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Introduction

In the context of new emerging quantum technologies, Josephson junctions
represent a powerful experimental tool which allows to investigate macro-
scopic quantum phenomena associated with condensed states [1], occurring
together with spontaneous symmetry breaking [2]. These devices are made up
by two superconducting metals, weakly coupled by a thin insulating barrier
that allows for quantum tunneling [3]. In solid state physics, superconducting
Josephson junctions are widely investigated by injecting an external current;
the unique transport properties of the device due to tunneling of Cooper pairs
are deeply connected with the system’s macroscopic wave function Ψ, which
behaves as the order parameter of the superconductive phase transition [4].
Dissipationless (i.e. non-resistive) currents are observed to flow inside these
systems, being merely sustained by the relative phase difference ϕ = ϕ1 − ϕ2
between the order parameters associated with the two superconductors [5].
Another noteworthy platform employed for the creation of modern quantum
technologies is represented by quantum gases, which can be experimentally
realized through laser cooling and trapping processes. They enable quantum
simulations of complex many-body systems [6] as well as the realization of
ultra-precise atomic sensors [7]. Quantum gases are characterized by key prop-
erties that make them particularly appealing for exploring quantum physics:
controllable interactions, strong decoupling from the environment, long life-
times and a large variety of experimental probes. Regarding the first property,
the application of external magnetic fields B has been extensively employed
in order to exploit Feshbach resonances, where interparticle interactions can
be tuned as desired by changing the value of the s-wave scattering length a,
a parameter which characterizes the interaction’s strength both in bosonic
and fermionic systems [8, 9]. Nonetheless, ultracold Fermi gases present a
unique phenomenology, not observed in Bose gases. In fact, these systems run
through three different interaction regimes while sweeping the value of external
magnetic fields [10]: the weakly-repulsive regime where atoms bound together
in bosonic molecules (BEC gas), the weakly-attracting regime made-up of
Cooper pairs (BCS gas) and the strongly-interacting fermionic regime (UFG),
where interactions are the strongest allowed by nature and the system presents
universal properties, regardless of the particle’s nature. This phenomenon is
known as the BEC-BCS crossover, and has been widely investigated both
in theory and experiments [11, 12, 13, 14, 15]. Moreover, the presence of
modern technologies such as spatial light modulator devices (SLMD) allows
to entrap quantum gases within controllable geometries, where the parame-
ters and shape of the trapping potential can be tuned as desired [16, 17]. In
particular, it is possible to realize an analogue of the superconducting Joseph-
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son junction for a system of ultracold atoms: the so-called atomic Josephson
junction, where the superfluid is separated into two distinct reservoirs by an
optical barrier, thin enough so that particles can tunnel through it [18]. Many
physical phenomena typical of the superconducting Josephson junction have
been reproduced in the superfluid variant: the Josephson DC effect, where the
application of a direct current generates a non-resistive current which flows
inside the junction until the critical current Ic is overcome [19, 20], or the AC
Josephson effect, where particles coherently oscillate in time from one side to
the other of the device together with the relative phase ϕ [12, 21, 22, 23, 24].
The correspondence between superconducting and superfluid Josephson junc-
tions is not exactly perfect: in fact, the atomic version also presents unique
phenomena, not observed in the solid-state version. One noteworthy example
is represented by the macroscopic quantum self-trapping (MQST), manifes-
tation of the bosonic nature of the condensate, where Josephson oscillations
centered around a non-zero value of the particle imbalance ∆Z are measured
[25, 26]. On the other hand, in superconducting devices the application of an
alternating current or radio-frequency allows to observe a peculiar structure in
the ∆V -I characteristic of the junction: due to a synchronization between the
applied frequency and the AC Josephson current, this curve presents regions
having constant voltage drop ∆V for increasing current (plateaus), connected
by almost discontinuous voltage jumps [27]. The step-like structure which
forms is known in physics literature as Shapiro steps: these jumps are pre-
dicted to occur at voltages proportional to the injected current’s frequency ν,
through an integer n, according to ∆VS = nνh/2e [28]. Shapiro steps pro-
vide an exact conversion from frequency to voltage: because the frequency
can be measured with very high precision, this effect is used as the basis of
the Josephson voltage standard [29, 30]. Their occurrence has been recently
predicted for periodically driven superfluid Josephson junctions when displac-
ing a thin optical barrier through a modulated trajectory, in order to induce
an AC driving [31]. The goal of this thesis is the study of Shapiro steps in
atomic Josephson junctions, where the superfluid reservoirs are constituted by
ultracold 6Li fermionic atoms in the weakly-repulsive regime of the BEC-BCS
crossover. In such an experimental system the application of an external al-
ternating current I(t), which permits to probe these structures, represents a
difficult task: the employment of a digital micro-mirror device (DMD) allows
for the realization of such atomic currents, together with the optical poten-
tial and the thin insulating barrier constituting our superfluid junction. This
thesis work is organised as follows:

1. In Chap. 1 we will provide an introduction to the physics of ultracold
Fermi gases, focusing on their statistical properties. We start by deal-
ing with the ideal Fermi gas, together with the case of confinement due
to an external trapping potential VT (r⃗); interparticle interactions are
subsequently introduced, in order to discuss the BEC-BCS crossover
resonance. We will also make a brief analysis of the phenomenon of su-
perfluidity, introducing Landau’s criterion and the concept of quantized
vortices. This chapter is concluded with a discussion on the Joseph-
son effect, both in the superconducting and superfluid case, in order to
present the various analogies between them. In particular, we introduce
the main circuital models employed for the study of real Josephson junc-
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tions (RSJ and RCSJ), where the relative phase dynamics is described
by the tilted washboard potential analogy: the presence of Shapiro steps
in the ∆µ − I characteristic of the device can be easily understood in
this context.

2. The purpose of Chap. 2 is to introduce the experimental setup, together
with the preliminary calibration procedure necessary for characterizing
the thin Josephson barrier’s properties. Initially, we will review the
exact procedure followed in order to operatively realize the ultracold
6Li Fermi gas, together with the corresponding experimental apparatus
employed: the absorption imaging system is also presented in this part.
We also discuss the working principle of the digital-micro mirror device
(DMD), which allows to realize the atomic Josephson junction within
the desired trapping geometry. In particular, in this thesis work we have
opted for a hybrid confinement, where a rigid rectangular box traps
the atomic cloud along the x-y plane, while along the vertical direction
z an harmonic confinement is employed. We calculate the remarkable
physical quantities (Fermi energy EF , chemical potential µ, speed of
sound cs) describing a Fermi gas trapped within this geometry. Finally,
we conclude the chapter by presenting the calibration procedure for the
optical barrier’s height: an estimate of its value V0 allows to determine
whether or not the junction is in the Josephson regime (V0/µ > 1), where
transport phenomena occur due to tunneling events.

3. In Chap. 3 we report the measurements characterizing our elongated
Josephson junction, consisting in a 125 × 17.5µm2 box in the x-y plane
realized through a repulsive optical dipole trap. We start with an analy-
sis of the propagation of the sound modes inside the device, operatively
excited by compressing one side of the junction: these perturbations are
predicted to move within the junction at the speed of sound cs. We will
also present how the DMD allows to generate a direct atomic current
within our junction, by displacing the optical barrier at a constant speed
v0. Afterwards, we discuss the coherent oscillations in time between the
relative phase ϕ and the number of particles between the two superfluid
reservoirs: their observation confirms that we are undoubtedly work-
ing with a device where the Josephson effect occurs. Finally, we will
present and comment the measurements of the Josephson DC and AC
effects, carried out by varying the horizontal length of the system and
the intensity of the trapping laser. In this analysis we also extract the
behaviour of some remarkable quantities, namely the critical current Ic

and the Josephson oscillation frequency νj , as a function of the former
parameters.

4. Finally, Chap. 4 is dedicated to reporting the measurements related to
the Shapiro steps, carried out inside our atomic Josephson junction. A
preliminary section presents how it is possible to generate a tunable
alternating current I(t) inside our microscopic device: in fact, this per-
turbation is necessary in order to observe the Shapiro steps phenomena.
We will also study the behaviour of the chemical potential difference ∆µ
during the displacement of the thin optical barrier in time, carried out
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via a rectilinear trajectory modulated by a periodic function. The mea-
surements of the Shapiro steps are then reported, where the behaviour
of the steps is analyzed as a function of the driving frequency ν: we ex-
pect, by analogy with the superconducting case, that this phenomenon
occurs when the chemical potential jumps by ∆µS = nhν. We will also
measure the number of quantum vortices observed at the end of the bar-
rier’s movement, as a function of its velocity v0, in order to relate vortex
nucleation with the emergence of Shapiro steps inside our superfluid
junction. Finally, this thesis is concluded with the brief presentation
of a measurement performed in the strongly-interacting Unitary regime,
to demonstrate that the phenomenology of the Shapiro steps does not
depend on the particular interaction regime considered: in particular,
we show again that the step’s height depends only on the modulation
frequency ν.
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Chapter 1

Ultracold Fermi gases and
Josephson effect

This chapter is devoted to the introduction of basic concepts regarding the
statistical properties of low-temperature Fermi gases and their collisional be-
haviour, together with a treatment of superfluidity in fermionic systems and
Josephson effect in ultracold gases. These theoretical tools will provide a useful
asset in order to understand the dynamics of the physical system considered
in this thesis, consisting of a 6Li ultracold gas trapped within a repulsive
optical potential. In Secs. 1.1 and 1.2 we will recall the key features of a
non-interacting (collisionless) Fermi gas, respectively in the free-particle case
and for a spatially confined gas, the latter obtained via the application of
an external trapping potential VT (r⃗) onto the atomic cloud. A description
of the interacting Fermi gas at low temperature will be given in Sec. 1.3, to-
gether with the introduction of magnetic Feshbach resonances, an invaluable
tool which permits us to manipulate the interparticle interactions in the cloud.
In ultracold Fermi gases, the interaction tunability allows us to explore the
so-called BEC-BCS crossover, in which single atoms couple together to form
a pair, its physical properties depending on the nature of the collisions. This
is discussed in Sec. 1.4. An introduction of superfluidity phenomena will be
provided in Sec. 1.5, where Landau’s criterion for superfluidity and the emer-
gence of quantized vortices in rotating superfluids will be analyzed. Finally,
Sec. 1.6 will be devoted in presenting the Josephson effect, both in supercon-
ductors and atomic condensates, together with its main circuital models (RSJ
and RCSJ): we conclude this chapter by discussing the emergence of Shapiro
steps in the ∆V − I characteristic, which occurs when an alternating cur-
rent I(t), modulated at a certain frequency ν, is injected within a Josephson
junction.

