of elastic collisions with rubidium.

The aim of our experiment is to cool potassium by means of sympathetic cooling
with rubidium atoms. To achieve this, we first cool and trap both atomic species
in a standard double MOT system, schematically shown in Fig. (2.3) and then
we transfer the cold samples in a magnetic trap where, by performing selective
evaporative cooling on the rubidium component, we cool potassium atoms to the
degenerate regime. The complexity of our apparatus is increased with respect
to the standard single specie set-up by the fact that we have to trap and cool
simultaneously two different atomic species. In particular, since the two optical
transitions, necessary for the MOT stage are at 780 nm and at 766.7 nm for
87Rb and 40K respectively, we use three different laser sources for potassium and
rubidium, as sketched in Fig. (2.4). In the case of rubidium, due to the large
hyperfine splitting of the ground state (∆ν = 6.8 GHz), we are forced to use two
diode lasers at 780 nm, one operating on the repumper and the other on the cooling
transition, while all the frequencies needed for manipulating potassium atoms are
obtained by a single Ti:Sa laser.

The general laser scheme we use for producing the mixtures is presented in
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Figure 2.4: General scheme of the laser sources used for trapping simultaneously potas-
sium and rubidium atoms.

Fig. (2.4). The general idea is to inject simultaneously the two frequencies of
rubidium and the two of potassium in a semiconductor tapered amplifier (MOPA)
that provides the necessary power for the two MOTs. In this way we have a
complete spatial superposition between the potassium and rubidium beams before
the two cells, facilitating the alignment of the two MOTs. We have the possibility
of choosing the ratio between potassium and rubidium powers injected in the
amplifier by electronically controlling a halfwave plate displaced in front of the
MOPA, as shown in Fig. (2.4). The spatial mode of the beams after the MOPA is
cleaned by a spatial filter, and we can control the fast switching of the two MOTs
by means of two independent acusto-optic modulators (AOM).
In the following of this section, we are going to describe in more detail the two
separate laser systems, starting from the one for rubidium atoms.
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2.2.2 Rubidium laser set-up

The detailed scheme of the rubidium laser system is shown in Fig. (2.5). As men-
tioned before, we used two different diode lasers for producing the two frequencies
needed for the cooling of 87Rb. Both diode lasers, home-made grating stabilized
external cavity lasers, are locked to different atomic reference signals of 87Rb by
means of the standardmodulation transfer technique [76]. The cooling light, exit-
ing from the diode laser, is splitted in two part, whose power ratio is determined
by a halfwave plate and by a polarizer beam-splitter. One part goes to generate
the frequency resonant with the F = 2 → F ′ = 2 transition needed for the opti-
cal pumping of rubidium, while the second one gives the frequency of the MOTs,
red detuned respect to the F = 2 → F ′ = 3 transition (the typical detuning is
∆ ' −2Γ, Γ = 2π × 6.6 MHz). One part of this last beam is used alternatively
for the production of the push beam (at −2Γ from F = 2 → F ′ = 3 transition)



and for the imaging beam (resonant with the F = 2 → F ′ = 3 transition), and
it is injected in an optical fiber, in which it is mixed with potassium beams. The
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Figure 2.6: Laser scheme for producing the lights at 766.7 nm necessary for cooling potas-
sium isotopes.

frequency of the repumper light, produced by a second diode laser, is resonant
with the F = 1 → F ′ = 2 transition. One part of the repumper beam is used
for F = 1 → F ′ = 2 transition (opportunely controlled by an AOM) which is
necessary for the optical pumping phase. Note the both the repumper and the
cooling AOMs controlling the frequencies of the MOTs must compensate the fre-
quency shift introduced by the AOMs controlling the switching of the MOTs and
displaced after the MOPA. The MOTs cooling and repumping lights, with typi-
cal ratio between the two powers 3:1, are aligned in a polarizer cube and sent to
the mixing cube in front of the MOPA where they are mixed with the potassium
beams (see Fig. (2.4)).

2.2.3 Potassium laser set-up
In Fig. (2.6) we show the scheme used for generating the lights necessary for
cooling potassium atoms. Differently from rubidium, the hyperfine splitting of the
ground state is only 1.28 GHz so that we are able to produce all the frequencies



we need thanks to one single laser source, a home-made Ti:Sa, pumped by a
doubled Nd:Yag (Millennia X, Spectra Physics) [75]. The frequency of the Ti:Sa
is stabilized with respect to one atomic line of 39K by means of standard saturated
spectroscopy. In the following we consider both the cases of the boson 41K and
of the fermion 40K. The beam exiting from the Ti:Sa laser is splitted in two
parts, one for the cooling and the other for the repumping, with a controllable
ratio typically of the order of 4:1. The cooling part is then divided in other
two beams, one for the MOT and the other for the imaging, push beam and the
optical pumping (see Fig. (2.6)). The cooling frequency for the MOTs is red shifted
respect to the closed transition F = 9/2 → F ′ = 11/2 (40K), or F = 2 → F ′ = 3
(41K) with (∆ ' −3Γ) and it is controlled by an acusto-optic modulator. The
light for the imaging, is instead resonant with F = 9/2 → F ′ = 11/2 (40K),
F = 2 → F ′ = 3 (41K), while the one for the push beam must be slightly blue
shifted respect to F = 9/2 → F ′ = 11/2 (40K), F = 2 → F ′ = 3 (41K), and, at
the end, the one for the optical pumping is resonant with F = 9/2 → F ′ = 9/2
(40K), or F = 2 → F ′ = 2 (41K) transition. We generate the frequency for the
repumper with three different AOMs which produce the light resonant with the
F = 7/2 → F ′ = 9/2 (40K) or F = 1 → F ′ = 2 (41K) transitions. Also in this
case, we need to separately produce the light for the MOTs, and the ones used for
the pushing and the optical pumping. In particular, the potassium pushing beam
(in both cases, rep + cool.) is mixed with the one of rubidium inside a fiber. The
cooling and the repumping light for the two MOTs are mixed inside a polarizer
cube and then injected into the MOPA. As it was pointed out in the introduction of
this chapter, the standard laser cooling techniques do not work properly in the case
of 41K. In particular, it is not possible to achieve in the MOT stage temperature
lower than the Doppler temperature T = 150 µK, since Sub-Doppler cooling is not
efficient. The frequency configuration by which we observe a more efficient cooling
and a higher number of atoms captured in the MOT is when the cooling and the
repumper light are separated by the hyperfine splitting of the ground state, 254
MHz. In this way [73] it is possible to achieve temperatures of the order of 200 µK.
In the case of the fermionic potassium the situation is completely different. Indeed
we easily obtain in the MOT temperatures of the order of 50 µK much lower than
the Doppler limit. This difference between 41K and 40K is one of the reasons
why was easier to cool down ”sympathetically” the fermionic potassium than the
bosonic isotope. Indeed a lower initial temperature allows a better transfer in the
magnetic trap and also a more efficient initial cooling with rubidium.

2.3 Experimental procedure

The four frequencies are simultaneously injected into the MOPA. As shown in
Fig. (2.4), at the exit of the amplifier, the spatial mode of the beam is cleaned by
means of a spatial filter (the pinhole radius is 50 µm) and then the beam is splitted
in two parts, for generating the different pairs of beams for the first and second



MOT. The final size of the each beam, set to 1.5 cm by different telescopes, is
limited by the dimensions of the half and quarterwave plates placed in the set-up.
In the case of the first MOT, we use two pairs of retroreflected beams along the
x − y spatial directions and two independent beams along the z direction (the
direction of the gravity). The second MOT configuration is instead realized using
6 beams in all the three directions, whose intensity can be independently regulated
by means of polarizing cubes and halfwave plates. Typically these ratios are set
to maximize the loading of the MOT but also the mode-matching (see W. Ketterle
in [5]) with the magnetic trap. For this reason, we can electronically control few
halfwave plates of the second MOT, whose angle can be varied during the phase of
the compression of the atoms inside the magnetic potential. In this way, by having
a better overlap between the center of the MOT and the center of the quadrupole,
we can increase the number of transferred atoms.
The first MOT is loaded by vapour background pressure (10−9 Torr) from metal-
lic samples of 87Rb, of bosonic 41K (enriched to 99%) and of the fermionic 40K
(enriched to 5%). We typically are able to load in the MOT about 109 atoms
of rubidium together with some 107 of 41K or with some 105 of 40K. The atoms
are transferred in the second MOT where the vacuum is kept to 10−12 Torr, for
limiting collisions with the background atoms, which would definitely reduce the
lifetime of the trapped samples. As it is possible to see in Fig. .(2.3), the two cells
are connected by a tube 30 cm long, in which is inserted a small r = 4 mm cylin-
drical tube (the transfer tube), which allows to maintain the differential vacuum
between the two cells, controlled by two separate ion pumps.

We transfer the atoms of the two species from the first to the second MOT in
two different ways. The loading of Rb is achieved by continuously pushing [77], [78]
the atoms, while K atoms are transferred by pulsing the push beam. In the case
of Rb the frequency of the pushing beam is on the red (2Γ) of the F = 2 → F ′ = 3
transition and the typical power we use is around 400 µW. In about 20 s of loading
we are able to transfer and then to recapture in the second MOT about 109 Rb
atoms at a temperature of 50 µK.

In the case of K, we instead pulse the push beam on the first MOT every
200 ms, taking care the quadrupole field of the first MOT is switched off during
each shot. Furthermore, we found that a better transferring is obtained when
the power of the repumper light is reduced of about 1/3 respect its usual value,
and when the frequency of the cooling light is slightly more on the red respect to
the MOT detuning. Differently from [79], we need both the frequencies (cooling
and repumping light) in the push beam. The frequency of the cooling is almost
resonant with the F = 9/2 → F ′ = 11/2 (40K), F = 2 → F ′ = 3 (41K), while
the repumping is resonant with F = 7/2 → F ′ = 9/2 (40K), F = 1 → F ′ = 2
(41K) transitions. The typical power is about 1 mW: 600 µW are dedicated to
the cooling component, and the remnant 400 µW to the repumper light. The
potassium atoms travel in the transfer tube, guided by hexapole magnetic field
(which does not affect the loading of rubidium) and they are recaptured in the
second MOT. We can typically transfer about 106 atoms of 41K and 105 atoms of



40K, in about 10 s of loading. The push beam is focalized just before the second
MOT, differently from the case presented in [77], [78]. However the continuous
transferring of rubidium is not affected by this and it is still quite efficient.

We have experimentally found out that the best experimental procedure is
to load separately potassium and rubidium atoms in the MOTs. Infact, we first
inject inside the tapered amplifier almost only the rubidium frequencies loading
in this way the two magneto-optical traps of Rb, then we add potassium atoms
by injecting the potassium lights in the MOPA (the ratio between potassium and
rubidium lights in this stage is about 10:1). In the case of rubidium the total power
we typically measure after the spatial filter is about 200 mW, whose 60 mW are
dedicated to the first MOT and 70 mW to the second one, while for potassium
we use about 240 mW divided in 70 mW and 80 mW for the first and the second
MOT respectively.

It is important to note that during the loading of potassium, we have two
different situations, when we work with the boson 41K or with the fermion 40K.
As said, we can select the ratio between the different frequencies we inject in the
MOPA. During the loading of rubidium, we have less than 5 % of the potassium
light in the amplifier, and the contrary occurs when potassium is loaded. In
the case of the pair 41K -87Rb during the loading of potassium we have losses
(that can be of even 50%) in the rubidium sample which are caused essentially
by nonlinear processes in the tapered amplifier when K-Rb frequencies are both
injected. Indeed, we observe sidebands on the cooling light of rubidium (|F =
2〉 → |F ′ = 3〉). Since the hyperfine splitting of potassium ground state is 254
MHz, one of these sidebands is resonant with the |F = 2〉 → |F ′ = 2〉 transition of
rubidium, reducing the efficiency of the rubidium MOT. In case of the 40K -87Rb
mixture, since the ground state splitting of K is 1.285 GHz, we do not observe
any losses in the rubidium MOT when also the potassium light is injected in the
MOPA.

2.3.1 Magnetic trapping of the mixture
Evaporative cooling is the only technique by which it is possible to the achieve
high density and the ultracold temperatures which are the necessary conditions for
quantum degeneracy in a dilute gas. The first requirement of evaporative cooling is
the trapping of the atoms in a conservative potential, in which to start to perform
the evaporation. To this purpose, it is possible to confine the atoms either in a
far-detuned optical trap, or in a pure magnetic trap. The main feature of the
optical potentials is that they can be almost spin-independent, in the sense that
all the internal Zeeman sublevels of the atoms can be trapped. By playing with the
geometrical configuration and with the parameters (intensity and detuning) of the
laser beams, it is possible to achieve high confinement and thus high density of the
sample. However, the fact that the optical trap is insensitive to the internal state
of the atoms has a drawback: it is not possible to remove selectively atoms from
the confining potential by inducing transition to untrapped states by means of



some external e-m field. This means that for forcing the evaporation of the atoms,
the only solution is to slowly open the confining potential, allowing the escape
of the most energetic atoms. Despite of many attempts only in few experiments
[80], [10], it was possible to achieve the BEC regime. Their success is due to the
particularly high phase-space density they can obtain during the loading of the
atoms in the tight optical potential.

Magnetic potential are instead selective in the internal Zeeman state of the
atoms. In this case, as briefly reported in section (1.2.1), it is possible to write the
interaction energy between the atomic magnetic moment and the external field is
as

U(~r) = mF gFµBB(~r) (2.1)

where mF is the projection of the quantum angular momentum, gF is the Lande’
factor and µB is the Bohr magneton. The atoms are trapped in a minimum of
the field only if this interaction energy increases when the magnitude of the mag-
netic field increases. In other words only the magnetic states that have magnetic
moments antiparallel respect to the direction of the field can be trapped. The
states which have this property are named low-field seekers. For this reasons the
sample must be completely polarized before transferring it into the magnetic po-
tential. This optical pumping phase is particularly important in the experimental
procedure, since it determines the effective number of atoms which are available
for the evaporation. In the case of the mixtures it results even more crucial, since
a non perfect polarization can lead to large losses in the sample. The minimum
of the magnetic field that the atoms see must be different from zero (see W. Ket-
terle et al. in [5]). Indeed crossing the region of weak and zero magnetic field
the atoms make a transition to untrapped states and they are lost from the trap
(Majorana spin flips). Many different geometrical configurations have been pro-
posed and realized so far [5] in order to avoid this losses and create the optimized
conditions for the trapping.
In our case we have decided to work with a very simple and compact coils configu-
ration, first realized by T. Esslinger [81], and that it is named QUIC (Quadrupole
Ioffe-Pritchard Configuration). As shown in Fig. .(2.7) it consists of three coils, two
of which generate the quadrupole field needed for the MOT stage (Anti-Helmoltz
configuration) and a third one (pinch coil) which is orthogonal to the quadrupole
axis. The axial field generated by the pinch coil is in the opposite direction with
respect to the radial field of the quadrupole, giving rise to a harmonic potential
which presents a minimum different from zero, spatially separated with respect
to the quadrupole axis. In particular, in our case, the minimum of the field B0

(bias field) is about 1 Gauss and it can be experimentally varied by changing the
distance between the pinch coil and the center of the quadrupole or by adding an
external magnetic field. One of the main advantage of this kind of trap is that is
particularly compact and it can be fed with low current. Indeed, we have found
that an excellent operation is obtained with a current flow of 30 A, which corre-
sponds to a dissipated power of about 900 Watt. However for avoiding not desired
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Figure 2.7: Picture of the QUIC trap used in the experiment.

heating, every coil is water cooled. The experimental procedure for transferring
the atoms in the QUIC trap is controlled by the circuit shown in Fig. (2.8). During
the MOT stage the current can flow only in the quadrupole circuit, keeping closed
both IGBT quic and IGBT quad and open IGBT pinch. Then, before transferring
the atoms in the QUIC, we compress the atoms in the quadrupole ramping the
current to 30 A. Then we slowly close the IGBT pinch while slowly opening the
IGBT quad. The duration of this procedure, which can last from 500 to 800 ms,
gives the velocity by which we transfer the atoms from the quadrupole trap to the
final magnetic trap. At this point the polarized atoms (see next paragraph) are
magnetically trapped in the QUIC.

This field geometry generates a cylindrical magnetic potential with the weak
axis directed along the pinch direction (the weak-axis of the trap). The expression
for the magnetic potential near the minimum is given by:

U(z, r) ' µ

[
B0 +

1
2
B′′z2 +

B′2

2B0
r2

]
(2.2)

From (2.2), it is possible to derive the expressions for the oscillation frequencies
of the trap, related to the curvature B′′, to the gradient B′ and to the bias field
B0 by:

ωz =

√
µB′′

m
and ωr =

√
µB′2

mB0
(2.3)
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Figure 2.8: Scheme for controlling the QUIC trap

In our case, the bias field is B0 ' 1 Gauss, the gradient is B′ ' 170 Gauss/cm,
while the curvature is B′′ ' 240 Gauss/cm2. The trap frequencies that we have
measured ωz ' 2π × 16.3 Hz and ωr ' 2π × 197 Hz in the case of rubidium, and
ωz ' 2π×23.7 Hz and ωr ' 2π×286 Hz in the case of potassium are in agreement
with the prediction of (2.3). The difference between the oscillation frequencies
of K and Rb is due to the different masses of the two atoms (the ratio between
the frequencies scales as

√
(mRb/mK). We also note that the radial frequency is

directly related with the bias field, ωr ∝ 1/B1/2
0 . We can vary the value of B0 by

means of extra-coils and in fact we will use this feature for parametrically heat the
atoms in the trap. The magnetic trap is switched off by opening the IGBT quic
in a time of the order of some µs. Before setting the magnetic trap in its ultimate
position, near the glass cell, we have checked for the presence of eddy currents after
the switching of the field. In fact we did observe some residual current which were
responsible of a delay in the switching off of the magnetic field of some ms. By
replacing the copper support of our pinch coil with one done by bakelite, a good
thermal conductor but still good electrical insulator, we are now able to switch off
completely our magnetic field in about 100 µs.



