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Introduction

In the mid 90’s the experimental realization of a Bose-Einstein condensate (BEC) in
ultracold atoms opened the way to a series of ground-breaking discoveries [1, 2].
Among these discoveries, it was shown that quantum gases show superfluidity, which is
the ability to flow without friction. The superfluid properties of quantum gases where first
demonstrated for bosons, by studying the hydrodynamic flow of the BEC when stirred by
a laser [3], and by observing the formation of vortices [4]. The detection of superfluidity
in fermionic gases was also enabled by observing vortices [5].
The first experimental evidence of superfluidity actually came much before the realization
of quantum gases. In fact, in the late 30’s it was discovered that liquid 4He becomes
superfluid under the temperature of 2.17 K [6, 7]. Since both the gaseous and liquid
phases were shown to have a quantum counterpart with superfluid properties, the scientific
world started to think if this could be true also for the solid phase. The first theoretical
discussion on supersolidity was made by Gross in 1957 [8], who thought of the idea of
having a bosonic ground state that showed a spatial density modulation. In 1970, a paper
by Leggett showed that the supersolid should be characterized by a lower moment of inertia
with respect to a classical system, similarly to what happens with regular superfluids
[9]. In 1969 Andreev and Lifschitz [10], and in 1970 Chester [11], proposed a physical
mechanism to explain the presence of supersolid order in a quantum crystal. Their idea
was that at sufficiently low temperatures localized defects become excitations that can
move freely through the crystal. These so called “Defectons” obey Bose statistics and
can thus condense, resulting in a superfluid flow in a crystalline background. Defectons
where predicted to exist in crystals with very large zero-point oscillations, such as solid
helium. Because of this the search for supersolidity started again with 4He, this time
solid. For more than 30 years no real evidence of helium’s supersolidity was found, until
in 2004 Kim and Chan published two papers [12, 13] on the probable observation of a
supersolid phase in solid 4He, made through the study of its non classical rotational inertia,
as proposed by Leggett. They were able to observe a sudden drop in the oscillation period
of a torsional oscillator filled with helium, when helium becomes solid. These results
sparked great interest and discussions and a lot of effort was put into trying to interpret
their experimental results [14]. In 2012, Kim and Chan were able to demonstrate that the
reduction of the moment of inertia they saw in 2004 in solid helium was not a byproduct
of the onset of supersolidity, but it was due to a change of the elastic properties of the
solid [15].
In later years the concept of supersolidity was generalized from quantum crystals such
as solid helium to other types of system that show superfluidity, like Bose-Einstein con-
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densates. The coexistence of phase coherence, typical of superfluids, and of solid-like
density modulations has been reported for example in BECs inside optical cavities. The
modulation of such a system is, however, infinitely stiff since it is externally imposed, and
because of this such system cannot be regarded as a true supersolid [16].
Another route to supersolidity was given by dipolar quantum gases, that can have both
short range Van der Waals interactions and long ranged anisotropic magnetic interactions.
A peculiar feature of dipolar gases is given by their excitation spectrum, that shows a
local minimum at finite momentum, also called “Roton”. This same phenomenon was
studied much earlier in liquid helium [17]. In dipolar gases the rotonic minimum can
be tuned by changing the relative importance of contact and dipolar interactions via
Feshbach resonances. When the roton crosses the zero value for the energy it becomes
energetically favorable for the dipolar system to have a macroscopic occupation of the
roton’s momentum state, thus inducing an instability in the system that can lead to the
formation of an array of quantum droplets. This instability can then be stabilized by
quantum fluctuations. The density modulation formed in this way is a direct consequence
of the particle’s interaction properties and is not externally imposed on the system. Thanks
to this technique the supersolid phase was finally observed in 2019 in a dipolar gas of
dysprosium in the group lead by Giovanni Modugno in Pisa [18] and later the same year
the supersolid was also observed in Innsbruck [19] and in Stuttgart [20].
Supersolidity in dipolar gases is the result of two spontaneously broken symmetries. The
first one is the U(1) phase invariance leading to superfluidity, while the second one is the
translational symmetry that gives rise to the density modulation in the system. Both of
these symmetry breaking give rise to a different Goldstone mode [21]. After its discovery,
Modugno’s group studied the non classical rotational inertia of the supersolid, showing
a reduction of moment of inertia with respect to a classical system when excited in the
scissors mode [22]. In this work the group also linked the moment of inertia to the Leggett’s
superfluid fraction fs of the system, wanting to show that fs = 1 when the system is fully
superfluid whereas fs < 1 when the system undergoes the supersolid phase transition. The
comparison between the experimental results for the superfluid fraction and the Leggett’s
bound is rather tricky in this setup because there are actually two kind of mechanism
at play in giving the experimental value of the moment of inertia of the system. A mass
transport through the supersolid weak link that is a Leggett type contribution, but also
another contribution to the moment of inertia comes from the single droplets oscillation.
In the experiment the group was only able to get a value of superfluid fraction compatible
to 1, and not lower, in the supersolid regime. A setup better suited to compare the
experiment with theory would be one in which the atoms are trapped inside a ring shaped
potential, as originally proposed by Leggett, because in this case the contribution of the
individual droplets to the superfluid fraction would be reduced.
In the last two decades there’s been a lot of progress towards the trapping of BECs inside
rings. These rings can be made either with fully magnetic potentials [23, 24], a combination
of magnetic and optical potentials [25, 26] or fully optical [27, 28, 29, 30, 31]. Regarding
optical rings, they can be realized employing Laguerre-Gaussian (LG) beams [27, 30], time
averaged painted potentials [32, 33], or through the use of a spatial light modulator [34].
Once the superfluid is loaded inside the ring, angular momentum can be imprinted on it
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by Raman coupling with LG beams [25, 27, 29, 30], stirring with an off resonance laser
[33], temperature quenches [35], phase imprinting [34, 36], or even making the BEC itself
move in a spiral trajectory around a blue stationary laser beam [37].

This thesis reports the work I made in the dysprosium lab that I joined in October 2022
towards the trapping of a degenerate gas in a ring potential.
Once we will have the superfluid trapped in the ring, we will be able to analyze a plethora
of different phenomena, from the creation of solitons to the study of persistent currents in
dipolar BECs, even seeing what happens crossing the superfluid to supersolid quantum
phase transition. Regarding the supersolid, achieving one trapped in a ring will allow us to
study its rotation properties and, consequently, its superfluid fraction, in a setting much
closer to the one envisioned by Leggett’s theory.

Sketch of the superfluid to supersolid phase transition inside a ring potential.

The thesis is organized as follows.
In the first chapter I lay the theoretical foundations of my thesis. I briefly introduce the
concepts of second quantization and the Gross-Pitaevskii equation that are needed to
describe degenerate quantum gases. In this context I also introduce some famous classes
of solutions for the Gross-Pitaevskii equation like solitons and vortices, that are excited
states of the condensate in the ring that we will be able to study once this potential
will be on the atoms. These excitations are extremely interesting to study in our system
since dysprosium is highly magnetic. Because of this we will be able to observe if the
dipolar interaction in our system changes in any way the features of such states. It will
be especially interesting to study vortices, but more in general, rotations, through the
superfluid-supersolid quantum phase transition. Because of this I also introduce in this
chapter Leggett’s theory on rotations in a ring and a general section on dipolar gases, their
excitation spectrum and how the phenomenon of supersolidity takes place. A key quantity
relating the intensity of a laser to the force that this laser can imprint on atoms is called
polarizability. This quantity measures the strength of the atom-light interaction and its
knowledge is of utmost importance when one wants to know what kind of potentials a
certain laser will be able to produce. Most of my theses work has been concentrated on
finding the polarizability of dysprosium around 404 nm, that is the working wavelength of
the laser we want to employ to create the repulsive ring potential. This quantity is still
not known in the literature. Because of this the last part of the first chapter is dedicated



vi Introduction

to the theoretical treatment of polarizability.
In the second chapter I describe the work I made to characterize the digital micromirror
device (DMD) that we will employ as a spatial light modulator to create tailored optical
potentials for our quantum gas, such as the ring potential and the phase gradient we will
use to imprint angular momentum to the BEC. In this chapter I will explain the critical
difficulties one encounters when trying to realize uniform potentials for bosons, and the
solutions I employed to get around these problems. In the last part of this chapter I show
some simulations for the ground state of the Gross-Pitaevskii equation. These simulations
are made for the condensate trapped in a ring potential whose shape is the experimentally
achieved one, while the potential height is fixed in the simulations to be 200 nK. Again,
this number in reality will depend on the laser power and on the atom’s polarizability.
In the third and final chapter I will explain the work that has been done to characterize
the source of light we will employ with the DMD to make our repulsive annular potential.
This source is represented by a blue diode laser working around 404 nanometers. This
wavelength has been chosen for two main reasons. The first one is because it produces a
repulsive potential for dysprosium. The second one is given by the fact that, because the
resolution of all lenses has a lower bound given by diffraction that scales linearly with the
wavelength, working with such a small wavelength will allow us to have the best possible
resolution when projecting our ring potential on the atoms. This resolution is expected to
be around 1.5 µm. This is extremely important in our case because, differently to what
happens in fermionic systems, our degenerate gas is extremely small and the ring radius
we are projecting to use to trap the atoms will be around 5 µm, with a thickness of about
2 µm that will be just bigger than the optical system’s resolution. This laser we are going
to use has, out of the box, a broad spectrum, and it so happens that some of its spectrum
crosses a dysprosium’s strong absorption transition. Because of this we cannot use the
laser as is and a lot of effort has been put into reducing its emission spectrum.
Working close to resonance however has the advantage that the dynamical polarizability of
dysprosium should be extremely high. In the third chapter is also reported our experimental
measurements of this dynamical polarizability.



Theory
Chapter 1

In this chapter I establish the theoretical background of my thesis. Firstly I introduce
the concepts of second quantization and the most famous Gross-Pitaevskii equation, that
are needed to describe degenerate weakly interacting quantum gases. Thanks to the
Gross-Pitaevskii equation it’s possible to study a plethora of excitations for the condensate.
Of these, particular interest in the case of ringed condensates is devoted to solitons and
vortices. The former is considered in the first section while the latter is introduced in the
more general context of superfluidity, to which the third section of this chapter is devoted.
In the second section I briefly describe some general concepts regarding dipolar condensates
like their excitation spectrum. This topic is of fundamental importance for our work since
it explains how tuning the contact interactions can lead to a second breaking of symmetry
in the system and bring forth supersolidity.
In the third section I will describe the general theory of superfluidity. Landau’s theory of
superfluidity is developed to introduce the concepts of normal and superfluid components
inside a liquid. The superfluid fraction, that is, the ratio between superfluid density and
the total one, is of utmost importance when dealing with superfluids and, more importantly,
supersolids.
In section four I show what changes when one considers rotations in supersolids. In this
regard, Leggett’s theory on rotations is presented, where its famous upper bound on the
superfluid fraction is derived.
In the fifth section I describe the theory regarding coherent atom-light interaction. This
part relates to the the third chapter were the formulas derived here are used for comparison
with our experimental results.
In the last section of this chapter I briefly describe the concept of imaginary time evolution,
that is the framework used to make the simulations that will be showed in the second
chapter.

1.1 Theoretical framework for superfluids
A quantum many-body system can be treated theoretically in what is called “Second
quantization”. In this framework we define the bosonic field operator Ψ(r), that is the
operator that creates a boson in position r, such that Ψ(r) |0〉 = |r〉 where |0〉 represents
the vacuum of particles. The bosonic field operators follow the classical commutation
relation [Ψ(r), Ψ†(r′)] = δ(r − r′).
The hamiltonian for a system of N interacting bosons can be written in second quantization
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as:

H =
∫

dr Ψ†(r, t)
(
− ~2

2m∇
2 + Vext(r, t)

)
Ψ(r, t)+

+ 1
2

∫∫
dr dr′Ψ†(r, t)Ψ†(r′, t)V (r − r′)Ψ(r′, t)Ψ(r, t)

(1.1)

where Vext(r) represents a trapping potential for the bosons and is generally taken to be
harmonic, while V (r − r′) represents the interaction potential between two bosons.
Let’s consider the field operator Ψ(r, t) at time t, that can be written in the Heisenberg
representation as:

Ψ(r, t) = eiHtΨ(r)e−iHt . (1.2)
We can write the equation of motion for this field as:

i~∂tΨ(r, t) = [Ψ(r, t),H] . (1.3)

By evaluating explicitly this commutator we get the following equation of motion for Ψ:

i~∂tΨ(r, t) =
[
− ~2

2m∇
2 + Vext(r, t) +

∫
Ψ†(r′, t)V (r′ − r)Ψ(r′, t) dr′

]
Ψ(r, t) . (1.4)

We can now introduce the Bogoliubov approximation for the field operator, that we write
as a classical term describing the expectation value of Ψ on the ground state of the theory

Ψ(r, t) = 〈GS|Ψ(r, t)|GS〉 (1.5)

to which we add a quantum fluctuation term

Ψ(r, t) = Ψ(r, t) + δΨ(r, t) (1.6)

where the quantum fluctuation term is supposed to be small with respect to the classical
term ∫

dr 〈δΨ†δΨ〉 �
∫
dr Ψ ∗(r, t)Ψ(r, t) . (1.7)

To first approximation we can then neglect the quantum fluctuation term and arrive to
the famous Gross-Pitaevskii equation (GPE)

i~∂tΨ(r, t) =
(
− ~2

2m∇
2 + Vext(r, t) + Vint(r)

)
Ψ(r, t) (1.8)

where
Vint(r) =

∫
dr Ψ ∗(r′)V (r − r′)Ψ(r) (1.9)

and, if we consider only contact interactions, we have that V = gδ(r − r′) where g =
4π~2as/m and as represents the s-wave scattering length. In this limit we have that
Vint = g|Ψ(r)|2.
By factorizing the time dependence of the order parameter in this way Ψ(r, t) = Ψ(r)e−iµt/~
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where µ represents the chemical potential of the system, we can also write the stationary
Gross-Pitaevskii equation(

− ~2

2m∇
2 + Vext(r, t) + g|Ψ(r)|2

)
Ψ(r) = µΨ(r) . (1.10)

The function Ψ is called order parameter and, because of equation 1.7, is normalized to
the total number of atoms ∫

|Ψ |2 dr = N . (1.11)

This implies that the total density of the system coincides with the density derived from
the order parameter

n(r) = |Ψ(r)|2 . (1.12)
By writing the order parameter as

Ψ(r, t) =
√
n(r, t)eiφ(r,t) (1.13)

from the Gross-Pitaevskii equation its possible to derive two other equations that, when
taken in combination, are exactly analogous to the GPE:

∂tn(r, t) +∇ · j = 0

m∂tv +∇
(

1
2mv2 + Vext + gn− ~2

2m
√
n
∇2√n

)
= 0

(1.14)

where we have defined the velocity v = ~∇φ/m and the current density as j = nv. The
fact that the velocity field can be expressed as a gradient brings forth the important
consequence that v is irrotational (∇× v = 0). We will see that this condition makes
velocity fields inside superfluids that are completely different from standard liquids. The
first equation in 1.14 represents the equation of continuity giving rise to the conservation
of particles in the system, while the second can be seen as the equation governing the time
evolution for the velocity field. The term proportional to ∇2√n in this equation is called
“Quantum pressure” and can be ignored if the typical length scale for density fluctuations
is bigger than the healing length ξ = ~/

√
2mgn of the condensate. If one neglects this

term, the two equations 1.14 become analogous to the hydrodynamic equations describing
a non-viscous liquid with an irrotational velocity field.

1.1.1 Thomas Fermi limit
In the presence of an harmonic trapping potential

Vext(r) = 1
2mω

2
xx

2 + 1
2mω

2
yy

2 + 1
2mω

2
zz

2 (1.15)

one needs to solve the GPE numerically, apart from some interesting limiting cases.
The consequences of the interaction term inside the GPE are readily identifiable: If the
interaction is repulsive (g > 0), then the gas will expand and the size of the atomic cloud
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will grow with respect to the non interacting case. At a certain point, when the interactions’
strength crosses some critical value, the cloud density will become so smooth that one is
able to neglect the kinetic energy term inside the GPE. This limit where one neglects the
kinetic energy is called Thomas-Fermi limit and is characterized by the analytical solution:

ΨTF =
√
n0
TF (r) (1.16)

where

n0
TF (r) =

[µ0
TF − Vext(r)]/g if µ0

TF > Vext(r)
0 otherwise.

(1.17)

The value of the chemical potential in this approximation is given by the normalization
condition N = ∫ dr n0

TF (r) and is thus given by

µ0
TF = ~ωho

2

(15Na
aho

)2/5
(1.18)

where aho =
√
~/mωho and ωho = (ωxωyωz)1/3.