1.1 The ideal Fermi gas
The best context in which to discuss the quantum statistical properties of the
non-interacting Fermi gas is the grand canonical ensemble, where calculations
turn out to be straightforward. We recall that the probability to realise a
configuration with N particles in a state of momentum ℏk, with associated
energy Ek, is [32]:

PN (Ek) = e−β(Ek−µN) (1.1)
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where β is 1/kBT , µ is the chemical potential of the reservoir with which the
system is in thermal equilibrium, and T is its temperature. For a free particle,
the relation between the energy and the wave vector k is simply given by:

Ek = ℏ2k2

2m (1.2)

Since we are working in the grand canonical ensemble, the total number of
particles is not fixed, and we can write the partition function of the gas as:

Z =
∞∑
N

∑
{nk}

e−β
∑

k
(Ek−µ)nk (1.3)

where we used that N =
∑

k nk. The sum over {nk} corresponds to the
sum over every configuration for which the relation

∑
k nk = N is satisfied,

with fixed N . In order to extract the average occupation number of the state
associated with the energy Ek from Eq. (1.3), we invoke the most striking
feature about fermions: the Pauli exclusion principle. Since we can only
accommodate at most one particle for each quantum state, the calculation of
the partition function Z is greatly simplified. The average occupation number
⟨nk⟩F of a fermionic state with wave vector k is found out to be [13]:

⟨nk⟩F = 1
eβ(Ek−µ) + 1

(1.4)

In order to investigate the behaviour at zero temperature, we take the limit
for T → 0 of Eq. (1.4). The occupation number then takes the simple form:{

⟨nk⟩F = 0 for Ek > µ

⟨nk⟩F = 1 for Ek < µ
(1.5)

Therefore, the energy levels of the ideal Fermi gas at zero temperature are
fully occupied up to an energy of µ. This defines a typical energy scale known
as the Fermi energy EF , which is the highest energy available for a particle of
the gas. For non-interacting particles, we simply have:

EF = µ (1.6)

and the Fermi energy is exactly equal to the chemical potential of the system.
The distribution function corresponding to the occupation number reported
in Eq. (1.4) is shown for different temperatures in Fig. (1.1): by increasing
the system’s temperature above zero higher energy levels start to be thermally
occupied, and the T ̸= 0 distributions show a smoother trend around µ with
respect to the T = 0 case, where the energy distribution is represented by
the step function reported in Eq. (1.5). If we finally take into account the
spin quantum number S then each energy level will be occupied a number of
times equal to the multiplicity of the spin, gs = (2S+ 1). The total number of
atoms con be written in terms of the average occupation number of Eq. (1.4)
as follows:

N = gs

∑
k

⟨nk⟩F (1.7)
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Figure 1.1: Plot of the Fermi distribution for different temperatures. The
smooth region for T ̸= 0 near the Fermi energy has a typical width
of order of kBT . The T = 0 curve has the behavior predicted by
Eq. (1.5); a step function, centered on Ek = µ.

If we now impose periodic boundary conditions on the single particle wave
function, the sum in Eq. (1.7) approaches the integral in the k-space when
V → ∞, where V is the volume containing the system [33]:

N = gsV

(2π)3

∫
R3

d3k

eβ(E(k)−µ) + 1
= gsV

(2πℏ)3

∫
R3

d3p

eβ(E(p)−µ) + 1
(1.8)

where we wrote the integral of Eq. (1.8) in momentum space using the relation
p = ℏk. For an ideal Fermi gas of free particles, in the absence of a trapping
potential, the occupation number reported in Eq. (1.4) does not depend on
the particle position, but only on its momentum.

1.2 Non-interacting Fermi gas in a trapping poten-
tial

The presence of an external trapping potential inevitably affects the statistical
properties of an ideal Fermi gas. In what follows we will extend the results of
the previous section by considering a generic trapping potential VT (r⃗), which
depends only on the particle position. If the thermal energy kBT is much
larger than the spacing between the quantum mechanical energy levels E,
solutions of the eigenvalue equation:(

p2

2m + VT (r⃗)
)

|E⟩ = E|E⟩ (1.9)

then the occupation of a phase space cell {r⃗, p⃗} is given by the following
expression [13]:

f(r⃗, p⃗) = 1

eβ( p2

2m +VT (r⃗)−µ) + 1
(1.10)
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The density distribution of the gas can be written in terms of the function
f(r⃗, p⃗) of Eq. (1.10) as follows:

n(r⃗) =
∫
R3

d3p

(2πℏ)3 f(r⃗, p⃗) = − 1
λdB

Li3/2

(
−eβ(µ−VT (r⃗))

)
(1.11)

where Liz(n) is the polylogarithm of order n in the variable z, defined as:

Liz(n) = 1
π2

∫
d2nr

er2/z − 1
(1.12)

while λdB is the de Broglie thermal wavelenght:

λdB =

√
h2

2πmkBT
(1.13)

The total number of particles N is finally given by the following integral:

N =
∫
R3

d3r n(r⃗) (1.14)

The de Broglie thermal wavelength λdB, introduced in Eq. (1.13), represents
an important length scale in quantum physics as it allows to establish the
importance of quantum effects in a gas. In fact, the regime of quantum de-
generacy sets in when λdB ≈ d, where d is the mean interparticle spacing:
for non-interacting Fermi gases this phenomena happens for T ≈ TF , where
TF = EF /kB is the Fermi temperature. If the cloud’s temperature is smaller
than TF the wave functions of nearby particles overlap, and collective effects
due to the statistics become dominant. The gas has to be described in terms
of quantum statistics, the Fermi-Dirac or the Bose-Einstein, depending on the
nature of the system. On the other hand, for temperatures much higher than
TF , we have λdB << d and the gas must be treated as a classical one, being
described by the Maxwell-Boltzmann distribution. The temperature at which
this phenomena sets in is also known as the degeneracy temperature Tdeg, and
can be calculated from Eq. (1.13) as follows:

Tdeg = n2/3h2

2πmkBT
(1.15)

where n = N/V is the mean density of the gas, which fixes the value of the in-
terparticle distance d = n−1/3. Typical values of the degeneracy temperature
in ultracold atoms experiments are around 1µK. In this range of temper-
atures, for fermions, the occupation of available phase space cells smoothly
approaches unity without any sudden transition [13]: lim

T → 0
f(r⃗, p⃗) = 0 for p2

2m + VT (r⃗) > µ

lim
T → 0

f(r⃗, p⃗) = 1 for p2

2m + VT (r⃗) < µ
(1.16)

The density profile then assumes the following expression:

n(r⃗) = gs

(2πℏ)3

∫
|p⃗|<

√
2m(µ−VT (r⃗))

d3p = gs(2m(µ− VT (r⃗))2/3)
6π2ℏ3 (1.17)
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where we kept into account the spin degeneracy factor gs. If the trapping
potential is a slowly varying function of the position, we can individuate inside
the trap a set of volumes small enough for VT (r⃗) to be constant inside of
them, where all the thermodynamic quantities are well-defined. Under such
assumption, the inhomogeneous system is approximated as the sum of locally
homogeneous systems. This is known as the local density approximation. For
the non interacting trapped Fermi gas we can then define the following local
Fermi energy ϵF (r⃗), in order to keep into account the spatial dependence of
the trapping potential VT (r⃗):

ϵF (r⃗) = µ− VT (r⃗) = EF − VT (r⃗) (1.18)

where EF is the trap averaged Fermi energy. We want to stress out that,
even in the presence of an external potential, Eq. (1.6) is still valid in the
non-interacting case. The presence of interactions between the particles of the
gas may change the relation between the chemical potential µ and the trap
averaged Fermi energy EF . By substituting Eq. (1.18) inside the expression
for the spatial density reported in Eq. (1.17), we find the following relation for
the local Fermi energy:

ϵF (r⃗) = ℏ2

2m

(6π2n(r⃗)
gs

)2/3
(1.19)

In a particular position r⃗ of the trap, the highest available momentum for a
particle of the gas is the local Fermi momentum kF (r⃗), which is related to the
local Fermi energy by the relation:

pF (r⃗) = ℏkF (r⃗) =
√

2mϵF (r⃗) (1.20)

We can compare the local Fermi energy ϵF (r⃗) with the thermal energy kBT
at finite T < TF , in order to study the cloud shape and its temperature inside
the trap. For the outer regions in the trap, where kBT >> ϵF (r⃗), the gas
shows a classical density distribution:

n(r⃗) ∝ e−βV (r⃗) (1.21)

while in the inner part of the cloud where kBT << ϵF (r⃗) the density is of the
zero-temperature form:

n(r) ∝ (EF − VT (r⃗))2/3 (1.22)

The polylogarithm function defined in Eq. (1.12) smoothly interpolates be-
tween the classical regime and the quantum one. We conclude that, for thermal
clouds with temperature above TF , a measurement of the cloud’s size allows
to probe directly the value of its temperature, while for cold Fermi clouds one
needs to extract the temperature from the shape of the distribution’s wings,
since the density profile reported in Eq. (1.22) does not depend on tempera-
ture [13]. The general discussion provided in this paragraph is valid for any
external trapping potential VT (r⃗) acting on the atomic cloud. In Sec. 2.3 we
will show how to calculate the Fermi energy EF and the chemical potential
µ of the cloud for the particular trapping geometry employed in our measure-
ments, after discussing how the realization of an hybrid potential (different
confinements along the vertical direction z and along the x-y plane) is carried
out in the experiment (Secs. 2.1 and 2.2).
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1.3 Interacting Fermi gases at low temperatures
Interparticle interactions in ultracold atom systems are responsible for a wide
variety of interesting phenomena. On the one hand, interactions are necessary
in order to achieve the superfluid state, as they are responsible for the presence
of collective modes in the excitation spectrum that allows for superfluidity [32].
On the other hand, some experimental techniques actually need the presence
of interactions: the process of evaporative cooling (App. A.2) exploits collisions
between atoms in order to thermalize the system at very low temperatures.
In this section we will discuss about interparticle interactions in the general
framework of quantum scattering theory, along with an introduction on Fesh-
bach resonances: the latter phenomena represents a powerful tool in ultracold
atom experiments, as it allows to finely tune interactions within many-body
systems.

1.3.1 Low-energy scattering theory

Since we are dealing only with neutral systems, the dominating interaction
is the attractive Van der Waals force between atomic dipoles. These forces
are usually described in terms of a Lennard-Jones (L-J) potential, which also
keeps into account the repulsive Coulomb interaction between the electronic
clouds:

V (r) = −C6
r6 + C12

r12 (1.23)

where C6 and C12 represent opportune coefficients, while r is the distance
between the atoms. The spatial profile of this potential is shown below in
Fig. 1.2.