2.3.2 Optical pumping procedure
Before to be transferred in the magnetic trap, the atoms must be polarized in the
low-field seekers sublevels which are efficiently trapped in the magnetic potential.
In our experiment, we must distinguish two different situations, the 41K-87Rb
mixture and the 40K-87Rb mixture.
In the first case, the nuclear spin is I = 3/2 for both potassium and rubidium,
thus the Zeeman structure of these atoms is the same. We have decided to trap
both potassium and rubidium in the mF = 2, F = 2 state which is the state
more coupled to the magnetic field. For preparing the mixture in this specific
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Figure 2.9: Scheme of the optical pumping procedure in the case of 41K-87Rb. The atoms
are polarized in the |F = 2, mF = 2〉 state. Rb Zeeman levels structure is shown.

Zeeman sublevel, we use an optical pumping phase (OP) which is performed by
applying to the sample pulses of light with opportune polarization and frequency.
The atoms initially trapped the MOT are almost equally distributed in all the
Zeeman sublevels of the F = 2 state. Consequently, without the optical pumping
phase, we would trap in the magnetic trap in the |F = 2,mF = 2〉 state only
about 1/5 of the total number of atoms . The experimental procedure for the OP
phase is the following (see Fig. (2.9)). We start with the samples trapped in the
magneto-optical trap then we switch off both the MOT gradient and the MOT laser
beams and we apply an opportune bias magnetic field (some Gauss) which defines
the polarization axis for our atoms. At this point we shine simultaneously two
short light pulses polarized σ+ polarization, one in resonance with the transition
F = 2 → F ′ = 2 and the other with F = 1 → F ′ = 2. The length of the two pulses
is slightly different and it is optimized in the experimental running. Typically the
F = 2 → F ′ = 2 pulse lasts hundreds of µs, while the second one can last even



some ms. The power of these beams is approximatively 150 µW and 100 µW
respectively. All the parameters (bias magnetic field, intensity and frequencies
of the beams) are directly set by improving the number of atoms trapped in the
QUIC trap.

In the case of the 40K, the situation is different, since the nuclear spin is
I = 4. This implicates that there are more Zeeman sublevels trappable for both
the F = 7/2 and F = 9/2 states. In our situation, we trap potassium atoms in the
level |F = 9/2 mF = 9/2〉 which corresponds to the maximally coupled state. For
getting the fully polarized sample, we proceed as before with two pulses resonant
with the F = 9/2 → F ′ = 9/2 and F = 7/2 → F ′ = 9/2 transitions and polarized
σ+. In the case of a mixture composed by different atomic species, the importance
of an effective optical pumping is not only a better transfer of the cold sample
into the magnetic potential, as it occurs for single species, but it also affects the
efficacy of the sympathetic cooling.
Consider indeed the specific case of trapping potassium 41K and 87Rb atoms. As
mentioned above, in this case both atomic species are simultaneously trapped in
the stretched state |F = 2,mF = 2〉 state. In the magnetic trap, if the system is
completely polarized, the only collisional process which involve one potassium and
one rubidium atom is: |2, 2〉Rb + |2, 2〉K → |2, 2〉Rb + |2, 2〉K . This kind of collisions
is completely elastic, i.e. the internal state of the atom does not change during the
collisions. For this reason it does not lead to any losses. Suppose now that, due to
an imperfect OP phase, we have some residual rubidium atoms in the trappable
state |2, 1〉 (the same in the case of potassium, but in our particular case, since the
number of rubidium atoms loaded in the magnetic trap is much bigger than the
potassium one, this effect is negligible). The collisional process |2, 1〉Rb + |2, 2〉K
is no more completely elastic. Indeed, since only the total mF must be conserved
during the collisions, more than one final channels for this collisional process exists.
For example, after the collision, the rubidium atom can be transferred in the |1, 1〉
state of the ground state. The hyperfine splitting energy between the F = 1
and F = 2 levels of Rb (∼ 6.8 GHz) is likely to be stored by potassium and the
rubidium atoms as kinetic energy, causing big losses in the sample. This specific
losses processes take name of hyperfine changing collisions and in the experiment
we have determined the rate at which they occur [55]. The same inelastic process
is likely to happen in the mixture 40K-87Rb, if the sample is not initially pefectly
polarized in the |2, 2〉Rb + |9/2, 9/2〉K states.

2.3.3 Imaging the atoms
The optimization of most of the experimental parameters is done by looking at the
number of atoms loaded in the MOTs, that we measure from their fluorescence. We
can monitor the shape of both the MOTs by means of two cheap CCD cameras,
while for estimating the number of atoms we use two calibrated photodiodes.
Once the atoms are in the magnetic trap, we determine their number and their
temperature by using a standard absorption imaging technique. Through a system



of lenses, we image the shadow of the trapped cloud on a resonance probe beam
on a CCD camera. In fact, after the switching off of the magnetic trap, we let
the atoms expand for a suitable time for avoiding problems related with the high
density of the sample. From the analysis of these images, we can extract all
the interesting physical properties of the system, such as density and momentum
distribution. Indeed, the relation between the intensity of the laser beam and the
density of the atomic sample is given by:

IT (x, z) = I0(x, z) expσ
[∫

dy n(x, y, z)
]

(2.4)

where n is the atomic density, σ the cross section for the absorption and the
integration is along the beam direction. The quantity σ [

∫
dy n(x, y, z)] is called

optical density (OP) of the system and it is what is directly measured in the
experiment. The experimental procedure for measuring the optical density of the
cloud is the following: we first take an image without any light going on to the
CCD camera (background image (Ib), it takes into account the intrinsic noise of
the camera). Then we take the image with atoms (signal image, IT ), and at the
end a third image without atoms (reference image, I0). The optical density is
given by:

OP = −ln
IT − Ib
I0 − Ib

= σ

∫
dy n(x, y, z) = n(x, z) (2.5)

Our CCD camera is produced by Theta System and it is based on a frame transfer

87Rb 41K87Rb 41K87Rb 41

Figure 2.10: Simultaneous images of potassium and rubidium atoms after 200 µs of bal-
listic expansion. Note how the shape of the clouds reflects the cylindrical symmetry of the
trapping potential.

chip composed by 1024 × 1024 pixels with dimensions 7.5 × 7.5µm. The optical
system we use for imaging the atoms into the CCD is composed by two lenses
that give an overall magnification factor of 1.75. We have directly measured the
magnification by studying the ballistic trajectory of the released rubidium BEC
trapped in the magnetic field independent state mF =0.

Since the optical transitions of potassium and rubidium are ∼ 13 nm apart, it
is possible to image simultaneously the two clouds without affecting the other one.
In order to do that, we first shine a short pulse (40 µs) of potassium light resonant
with F = 9/2 → F ′ = 11/2 (40K) or F = 2 → F ′ = 3 (41K). The CCD, externally
controlled by a TTL trigger, starts to transfer the image in the dark region of the



chip: at this point we flash the rubidium light resonant with the F = 2 → F ′ = 3
transition imaging also the rubidium cloud. The delay between the two pulses is
determined by the requirement of two spatially separate images of the two clouds
and it typically ranges between hundreds of µs and some ms.





CHAPTER 3

Sympathetic cooling of potassium and K-Rb interactions

In this chapter we show the effectiveness of the sympathetic cooling technique be-
tween potassium and rubidium atoms. In particular, we present the results that
we have obtained in the case of the boson-boson mixture composed by 41K-87Rb
atoms. By means of elastic collisions with the evaporatively cooled rubidium, it has
been possible for the first time to reach Bose-Einstein condensation in a sample
of potassium atoms. We have deduced, through accurate collisional measurements,
the interaction properties of all the potassium-rubidium isotopic pairs.

3.1 Evaporative cooling of rubidium atoms in the mixture

The aim of this experiment is to cool down potassium by means of sympathetic
cooling with rubidium: once the atoms of both species are trapped in the magnetic
potential, evaporative cooling is selectively performed only on the Rb component,
leaving the K atoms to be cooled by this thermal bath of rubidium. In most
of the experiments, the evaporation is performed by coupling the trapped state
to untrapped ones by means of an RF field, since the typical Zeeman splitting
between the levels is of the order of tens of MHz for the typical value of magnetic
field (B0 of the order of few Gauss).
In our specific situations, however, this is not always the case. For understanding
this point, it is necessary to distinguish the two different situations we have dealt in
the experiments, schematically sketched in Fig. (3.1). The first case is the mixture
composed by 41K-87Rb atoms. These two species have the same nuclear spin, thus
the same Zeeman structure. For this reason it is not possible to proceed with the
evaporation of the rubidium atoms by means of the standard RF coupling since,
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also the potassium atoms would be removed from the trap. The evaporation
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Figure 3.1: Evaporation schemes for potassium rubidium mixtures. In the case of 41K-
87Rb, the atoms of both species are optically pumped in the |F = 2, mF = 2〉 states.
However, due to the same Zeeman structure, the evaporation of rubidium is performed
by means of µ-wave knife at 6.8 GHz. In the other case, 40K atoms are pumped in the
|F = 9/2, mF = 9/2〉 state, while rubidium ones, trapped in the |F = 2, mF = 2 > state,
are evaporated from the trap by RF knife.

of Rb is then performed by using a µ-wave knife at 6.8 GHz, that couples the
|F = 2,mF = 2〉 state with the untrapped |F = 1,mF = 1〉 state of the ground
state. The 40K-87Rb mixture is easier to handle, since the two Zeeman structures
are completely different. It is therefore possible to evaporate rubidium atoms
with a standard RF knife, that couples the various Zeeman sublevels of the F=2
hyperfine level of Rb.

In the following of this chapter we will discuss the property of the 41K-87Rb
mixture, that was the first studied in our experiment.

3.1.1 Cooling the potassium atoms to quantum degeneracy

After being optical pumped in the |2, 2〉 state, potassium and rubidium atoms are
trapped in the magnetic trap, where the evaporative cooling on Rb is performed.
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Figure 3.2: False colour absorption images of potassium and rubidium in different stages
of the evaporation ramp. The density of potassium increases lowering the temperature,
while the rubidium one remains almost constant during all the evaporation.

The typical number of atoms we can load inside the QUIC trap is 2×108 and 2×106

for Rb and K respectively. The temperature of both species is quite high, ranging
from 200 to 300 µK, essentially due to the heating during the compression phase
in the quadrupole. In Fig. (3.2) we show the simultaneous images of potassium
and rubidium taken at different stages of the µ-wave evaporation.

We do observe a strong increase of the density of potassium, while decreasing
the temperature of the sample from 40 µK to 900 nK: indeed we measure an
increase of more than two orders of magnitude during the evaporation going from
4 × 109 cm−3 to 6 × 1011 cm−3. In Fig. (3.3a) we report the evolution of the
temperature of the potassium and rubidium versus the microwave cut. During all
the evaporation ramp the potassium and rubidium temperatures remain always
the same, indicating that potassium atoms are really efficiently cooled by the
thermal contact with rubidium. The efficacy of sympathetic cooling is the direct
consequence of the large interspecies interaction between 41K-87Rb atoms. In
Fig. (3.3b) we show the evolution of the numbers of atoms during the evaporation
ramp. The population of rubidium decreases as expected and we can note some
losses also in the potassium essentially due to some inelastic processes, probably
depending from the high densities of both the samples. If we now look more
in detail at Fig. (3.3) we see that the when the number of K and Rb atoms
become comparable, the efficiency of the cooling is reduced. Indeed, when the
two populations become similar then also the thermal capacities do the same and
consequently the efficacy of the sympathetic cooling is likely to be smaller (see
section 1.2.2).
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Figure 3.3: Evolution of the temperature (a) and of the number of atoms (b) of potassium
(o) and rubidium (• ) a a function of the µ-wave cut of Rb.

However, if we now evaporate more deeply the rubidium distribution we finally
achieve the Bose-Einstein condensation for 41K [11]. We have experimentally found
that the evaporation ramp by which it is possible to achieve the potassium BEC
has to be essentially composed by two parts. In the first stage we are forced to
evaporate rapidly the rubidium atoms in order to eliminate some residual popula-
tion of Rb trapped in the |2, 1〉 state which induces large losses in the potassium
sample (see also 4.1). When the temperature of both species is below the mi-
croKelvin, we instead have to decrease the rate of evaporation since the number
of atoms and thus the thermal capacities of K and Rb become more comparable.
The typical duration of the ramp is about 50 s.

In Fig. (3.5) we report the density profiles of the potassium sample crossing the
transition temperature TC . The critical temperature TC = 150nK is determined
by fitting with Gaussian the thermal wings of the bimodal distribution. The
condensate fraction is instead reproduced by an inverted parabola, solution of the
GPE equation in the Thomas-Fermi approximation (1.3.2). The typical number
of atoms in the condensate is about N = 104. By plugging the detected number
of atoms in the BEC and our experimental parameters in the relation:



T<TC T≈TC=150nK T>TC

Figure 3.4: False colour density profile of the 41K cloud after 15 ms of ballistic expan-
sion. From right to left we can observe the transition from a thermal gas at T > TC , to
a partially condensed sample at T ' TC and to a pure potassium BEC at T < TC . The
critical temperature, T ' 150 nK, is determined by fitting the thermal wings of the bimodal
distribution.

TC =
~$
kB

(N/1.202)1/3 (3.1)

we find TC = 160 nK, in good agreement with the measured value. When potas-
sium reaches the degenerate regime, Rb is completely evaporated. In fact the first
achievement of potassium BEC was possible thanks to the inelastic losses which,
at very low temperature (see Fig. (3.3)), reduce the number of K atoms. Indeed if
this did not occur, when the number of potassium and rubidium atoms becomes
similar, sympathetic cooling would have not been efficient and the temperature
of K would have not been decreased further. The lifetime of the condensate of K
is about 500 ms, the same than the lifetime of our Rb BEC. It is limited by the
background heating in the magnetic trap, 100 nK/s.

3.2 Measuring K-Rb ultracold interactions

In the first chapter of this thesis, we have discussed the collisional properties of
a dilute system composed by atoms at ultralow temperature. The main result
we have found out was that, when the temperature of the sample is sufficiently
low (tens of µK), all the interactions properties can be completely described by a
single parameter, the scattering length a. Indeed, the magnitude of the scattering
length gives the strength of the interaction, since the collisional cross-section is
simply σ ∝ a2. The knowledge of the interaction properties of atoms of the same
alkali specie was the subject of an intensive study in these last ten years, both
theoretically and experimentally [82]. Particularly important is the possibility
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Figure 3.5: From A to C: density profiles of potassium cloud crossing Bose-Einstein con-
densation at a critical temperature T ' TC = 150 nK. The lines are the best fit with Gaus-
sian in the case of thermal component and with an inverted parabola for the condensate
fraction.

of directly controlling the interaction between the atoms, by using magnetically
tunable Feshbach resonances [83–85], that recently has allowed the formation of
stable BEC for even for species like 85Rb [7; 72] and 7Li [25; 28; 29] for which the
negative sign of the scattering length was a limiting factor.

The situation is completely different in the case of ultracold mixtures composed
by atoms of different species, since no experimental data, neither theoretical stud-
ies were available. This is true also in the case of potassium rubidium mixtures.
Indeed when we have started the experiment there were no predictions about the
efficiency of sympathetic cooling between these two species. This lack of knowledge
has motivated our decision of performing accurate collisional measurements on the
mixture in order to determine the scattering length between K and Rb atoms [55].
Actually, by such a investigation on the pair 41K-87Rb, we could have important
predictions even for the other interesting K-Rb mixture, the one composed by
40K-87Rb atoms, predictions subsequently confirmed by direct experimental ob-



servations [15]. In the following of this section, we will discuss the two independent
methods that we have performed for determining the magnitude and the sign of
41K-87Rb scattering length, and which give results in good agreement one with
the other.

3.2.1 Thermalization by elastic interspecies collisions
As discussed in (2.3.1), potassium and rubidium atoms oscillate inside the mag-
netic trap at different frequencies due to the different masses. In particular, rubid-
ium sample oscillates at 16.3 Hz axially and at 197 Hz radially, while potassium
oscillates at 23.7 Hz and 286 Hz, respectively. This feature allow us to selec-
tively heat rubidium atoms by superimposing a 10% modulation on the trapping
potential at twice the radial frequency of Rb [11; 55]. This modulation of the
radial confinement is achieved by modulating the magnetic field along the axial
direction (the pinch direction) acting directly on the current of the compensation
coils along the same direction. Indeed, if we look at that the expression for the
magnetic potential around its minimum (2.3.1):

U(z, r) ' µ

[
B0 +

1
2
B′′z2 +

B′2

2B0
r2

]
(3.2)

we see that the oscillation frequencies of the trap are related to the curvature B′′,
to the gradient B′ and to the bias field B0 by:

ωz =

√
µB′′

m
and ωr =

√
µB′2

mB0
(3.3)

therefore the square of radial frequency ωr is proportional to 1/B0: by modulating
B0 we modulate the radial confinement at the same frequency. If the modulation
is at twice the radial oscillation frequency of Rb, we selectively heat the rubidium
cloud by parametric heating [86; 87]. After the driven excitation, we have observed
experimentally how the total system (potassium + rubidium) evolves to the new
equilibrium condition, by means of interspecies elastic collisions. In Fig. (3.6) we
show the evolution of potassium temperature versus time after a 10% modulation
for 100 ms at 2ωr of Rb. The initial temperature of the mixture in this case is
T = 1.6 µ K. While rubidium temperature decreases, we observe a corresponding
increase in the one of potassium, until the two samples reach a common equilibrium
value. Since this new equilibrium condition is reached by means of interspecies
elastic collisions, the analysis of the thermalization process gives information on
the collisional cross-section. Indeed, as shown in Fig. (3.6), the thermalization
process is well described by an exponential decay, whose measured time constant
τ is related to the elastic cross-section by:

1
τmix

=
ξ

αs
n̄σvrel (3.4)
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Figure 3.6: Evolution of the mean temperatures of the K sample after 100 ms of selective
heating of Rb. Each datapoint is the average of five measurements, and the error bar
displays the corresponding statistical fluctuation. The continuous line is the best fit to
an exponential function; the time-constant is inversely proportional to the K-Rb elastic
collisional rate.

where σ is the collisional cross-section (σ 4πa2
K−Rb), considering only the s-wave

scattering contribution to the cross-section, while vrel and n̄ are the relative ve-
locity between two colliding atoms and the effective average density given by,

vrel =

√
8kBT

πm
n̄ = (

1
NRb

+
1
NK

)
∫
d3r nRbnK (3.5)

The factor ξ = 4(mRbmK/(mRb +mK)2) takes into account the different masses
of potassium and rubidium atoms, while the numerical coefficient αs is the average
number of s-wave collisions necessary for the thermalization: αs ' 2.7. From the
analysis of our experimental data, we have found that |aK−Rb| = 170 ± 35 a0.