If we consider for simplicity a spherically symmetric harmonic trap with frequency ωho and
we use aho and ~ωho as units of length and energy we can write the GPE in the following
way [

−∇̃2 + r̃2 + 8πNas
aho

Ψ̃ 2(r)
]
Ψ̃(r̃) = 2µ̃Ψ̃(r̃) (1.19)

where Ψ̃ = N−1a
−3/2
ho Ψ0. In these units the order parameter satisfies the following normal-

ization condition: ∫ dr̃ |Ψ̃ | 2 = 1.
From the GPE written with these units it is evident that the strength of the interatomic
potential is completely fixed by the combination Nas/aho, that is called Thomas-Fermi
parameter. The Thomas-Fermi approximation will be valid if the homonym parameter is
much bigger than one:

N
as
aho
� 1 . (1.20)

Typical values of as/aho are on the order of 10−3 so that for systems containing more than
105 atoms the Thomas-Fermi condition is effectively verified.
In the Thomas-Fermi limit the density profile of a gas where only contact interactions
are present is given by an inverted parabola. This parabola will reach 0 in the classical
inversion points for the motion. The classical inversion points Rk, k = x, y, z are fixed by
the trapping frequencies of the external potential thanks to the following condition:

µ0
TF = 1

2mω
2
kR

2
k (1.21)

and using the Thomas-Fermi expression for the chemical potential we get that

Rk = aho

(15Na
aho

)1/5 ωho
ωk

(1.22)
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1.1.2 Solitons
In this section we consider a special class of solutions for the GPE, called solitons. In the
particular case of repulsive forces between the gas particles, these solutions correspond to
localized modulation of the density, that can move in the gas at a constant speed in such
a way that their intrinsic form is preserved in time. If the density profile in the perturbed
region is characterized by a lesser value with respect to the bulk density, these solutions
are called gray solitons. The existence of such gray solitons is directly related to the non
linearity of the GPE. The typical length scale of these modulations is in fact fixed by the
healing length.
Let’s consider a one dimensional system, where the order parameter Ψ depends only on the
z coordinate through the combination z − vt. By introducing the dimensionless variable
ζ = (z − vt)/ξ we can write the order parameter in the following way

Ψ(z, t) = Ψ0(z − vt)e−iµt/~ =
√
nf(ζ)e−iµt/~ . (1.23)

Inserting this ansatz in the GPE and defining U = 2mξv/~ we get

2iU df

dζ
= d2f

dζ2 + f(1− |f |2) . (1.24)

Our goal is to find a localized solution for this equation. This requirement can be
implemented thanks to the following boundary conditions

|f | ζ±∞−−−→ 1 df

dζ

ζ→±∞−−−−→ 0 (1.25)

which imply that at long distances from the center of the modulation the density should
come back to the unperturbed value, that is

√
n.

Solving the GPE with these boundary conditions we get the following solution

Ψ0(z − vt) =
√
n

iv
c

+
√

1− v2

c2 tanh
z − vt√

2ξ

√
1− v2

c2

 (1.26)

where c =
√
gn/m represents the speed of sound.

The density profile of the system can be obtained by squaring this quantity and thus takes
the following form:

n(z − vt) = |Ψ0|2 = n+ δn(z − vt) (1.27)
where we have defined

δn(z − vt) = −n
(

1− v2

c2

)
cosh−2

z − vt√
2ξ

√
1− v2

c2

 . (1.28)

From this we get that the density has a minimum in the center of the soliton where

n(0) = nv2

c2 (1.29)
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Figure 1.1: Normalized density profile for a grey soliton. The length scale of this soliton is
proportional to the healing length and becomes bigger as the speed of the soliton tends to
the sound velocity.

like is shown in figure 1.1. This value is then 0 for a soliton that propagates with 0
velocity, also called dark soliton. Its also important to notice that the size of the soliton is
proportional to the healing length, but is amplified by a factor (1−v2/c2)1/2, that becomes
bigger and bigger as v → c.

1.2 Dipolar gases
The dipolar interaction is characterized by the following two-body interaction potential

Vdd(r) = Cdd
4π

ê1 · ê2r
2 − 3(ê1 · r)(ê2 · r)

r5 (1.30)

where ê1 and ê2 represent the unit vectors that define the direction of the dipoles, while r
represents their relative distance. Cdd is instead a constant that depends on the specific
type of dipolar interaction and defines the interaction’s strength.
In what follows we will work with dipoles that have the same orientation in space,
orientation that in the experiment will be fixed by an external magnetic field. In this way
the dipolar potential assumes the following simplified expression:

Vdd(r, θ) = Cdd
4π

1− 3 cos2(θ)
r3 (1.31)

where θ represents the angle formed by the 2 dipoles as can be seen from figure 1.2. By
comparing the dipolar potential with the contact one

V = 4π~2as
m

δ(r) (1.32)

its immediate to find two fundamental differences. The long-range character of the dipolar
interaction, and its anisotropy. Both these features contribute to new interesting physical
properties in dipolar gases.



Dipolar gases 7

Figure 1.2: Definition of the angle θ and distance r between two dipoles used in equation
1.31. Image adapted from [38].

Long range nature of the force The 1/r3 law for the dipolar potential makes it
long range when compared to the 1/r6 low exhibited by Van der Waals forces at long
distance. For central potentials that scale as 1/rp, the phase shifts δ`(k) that characterize
the two body scattering properties behave, in three dimensions and for k → 0, as k2`+1

if ` < (p − 3)/2 and as kp−2 otherwise. From this it follows that for the van der Waals
potential (p = 6) the scattering channel with ` = 0 is the dominant one at low energy
and that the full form of the potential can be replaced with an effective zero range one.
The strength of this new effective potential will be completely determined by the s-wave
scattering length.
Instead, in the case of dipolar interactions (p = 3), all partial waves will give a contribution
to the scattering properties and this potential cannot be replaced with an effective one.

Anisotropy of the force Anisotropy is another fundamental feature of the dipolar
interaction. Equation 1.31 shows that the sign of the potential depends on the angle
θ. The dipolar force reaches 0 when θ = θcr = arccos (1/

√
3) ≈ 54.7◦, has a repulsive

character when θ > θcr and an attractive one in the opposite limit.
A peculiar feature of the potential that is related to this anisotropic character is given by
its 3D Fourier transform

V 3D
dd (q) =

∫
dr eiq·rVdd(r) = Cdd

(
cos2(α)− 1

3

)
(1.33)

that is seen to be completely independent from the modulus q, quite similarly to what
happens to the contact interaction. However, V 3D

dd (q) depends on the angle α that the wave
vector q forms with the dipole’s polarization. This dependency gives rise to an anisotropy
in the sound velocity inside dipolar superfluids. A kind of geometry that favours stability
inside dipolar gases is the so called “Pancake geometry”, where the dipoles are oriented
in the direction orthogonal to the plane. In this regime, the repulsive nature of the force
becomes dominant. In the strong axial confinement regime, we can use a Gaussian ansatz
in the dipole’s direction for the density n(z) ∝ G(z) and use this function to average out
the z direction from the dipolar potential. In this 2D limit the Fourier transform of the
dipolar potential takes the form:

V 2D
dd (q) = 2

3
Cdd√
2πaz

[
1− F

(
qaz√

2

)]
(1.34)
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Species Dipole add
87Rb 1.0µB 0.037 nm
52Cr 6.0µB 0.80 nm
168Er 7.0µB 3.7 nm
164Dy 10µB 7 nm

40K 87Rb 0.57 D 0.21 µm
23Na 40K 2.72 D 2.3 µm

Table 1.1: Dipolar moments of different atomic and molecular species. Data taken from [39].

where F (x) = (3
√

3/2)|x|ex2erfc(x) and erfc(x) represents the complementary error func-
tion [38].

Dipolar forces of the form 1.30 can be obtained both with atoms that posses a permanent
magnetic moment or with polar molecules that posses a permanent electric moment. In
the first case one has

Cdd = µ0µ
2
M Magnetic atoms (1.35)

where µ0 represents the magnetic permeability of free space and µM is the magnetic
moment of the atom. In the case of electric interactions one instead has

Cdd = 〈d〉2/ε0 Polar molecules (1.36)

where 〈d〉 represents the average value of the electric dipole moment and ε0 is the electric
permittivity of free space. The value of Cdd thus depends strongly on the electric or
magnetic nature of the dipolar interaction as well as on the atomic/molecular species
under consideration. Some typical values of atomic and molecular values for Cdd are
reported in table 1.1. Dipolar interactions can also be obtained with Rydberg atoms, that
have a shorter lifetime but can still give rise to strong effects given their high value of
polarizability.
Magnetic moments are on the order of the Bohr magneton µB, while electric moments
of polar molecules are on the order of ea0, where a0 represents the Bohr radius.1 From
this it follows that the ratio between the coupling constants Cdd evaluated for electric and
magnetic cases scale as:

Cel
dd

Cmag
dd

=
(

ea0

ε0µ0µB

)2

= 4
α
� 1 (1.37)

where α ≈ 1/137 represents the fine structure constant. Alkali atoms have a very small
magnetic moment (µM . 1µB) and are thus not suited to investigate magnetic effects, even
if the role of the dipolar interaction can still be seen by reducing the contact scattering
length through Feshbach resonances. Most of the experiments on dipolar atoms work with
atomic species like cromium, dysprosium and erbium, that posses high values of magnetic
moment. Thanks to the long range nature of the dipolar interaction, it’s even possible

1Electric dipole moments are usually expressed in Debyes where 1 D ≈ 0.39ea0.
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to cool down to degeneracy fermionic isotopes of Dy and Er by employing a standard
evaporation scheme. This is because the elastic scattering between identical fermions is
not suppressed at low energy, thanks to the dipolar interaction.
Regarding the electric interactions, heteronuclear polar molecules represent an interesting
platform where to study dipolar physics, thanks to their high electric dipole moment.
Experimental works on the cooling to degeneracy of these molecules are now directed
towards a first cooling stage of two different atomic species that are then associated in
weakly bound molecular states called Feshbach molecules. These weakly bound states
are then brought to the absolute ground state of the molecule thanks to a two photon
adiabatic Raman process. This kind of experiments are extremely complicated because of
the tendency of the molecules to decay given their high chemical activity (For example,
two K-Rb molecules will tend to decay towards K-K+Rb-Rb states).
Another useful quantity describing the strength of the dipolar interaction is given by the
so called effective dipolar range, that is given by

add = Cddm

12π~2 (1.38)

and is of extreme importance to compare the value of add with the one for the contact
s-wave scattering length. The ratio

εdd = add
as

= Cddm

12π~2as
(1.39)

quantifies the relative strength of the dipolar interaction.

1.2.1 Harmonic confinement of dipolar condensate
To study the equilibrium properties of a dipolar condensate trapped in a harmonic potential
it’s still possible to use the GPE, generalized to include the dipolar interaction term:(

− ~2

2m∇
2 + Vho(r) + g|Ψ(r)|2 + V mf

dd (r)
)
Ψ(r) = µΨ(r) (1.40)

where
V mf
dd (r) =

∫
dr′ Vdd(‖r − r′‖)|Ψ(r′)|2 (1.41)

represents the mean field potential determined by the dipolar interaction.
An analytical solution of the GPE can still be obtained in the Thomas-Fermi limit where
one neglects the contribution given by the kinetic energy term. In this limit the GPE
reduces to

Vho + gn+ V mf
dd = µ . (1.42)

In the presence of an harmonic confinement, that for simplicity we take as axially simmetric
(ωx = ωy), if the dipoles are oriented in the z direction the solution for the Thomas-Fermi
profile at equilibrium still admits a quadratic dependence on the spatial coordinates

n(r) = n0

(
1−

r2
⊥

R2
⊥
− z2

Z2

)
(1.43)
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like in the simple contact interaction case. In this equation, r⊥ = (x2 + y2)1/2, R⊥ and
Z represent the Thomas-Fermi radii in the radial and axial direction, respectively. n0
is instead the peak density, that is related to the total number of atoms through the
relationship N = (8π/15)n0R

2
⊥Z. The result 1.43 follows from the fact that the dipolar

mean field contribution inside the GPE, when evaluated on the density profile 1.43, still
shows a quadratic dependence from the coordinates given by

V mf
dd = n0Cdd

3

[
r2
⊥

R2
⊥
− 2 z

2

Z2 − f(κ)
(

1− 3
2
r2
⊥ − 2z2

R2
⊥ − Z2

)]
(1.44)

where κ = R⊥/Z represents the aspect ratio of the dipolar condensate and f(κ) is given
by:

f(κ) = 1 + 2κ2

1− κ −
3κ2

(1− κ)3/2
tanh−1

(√
1− κ2

)
. (1.45)

One aspect that is important to notice is given by the fact that the aspect ratio κ of the gas
does not coincide with the aspect ratio λ = ωz/ω⊥ of the external trap. The relationship
between these two aspect ratios can be obtained from the self consistent equation:

3κ2εdd

[(
λ2

2 + 1
)

f(κ)
1− κ2 − 1

]
+ (εdd − 1)(κ2 − λ2) = 0 (1.46)

from which we see that when there is no dipolar interaction, i.e. εdd = 0, one gets back
the result κ = λ.
This phenomenon is called magnetostriction and to better show it off let’s consider a
spherically simmetric trap. Let’s suppose that the atomic cloud can be described by a
Thomas-Fermi density given by n(r) = n0(1− r2/R2). If we insert this density inside the
equation for the mean field dipolar potential we get

V mf
dd (r) = εdd

mω2
trap

5 (1− 3 cos2(θ))
r2 r < R

R5/r3 r > R
(1.47)

from which it follows that the mean field potential has the form of a saddle, with localized
minima in the dipoles direction, like its shown in figure 1.3. Because of these potential
minima localized in the z direction, it’s favorable for the cloud to become oblate in the z
direction, even if the trap is spherically symmetric.

1.2.2 Elementary excitations of a uniform dipolar gas
The general form for the excitation spectrum of a uniform weakly interacting Bose gas
composed by N particles in a volume V can be easily obtained in the context of Bogoliubov
theory and is given by

ε2(q) = ε0(q) [ε0(q) + 2nV(q)] (1.48)
where ε0(q) = ~2q2/2m, n = N/V and V(q) represents the Fourier transform of the full
interaction potential between the particles, that is given by the sum of the contact and
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Figure 1.3: (a) Inverted paraboloid that is the density distribution n(~r). (b) V mf
dd induced by

the density distribution in (a). Image taken from [38].

dipolar terms. If, for the dipolar part, we use equation 1.33 we get the following expression
for the Bogoliubov spectrum:

ε2
q = ε0(q)

[
ε0(q) + 2gn(1 + εdd(3 cos2 α− 1))

]
. (1.49)

From this spectrum its possible to characterize the properties of the system in the long
wavelength limit q → 0. For example it is possible to see that in this limit the dispersion
law takes the phononic form but with a speed of sound that depends on the angle α
between the q vector and the dipoles’ orientation. This speed of sound is given by:

c(θ) = c0[1 + εdd(3 cos2(θ)− 1)]1/2 (1.50)

where c0 =
√
gn/m represents the speed of sound of a non dipolar condensate.

If the condensate is strongly trapped in the dipole’s direction, a better potential for the
magnetic interaction to be inserted in 1.48 is given by the one expressed in equation 1.34.
The spectrum obtained with such a potential for different values of εdd is sketched in figure
1.4. In the figure we can see that by increasing εdd an energy minimum appears in the
spectrum for q 6= 0. This minimum is analogous to the rotonic minimum that appears
in the spectrum of liquid helium that is shown in figure 1.6 but it now arises from the
effect of dipolar interactions. For a critical value of εdd this minimum goes to zero when
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Figure 1.4: Sketch of the excitation spectrum of the pancake shaped dipolar condensate for
different values of εdd .

q = qrot. This means that the qrot mode can be spontaneously populated even at T = 0.
When εdd becomes bigger than the critical value εcritdd the energy of the roton mode becomes
imaginary and the system becomes unstable to modulations with q ≈ qrot. In dipolar
quantum gases, the value of εdd can be tuned by changing the s-wave scattering length for
the contact part of the interaction via Feshbach resonances.
In the mean field approach, the instability cannot be compensated and the gas collapses.
However, beyond mean field effects such as the Lee-Huang-Yang (LHY) correction can
lead to a stabilization of the new modulated system and bring forth supersolidity.
Thanks to the local density approximation the LHY term can be inserted inside the GPE
to get the so called extended Gross-Pitaevskii equation (eGPE) [40]:(

−~2∇2

2m + Vext(r) + gn(r) + V mf
dd (r) + γ(εdd)n3/2(r)

)
Ψ(r) = µΨ(r) (1.51)

where we have defined

γ(εdd) = 16
3
√
π
ga3/2

s

∫ π

0
dθ sin θ[1 + εdd(3 cos2(θ)− 1)]5/2 . (1.52)

Thanks to the eGPE it is possible to study dipolar gases throughout all their excitation
spectrum and even in the supersolid regime.