Figure 1.2: Lennard-Jones potential as a function of the atoms distance r.
The equilibrium position (minima of potential) is given by rmin,
while −ε is the potential depth. Figure taken from [34].
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The interaction range associated with the L-J potential reported in Eq. (1.23)
constitutes a typical length scale, and will be denoted as r0. The gas is said
to be dilute when:

r0 << d (1.24)

a condition well fulfilled by ultracold quantum gases obtained by means of
evaporative cooling techniques. In the notable case, for the present thesis,
of a 6Li ultracold gas, we obtain r0/d ≈ 2.5 · 10−3, such that the condition
reported in Eq. (1.24) is satisfied. The diluteness condition allows one to
consider only configurations involving two-body collisions, safely neglecting
interactions between three or more particles [32]. We can therefore study
scattering phenomena by considering two identical atoms, interacting only
through the two-body interaction potential of Eq. (1.23). Using center-of-
mass and relative variables, the total Hamiltonian can be written as a sum of
two commutating terms:

H = P 2
CM

2M + p2

2m′ + V (r) = HCM +Hr (1.25)

where M = 2m is the total mass, m′ = m/2 is the reduced mass, while PCM

is the center-of-mass momentum and p is the relative momentum. Since the
center-of-mass Hamiltonian HCM = P 2

CM/2M only describes the propagation
of a free particle, the collision dynamics is entirely contained in the relative
motion, described by Hr = p2/2m + V (r). The problem of collision between
two particles is then reduced to a problem of scattering of a single particle of
mass m′ with an interaction potential V (r). The two-body wave function, so-
lution of the Schrödinger equation for the Hamiltonian reported in Eq. (1.25),
can be thus factorized as:

Ψ(R⃗CM , r⃗) = ψ(r⃗) eiP⃗CM ·R⃗CM /ℏ (1.26)

where R⃗CM is the center-of-mass coordinate. If we impose a well defined
incident positive energy E = ℏ2k2/2m′, the Schrödinger equation takes the
following form: (ℏ2∇2

2m′ + ℏ2k2

2m′

)
ψ(r⃗) = V (r⃗)ψ(r⃗) (1.27)

Eq (1.27) can be solved formally by introducing the outgoing Green’s function,
which satisfy the relation:

(∇2 + k2)G†(r⃗ − r⃗ ′) = δ(r⃗ − r⃗ ′) (1.28)

By substitution of Eq. (1.28) into Eq. (1.27) we arrive at the Lippmann-
Schwinger integral equation:

ψ(r⃗) = ϕ0(r⃗) + 2m′

ℏ2

∫
d3r⃗ ′G†(r⃗ − r⃗ ′)V (r⃗ ′)ψ(r⃗ ′) (1.29)

where ϕ0(r⃗) is the solution of Eq. (1.27), obtained in the absence of an in-
teraction potential. The asymptotic solution of Eq. (1.29), very far from the
collision region, can be written as [35]:

ψ(r⃗) ∝ eik⃗·r⃗ + f(θ,k) e
ik⃗·r⃗

r
(1.30)
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In Eq. (1.30) the plane wave represents the wave function of the incoming
particle, while the spherical wave represents the scattered wave function due to
the presence of the interaction potential V (r). This second term is multiplied
by the scattering amplitude f(θ,k), which represents the probability for the
particle to be scattered at an angle θ with respect to the incoming direction.
Since we are dealing only with elastic collisions, where energy conservation
holds, the wave vector k of the incoming particle does not change in magnitude
but only in direction. The scattering amplitude is related to the differential
cross section by the following:

dσ

dΩ = |f(θ,k)|2 (1.31)

where Ω is the solid angle. We can expand both the incoming and the scattered
wave functions on the spherical harmonics basis:

ψ(r⃗) =
∞∑

l=0

l∑
m=−l

Y m
l (θ, ϕ)uk,l,m(r)

r
m=0=

∞∑
l=0

Y 0
l (θ)uk,l,0(r)

r
(1.32)

where in the second passage we have taken into account the spherical symmetry
of the Lennard-Jones potential (see Eq. (1.23)), by imposing m = 0. If we
employ the expansion reported in Eq. (1.32) on the system’s wave function,
we obtain the following radial Schrödinger equation:(

d2

dr2 + k2 − l(l + 1)
r2 − 2m′

ℏ2 V (r)
)
uk,l,0(r) = 0 (1.33)

where an extra term, the centrifugal barrier ℏ2l(l + 1)/2m′r2, is added to the
interaction potential. We can calculate the scattering amplitude f(θ,k) from
the scattered wave function reported in Eq. (1.30) by substituting Eq. (1.32),
obtaining the following expression:

f(θ,k) = 1
k

∑
l

(2l + 1)Pl(θ)eiδl(k) sin (δl(k)) (1.34)

where Pl(θ) =
√

4π
2l+1Y

0
l (θ), while δl(k) is the phase shift imprinted on the

scattered wave function by the collision. In order to write down the total cross
section σ from Eq. (1.31), we must keep into account the indistinguishability of
the particles, which is mandatory if we want to describe a real Fermi gas. We
recall that, for fermions, the Pauli exclusion principle must hold, and therefore
the total wave function describing a system of two identical fermionic particles
must be anti-symmetric under the exchange of a complete set of quantum
numbers. If we ignore the spin degree of freedom, this condition reads:

ψ(r⃗1, r⃗2) = −ψ(r⃗2, r⃗1) (1.35)

This property implies that two different collisions between identical particles,
resulting in final scattering angles of θ and θ + π respectively, are indistin-
guishable events, as shown in Fig. 1.3.
The scattered wave function thus assumes the following anti-symmetrized
form:

ψ(r⃗) ∝ 1√
2

[(
eik⃗·r⃗ + f(θ, k⃗) e

ik⃗·r⃗

r

)
−

(
eik⃗·r⃗ + f(θ + π, k⃗) e

ik⃗·r⃗

r

)]
(1.36)
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Figure 1.3: Two scattering processes, yielding the same final state after the
collision of identical particles.

The differential cross-section is anti-symmetrized as well:

dσ

dΩ = 1
2

∣∣∣∣f(θ,k) − f(θ + π,k)
∣∣∣∣2 (1.37)

We can obtain the total cross-section for the scattering of identical fermions
by integrating Eq. (1.37) with respect to the solid angle Ω:

σF = 8π
k2

∑
l odd

(2l + 1) sin (δl(k))2 (1.38)

so that the anti-symmetry property of the total wave function causes the
presence of only odd l contributions to the total scattering cross-section. This
implies that, at low temperature, interactions between identical fermions are
suppressed. In fact, the centrifugal term in Eq. (1.33) inhibits collisions for
l > 0 of the low energy incoming particles, so that only the s-wave scattering
(l = 0) is permitted. As a consequence, cold identical fermions do not interact
with each other as the s-wave scattering is suppressed by statistics, while
higher angular momentum collisions are prevented by the low-energy scale of
the system. To evaporatively cool fermionic samples, two different hyperfine
states have to be employed so that collisions between fermions in opposite
spin state can cause thermalization of the sample. Therefore, from now on,
we will consider scattering processes to happen between fermions in different
spin state, the interactions of which are not suppressed by statistic. We can
write the asymptotic solution of Eq. (1.33) as follows:

u k,0,0(r) ≈ sin (kr − δ0(k)) (1.39)

In the low-energy limit, the scattering amplitude f(θ,k) reported in Eq. (1.34)
tends to a constant value, independent of both the particle energy E and the
scattering angle θ [32]:

f(θ)E → 0 = −a (1.40)

where we introduced the s-wave scattering length a, defined as:

a = − lim
k→0

tan (δ0(k))
k

(1.41)

As we discussed before, in the fermionic case, the low-energy scattering cross
section σF tends to zero for identical particles. On the other hand, if we
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consider a Bose gas at low temperatures, with the same calculations we find
the following result:

σB = 8πa2 (1.42)

which again is independent of energy. The low energy scattering process is
therefore fully described by a single parameter: the s-wave scattering length
a, even for fermionic systems. In cold atom systems, the scattering length is
typically orders of magnitude larger than the Lennard-Jones potential range
r0, allowing for the approximation of interatomic interactions with a contact
potential:

Vp(r) = 4πℏ a
m

δ(r) (1.43)

where δ(r) is the Dirac delta function. The interaction potential reported in
Eq. (1.43) describes attractive interactions for a < 0, while repulsive interac-
tions correspond to a > 0.

1.3.2 Magnetic Feshbach resonances

In the absence of external fields, the value of the s-wave scattering length is
fixed for a certain atomic species, and it only depends on the details of the
interatomic potential shown in Eq. (1.23). Let us consider a generic scattering
event between two particles, A and B:

A+B → A′ +B′ (1.44)

with final products A′ and B′. The combination of the atomic species and
the quantum numbers of the particles before and after the collision event is
referred to as a scattering channel. A particular channel is said to be open if
it is energetically accessible, while is referred to as closed when prohibited by
means of energy conservation. If we have two particles in the open channel
which mutually interacts via a potential Vbg(r), their total energy E is:

E = T + Vbg(r) + ∆(P) (1.45)

where T is the total kinetic energy in the relative frame, ∆(P) is the contri-
bution to E due to couplings with an external field P, and r is the relative
coordinate. Consider now a second channel associated with the potential Vc(r),
closed for large values of r, which admits a certain bound state with energy
Ed. When the energy in the open channel of Eq. (1.45) is resonant with the
energy of the bound state, as shown in Fig. 1.4, a Feshbach resonance occurs,
namely for:

Ed ≈ T + Vbg(r) + ∆(P0) (1.46)

where P0 is the field value which satisfy Eq. (1.46). In ultracold atom systems,
the interaction potential between two particles depends on the spin configu-
ration. For alkali atoms we can identify the open channel, populated before
the scattering event, with the singlet state, while the triplet state corresponds
to the closed channel. These states will, in general, have a different magnetic
momentum υ, such that the presence of an external magnetic field B causes a
relative energy shift of ∆υB with respect to the zero-field case. If Eq. (1.46)
is satisfied for a certain value of the magnetic field B0 the s-wave scattering
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Figure 1.4: Feshbach resonance between open (black) and closed (red) chan-
nels, for a low-energy collision process.

length a diverges, giving rise to a Feshbach resonance. Close to a resonance,
the scattering length depends on the magnetic field B as:

a(B) = abg

(
1 − ∆B

B −B0

)
(1.47)

where abg is the scattering length at zero field (background scattering length),
while ∆B is the resonance width and B0 is the resonance center. The behavior
described by Eq. (1.47) is plotted in Fig. 1.5; the application of an external
magnetic field thus reflects on the value of the s-wave scattering length a,
which can diverge (strongly interacting gas), change sign, or even go to zero
(non-interacting gas).

Figure 1.5: Scattering length a as a function of the applied magnetic field B.
A divergence is expected at the resonance center B0, where the
Feshbach resonance occurs.

We want to stress out that, in spite of the divergence of the parameter a, no
physical quantity associated with the scattering event actually diverges. For
example, the total scattering cross section for identical fermions in different
spin states becomes:

σ ≈ 8πa2

1 + k2a2
a → ∞−→ 8π

k2 (1.48)
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and the interparticle interactions are the strongest possible.

1.4 BEC-BCS Crossover and Unitary Fermi gas
As discussed in the previous section, Feshbach resonances represent a power-
ful tool for modulating and controlling interactions in ultracold atoms exper-
iments. Their most spectacular application in quantum Fermi gases is that
they allow for the exploration of the so called BEC-BCS crossover, where the
tunability of the scattering length a plays a fundamental role; another key
parameter which characterizes the nature of interactions in these systems is
the Fermi wave vector kF , defined in Eq. (1.20). Under a certain critical tem-
perature T ∗ a coupling between atoms in different spin states emerges, with
different behavior across the resonance. The result is the creation of an atom
pair, which size and nature depend on the parameter 1/(kF a).