Since the direct measured quantity is proportional to the square of the scat-
tering length a, from this kind of measurement we do not have any information
about its sign. As remarked in the previous chapter, while the magnitude of the
scattering length determines the efficiency of the sympathetic cooling at high tem-
peratures, the sign is crucial when the system reaches the degenerate regime, when
the mean-field interaction between the atoms becomes important.

However, by repeating series of thermalization measurements, varying the tem-
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and negative triplet scattering lengths, corresponding to a = 163 a0 and a = −209 a0,
respectively. The dashed line corresponds to a = 140 a0.

perature of the mixture, we were able to also extract the sign of the scattering
length between 41K-87Rb atoms.
The temperature dependence of the scattering cross-section can be extract in the
effective range theory [20; 22] from the following equation:

σs '
4πa2

(1− 1/2rsak2)2 + a2k2
(3.6)

where rs is the effective range of the potential and the temperature dependence
of the scattering cross-section enters in the wave-vector k. In Fig. (3.7) we show
the measured elastic-collision rate 1/(τ n̄) as a function of temperature in the
range (1.6−45) µK. The measurements were performed on samples with a typical
ratio NK : NRb=1:2, and with a total number of atoms ranging from 2×105 at
T=1.6 µK to 2×106 at T=45 µK. The general model we have used for describing
the thermalization processes shown in Fig. (3.7) extends the one presented in [88] to
the case of energy dependent collisional cross-sections by considering contributions
from higher partial waves than s-wave. In our case, we have checked that in our
temperature range, the only important contributions to the scattering rate are due
to s- and p-wave collisions. Then it is possible to write the thermalization rate



(the thermalization time per unit atomic density) in the following way:

1
τ n̄

=
ξ

2αskBT

[
〈σsvrelE〉+

αs

αp
〈σpvrelE〉

]
, (3.7)

where, as above αs ' 2.7 is the average number of s-wave collisions necessary for
rethermalization, vrel is the relative velocity of a colliding pair and E is the relative
collision energy. We obtain the ratio αs

αp
= 3

5 upon integration over all collision
directions. The factor ξ = 4µ/M , with M and µ the total and the reduced mass
respectively, gives a reduction ξ ' 0.87 of the thermalization efficiency with respect
to the case of equal masses. Finally, the averages 〈·〉 are performed on a classical
Maxwell-Boltzmann distribution of relative velocities.

The partial cross sections are obtained from a numerical solution of the scatter-
ing equations using standard propagation algorithms. The molecular Hamiltonian
for collisions of atoms with hyperfine structure includes the kinetic energy of the
relative motion, the hyperfine atomic energy and the adiabatic Born-Oppenheimer
(ABO) 1Σ+ and 3Σ+ symmetry potentials. The latter have been constructed by
smoothly matching the short-range ab initio potential of [89] onto a long-range
analytic potential V = Vd ± Vex/2. Here Vd = −C6/R

6 −C8/R
8 −C10/R

10 is the
dispersion potential and Vex is the exchange potential. An accurate van-der-Waals
coefficient C6 is taken from [90], C8 and C10 from [91] and the analytic form of
Vex from [92]. The molecular potential is made flexible by adding a short-range
correction to the adiabatic potentials (see [93]). This procedure allows us to tune
singlet and triplet scattering lengths to agree with the data.

The experimental data are fitted using a min-χ2 procedure. Since collisions
between atoms prepared in a doubly-polarized spin state are single-channel colli-
sions involving only the 3Σ+ symmetry potential, the scattering length a is the
only free parameter in the model [94]. Our main results are shown in Fig. (3.7).
The best agreement is obtained for a positive scattering length a = 163 a0, while
the best-fit curve for negative a fails to fit the experiment at high temperature
(solid lines in Fig. (3.7)). Actually, for a < 0 the cross-section drops with energy
from its threshold value σs = 4πa2 at lower collision energies than it does for
a > 0. Moreover, the curve for a = 163 a0 has a significant contribution from a
broad p-wave shape-resonance near the top of the centrifugal barrier which fur-
ther increases the rate at high T . This resonance rapidly shifts at lower energies
for decreasing a (dashed line in Fig. (3.7)). This circumstance and the absence
of observed resonant features sets a tight lower bound a ≈ 150 a0 on the confi-
dence interval for a, while the upper bound is looser. Actually, scattering lengths
a ≈ 200 a0 having only a minor p-wave contribution still agree well with the data.



3.2.2 Dipolar oscillations

As we have seen, we have determined the magnitude and the sign of the triplet
scattering length between 41K-87Rb atoms, by means of series of thermalization
measurements performed on the mixture at different temperatures. The value we
have finally found is a = +163+57

−12 a0. For having an independent estimation of a,
we have studied the damping of the dipole oscillations on a sample composed by
about 8×104 K atoms and 1.5×105 Rb atoms, at T = 1.7µK, where the only s-wave
scattering contribution is relevant. We have induced dipole oscillations suddenly
shifting the trapping potential, by varying the current in the pinch coil for about
30 ms (half of an oscillation period), after the conclusion of the evaporation ramp.
After the displacement, the atoms start to oscillate inside the magnetic trap along
the weak axis of the trap around the potential minimum. In Fig. (3.8), we show the
evolution of the center of mass oscillations versus the time after the displacement.
As it is possible to see from the figure, after the first oscillation, in which the
potassium and rubidium atoms oscillate at their own ”bare” frequency (24 Hz and
16.3 Hz respectively), the dipolar oscillations become rapidly coupled and damped
by the interaction between the atoms. In particular, the motion of potassium
atoms (the lighter element) is strongly affected by the presence of rubidium, as
showed by the appearing of beatings.
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Figure 3.8: Dipole oscillations of the K (a) and Rb (b) clouds along the weak trap axis. The
solid lines are a best fit to the model presented in the text. The faster damping and the
beatings observed in the K motion are due to the smaller mass of the K sample.



The motion of the two center of mass is well described by the solutions of the
following coupled differential equations [95; 96]:

z̈1 = −ω2
1z1 −

4
3
M2

M

N2

N
Γ (ż1 − ż2)

z̈2 = −ω2
2z2 +

4
3
M1

M

N1

N
Γ (ż1 − ż2) , (3.8)

where the labels 1 and 2 denote K and Rb respectively, M = M1 + M2, N =
N1 +N2, Γ = n̄σsv is the instantaneous s-wave collision rate, v is the rms relative
velocity, and n̄ is the atoms density defined above. The coupled equations (3.8)
indicate that, in the collisionless regime, in which the collisional rate Γ is much
smaller than the oscillation frequency in the trap ω, Γ � ω, the motion of the
two clouds is a superposition of two different normal modes at the bare frequency
of potassium and rubidium. Since the mass of Rb is almost twice the one of
potassium, K motion is more influenced by the presence of Rb and it is faster
damped respect to Rb one. By fitting our experimental results with the solution
of (3.8), we can extract the collisional rate Γ = 5.2 ± 0.7 s−1 and the value of the
magnitude of the triplet scattering length |a| = 170+35

−35 a0, where the uncertainty
is dominated by that on the atom number (±50%). As it is possible to see, this
result is in good agreement with the one we have found by the thermalization
measurements.

3.3 Potassium-rubidium interactions

From the measurements we have presented so far, we are able to extract the
magnitude and the sign of the scattering length between41K-87Rb atoms. In par-
ticular, since we started always with a sample fully polarized, in the stretched
state |F = 2,mF = 2〉 state, we can have information only about the triplet scat-
tering length a. In order to determine also the singlet scattering length a1 we
have performed some inelastic measurements. We have transferred some popula-
tion of Rb atoms in the trapped state |F = 2,mF = 1〉, and we have studied the
trap losses due to the collisions of this atoms with the K in the |F = 2,mF = 2〉
state. In details, we have started with a mixture composed by 3×104 K atoms
and a larger number of Rb atoms (1.2×105), both in |2, 2〉 state, at a temperature
T = 1.8 µK. We have then transferred a small fraction (20%) of rubidium in |2, 1〉
using a radio-frequency sweep and we have studied the subsequent decay of K.
The decay of potassium in this state turned out to be much faster than the usual
decay of the fully polarized system (τ = 70s). Indeed, the mixture composed
by rubidium in |F = 2,mF = 1〉 state and potassium in |F = 2,mF = 2〉 is no
more stable (see 2.3.2). In particular, we can have the following inelastic processes
|2, 1〉+|2, 2〉 → |2, 2〉+|1, 1〉 and |2, 1〉+|2, 2〉 → |1, 1〉+|2, 2〉 that cause large losses
in the trap. Since the Zeeman structure is the same for both species, during the
RF sweep, we could also transfer some potassium atoms in the |2, 1〉 state. How-



Figure 3.9: Contour plot of the calculated inelastic collisional rate G in units of
10−11 cm3 s−1 vs the triplet scattering length a and the reduced singlet scattering length
x1 = 2/π arctan(a1/asc), where asc = 72 a0. The shaded regions correspond to the rate
determined in the experiment.

ever, this population did not contribute significantly to the losses of potassium and
rubidium, being the number of K atoms transferred in this state negligible respect
to the initial number of rubidium atoms in the |2, 2〉. It is possible to describe the
evolution of the population of potassium atoms in |2, 2〉 state by solving the rate
equation:

ṅK(t) = −GnK
|2,2〉(t)n

Rb
|2,1〉(t) (3.9)

with the constraint NK
|2,2〉(t)−N

Rb
|2,1〉(t) = const. Here n is the spatial density,

N the atom number and G is the rate constant for inelastic collisions between
K in |2, 2〉 and Rb in |2, 1〉. From this model, we have extracted the inelastic
collisional rate G=1.8(9)×10−11 cm3 s−1. If we compare this experimental result
with a numerical calculation, we can determine a range of values for the singlet
scattering length a1, given our interval of a values. As shown in Fig.(3.9), we can
have two range of values for a1, that are compatible with our measured inelastic
rate G. Indeed both a1 > 30 a0 and a1 < −210 a0 are compatible with our data,
excluding, in this way, excluding a broad region of strong suppression of inelastic
processes centered at a1 ∼ a, as in the case of 87Rb [5]. Thanks to these collisional
measurements, by mass scaling, it has been possible to draw down a picture of the
triplet scattering length of all the K-Rb possible pairs [55].
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Figure 3.10: Triplet s-wave scattering lengths for collisions between potassium-rubidium
isotopes. The values are derived by mass scaling from the directly measured 41K-87Rb
scattering cross-section.

In Fig. (3.10) we present the triplet interactions versus the reduced mass for all
the potassium-rubidium mixtures. It is worth to comment these results. First of
all the measured repulsive character of the 41K-87Rb triplet interaction indicates
that it is possible to form a stable binary Bose-Einstein condensate. Indeed in the
case of a negative inter-species scattering length much larger in magnitude than
the single-species ones, the mean-field interaction would lead to the collapse of the
condensates [103], since the magnitude of the 41K-87Rb scattering length is larger
than the intraspecie ones (see (1.4.1). Among all the other possible combinations,
the more interesting one is the 40K-87Rb: the value of the triplet scattering length
we can infer from these measurements made on the 41K-87Rb pair is -261+170

−159 a0

Therefore, we can expect that sympathetic cooling of fermionic K with 87Rb is
highly efficient. Moreover, the attractive character of the interaction prevents
phase separation of the two components once the degenerate regime has been
reached [37], thus insuring an efficient thermalization even in this regime.



CHAPTER 4

Bose-Bose degenerate mixture

In the previous chapter, we have demonstrated the possibility of cooling down to
quantum degeneracy a sample of 41K atoms, by means of sympathetic cooling with
rubidium atoms. The efficacy of sympathetic cooling is supported by a large inter-
species collisional rate. We have directly measured the 41K-87Rb triplet scattering
length and we have found a quite large value a ' 163 a0. The positive sign as-
sures the possibility of forming a stable binary BEC with these two species. In this
chapter, we report on the experimental observation of this double BECs system,
and show how the feature of superfluidity affects the dynamics of such a system,
inducing scissors-like oscillations of the BECs inside the magnetic potential.

4.1 Producing the degenerate mixture

As discussed previously, in our first attempts we were not able to see the simul-
taneous formation of potassium and rubidium condensates: typically 41K could
reach the degenerate regime, only when all rubidium atoms were evaporated from
the trap. The reasons for this failure depend essentially from two different factors
that however are strictly related.

First, as mentioned in (2.3), during the loading of potassium in the second
MOT we have observed large losses in the rubidium sample, due to non linear
processes occurring in the MOPA. In particular, when all the four frequencies
were injected in the amplifier, we have seen the formation of sidebands on the
cooling light of rubidium (|F = 2〉 → |F ′ = 3〉 transition). Since the hyperfine
energy splitting of 41K is 254 MHz one of this two sideband was resonant with the
|F = 2〉 → |F ′ = 2〉 transition reducing, in this way, the efficiency of the rubidium

61



MOT. For this reason we had a limitation in the maximum number of potassium
and rubidium atoms loaded in the second MOT. Indeed a too long potassium
loading caused large losses (even of the 50%) in the rubidium sample, not allowing
the formation of a BEC of 87Rb, while a shorter transferring of K atoms did not
permit the observation of the potassium condensate.

On the other side, we have noted how the good polarization of the system
was really important for avoiding losses in the sample. However, despite of our
efforts, at the beginning, we were never able to produce a fully polarized mixture
in the |2, 2〉 state. Indeed we could always reveal a small component of rubidium
atoms trapped in the |2, 1〉 state, not cleaned up by the µ-wave evaporation. This
residual population in the |2, 1〉 state could induce losses in the potassium sample.
We have tried to get rid of these atoms in the |2, 1〉 state, by forcing the first part
of the evaporation of rubidium. Infact, at high temperatures (T ≥ 100 µK) it
is possible to remove efficiently from the potential both the |2, 1〉 and the |2, 2〉
components. However, when the temperature of the system approaches to about
40 µK the |2, 1〉 is no more eliminated from the trap. Furthermore, since the value
of the bias field for the |2, 1〉 state is just the half of the one for the |2, 2〉 state, it
is not possible to cut completely the population in the |2, 1〉 state without before
eliminating all the atoms in the |2, 2〉.

The only way for evaporating all the atoms trapped in the |2, 1〉 state was to
apply a second µ-wave knife, always operating on the rubidium sample at 6.8 GHz
but directly coupling the |2, 1〉 with the |1, 0〉 and |1, 1〉 states of the ground state.
In this way we could eliminate almost all the population of rubidium in the |2, 1〉
level, and after an suitable evaporation ramp lasting 50 s, we could finally have
the right numbers of atoms of both the species for the observation of the binary
BEC [12].

Actually, by means of this double evaporation scheme, we could soon observe
the formation of the binary BEC [12]. In Fig. (4.1a-b) we show the transition
between a Bose-Einstein condensate interacting with a thermal gas of Rb to a
binary BEC. The typical number of atoms is about 104 for both the species, and
since the critical temperatures, for similar number of atoms, depend only from
the mass, TC ∝ $ ∝ M−1/2, this means that the condensation regime is reached
before for the potassium sample at T ' 120 nK and then for the rubidium at
T ' 80 nK.
We were able to detect the two condensates simultaneously by absorption imaging
after 13 ms of free ballistic expansion; the two images are taken with a temporal
delay of 700 µs, by pulsing the potassium light at 766.7 nm and the rubidium at
780 nm for about 30 µs. As it is possible to note from Fig. (4.1 b), due to the
lighter mass potassium expands faster than rubidium as appears from the different
aspect of the two clouds.

By studying the two condensates at different expansion times, we could get
information on the size and on the relative positions of the two samples inside the
magnetic potential. By comparing our experimental results with an analytic model
for the ground state of a binary BEC in the Thomas-Fermi approximation [4], we



Figure 4.1: Absorption imaging of a binary 41K-87Rb Bose-Einstein condensate after 13 ms
of ballistic expansion: a) at T '100 nK the Rb sample is still thermal; b) at T ≤80 nK both
species are condensed. c) Enlarged view of the density profile of the binary BEC in the
magnetic trap.

have found that the radii of the K (Rb) condensates are rx = 23 µm (rx = 22
µm) along the weak axis of the trap, and rz = 2 µm (rz = 1.9 µm) in the other
two directions. As sketched in Fig. (4.1c), the two centers are displaced along the
z axis due to the gravity (gravitational sag) of about δz = 3.6 µm. Furthermore,
due to a misaligment of our magnetic trap, the weak axis of the trap (x- direction)
forms a angle of about 20 mrad with respect to the gravity and thus the two
centers are displaced of about δx = 10 µm also along this direction. We have
measured the temperature of the mixture from the Gaussian tails of the thermal
component of each condensate. Due to the resolution of our imaging system,
we were able to detect a minimum thermal fraction of 30 % in each condensate.
This detectable thermal component fixes our minimum measurable temperature to
T = 0.65 TC . In the case of the K condensate, the minimum temperature that we
could measure was about 80 nK which is just the critical temperature of rubidium.
This means that even if the overlap region between the two samples in the magnetic
potential is not very large, as we can see from Fig. (4.1c), the thermal contact and
consequently sympathetic cooling is assured by the two thermal clouds, which even
in the degenerate regime continue to have good spatial overlap. The lifetime of this
double BECs was about 500 ms, as in the case of individual BECs of potassium



and rubidium, limited by the background heating of our magnetic potential (100
nK/s).