1.3 Superfluidity
Superfluidity is a phenomenon strictly connected to the one of Bose-Einstein condensation.
Superfluids are characterized by a viscosity equal to zero and can thus flow inside tight
capillars without dissipating energy. 4He superfluidity, below the so called λ point, was
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discovered by Kapitza in 1938 [7] and, independently, by Allen and Misener in the same
year [6]. This phenomenon was later explained by Landau (1941) [17] who showed that,
if the spectrum of elementary excitation of the system followed some specific criteria,
then the flow of the fluid could not generate dissipation. In figure 1.5 is shown the phase
diagram for 4He.

Figure 1.5: Phase diagram for 4He in proximity of the superfluid phase transition. Image
taken from [41].

1.3.1 Landau criterion for superfluidity

In 1938 London proposed an explanation for the concept of superfluidity of liquid helium
in terms of Bose-Einstein condensation [42]. By inserting the numbers describing liquid
helium inside the BEC equations he got a critical temperature for the transition which
was around 2.8 K, that was extremely close to the experimentally determined temperature
for the superfluid transition (2.17 K).
Phenomenologically, a critical velocity was observed for the liquid flow, after which the
system was no more superfluid. Let’s see now what was Landau’s argument to describe
this result.
Let’s consider an impurity of mass M that can move inside the liquid with velocity v.
Landau thought that the liquid could be seen as superfluid only if this impurity could move
inside the system without creating any excitation. Landau’s argument for the breaking of
superfluidity takes into account the specific excitation spectrum of the superfluid, shown
in figure 1.6. Let’s describe with p the momentum of the elementary excitations and with
ε(p) their energy. Before the creation of an excitation the initial energy of the system is
given by the kinetic energy of the impurity plus the superfluid’s initial energy, that we can
take as 0, so that:

Ei = 1
2Mv2 . (1.53)
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Neutron scattering on superfluid helium
Henshaw & Woods, Phys. Rev. 121, 1266 (1961)

Figure 1.6: Excitation spectrum of superfluid helium. Image taken from [43].

Let’s now suppose that the interaction between the superfluid and the impurity generates
an excitation with momentum p. To conserve the total momentum of the system the
impurity need to lose p/M from its initial velocity, so that now the energy of the system
is given by

Ef = 1
2M

(
v − p

M

)2
+ ε(p) . (1.54)

The energy difference in this process is given by

∆E = Ef − Ei =

= p2

2M − v · p + ε(p) .
(1.55)

Landau’s argument is that there will be superfluidity if ∆E is greater than 0. In other
words, the creation of an excitation should not lower the system’s energy:

∆E > 0 ∀p⇒ Superfluidity. (1.56)

We can rewrite this condition in the following way

ε(p) >
(
v · p− p2

2M

)
max

M→∞−−−−→ vp . (1.57)

For the system to be superfluid we then have to impose that the impurity velocity should
be less than a critical value vc

v <

(
ε(p)
p

)
min

= vc . (1.58)
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To see if this condition can be satisfied it is necessary to know the excitation spectrum ε.
By considering a weakly interacting Bose gas we have that

ε(p) =
(cp)2 +

(
p2

2m

)2
1/2

p→0−−→ cp (1.59)

and from this expression we see that in weakly interacting Bose gases the Landau’s critical
velocity is given by the speed of sound vc = c.
The Landau criterion holds also for strongly interacting superfluids such as liquid 4He,
even if in this case vc is seen to be smaller than the sound velocity because of more complex
structures in the excitation spectrum.
For an ideal Bose gas, we instead have that ε(p) = p2/2m and in this case we get that
vc = 0. Because of this argument we can say that an ideal BEC is not a superfluid.

1.3.2 Two fluid theory
A useful description of superfluidity is given by two-fluids hydrodynamics. In this descrip-
tion we think of the system at a finite temperature as composed by two different phases.
One is a normal viscous liquid while the other is superfluid.
Let’s call with vn the velocity for the normal part of the fluid and with vs the velocity of
the superfluid. The distribution Np of elementary excitation in the system can be written
as

Np = 1
exp

(
ε(p)+p·(vs−vn)

kBT

)
− 1

. (1.60)

This distribution will be greater than zero for all values of p only if ‖vs − vn‖ is less than
the critical value vc. Because of this Np is thus consistent with the Landau criterion.
Equation 1.60 only makes sense if the system is in thermodynamic equilibrium. This
implies that there should be no friction between the normal and superfluid components.
In accordance with the picture described until now, we can write the system’s density as
the sum between the normal and superfluid components:

ρ = ρs + ρn . (1.61)

The mass density current (which represents the total momentum for unit volume) can be
written as

mj = ρsvs + ρnvn . (1.62)
Let’s consider the frame of reference where the superfluid is still. Here we have that

mj = ρnvn . (1.63)

The total momentum carried by the system can be written as P = ∑
pNpp. This expression

can be written for unit volume in the following way

mj =
∫ dp

(2π~)3pNp (1.64)
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which implies that
ρnvn =

∫ dp

(2π~)3pNp (1.65)

where Np is given by equation 1.60 with vs = 0. By expanding Np in powers of vn and by
keeping only the linear term we get

ρn = −1
3

∫ dp

(2π~)3p
2 dNp

dε

∣∣∣∣∣
vn=0

. (1.66)

This is the central result for Landau’s theory because it allows the calculation of the
normal part of the density in terms of the distribution Np. This equation is only valid in
the limit where the elementary excitations are well defined and they do not interact with
one another. This condition is generally satisfied for uniform systems under the critical
temperature.
From equation 1.66 is possible to arrive at the result that ρn coincides with the thermal
fraction of the system only for sufficiently high temperatures.

1.3.3 Vortices
The Vortex solution of the GPE shows non trivial features given by the presence of a
region of space where the density goes to 0. The size of this region is of the order of the
healing length. Vortices are generally not a stable configuration for the system, and only
in reference frames that rotate at sufficiently high angular velocities they represent a local
minimum for the energy functional associated with the GPE.
The study of vortices is of fundamental importance in the context of rotation for superfluids.
This is because it is known that the velocity field of a classical system rotating with angular
velocity Ω is given by the rigid body formula v = Ω× r so that ∇× v = 2Ω 6= 0. This
velocity field contradicts the irrotationality condition for superfluids, that are thus expected
to rotate in a different way.
To discuss this point lets consider a gas confined in a macroscopic cylinder of radius R and
length L. We want to find solutions for the GPE that correspond to rotations around the
cylinder’s axis. Given the symmetry of the system we can search for solutions of the form

Ψ0(r) = eisϕ|Ψ0(r)| (1.67)

where we introduced cylindrical coordinates. For the order parameter to be well defined,
we need to impose that the phase term remains the same when we shift ϕ by 2π. This
condition, also called single valuedness condition, is only true if we impose s ∈ Z. Since the
angular momentum operator is given in cylindrical coordinates by Lz = ∑

N `z = −i~N∂ϕ,
we can see that the order parameter as written in equation 1.67 is an eigenfunction of the
z component of the angular momentum with Lz = Ns~. Equation 1.67 represents a gas
that is rotating around the z axis with the following velocity

vs = ~
m

s

r
ϕ̂ . (1.68)
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Figure 1.7: Comparison between the velocity field of the superfluid vi r r and the rigid body
one vr ig .

This expression is totally different from the rigid rotator formula v = Ω× r, that is still
tangential, but whose modulus increases with r. In figure 1.7 is shown a comparison
between the two velocities.
The circulation of the velocity along a closed line around the z-axis is given by∮

γ
vs · d` =

∫ 2π

0

~
m
s dϕ = 2πs ~

m
= s

h

m
(1.69)

and it is quantized in steps of h/m, independently from the radius of the circuit γ chosen
to make the integral. Since the integrand is proportional to a gradient, one can also use
the Stokes theorem to evaluate the integral∮

γ
vs · d` = ~

m

∮
γ
∇φ · d` = ~

m

∫
S
∇×∇φ · dS (1.70)

where ∂S = γ, dS = n̂ dS and n̂ represents the unit vector normal to the surface S. The
circulation calculated in this way is 0 since the curl of a gradient is always 0. To make
the two results for the circulation coincide (when s 6= 0) we need to observe that Stokes
theorem can only be applied if φ satisfies some regularity conditions, and this is true
except where the modulus of the wavefunction (i.e. the density) is equal to 0. To make
the two results coincide we then need to have inside γ some places where the gas’ density
goes to 0. These points will thus represent the central points for the emerging vortices.
The Gross-Pitaevskii equation written in cylindrical coordinates for this system is given by

− ~2

2m
1
r

d

dr

(
r
d|Ψ0|
dr

)
+ ~2s2

2mr2 |Ψ0|+ g|Ψ0|3 = µ|Ψ0| . (1.71)
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If we now make the assumption that at long distances from the vortex’ center the density
of the gas should coincide with its uniform value we can introduce the following ansatz

|Ψ0| =
√
nf(η) f(η →∞) = 1 (1.72)

where η = r/ξ. By inserting this ansatz into the GPE we get

1
η

d

dη

(
η
df

dη

)
+
(

1− s2

η2

)
f − f 3 = 0 . (1.73)

For η → 0 the dominant terms in this equation are given by

1
η
f ′ − s2

η2f = 0 . (1.74)

This differential equation admits as a solution f ∼ η|s| and because of this we can see that
the density |Ψ0(r)|2 tends to 0 when approaching the axis of the vortex.
From the dimensionless nature of this differential equation we see that the region near the
vortex line in which the density is significantly different from

√
n is of the order of the

healing length ξ of the condensate.

1.3.4 Superfluids under rotation
Let’s consider a superfluid at a finite temperature that is enclosed in a cylinder that can
rotate about its axis of symmetry. If this cylinder is put under rotation, only the normal
component of the liquid shall rotate with it. If the angular velocity is sufficiently small,
the superfluid component will remain still. If instead this angular velocity exceeds some
critical value, than the state where the superfluid is immobile will became energetically
unstable. The reason for this is that, in the frame of reference that is rotating with the
same angular velocity as the container, that is the system were we expect the onset of
thermodynamic equilibrium, the quantity that needs to be minimized is given by

Er = E −Ω ·L (1.75)

where E and L are, respectively, the energy and angular momentum of the superfluid
in the laboratory reference frame and Ω is the angular velocity of the container. From
this expression we can see that, for sufficiently big Ω, states in which Ω ·L > 0 become
favorable with respect to the ones in which L = 0, that correspond to the non rotating
superfluid.
Since a superfluid cannot rotate in a rigid way, rotations inside the superfluid will be
accompanied by the creation of quantized vortices. Let’s consider a single vortex that is
generated around the symmetry axis of the cylinder. From equation 1.68 we know that
the superfluid velocity is given in this case by

vs = ~
m

s

r
ϕ̂ s ∈ Z . (1.76)
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This velocity is extremely different from the one of the rigid rotator, given by v = Ωr. The
angular momentum of the superfluid in this configuration is given by

Lz =
∫

dr ρsvsr = πR2Lρs
~
m
s (1.77)

where L represents the length of the cylinder and R its radius, so that πR2L is the volume
of the cylinder. In deriving this expression we implicitly supposed that the radius rc of
the vortex, that characterizes the distance in which ρs is significantly perturbed from its
average value, is much less than R, and ρs in the equation is the value for the superfluid
density in the bulk of the system.
The energy associated to this vortex state is given by

Ev =
∫ 1

2ρsv
2
s dr = Lπρss

2
(
~
m

)2

log
(
R

rc

)
(1.78)

where the radial integration was taken from rc to R. From this expression we see that the
dependence of Ev from rc is logarithmic and thus the energy of the vortex depends weakly
from its radius.
The expressions for Lz and for Ev show why the states with |s| > 1 are not stable. This
is because Lz ∼ s while Ev ∼ s2 so that the energy to be minimized (that is given by
Ev − ωLz) increases with s.
Using the expression for Ev we are now capable of determining the critical value Ωc for
the existance of a stable vortex. This is the value one obtains when Er = 0 and is given by

Ωc = Ev
Lz

= ~
mR2 log

(
R

rc

)
(1.79)

for vortices carrying a single quantum of circulation (s = 1). If one considers angular
velocities that are bigger than Ωc other vortices will appear inside the superfluid.

1.4 Supersolids under rotation

1.4.1 Introduction
A supersolid is a unique and intriguing state of matter that combines the properties of
both a solid and a superfluid. In a supersolid, the atoms forming it spontaneously arrange
themselves in such a way that a density modulation appears inside the system. This
density modulation of the ground state results in a symmetry breaking since no external
potential is inducing this modulation and no trace of it can be found in the original
hamiltonian. Thanks to this density modulation, supersolids show a reduced superfluid
fraction with respect to a regular superfluid even at T = 0 when no thermal component
is present. Because of this, supersolids behave in a completely different way when they
are put under rotation. In figure 1.8 is showed what happens when, instead of applying
rotations to a perfect superfluid, one considers a supersolid.
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Figure 1.8: Angular momentum L/N~ of the ground state in the rotating frame, as a function
of rotation frequencies for different values of εdd i.e. through the superfluid to supersolid
phase transition. In the superfluid phase (εdd = 1.95) its possible to observe the jump of
angular momentum that is typical of superfluids. In the supersolid case the linear gain in
angular momentum before and after jumps reflects the response to rotation of the solid part.
Image taken from [44].

This figure shows that, even for supersolids, one has jumps in angular momentum that
are still related to the creation of vortices. What is different from the case of perfect
superfluidity is the fact that the supersolid, thanks to its solid part, can acquire angular
momentum even before exciting vortices, and the gain in angular momentum that the
system obtains when exciting a vortex is less than ~N by a factor that depends on the
superfluid fraction. In 1970 Leggett developed a theory that is able to predict the first
branch of figure 1.8 before the excitation of vortices. In this theory he was able to relate
the superfluid fraction with the density of the system.

1.4.2 Leggett’s theory on the rotation of supersolids
Let’s consider N atoms confined in a cylindrical annulus that has internal radius R and
thickness d. Suppose we rotate the encolosing surfaces of the cylinder at a costant angular
velocity ω. The free energy of the system in the rest frame is assumed to be of the form

F (ω) = F0 + 1
2I0ω

2 + ∆F (ω) (1.80)

where F0 represents the free energy when ω = 0, I0 is the classical moment of inertia of the
system that can be written as NmR2 if we neglect terms in d/R, and I0ω

2/2 represents
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the classical contribution to the free energy when the annulus is rotating.
The term ∆F (ω) represents the difference between F (ω) and the classical result and is
assumed to be an even function of ω that is also periodic with period ω0 where

ω0 = ~
αmR2 . (1.81)

We can write the function ∆F (ω) in the form

∆F (ω) = −1
2
ρs
ρ
I0ω

2 (1.82)

and this equation defines the superfluid fraction as fs = ρs/ρ, where ρs represents the
superfluid density and ρ the total one.
Thanks to this definition we can write the total free energy of the system as

F (ω) = F0 + 1
2Iω

2 (1.83)

where the moment of inertia of the system I is now renormalized to take into consideration
its superfluid properties

I = (1− ρs/ρ)I0 . (1.84)
We now want to give an estimate of this superfluid fraction.
When the enclosing walls are at rest the ground state wave function Ψ0(r1, ..., ri, ..., rN)
and its corresponding energy can be found by minimizing the expectation value of the
hamiltonian H subject to appropriate boundary constraints.
The full hamiltonian of the system is given by

H = − ~2

2m

N∑
i=1
∇2
i + 1

2

N∑
i 6=j

U(ri − rj) +
N∑
i=1

V (ri) (1.85)

where V (r) represents a single particle potential that takes into account the confinement of
the annulus’ walls and U(ri− rj) represents instead the interparticle interaction potential.
The constraints which the wavefunction must obey are the requirement of symmetry (or
antisymmetry) with respect to the interchange of any two identical particles, but also the
condition of single valuedness with respect to each coordinate ri.
If we now introduce, for every atom, cylindrical polar coordinates (ri, θi, zi) in the usual
way, the single valuedness condition can be written in the following way

Ψ0(r1, θ1, z − 1, ..., ri, θi + 2π, zi, ..., rN , θN , zN) =
= Ψ0(r1, θ1, z1, ..., ri, θi, zi, ..., rN , θN , zN) ∀i .