1.4.1 BEC Regime

Interactions are weak and repulsive when the Fermi wave vector kF and the
s-wave scattering length a satisfy the following condition:

1/(kf a) >> 1 (1.49)

In this regime, when the temperature is lower than the coupling critical tem-
perature T ∗, atom pairs in the gas form tightly-bound molecules, the binding
energy of which depends on the scattering length as follows:

Eb = − ℏ2

ma2 (1.50)

For temperatures below a second critical temperature, Tc < T ∗, the molecular
gas undergoes Bose-Einstein condensation (BEC). The many-body wave func-
tion of the condensate, which describes the ground-state of the system, is the
solution of the Gross-Pitaevskij mean field equation [13]:(

−ℏ2∇2

2m + VT (r⃗) + g|ψ(r⃗, t)|2
)
ψ(r⃗, t) = iℏ

dψ(r⃗, t)
dt

(1.51)

where VT (r⃗) represents the trapping potential, while g is a parameter charac-
terizing intermolecular interactions:

g = 4πℏ2aM

M
(1.52)

where M = 2m is the mass of a pair, while aM ≈ 0.6 a is the scattering length
of the molecular gas. Eq. (1.51) is valid only for a weakly interacting gas, for
which nMa3

M << 1. At equilibrium the ground-state wave function takes the
following form:

ψ(r⃗, t) = ψ(r⃗)e−iµM t/ℏ (1.53)

where ψ(r⃗) is the stationary (i.e. time independent) solution of Eq. (1.51),
while µM is the molecular gas chemical potential, which can be identified with
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the energy of the ground state. The stationary solution ψ(r⃗) is related to the
total number of atoms N by the following normalization condition:

N =
∫
R3

|ψ(r⃗)|2d3r (1.54)

such that we can write the cloud density as n(r⃗) = |ψ(r⃗)|2. We can distinguish
between two noteworthy regimes:

1. Ideal gas limit, where gn << −ℏ2∇2/2m+ VT (r⃗) and the density distri-
bution n(r⃗) is the same as the non-interacting case.

2. Thomas-Fermi limit, in which gn >> −ℏ2∇2/2m + VT (r⃗). From the
Gross-Pitaevskij Eq. (1.51) and its stationary solution (Eq. (1.53)) we
can calculate the density profile n(r⃗) of the cloud, neglecting the kinetic
term:

n(r⃗) = M(µ− VT (r⃗))
4πℏ2aM

(1.55)

From Eq. (1.55) we see that, if the trapping potential is of the an harmonic
oscillator type, (VT (r⃗) ∼ 0.5mω2r2), then the cloud density profile is predicted
to be parabolic. An important quantity which can be defined in the context
of Bose-Einstein condensates, starting from considerations regarding its quasi-
particle spectra [32], is represented by the healing length ξ:

ξ = ℏ√
2Mµ

(1.56)

The reciprocal of the healing length ξ quantifies the value of the wave vec-
tor k for which the dispersion law of quasi-particles transitions from a linear
phononic branch E(k) ∝ k to a parabolic law E(k) ∝ k2. The healing length
represents the minimum distance over which the order parameter of the BEC,
i.e. its macroscopic wave function Ψ0 (see Eq. (1.74)), can adjust to changes in
the external potential VT (r⃗): in other words, it estimates the spatial extension
of the condensate’s wave function.

1.4.2 BCS Regime

Interatomic interactions are weak and attractive if the following condition
holds:

1/(kf a) << −1 (1.57)

In this regime, under the critical temperature Tc atoms bound together to
form Cooper pairs; at the same temperature, the system also undergoes a
phase transition to the superfluid state, becoming a BCS gas. Similarly to the
non-interacting case, discussed in Secs. 1.1 and 1.2, the chemical potential µ
of a BCS superfluid is approximately equal to its Fermi energy EF [13]:

µ ≈ EF (1.58)

This is a consequence of the fact that only a small fraction of particles around
the Fermi sphere with momentum k ∼ kF =

√
2mEF /ℏ is actually involved in

the pairing. When the Cooper instability sets in and Cooper pairs proliferate
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in the system an energy gap ∆ appears in the excitation spectrum of the Fermi
sea, which decreases exponentially with the interaction strength [13]:

∆ = 8
e2EF e

π/2kF a (1.59)

and represents a phenomenological estimate of the pair’s binding energy. The
critical temperature Tc also depends in a similar way on the scattering length
[36]:

Tc

TF
= 0.28 eπ/2kF a (1.60)

We stress out that, since the lowest accessible temperatures are of order of
T/TF ∼ 0.1, it is experimentally impossible to prepare a weakly interacting
BCS superfluid which satisfies the condition presented in Eq. (1.57).

1.4.3 Unitary Fermi gas

When the Feshbach resonance occurs we have:

(1/kFa) −→ 0 (1.61)

and interparticle interactions become the strongest allowed for the system.
The resulting ultracold gas is called unitary Fermi gas (UFG). The pairs
which form under the critical temperature T ∗ have a size comparable with
the interatomic distance d ≈ n−1/3 ∼ kF , similarly to Cooper Pairs in high T
superconductors. Since the scattering length diverges, the only relevant length
scale is the interatomic distance d itself, while the only relevant energy scale
is the Fermi energy EF :

EF = ℏ2k2
F

2m (1.62)

Therefore, the UFG properties do not depend on the nature of its constituents,
and the unitary atomic gas shares a universal behavior with those composed by
neutrons in neutron stars, or quark-gluon plasma [37]. As a result, the UFG is
a scale-invariant system described by a universal equation of state depending
only on the dimensionless parameter q = βµ = µ/kBT [38]. The chemical
potential µ for an homogeneous (i.e. non-trapped) gas is therefore found to
be proportional to the Fermi energy EF defined in the non-interacting case,
through a universal parameter:

µ = ξ EF (1.63)

where ξ is the Bertsch parameter, which in general depends on the system tem-
perature and spin polarization. For a spin-balanced gas at zero-temperature
it has been measured to be ξ ≈ 0.37 [39]. If the atomic cloud is spatially con-
fined inside a trap, Eq. (1.63) can be modified to a power law of ξ, such that
µ = ξnEF , where the index n depends, in general, on the particular trapping
potential VT (r⃗) employed. In Sec. 2.3 we will show how to calculate the index
n for the peculiar trap geometry adopted in the experiment. The equation of
state describing the unitary Fermi gas can be written as follows:

n = 1
λ3

dB

fn(q) (1.64)
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where λdB is the de Broglie thermal wavelength, while fn(q) is a piecewise-
defined function of the parameter q [13]:

fn(q) =
∑4

b=0 s bse
sq for q < −1.5

fn(q) = −Li3/2(−eq)F (q) for − 1.5 < q < 3.9

fn(q) = 4
3
√
π

[
(q
ξ

)3/2 − π4

480(3
q

)5/2
]

for q > 3.9

(1.65)

where bs are expansion coefficients extracted from virial theorem, known up to
the 4-th order, Li3/2 is the polylogarithm of order 3/2 and F (q) is a universal
function of q. The behavior of the ultracold Fermi gas along the BEC-BCS
crossover, explored as a function of the parameter (kFa)−1, is reported in
Fig. 1.6.

Figure 1.6: Phase diagram for the BEC-BCS crossover of an homogeneous
fermionic gas, where the critical temperatures T ∗ and Tc for pair-
ing and condensation respectively are reported, as a function of
(kFa)−1. The intermediate region of Tc < T < T ∗, where pairs
are already formed but not yet condensed, is called pseudogap.
When the temperature is lowered below Tc, atom pairs undergo to
condensation, giving rise to different fermionic superfluids. Im-
age taken from [40].

1.4.4 Polytropic approximation

Across the whole BEC-BCS crossover, the chemical potential µ can be written,
under the local density approximation discussed in Sec. 1.2, as a polytropic
law of the density profile n(r⃗) plus the trapping potential term VT (r⃗):

µ(r⃗) = VT (r⃗) + gγn(r⃗)γ (1.66)

where γ and gγ are opportunely chosen coefficients, depending on the particu-
lar interactions considered. We can derive the density profile from Eq. (1.66),
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Table 1.1: Expressions of the coefficients γ and gγ for the different interaction
regimes of the BEC-BCS crossover.

Regime γ gγ

BEC 1 4πℏ2aM/M

BCS 2/3 ℏ2(6π2)2/3/2m
UFG 2/3 ξℏ2(6π2)2/3/2m

obtaining:

n(r⃗) = max

(
0, µ− VT (r⃗)

gγ

)1/γ

(1.67)

Eq. (1.67) allows to cast the density profile n(r⃗) in a compact form, valid
through the entirety of the BEC-BCS crossover, regardless of the nature of
interparticle interaction [13]. The desired case can be reproduced by insert-
ing the opportune value of the coefficients γ and gγ inside Eq. (1.67): their
expressions are reported in Tab. 1.1, for the various regimes of the resonance.

1.5 Superfluidity in Fermi gases
Superfluidity is one of the most striking properties exhibited by ultracold
Fermi gases, similiar to superconductivity in charged Fermi systems. Super-
fluids have shear viscosity equal to zero and can flow through narrow capillar-
ies or slits without dissipating energy, this property being directly connected
with their excitation spectrum. In the present section, we will introduce the
main theoretical result concerning superfluids, the Landau’s criterion for su-
perfluidity, and discuss about the behavior of the critical velocity vc along the
BEC-BCS crossover. We conclude with an introduction of the main mecha-
nisms of dissipation in a Fermi superfluid: sound waves, pair breaking, and
vortex nucleation.