4.2 Stability of the degenerate mixture

The stability of this binary condensate is assured mostly by the large and repulsive
character of the 41K-87Rb interaction. For understanding this, we write down the
equations in mean-field approximation describing the ground state of such a system
[104]: [

− ~2

2m1
∇2 + U1(r) + g11|ψ1|2 + g12|ψ2|2

]
ψ1 = µ1ψ1 (4.1)

[
− ~2

2m2
∇2 + U2(r) + g21|ψ1|2 + g22|ψ2|2

]
ψ2 = µ2ψ2 (4.2)

where we defined:

g11 =
4π~2a11

m1
> 0 (4.3)

g22 =
4π~2a22

m2
> 0 (4.4)

g12 = 2π~2a12(
m1 +m2

m1m2
) (4.5)

The interaction between the two condensates is described by the term g12 =
2π~2a12(m1 + m2)/m1m2, i.e. it is proportional to the interspecies scattering
length a12. The study of the stability of a mixture composed by two interacting
Bose gases has been reported in many theoretical works [97–104]. In particular, M.
Modugno and F. Riboli in [104] have considered, in the mean-field approximation,
the general case of two condensates composed by different atomic species (with
different mass and in different hyperfine states) confined in a magnetic trap. They
have included in their model also the presence of the gravity and the possibility of
having the eigenaxes of the potential tilted with respect to the gravity direction,
as we actually find in our experiment. By an appropriate coordinate transforma-
tions, it is possible to model this complicated problem in a much simpler form,
reducing it to the study of the intersections of spheres each representing in the
Thomas-Fermi limit, the regions of existence of the BECs. Following [104], we can
rewrite the equations (4.1) and (4.2) as:

V1(x) + u11|ψ1|2 + u12|ψ2|2 = µ1 (4.6)
V2(x) + u21|ψ1|2 + u22|ψ2|2 = µ2 (4.7)



where the reduced coupling constants uij are

u11 = 4π
a11

aho
(4.8)

u12 = 2π
a12

aho

(
1 +

m1

m2

)
= u21 (4.9)

u22 = 4π
a22

aho

m1

m2
(4.10)

We can consider the solutions of (4.6) and (4.7) either in the overlapping regions
or in the regions where the two wavefunction describing the condensates do not
overlap. In the first case, the solutions of the GPE system are:

|ψ1|2 = α1

(
R2

1 − r2 − (z − zc1)2
)

(4.11)

|ψ2|2 = α2

(
R2

2 − r2 − (z − zc2)2
)

(4.12)

where we have defined the radii Ri

R2
1(µ1, µ2) =

2(µ1 − γ2µ2)
1− ηγ2

+
ηγ2

(1− ηγ2)2
dz2 (4.13)

R2
2(µ1, µ2) =

2(µ2 − γ1µ1)
η − γ1

+
ηγ1

(η − γ1)2
dz2 (4.14)

the position of the centers along z

zc1 =
−ηγ2

1− ηγ2
dz (4.15)

zc2 =
η

η − γ1
dz (4.16)

and the normalization factors αi

α1 = u22
1− ηγ2

2∆
(4.17)

α2 = u11
η − γ1

2∆
. (4.18)

and γ1 ≡ u21/u11, γ2 ≡ u12/u22 and ∆ = u11u22 − u2
12.

As we can see from (4.11) and (4.12), the density ni(r) = |ψi|2 of each conden-
sate is represented by spatial regions delimited by spherical surfaces of radii Ri

whose magnitudes depend only on the interaction parameter uij . Since |ψi|2 ≥ 0
then we must have

α1

[
R2

1 − r2 − (z − zc1)2
]
≥ 0 (4.19)

α2

[
R2

2 − r2 − (z − zc2)2
]
≥ 0 (4.20)

and therefore the overlap region between the two BECs is the intersection between
two spherical surfaces Σi which are defined by the equations R2

i = r2 + (z −



Figure 4.2: Plot of the normalization factors α1 (continuous line) and α2 (dashed line)
of the interacting wave functions as a function of u12 (in arbitrary units). The region for
∆ < 0 and u12 < −ū corresponds to the physical situation of the collapse between the two
condensates, while if −ū < u12 < ū, ∆ > 0, the two BECs can have some overlap region,
depending on the value of the parameters ū and u12. Phase-separation instead occurs if
u12 > ū, ∆ < 0. The quantity u∗ is defined as u∗ = min(u11, u22).

zci)2, and identified by the sign of the coefficient αi: for αi > 0 the region to be
considered is the one inside the surface Σi, for αi < 0 the one outside.
In the regions where the two wavefunctions do not overlap the solutions of (4.6)
and (4.7) are:

|ψ01|2 =
1

2u11

(
2µ1 − r2 − z2

)
(4.21)

|ψ02|2 =
η

2u22

(
2µ2

η
− r2 − (z − dz)2

)
. (4.22)

Also in this case, the solutions are represented by the intersection of two spherical
surfaces, defined by: R2

0i = r2 + (z − z0
ci)

2, with R2
01 = 2µ1, R2

02 = 2µ2/η, z0
c1 = 0

and z0
c2 = dz.

By imposing the continuity condition of the wavefunction at the boundary between
the overlapping and the nonoverlapping regions, we can distinguish three different
situations defined by the value of the u12 parameter, which is directly related to
the interspecies scattering length a12. Defining the parameter ū ≡ √

u11u22 we
have the following cases:

(i) u12 < −ū, ∆ < 0. For this range of values, we have no overlapping solution.
From Fig. (4.2) we see that both αi are negative and it is possible to show
that the only region of overlap between the two BECs could be constructed by



putting a hole in the condensate, where both the condensates wavefunctions
ψi would be vanishing. This has obviously no physical meaning and in fact
what actually happens is that when u12 approaches −ū+ the condensates
eventually collapse [98; 103].

(ii) −ū < u12 < ū, ∆ > 0: in this range the two condensates can coexist and
overlap in some region of space if |dz| < R10 +R20.

(iii) u12 > ū, ∆ < 0: in this case the strong mutual repulsion leads to a phase
separation between the two condensates [37; 99; 100].

In our specific situation, we can calculate the parameters ∆ and ū, by considering
the values of the potassium-rubidium scattering lengths, aK=60 a0 [105] and aRb =
99 a0 [106], and aK−Rb = 163 a0. We find that the 41K-87Rb mixture verifies the
condition u12 > ū, ∆ < 0. This means that we are in a regime of phase-separation
between the two condensates [37]. Indeed if the interspecies scattering length was
negative, aKRb = −163 a0, we would not observe the stable binary condensates,
because u12 < −ū, ∆ < 0. In fact, in this case the attractive mean-field interaction
between atoms of the two BECs would overwhelm the repulsion between atoms of
the same specie, leading to the collapse of the system. Our observation of the stable
binary BEC of 41K and 87Rb confirms our estimation of the magnitude and of the
sign of the triplet scattering length that we made by collisional measurements.



4.3 Dynamics of binary potassium-rubidium BECs: collision-
induced scissors mode

As we have discussed before, the overlap region between the two condensates in
the trap is likely to be quite small, essentially due to the repulsive character of
the interaction between the two species, that causes phase-separation [37] between
the two degenerate clouds, and due the gravitational sag. In this conditions, only
the residual thermal component of both BECs is assuring the thermal contact
among the two clouds. To observe some effects due to the large interspecies in-
teraction, we have forced the dynamical overlap between the two condensates, by
exciting dipolar oscillations [12]. These oscillation were excited by reducing the
radial confinement of the trap by almost 25 % for 2 ms, controlling the current
in the compensation coils along the weak axis of the trap. Indeed, by varying the
current inside this coils, it is possible to change the value of the bias field B0, and
subsequently to vary the value of the radial frequency of the trap (ωz ∝ 1/B2

0),
leading to a vertical oscillatory motion of the whole sample (2.3.1).

Figure 4.3: Dipolar oscillations of potassium (top) and rubidium (bottom) Bose-Einstein
condensates. The absorption images are taken after 13 ms of free expansions.

After the modification of the magnetic potential, we have left the system evolve
in the trap some time and then we have imaged the two clouds simultaneously
by usual absorption imaging technique. Typical recorded images are shown in
Fig. (4.3). In this case, we have let the two BECs expand for 13 ms before pulsing
the imaging lights. The time delay between the two pulses was 700 µs. The
numbers of atoms of condensates were typically 6 × 103 and 104 for K and Rb,
respectively, and we could not detect any thermal component in both the cases.

In Fig. (4.4a-b) we report the center of mass motion of the potassium and ru-
bidium versus evolution time inside the magnetic trap. We have described our sys-
tem in the mean-field approximation by considering two coupled time-dependent
Gross-Pitaevskii equations (GPE), whose numerical solution is represented by the
continuous line in Fig. (4.4a-b). As it is possible to see, our experimental data
are pretty well reproduced by this simulation. It is worth to note that the motion
of the center of mass is not strongly affected by the large mean-field repulsion
between the two condensates, since we do not observe almost any damping in the
first oscillations of the two clouds. Damping and coupling are instead observed
on much longer time scale (more than 100 ms), when anyway we suspect that
some thermal components starts to interfere in the motion of the two BECs. The
theoretical analysis of the system allows us to reconstruct the motion of the con-
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Figure 4.4: Dipolar oscillations of the K and Rb condensates along the z axis, induced by
a modification of the radial trap confinement. Center-of mass position of a) K and b) Rb
after the ballistic expansion; the dots are the experimental data, while the continuous lines
are a simulation using the GPE. c) Calculated evolution of the center-of-mass position for
K (continuous line) and Rb (dotted line) in the trap.

densates in the magnetic trap, as reported in Fig. (4.4c). The initial positions
of the two clouds in the trap is determined by the gravity that pulls down the
rubidium condensate more than the potassium one. As soon as the potential is
modified, the two BECs start to oscillate in the trap, each one at its own frequency,
νr(Rb) = 190 Hz and νr(K) = 275 Hz. Due to this frequency shift, after some
ms, the two clouds will completely superimpose, i.e. the two BECs collide. Since
the two condensates are displaced also along the x direction, see Fig. (4.1), the
two clouds are likely to exchange angular momentum as a consequence of these
off-collisions. We have actually observed this kind of behaviour, by looking at
the shape of the BECs in function of the time after the excitation of the dipolar
motion.

In Fig. (4.5) we show the absorption images of potassium and rubidium con-
densates at evolution times corresponding to the collisions between the two BECs.
It is possible to note that the two clouds effectively rotate around their vertical



Figure 4.5: Collision-induced rotation of the binary BEC during the dipolar oscillations. The
first three images correspond to an evolution time in the trap: a) 8 ms; b) 8.5 ms; c) 9 ms.
In d) the evolution time is 8 ms like in a), but the Rb BEC has been removed before the
excitation of the dipolar oscillations; no rotation is observed in this case.

axis. In the case of potassium, this phenomena appears more evident, since its
shape is more elongated in the vertical direction due to faster expansion.
Since the optical transitions of K and Rb are 13 nm far, it is possible to eliminate
from the trap selectively only one of the two condensates, studying in this way, the
free evolution of the center of mass without any collisions with the other specie.
When we have performed such a measurement, shown in Fig. (4.5d) for potassium,
we have not observed any rotation. We have been able to explain this behaviour by
considering the GPE approach: in this mean-field approximation, each BEC sees
the other one as a time-dependent perturbation of its trapping potential [107; 108].
Since the axial symmetry of the potential is broken due to the misaligment of the
magnetic trap, the BECs acquire a macroscopic angular momentum.

When we have repeated the same experiment using, this time, ultracold but
still thermal samples, we have not detected any rotation of the clouds. This can
be understood qualitatively in the following way. In general, when describing
the interaction between trapped atoms it is possible to distinguish two different
regimes [109]. The first regime is called collisionless regime and it is characterized
by a scattering rate much lower than the oscillation frequency of the atoms in
the trap, Γ � ω, where Γ = nσv, as introduced in the previous chapter. In
this case, the atoms inside the sample behave as individual particles, so then the
scattering process are essentially uncorrelated two body events. On the other side,
when the scattering rate becomes much larger than the trapping frequency, Γ � ω
(hydrodynamic regime), the collisional rate is so high that the system responds to
external perturbations as a whole (this regime is also called first sound regime).
With our experimental parameters we are in the collisionless regime: this means
that the collisions between the two thermal clouds are completely uncorrelated two-
body processes, ruling out the possibility of a macroscopic exchange of momentum.



In the case of two classical gases in the hydrodynamic regime, we could observe
such exchange of angular momentum but, in this regime the center-of-mass motion
would be damped on the timescale of the trap period, differently from what we
observe for the two condensates.

The observed exchange of angular momentum and the following oscillation of
the angle (scissors mode) are direct consequences of the superfluid nature of the
condensates. Indeed, as suggested by S. Stringari et al. [110] the scissors mode
are a feature of superfluid systems, since they are solutions of the hydrodynamic
equations which, in the a Thomas-Fermi approximation describe the condensate
[4],

∂ρ

∂t
+∇ (ρv) = 0 (4.23)

m
∂v
∂t

+∇
(

v2

2m
+ U(x, t) + gρ

)
= 0, (4.24)

where S(x, t) and ρ(x, t) are related to the condensate wavefunction by ψ(x, t) =√
ρ(x, t)eiS(x,t)/~. In fact the observation of such oscillation mode [111] was an-

other demonstration of the superfluidity of a Bose-Einstein condensate.
In our experiment, these scissors mode are excited by means of off-axis collisions

between the two BECs and not by a direct rotation of the trapping potential as
presented in [111]. An interesting issue of a rotating BEC is the evolution of the
angle during the expansion of the cloud. Indeed, as it was pointed out recently
[112; 113], a rotating condensate expands in a completely different way with respect
to a non rotating one. The reason of this peculiar behaviour is in the quenching
of the moment of inertia of the superfluid. Indeed, if we consider [113] a BEC
rotating, for example, in the x− y plane, we can write the general expression for
its momentum of inertia as:

Θ = Θrig
〈x2 − y2〉2

〈x2 + y2〉2
(4.25)

where Θrig = Nm 〈x2 + y2〉. Due to the irrotational nature of the superfluid
(5 × v̄ = 0), the moment of inertia of the condensate is quenched with respect to
the rigid body value Θrig. While the condensate expands, its aspect ratio evolves
due to the mean-field interaction between the atoms. After a certain time, typ-
ically given by τ = 1/ωfast, the condensate will reach a minimum deformation,
x ' y. But since it is also rotating, when x ' y, the momentum of inertia van-
ishes. The angular momentum conservation law implies that the angular velocity
must increase in order to compensate the decrease of Θ.
On the other hand, the angular velocity can not increase too much, due to the
energy conservation. This means that the system cannot reach a complete sym-
metric configuration (〈x〉 = 〈y〉.) during the expansion but it can reach a minimum
deformation which depends form the initial angular velocity Ω0.



The total angle α described by the condensate during the expansion depends from
the initial angular velocity and this angle can be only smaller than π/2, differently
respect to the case of an ideal gas, for which it always reach π/2 value [113]. As
soon as the aspect ratio of the BEC approaches to one, the condensate has to
increase its angular velocity (see above) and at the same time the angle will slowly
evolves towards the asymptotic value of α = π/2.
In our experiment, we could study the evolution of the angle versus the dwelling
time in the trap, fixed the expansion time to 13 ms. Due to the different trapping
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Figure 4.6: a) Evolution of the angle of rotation of the K BEC from the vertical direction,
after a 13 ms ballistic expansion. The dotted line is a guide to the eye. b) Numerical
simulation using the GPE of the angular velocity of the condensate at release from the
trap.

frequencies between potassium and rubidium, the K condensate, after 13 ms has
yet reached almost it asymptotic angle, while Rb one is in the region of high an-
gular velocity, as it was possible to verify by directly solving the Thomas-Fermi
hydrodynamic equations [113]. In Fig.(4.6 a), we report the evolution of the K
angle versus the time in the trap, after 13 ms of expansion: it is possible to see
the condensate starts to oscillate just after 4 ms, which corresponds to the time
when is likely to happen the first collision between the two BECs (see Fig.(4.4c).
Since these scissors mode are induced by collisions between the two clouds, we do
not have a pure sinusoidal behaviour that is observed in [111]. By simulating our
experiment by means of time-dependent GPE model, we have calculated the an-
gular velocity of the condensate at the release from the trap. The result is shown
in Fig.(4.6b), where we can see that the angle after the expansion turns out to be
proportional to the angular velocity of the condensate in the trap.



4.3.1 Expansion of a rotating BEC
We have studied in more detail the expansion of a rotating BEC. The exper-
imentally easier situation was to study the scissors mode excited on our 87Rb
condensate. Since the QUIC trap is a magnetostatic trap, we could not excite the
scissors mode by rotating directly the potential as reported in [111]. In fact we
could excite the scissors mode in a quite peculiar way: we have taken advantage
of the fact that the gravity breaks the symmetry of our potential, leading to some
anharmonicity of our magnetic minimum. More in detail, we have found that our
eigenaxes of our magnetic trap are rotated in the plane perpendicular with respect
to the gravity (plane x− y).

Figure 4.7: Absorption images of a rotating, elongated Rb condensate during the ballistic
expansion. In a) the BEC has just been released from the trap (texp = 2 ms), and in b)
it has expanded for 23 ms. The other two pictures, not to scale, show the correspond-
ing evolution of a scissors mode. The initial oscillation about the horizontal x-axis (c) is
transformed in an oscillation about the vertical y-axis for long expansion times (d).