(1.86)

From this point forward, we suppress the r and z coordinates if they are not needed.
Let’s now consider what happens when the enclosing surfaces of the annulus are rotated
with constant angular velocity ω. The potential V will now be time dependent in the
rest frame. This problem can be solved by just changing the reference frame to the one
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that’s comoving with the walls. To do this we need to use the Formula for the Galilean
transformation of a wave function and apply it to the ground state.
If we change our description to a reference frame that is moving at a relative velocity v
with respect to the previous one, the wavefunction transforms according to this equation:

Ψ′(r, t) = Ψ(r − vt, t) exp
{
i

~

(
mv · r − 1

2mv2t
)}

. (1.87)

In our case the velocity between the 2 reference frames is given by v = −ωRθ̂ which means
that the new ground state will be given by

Ψ′0(θ1, ..., θi, ...θN) = Ψ0(θ′1, ..., θ′i, ...θ′N) exp
{
−imωR2∑

i

θ′i(t)/~
}

(1.88)

where we have defined θ′i = θi − ωt.
Of course, when ω = 0 the new ground state coincides with the rest frame one.
In this new frame of reference, the single valuedness condition now becomes

Ψ0(θ1, ..., θi + 2π, ..., θN) = exp
{
−2πimωR2/~

}
Ψ0(θ1, ..., θi, ..., θN) . (1.89)

We can now minimize H with this new boundary condition. This will give rise to a ground
state energy that, in principle, will depend on ω. We call this energy E0(ω).
Since we are working at T = 0 we can immediately find from the definition of ∆F (ω) that

∆F (ω) = E0 − E0(ω) (1.90)

and from this equation we can see that, if E0(ω) does not depend on ω, then ∆F = 0
and the system cannot be superfluid.
From the inspection of the boundary condition 1.89 we also find that E0(ω + ~/mR2) =
E0(ω) which means that the quantity α defined in 1.81 needs to be an integer.
We can now try and give an estimate of the energy E0(ω) using a variational approach.
To do this we construct a trial function that satisfies the boundary condition 1.89 in the
following way

Ψ(r1, ..., rN ;ω) = exp
{
i
N∑
i=1

ϕ(ri;ω)
}

Ψ0(r1, ..., rN) (1.91)

where the function ϕ(r) is real and satisfies

ϕ(θ + 2π) = ϕ(θ)− 2πmωR2/~ (1.92)

whereas Ψ0 represents the ground state wavefunction in the rest frame and so it satisfies
the single valuedness condition given in 1.86. Given this we see that the wavefunction
defined in 1.91 satisfies the boundary condition 1.89 and is then a good trial function.
Using Ψ to calculate the expectation value of H we get2

〈H〉trial = E0 + ~2

2m

∫
(∇ϕ)2ρ(r)dr (1.93)

2To get this result one needs to use the fact that the ground state function in the rest frame is real.
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where
ρ(r) =

∫ N∏
i=2

dri|Ψ0(r, r2, ..., rN)|2 (1.94)

represents the single particle density.
Since we are neglecting terms in d/R, we can “Unroll” the annulus to form a rectangular
parallelepiped of lenght 2πR and change the boundary condition 1.92 on ϕ to the following

ϕ(x+ 2πR, y, z) = ϕ(x, y, z)− 2πmR2ω/~ (1.95)

where x, y, z are cartesian coordinates and x runs from 0 to 2πR.
If we now take for simplicity a trial function where ϕ is a function of x only, we can apply
the standard calculus of variation to minimize 1.93 that can now be written as

〈H〉trial = E0 + ~2

2m

∫
dx dy dz (∂xϕ(x))2ρ(x, y, z) (1.96)

by defining ρ̃(x) =
∫
dy dz ρ(x, y, z) we get

〈H〉trial = E0 + ~2

2m

∫ 2πR

0
dx (∂xϕ(x))2ρ̃(x) (1.97)

and, by the theory of the calculus of variations, the function ϕ(x) that minimizes this
energy will be the one for which the functional derivative of 〈H〉 with respect to φ is equal
to 0:

δ〈H〉trial
δϕ(x)

= 0 . (1.98)

Evaluating this functional derivative we get

∂x(ρ̃(x)∂xϕ(x)) = 0 . (1.99)

Solving this simple equation we get the following expression for the phase

ϕ(x) =
∫ x

0

c

ρ̃(x)
dx . (1.100)

Using the boundary condition 1.92 we get

− 2πmR2ω/~ =
∫ 2πR

0

c

ρ̃(x)
dx (1.101)

which means that, by defining k such that

1
k

= 1
λ

∫ λ

0

1
ρ̃(x)

dx (1.102)

we can write the integration constant c as

c = −mRω
~

k (1.103)
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and by inserting this result in the expression for the phase we get

ϕ(x) = −mRω
~

k
∫ x

0

1
ρ̃(x)

dx . (1.104)

By inserting this result in the expression for 〈H〉 we get

〈H〉trial = E0 + 1
2NmR

2ω2f+
s (1.105)

where we have defined f+
s as

f+
s =

[
1
λ

∫ λ

0

dx

ρ̃(x)/ρ̄

]−1

(1.106)

where ρ̄ = N/2πR.
Since we have worked with a trial function and not with the real groundstate, we know
that the energy calculated in this way will always be bigger than the real ground state
energy. Given this and comparing 1.105 with equation 1.82 we see that f+

s represents an
upper bound for the real superfluid fraction of the system

fs ≤ f+
s . (1.107)

For a normal superfluid, ρ̃(x) = ρ̄ which means that f+
s = 1 and this inequality only gives

the trivial result that ρs ≤ ρ.
When instead we are dealing with a ground state density that is not translationally
invariant, as is the case of the supersolid, we get the non trivial result f+

s < 1.
Given the expression for the trial ground state wavefunction 1.91, we can use the standard
expression ~∂xϕ/~ to get the velocity field in Leggett’s theory [45]

v(x) = −ωR k

ρ̃(x)
. (1.108)

For a uniform superfluid we have ρ(x) = const. so that the velocity field will be constant
and equal to −ωR.
Equation 1.108 represents the result for the velocity field in the rotating frame. To get
the velocity in the lab frame one needs to make the Galilean transformation back by
writing vlab = v+ ωR. In this way we get the known result that a perfect superfluid in the
laboratory frame does not move, vlab = ωR− ωR = 0.
The full result for vlab when we consider a generic ρ̃(x) is given by

vlab(x) = ωR

(
1− k

ρ̃(x)

)
(1.109)

and we see that this expression will be different from zero when ρ̃(x) is a modulated
function, like it happens in a supersolid.
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We can now calculate the moment of inertia of the system from its definition as the ratio
between the angular momentum and the angular frequency

I =
〈L〉
ω

(1.110)

where L = mNRvlab represents the angular momentum in the lab frame and where
〈·〉 =

∫
dx · ρ̃(x).

Inserting equation 1.109 inside the expression for the angular momentum we get

I = mNR2(1− f+
s ) = I0(1− f+

s ) (1.111)

which is consistent with equation 1.84 and the fact that we are using a variational ansatz.

1.5 Dynamical Polarizability
Let’s consider an atom described by its unperturbed Hamiltonian H0. Let’s call the
ground state of this Hamiltonian |0〉 and its energy ε0. Let’s suppose that this atom is
now perturbed by the interaction with an external electric field E oscillating with angular
frequency ω.
The Hamiltonian that describes this interaction can be written in the dipole approximation
as:

H′ = −D ·E(a+ a†) (1.112)

where a†, a are the second quantization operators that create and destroy a photon with
energy ~ω respectively, D = −e∑i ri represents the electric dipole operator of the atom,
ri represents the position of the i-th electron with respect to the atomic center of mass, e
is the absolute value of the electronic charge and the sum runs on all the electrons.
By supposing that H′ � H0 we can work in the framework of perturbation theory and say
that, to first order in H′, the correction to the energy of the ground state of the system
due to the perturbation can be written as

∆E(1) = 〈GS|H′|GS〉 (1.113)

where, since we are working in second quantization for the electric field, we need to take
into consideration also the quantum state of the light, which we suppose it’s of the form
|κ〉, where κ represents the number of photons, so that |GS〉 = |κ〉 |0〉 represents the tensor
product of the atom and light states. This state has energy ε0 + κ~ω.
Since the atom in the ground state is spherically symmetric, |0〉 is a state with well defined
parity and so ∆E(1) = 0 because the dipole is an odd operator under parity.
To get the first non trivial correction to the ground state energy we have to go to the next
order in the expansion that can be written in the following way

∆E(2) =
∑
n,κ′

| 〈GS|H′|κ′,n〉|2

ε0 + κ~ω − (εn + κ′~ω)
(1.114)
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where |n〉 represents an excited state of the atom with energy εn, |κ′〉 is a Fock state for
the light with energy κ′~ω and the sum runs on all the states of the system except for the
ground state.
Seeing as though the light field part of H′ can both create and destroy a photon with
energy ~ω and since both of these processes contribute to the expression 1.114, we can
trace out the light part and arrive at the expression

∆E(2) = 1
~
∑
n

| 〈0|D ·E|n〉|2
( 1
ωn0 − ω

+ 1
ωn0 + ω

)
(1.115)

for the leading order correction to the atomic ground state energy, where we have introduced
the notation ωn0 = (εn − ε0)/~ for the atomic transition frequencies.
By writing explicitly the absolute value in ∆E(2), we can write the left hand side in 1.115
as

〈0|D ·E
∑
n

|n〉〈n|
~

( 1
ωn0 − ω

+ 1
ωn0 + ω

)
D ·E∗|0〉 . (1.116)

If we now define the operator

X := 1
~
∑
n

|n〉〈n|
( 1
ωn0 − ω

+ 1
ωn0 + ω

)
(1.117)

we get the important result that ∆E(2) can be seen as the expectation value on the atomic
ground state of the operator:

Hs = D ·EXD ·E∗ (1.118)
that we call Stark operator [46].
Equation 1.118 is clearly made by the product of two rank-1 tensors (or vectors) and a
rank-0 one (or scalar). Because of this Hs can be decomposed through its irreducible
representation as [47]

Hs =
2∑
`=0
{DXD}` : {EE∗}` (1.119)

where we have introduced the double dot notation to define the scalar product between
two tensors of the same rank as:

{DXD}K : {EE∗}K :=
K∑

Q=−K
(−1)K {DXD}KQ {EE}K−Q . (1.120)

In this expression the brackets are defined in terms of the Clebsch-Gordan coefficients by
{DXD}KQ =

∑
qq′
〈11qq′|11KQ〉DqXDq′

{EE∗}KQ =
∑
qq′
〈11qq′|11KQ〉EqE∗q′

(1.121)

and the components Dq,Eq are given by

D±1 = ∓ 1
√

2
(Dx ± iDy) D0 = Dz

E±1 = ∓ 1
√

2
(Ex ± iEy) E0 = Ez

(1.122)
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By writing explicitly each term of the summation in 1.119 we get

Hs = Hscal +Hvect +Htens . (1.123)

Because we are interested in working with linearly polarized light, we can make the
assumption that E ≡ E∗ and since {EE∗}1 ∝ E×E∗, we get that in this limit Hvect = 0
and our Stark operator is represented only by a scalar and a tensor part.
We are now ready to be more specific about the form of the operators Hscal and Htens.
Since we are dealing with an unperturbed atom, its ground state can be written as

|0〉 = |γFM〉 (1.124)

where F represents the quantum number associated with the total angular momentum F ,
M represents its projection onto the z direction and γ is a placeholder for all the other
quantum numbers that define the state.
If there is no magnetic field present in the system, the ground state has a (2F + 1)-fold
degeneracy and the new ground state can be obtained by diagonalizing Hs in this manifold.
This can be done by making use of the Wigner-Eckart theorem to obtain

〈γFM |Hscal|γFM ′〉 = δMM ′
√

2F + 1
〈γF ||D · XD||γF 〉E2 (1.125)

and

〈γFM |Htens|γFM ′〉 =
2∑

Q=−2
(−1)F−M

(
F 2 F
−M Q M ′

)
〈γF || {DXD}2 ||γF 〉(−1)Q {EE}2

−Q

(1.126)
where 〈|| · · · ||〉 represents a reduced matrix element and where we have introduced the
Wigner 3jm symbols defined through the Clebsch-Gordan coefficient by:(

j1 j2 j3
m1 m2 m3

)
=

(−1)j3+m3+2j1
√

2j3 + 1
〈j1j2 −m1 −m2|j1j2j3m3〉 . (1.127)

These matrix elements of Hscal and Htens are seen to depend only on one atomic quantity,
which is a reduced matrix dipole element.
It is now convenient to define these expectation values through scalar and tensor polariz-
abilities in this way

− 1
4αscalE

2 = 〈γF |Hscal|γF 〉 (1.128)

and
− 1

8αtens(3E
2
z − E2) = 〈γFF |Htens|γFF 〉 (1.129)

These definitions are given so that when the electric field is directed along z the polarizability
of the M = F stretched state is given by [48]

∆E(2) = − 1
2ε0c

αI (1.130)
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where I = ε0cE
2/2 represents the electric field intensity and where we have defined

α = αscal + αtens . (1.131)
In deriving these equations we have used the fact that

{EE}2
0 = 1
√

6
(3E2

z − E2) (1.132)

and the fact that, when M = M ′, the only contribution in the sum in 1.126 is given by
the Q = 0 term.
In our experiment there is always a magnetic field present that makes its contribution
to the total Hamiltonian by a Zeeman term Hz. In most cases this contribution is much
larger than Hs but still smaller than H0, so that the correct course of action is to apply
first order perturbation theory for Hz. This removes the (2F +1) degeneracy of the ground
state, and then apply our results for ∆E(2) to the new ground state one gets.
The result is that the energy correction to the state |γFM〉 can be written as

∆E(2) = −1
4αscalE

2 − 1
8αtens

3M2 − F (F + 1)
F (2F − 1)

(3E2
z − E2) (1.133)

and we can see that, when |M | = F in this formula, we get back the equations previously
discussed.
By defining θ, like it’s shown in figure 1.9, as the angle that the electric field E makes
with respect to the quantization axis z, we ca can rewrite the expression 1.133 as

∆E(2) = − 1
2ε0c

[
αscal +

3M2 − F (F + 1)
F (2F − 1)

3 cos2(θ)− 1
2 αtens

]
I (1.134)

or, for a stretched state, as

∆E(2) = − 1
2ε0c

[
αscal +

3 cos2(θ)− 1
2 αtens

]
I . (1.135)

It is often useful to write αscal and αtens in terms of reduced matrix elements, which are
better suited for comparisons with experiments.
The appropriate expressions are found to be

αscal = − 1
3(2F + 1)

∑
(γF )′

(−1)F ′−F |〈γF ||D||γ′F ′〉|2×

×
(

1
~ωn0 − ~ω + i~Γn/2

+ 1
~ωn0 + ~ω + i~Γn/2

) (1.136)

and

αtens = −2
√

5
6

√
F (2F − 1)√

(2F + 3)(F + 1)(2F + 1)

∑
(γF )′

(−1)F ′−F
{

1 1 2
F F F ′

}
|〈γF ||D||γ′F ′〉|2×

×
(

1
~ωn0 − ~ω + i~Γn/2

+ 1
~ωn0 + ~ω + i~Γn/2

)
(1.137)
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Figure 1.9: Definition of the angle θ that the electric field ~E makes with the quantization axis
z . In the picture, Ẑ represents the propagation direction of the laser that, in the experiment,
generates the electric field.

where we have introduced the Wigner’s 6j symbol { 1 1 2
F F F ′ } and where we have shifted the

energy levels εn by an imaginary term i~Γn/2 to take into account the effect of spontaneous
emission. Because of this shift the polarizabilities are now described by a real and an
imaginary component.
The real component is what one should put inside the expression 1.135 for the energy
correction of the ground state. The imaginary component is instead related to a photon
scattering rate by the equation [49]

Γscattering = 1
~ε0c

[
Im(αscal) +

3 cos2(θ)− 1
2 Im(αtens)

]
I . (1.138)

In the experiment the atoms interact with the electric field produced by a laser. This
electric field will then not be spatially uniform.
If the intensity of the electric field varies slowly in a distance comparable with the atomic
dimension, the results we got still hold and the energy correction ∆E(2) now depends on
the atomic center of mass position r because I → I(r).
∆E(2)(r) can then be interpreted has an effective potential for the atom-light interaction
that we write in the form

U(r) = − 1
2ε0c

[
Re(αscal) +

3 cos2(θ)− 1
2 Re(αtens)

]
I(r) . (1.139)