1.5.1 Landau’s criterion for superfluidity

Let us consider a uniform fluid at zero temperature, which flows along a cap-
illary at constant velocity v. We also suppose that dissipative processes can
only take place through the creation of elementary excitations. In the refer-
ence system of the capillary, before the emission of the excitation, the total
energy can be written as:

E = E0 + 1
2Mv2 (1.68)

where E0 is the ground-state energy of the superfluid, while M is the mass
of the whole fluid. If an elementary excitation with momentum p and energy
ϵ(p⃗) is emitted the energy becomes, assuming momentum conservation:

E ≈ E0 + ϵ(p⃗) − p⃗ · v⃗ + 1
2Mv2 (1.69)

Eq. (1.69) shows that the appearance of the excitation causes a change in the
total energy of ∆E = ϵ(p⃗) − p⃗ · v⃗. The spontaneous creation of an excitation
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is permitted only if the process is energetically favourable, i.e. if the total
energy decreases (∆E < 0). In this case, the flow of the fluid is unstable and
its kinetic energy will be converted into heat. If we impose this process to be
unfavourable (∆E > 0) Landau’s criterion for superfluidity follows:

v < vc = min
p

(
ϵ(p⃗)
p

)
(1.70)

which ensures that the fluid can flow without any friction inside the capillary
if the relative velocity between them is smaller than the critical velocity vc.
The superfluid fraction f can be introduced to characterize the portion of the
system which shows a superfluid behavior:

f = ns

n
(1.71)

where n is the gas density while ns is the superfluid density. We want to stress
out that this is an independent quantity from the condensed fraction, which
describes the number of atoms that undergo the phenomena of macroscopic
occupation of the system’s ground state. Ultracold gases can show superflu-
idity even without being condensed, like for example a two-dimensional Bose
gas; viceversa, a fully condensed system is not necessarily superfluid. From
Landau’s criterion, reported in Eq. (1.70), we see that an ideal non-interacting
gas cannot achieve superfluidity because an eventual excitation would corre-
spond to a spectra of the free-particle form, ϵ(p⃗) = p2/2m, which yields vc = 0.
The interacting Fermi gas is instead fully superfluid at T = 0, regardless of
the interaction regime. For crossover Fermi superfluids, as in Bose gases, low-
frequency excitations correspond to a phononic branch of sound waves, which
energy can be calculated from hydrodinamic theory [32]. For higher energies
pair-breaking mechanisms set in, creating fermionic excitations. Along the
BEC-BCS crossover the interplay between these two contributions gives rise
to different behaviors, depending on the interaction. The excitation spectrum
of an ultracold Fermi gases, connected with superfluidity, has been deeply in-
vestigated in recent experiments [41]. In the BCS gas the transition between
the phononic branch and the continuum of single-particle excitations already
occurs at low energies, while in the BEC regime the scenario is different, with
the phonon branch extending up to higher frequencies. For a UFG the sys-
tem shows an intermediate behavior, where the phonon branch survives up to
energies comparable with the Fermi energy. The minimum energy needed to
break a fermionic pair can be calculated by doubling the energy required to
add or remove a single fermion to the condensate. In the BCS limit this en-
ergy coincides with the energy gap ∆, which is exponentially suppressed with
(kFa)−1. Thus, pair breaking excitations are the lowest energy excitations in
the BCS side of the crossover, where the critical velocity can be calculated
from Eq. (1.70) by substituting ϵ(p⃗) ≈ ∆, and by considering wave vectors of
order of the Fermi wave vector kF :

vBCS
c = ∆

ℏkF
(1.72)

where we used that p⃗ = ℏk⃗. In the BEC regime the energy needed to remove
a single particle from the system is

√
∆2 + µ2. This corresponds to a pair-

breaking energy which is much higher with respect to the BCS case, and
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other kinds of excitations dominate at low energy, like sound modes. In the
BEC limit the critical velocity coincides with the sound velocity cs, which in
Bogoliubov theory is predicted to be [32]:

vBEC
c = cs =

√
gnB

mB
=

√
4πaℏ2nB

m2
B

(1.73)

From the weakly interacting BEC side of the resonance the speed of sound cs

increases with increasing interactions, up to a maximum value vc = vF /
√

3.
In the BCS regime, where the main dissipation mechanism is represented by
pair-breaking phenomena, the velocity of the sound modes is approximately
constant, cs ≈ vF /

√
3 (Bogoliubov-Anderson modes) [36], while the critical

velocity increases when approaching unitarity as in the BEC case. The two
trends smoothly connect to each other near the strongly-interacting unitary
regime, where the superfluid is in the most stable configuration and the critical
velocity reaches its maximum value, as shown in Fig. 1.7.

Figure 1.7: Critical velocity of fermionic superfluids in the BEC-BCS
crossover, in units of the Fermi velocity vF =

√
2EF /m. Note

that the peak value of the critical velocity across the crossover is
slightly towards the BEC side. Figure adapted from [13].

In real systems the measured vc is always lower than the expected theoretical
value due to the presence of additional dissipation mechanisms; a notable one
is the creation of a vortex-antivortex pair, which nucleate within the superfluid
and cause local density perturbations.

1.5.2 Vortex excitations in superfluids

The long range order which sets in during the condensation phenomena of the
fluid causes its motion to be irrotational, dramatically affecting its rotation
dynamics with respect to a collisional hydrodynamic gas, for which rotational
components in the velocity are allowed. Let us consider a weakly-interacting
Bose gas, its ground state wave function being described by the solution of
Eq. (1.51) (Gross-Pitaevskij). Such a solution can be written in the form:

Ψ0(r⃗) = |Ψ0| eiS(r⃗) (1.74)
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where |Ψ0| = √
n0 is the order parameter, n0 is the density of the condensate,

and S(r⃗) is a global phase, reflecting the spontaneous breaking of gauge sym-
metry which occurs during the condensation phenomena. The velocity of the
condensate can be written as the gradient of the phase S(r⃗), as shown in [32]:

v = ℏ
2m∇⃗S(r⃗) (1.75)

such that the irrotationality condition holds:

∇⃗ × v⃗ = 0 (1.76)

When set into rotation a superfluid does not rotate like a rigid body, but the
externally imparted angular momentum causes the emission of vortex excita-
tions, which circulation is quantized. Let us calculate the circulation of the
velocity reported in Eq. (1.75), over a closed contour:

Γ =
∮
v⃗ · d⃗l = ℏ

m

∮
∇⃗S(r⃗)d⃗l = ℏ

m
∆S(r⃗) = w · h

m
(1.77)

where ∆S(r⃗) is the phase variation along the vortex line. Since the macro-
scopic wave function shown in Eq. (1.74) has to be single valued the phase must
change by 2πw, where w is an integer number, known as winding number ; this
leads to a quantized circulation. Eq. (1.77) shows that the irrotationality cri-
terion associated with the occurrence of superfluidity is satisfied everywhere,
except on the line of the vortex [32]. A quantized vortex is therefore associ-
ated with the appearence of a singularity in the superfluid, where the order
parameter

√
n vanishes. At large distances from the vortex line the density

of the gas must approach its unperturbed uniform value n. The core of the
vortex line, where the density is perturbed in a significant way, has a radius
size comparable with the healing lenght ξ introduced in Eq. 1.56, which for
fermionic superfluids of 6Li is of the order of ξ ∼ 1µm. In our system, vortex
excitations are best observed in the BEC regime: as we move towards the
BCS side of the crossover, where the vortex’s size is roughly given by 1/kF ,
the creation of vortices stops affecting in a significant way the density of the
superfluid as they can be very small, making very difficult to detect them with
in-situ measurements.

1.6 The Josephson effect
The Josephson effect in superconductors occurs due to tunneling events of
Cooper pairs, passing through a thin insulating barrier which separates two
superconducting metals, and was first predicted in 1962 by Brian D. Joseph-
son [3]. The associated microscopic device, known as Josephson junction,
was realised one year later by P.W Anderson and J.M Rowell [5]. Nowadays,
Josephson junctions have important applications in modern quantum technolo-
gies, where their peculiar transport properties are widely employed: notable
examples are represented by superconducting quantum interference devices
(SQUIDs) [42], superconducting qubits [43], and RSFQ digital electronics [44].
In ultracold atoms experiments the superfluid analogous of a superconduct-
ing junction, the atomic Josephson junction, can be realized by bisecting the
condensate with a thin optical barrier, this procedure being usually carried
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out through focused laser beams. In the present section we will discuss the
Josephson effect in both cases, superconducting metals and ultracold atoms,
highlighting similiarities and differences. We conclude this chapter with a de-
scription of the phenomenologicals RSJJ and RCSJJ models, both employed
to characterize the device in the framework of electronic circuits: in particular,
we will explain how Shapiro steps appear in the I − ∆V characteristic of
the junction, in the physical context of the tilted washboard potential.

1.6.1 Josephson effect in superconductors

Superconductors, as superfluids, can be associated with a macroscopic wave
function in order to describe the condensed state of weakly bound Cooper pairs
which start to appear in a metal at very low temperatures:

Ψ(r⃗) = |Ψ| eiϕ(r⃗) (1.78)

where the amplitude |Ψ| results proportional to the square root of the super-
conducting electrons density, while ϕ(r⃗) represents a global phase. This wave
function plays the role of an order parameter for the superconductor-normal
metal phase transition. Superconducting Josephson junctions are electronic
devices made up of two superconducting metals, separated by an insulating
barrier, which has to be thin enough in order to allow the order parameters of
the superconductors to overlap in the barrier region, as shown in Figure 1.8.

Figure 1.8: Schematic diagram of a solid-state Josephson junction, where two
superconducting electrodes are separated by a thin layer of insula-
tor. Ψ1 and Ψ2 represent the macroscopic wave functions associ-
ated with each superconductor.

The coupling between the two superconductors is able to drive a dissipa-
tionless super-current Is, merely sustained by their relative phase difference
ϕ = ϕ1 − ϕ2, which flows without resistance inside the junction (i.e. without
developing a finite ∆V ). In order to derive an expression for Is, let us consider
the wave functions ψi, solutions of the Schrödinger equation for the uncoupled
superconductors:

iℏ
dψi

dt
= Eiψi (1.79)

where i = 1, 2 is the index labelling each superconductor. The total wave
function for the superconducting electrons within the junction can be written
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as a superposition of the wave functions ψi:

Ψ(r⃗, t) =
2∑

i=1
Ci(t)ψi (1.80)

We can substitute Eq. (1.80) inside the time-independent Schrödinger equation
for the whole junction, which takes the form:

iℏ
dΨ(r⃗), t
dt

= HΨ(r⃗, t) (1.81)

where the Hamiltonian H contains non-diagonal terms in order to take into
account tunneling processes between the two superconductors. We can calcu-
late the supercurrent flowing inside the junction by solving Eq. (1.81), in the
limit of weak coupling between the two metals [45]:

Is = Ic sin (ϕ) (1.82)

where ϕ = ϕ1−ϕ2 is the relative phase difference between the order parameters
associated with each superconductor, while Ic is the critical current of the
device.

Figure 1.9: I − ∆V characteristic describing a superconducting Josephson
junction (purple line), in the absence of an external potential
difference ∆V (DC regime), plotted together with Ohm’s law
∆V = IR (black dashed line). We notice that the ohmic behav-
ior is retrieved when we inject a current higher than the critical
current IC , and a finite ∆V starts to develop. The Josephson
junction characteristic is obtained by plotting the stationary solu-
tion of the RSJ model, reported in Eq. (1.94), such that we chose
the same G (or equivalently R) for both plots.

The latter quantity represents the maximum value of the current which can
be injected inside the system and flow without dissipation; we notice that
Eq. (1.82) predicts a supercurrent Is that follows a sinusoidal law of the phase
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difference ϕ. From Eq. (1.81) we can also calculate the time evolution of the
phase difference:

·
ϕ = q∆V

ℏ
(1.83)

where q = 2e is the charge of a Cooper pair, while ∆V is the applied poten-
tial difference across the junction. Eqs. (1.82) and (1.83) are known as the
Josephson-Anderson equations, and identify two distinct transport regimes.

1. The DC Josephson effect where ∆V = 0, and a constant dissipationless
supercurrent Is < Ic can flow inside the junction without developing
any additional potential difference. If the injected current overcomes
the critical current Ic the junction starts to manifest a resistive behavior
and a finite potential difference ∆V develops, as shown in Fig. 1.9.

2. The AC Josephson effect, in which ∆V ̸= 0, where an alternate current
having a frequency of 2e/ℏ flows inside the junction, while the relative
phase linearly increases with time.