By exciting dipolar oscillations along the weak axis of the trap (x direction),
we were able to produce a rotation in the condensate, as soon as it crossed for the
first time the trap minimum. By varying the amplitude of the dipolar oscillations,
we could excite an almost pure scissors mode with an initial angle of θin ' 15
mrad. In Fig. (4.7) we show a typical absorption image of the rotating rubidium
BEC after 2 ms (a) and 23 ms (b) of ballistic expansion respectively. As remarked
above, a rotating condensate shows peculiar features during the expansion that
are directly related to its superfluidity. In particular if the condensate is rotating
in the x − y plane, with its long axis forming an angle θin with the x-axis, at



the release from the trap it will start to expand along the short direction. When
the aspect ratio of the cloud approaches unity, the rotating BEC will increase its
angular velocity for compensating the decrease of the momentum of inertia. At
this point the condensate will continue to expand in the other longer direction, as
shown in Fig. (4.7c d). In Fig. (4.8) we show the evolution of the rotation angle
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Figure 4.8: a) Evolution of the rotation angle for a condensate (circles) and a thermal cloud
(triangles) released with small angular velocity from an elongated trap. b) Evolution of the
aspect ratio of the rotating condensate. When the aspect ratio gets close to unity the
angular velocity shows a rapid increase. The lines represent the theoretical predictions.

versus the expansion time τexp. These measurements were performed by fixing the
dwelling time of the condensate in the trap, in order to have the same evolution
time of the scissors mode. We also show for comparison the same measure done on
a thermal cloud. As it is possible to see, at short τexp, the classical and the Bose
gas behave in the same way. In both cases, the expansion is determined by the
initial angular velocity Ω0. Anyway, as soon as the aspect ratio of the BEC evolves,
see Fig. (4.8b), the quenching of its momentum of inertia affects more and more its
expansion behaviour that becomes non-classical. Indeed its rotation undergoes a
fast acceleration followed by an evolution towards an asymptotic value of the angle,
which is smaller than π/2. Our experimental data are well reproduced by solving
the hydrodynamic equation for a superfluid [114], as appear from the dotted lines
in figure. From this model, it was also possible to identify three different regimes
for the expanding scissors mode, depending on the expansion time τexp. In the
case of τexp < 1/ωx, the behaviour of the Bose gas is quite similar to a classical gas,
characterized by an almost sinusoidal scissors mode; if τexp ' 1/ωx, the rotation
angle is always near to ±π/4, depending from the sign of the angular velocity at
the release. In this case the oscillation of the angle is near to a square wave, with
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Figure 4.9: Evolution of the scissors mode during the ballistic expansion. In a) the an-
gle θ(t) after a short expansion of 4 ms (circles) is compared to theory (dashed line) to
extrapolate the oscillation in the trap. In b) we compare the latter (continuous line) to the
oscillation φ(t) after a longer expansion of 23 ms (circles). The data show an enhancement
of the scissors mode, as expected from theory (dashed line).

the same phase of the angular velocity in the trap. The last situation happens
when τexp > 1/ωx: the BEC has reached almost its asymptotic angle π/2, and at
this point it is more convenient describe the angle of the condensate with respect
to the vertical axis than with respect the x-y plane. In this last case we find that
the sinusoidal scissors mode is repristined with a time-dependence that can be
written as:

φ(t; texp) = θ0(t) + F (texp)Ω0(t) (4.26)

= θ0i

√
1 + ω2

scF
2(texp) cos(ωsct+ ϕ) ,

where F is a non-trivial function of the expansion time and of the trap geometry,
and ϕ is a phase shift. This means that after passing the non classical region
τexp ' 1/ωx, the condensate does not lose the memory of its initial angular velocity,
and it starts to behave again as a classical gas. We could experimentally observe
these different regimes, by studying the scissors mode at different expansion time:
just after the release from the trap, we have measured a sinusoidal behaviour of the
scissors oscillation. When τexp is closer to 12 ms (' 1/ωx), we really see a square-
wave oscillation, while at longer expansion times, the scissors mode show again
the sinusoidal behaviour. In Fig. (4.9), we compare the experimental evolution
of the scissors mode with the one predicted from the theory, at two different
expansion times. In particular, in (a) we show the behaviour at τexp = 4 ms
from which we can reconstruct the scissors mode in the trap. In (b), we compare



such a motion with the experimental oscillation after 23 ms of expansion. As it is
possible to observe the scissors mode at long expansion time is clearly amplified
and phase-shifted with respect to the one calculated in the trap. If we calculate
the amplification factor F ωsc (see eq.(4.26)), for τexp = 23 ms we see that it
almost 10.6: this means that the evolution of the scissors mode outside the trap
is a replica of that of the angular velocity in the trap. This is what we have seen
above in the case of the scissors mode induced by the collisions between the two
condensates. Indeed, in also in that case we observed a proportionality between
the evolution of the angle and the angular velocity of the BEC at the release from
the trap (see Fig. (4.6)).



CHAPTER 5

Fermi-Bose degenerate mixture

In the previous chapter we have shown how, thanks to the large interspecies scatter-
ing length, it has been possible to achieve a binary BEC of K and Rb. The stability
of such a system is assured by the large and repulsive interaction between 41K and
87Rb. This achievement has confirmed the result of our previous collisional mea-
surements on the pair 41K-87Rb. We have also predicted a value for the scattering
length between the fermionic isotope 40K and rubidium. The predicted large and
negative value, a = −261 a0 allows an efficient sympathetic cooling between these
two species also in the degenerate regime.
In this chapter we discuss the experimental realization of such a degenerate mixture
composed by a Fermi gas of 40K and a Bose-Einstein condensate of 87Rb atoms.
Potassium atoms are cooled to quantum degeneracy by thermal contact with evap-
oratively cooled rubidium, and the minimum temperature we can measure is about
0.2 the Fermi temperature TF . We see that the main consequence of this large
and attractive interaction between 40K-87Rb atoms is the possibility of observing
the collapse of the whole system.

5.1 Motivations and experimental procedure

Evaporative cooling is the standard technique by which it is possible to bring a
dilute atomic gas to quantum degeneracy. We have seen that it exploits the ther-
malization between the trapped atoms after the removal from the trap of the more
energetic ones by RF (µ-wave) knife. The thermalization occurs by elastic colli-
sions so that the interaction properties of the system play a relevant role in the
efficacy of the cooling. On the other hand, at very low temperatures, only s-wave
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scattering amplitude contributes significantly to the collisional cross-section, being
the other contributions (p-wave, d-wave, etc..) suppressed. A system composed
by identical fermions is thus completely non interacting. Since elastic collisions
between the fermionic atoms are forbidden, the evaporative cooling scheme cannot
work at all, differently to the case of bosonic systems which are instead efficiently
cooled to quantum degeneracy. It is possible to circumvent this limitation in cool-
ing fermions by trapping simultaneously two separate spin states, as demonstrated
in [24; 25]. Evaporative cooling is then performed on both the components, since
s-wave collisions between different atoms are allowed. The other scheme, success-
fully carried out at ENS [29], at Rice University [28] and at MIT [30], is to mix
the fermionic gas with a bosonic one. It has been possible to realize systems com-
posed by a Fermi gas interacting with a Bose-Einstein condensate. With respect
to the previous scheme, sympathetic cooling offers the unique possibility of cooling
the fermionic clouds well below the Fermi temperature. Indeed, as discussed in
(1.3.1), once the degeneration regime is reached, Pauli blocking reduces the elastic
scattering processes between the fermions [42], limiting in this way the minimum
temperature achievable. Pauli blocking is less relevant when considering mixtures
composed by bosons and fermions. The minimum temperature that is possible to
reach corresponds to the minimum temperature achievable for the bosonic com-
ponent, and it is determined by the ratio between the two heat capacities.

In our specific case, we mix together 40K and 87Rb. The main difference of our
mixture with respect to the others available [25; 28–30], is the large and attractive
character of the interspecies scattering length of 40K-87Rb. This feature allows
a very efficient sympathetic cooling of potassium even in the degenerate regime
since the two clouds are supposed to maintain always a good thermal contact.
The behaviour is expected to be different for the mixtures of 6Li-7Li [53] and
of 6Li-11Na [54] where phase-separation between the two components should be
observed.

The set-up and the experimental procedure for loading K and Rb in the mag-
netic trap is the same that we have described previously. There are however some
differences that it is worth to point out, in order to understand why sympathetic
cooling turned out to be so efficient. The first difference stands in the fact that
40K can be much efficiently cooled already in the MOT stage, with respect to 41K.
Indeed Sub-Doppler cooling mechanisms work properly for 40K, allowing temper-
atures of the order 60 µK, and temperature in the QUIC trap of about 100 µK
to be compared with 200-300 µK we have measured for 41K. Another advantage
of working with 40K is that we do not have any losses of rubidium during the
loading of potassium in the second MOT. Indeed the nonlinear processes which
were present into the tapered amplifier when both potassium and rubidium lights
were injected are absent, since the hyperfine splitting of 40K is ' 1.28 GHz. We
can typically load in the QUIC trap about 105 atoms of 40K and 5 × 108 87Rb
at a temperature of 100 µK. Potassium and rubidium atoms are magnetically
trapped in the states |9/2, 9/2〉 and |2, 2〉 respectively: these states experience
the same trapping potential with frequencies νa = 24 Hz and νr = 317 Hz for



K and νa = 16.3 Hz and νr = 215 Hz for Rb. Once the atoms of both species
are trapped in the magnetic potential, we perform evaporative cooling only on the
rubidium component. Differently from the 41K-87Rb mixture when we were forced
to use µ-wave knife for cutting the rubidium distribution, it is possible to use the
more conventional RF evaporation that couples the various Zeeman sublevels of
the F = 2 rubidium ground state, since, the nuclear spin of potassium is I = 4.
With an evaporation ramp lasting around 25 s we are able to cool below 1 µK
a sample composed by 2×104 K atoms and 105 Rb atoms and we have observed
that the temperature of potassium cloud follows the one of rubidium, indicating a
large interaction between the two species. We probe the two clouds by two-colour
absorption imaging, using two delayed pulses at 766.7 nm for K and at 780 nm for
Rb, whose duration is about 30 µs each.



5.2 Measuring the interaction: parametric heating and dipolar
oscillations

We have directly measured the scattering length between 40K and 87Rb, by per-
forming rethermalization measurements on a thermal sample at T = 400 nK typi-
cally composed by 1.2×104 K atoms and 4×104 rubidium atoms [15]. As discussed
in the case of 41K-87Rb mixture, the idea is to drive out of the initial equilibrium
the system by modulating the trapping potential at twice the radial oscillation fre-
quency of rubidium (νh ' 420 Hz). After this selective parametric heating phase,
we have studied the subsequent heating of potassium, mediated by the elastic col-
lisions with the rubidium component. From the analysis of the experimental data,
similar to the one presented in (3.2.1), we have derived a quite large value for
the triplet scattering length between 40K and 87Rb, |a| = 330+160

−100 a0, where the
uncertainty is due to the uncertainty of 40% on the number of atoms and on the
measure of the thermalization time τ (10%) . If we now compare this experimental
result with the value we inferred by mass scaling from collisional measurements
performed on the 41K-87Rb mixture, a = −261+170

−159 a0, we find good agreement
between the two. In particular, the measurement of a such large value for |a|
also seems to confirm the attractive character of the interaction, since a positive
scattering length would have been compatible only with a much smaller magni-
tude. Due to this large value of the scattering length, we could not repeat the
same procedure performed on 41K-87Rb mixture (3.2.1), when by studying the
thermalization rate as a function of the temperature of the mixture, we were able
also to determine the sign of the scattering length. In the case of 40K-87Rb the
scattering cross-section is in the Wigner regime [22], i.e. it assumes the constant
value σ = 4πaKRb independently from the temperature and the equation (1.1.1)
is no more useful.

In order to have another estimation of 40K-87Rb scattering length, we have
decided to study the damping of the dipolar oscillations of thermal K-Rb sample
[96]. As discussed previously, we can excite dipolar oscillations along the weak
axis of the trap (pinch axis) by suddenly displacing the minimum of the trapping
potential, varying the ratio of the current flowing in the trap coils. By an appropri-
ate choice of the experimental parameters, such as the amplitude of the oscillation
and the timing of the displacement, we have excited only pure dipolar oscillations,
not involving any apparent deformation of the shape of the two clouds as instead
occurred in (4.3.1). The mean relative velocity between the two centers of mass,
5 µm/ms, assured that the two clouds were almost always overlapping during the
oscillation dynamics. In Fig. (5.1), we report a typical measurement, performed
on a thermal system composed by 8×103 of K and 8×104 Rb atoms at a temper-
ature T = 300 nK. The effect of the interaction between potassium and rubidium
clearly appears from the observed damping in the motion of both species. The
coupled center-of-mass motion can well be reproduced by a classical model of two
harmonic oscillators coupled by a viscous damping. For sake of clarity, we rewrite
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Figure 5.1: Coupled dipolar oscillations of 8 × 103 thermal K (triangles) and 8 × 104 Rb
(circles) atoms along the horizontal axis at T=300 nK. The two clouds oscillate at the same
frequency, signature of the hydrodynamic regime. The solid curves are the best fit to the
model presented in the text.

here the equations of motion for K and Rb clouds (3.2.1):

ẍRb = −ω2
RbxRb −

4
3
MK

M

NK

N
Γ (ẋRb − ẋK)

ẍK = −ω2
KxK +

4
3
MRb

M

NRb

N
Γ (ẋRb − ẋK) , (5.1)

where M is the total mass MK +MRb and N the total number of atoms NK +NRb,
and Γ is the rate of K-Rb two-body elastic collisions, given by:

Γ = n̄σvth (5.2)

where vth =
√

8kBT/πM is the rms relative thermal velocity and n̄ = ( 1
NRb

+
1

NK
)

∫
d3r nRbnK is the averaged density. In particular the motion of potassium

and rubidium is described by two normal modes, whose frequency and damping
depend on the scattering rate Γ. From this kind of analysis, it is possible to
extract the value of the collisional cross-section σ = 4πa2, and therefore the mag-
nitude of the triplet scattering length. To this purpose, we have performed several
measurements of this kind by varying the temperature of the mixture in the range
T=300-500 nK, the total number of atoms of K and Rb in the range N = 104−105

and the ratio NRb/NK from 2.5 to 7.5. Then we have made a weighted average
of the resulting values, obtaining for a the following value: a=410+90

−80 a0. Here
again the uncertainty is dominated by a 40% uncertainty on the number of atoms



of both species. As we can see, this result turns out to be in good agreement with
the other we have obtained by rethermalization measurements, although it gives
an even more large magnitude of the scattering length.

5.2.1 From hydrodynamic to collisionless regime
If we now look in more detail at the evolution of the center-of-mass motion of
potassium and rubidium shown in Fig. (5.1), we note that the two clouds oscillate
at the same frequency, ν = 18 Hz. We remember that along the weak axis of
the trap the ”bare” oscillations frequencies are predicted to be ν = 16.3 Hz and
ν = 24 Hz for Rb and K respectively. The explanation of this behaviour can be
found by considering the dependence of the dynamics of the center of mass on
the collisional properties of the whole system. Indeed, as briefly mentioned in
(4.3), depending on the magnitude of the scattering rate Γ with respect to the
oscillation frequency ω, the system is said to be either in the collisionless (Γ � ω)
or in the hydrodynamic regime (Γ � ω) [109]. We have seen that the center-
of-mass motion can be described by a classical model of two coupled harmonic
oscillators that oscillate at two normal modes and the center-of-mass motion is a
superposition of these two modes. The frequency and the damping time τ of these
modes depend on collisional rate Γ. At low collisional rate (Γ � ω) the two clouds
oscillate each at its own bare frequency, and the ratio between the damping time
scales as the inverse ratio of the total mass of each sample. When the collisional
rate increases, the damping time of the two normal modes decreases, and the
frequencies of the modes shift to an intermediate value. If finally the collisional
rate becomes larger than the oscillation frequency of the trap (Γ � ω) the system
enters in the hydrodynamic regime. In particular, the motion is still described by
two normal modes, one corresponding to an ”in-phase” motion of the two clouds,
and the other one to the ”out-of-phase” oscillation. The latter one is overdamped
and its frequency decreases when increasing the scattering rate Γ. This means that
the two samples start to oscillate at an intermediate frequency which depends on
the ratio between the masses. In this regime the damping time τ increases linearly
with the collisional rate, differently from the collisionless regime where it decreases
as 1/Γ [109]. In the experiment we have found that potassium and rubidium clouds
oscillate at the same frequency, almost in phase and with a long damping time [96].
In Fig.(5.2), we show the oscillations of a thermal sample composed by 2× 104 K
and 2×105 Rb atoms at T=300 nK. The measured collisional rate is 650 s−1, and
the corresponding damping time is almost three times the damping time of the
measure presented in Fig. (5.1) since in that case the total number of atoms was
1/3 of this last one. This result confirms that our system is in the hydrodynamic
regime, since the damping time increases linearly with the collisional rate Γ, which
is proportional to the density of the sample.

It is worth to compare the experimental result of the 40K-87Rb mixture with
the one obtained for the 41K-87Rb system (3.2.2). Both measurements were per-
formed with similar number of atoms and almost at the same temperature. While
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Figure 5.2: Coupled dipolar oscillations of 2 × 104 thermal K (triangles) and 2 × 105 Rb
(circles) atoms along the horizontal axis at T=300 nK. Also in this case, the two clouds
oscillate at the same frequency, indicating that the system is in the hydrodynamic regime.
The solid curves are the best fit to the model presented in the text.

40K and 87Rb samples oscillate at the same frequency with long damping time,
in the other case, potassium and rubidium oscillate at different frequencies. In
particular, while the rubidium motion is only marginally affected by the presence
of potassium, the one of K is largely modified by the interaction with the other
specie and we can see the appearing of beatings at the frequency of rubidium. The
fact that 40K-87Rb mixture is in the hydrodynamic regime, while the 41K-87Rb is
in the collisionless regime depends only on the different magnitude of the triplet
scattering length, that for 40K-87Rb is almost 3 times larger.
We have repeated these dipolar oscillation measurements also in the case of a
degenerate system, composed by a Fermi gas of 40K interacting with a BEC of
87Rb: as we will discuss later, in this case we have found that the quantum statis-
tics strongly affects the collisional dynamics of the system which enters in the
collisionless regime.



5.3 40K-87Rb degenerate mixture

By proceeding with the evaporation of the rubidium component, we have observed
the formation of a degenerate Fermi gas of 40K atoms coexisting with a Bose-
Einstein condensate of 87Rb.

Figure 5.3: Simultaneous onset of Fermi degeneracy for 40K (left) and of Bose-Einstein
condensation for 87Rb (right). The absorption images are taken for three decreasing tem-
peratures, after 4.5 ms of expansion for K and 17.5 ms for Rb, and the sections show the
profile of the momentum distributions.

In Fig. (5.3), we show a series of absorption images of the mixture at three
different stages of the evaporation ramp corresponding to three different tempera-
tures of the system. The images are taken after a ballistic expansion appropriate
to measure the momentum distribution of the samples and in particular the ex-
pansion time is 4.5 ms for K and 17.5 ms for Rb. Sections of such images are
also reported: they are taken along the vertical direction for K, and along the
horizontal direction for Rb. With our experimental parameters, we have a Fermi
temperature TF =250 nK and a critical temperature for BEC Tc=110 nK for a
sample composed by 104 and 2×104 atoms, respectively, that correspond to peak-
densities of the order of n ' 1014 cm−3 for Rb and n ' 5×1012 cm−3 for K. The
fact that the Fermi temperature is higher than the critical temperature for Bose
condensation arises from the difference in mass, mRb ' 2mK , and from equations
(1.32) and (1.55). We have determined the temperature of the whole system by
measuring the temperature of the thermal wings of the Bose gas, assuming thermal
contact between the two components. As the temperature is decreased by almost
a factor of two (from top to bottom in Fig. (5.3), we have observed the formation
of a rubidium BEC, shown by the appearance of a narrow peak in the momentum
distribution, while the width of the fermionic component remains almost constant,
due to the Fermi pressure. By fitting the coldest K cloud with a Thomas-Fermi
profile [38] we have obtained a radius R=52 µm, which is consistent to within 10%
with the minimum radius allowed by Fermi statistics: R = RF

√
1 + ω2

rτ
2, where



RF =
√

2kBTF /(Mω2
r) is the Fermi radius and τ is the expansion time.