This expression can be rewritten in short as

U(r) = − 1
2ε0c

α(θ,ω)I(r) (1.140)

where we have defined the total polarizability α(θ,ω) as

α(θ,ω) = αs(ω) +
3 cos2(θ)− 1

2 αt(ω) (1.141)
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where αs = Re[αscal] and αt = Re[αtens].
We can now calculate the expression of the force felt by the atoms.
This force can be written as

F (r) = −∇U(r) =
α(θ,ω)

2ε0c
∇I(r) . (1.142)

For the intensity, supposing we are working with a gaussian beam that is propagating in
a general direction called Z (that should not be in principle the same z that defines the
quantization axis, as shown in figure 1.9), we can use the standard expression found in
[50] for I(r):

I(r) = 2P
πw2(Z)

exp
(
−

2(X2 + Y 2)
w2(Z)

)
(1.143)

where X̂, Ŷ are unit vectors that together with Ẑ form a right-handed frame of reference,
P is the average power of the laser,

w(Z) = w0

[
1 +

(
Z

ZR

)2]1/2

ZR = πw2
0/λ . (1.144)

We can now write the force in the X direction as:

FX(r) = −
4Pα(θ,ω)
πε0cw4(Z)

X exp
(
−

2(X2 + Y 2)
w2(Z)

)
. (1.145)

This force reaches its maximum value when the atomic cloud is centered in (X,Y ,Z) =
(w0/2, 0, 0) and in this point the force takes the value:

Fmax
X = −

2Pα(θ,ω)
π
√
eε0cw3

0
. (1.146)

1.6 Imaginary time evolution
Let’s consider a quantum system described by the hamiltonian H.
The time dependent Schrödinger equation that describes the time evolution of a wave
function ψ(r, t) is given by:

i~∂tψ(r, t) = Hψ(r, t) . (1.147)
We can now make the substitution τ = it/~⇒ ∂τ = −i~∂t inside the Schrödinger equation
and get [51]

∂τψ(r, τ) = −Hψ(r, τ) . (1.148)
If we consider t to be an “Imaginary time”, then τ will be real and 1.148 represents the
Schrödinger equation written in imaginary time.
The formal solution of 1.148 is given by

ψ(r, τ) = e−Hτψ(r, 0) (1.149)
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and by recalling that the equilibrium Boltzmann distribution is given by exp(−H/kBT )
where kB represents the Boltzmann constant and T is the temperature, we can interpret τ
to be an inverse of a temperature.
Increasing the imaginary time will therefore be equivalent to lowering the temperature.
Let’s now suppose that we know the eigenstates of H, which are the time-independent
functions ψn(r) that satisfy

Hψn(r) = Enψn(r) (1.150)
where En represents the energy eigenvalue of the state ψn.
{ψn(r)} represents a complete base of functions and we can then decompose the general
solution ψ(r, τ) of the imaginary time Schrödinger equation in the following way:

ψ(r, τ) =
∑
n

cnψn(r) exp(−Enτ) =

= c0ψ0(r) +
∑
n6=0

ψn(r) exp(−Enτ)
(1.151)

where the sum runs over all the eigenstates of H and in the last term we fixed the energy
of the ground state E0 ≡ 0.
The only time dependence in this expression comes from the exponential factor exp(−Enτ),
from which we can see that the contribution to ψn(r, τ) given by the n-th eigenstate
decays exponentially with respect to the ground state one.
Because of this argument we can say that, after a sufficiently long “Time”, the only
contribution left to the state ψ(r, τ) will be given by the ground state, if the initial wave
function had some nonzero contribution given by the ground state:

ψ(r, τ →∞)→ c0ψ0(r) . (1.152)

In this limit, the ground state n = 0 is projected out of the initial trial function. Therefore,
by evolving the system in this “Imaginary time”, we can obtain the ground state of the
hamiltonian H.





Creation of arbitrary potential
patterns using a DMD

Chapter 2
This chapter is dedicated to the characterization of a digital micromirror device (DMD),
which is a reflective spatial light modulator that can be used to modulate the amplitude
of an incoming light beam, and to the realization of arbitrary potential patterns made
thanks to it.
The first section of this chapter is dedicated to the explanation of the working principle of
the DMD as well as to the description of its properties as a diffraction grating.
In the second section I describe the two optical setups devised for the characterization
of the DMD, describing the optical path’s critical points. Since the DMD only allows
for a spatial modulation of light, any preexisting shape of the impinging intensity profile
remains superimposed with the DMD’s modulation. I therefore realized in Mathematica a
feedback mechanism to realize homogeneous light patterns. Section three is dedicated to
the explanation of this feedback process.
In the last section I show some simulations made for the superfluid and supersolid formed
inside the experimentally realized ring light. This simulations are a good test to check if
we were able to realize an optical setup free from aberrations.

2.1 The Digital Micromirror Device

Figure 2.1: A picture of the DMD with the dysprosium chemical symbol displayed on it.

The Digital Micromirror Device is a reflecting spatial light modulator that controls the
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Figure 2.2: Scheme of the DMD’s micromirror array. P = 7.56 µm represents the pixel size
of the array. N×M = 1080× 1920 represents the array’s dimensions in pixels. Figure taken
from [52].

amplitude of an incoming light beam. A picture of the DMD board is shown in figure 2.1.
The one used in this thesis work is the “DLP65000 0.65 1080p MVSP Type A” by Texas
Instruments [52]. This DMD is composed by an array of 1080×1920 squared micromirrors.
A pixel of the DMD has its linear dimension d equal to 7.56 µm. In figure 2.2 is shown a
scheme of this array.
Each one of these micromirrors can turn along his diagonal axis by ±12◦, as shown in

figure 2.3, with a switching time of around 1 µs. The status of each micromirror is then
binary and can be controlled by a computer software given by the manufacturing company.
By inputting on the software a black and white .bmp image (meaning that the entries of
the matrix forming the image should be only zeros and ones) that has the same dimensions
as the DMD board itself, this image will be displayed on the DMD board and can then be

Figure 2.3: Sketch of the light impinging on the DMD and of the three possible positions for
the micromirrors. When the DMD is switched off all the mirrors get aligned in the parked
position, also called rest position. When the DMD is switched on the micromirrors can only
assume the On or Off state positions.
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Figure 2.4: Example of a pattern sent to the DMD program and resulting imprint on the
outgoing beam. (a) Pattern sent to the DMD. (b) Recorded image of the spatial profile of
the outgoing beam from the DMD after a 5× demagnification.

casted inside the light impinging on the DMD. This is done by assigning every entry of
the matrix with its corresponding pixel. If a pixel is in the 0 (Off) state it means that the
corresponding micromirror will be tilted in one way, whereas if the pixel is in the 1 (On)
state the micromirror will be tilted 24 degrees in the other direction.
If one only thinks about ray optics, the result of the different tilting of the mirrors will
produce 2 different outgoing beams. One that is called “Dump” beam, that is the one
generated by the mirrors tilted in the Off state, and one beam called the “Image” beam,
generated by the On state mirrors.
This creates the imprinting of the image sent to the DMD inside the “Image” beam,
whereas the “Dump” beam contains a negative of this image.
When the DMD gets switched off, all the micromirrors get set to the so called “Rest”
position, that is parallel with respect to the substrate lying underneath them.
In figure 2.4 is shown an example of the formation of a 2D image inside a light beam made
by sending a specific pattern to the DMD.

The DMD, thanks to the periodic pattern made by its pixels in both its array’s dimensions,
also acts as a two dimensional diffraction grating, showing multiple outgoing diffraction
orders. Since in our experimental setup we only work with a single one of these orders,
this diffraction results in a source of power loss with respect to the incoming light beam.
In general, when working with a diffraction grating, a wavelength λ is diffracted into the
m-th order of diffraction at an angle that follows this simple equation:

m
λ

d
= sin θ − sin θ0 (2.1)

where the angles are defined in figure 2.5.
Since the micromirrors are tilted with respect to the substrate, the DMD actually acts as
a blazed diffraction grating, with blazing angle given by ϕ = 12◦.
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Because of this, one can search for the blazing condition for the DMD, that is, the condition
in which a specific diffraction order gets most of the reflected power.
To get the equation defining this condition, one starts from the two equations that describe
a blazed grating. These equations are the following [53]:

m
λ

d
= sin θ − sin θ0

0 = sin(θ − ϕ)− sin(θ0 + ϕ) .
(2.2)

Normally for a grating, this equations are solved to find the blazing angle ϕ that maximizes
the power into the m = 1 diffraction order for a specific wavelength and a specific incident
angle.
In the case of the DMD, ϕ = 12◦ is fixed by the micromirrors’ geometry and one instead
can find if there are some diffraction orders that fulfill the blazing condition.
From the second of the two equations written in 2.2 one finds the condition

θ = θ0 + 2ϕ (2.3)

which is telling the simple fact that the peak of the intensity distribution will be at the
angle that represents the reflection from the single micromirror.
Inserting 2.3 inside 2.2 we get the following equation

Fm(θ0) = 0 (2.4)

where we have defined

Fm(θ0) = arcsin
(
m
λ

d
+ sin θ0

)
− θ0 − 2ϕ . (2.5)

This is the equation that gives out the blazed diffraction order as a function of the incident
angle θ0.
In figure 2.6 is shown a plot of Fm(θ0) for various orders of diffraction.

Figure 2.5: Definition of the angles used in the text for the diffraction of the DMD. θ0
represents the angle at which light hits the normal to the substrate of the DMD whereas θ
represents the angle at which light is diffracted. ϕ represents the angle made by the normal
of the micromirror with respect to the normal of the substrate and is equal to 12 degrees.
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Figure 2.6: Sketch of the function Fm(θ0) as a function of θ0 for different diffraction orders m.
When Fm(ϑ0) = 0 the m-th order is the most intense one if the incoming light hits the DMD
at the angle ϑ0. The various curves are drown for λ = 405 nm and d = 7.56 cos(12◦) µm.

As one can see from the picture, at different incident angles will correspond different blazed
diffraction orders.
In particular it’s interesting to notice that, since ϕ = 12◦ is constant, the 0-th order of the
grating, the one that does not disperse different wavelengths at different angles, will never
achieve blazing.

2.2 Optical Setup to study the DMD
Both the optical setups described in this section feature a demagnification part were the
image that is projected onto the DMD gets reduced in size through a microscope and
is then observed on a CCD camera. Demagnifying the image through the microscope
is important for two reasons. The first one being the fact that, when the DMD will be
placed in the actual experiment to make real potentials for the atoms, in the optical setup
we will implement a 2 stage demagnification process to make potentials that have sizes
comparable to the Bose-Einstein condensate and to the supersolid. The second reason as
to why it’s important to demagnify is the fact that in this way a certain number of pixels
of the DMD will be mapped to the same camera pixel. This brings out the possibility of
making gray scaled images on the camera by starting just with a black and white image
on the DMD.

2.2.1 First optical setup
In figure 2.7 is shown the first optical setup realized to study the DMD.
The laser source of this first apparatus is a 405 nm diode laser.
This laser is coupled inside a single mode fiber to make the resulting beam a TEM00 mode.
Then the light passes through a λ/2 waveplate that rotates its polarization. This is done
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Figure 2.7: Sketch of the first experimental setup devised to study the DMD. This represents
a compact scheme to use the DMD that has the downside of having to place the board at a
12 degree angle with respect to the impinging beam.

so that when the light will pass through a polarizing beam splitter (PBS), we can have
control on how much power gets reflected in the direction of the DMD.
The light then hits the DMD and the outgoing beam will then have imprinted inside the
spatial profile of the DMD. The DMD is tilted by 12 degrees with respect to the incoming
beam so that the reflected light is parallel to the incoming one. The beam then goes back
inside the PBS, and this time it is transmitted thanks to the double pass through the λ/4
waveplate.
After the cube we place 2 lenses, the first one has focal length f1 equal to 500 mm and the
second one has f2 = 100 mm. The first lens is placed at a distance of 500 mm from the
DMD whereas the second is placed at a distance of 100 mm from the camera. We don’t
need to worry about placing an iris before the first lens to select only one diffraction order
because the spatial separation between 2 orders on the first lens is equal to f1λ/d ≈ 27 mm
and this is greater than the 25 mm diameter of the first lens.
This 2 lenses are placed at a relative distance of f1 +f2 to make a microscope for the image
(this same lenses configuration also acts as a telescope for the collimated beam). This
microscope magnifies the image imprinted on the DMD by a factor of f2/f1 = 0.2, which
means that the resulting image on the CCD camera will be 5 times smaller than the one
imprinted on the DMD. An iris is placed in the focal plane inside the microscope. Since
the first lens of the microscope makes the Fourier transform of the image [53], placing an
iris in this point acts as a bandpass filter, cutting the high frequency components of the
Fourier transform of the image and making it less detailed when its transformed back by
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Figure 2.8: Demonstration of how an high frequency cut in the Fourier space leads to blurred
images when transforming back to real space. In the first row it’s shown an image of a
blackbuck, to its right I’ve plotted the absolute value of its Fourier transform and again on
the right its shown the inverse Fourier transform, that is equal to the starting picture. In the
second row the same is shown, but now in the Fourier space there is applied the band-pass
filter that blocks high frequency components of the image. We can see that when we now
revert back to real space the image is less detailed and more blurry.

the second lens. An example of how an high frequency cut leads to less detailed images is
shown in figure 2.8.
As one can see from figure 2.1, the DMD is placed at a 45 degree angle with respect to
the optical table. This is done so that the on and off states for the micromirrors will send
light parallel to the table. Because of this if the CCD camera was placed parallel to the
table, one would see in the camera images that are rotated by 45 degrees. To try and
correct this we also place the camera in an inclined position. In section 2.3 we will see
that this experimental correction is not enough to get completely straight images and a
second stage of rotation, this time through software, needs to be implemented.

2.2.2 Second optical setup
By making ground state simulations for both the superfluid and the supersolid trapped
inside the rings that we were able to produce with the first optical setup (see section 2.4)
we understood that what’s really important to get a cylindrically symmetric solution of
the Gross-Pitavskii equation is to have little to no aberrations inside the ring. This is
because we are working with a repulsive ring and the atoms actually fill out the space
where there is no light, meaning that the atoms are not sensitive in fluctuations of the
potentials that happen in places were their wavefunctions are almost zero.
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Figure 2.9: Sketch of the second experimental setup used to study the DMD. The DMD is
now placed at a right angle with respect to the impinging beam.

These aberrations can be caused by a non perfect alignment of the optical path and they
can cause some light to come inside the ring and break the symmetry of the system.
Other aberrations, such as astigmatism in the recorded ring on the camera, can also cause
the breaking of cylindrical symmetry because they make the ring oval shaped.
To correct these imperfections we realize a second optical setup for the DMD, which is
shown in figure 2.9. In this new optical setup the laser source is different from the one
employed in the scheme shown in figure 2.7 but this is not important since the setup is
used to study the DMD and not the laser.
We now have the DMD with no tilt whatsoever, and to make the beam come out straight
from it we now impinge on the board with a 24 degrees angle. This correction is made so
that all the ring imprinted on the beam will hit the camera simultaneously, whereas before,
since the DMD was tilted by 12 degrees and the camera was not, this was generating an
astigmatic image on the camera.
We now also remove the rotation of the camera by 45 degrees. In this way it is much easier
to properly align the camera. The rotation of the recorded images is then completely done
by software.
We also introduce a translational stage on the second lens. This makes it possible to align
the lens with extreme precision and in this way we minimize all the possible sources of
aberrations.

2.3 Feedback procedure
Let’s suppose that one feeds to the DMD a flat top image. Because of the gaussian spatial
profile of the beam, the resulting image recorded on a camera placed after the DMD will
show the flat top but with an intensity distribution that is still the one of the laser, that
is, a gaussian distribution. This is shown in figure 2.10.
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Figure 2.10: (a) Recorded image of the flat top with no correction on the camera. (b) Cut
of the intensity distribution along the flat top.

To solve this problem I created a Mathematica program that, through a feedback process,
can make the potential more homogeneous.
Since the DMD has to be rotated at a 45 degree angle with respect to the optical table, as
one can see from figure 2.10, the recorded image on the camera will be tilted with respect
to the image imprinted on the DMD. This can be corrected to first approximation by also
tilting the camera, but cannot be completely corrected in this way. Also, since in the
optical path going from the DMD to the camera is placed a magnification system, the
recorded image on the camera cannot be directly compared with the one displayed in the
DMD since they have different dimensions.
The first part of the feedback program is then a calibration, where one measures the
rotation angle and the scaling of the image, with respect to the DMD one.
This is done by displaying in the DMD an image consisting of three dots that form two
perpendicular lines. This image is shown in figure 2.11.
By recording the resulting image on the camera, it’s possible to extract both the rotation
angle and the scaling factor.
Thanks to this parameters one can take the image on the CCD camera and make an affine
transformation into an image that is comparable with what is sent to the DMD, as is
shown in figure 2.12.
Once the calibration process is completed the real feedback can start.
The feedback starts by applying the affine transformation on the acquired image on the
CCD, and comparing it to the target image. This comparison results in an error matrix
that can be used to correct the image sent to the DMD and the whole process starts again
by acquiring a new image on the camera.
In mathematical formulas, at the n-th iteration the error matrix En is defined by the
difference between the target image T and the transformed image acquired by the camera,
that we call Cn

En = T − Cn . (2.6)
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Figure 2.11: Calibration image captured by the CCD camera. This image is used to get the
rotation angle and magnification.