We want to clarify that, while the phase evolution reported in Eq. (1.83) is
derived from Eq. (1.81) without approximations, Eq. (1.82) for the supercur-
rent was found by imposing a weak coupling constraint, and in general the
current-phase relation can be different from the predicted sinusoidal law [46].
The dependancy of the supercurrent from the superconducting gap ∆ and the
temperature T is given by the Ambegaokar-Baratoff relation [47]:

IcRn = π∆
2e tanh

( ∆
2kBT

)
(1.84)

where Rn is the resistance of the non superconducting metal that constitutes
the barrier. When T = 0, Eq. (1.84) reduces to IcRn = π∆(0)/2e, meaning
that the zero temperature critical current is directly proportional to the super-
conductors order parameter. Therefore, Josephson effect provides a powerful
probe of the order parameter of superconductors, as long as a measurement
of the critical current can be performed.

1.6.2 Josephson effect in superfluids

As shown in Sec. 1.5 the superfluid state is associated with a macroscopic wave
function, as shown in Eq. (1.74), which is of the same form of the supercon-
ducting order parameter reported in Eq. (1.78). This implies that a system
made up of two superfluid reservoirs separated by a thin insulating barrier,
where the respective wave functions overlap, should undergo the Josephson
dynamics expected in superconductors. Regardless of the nature of the sys-
tem, be it bosonic or fermionic, the problem can be described in terms of the
two-state model. Let us consider a weakly interacting Bose-gas, bisected into
two distinct reservoirs, where we solve Eq. (1.51) in order to find indipendently
the corresponding wave functions Ψ1,2, both being associated with an atom
number N1,2 and a global phase ϕ1,2. In the intermediate Josephson regime,
where N2 >> EJ/EC ∼ 1, the effective Hamiltonian describing the system
can be written as [32]:

HJ = EC
k2

2 − EJ cos(ϕ) (1.85)
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where EC is the charging energy of the junction, EJ the Josephson tunneling
energy, ϕ is the phase difference ϕ1 − ϕ2 and k is the popolation imbalance
k = (N1 − N2)/2. We can write down the equations of motion from the
Hamiltonian reported in Eq. (1.85), where the canonical conjugate variables
are ϕ and ℏk: 

·
ϕ = ∂ϕ

∂t
= ∂HJ

∂(ℏk) = k
EC

ℏ

ℏ
·
k = ∂(ℏk)

∂t
= −∂HJ

∂ϕ
= −EJ sin(ϕ)

(1.86)

When ϕ << 1, the solution of the coupled Hamilton Eqs. (1.86) is given by
periodic oscillations of both ϕ and k, one out of phase of π/2 with respect to
the other, and occurring at the following plasma frequency ωJ :

ωJ = 1
ℏ

√
ECEJ (1.87)

With opportune algebraic manipulations, Eqs. (1.86) can be written in the
same form of Eqs. (1.82) and (1.83); in fact, if we divide the second equation
by ℏ, we obtain a similar expression to Eq. (1.86) [32]:

I = Ic sin (ϕ) (1.88)

where I = −
·
k is the particle current, which represents the flow of non-charged

atoms across the insulating barrier, while the junction’s critical current Ic

can be written in terms of the Josephson tunneling energy EJ , such that
Ic = EJ/ℏ. The charging energy EC can be expressed in terms of the chemical
potentials µ1,2, each associated with one distinct reservoir, as [32]:

EC = ∂µ1
∂N1

+ ∂µ2
∂N2

= −2∆µ
∆N = −∆µ

k
(1.89)

where ∆µ = µ1 − µ2 is the chemical potential difference. The first Eq. (1.86)
then becomes:

ℏ
·
ϕ = −∆µ (1.90)

analogous to Eq. (1.83), where, for neutral atoms, the chemical potential
difference plays the role of the voltage drop in superconducting junctions.
Eqs. (1.88) and (1.90), representing the superfluid analogous of the Josephson-
Anderson equations introduced for superconductors, have been formally de-
rived by resolving the Gross-Pitaevskij equation for a weakly-interacting bosonic
gas, but they also hold for superfluids across the whole BEC-BCS crossover.
The main difference between Bose gases and crossover Fermi gases is that,
in the latter case, under the critical temperature the condensate is made up
of atom pairs regardless of the position in the crossover. This means that
the particle current for fermionic superfluids in the BEC-BCS crossover is a
pair current IB, such that IB = I/2, where I is the current associated with
the tunneling of single atoms, while the pair chemical potential is µB = 2µ.
We want to stress out that, despite their remarkable similarities, superfluid
Josephson junctions are interested by unique physical phenomena with re-
spect to superconducting junctions. One such phenomena is constituted by
macroscopic quantum self-trapping (MQST): two Bose–Einstein condensates,
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weakly linked by a thin optical barrier, end up with a higher average number
of bosons on one side of the junction than the other even in the presence of
tunneling phenomena, which tend to re-equilibrate the density imbalance.

1.6.3 Circuital models

Real superconducting Josephson junctions can be described in the context of
electronic circuits, where dissipation phenomena, finite-size effect and charge
accumulation can be taken into account by introducing opportune circuit el-
ements. This method can be also extended to atomic Josephson junctions,
as done for example in Refs. [19] and [48], where resistive dynamics occurring
during the tunneling process is characterized through a conductance G. In the
following we will briefly introduce the main circuital models used for describing
real junctions, namely the RSJ and the RCSJ models: in this framework, the
physical system behaves in a similar way to a damped harmonic oscillator, its
dynamics being described by the tilted washboard potential U(ϕ). In the par-
ticular case of a Josephson junction, this potential determines the dynamics
of the relative phase ϕ, depending on the value of the injected current.

RSJ Model

In order to incorporate dissipative dynamics into the system we consider the
resistively shunted Josephson junction (RSJ) model, where a Josephson junc-
tion is put in parallel with a resistance R, as shown in Fig 1.10: in this setup,
the latter element acts as a shunt.

Figure 1.10: The resistively shunted Josephson junction (RSJ) model circuit.

The total current I provided by the external source is split in the two branches
of the circuit, according to Kirchhoffs’s law of currents:

I = ∆V
R

+ Ic sin (ϕ) (1.91)

where ∆V is the potential difference between the sides of the junction (or,
equivalently, of the resistance), while the second term represents the current-
phase relation typical of Josephson junctions, reported in Eq. (1.82). For
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atomic Josephson junctions, where the chemical potential difference ∆µ re-
places the potential drop ∆V , we can write Eq. (1.91) in the following form:

I = −G∆µ+ Ic sin (ϕ) (1.92)

where G = R−1 is the junction’s conductance. By substituting Eq. (1.90)
into Eq. (1.92) we obtain the following first-order differential equation for the
relative phase ϕ(t), describing the RSJ model:

I = G ℏ
∂ϕ

∂t
+ Ic sin (ϕ) (1.93)

In the following we will assume that the externally provided current I is con-
stant, and not modulated in time (i.e. a direct current); above the critical
current, where I > Ic, the ∆µ − I characteristic of the junction is calculated
by integrating Eq. (1.92) and taking the time average of Eq. (1.90):

⟨∆µ⟩ = G−1
√
I2 − I2

c (1.94)

where ⟨∆µ⟩ is the time-averaged chemical potential difference, which builds
up due to the application of the atomic current I.

RCSJ Model

Another property of real Josephson junctions is the possibility for the charged
particles to accumulate at the interface layers of the device, behaving in a
similar way to a capacitance placed inside an electronic circuit. This phenom-
ena causes the presence of an additional contribution to the total current I
flowing inside the system: in the framework of circuital models, the process is
described by adding a capacitance C in parallel to the RSJ circuit discussed
before, as shown in Fig. 1.11.

Figure 1.11: The resistively and capacitively shunted Josephson junction
(RCSJ) circuital model.

The circuital model just introduced goes under the name of resistively and ca-
pacitively shunted Josephson junction (RCSJ) model, and in this case Eq. (1.91),
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reporting the Kirchhoff’s law for currents, is modified to:

I = ∆V
R

+ C
∂V

∂t
+ Ic sin (ϕ) (1.95)

where the injected current I is still assumed to be constant in time. The first
two terms in Eq. (1.95) represent the current flowing inside the resistance and
the one flowing within the capacitance respectively, while the last term rep-
resents the sinusoidal current-phase relation describing Josephson junctions,
reported in Eq. (1.82) . For the superfluid Josephson junction, where the po-
tential drop is replaced by the chemical potential difference (∆V → −∆µ)
while the time evolution of the relative phase ϕ is given by Eq. (1.90), we can
recast Eq. (1.95) in the form:

C̃
∂2ϕ

∂t2
= I − Ic sin (ϕ) − G̃

∂ϕ

∂t
(1.96)

where we defined the quantities C̃ = ℏC and G̃ = ℏG. In the atomic case,
the capacitance C introduced in Eq. (1.95) is related to the reciprocal of the
charging energy EC defined in Eq. (1.89), such that C = E−1

C . Eq. (1.96)
represents the circuital analogue of the damped classical pendulum (i.e. a
mechanical system), which is described by the following equation of motion:

m
d2x(t)
dt2

= Fc − β
dx(t)
dt

(1.97)

so that C̃ plays the role of the particle’s mass m, G̃ can be identified with a
damping coefficient β, while Fc = I−Ic sin (ϕ) represents a conservative force.
In this mechanical context ϕ can be regarded as the position of the particle,
while

·
ϕ and

··
ϕ represent its velocity and acceleration respectively. The conser-

vative force Fc admits the following potential, such that Fc = −dU(ϕ)/dϕ:

U(ϕ) = −
∫ (

I − Ic sin (ϕ)
)
dϕ = −Iϕ− Ic cos (ϕ) (1.98)

which is called tilted washboard potential, and allows to study the dynamics
of the relative phase ϕ as a function of the injected current. In fact, when
applying an external current I, constant over time, we can distinguish between
two different behaviors for the dynamical evolution of the phase:

1. When I < Ic the particle is trapped in a minimum with constant relative
phase, such that

·
ϕ = 0, where no spontaneous ∆µ develops. This situa-

tion corresponds to the non-resistive branch in the ∆µ− I characteristic
associated with the DC Josephson effect.

2. When I > Ic the particle rolls down the potential curve U(ϕ) rapidly,
with almost linearly increasing phase, entering the regime of running
phase where

·
ϕ ̸= 0: as a consequence, in this regime, a non-zero ∆µ is

generated. This phenomena represents the resistive branch of the DC
Josephson effect, where dissipative effects set in for external currents I
higher than the junction’s critical current Ic. Both of these regimes are
shown in Fig 1.12, which reports the tilted washboard potential U(ϕ) as
a function of ϕ for different I/Ic ratios.
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Figure 1.12: Tilted washboard potential as a function of the relative phase
for different values of the injected current I, normalized by the
critical current Ic. For low enough values of the applied current
I, the phase is trapped in a local minima of the potential, and no
∆V develops. When I > Ic, the phase can roll down the potential
curve with increasing phase, resulting in a finite phase velocity
∂ϕ/∂t: this leads to a dissipative behavior, where a potential drop
develops at the sides of the junction.