The condensate in Fig. (5.3) contains less than 40% of thermal fraction, indi-
cating that the temperature of the Fermi gas is about T=80 nK, corresponding
to 0.3 TF . In Fig. (5.4) we show the evolution of the Gaussian 1/e width of the

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

 

 

( 
σ 

/ R
F )

2

T/T
F

Figure 5.4: Gaussian 1/e radius of the radial distribution of K atoms, versus the reduced
Fermi temperature. The temperature is given by the Rb sample and TF =250 nK. The solid
line is the theoretical prediction for an ideal Fermi gas, while the dotted line is the classical
behaviour.

fermionic sample as a function of temperature. As expected from classical theory,
the square of the width, normalized to RF , scales linearly for T > TF , indicating
thermal equilibrium between K and Rb. On the other hand, below TF , the data
deviate from the behaviour expected for a classical gas, and indeed they are better
reproduced by the prediction of the model for an ideal Fermi gas [38].
By measuring the size of both the degenerate clouds after the expansion, we have
determined the size and the positions inside the magnetic trap, for the typical
number of atoms 104 and 2×104 for potassium and rubidium respectively. We
have to note that in our magnetic trap, the centers of mass of the two species
are displaced due to the different gravitational sag for K and Rb. However, such
displacement, ∆z = 2.9 µm, is not sufficiently large to affect the geometrical over-
lap of the two degenerate components, since the radial sizes of the Fermi and
Bose gases are RF =5.1 µm and RB=2 µm, respectively. Therefore, the BEC is
completely immersed in the Fermi sea, with a ratio of the two volumes of approx-
imately 1:16. The lifetime of the mixture is around 1 s. which is also the lifetime
of the Bose condensate.

As we have remarked previously, we expect the sign of the 40K-87Rb scattering
length to be positive, resulting in an attractive interaction between potassium and
rubidium atoms. We have seen a first evidence of this attractive interaction by
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Figure 5.5: Evidence of thermal exchange between the two degenerate gases. The Gaus-
sian width of 40K (circles) increases only when 87Rb atoms (triangles) are almost com-
pletely evaporated from the trap, as explained in the text. The solid lines are a guide to the
eye.

leaving the degenerate mixture in the magnetic trap for a relatively long time
after the end of the evaporation and studying the evolutions of the temperatures
of both the components. The Rb temperature was kept constant by means of
a radio-frequency shield, but the background heating (≈ 100 nK/s) caused by
fluctuations in the magnetic field, continuously removed atoms from the BEC.
This is illustrated in Fig. (5.5), together with the simultaneous behaviour of K.
The evolution of the width of the fermionic distribution indicates that K starts to
heat up only when Rb is almost completely evaporated from the trap. Although,
as shown in Fig. (5.4) the Gaussian width is not a sensitive ”thermometer” at low
temperatures, the results reported in Fig. (5.5) are significant. Indeed, should K
be thermally decoupled from Rb, its heating at the observed rate would manifest
already after 1 s even in the extreme case of an initial temperature T << TF .

5.3.1 Dipolar oscillations in the quantum degenerate regime
In (5.2.1) we have shown how the large interspecies scattering length affects dra-
matically the dynamics of the dipolar oscillation of thermal potassium and rubid-
ium atoms. In particular we found that the interaction is so large that the system
is in the hydrodynamic regime, characterized by a scattering rate bigger than the
oscillation frequency of the atoms in the trap (Γ � ω).

Once observed the degenerate mixture, we have decided to repeat such mea-
surements on the degenerate samples. Since in our system the Fermi temperature
is always higher than the critical Bose temperature, we first have considered a
mixture composed by a Fermi gas interacting with a thermal cloud of rubidium
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Figure 5.6: Coupled dipolar oscillations of degenerate K (triangles) and thermal Rb (cir-
cles) along the horizontal axis in the collisionless regime at T=120 nK. The solid lines are
the best fit to the model presented in the text.

[96]. In Fig. (5.6) we show the evolution of the center of mass of potassium and
rubidium after the excitation of the dipolar motion at T = 120 nK, when we have a
Fermi gas of potassium of ∼ 104 atoms and a thermal cloud of rubidium composed
by 3 × 104 atoms. As it is possible to see, in this case the two samples oscillate
at their ”bare” frequency (ωK ≈ 2π × 24 sec−1, ωRb ≈ 2π × 16.3 sec−1 ). This
observation indicates that the system is in the collisionless regime (Γ � ω). We
indeed obtain for the scattering rate Γ, Γ=60(10) Hz, which is significantly smaller
than the one expected for a non-degenerate sample containing the same number
of atoms at T=100 nK, Γ=100 Hz.

The observed reduction of the scattering rate is an effect related to the degen-
erate regime of the potassium component. In section (1.3.1), we have discussed
the consequences of the Fermi statistics on the scattering properties of the Fermi
gas, pointing out that as soon as the degenerate regime is reached, Pauli blocking
inhibits the elastic scattering events involving the fermionic atoms. In our par-
ticular case, in which we have collisions between a Fermi gas and thermal gas of
rubidium only the fermions in the outer shell of the Fermi sphere, having an energy
E=EF -ECM can scatter with bosons and participate to the damping. Here ECM

is the collision energy of fermions and bosons in the center-of-mass frame

ECM = 1/2µ〈v2〉 , (5.3)

where µ is the reduced K-Rb mass. An upper value for ECM for the typical
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Figure 5.7: Coupled dipolar oscillations of degenerate K (triangles) and Rb (circles) clouds
along the horizontal axis: (a) in the intermediate regime at T ≈0.84 Tc nK and (b) in the
collisionless regime at T <0.7 Tc nK. The solid lines are the best fit to the model presented
in the text.

experimental parameters is ECM ≈50 nK, which is significantly smaller than the
typical Fermi energy EF =300 nK. At T=0 K, just half of the fermions could
participate to scattering process with boson however a finite temperature reduces
Pauli blocking because of the smearing of the Fermi distribution. As shown in [41],
for this excitation energy Pauli blocking should nevertheless produce a significant
reduction of Γ also at the temperature T=0.4TF of the experiment, as we have
observed indeed.

We have performed these oscillation measurements also on a fully degenerate
mixture, composed by a Bose-Einstein condensate and a Fermi gas: in this case,
depending on the degree of degeneration of the Bose gas, we have observed the
transition from the hydrodynamic to the collisionless regime [96] In Fig. (5.7a) we
show the strongly damped Rb and K oscillations in this transition region: such
transition corresponds to a passage from a synchronous motion in which the two



clouds oscillate at an intermediate frequency to an uncoupled motion at the two
bare frequencies. Here the dipole oscillations are excited for a mixed sample with
NK=2.5×104 K atoms and NRb=3.9×104 at T=0.84Tc=118 nK. In Fig. (5.7b)
we instead report a measurement performed with a BEC at lower a temperature
T <0.7Tc. Here the two samples oscillate at their bare frequencies, indicating that
we are in the collisionless regime. Notice that the minimum measured temperature
is fixed to T=0.7Tc by the minimum detectable uncondensed Rb component.
We have to point out that this variation in the collisional rate that we have ob-
served, reflects the transition from the classical to the quantum regime. Indeed,
for explaining the measured behaviour we have to consider both the superfluid na-
ture of the BEC and the Pauli blocking. Collisions between the BEC and fermions
are indeed suppressed if the momentum exchanged in the collision is below MRbc,
where c is the sound velocity c=

√
4π~2aRbn0/M2

Rb. We have to stress that the
large reduction of Γ when lowering the temperature from Tc to 0.85 Tc, cannot
be reproduced by the classical prediction. Since the change in temperature be-
tween these two measurements is negligible for fermions, such a reduction of the
collisional rate cannot be ascribed to Pauli blocking in the Fermi gas, and it can
actually be the consequence of superfluidity in the BEC.
However, a complete description of this behaviour requires a model which takes
into account the quantum nature of the system. Indeed the model of the two classi-
cal coupled harmonic oscillators does not consider the damping mechanisms which
are likely to occur in the degenerate regime, such as Landau damping [115–117]
and the breaking of the superfluidity of the BEC [118] which can largely influence
the dynamics of the system.

5.4 Mean-field interaction in the degenerate mixture

So far, we have described the interaction between potassium and rubidium atoms
only by the scattering length aBF , that directly gives information on the collisional
cross-section between these two atomic species. To gain a more quantitative in-
sight into the quantum nature of the mixture, it is necessary to consider a more
complicated many-body approach. In section (1.4.2), however, we have remarked
that the ground state of a degenerate mixture composed by a Fermi gas interact-
ing with a Bose condensate can be well described in the mean-field approximation
[17; 37] by the following equations:

nF (r) =

√
2m3

F

3π2
[µF − UF (r)− 4πaBF

mBF
nB(r)]3/2 (5.4)

[− 1
2mB

∇2 + UB(r) +
4πaBF

mBF
nF (r) +

4πaB

mB
φ2(r)]φ(r) = µBφ(r) (5.5)

where φB(r) =
√
nB(r), MBF = 2mFmB/(mB +mF ) is twice the reduced mass

of the pair. As we have already addressed, the mean-field interaction on the
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Figure 5.8: Density profiles of the Bose-Einstein condensate of 87Rb and of the Fermi gas
of 40K. The dotted lines correspond to the noninteracting case. The effect of the interaction
between fermions and bosons is an increase of the peak-density of both species in the
overlap region (continuous lines). The curves are the result of mean-field calculations with
our experimental parameters.

jth specie is described by the term 4πaij/mBF ni, proportional to the scattering
length aij and to density of the ith specie. This means that a large scattering
length and a high density of both species can deeply modify the behaviour and
even the characteristic properties of each component. We have also to remark
that, in the case of fermions, we do not have any self mean-field contribution,
due to the fact that we are dealing here with a system composed by identical
fermions, that do not interact at this ultralow temperatures. We have solved these
coupled equations plugging in the typical number of atoms of the Fermi gas and
of the condensate, our trapping frequencies and our estimation of the interspecies
scattering length, aBF = −410 a0. We have first studied the situation in which
we neglect the interaction between the two components, aBF = 0. In Fig. (5.8)
the dotted curves show the calculated density profiles along the direction of the
gravity of both the clouds in this non interacting case. The number of atoms
that we have considered here are 104 and 3 × 104, for potassium and rubidium
respectively. As it is possible to see, the two sample are simply displaced along
the gravity due to the gravitational sag, induced by the different mass of K and
Rb and, as we expect, the peak-density of the Fermi gas is much lower than that
of the condensate, due to the Fermi pressure which oblige the fermionic system
to a much larger shape and consequently lower density with respect to the BEC
(1.3.1).

If we now switch on the attractive interaction aBF = −410 a0, the situation



changes, as clearly appear from the continuous lines in Fig. (5.8). The first thing
we can note is that, since the interaction between potassium and rubidium is
attractive, we do not see any phase-separation between the two clouds. They still
keep good spatial superposition and, despite of the gravitational sag, the BEC is
completely immersed in the Fermi ”sea”.
The most relevant consequence of the interaction is, anyway, the large increase
of the density of both the species in the overlap region. This increase is evident
for both the component, but larger in the case of potassium since the effective
influence of the interaction depends from the density of the other specie, and the
mean density of a Bose-Einstein condensate (n ' 1014) is typically two orders of
magnitude larger then the one of a Fermi gas (n ' 1012).

5.4.1 Evidence of the mean-field interaction: study of the expansion of the
clouds

In order to observe the effect of such a large mean-field interaction on the mixture,
we have studied in detail the expansion of the two degenerate samples in presence
or not of the other component. Before discussing our experimental results, it is
worth to recall here very briefly the main features of the expansion of a pure Bose-
Einstein condensate and of a non interacting Fermi gas, that we have discussed in
(1.3.2) and in (1.3.1). In the case of a condensate, the expansion is determined
essentially by the repulsive mean-field interaction between the bosons that, as
soon as the trapping potential is turned off, is transformed in kinetic energy [4].
In particular, for a anisotropic potential, the most confined directions expand
faster than the other one, resulting in an inversion of the initial ellipticity of
the condensate. The evolution of the radii of the BEC is given by the following
expressions,

Rr(t) = Rr(0)
√

1 + τ2 (5.6)

Ra(t) = Ra(0) (1 + λ2[τ arctan τ − ln
√

1 + τ2])

where where τ = ωrt and λ = ωa/ωr. The aspect ratio of the condensate, Rr/Ra,
initially smaller than one, crosses unity at about τ ' 1/ωr This behaviour is very
different from the expansion of a thermal gas trapped in the same potential which
is completely isotropic (the aspect ratio goes asymptotically to one).

Conversely, the expansion of a non interacting Fermi gas is quite similar to the
one of a classical gas, since the mean-field interaction is not present. The evolution
of the radii can be easily calculated in the semiclassical approximation [40], giving
for the aspect ratio the following result:

< =

√
r2a
r2r

=
1
λ

√
1 + ω2

at
2

1 + ω2
r t

2
(5.7)



At long expansion time, the aspect ratio of the Fermi gas approaches asymptot-
ically to one, as in the case of a thermal gas. Let us consider how the mutual
interaction modifies the expansion of the two degenerate gases. The expansion of
a quantum degenerate boson fermion mixture has been recently studied in detail
by H. Hu et al. in [119]. In particular, they have applied their general results to
our specific 40K-87Rb mixture, by considering our experimental parameters and
our estimation of the interspecies scattering length. In this work they have shown
that the attractive interaction between potassium and rubidium atoms gives rise
essentially to two separate effects that affect in different way the expansion of
the degenerate mixture. The first consequence is the modification of the density

Figure 5.9: Theoretical predictions for the evolution of the aspect ratio of the Bose-Einstein
condensate of 87Rb (a) and of the Fermi gas of 40K (b) as a function of the dimensionless
parameter τ = ωrt. The calculated curves [119] refer to an interaction between fermions
and bosons of a = ±330 a0. The different behaviour between an attractive and repulsive
interaction is evident. In the case of the expansion of the Bose gas a comparison with the
experimental results is shown.

profiles of the two clouds in the trapping potential, as we have already mentioned
above. In particular, we have noted that the attractive character of the 40K-87Rb
interaction induces an increase of the density of both the condensate and the Fermi
gas in the overlap region, as it is possible to see in Fig (5.8). This enhancement
of the density is likely to be seen by the atoms as an effective tighter confining
potential with higher oscillation frequencies. This static effect depends only on the
interaction between the atoms in the trap and it leads to a faster expansion for
both BEC and Fermi gas. The second consequence of the mean-field interaction
takes place instead during the expansion of the degenerate clouds and it can be
seen as a dynamical effect. What they have suggested is that the condensate and



the Fermi gas also interact during the first moments after the release from the trap.
Anyway, the result of this further interaction goes opposite with respect to the one
described above. Indeed, due to the attractive sign of the scattering length, both
species are slowed down during the expansion. This slowing effect becomes more
important the smaller is the relative velocity between the two clouds.

12 14 16 18 20 22
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2,0
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with fermions

Figure 5.10: Evolution of the 87Rb BEC with and without degenerate fermions. As pre-
dicted from the theory discussed in the text, in presence of the Fermi gas of 40K, the
condensate expands faster. The continuous lines are the theoretical predictions corre-
sponding to our experimental parameters.

As a result, the actual expansion of the two Fermi and of the Bose is deter-
mined by the competition of these two contributes. In Fig (5.9), we show the
results of this theoretical model. We plot the evolution of the aspect ratio of the
BEC and of the Fermi gas as a function of the dimensionless parameter τ = ωrt. In
particular in Fig (5.9a) is reported the predicted expansion of the a Bose conden-
sate, for a boson-fermion interaction of aBF = ±330 a0: in the case of attractive
interaction with the degenerate fermionic cloud, the expansion of the condensate
is predicted to be faster than the non interacting one. This behaviour is explained
by taking into account the mechanisms that we have discussed before. Indeed,
if from one side the static effect wants to accelerate the evolution of the aspect
ratio of the cloud, on the other side the dynamical one decreases it, since during
the first moments of the expansion the bosons still feel an attractive ”potential’ of
fermions. Anyway it turns out that for the BEC, the static effect of the mean-field
attraction dominates with respect to dynamical one, leading to a faster expansion
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Figure 5.11: Evolution of the aspect ratio of Fermi gas in presence of a thermal gas of
bosons (black dots) and of a BEC (red dots). The black line is the theoretical prediction
for a non interacting Fermi gas, calculated with our parameters. As it is possible to see,
the evolution in presence of the Bose condensate is slower due to the attractive 40K-87Rb
interaction.

with respect to the one expected for a pure condensate. It also appears from the
figure, that in the case of repulsive interaction between bosons and fermions, the
evolution of the aspect ratio is slower than in the attractive case. This can be
understood by considering that in case of repulsion between the two species, the
phase-separation would wash out the static contribution to the expansion, reduc-
ing in this way the velocity of the expansion. In the experiment, we have really
observed this behaviour, as shown in Fig. (5.10), where we plot the evolution of
the aspect ratio of the rubidium condensate in function of the expansion time
when potassium degenerate gas is present (upper curve) or absent (lower one). It
is possible to note the difference between the two situations that indicates that
the resulting effect of the interaction between bosons and fermion actually reveals
in a faster expansion of the condensate.