By using the matrix En, we can write the image that gets sent to the DMD in the next
iteration in this way

Dn+1 = Dn + κpEn (2.7)

where we have defined Dn as the image that gets sent to the DMD in the n-th iteration and
where κp represents a gain coefficient that needs to be adjusted to get the best correction
in the least amount of iteration steps. In our case we got the best results with κp = 0.2.
Since the DMD can only read images containing 0s and 1s (black and white images), before
sending Dn to the DMD, one needs to apply a dithering algorithm to it, to make it black
and white.
The dithering algorithm we use is the Floyd-Steinberg one [54], given in mathematical

Figure 2.12: (a) Image of the flat top recorded in the CCD camera. (b) Image of the flat
top in the DMD dimensions after the affine transformation.
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Figure 2.13: Results of the Floyd-Steinberg algorithm on a black buck image. (a) Image
to be dithered. (b) Dithered image. As it’s visible in the bottom right corner of (b), this
algorithm collects all the dithering error on this corner of the image. This is fine in our case
since this corner of the DMD is usually not utilized.
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(2.8)
where we have defined the matrix D̃ = D/max[D], D̃i,j represents the (i, j)-th element of
the matrix and

∆D̃i,j = D̃i,j − Round[D̃i,j] (2.9)

represents the error one makes by rounding D̃i,j to the closest integer.
In figure 2.13 it’s shown a result of the algorithm on a deer image.
The feedback process described above is analogous to what happens in a PI controller. In
fact, even though it was not implemented in our case, one can even introduce an integral
correction by writing

Dn+1 = Dn + κnEn + κi
n∑

m=0
Em . (2.10)

At each point of the iteration it’s possible to quantify the discrepancy between the target
and the obtained image thanks to the error R defined by the following equation:

R = 100
∑
i,j

(
Di,j − Ti,j
Ti,j

)2 1
A

1/2

(2.11)

where A = 1080× 1920 represents the DMD area in pixels.
The results for the correction of a flat top are shown in figure 2.14.
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Figure 2.14: Results for the correction of a flat top. (a) Recorded flat top on the CCD
camera without any correction. The gaussian profile of the beam is clearly visible inside
the flat top. (b) Flat top at the sixth iteration of the correction feedback. (c) Intensity
distribution along an horizontal cut on the flat top for different iterations. (d) Error function
R shown as a function of the iterations.

In the figure we can see that the intensity distribution is much more uniform after the
feedback program.
This same feedback algorithm can be implemented other types of 2D potentials, such as
rings or gradients.

2.4 Simulations
We use the imaginary time evolution method explained in section 1.6 to find the ground
state of the extended Gross-Pitaevskii hamiltonian:1

H =
(
−~2∇2

2m + Vh.o.(r) + Vring(x, y) + g|ψ(r, τ)|2 + V mf
dd (r, τ) + γ(εdd)|ψ(r, τ)|3

)
(2.12)

1The order parameter ψ in this equation needs to be normalized to the total number of atoms N by writing∫
|ψ|2 d~r = N.
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Figure 2.15: Ring potential used in the simulations.

where Vh.o.(r) represents an harmonic confining term

Vh.o.(r) = 1
2M(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (2.13)

g = 4π~2as/m represents the strength of the contact interaction, as being the s-wave
scattering length. Φdd(r, τ) represents the mean field contribution given by equation
1.41 and the beyond mean field term γ(εdd)|ψ(r, τ)|3 is inserted to study the onset of
supersolidity in the system. γ(εdd) is defined in 1.52. Lastly, inside equation 2.12 the term
Vring(x, y) represents the 2D confining ring experimentally generated through the use of
the DMD. In figure 2.15 is shown a figure of the ring potential used as Vring. This is just
a recorded picture of the DMD ring acquired on the camera shown in figure 2.9 after a
feedback loop. Since the ring will have a radius of 5 µm in the atomic plane, the image’s
dimensions are adjusted to make it this size. Moreover, the intensity of the image, that in
the camera is a 8-bit number, is converted in an energy, to make the ring potential have
an average height of about 200 nK.
The simulations are done to see if the experimentally achieved rings are free enough from
defects and aberrations to make the superfluid delocalize inside the ring and to see the
second order transition happen inside this annular potential.
The simulations are done with a total atom number N = 50 × 103 and an harmonic
potential characterized by (ωx,ωy,ωz) = (20, 20, 100) Hz. This potential is inserted mainly
to trap the atoms in the z direction and in the experiment will be realized through an
optical light sheet made by a green laser.
The simulations are done at different scattering lengths across the superfluid to supersolid
quantum phase transition. In figure 2.16 the results of various simulations made for
different scattering length are shown.
As one can see from this simulations, even though we are working in the second setup
shown in figure 2.9 to free the ring from aberrations and we made the feedback loop on
the ring, we get a superfluid ground state that, even though it’s completely delocalized
inside the ring, still shows some non uniformity.
This lack of homogeneity of the superfluid is translated in a supersolid that does not show
a perfect periodic lattice structure.
Leaving aside these problems, the simulations are telling us that the potentials we are
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Figure 2.16: Results of the simulations made. (a) At as = 100a0 which is still in the superfluid
phase. (b) At as = 96a0 the supersolid droplets start to form. (c) When as = 93a0 the
droplets are completely formed.

simulating are good enough to see the formation of the supersolid and the delocalization
of the superfluid. Of course, when we will project the ring on top of the atoms, the value
for the potential barriers that we will be able to realize will be determined by the laser
intensity and by the atoms polarizability through the formula for the potential reported in
1.140.
In the next chapter I will report on our experimental measurements of the dynamical
polarizability of dysprosium. Measurements that were made to give an estimate on the
potentials we will be able to project on the atoms.
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Chapter 3

In the first part of this third chapter I present the work done to realize and characterize
a source of tunable blue light working at around 404 nm with a gaussian spatial mode
profile. This blue light will be implemented in the experiment to realize repulsive potentials
for dysprosium. Working with this particular wavelength will be nice because, since the
resolution of images scales linearly with the wavelength, working with shorter wavelengths
will result in a better resolution for our potentials. In this regard 404 nm is almost as low
as one can go before needing to use extremely specific lasers and optics.
Since dysprosium has a strong absorption line at 404.7 nm, that is extremely close to our
working wavelength, the optical setups implemented where realized with the intent of
narrowing down the laser spectrum, to make it not cross the transition.
In the second part of the chapter I present our experimental results for the measurement
of the dynamical polarizability of dysprosium around 404 nm. A measurement of this
quantity is important because the polarizability of dysprosium has never been studied at
this particular wavelength before and having access to this number is fundamental for us
because it relates to the height of the potentials that the atoms will feel when trapped
inside our light.
In the third part of the chapter I also present our implementation of a Master-Amplifier
injection lock configuration, made to have more blue light power to work with. The master
laser for this setup is the one characterized in the first part of the chapter, whereas the
amplifier is a second diode laser.
At the end of the chapter I summarize the measurements made to calibrate the magnifica-
tion of an imaging optical system needed to give an estimate of the 404 nm laser waist in
the atomic plane.

All the work relating to this chapter was done in the dysprosium lab in Pisa. When I
joined the group the experiment was already able to produce the degenerate Bose gas of
162Dy. Details on the experimental apparatus and sequence can be found in [18, 55, 56].
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3.1 Repulsive light implemented in the experiment

Figure 3.1: Representation of a two level system with transition frequency ω0 interacting
with an electric field oscillating with frequency ωL. |g〉 represents the ground state and |e〉
the excited one. The atomic line is broadened by the spontaneous emission which occurs
with a rate Γe .

We want to work with a laser that generates a repulsive potential for dysprosium which
means, in a simplified picture where we consider the Dy atom as a two-level system, that
the emission frequency ωL of the laser should be larger than the transition frequency of
our two level system, that we call ω0, as shown schematically in figure 3.1.
The same argument can be written in terms of wavelengths using the relationship λ = 2πc/ω
where c represents the speed of light. Of course, since wavelengths are inversely proportional
to frequencies, the requirement is that the laser wavelength λL should be less than the
transition one, λ0.
The first repulsive light source used in the experiment is a Nichia NDV4313 [57] diode
laser which is a continuous wave multimode laser capable of outputting up to 120mW
of power at around 405 nm. The emission wavelength of this light source is extremely
close to that of a Dysprosium absorption transition, which is the [Xe]4f 106s2 (5I8) →
[Xe]4f 10 (5I8) 6s6p (1P o

1 ) (8, 1)7. This is a strong dipole-permitted transition with λ0 =
404.7 nm and Γe/2π ≈ 30MHz [58]. In figure 3.2 are shown the three strong absorption
transition for Dysprosium that are in the blue region. Working this close to resonance with
the laser wavelength means that, to good approximation, we can retain only this transition
in the sum that defines the polarizabilities (equations 1.136 and 1.137) because the other
transitions give a negligible contribution when λL ≈ 405 nm and, also, one should expect
these polarizabilities to be much higher than the typical values one gets when working
with far off-resonance potentials created with infrared light at 1064 nm where it was found
[59] that αscal(λ = 1064 nm) = (184.4± 2.4) a.u. and αtens(λ = 1064 nm) = (1.7± 0.6) a.u.
where a.u. stands for atomic units.
Unfortunately working this close to resonance has also some downsides. As already
mentioned the laser output is multimode, meaning that it has a broad spectrum of
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emission. If some of this emission crosses the transition wavelength going above it, this
light will contribute to an attractive potential instead of a repulsive one. Moreover, the
more we close the gap between ωL and ω0, the more the light scattering rate defined
in 1.138 will grow, eventually diverging when ωL = ω0. Since we want the light-atom
interaction to be coherent, real scattering processes are to be avoided, which means that it
is mandatory that the laser spectrum shouldn’t reach the transition.

3.2 Realizing and monitoring a single mode diode
laser

Given what we said about the laser spectrum being broad, the first measurement to make
for the laser is to characterize its spectrum, to see if there’s really some light crossing the
transition frequency.
We made this measurement employing the Monochromator situated in the Atomic Physics
lab at the department of Physics and Astrophysics, Unifi. A monochromator is a device
that, through the aid of a diffraction grating, can be used to measure the spectrum of a
light source. In figure 3.3 is shown the setup we implemented to do the measurement.
The laser beam is focused in the aperture slit of the monochromator. After the slit, light
is diverging because of diffraction and a first curved mirror collimates the light, which

Figure 3.2: Strong absorption lines for dysprosium in the blue region of the spectrum. Data
taken from [58]. The 421 nm transition is the one currently exploited in the system for
the Zeeman slower, the angled slower, transverse cooling and for the imaging. The energy
separations are not to scale.
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Figure 3.3: Schematics of the setup used to measure the laser spectrum.

then impinges on a diffraction grating. Light after the grating is dispersed so that at
different angles there will be different wavelengths. A second curved mirror takes the light
coming from the grating and refocuses it in the exit plane, where a second slit is placed.
This second slit selects the wavelength that can hit the photodetector placed behind the
slit. The grating is mounted on a rotating platform so that, by turning, it can make all
the different wavelengths hit the detector. Thanks to this mechanism one can relate the
turning time of the grating to the measured light’s frequency.
One recorded spectrum of the Nichia diode laser is shown in figure 3.4.
As shown in the picture, the spectrum of the bare diode laser actually crosses strongly the
transition’s wavelength. Seeing as though the emission of a diode laser is pretty sensitive
to the diode’s temperature, it’s possible to try and change the spectrum by changing the
temperature of a Peltier Cell placed in thermal contact with the diode itself. The results of
such a procedure are shown in figure 3.5. As shown in the picture, by lowering the diode’s
temperature it’s possible to shift its spectrum to lower wavelengths, although one cannot
lower the temperature indefinitely because going under the dew point could damage the
diode. Because of this, having the laser working for long periods at a temperature lower
than 15◦ is not an option, and so one has to think about changing the laser spectrum in a
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Figure 3.4: Diode laser spectrum at a certain temperature.
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Figure 3.5: Graph showing the diode laser spectrum as its temperature varies. Increasing the
temperature tends to increase the emission wavelength because the energy gap of the diode
is inversely proportional to the temperature, meaning that as the temperature grows the
band gap of the diode gets smaller and so the gain curve of the laser gets shifted upwards in
wavelength.

different way than just shifting it.
To do this we implemented an extended cavity for our diode laser, as shown schematically
in figure 3.6. The blazed grating in this setup is mounted in the so called Littrow design,
where the first order of diffraction is reflected back into the diode and acts as a pass-band
filter, permitting only a certain range of frequencies to get back into the active medium
and gain power, whereas the zero order of the grating defines the output beam direction.
This makes the laser system single mode, severely reducing the broadness of its spectrum,
at the cost of a lower power output given by the non perfect efficiency of the grating.
Another advantage of the extended cavity laser configuration (ECDL) is that, by rotating
the diffraction grating, it’s possible to tune the laser peak emission wavelength by a couple

Figure 3.6: Extended cavity configuration for the blue diode laser.
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Figure 3.7: Minimal working design to implement a Fabry-Perot cavity to monitor the “Single
modedness” of the ECDL laser.

of nanometers.
To monitor the frequency operation of the diode laser we use a scanning Fabry-Perot
interferometer (Thorlabs SA200-3B [60]), which is basically just a confocal cavity where the
back mirror is attached to a piezoelectric and can thus move. This cavity is characterized
by a Free spectral range of 1.5 GHz and a typical finesse of about 250.
In figure 3.7 is shown the minimal setup we implemented to monitor the diode emission

spectrum. After exiting from the extended cavity, the light passes through an optical
isolator, implemented to avoid having reflection coming back inside the active medium of
the laser. These reflections are particularly dangerous when the laser is working in single
mode. We then place a telescope, made by two piano-convex lenses, to better match the
beam profile with the one accepted by the cavity. A beam splitter and a half waveplate
are then used to select how much power goes towards the cavity and how much goes
instead towards the atoms. Lastly, a lens is placed before the cavity to have the waist of
the laser in the middle of it, and to make it the right size. By scanning the position of
the back-end mirror of the cavity and monitoring its transmission signal through the use
of a photodiode (that’s already mounted on the Thorlabs cavity) it’s possible to clearly
distinguish when the laser is working in single or multi mode, as shown in figure 3.8. Using
the configuration shown in figure 3.7 we are now ready to test if this now single mode
laser can interact in a coherent way with the Dysprosium atoms. To do that we measure
lifetimes of a dysprosium BEC as a function of the interaction time with this blue laser
coming from the ECDL cavity.
The BEC is initially trapped in a crossed dipole trap made by two 1064 nm infrared lasers,
and the blue laser hits the BEC in a plane that is perpendicular to this crossed trap,
as shown in figure 3.9. This kind of measurement is directly related to the scattering
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Figure 3.8: Oscilloscope signal when the laser is working in single or multi mode.

properties of the atom light interaction since, if an atom scatters a blue photon, it gets a
recoil energy of about 360 nK and this is enough to kick it out of the dipole trap. The
results for the lifetime in this configuration are shown in figure 3.10.
Using a fitting function of the form

f(t) = Ae−t/τ (3.1)

it’s possible to extract from the data the lifetime τ , defined as the interaction time at
which the number of trapped atoms is 1/e of the initial number.
With the setup shown in figure 3.7 we were able to get a lifetime of (120 ± 30) ms.
This lifetime is far too short for our purposes, and such a result shows that even if
the laser is working in single frequency mode, since we are working extremely close to
an absorption transition for the atoms, there is still some light that crosses resonance
and that’s making the scattering rate really high. To double check this result we also
made lifetime measurements on the thermal gas, which we can get by just stopping the
evaporation ramp midway. The results of this measurement are shown in figure 3.11.
As one can see from this picture, the size of the thermal cloud is increasing the more it

Figure 3.9: Sketch of the crossed dipole trap (in red) and the blue laser (in blue) on top of
the BEC. The magnetization ~M of the BEC is directed along the blue beam.
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Figure 3.10: Lifetime of the BEC as a function of the interaction time with the blue laser.
In red is shown an exponential fit on the data, used to get the lifetime τ of the condensate.

interacts with the blue laser, directly showing the heating produced by the laser. To solve
this problem we employed a second dispersive element in the optical path of this blue
laser, like it’s shown in figure 3.12. In this new setup, the laser light still goes through the
optical isolator and the first telescope that were already placed before. After the telescope
the light gets splitted in two branches, one going to the monitoring cavity and the other
goes to the second grating. We can select how much power goes in both branches thanks

Figure 3.11: (a) Plot of the lifetime of the thermal gas as a function of the interaction time
with the blue laser. (b) Plot of the size of the thermal gas as a function of the interaction
time with the laser. The measurement was done with a laser power of about 1 mW.
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Figure 3.12: Sketch of the setup used to send both the first and the zeroth order of a second
diffraction grating to the atoms.

to the half waveplate placed before the beam splitter.
Since, as is shown in figure 3.13, gratings have different efficiencies for different polarizations,
before impinging on the grating the light passes through a second half waveplate to match
its polarization with the one for which the grating has its peak efficiency. After hitting
the grating light is diffracted into two main orders. The zero-th, which is the one that
is not sensitive to the wavelength, and the first, which instead makes light with different
wavelengths go into different directions. The mirrors’ setup shown in figure 3.12 is made
so that both the zeroth and the first order can be directed towards the atoms. A first
telescope made with cylindrical lenses is then implemented in the optical path to make
the beam profile more circular, and a second telescope is instead placed to make the
beam bigger, so that when the light hits the final focusing lens it will have a smaller
waist in the atomic plane. A shutter is also placed inside the optical path to change the
interaction time with the atoms. Thanks to the second grating we can send the remaining
on resonance light that is still present in the laser away from the centroid of the beam. In
this way if the beam is aligned to hit the atomic cloud the spurious wavelengths will not
interact with the atoms and so we should expect to see an increased lifetime of the BEC
in this configuration. The results of this new lifetime on the BEC are shown in figure 3.14.
As one can see from the picture, with this new experimental setup we get a much longer
lifetime for the trapped BEC, that is (1.5± 0.4) s, which shows how we were really able to
filter out the on resonance wavelengths and make them not interact with the atoms.
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Figure 3.13: Efficiency plotted as a function of wavelength for a grating. The different curves
are plotted for different incident polarization. Image taken from [61].