The precise dynamics of the system depends on the ratio between the pa-
rameters G̃ and C̃, which represent damping and inertia respectively. When
C̃ ≫ G̃, the mass is so big that the particle’s inertia is almost unaffected by
damping phenomena, while, on the other hand, if the damping term dominates
(C̃ ≪ G̃) we expect the chemical potential difference ∆µ to reach a smaller
value with respect to the former case. In order to study this behavior is useful
to introduce the Steward-McCumber parameter βc:

βc = IcC

ℏG2 (1.99)

such that Eq. (1.97), which describes the motion of the particle, becomes,
when dividing each side by the critical current Ic:

1
ω2

j

··
ϕ = I

Ic
− sin(ϕ) − 1

ωj

1√
βc

·
ϕ (1.100)

where ωj is the plasma frequency introduced in Eq. (1.87), which can be
rewritten as:

ωj =

√
Ic

ℏC
(1.101)
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where we used the relation EC = C−1, together with EJ = ℏIc. In atomic
Josephson junctions the charging energy EC can be calculated as follows:

EC = ∂µL

∂NL
+ ∂µR

∂NR
≈ 2 ∂µL

∂NL
= 8

3
µ

N
(1.102)

where the second passage holds true only if the system presents a small chem-
ical potential imbalance ∆µ = µL − µR between the left and the right reser-
voir, while the number of atoms is approximately the same in both of them,
NL ≈ NR. Depending on the value of the parameter βc, different situations
can arise:

1. Overdamped regime, where βc ≪ 1, and friction dominates over the
particle’s inertia. The time averaged chemical potential difference ⟨∆µ⟩
is the same of Eq. (1.94).

2. Underdamped regime, where βc ≫ 1, and the particle mass, represented
by the capacitance C, is so big that the damping hardly affects the
dynamics. This regime can show hysteresis, such that if we modulate
the external current I from I > Ic to I < Ic the relative phase ϕ is not
necessarily trapped in a local minima of the tilted washboard potential,
but can continue to roll down the potential curve.

Phase dynamics in terms of the tilted washboard potential explains the be-
havior of the ∆µ − I curves observed in the DC Josephson effect, where a
direct current I = const is applied to the junction, but can also describe more
exotic phenomena; a noteworthy example is represented by the response of the
system to an applied alternating current I(t), modulated in time.

1.6.4 Shapiro steps in Josephson junctions

In Sec. 1.6.1 we described the Josephson effect, arising when two superconduc-
tors are separated by a thin insulating layer that allows for tunneling processes:
below a critical value Ic, the injection of a direct current I = const causes a
dissipationless supercurrent to flow inside the junction (DC effect), while the
application of a finite potential difference ∆V generates within the junction
an alternating current (AC effect), which frequency of oscillation depends on
the applied potential drop. The injection of a modulated current, periodic
in time, causes the emergence of a new phenomenon linked to the Joseph-
son dynamic: in the ∆V − I characteristic, the potential drop at the sides
of the junction jumps almost discontinuously for certain amplitude values of
the applied current. This peculiar structure is known as Shapiro steps, and
represents the main subject investigated in the present thesis. These voltage
jumps occurs, for superconducting Josephson junctions, at an average height
of ⟨∆V ⟩t = nℏω/2e, where ω is the modulation frequency of the applied cur-
rent (or, equivalently, of an external radio frequency), t is the time in which
the current is injected, while n is an integer: an example of the typical ∆V −I
curve which develops when applying a radio frequency to the system is re-
ported in Fig. 1.13.
The behavior of a Josephson junction, current-biased through an alternating
current I(t), can be explained by means of the tilted washboard potential in-
troduced in Sec. 1.6.3, in the context of the RCSJ circuital model. When a
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Figure 1.13: Shapiro steps on the I − ∆V curves, induced by a radiation
of 0.6 THz. The graphs for different radio frequency powers
are shifted horizontally for clarity: the increment being 3 dB
each time. When the radio frequency is off, we retrieve the
I − ∆V characteristic typical of the DC Josephson effect, shown
in Fig. 1.9. Figure taken from Ref. [49].

modulated current I(t) is injected inside the system, Eq. (1.96), which de-
scribes the total current flowing within an ultracold Josephson junction, takes
the following form:

I(t) = Ic sinϕ+ ℏG
·
ϕ+ ℏC

··
ϕ (1.103)

such that the tilted washboard potential of Eq. (1.98) becomes:

U(ϕ) = −I(t)ϕ− Ic cos (ϕ) (1.104)

In this discussion, the applied current I(t) is supposed to be made up by a
combination of a direct current IDC and an alternating current IAC :

I(t) = IDC + IAC cos (ωt) (1.105)

where ω is the (angular) frequency of modulation. If we set IAC = 0, the
system experiences only the direct current IDC , and the behavior of the relative
phase ϕ is the same described in Sec. 1.6.3: for IDC < Ic the phase is located
in one of the potential’s local minima, and a dissipationless supercurrent flows
inside the Josephson junction, while for IDC > Ic the washboard potential
turns into a monotonous decreasing function of ϕ, such that the phase is no
longer trapped within a minima, and is free to roll down the potential curve
with increasing velocity ∂ϕ/∂t. When the applied current features an alternate
component IAC a new dynamic emerges, as the tilt of the washboard potential
reported in Eq. (1.104) changes during time. The relative phase ϕ can undergo
different processes during each modulation period: for sufficiently low driving
(IAC ≪ Ic, with IDC < Ic), the phase undergo small oscillations around a local
minima of the washboard potential and it is consequently trapped, while for
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strong driving modulations or large enough direct currents (IDC + IAC ∼ Ic)
the phase acquires a sufficient speed ∂ϕ/∂t to be able to escape from this
minima. The oscillations of the current cause the phase to be trapped in the
next local minima, as shown in Fig. 1.14: this dynamics may repeat many
times during the driving time of the current.

Figure 1.14: Tilted washboard potential U(ϕ) as a function of the relative
phase ϕ, shown at different times with a frequency of modulation
of ω = 2π · 175 Hz, normalized by Ic. The tilt of the washboard
potential changes during time due to the external modulation,
influencing the dynamics of the phase and eventually giving rise
to Shapiro steps.

This process happens only when the phase velocity is resonant with the angular
frequency of the modulation, such that its average during the driving time td
reads:

⟨
·
ϕ⟩td

= nω (1.106)

where n is an integer which corresponds to the number of times the relative
phase has jumped across adjacent local minima during the modulation period.
By exploiting Eq. (1.90) the time-average of the chemical potential difference
⟨∆µ⟩ can be calculated:

⟨∆µ⟩td
= ℏ⟨

·
ϕ⟩td

= ℏnω (1.107)

such that, as a consequence of the phase dynamics due to the external modu-
lation, a finite chemical potential difference ∆µ develops. When the alternate
current component IAC is not strong enough to cause the aforementioned dy-
namics, oscillations of the phase trapped within a minima of the washboard
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potential still induce density modulations on both reservoirs: in this case,
the chemical potential difference averages to zero during the driving time td,
⟨∆µ⟩td

= 0.
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Chapter 2

Experimental setup and
ultracold Josephson junction

In order to probe the transport properties inside an atomic Josephson junc-
tion, it is first necessary to obtain an ultracold gas, cooling down the system
below the degeneration temperature Tdeg introduced in Sec. (1.2), under which
the wave functions of contiguous atoms overlap and quantum effects become
important. Moreover, it is also necessary to entrap the created ultracold gas
within a certain region of the space; an atomic Josephson junction consists
of two independent superfluid reservoirs, isolated from the external environ-
ment and separated by an insulating barrier, thin enough to allow tunneling
phenomena. A low temperature gas can be experimentally obtained through
laser cooling techniques, which exploit photon-electron interactions in order to
modify the state of motion of the atoms. Subsequent evaporative cooling pro-
cesses allow to obtain an ultracold degenerate gas in the superfluid state, and
additional experimental techniques such as laser trapping can be employed
to further slow down the atomic cloud and to confine it in the desired re-
gion of space. An atomic Josephson junction can be realized by trapping the
ultracold cloud inside optical potentials; in particular, in this thesis work a
digital micro-mirror device (DMD) permits to create a rectangular hybrid po-
tential (see Sec. 2.1 and Sec. 2.3), presenting a thin Josephson barrier which
splits the superfluid into two distinct regions. In Sec. 2.1 we will describe
the geometry of the experimental setup and how it allows to realize an ul-
tracold fermionic gas of 6Li, through the employment of several laser cooling
and laser trapping techniques. We will briefly discuss about the absorption
imaging setup as well, which permits to measure the cloud’s particle density
n(r⃗): from this quantity, other important thermodynamic quantities can be
extracted, as the chemical potential µ, the Fermi energy EF or the atom num-
ber N . The working principle of the DMD is reported in Sec. 2.2; this device
is employed for projecting the final repulsive optical trap that allows for the
realization of a rectangular atomic Josephson Junction. In Sec. 2.3 we deal
with the problem of interacting ultracold Fermi gases (see Sec. 1.3) along the
BEC-BCS crossover introduced in Sec. 1.4, in the particular case of trapping
due to a hybrid optical dipole potential with rectangular shape, achievable
with the DMD: we will calculate the main physical properties of the trapped
gas, namely the chemical potential µ, the Fermi energy EF and the speed of
sound cs. Finally, in Sec. 2.4 we will discuss about the preliminary calibration
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procedure which permits to to estimate the depth of the potential barrier V0,
whose ratio to the chemical potential µ determines whether or not we are in
the tunneling regime (V0/µ > 1), where the supercurrent flowing inside the
Josephson junction is caused by quantum tunneling phenomena.

2.1 Experimental setup
In this section we will describe how ultracold 6Li gas is made and manipulated
in our experimental setup, in terms of laser cooling and trapping techniques.
The starting point is an artificially enriched lithium bar, which is heated inside
an oven to a temperature of 420◦ C in order to create an atomic beam, sub-
sequently collimated by a copper cold finger. Before being sent to the science
chamber, a custom-made octagonal stainless-steel cell kept under a pressure
below 1010 mBar, the high temperature atomic beam is preliminary cooled by
a Zeeman slower down to a speed of about 60m/s. The main cooling/trapping
processes, such as the magneto-optical trap and forced evaporation, will take
place inside the science chamber structure. A detailed presentation about
these processes is reported in App. A.2, together with the nature of the ra-
diative forces (App. A.1) acting on the atomic system, and how they can be
exploited to realize the various laser manipulation mechanisms. The experi-
ment must be carried out under vacuum in order to isolate it from thermal
background particles, which would limit the life time of the sample: our setup
consists of an Ultra-High-Vacuum (UHV) system in order to overcome this
problem. To manipulate 6Li atoms resonant light is employed for slowing,
cooling and imaging the sample, while confinement into optical dipole traps
is achieved with off-resonant lights. In order to introduce the experimental
apparatus it is therefore necessary to first discuss the energy levels of 6Li and
their possible transitions.