In Fig. (5.9b), it is instead presented the theoretical result for the expansion of
the Fermi gas. In the case of an non interacting Fermi gas, we see that evolution
of the aspect ratio follows the one of a classical gas, approaching one for long ex-
pansion times. The interaction with a Bose gas changes the picture: in particular,
in the figure, are reported the two opposite situations for the mixture 40K-87Rb of
repulsive and attractive interaction with aBF = ±330 a0. If the scattering length
is positive, we have that the behaviour of the radii of the degenerate fermionic



sample is very similar to the case of the ”free” Fermi gas, even if for τ ≥ 8 the
interacting case shows up a faster dynamics. More dramatic it is the change in
the case of an attractive interaction. Indeed in this latter case, theory predicts an
evident decrease of the velocity of the expansion of the Fermi gas due to the attrac-
tion with the Bose-Einstein condensate. In Fig (5.11), we show the experimental
data to be compared with the theoretical results of Fig. (5.9b). As it is possible
to see, we actually see the predicted reduction in the evolution of the aspect ratio.
The theoretical explanation of this behaviour is again in the competition between
the static and the dynamical effect of the mean-field attraction, as we have seen
in the case of the expansion of the condensate. In this case, case however, the
dynamical mechanism always dominates the static one, leading to an aspect ratio
that is less that the one of a non interacting Fermi gas.



5.5 Collapse of the Fermi gas

As we have discussed in the previous section, the main effect of the large attractive
mean-field interaction between potassium and rubidium atoms in the mixture is
to increase the peak-density of both species in the overlap region, as it is possible
to obtain by directly solving the two coupled equations (1.72), (1.73). Before
proceeding in the discussion, it is worth to remember that both the Fermi gas of
40K and the Bose-Einstein condensate of 87Rb are stable systems against collapse
induced by mean-field interaction. The stability of the fermionic gas is indeed
assured essentially by its non interacting nature, since it is composed by identical
fermions, and by its relatively high kinetic energy. In particular, this can be
described in terms of an outward Fermi pressure which arranges the fermions in
the trap in a relatively large spatial distribution compared to the one of a Bose-
Einstein condensate. This pressure is a general property of any degenerate Fermi
system, as in the case of the white dwarfs and neutron stars, in which it counteracts
the gravitational force. The stability of a Bose-Einstein condensate is instead
assured by the positive sign of the intraspecie scattering length, that corresponds
to a net repulsive interaction between the atoms composing the system.

On the other side, the stability of a system composed by a Fermi gas in-
teracting with a Bose condensate depends essentially by the quantity UBF =
4πaBF /mBF ni. Once fixed the value of the scattering length aBF , it is possible
to vary UBF , by changing the number of atoms and therefore the densities of both
species. As we have discussed in (5.3), we were able to produce a stable degenerate
mixture typically composed by some 104 atoms of 40K and 87Rb atoms and in this
case we have measured a lifetime of the system of about a second, limited only by
the background heating of our magnetic trap. However, if the number of atoms of
both species exceed some critical number, the theory [17] predicts that the mix-
ture is not more stabilized by the kinetic energy and by the repulsive boson-boson
interaction and due to the attractive interaction between fermions and bosons it
can lower its energy by continuously increasing the density in the overlap region
until it collapses. In the case of a spherical trap, R. Roth et al. [17], have derived
the expression for the critical particle number Ncr as a function of the scattering
length aBF :

N1/6
cr (aB , aBF , l) =

0.863
|aBF /l|0.281

+
0.087(aB/l)1.91

|aBF /l|3.49
(5.8)

where l = (mω)−1/2 is the harmonic oscillator length. If NB = NF ≥ Ncr the
system in no more stable against the collapse induced by the mean-field interac-
tion. In Fig. (5.12), we report the behaviour of the critical number of atoms in

function of the boson-fermion scattering length aBF in the case of spherical trap-
ping potential and for different values of the boson-boson interaction aB (image
taken by [17]). In our discussion we are interested only in considering the solid



Figure 5.12: Logarithm of the critical number in function of the interspecies boson-fermion
scattering length aBF for different values of the boson-boson scattering length aB , rescaled
to the harmonic oscillator length l [17]. The curves inside the red circle refer to the case of
negative boson-boson scattering length. The case of 40K-87Rb mixture corresponds to a
critical number of about 4.5×104 atoms (aBF /l ' −0.016 and aB/l ' 0.004). Calculations
made in the case of anisotropic potential confirm this predictions.

and the thick lines that correspond to aB/l ≥ 0, as we have in the case of rubidium
where aB ' 0.004. In the ideal case of zero boson-boson interaction (solid line in
the figure), we would have that, in our case (aBF /l ' −0.016), the system would
be stable only for NRb = NK ≤ 3×103 atoms. The fact that the bosons repel each
others in the trap leads to a higher stability of the system that becomes unstable
only if the number of atoms of both species is larger than 3 × 104. These results
are valid in the case of a spherical trap. If we include the actual anisotropy of our
trapping potential [120], we have that the predicted critical number of atoms for
the collapse are of the order of Ncr(Rb) ' 105, and Ncr(K) ' 104.

Since we could not change the value of the interspecies scattering length, we
have improved the loading of the atoms of both species in the magnetic trap,
taking particularly care of the optical pumping phase and we have optimized the
evaporation ramp in order to reach the critical number of atoms and to observe
the instability.

By doing this, we were actually able to reach the onset of condensation of
Rb with samples typically larger than previously, composed by 3 × 105 rubidium
and 3 × 104 potassium atoms. To approach the collapse, the idea was to slowly
add rubidium condensate atoms in the mixture, by lowering the trap depth at
constant rate, and to observe the possible decay of the potassium atoms during
this procedure. In Fig. (5.13), we show the evolution of the number of potassium
and rubidium atoms during the final stage of the evaporation ramp. As it is
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Figure 5.13: Evolution of the number of potassium atoms NK (A) while the number of
condensed rubidium atoms NRb (B) is increased by further evaporation after the onset
of BEC. When the number of Rb is increased above 105, we observe the collapse of the
Fermi gas indicated by the fact that more than half of the fermions disappear from the trap.

possible to note, while the condensate is still forming, we can see some inelastic
losses in the K sample, however on the same time scale of the evaporation. But,
as soon as the condensate is completely formed, we observe a sudden drop in the
K number of atoms, that becomes less than one half its original value. In order to
understand what was going on, we have first tried to determine the time scale of
this loss process: what we have found is that the duration of this strong reduction
in the potassium population was much shorter than the time scale of all the other
loss mechanisms we could observe in the trap. Indeed, when we have repeated
the measurement, spanning the time interval between 0.55 and 0.6 s (Fig. (5.13)),
due to the small shot-to-shot fluctuations of the atom numbers, we have always
measured either a larger (NK = 2× 104) or smaller (NK ≤ 104) Fermi gas. This
indicates that these inelastic losses happens on a time τ � 50 ms. When we have
studied the dynamics of this phenomenon by varying the number of atoms of both
species, we have discovered the existence of a threshold in the population of both
K and Rb.

In Fig. (5.14), we report the measurements performed by halving either the
population of K or of Rb. In both cases, we do not observe any sudden drop in
the number of atoms of the potassium component, but only a much slower decay,
if compared to the one shown in Fig. (5.13). Indeed, for the largest Fermi gas we
can produce, typically NK ' 2×104, we do not see any dramatic variation in the
K component if the number of atoms of rubidium is lower than NRb ' 105, and
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Figure 5.14: Evolution of the number of potassium atoms NK using the same evaporation
procedure described in the text but halving the initial number of atoms. In particular, the
triangles refer to a lower initial number of bosons, while the rhombuses to a lower number
of fermions.

the same happens for NK ≤ 1.8× 104 even if we produce the largest BEC we can
achieve composed by NRb ' 1.5× 105.

Another evidence of this threshold behaviour is shown in Fig. (5.15), in which
we present the evolution of the number of potassium atoms in function of the
number of rubidium in the condensate. It is clearly possible to observe a forbidden
region for NK between 2 × 104 and 0.5 × 104, with a threshold for NRb given by
Nth = 9× 104.

All these features described so far, such as the fast dynamics, the threshold
in the numbers of atoms and the gap in the population of the potassium sample,
varying the number of Rb atoms, show that the phenomenon we have observed in
the experiment is the collapse of the Fermi gas of 40K, driven by the interaction
with the Bose condensate of 87Rb. Indeed, the critical number of atoms for which
we do observe the disappearance of the fermionic sample NK ' 2 × 104 and
NRb ' 105, are compatible with the predicted values we obtain from the mean-
field theory, when considering our estimation of the K-Rb scattering length aBF =
−410 a0. In other words, as the theory predicts [17], the mutual attraction between
potassium and rubidium atoms is likely to lead to an considerable increase in the
density of both samples in the overlap region. In the case of the Fermi gas, even
if this superposition region is small with respect to its whole volume, this effect
is enhanced because the typical density of the BEC nB is much larger than the
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Figure 5.15: Evolution of the number of atoms NK of the Fermi gas in function of the
number of atoms in the condensate NRb. The threshold in NRb is clear from the gap of
data in the range from 0.8× 104 NK < 1.5× 104.

one of the Fermi gas nF , nB/nF ' 100. We can say that in this mixture the
attractive interaction between potassium and rubidium atoms is sufficiently strong
to overwhelm the Fermi pressure that usually stabilizes the Fermi gas.

We must remark that the theory predicts the simultaneous collapse of the
Bose-Einstein condensate: actually, in the experiment, we have observed that the
BEC appears only marginally affected by the collapse of the Fermi gas. Indeed,
by looking at Fig. (5.13), it is possible to measure an effective depletion of the
condensate only of the order of 2× 104 atoms.

However this observation can be explained by considering the microscopic dy-
namics of the collapse. Indeed, the collapse of the Fermi-Bose mixture is likely
to be halted at some stage by some inelastic processes which are favoured by the
high density in the overlap region. These losses reduce the number of atoms be-
low the critical values. This behaviour is confirmed by the observation that we
have a comparable decrease in both potassium and rubidium sample, and these
inelastic losses are likely to be due to interspecies collisions. In order to identify
the possible kind of inelastic processes that are involved during the collapse, we
have measured the losses of potassium in function of the density of the rubidium
sample in case of a nondegenerate mixture at T = 300 nK. We have observed
losses in the K sample only if the rubidium is present and in particular we have
seen that this loss rate scales quadratically with the density of Rb. In Fig. (5.16),
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Figure 5.16: Dependence of the 2-body collisional rate K2 versus the density of rubidium.
In the case of 2-body losses, we would expect a constant dependence from the rubidium
density, while, as it possible to see, the behaviour seems to indicate that the collisional
process that we have observed in the experiment is a 3-body recombination.

we show the dependence of the 2-body K2 scattering coefficient in function of the
density of rubidium. If the losses mechanism were a real 2-body scattering, we
would expect a constant behaviour. As it is possible to see, this is not the case. In
fact K2 shows a linear dependence from the rubidium density, indicating that the
underlying collisional process is more likely to be a 3-body K-Rb recombination.
Indeed if we plot the dependence of the 3-body K3 scattering coefficient as a func-
tion of the temperature of the sample, Fig. (5.17), we see a constant behaviour.
In particular, since no s-wave scattering between two fermions is possible in our
system, these 3-body losses must involve two Rb atoms and one K atom, with the
possible formation of K-Rb molecules. We have also determined the coefficient
rate K3 = ṄK/(NK n2

Rb) = 2± 1× 10−27 cm6s−1.
If we now look in more detail at Fig. (5.13), we can observe that this prediction
of 3-body recombination mechanism meets the experimental results of the losses
during the collapse. Indeed, we see a drop in the number of atoms of potassium,
during the collapse, from the initial value of about 2.5× 104 to slightly more than
104. At the same time, the condensate number changes from 105 to about 7×104,
corresponding to losses twice as large as the one for potassium.
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Figure 5.17: 3-body recombination rate as a function of the temperature of the mixture.
The observed constant behaviour indicates the absence of collisional resonances. From
the measurements we estimate K3 = 2± 1× 10−27 cm6s−1.

5.5.1 Determination of the scattering length by the collapse

We have used our observation of the collapse of the Fermi gas for better deter-
mining the value of the 40K-87Rb scattering length, assuming valid the mean-field
approximation for this system [17]. In Fig. (5.18), we show the regions of stability
of the mixture in the (NK , NRb) plane, with NK and NRb the numbers of atoms of
both species, obtained by solving the equations (1.72), (1.73). The system is sta-
ble below the critical curves and becomes unstable crossing them. The instability
rises up when the solutions of of the mean-field equations (1.72), (1.73) diverge.
Indeed this divergence of the solutions corresponds to an increase of the density of
both species in the overlap region that leads to the collapse of the system. In this
way it is possible to draw the curves reported in the figure that delimit the area
of stability for the mixture. Since in the experiment we can measure the number
of atoms with an uncertainty of about the 40%, we can have an estimation even
of the uncertainty of the value of the scattering length. In particular, since the
dependence of the scattering length from the number of atoms turns out to be
aBF ∝ N−1/10, it is possible to determine the value of the scattering length with
higher precision with respect to the collisional measurements when aBF ∝ N−1/2

, since the experimental uncertainty that we have in the determination of NK

and NRb it is almost completely washed out. In this way, we can derive a new



value for aBF given by aBF = −395+15
−15 a0, which is in good agreement with

aBF = −410+90
−80 a0 determined before.



5.5.2 Beyond the mean-field description of the mixture

As remarked several times in the previous discussion, we have always considered
appropriate for analyzing our experimental results the mean-field approach which
is summarized by the equations (1.72) and (1.73). In this approximation, the
single atom evolves in the mean field generated by all the other atoms.
The general Hamiltonian of a system composed by a Fermi gas interacting with a
Bose-Einstein condensate [17], from which equations (1.72) and (1.73) are derived,
has the following form:

1

2

a
fb

=-380 a
0

1

1.5

2

2.5

3

3.5

4

N
F

a
fb

=-390 a
0

a
fb

=-400 a
0

0 5 10 15 20 25 30
N

B

1

2

3

4

5

6
a

fb
=-380 a

0

Figure 5.18: Regions of stability of 40K-87Rb degenerate mixture in the (NK , NRb) plane.
The numbers of atoms of potassium and rubidium are taken from the experiment, while
the theoretical curves are derived in the mean-field approximation. From this analysis we
can estimate for the 40K-87Rb scattering length the following value aBF = −395+15

−15 a0.



TB = −
∫
drΦ†(r)

~2∇2

2mB
Φ(r) (5.9)

VB =
∫
drΦ†(r)VBΦ(r)

TF = −
∫
drΨ†(r)

~2∇2

2mF
Ψ(r)

VF =
∫
drΨ†(r)VF Ψ(r)

WBB =
1
2

∫ ∫
drdr′Φ†(r)Φ†(r′)UBBΦ(r′)Φ(r)

WBF =
∫ ∫

drdr′Φ†(r)Ψ†(r′)UBF Ψ(r′)Φ(r)

where TB and TF are the boson and the fermion kinetic energy, VB and VF the
trapping potential and Φ(r) and Ψ(r) the boson and the fermion field operator.
The density of the bosons and of the fermions is defined:

nB(r) = 〈g|Φ†(r)Φ(r)|g〉 (5.10)
nF (r) = 〈g|Ψ†(r)Ψ(r)|g〉

where we defined |g〉 the ground state of the system, whose energy is E0 = 〈g|H|G〉.
The Hamiltonian (5.9) can be rewritten in the following form:

H = HB + HF + HI (5.11)

The interaction between the Fermi and the Bose gas is described by HI ,

HI =
∫ ∫

drdr′Φ†(r)Ψ†(r′)UBF Ψ(r′)Φ(r) (5.12)

The interaction term between the Fermi gas and the Bose condensate is pro-
portional to by UBF ∝ aBF /mBF ni, i.e. proportional to the boson-fermion
scattering length and related to the reduced mass of the pair that reads mBF =
2mBmF /(mB +mF ) and to the density of fermions (bosons). By minimizing the
total energy of the system, it is first possible to obtain the density profiles of the
trapped gases [17], as we have shown in Fig. (5.8), and then to determine the
critical value of the number of atoms of both species and also the critical value of
the scattering length for which the system is no more stable and it collapses.

In order to consider effect beyond the mean-field, we have to account for an
extra term in the Hamiltonian (5.9), including the contribution due to the exchange
correlations, related to the density fluctuations that the mean-field theory does not
describe [121]. Without entering in the technical details (see [121] and reference



therein), it is possible to derive the expression for this exchange-correlation energy
Exc(nB , nF ) in the case of homogenous system and considering only the second
order in the boson-fermion scattering length aBF :

Exc(nB , nF ) =
2~2a2

BF

mR
f(δ) kF nF nB (5.13)

where kF = (6πnF )1/3 is the Fermi wave vector and f(δ) is a dimensionless func-
tion that depends only on the fermions and bosons masses (δ = (mB−mF )/(mB +
mF )).
If we now consider this additional term:

H = HB + HF + HI +Hex = HB + HF +AaBF + B a2
BF (5.14)

where A and B contain the dependence from the density of both fermions and
bosons. If we look more closely the expression for the exchange energy and if we
compare it with the mean-field interaction term, we see that, while this last can be
positive or negative (if aBF > 0 or aBF < 0), leading to a repulsive or attractive
interaction between the bosons and the fermions respectively, the second one is
always positive, being proportional to a2

BF . This means that the net result of the
exchange energy term is an additional repulsion between fermions and bosons in
the trap.
In the case of the 40K-87Rb mixture, the new term should counteract the attraction
between potassium and rubidium induced by the negative mean-field term. The
author of [121] affirm that the effect of this ”new” repulsive term reads as a
correction of 3.5% in the interaction energy respect to the mean-field result and,
more important, it leads to a quite notable effect on the density of both species.
In particular, they predict a reduction of both bosons and fermions densities of
more than 20% with respect to the mean-field result which would prevent the
onset of instability of the system for nominal value of the interspecies scattering
length aBF . However, it is possible to show that by taking into account only the
second order of aBF , with our number of atoms, it is not possible to reach the
conditions suitable for the collapse whatever is the magnitude of the scattering
length [122]. The explanation of such a behaviour is found by considering that the
exchange energy contribution scales quadratically with aBF while the mean-field
one goes linear with aBF . As a consequence, the larger is the value of aBF and the
larger also becomes the additional repulsion between the two species due to the
exchange energy term. For a better description of the system nearby the instability
is thus important to consider also other contributions beyond the second order.
For example, the third term is proportional to a3

BF and then it can counteract the
effect of the second one. However, the determination of the other contributions
beyond the second order is a difficult task and so far it has not been possible due
to the complexity of the theory.