This measurement was made with a blue laser power P of about 0.5 mW and a laser waist
on the atoms w0 of about 30 µm, although the waist in this configuration is a bit ill defined
since in this setup the laser was not a gaussian beam, as is clearly seen in figure 3.15 (a),
where it’s shown a picture of the beam waist profile as captured by a camera. This is
problematic because, to work with the DMD, one wants to have a gaussian beam impinging
on it but also to make the measurement of the atom polarizability (see section 3.3) is also
important to work with gaussian beams. To solve this problem we decided to couple this
blue laser into a single mode fiber, as shown schematically in figure 3.16. Thanks to the
use of this single mode fiber, we can now send to the atoms a much better shaped beam,

Figure 3.14: Results for the lifetime of the BEC in the new configuration of figure 3.12.
Thanks to this new setup we see a much improved lifetime, which shows how this setup is
effective at eliminating the spurious wavelengths from the atoms. This measurement was
done with a laser power of about 0.5 mW and a waist on the atomic plane of about 30 µm.
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Figure 3.15: Recorded image on a CCD camera of the beam’s radial profile. (a) Before the
coupling to the single mode fiber. (b) After exiting the single mode fiber.

much more similar to a gaussian one, as shown in figure 3.15(b). Furthermore, since the
beam that is hitting the single mode fiber is still the first order of a diffraction grating,
different wavelengths inside this beam will impinge on the collimating lens of the fiber in
different positions, meaning that wavelengths that are far enough away from the beam
center will not get coupled inside the fiber. Because of this the fiber in this particular
setup also acts as a frequency filter. To show that this is really what’s happening we made
another lifetime for the BEC with the setup shown in figure 3.16. The results for this
lifetime are shown in figure 3.17. This result shows that the setup shown in figure 3.16
is indeed a valid configuration to create a gaussian beam of blue light that can be tuned
to work around 1 nm away from resonance but still interact in a coherent way with the

Figure 3.16: Sketch of the setup used to couple the blue laser into a single mode fiber. The
light that gets coupled to the fiber is still coming from the first order of a diffraction grating.
This makes so that wavelengths that are far from the central emission peak of the laser hit
the collimating lens of the fiber on its edge (or they don’t it hit at all) and because of this
they don’t get coupled inside the fiber. Thanks to this the fiber in this scheme also acts as
a frequency filter for the laser. A fast shutter is placed just before the fiber to make short
pulses of blue light of about 5 ms.
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Figure 3.17: Lifetime of the trapped BEC as a function of the blue laser power using the
setup shown in figure 3.16. The measured lifetime is τ = (2.5 ± 0.3) s. The blue laser
wavelength reported in this picture is measured through a wavemeter.

atoms.

The downside of the setup shown in figure 3.16 is that, to make the beam gaussian and
to get rid of the on resonance wavelengths, we make use of two diffractive elements (in
our case, two gratings) and we also couple the light inside a single mode fiber. Out of the
extended cavity we have about 40 mW of power. After the optical isolator we have 25 mW
left. After the grating in the first diffraction order we have about 10 mW and this light
gets coupled inside the fiber where, because of the high mismatch between the laser mode
and the fiber one, we only couple 30% of the light into the fiber. At the end of the optical
path we can only send about 2÷ 3 mW of power to the atoms. In the future, when we
will insert the DMD in the system, this power will be cut even more because the DMD
also acts as a diffraction grating, sending some light into a lot of different orders and we
will only pick one of them. Because of these considerations we might ask ourselves if this
laser power will be enough to create a potential that’s deep enough to trap the atoms.
As one can see from the expression 1.139, the potential for the atom-light interaction
does not only depend on the intensity of the laser beam, but it also depends on another
quantity called polarizability, that in principle should be very high seeing as we are working
extremely close to a resonance. If the polarizability is high enough we could work with a
low power laser and still have a high enough potential thanks to the polarizability. In the
next section I present the work we made to make a measurement of this polarizability.

3.3 Measurement of the Dy’s polarizability at
around 404 nm

The first part of the setup we use to measure the polarizability is the same showed in
figure 3.16. Now, the light that exits the fiber goes through another optical path that is
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Figure 3.18: Last part of the experimental setup used to measure the dynamical polarizability
of dysprosium. The motorized mirror is used to align the beam with the trapped atomic
cloud. In the path there’s a dichroic mirror just because it’s also part of the MOT optical
path. The camera on the top is used to make an imaging of the blue beam and measure its
waist on the atomic plane.

shown schematically in figure 3.18.
The light comes out of the fiber (the same fiber that it enters in figure 3.16) with an
elliptical polarization. To correct this we employ a λ/4 and a λ/2 waveplate in series
to get back a linearly polarized beam. After a beam splitter we then have another half
waveplate, and this we use to change the angle between the polarization of the laser and
the magnetization M of the BEC.
By changing this angle, that we define as θ, we can effectively change the total polarizability,
given in section 1.5 and that we rewrite here for simplicity:

α(θ) = αs +
3 cos2(θ)− 1

2 αt . (3.2)

In the expression 3.2 the factor (3M2 − F (F + 1))/(F (2F − 1)) is not present since the
atoms are in the stretched state M = −F = −8.
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Figure 3.19: Experimental procedure to measure the polarizability. (1) The BEC is initially
loaded in the crossed dipole trap. (2) At a certain time, the blue beam strikes the atomic
cloud, and imprints a velocity on the atoms for a time δt. (3) After the second phase is
over, both the blue beam and the infrared trap are switched off and the BEC undergoes
free expansion for a time τt.o.f .. In this phase the imprinted velocity of the second step gets
converted into a displacement. After τt.o.f . has elapsed the imaging beam, directed along ẑ ,
hits the cloud and permits the measurement of δx .

To measure α we need to link it to some observable quantity. In our case it’s not possible,
as was done in [59], to measure the dipole oscillation of the BEC inside a trap made with
this blue light, since our interaction is, all in all, repulsive. What we decided to do instead
was to measure the displacement δx that the BEC makes when it’s struck by a pulse of
blue light. In figure 3.19 is shown a scheme of our experimental procedure. We start with
the BEC trapped in a crossed dipole trap. At a certain time this BEC gets hit by the blue
laser and interacts with it for a time defined as δt. This interaction imprints a velocity on
the cloud. After the interaction time is over we turn off both the blue beam and the trap
and let the BEC expand in time of flight for a time τt.o.f .. During this time the imprinted
velocity given by the blue beam gets converted into a displacement.
At the end we make a saturation absorption imaging of the cloud thanks to an on resonance
421 nm beam coming from the vertical direction. This imaging permits the measurement
of δx. If the pulse is short enough so that the cloud isn’t displaced while the beam is still
on, we can write δx as

δx =
Fxδtτt.o.f .

M
(3.3)

where Fx is the force imprinted on the BEC by the blue laser, δt is the pulse duration,
τt.o.f . is the free expansion time for the atoms before the imaging and M is the dysprosium
mass. In this approximation Fxδt/M can be seen as the velocity imprinted on the atoms
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Figure 3.20: Recorded image on the camera shown in the optical setup 3.18 of the cross
section of the 404 nm beam. This image is used to measure the beam waist in the atomic
plane.

and by multiplying it by τt.o.f . one can get the expression for the displacement.
For the force Fx, there are two possible choices that one can make. If we suppose that the
atomic cloud is point-like in dimensions with respect to the blue beam, and by supposing
that the cloud sits in the place where the force has its maximum value, one can use the
formula 1.146 for the force. Of course, the point like approximation is not completely
justified since the BEC has some finite dimensions with respect to the laser waist1 and to
better refine this approximation one can use, instead of Fmax

x , an average force F avg
x , that

we can define as the average of Fx(r) over the atomic cloud in this way:

F avg
x =

∫
dr Fx(r)n(r) (3.4)

where n(r) represents the BEC density normalized such that
∫
dr n(r) = 1, and Fx(r) has

the form reported in 1.145, except for the fact that we now have to deal with our real beam
that, as one can see from figure 3.20, has an elliptical shape. To take into consideration
this fact we slightly modify the expression of the force in the following way

Fx(r) = −
4Pα(θ)
πε0cw3

xwz
xe−2x2/w2

xe−2z2/w2
z (3.5)

where wx and wz represent the beam waist in the x direction and in the direction of the
magnetization, respectively. These waists are measured through the CCD camera shown
in figure 3.18 and to relate the dimensions on the camera to the ones in the atomic plane
we make a calibration of the imaging’s magnification that is explained in section 3.5. The
results for these two waists are (wx,wz) = (26± 1, 34± 1) µm.
In the expression 3.5 it’s not taken into consideration the fact that the waist is not the
same throughout all the atomic dimension since the cloud has some width even in the
propagation direction of the beam. This is because this width is of the order of 2 µm and
is much less than the depth of focus of the beam that can be calculated to be around 7mm,
which means that the waists are practically constant throughout the BEC extension. Since
it’s still not possible to get a full experimental representation of n(r), the next best thing
we could do was to use for n(r) the result of a simulation for our trapped BEC inside the

1The BEC dimensions are (σx ,σy ,σz) ≈ (10, 2, 6) µm.
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Figure 3.21: Displacement on the atomic plane of the beam as a function of the time pulses
for the motorized mirror. Thanks to this measurement we can convert time pulses into
atomic plane displacements.

crossed dipole trap. By doing the integral in 3.4 we get a 7% decrease of F avg
x with respect

to Fmax
x . Even in this case though, the integral is made supposing that the center of mass

of the BEC is positioned in the point where it feels the maximum force along x, this
point being r = (±wx/2, 0, 0). To be sure of this one needs to have enough experimental
sensitivity on the cloud-beam relative displacement. In our case this is done with the aid
of a motorized mirror, shown in figure 3.18. The motor on the mirror can tilt it in both
directions and we can make it move by sending current pulses that can last as little as
10 ms through it. In figure 3.21 it’s shown the measurement we made on this mirror to
convert the time pulses into displacements in the atomic plane. We were able to show that
this motorized mirror gives the sensitivity that we need by making the measurement shown
in figure 3.22. In this figure it’s shown the atomic center of mass displacement from its
starting position after having interacted with the blue beam for a fixed δt and for a fixed
τt.o.f ., as a function of the beam position. This measurement shows that the motorized
mirror we are using has high enough sensitivity to follow all the trend for the force, and by
placing it in the maximum value for the displacement, we can be sure that the blue beam
is exerting the maximum force on the atomic cloud. In the picture β represents the angle
made by the direction of the imprinted velocity on the atoms (that I defined as the x-axis)
and the horizontal direction of the imaging camera. This angle can be better interpreted
by looking at figure 3.23. We are now ready to make some quantitative measurements
regarding the scalar and tensor components of the polarizability.
The first thing we did was to measure the ratio between αs and αt. To do this we made
measurements of the displacement of the BEC as a function of the angle θ between the
light’s polarization and the cloud’s magnetization, with δt = 9 ms, τt.o.f . = 25 ms and
the beam’s position fixed where it imprints the maximum force. Because of this, we
can see from equations 3.5 and 3.3 that the displacement δx will depend linearly on the
polarizability. The results of one of these measurements are shown in figure 3.24. δx shows
clearly an oscillating behavior as θ varies. This is a nice test of the formula 3.3 and by
fitting the experimental results with a function of the form 3.2 it’s possible to extract from
these measurements the value of αs/αt at a specific wavelength. To change the angle θ in
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Figure 3.22: Plot of the BEC displacement in time of flight versus blue beam position (given
in time steps of the motorized mirror). Through the aid of the motorized mirror, we were
able to follow all the trend for the force, and by placing ourselves in either the maximum or
minimum of this curve with the mirror, and doing the same procedure also for the orthogonal
axis, we can be sure that atoms are feeling the maximum value for the force.

our experiment we make use of the last half waveplate shown in figure 3.18. To not skew
the results, we need to make sure that the laser power in the atomic plane remains as
fixed as possible when we change the light’s polarization. The absorption of all the optical
instrumentation has been shown to not depend on the light’s polarization much, but as
is shown in figure 3.18, after the last waveplate there is a dichroic mirror that can’t be
substituted since it’s also part of the MOT optical setup. This dichroic mirror is made so

Figure 3.23: Definition of the angle β made by the horizontal direction of the camera used
for the imaging and the x axis. The orange dots are the measured position of the BEC after
a time of flight of 25 ms for different positioning of the blue beam. The BEC moves along a
straight line that is orthogonal to the beam’s direction.
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Figure 3.24: Displacement of the atomic center of mass δx cosβ along the horizontal direction
of the imaging camera, as a function of the polarization angle θ. In green are shown the
experimental data and in orange the experimental data rescaled to take into consideration
the effect of the dichroic mirror.

that red light passes through it and blue light gets reflected instead. The problem with this
mirror, as is shown in figure 3.25, is that it has a reflective power that depends strongly
with the incident light’s polarization. To correct for this power fluctuations we first make
a fit on the experimental values of figure 3.25 with a sinusoidal fitting function of the form

f(θ;A,B, off) = A sin
[

2π
B

π(θ − θ0)
180

]
+ off (3.6)

and then, since the displacement is linear both in the power and in the polarizability,
we can directly use this function to rescale the experimental values for δx(θ). In figure
3.24 in green are shown the experimental data without this correction and in orange
the one with the correction applied. By making measurements such as the one shown
in figure 3.24 at different wavelengths (this can be done by slightly turning the grating

Figure 3.25: Normalized power of the blue laser reflected from the dichroic mirror as a
function of the incident light’s polarization direction expressed through the angle of the last
half waveplate.
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Figure 3.26: Results for αs/αt as a function of the laser wavelength. In black it’s shown the
theoretical prediction, and in blue the experimental results.

creating the extended cavity for the laser) it’s possible to study the trend of αs/αt as a
function of the laser wavelength. The results for this are shown in figure 3.26, along with
the theoretical prediction for αs/αt made by using the expressions 1.136 and 1.137 and
dysprosium transitions’ data taken from [58]. Of course, only having access to the ratio
αs/αt is not enough to give an estimate of the attainable potential depths. To get this
one needs to know the absolute values of both αs and αt.
To get this information we make another type of measurement, fixing the value of the angle
θ to have the maximum displacement of the cloud (this fixes the value of the polarizability
to αmax = αs − αt/2 since in our case αs and αt have opposite sign) and what we change
is instead the value of the power P of the laser. To get a meaningful value for α in this
way one needs the complete expression that relates δx with P . By combining equation 3.3
with 3.4 and with 3.5 one gets:

δx = I
2αδtτt.o.f .

π
√
eMε0cw2

xwz
P (3.7)

where I is defined to be

I = e1/2
∫

dr n(r)
(

1− 2x
wx

)
exp

[
−1

2

(
1− 2x

wx

)2]
(3.8)

And if we use the approximation n(r) = δ(r), that is the mathematical expression of
saying that all the atoms feel the maximum force possible, we get I = 1, and if we instead
want to take into consideration the fact that the atomic cloud has a finite size, we can
either use as n(r) the Thomas-Fermi expression for the density of a trapped BEC or
use for n(r) the result of a simulation. In either case the value of the integral drops
from the value of 1 to about 0.93, this has the direct consequence of increasing by 7%
the result for the polarizability. Equation 3.7 shows really well that the displacement is
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Figure 3.27: Experimental results for the displacement of the atomic cloud as a function of
the laser power.

predicted to scale linearly with the laser power, and in the slope of this line one can find
the polarizability. In figure 3.27 is shown a result of one of the measurements made for δx
vs P . By making a linear fit on this experimental data, and by comparing the slope of
this fit with the one predicted in 3.7, it’s possible to get a measurement of the full value
of the polarizability, that in this case is αs − αt/2. By then using the results shown in
figure 3.26 for the ratio between αs and αt, it’s possible to determine the value of both αs
and αt. Our experimental results for αs and αt are shown in figure 3.28, where they are
compared with their theoretical prediction. As can be seen from the picture, there is a
factor of about three of discrepancy between the experimental results and the theoretical
predictions.
If equation 3.7 is correct, than this discrepancy can only come from the following sources:

An error in the theoretical formulas used to give an estimate of αtheorys and αtheoryt , or some
systematic error made in the experimental measurement of the quantities that appear in
equation 3.7. The first hypothesis is the least likely one. This is because the formulas 1.136
and 1.137 where checked by comparing the results they give for the polarizabilities with the
ones obtained in [59, 62], where they give a good agreement with those experimental results.
The theoretical predictions for αs,αt depend on the experimentally measured values for
the dysprosium’ transition wavelengths and intensities. These quantities were taken from
the NIST database and their experimental error is extremely low (about 10% or lower for
the Einstein’s coefficients [63] and around 0.001 nm of error on transition’s wavelengths
[64]), so it’s also not likely that we are inputting in the formula some blue transitions that
are not accurate enough. Another possibility that could skew the theoretical expression for
the polarizabilities could be the presence of a weak transition that is not tabulated and is
around our working wavelength. This is not likely to be the case since it would require the
polarizabilities to scale differently from the theoretical predictions. In particular, a new
line would change the ratio between αs and αt for some wavelengths, and this is not seen
from the results showed in figure 3.26.If the error is not coming from the theoretical values
αtheorys ,αtheoryt than it stands to reason that is probably coming from a systematic error
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Figure 3.28: (a) Experimental results for the scalar and tensor components of the polarizability
as a function of the laser wavelength, compared to the theoretical predictions. (b) Theoretical
predictions scaled by a factor of 1/3.3 to make them sit on top of the experimental data for
comparison. The polarizabilities are expressed in atomic units.

inside equation 3.7. This possibility is also strengthened by the fact that the measurements
for the ratio αs/αt shown in figure 3.26 are in better agreement with the theory than the
absolute ones. This error could likely stem from the measurement of the power P of the
laser in the atomic’s plane and from the measurement of the waist. Regarding P , this
quantity can be measured only before the vacuum chamber through the use of a power
meter, that is calibrated with an accuracy of about 10%. The value of P is then reduced in
equation 3.7 by a factor of ε = 0.9 to account for the light’s reflection of the glass window
of the vacuum chamber. A systematic error can be attributed to ε, but to account for
the discrepancy with the experimental values of α we would need to have ε ≈ 0.3, which
means that the glass window only transmits 30% of the laser power, and this is extremely
unlikely. What is likely to cause problems inside equation 3.3 is the measurement of the
beam waist in the atomic plane. In fact, since the waist appears in the equation raised to
the third power, the displacement is seen to be extremely sensitive on the value of the
waist. Therefore, if we were measuring waists that are just 1.5 times smaller than the
real ones, the discrepancy from theory and experiment would be explained. This is the
most likely cause for the disagreement between theory and experiment. The source of
this systematic error could be the fact that we are making a calibration using a 421 nm
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beam, that is the one used for the imaging, while our beam is working at 404 nm. This
discrepancy could lead to different focal lengths for the lenses in the imaging setup showed
in figure 3.18, since at such low wavelengths the index of refraction of glass-like materials
can change very fast. This would lead to a systematic error on the calibration of the
imaging system described in section 3.5.

3.4 Injection locking of a diode laser

Figure 3.29: Sketch of the experimental setup used for the injection locking of our diode
laser.

In this section I report the experimental realization of an injection lock configuration
realized to create a powerful single mode laser. The scheme implemented is based on
[65]. In figure 3.29 it’s shown a sketch of the optical setup for the injection lock. The
master and the amplifier lasers are produced by two different NICHIA NDV4313 diodes.
The master works in single mode thanks to the grating placed in front of it whereas the
amplifier laser in and of itself is multimode but can be forced to work in single mode when
it’s injected by the master.
This injection is made by having the master laser coming through the amplifier’s active
medium. In the figure, this happens by making the second beam splitter of the optical
isolator of the amplifier reflect the master’s light. Because of the working principle of
optical isolators, this reflected light will be transmitted from the first beam splitter and is
coupled inside the amplifier’s diode, whereas the amplifier’s beam can pass through the
optical isolator unaltered. After the amplifier’s optical isolator we place an interference
filter to reduce the power on the wavelengths that are too close to the 404.7 nm absorption
line of dysprosium. The reflection signal from the filter is monitored through a photodiode
and shows a sudden drop when the amplifier gets injection locked. This signal could be
employed in the future to make a PID control scheme for the injection current on the
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Figure 3.30: (a) Lifetime of the trapped thermal cloud as a function of the interaction
time with the injection locked amplifier beam. (b) Size of the cloud as a function of the
interaction time. A clear heating can be observed. (c) Lifetime of the trapped thermal cloud
as a function of time. No interaction with the blue laser is present. (d) Size of the thermal
cloud without interactions with the blue laser.

amplifier. After the filter the optical path divides in 2 branches thanks to a PBS, one of
these branches goes to the Fabry-Pérot cavity. We use this cavity to monitor the single
modedness of the amplifier laser, in a similar way to what we did in the other setups. If
we see the single mode signal in the cavity transmission we can infer that the amplifier
laser has been successfully injected by the master. The other branch of the optical setup
first goes through an acusto optical modulator (A.O.M.) that we use to make short pulses
of blue light (more than a factor of 10 shorter than the one we can produce with a fast
shutter), and then the light gets coupled inside a single mode fiber, that has the output
end in the same place shown in figure 3.18. Thanks to this we can use this setup, in
the same way as we did with the one with just the master laser, to make measurements
of the BEC’s lifetime and polarizability. In figure 3.30 is reported the lifetime and the
size of the thermal cloud as a function of the interaction time with the injection locked
amplifier laser, compared to the ones without blue beam on. From the figure we can see a
lifetime of the BEC of about 1.1 s, which is definitely enough to make measurements of
the polarizability also with the injection locked laser. The scheme of the measurement is
the same shown in figure 3.19. We make both measurements of the ratio between αs and
αt by changing the orientation of the waveplate shown in figure 3.18, and also absolute
measurements of the polarizability by measuring the displacement δx against the pulse
time δt and by relating α with δt through the formula 3.7. In both cases the time of flight
for the BEC is still τt.o.f . = 25 ms. In figure 3.31 is shown the result for the measurement
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Figure 3.31: Displacement of the atomic center of mass δx cosβ along the horizontal direction
of the imaging camera, as a function of the polarization angle θ expressed through the angle
read on the half waveplate.

varying the angle made by the electric field polarization and the BEC magnetization. This
measurement gives an estimate for the ratio between the scalar and tensor component for
the polarizability equal to αs/αt = −1.12± 0.12 that is in agreement with the theory for
which, when λ = 404.42, we have (αs/αt)theory = −1.09. In figure 3.32 it’s instead shown
the result for the displacement δx as a function of the interaction time with the blue laser
δt. This time can be changed through the a.o.m. shown in figure 3.29 and this permits us
to make much shorter pulses. Taking the slope of the line shown in the figure we get a
value for the polarizability that is consistent with what we got with just the master laser.

Figure 3.32: δx as a function of the interaction time δt with the blue laser. δt can be
changed through the use of an A.O.M.
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3.5 Calibration of the imaging magnification

Figure 3.33: Sketch of the imaging beam used to define ζ. Since the imaging beam crosses
the lattice at the angle ζ, the distances measured through this imaging will be less than the
real ones by a factor of sin ζ.

The magnification of an optical system represents the ratio of lengths after and before the
system. In formulas, if we define as Li the length scale before the optical system and Lf
the length scale after the system, the magnification M of the optical system is defined by

M =
Lf

Li
. (3.9)

The calibration of the magnification for both the “Vertical” and “Horizontal” imagings
is done with the Raman-Nath (RN) scheme. Both these imaging are done with resonant
light at 421 nm and, in particular, the setup of the horizontal one is the same that is
shown in figure 3.18, where the horizontal imaging beam goes through the PBS and gets
transmitted towards the science chamber. Thanks to this, through the calibration of the
magnification for this imaging its also possible to obtain the magnification for the laser
working at 404 nm.
In the RN scheme, a fast lattice pulse of non-resonant light hits the BEC. By calling
with k = k̂2π/Λ the wave vector of the laser used to make the lattice, this pulse brings
some atoms from the |p = 0〉 state to the |p = ±2~k〉 states, and these states can be then
coupled to higher momenta states, and this process lasts as long as the pulse is on. If,
after the pulse, we let the BEC expand in time of flight, these diffraction peaks will fly at
different distances given their different momentum.
In fact, one can calculate the distance rm traveled by an atom that was in the p = 2m~k
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state in a very simple way:
rm = 2m~k

M
τ (3.10)

where M represents the Dy’s mass and τ is the time of flight.
This result implies that the distance between two adjacent peaks will be given by

d ≡ ‖rm+1 − rm‖ = 4π~
ΛMτ (3.11)

and is independent of m.
By making an imaging after the expansion time has elapsed, its possible to measure the
distance between the peaks in the imaging camera. Let’s call this distance d̃. d̃ will be
related to the distance between the peaks in the atomic plane by the relation:

d̃ =Md sin ζ (3.12)

where ζ is represented in figure 3.33 and is defined as the angle made by the lattice and
the imaging beam. Combining equation 3.11 and 3.12 we get the following expression for
the magnification of the imaging system

M = d̃

sin ζ
MΛ
4π~τ (3.13)

and on the right hand side we are left with measurable quantities.
In figure 3.34 is shown the experimental result for one of the Raman Nath measurement.
By making a fit on the intensity distribution of the form:

fm(x; d̃,Am,σm,n, off) =
n∑

m=−n
Am exp

(
−

(x−md̃)2

2σ2
m

)
+ off (3.14)

where the sum runs on all the detected diffraction peaks, it is possible to extract d̃ from
the data. Of course, this d̃ will be expressed in pixels of the camera but it’s sufficient to
multiply this number by the pixel size to get the correct value.
For the other parameters, since the lattice is created by the resonator placed in vacuum
we have that Λ = 1064 nm whereas ζ = 52◦ for the horizontal imaging.
The resulting magnification for the horizontal imaging is given by M = 0.761 ± 0.006.
Thanks to this calibration is possible to obtain the spatial dimensions of the 404 nm beam
in the atomic plane by just making an imaging of its radial profile with the camera shown
in figure 3.18.
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Figure 3.34: (a) Experimental shot for the Raman-Nath calibration. (b) Intensity distribution
along the peaks and relative fit.





Conclusions

In this thesis I reported the work I did towards the realization of an annular potential
where in the near future we will trap a dysprosium BEC. This potential will completely
change the symmetry of our system and will allow us to address extremely interesting
phenomena such as persistent currents, solitons, vortices and the non classical rotational
properties of the supersolid.
My work has been concentrated initially on the realization of an optical setup where I
could study and characterize the digital micromirror device that we will employ to realize
the annular potential. I also realized a feedback program in Mathematica that works like
a PI controller. This feedback program is able to remove the gaussian profile of the laser
from the ring and make it homogeneous. By simulating the ground state both for the
superfluid and the supersolid inside the experimentally achieved ring, it was possible to
show that the potentials we are able to realize with the DMD are good enough to see the
formation of the supersolid and the delocalization of the superfluid.
In the main part of my work I devoted my efforts into the realization of a laser source
capable of outputting blue light at 404 nm. We want to use this laser to make our repulsive
potential with the DMD and working at such low wavelength will be important for our
experiment because it gives a better expected optical resolution for our potential, the
diffraction limit for the resolution at this particular wavelength being 1.5 µm. Having an
high enough resolution is extremely important in our case since we want to work with
rings that have a radius of about 5 µm and a thickness around 2 µm. This thickness
will then be on the order of the system’s resolution. The blue laser I studied is a Nichia
NDV4313 diode laser that, out of the box, is multimode and thus has a broad spectrum
of emission. Through measurements of this spectrum we noticed that some of the laser
emission crossed with a dysprosium’s strong absorption transition. This makes the atom’s
light scattering rate extremely high and because of this a lot of experimental effort was
also put into reducing the broadness of the laser spectrum. This was achieved through an
optical setup were a two stage light dispersion was employed, both stages realized through
a diffraction grating. This optical configuration removes the problem of the broadness of
the spectrum and we made sure of this by measuring the lifetime of our BEC as a function
of the interaction time with the blue laser, both with and without the diffraction gratings.
A definite improvement of the lifetime was seen in the second configuration, showing how
we were really able to filter out the laser spectrum. However, this new setup brought forth
the problem of laser power. In fact, the optical setup is extremely efficient in tightening
the laser spectrum but at the cost of a big emission power loss. This loss could mean
that when we will try to place the atoms under the ring trap, they will escape it because
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the trap is too shallow. However, the trapping potential does not only depend on the
laser power, but also on the atom’s polarizability that, since we are working extremely
close to resonance, should be really high. The loss in laser power could then be amply
compensated by this polarizability. Since the polarizability of dysprosium at 404 µm is
still not a tabulated quantity, we did a measurement of it ourselves. What we found is
shown in figure 3.28, where our experimental findings are compared to our theoretical
predictions for both the scalar and tensorial part of the polarizability. The theory stands
above the experimental values by circa a factor of 3 over the whole range of wavelength
that we investigated. This factor of three could come into play when we will try to trap the
atoms inside the ring. This is because, if we use a waist for the blue beam that is around
30 µm and a laser power on the atomic plane of about 0.5 mW, then if the theoretical
predictions are correct and the polarizability is around 104 au, the achievable potential
depths will be around 500 nK. This is definitely more than the chemical potential of
our system and enough to trap the atoms. However, if the experimentally determined
values for the polarizability are actually correct, then the polarizability will be around
3× 103 and the trapping depth becomes a factor of three less we might not be able to
trap the atoms. Right now this disagreement between the experimental and theoretical
values for the polarizabilities seems to come from a systematic error on the beam’s waist
measurement in the atomic plane that could come from an error on the calibration of the
imaging’s magnification. Future checks will be concentrated on this.
A low value of the polarizability can be compensated by increasing the laser power. To
do this we also realized a master-amplifier configuration to work with a single mode laser
but with higher power. We also employed this new setup to make measurements of the
polarizability and found similar results to the one we found with just the master laser.
Regarding the measurement of the polarizability, in the future when the DMD will be
on the atoms we will be able to employ it to realize a trapping potential for the atoms
made with our repulsive blue light. This will allow us to make measurements of the
polarizability in the standard way employed for attractive potentials, that is, to measure
dipole oscillations inside the trap. In this way we will be able to compare the result with
the one we already got and see if they match.

The next steps we will make towards the trapping of our degenerate gas in the ring
potential will be dynamical simulations to find the right potential to phase imprint angular
momentum both to the superfluid and the supersolid, the experimental realization of a
light sheet potential to trap the atoms in the vertical direction and sustain them against
gravity and a new scheme for the imaging to implement the DMD on our system.
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Gabbanini, Russell N Bisset, Luis Santos, and Giovanni Modugno. Observation of a
dipolar quantum gas with metastable supersolid properties. Physical Review Letters,
122(13):130405, 2019.
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