5.6 Towards BCS-like transition in the 40K-87Rb degenerate mix-
ture

In (1.4.3), we have discussed on the possibility of achieving the superfluid regime
in a dilute fermionic system [56]. In particular, we have emphasized that the su-
perfluid pairing requires a real attractive interaction between the fermions and
that, in the ultracold temperature regime we are dealing with, the most efficient
pairing is likely to occur through s-wave scattering of particles. Since in the case
of identical fermions such a scattering process is inhibited, we have to consider a
system composed by two different fermionic species as, for example, the case of
fermions in two different Zeeman levels. Typically, the critical temperature for
such Cooper pairing is only a small fraction of the Fermi temperature for the sys-
tem, and thus the observation of such a transition is expected to be quite hard
from the experimental point of view. However, as remarked in (1.4.3) more than
one theoretical scheme has been presented in order to get much higher transition
temperatures.
In the case of pure fermionic systems, one of the most promising scheme seems to
be the one [60] that exploits Feshbach resonances to achieve quite large negative
values of the scattering length and to strongly increase the interaction between the
fermions. Such a scheme has been directly used by O’Hara et al. [26] in a mixture
composed by 6Li atoms in two different Zeeman levels, trapped in a high confining
CO2 optical trap. They could set the value of the scattering length between these
two states to a very large and negative value, a ' −104 a0 by means of an external
magnetic field, inducing, in this way, a strong attractive interaction between the
atoms. They have observed a signature of this strong interacting regime of their
system by studying the expansion of the Fermi gas. In particular, they have noted
an anisotropic expansion of the fermionic clouds after the release from the optical
trap. This behaviour is qualitatively different with respect to the theoretical pre-
diction for the expansion of a ”normal” Fermi gas, which, as discussed in (1.3.1),
is supposed to be completely isotropic, despite of the anisotropy of the trapping
potential [124].
Recently, C. Menotti et al. [123] has shown that a superfluid Fermi gas expands
in anisotropic way, since it is described by hydrodynamic equations, like the Bose-
Einstein condensate. However, the anisotropy in the expansion is not necessar-
ily due to the superfluidity. Indeed, as pointed out in [125], the hydrodynamic
equations describe also the situation of a strong collisional regime (hydrodynamic
regime), in which the scattering cross-section has reached its maximum value (see
(1.1.1)). Subsequently the study of the behaviour of the expanding cloud is not
a discriminating way of detecting the superfluid regime, and other observations
must be used for determining if the system is superfluid [4], [126].

In the case of boson-fermion mixtures, a large boson-fermion interaction can
affect not only the stability of the system [17], as we have presented above, but it
can also play a relevant role in the mechanism of Cooper pairing [67], [68], [19].



Indeed, as first suggested in the case of the 3He-4He mixture [127], the interaction
between the fermions and the density fluctuations of the bosonic sample, can lead
to an effective attraction between fermions. This situation is analogous of what
usually occurs in superconductors [128], where the coupling between two electrons
is provided by the exchange of lattice phonons.
In the specific case of degenerate dilute boson-fermion mixtures, L. Viverit [19], has
evaluated the form of this induced coupling between fermions due to the interaction
with a Bose-Einstein condensate. The model presented in [19] is general and it can
be applied also to the situation of bare fermion-fermion interaction (as for 40K),
showing that the final effective interaction between the fermions can be attractive
if the boson-fermion contribution is taken into account. Following [19], we can
write the boson-induced interaction between fermions as a product of the fermion-
boson interaction UBF = 4π~2aBF /mBF and the boson density-density response
function χ(~q, ω):

UFBF (~q, ω) = U2
BFχ(~q, ω) (5.15)

where,

χ(~q, ω) =
nB~2q2/mB

(~2ω)2 − ε0q(ε0q + 2nBUBB)
(5.16)

where nB is the density of the boson, ε0q = ~2k2/2mB and q = |~q| and finally
UBB = 4π~2aBB/mB is the usual repulsive boson-boson interaction. In the case
ω = 0, we see that UFBF < 0 whatever is the fermion-boson interaction UBF . It
is possible to demonstrate that the condition ω = 0 is always satisfied in the limit
vF � s, where vF = ~kF /m is the Fermi velocity and s = (nBUBB/mB)1/2 the
sound velocity in the Bose-Einstein condensate. In this particular case, the induced
interaction is attractive in the whole Fermi sphere and it takes the following forms:

UFBF (q) = −U
2
BF

UBB

1
1 + (~q/2mBs)2

(5.17)

Since vF � s, even if mB ≥ mF the typical momentum exchanged in the inter-
action ~q � 2mBs and we have UFBF (q) ' −U2

BF /UBB . This relation suggests
that the boson-induced attractive interaction between fermions is always attrac-
tive and it does not depend from the exchange momentum. Anyway, despite of
(5.17), if UBF > 0, phase separation prevents the possible formation of Cooper
pairing.
In this approximation, it is possible to derive [19] the relation between the critical
temperature for the Cooper pairing and the fermion-boson interaction:

TC =
γ

π

(
2
e

)
TF e

1/λ (5.18)

where TF is the Fermi temperature, γ a numerical factor, and the parameter λ is
directly related to the scattering length boson-fermion and it reads:



λ =
(mF kF )
2π2~2

UFF

[
1− U2

BF

UBBUFF

]
(5.19)

where UBF ∝ aBF , UBB ∝ aBB and UFF ∝ aFF . In the case of large fermion-
boson interaction, since also UFBF is much bigger than UBB , we can see from
equation (5.18) that the critical temperature for the pairing can be comparable
with the Fermi temperature TF of the system.
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Figure 5.19: Decay of potassium atoms initially trapped in the |F = 9/2, mF = 7/2〉 state
due to the collisions with the rubidium in the |F = 2, mF = 2〉 state. From the measured
decay time (τ = 290 ms) we have extracted the inelastic rate Ginel ' 2.5× 10−12 cm3s−1

The mixture composed by 40K-87Rb atoms seems particularly interesting from
this point of view, due to the large fermion-boson scattering length. Indeed, if we
calculate the order of magnitude of the boson-induced attractive interaction be-
tween fermionic potassium atoms, by plugging inside the relation for UFBF shown
above, the nominal value of the 40K-87Rb scattering length aBF = −410 a0 and of
the rubidium-rubidium interaction, aBB = 100 a0, we find that aFBF ' −1700 a0.
This magnitude is very large compared with the ”bare” repulsive interaction be-
tween potassium atoms aFF = 174 a0, indicating that in case of this mixture this
induced attraction can be quite relevant. Furthermore, the optimal condition for
the pairing is predicted to occur [129] just at the onset of the collapse with a criti-
cal temperature for the pairing as high as TC ' 0.1 TF , a temperature achievable
in the experiment.
However, as mentioned above, Cooper pairing is expected to be more efficient
through s-wave coupling, thus between non identical fermions.
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Figure 5.20: Field dependence of the 40K(9/2,−7/2)+ 87Rb(1, 1) (full line) and
40K(9/2,−9/2)+ 87Rb(1, 1) (dashed line) scattering lengths. The arrow shows the best
working point for inducing the Cooper pairing in this spin mixture (see text).

Since our sample is composed by identical fermionic atoms polarized in the |F =
9/2,mF = 9/2〉 state, we do not meet this condition for the s-wave pairing. In
the direction of the possible observation of Cooper pairing in a gas of 40K, we
have then studied the stability of the spin mixture composed by K atoms in two
different spin state and rubidium. In detail, we have transferred some potassium
atoms in the |F = 9/2,mF = 7/2〉 and we have looked at the stability of this
new spin mixture composed by rubidium in the |F = 2,mF = 2〉 and potassium
in |F = 9/2,mF = 9/2〉 and |F = 9/2,mF = 7/2〉 states. The measurements
have been performed on thermal samples of K and Rb in the range of temperature
T = 400÷500 nK. By means of a fast RF-sweep (see section 3.3), typically lasting
around 10 ms, we have transferred about 104 atoms (' 20% of the total number)
potassium atoms from the |F = 9/2,mF = 9/2〉 to the |F = 9/2,mF = 7/2〉
state, and we have observed their subsequent decay due to the collisions with the
rubidium sample trapped in the |F = 2,mF = 2〉 state. In Fig. (5.19) we show the
result of a typical measurement performed with N7/2 ' 2 × 104 of potassium in
|F = 9/2,mF = 7/2〉 and N2 ' 5× 105 rubidium in |F = 2,mF = 2〉 at T = 300
nK. The evolution of potassium atoms can be described, as in the case presented
in (3.3) by the following equation:

ṅK(t) = −Ginel nK
|9/2,7/2〉(t)n

Rb
|2,2〉(t) (5.20)

with the constraint NK
|9/2,7/2〉(t)−N

Rb
|2,2〉(t) = const. Here n is the spatial density,



N the atom number and Ginel is the inelastic collisional rate. By fitting the exper-
imental results with the exponential decay, solution of (5.20), we have estimated
the value for the collisional rate, Ginel = 2.4(1.2)× 10−12 cm3s−1, where the un-
certainty dominated by the one on atom number. In the case of the degenerate
system approaching to the collapse, such an inelastic rate would limit the lifetime
of the spin mixture to less than 30 ms, due to the quite large density (1014 − 1015

cm−3) that both potassium and rubidium samples have in this phase. In other
words, this mixture is not stable enough in the perspective of the pairing by the
interaction with bosons, and others must be found.

Among all the available spin mixtures of the 40K-87Rb system, the more
appealing in the context of superfluidity appears the one composed by the ru-
bidium in |F = 1,mF = 1〉 and potassium in |F = 9/2,mF = −9/2〉 and
|F = 9/2,mF = −7/2〉, trappable in an optical trap. The main feature of this
mixture is that it is stable against inelastic collisional processes, since both the
atomic species are trapped in the real ground state. Furthermore [130] we were
able to predict the magnitude and the sign of the interactions between potas-
sium and rubidium atoms trapped in such states. Indeed, from the inelastic mea-
surements described above, we could infer the value also of the single scattering
length between 40K-87Rb atoms, a = −185+83

−225 a0 and then it was possible to
calculate the scattering lengths for all the possible spin mixtures for 40K-87Rb
system. In particular, we have found that the scattering length between rubidium
in |F = 1,mF = 1〉 and potassium in |F = 9/2,mF = −9/2〉 is a = −336+89

−102 a0

and the one for the |F = 1,mF = 1〉+ |F = 9/2,mF = −7/2〉 is a = −323+90
−105 a0.

As it is possible to see, in both cases, the magnitude is comparable with the one
we have measured for the |F = 2,mF = 2〉 + |F = 9/2,mF = 9/2〉 states, and
also the negative sign assures the repulsive character of the interaction, needed for
leading the system to the instability.

The knowledge of both the triplet and the singlet scattering length between
40K-87Rb atoms have also allowed us to predict the location of Feshbach resonances
of the different magnetic states of this mixture [130], as shown in Tab. (5.6).
In particular, we have determined the magnetic field dependence of the scat-
tering length between the |F = 1,mF = 1〉 + |F = 9/2,mF = −9/2〉 and of
|F = 1,mF = 1〉 + |F = 9/2,mF = −7/2〉 states, as shown if Fig. (5.20). In this
case, we can see a crossing point between the two scattering lengths, corresponding
to a coupled Feshbach resonances for these two spin mixtures. In particular, for
B ' 726 Gauss we have that the two scattering lengths assume the same large and
negative value a1,(−9/2,−7/2) ' −687 a0. This possibility of tuning simultaneously
the two interactions can be exploited in the direction of Cooper pairing: indeed, as
mentioned above, the highest critical temperature for the transition to the super-
fluid regime is predicted [129] to occur just before the system collapses. However,
the pairing is possible only if the two spin states are populated by the same num-
ber of atoms of fermions. The idea is then to prepare Rb in |F = 1,mF = 1〉 state
and K in the two levels |F = 9/2,mF = −9/2〉 and |F = 9/2,mF = −7/2〉 equally



(fK ,mfK)+(fRb,mfRb) a(a0) B0(G) −∆(G)
(9/2,±9/2)+(2,±2) −410+80

−80

(9/2,±9/2)+(1,±1) −235+92
−121

(9/2,7/2)+(1,1) −245+92
−120 319.6−17

+13 0.8
920.3−93

+93 0.05
(9/2,-7/2)+(1,1) −323+90

−105 522.9+40
−55 0.3

564.8+20
−24 0.1

646.3+35
−52 4.6

658.0+50
−58 0.08

753.1+50
−59 0.3

787.4+60
−65 0.9

(9/2,-9/2)+(1,1) −336+89
−102 505.3+31

−49 0.03
547.1+28

−28 0.2
593.9+34

−44 4.0
741.2+60

−65 0.9
921.0+92

−94 10−4

(9/2,-9/2)+(1,0) −279+92
−114 477.0+35

−47 0.1
590.3−31

+26 3.9

Table 5.1: Compendium of 40K-87Rb scattering properties. The zero-field s-wave scattering
length for the different stable spin mixtures is shown together with the location and the
width of the relative Feshbach resonances.

populated. By simultaneously tuning the two interactions a1,−9/2 and a1,−7/2 we
would like to reach the situation nearby the collapse for the two mixtures where
the pairing between the fermions should occur.



Conclusions and perspectives

In this thesis we have described the experimental realization of dilute degenerate
mixtures. In particular, isotopes of potassium are cooled to quantum degeneracy
by means of sympathetic cooling with rubidium atoms.

Sympathetic cooling turned out to be very efficient thanks to the large inter-
species scattering cross-sections between K and Rb. In this way it has been possible
the achievement of the first Bose-Einstein condensate of 41K and the investigation
of the features of a boson-boson mixture of 41K-87Rb and of a fermion-boson mix-
ture of 40K-87Rb. We have accurately measured the collisional properties between
potassium and rubidium atoms and we have been able to estimate the magnitude
and the sign of the interactions of all the K-Rb isotopic pairs.

The boson-boson mixture is characterized by a large and repulsive interaction
between the two species. This feature has permitted the production of a stable
binary condensate of 41K and 87Rb. We have seen the effects of the strong cou-
pling between the two BECs by studying the dynamics of the two superfluids in
the magnetic trap. By forcing a dynamical overlap between the two clouds, we
have observed the exchange of angular momentum between the two condensates,
evidenced by the onset of scissors mode-like oscillation.

Sympathetic cooling of the fermionic isotope 40K has made possible the re-
alization of a degenerate mixture composed by a Fermi gas of potassium and a
Bose-Einstein condensate of rubidium. The large and attractive character of the
interactions has assured a very efficient cooling of K even in the degenerate regime
allowing the attainment of temperatures as low as T = 0.2 TF . The strong in-
terspecies attraction between fermions and bosons has led to an instability of the
mixture above a critical number of atoms of the two components. In particu-
lar, such a boson-fermion interaction was able to overwhelm the natural repulsion
between the fermionic potassium atoms, inducing the collapse of the Fermi gas.

Several are the perspectives opened by the realization of such K-Rb degenerate
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mixtures. First of all, the possibility of having ultracold miscible gases of two
different atomic species is particularly important in the direction of producing
heteronuclear cold molecules. These kind of system would be characterized by
the long-range dipole-dipole interactions, which are expected to largely modify
the ground state and the excitation properties of the mixture. Furthermore, the
strength of such interactions is likely to be larger than that of the short-range
forces, typical of ultracold atomic gases. This feature makes such a system suitable
for performing quantum-computing schemes [14]. Among all the proposed sources
of cold heteronuclear molecules, the most promising one is represented by mixtures
composed by two different alkali atoms, due to the relative facility in achieving
very low temperatures in such samples. In particular, in case of dipolar bosons, it
has been recently suggested [131] the possibility of creating dipolar molecular BEC
by confining a binary condensate of two atomic species in an optical potential. In
such a potential it would be possible to arrange pairs of different atoms in each
lattice site and by photo-association technique to create heteronuclear molecular
BEC. Our binary BECs, composed by 41K-87Rb atoms, appears very suitable for
implementing such a scheme. Indeed, we have recently predicted the existence of
several Feshbach resonances in this boson-boson mixture [130], by which we should
be able to change the sign of the K-Rb interaction from the initial repulsive value
to a large attractive one, which would favour the formation of potassium-rubidium
pairs in the lattice.

The strong and attractive character of the interactions between 40K and ru-
bidium atoms is instead very interesting for the quest of superfluidity regime in
a dilute gas of fermionic potassium. Indeed, as reported in [19], a strong and
attractive boson-fermion coupling is likely to induce a large attraction between
fermions, similarly to what usually occurs in the normal superconductors. In the
case of a Fermi gas in two different spin states (reproducing the s-wave coupling
in the superconductors), such induced fermion-fermion interaction can lead to the
BCS pairing at temperatures comparable with respect to the Fermi temperature
of the system. In our experiment, we have already observed one effect of the large
attractive character of the 40K-87Rb interaction, i.e. the collapse of the Fermi
gas driven by the presence of the rubidium Bose-Einstein condensate. The onset
of the collapse is predicted to be the optimal situation for the pairing since the
critical transition temperature corresponds to just TC ' 0.1 TF . In the future ex-
periment we will consider a mixture composed by the Rb BEC in |F = 1,mF = 1〉
state and a two components Fermi gas in |F = 9/2,mF = −9/2,−7/2〉 trapped
in an optical trap. The idea is to reproduce the condition of the collapse in this
new mixture an to observe the pairing between fermions. Also in this case, we
have predicted the possibility of tuning the interactions between these states by
Feshbach resonances [130]. In particular, we have found a value of the magnetic
field for which we should be able to simultaneously change the character of the
interaction between these three states to a very large and attractive one, favouring
even more the possible pairing between potassium atoms.

Another interesting and unexplored direction is to consider the Fermi gas



trapped in an optical lattice. In particular, by confining the atoms very tightly
in one direction, it is possible to realize a quasi-2D Fermi gas. Such a system is
expected to show new characteristics with respect to the traditional 3D case, as it
has been recently proposed [132]. One of the most intriguing feature is the possi-
bility of controlling the interactions between the fermions by varying the strength
of the optical confinement. Indeed, in the weak coupling regime, it should be pos-
sible to observe the Cooper pairing in such quasi-2D system at temperatures of
the order of 1/10 of the Fermi temperature TF . In the opposite strong-coupling
regime, it has been predicted the formation of weakly bound quasi-2D dimers of
fermions which are expected to form a Bose-Einstein condensate.
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