Fine and Hyperfine structure of 6Li lower levels

Transitions between an atom’s ground-state and its excited levels are employed
in a wide variety of experimental techniques; for alkali atoms, like 6Li, these
transitions allow for the realization of laser cooling and laser trapping. A level
scheme, not in scale, reporting the main transitions between the 2S state and
the 2P states is shown in Fig. 2.1. The lines D1 and D2 represent the fine
structure doublet, addressing the transition between the ground state 22S1/2,
with l = 0, and the excited states 22P1/2 and 22P3/2, both with l = 1 but
different total angular momentum J = L ⊕ S. The wavelength associated
with both of these transitions is almost 671 nm, and we employ two Toptica
TA-Pro lasers, both amplified by a MOPA amplifier, to work around such
wavelength. The lasers are locked to the corresponding frequency by means
of a saturation spectroscopy apparatus. Transitions involving these hyperfine
and excited levels are employed both in the MOT and in the optical molasses,
which act on the atoms before the start of the evaporative cooling process, as
explained in the following.
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Figure 2.1: Energy levels of 6Li, in the absence of an applied magnetic field,
showing the hyperfine structures of both the ground state 2S1/2
and the excited levels 2P1/2 and 2P3/2.

2.1.1 Ultracold gas realization

Here we report a brief summary of the experimental process followed to obtain
the ultracold 6Li gas investigated in our measurements: further information
can be found in Refs. [50] and [51]. In the Zeeman slower, the atoms coming
from the oven are cooled down from an initial average speed of 800m/s to a
final value of about 60m/s, thanks to the combined application of:

1. A counter-propagating laser wave with respect to the atomic beam, os-
cillating in resonance with the D2 transition.

2. A non-uniform magnetic field B(x) generated by a set of coils, which
keeps the light in resonance with the atomic transition by exploiting
the Zeeman shift of the hyperfine levels. This procedure is explained in
details in App. A.2.

The atoms, slowed down, are directed towards the science chamber, where
they are trapped and further cooled down by a magneto-optical trap com-
posed of three retroreflected laser beams, acting on the D2 transition and
propagating along the x, y and z directions, while a quadrupolar magnetic
field is produced by a pair of coils in anti-Helmotz configuration [52]. In the
magneto-optical trap, approximately 109 atoms are loaded and reach a tem-
perature of about 500µK: the magnetic field and the lights of the MOT are
subsequently switched off, and the system is further cooled down to a tem-
perature of order of 50µK thanks to an optical molasses acting on the D1

42



transition, operating a sub-Doppler cooling procedure. A circuit of acusto-
optic modulators is employed to modulate the frequency of re-pumping and
cooling lights, which address the transitions of the ground state hyperfine
levels during the MOT (D2) and in the optical molasses (D1); these transi-
tions are shown in Fig. 2.1. The necessity of using a re-pumping light is to
avoid atom losses, which happen for the following reason: the cooling light
induces a transition between the ground-state level 22S1/2 with F = 3/2 and
the excited level 22P3/2 with F = 5/2, but due to spontaneous emission pro-
cesses the atom can subsequently de-excite with a small probability in the
hyperfine ground-state F = 1/2, which is out of resonance with the cooling
transition and behaves as a dark state. Since the MOT is realized with about
105 cycles of absorption/emission processes, during its loading a macroscopic
number of atoms ends up in the F = 1/2 dark state; in order to overcome
this problem another light re-pumps back these atoms in the desired F = 3/2
hyperfine ground state. After this cooling chain an evaporative cooling process
is started in an optical dipole trap, created with the high intensity IPG laser,
oscillating at a wavelength of 1073 nm with an initial power of about 130 W,
in order to achieve the condition of quantum degeneracy: this laser beam is
successively crossed with the 50 W Mephisto one (λ = 1064 nm), creating a
cigar-shaped optical trap where the atomic sample completes the evaporation,
giving approximately 105 atoms per spin state, at a temperature in the range
of 50 − 100 nK. Since we work with high magnetic fields (B > 600 G), the Zee-
man effect causes an additional split of the hyperfine energy levels reported in
Fig 2.1, separating states that correspond to a different angular momentum
projection mF along the quantization axis: our system is initially in a balanced
mixture of the states |1⟩ and |2⟩, shown in Fig. 2.2, which are distinguishable
and allow for low-energy collisions, such that forced evaporation is possible.
At the beginning of the evaporative cooling process, a radio frequency modu-
lated over time is applied to the atomic cloud, forcing an adiabatic transition
from the Zeeman sublevel |2⟩ to sublevel |3⟩. This procedure is justified for
two main reasons:

1. The Feshbach resonance of the scattering channel |1⟩ − |3⟩ occurs at a
smaller magnetic field (696G) with respect of the resonance associated
with channel |1⟩ − |2⟩ (832G), as shown in Fig. (2.3). Smaller magnetic
fields are easier and less cumbersome to realise in experiments, since
they require flows of lower currents inside the coils.

2. In the |1⟩ − |3⟩ scattering channel the resonance is more narrow, as
again shown in in Figure (2.3), allowing for fast sweeps in the BEC-BCS
crossover. In this condition we can observe quantized vortices, which
nucleate in the unitary regime: in particular, we employ a technique
where we quickly move from the unitary regime into the BEC regime,
where vortices are detectable since they manifest as a singularity in the
cloud’s density profile only in this regime.

The net result of this process chain is the creation of an ultracold 6Li fermionic
gas in a balanced mixture of Zeeman substates |1⟩ and |3⟩, trapped in an at-
tracting cigar-shaped optical dipole trap at the end of the evaporative cooling
process. The optical setup and the various laser lights employed for realizing
the ultracold gas is shown in Fig. 2.4.
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Figure 2.2: Magnetic field dependence of the 22S1/2 ground state of 6Li. States
|1⟩ and |2⟩ correspond to the Zeeman sublevels of the hyperfine
state F = 1/2, while |3⟩ is the lowest Zeeman sublevel of the
hyperfine state F = 3/2. For high magnetic fields states |2⟩ and
|3⟩ are separated by an energy of about 100 MHz. Figure taken
from Ref. [53].

Figure 2.3: Feshbach resonances of the three lowest 6Li hyperfine states. Fig-
ure taken from Ref. [54].

Eventual applications of external magnetic fields allow for the exploration of
the BEC-BCS crossover, resulting in the creation of fermionic superfluids of
different nature: in this thesis we will mainly study the BEC regime of weakly
repulsive interacting fermions (1/kF a ≫ 1), obtainable with the application
of a magnetic field of about 630G. This ultracold gas can be further trapped
in a repulsive potential of arbitrary shape, produced by a digital-micromirror
device (DMD), which allows for the realization of an atomic Josephson junc-
tion having the desired geometry; in order to do so, it is first necessary to
switch off the IPG and Mephisto lasers, at the end of the evaporation ramp.
The condensate is simultaneously loaded onto an optical dipole trap, realized
through another dedicated optical circuit, which employs a green 532 nm laser
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Figure 2.4: Scheme of the experiment section reporting the cooling setup and
the employed laser beams.

described by the TEM0,1 Hermite-Gauss mode; this will ensure vertical trap-
ping of the sample, which occurs at a trap frequency of about wz ∼ 2π ·420 Hz.
At the same time the DMD is also turned on, and the reflection of the 532 nm
laser is projected onto the atoms, creating a repulsive confinement of arbi-
trary shape on the x-y plane, while on the vertical direction the harmonic
confinement due to the green laser keeps the atoms from escaping the trap.
An example of the Josephson junction which can be realised with the repul-
sive potential of the DMD is reported in Fig. 2.5, where the particular case
of a rectangular potential, with a thin barrier in its centre, is shined onto the
atomic cloud:

Figure 2.5: Rectangular Josephson junction with a thin barrier in its centre,
created by the DMD potential.

In Sec. 2.2 we will describe the precise functioning of the digital micro-mirror
device, and how it allows to create dynamic potentials of arbitrary shape.

2.1.2 Imaging setup

After the creation of the crossover superfluid, trapped within the DMD po-
tential, we need to extract informations about the atomic cloud; in ultracold
atoms experiments measurements are usually carried out by imaging processes,
which permit to observe in-situ the realized ultracold gas density n(r⃗). The
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latter quantity allows to extract noteworthy physical quantities, like the num-
ber of atoms N , the temperature T of the cloud or the bulk chemical potential
µ. The particular technique we employ is that of absorption imaging. In our
experiment the imaging process is carried out by using the laser resonant with
the D2 transition in two distinct paths: one along the horizontal direction,
with respect to the MOT chamber, and one along the vertical. Horizontal
imaging employs a simple telescope, consisting of two lenses with focal lengths
of 150 mm and 1000 mm respectively, providing a total magnification of 6.72.
The atom image is focused on an Andor Ultra camera, set on the Fast Kinetic
Series (FKS) acquisition mode, which allows for taking a sequence of a few
images with a short delay time on the order of 200µs. On the other hand,
vertical imaging light propagates along the z-axis inside the science chamber,
from top to bottom, passing through a high-resolution microscopic objective
as shown in Fig 2.6: a resonant high-power laser beam is illuminated onto
the atomic cloud, and the shadow due to the presence of atoms which have
absorbed the light is focused by an optical setup on another Andor camera.

Figure 2.6: Scheme of the lasers employed for the vertical imaging and the
DMD trapping. Both employ a high-resolution microscopic objec-
tive. An optical system composed of elliptical mirrors and beam-
splitter cubes focuses the laser light on the Andor camera.

This process returns an image of the system together with a measurement of
the optical column density OD, which is related to the atomic density n(r⃗) of
the cloud on the x-y plane through a proportionality factor. The reason why
we perform imaging with high intensity light is related to the optical density
of the system: for low values of luminous intensity the number of transmit-
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ted photons through optically dense clouds is reduced, and the shadow of the
atomic cloud saturates the image, since a small number of photons reaches
the camera: in this situation the signal-to-noise ratio decreases accordingly.
In addition we must also minimize the motion of atoms due to interactions
with resonant photons, which occur during the imaging process, in order to
increase the spatial resolution along the vertical direction. For this purpose
we employ short imaging pulses with a duration of 4µs and an intensity of
I ≈ 3 Is, where Is = π h c γ/3λ3 is the saturation intensity of the D2 line; in
these conditions, where the atomic transition is saturated, the Lambert-Beer
law for light attenuation in materials modifies to:

dI

dz
= −n(r⃗)σeff

I Ieff

I + Ieff
(2.1)

where I is the intensity of the light propagating along the z direction which
shines the cloud of density n(r⃗), σeff = σ0/α is an effective cross-section
(where σ0 is the cross section describing photon absorption processes for a
non-saturated cloud), and Ieff = Iβ is the effective saturation intensity. The
factors α and β can be obtained by a calibration process, as discussed in
Ref. [11]. Integrating Eq. (2.1) along the imaging direction (z-axis) yields the
optical column density OD:

OD = −ln
(
Iout

Iin

)
+Iin − Iout

Ieff
(2.2)

where Iin and Iout are the incident and transmitted intensity, respectively.
In our experimental setup, the 2-D atomic density on the trapping plane,
n2D(x, y), can be calculated from the measured optical density OD by using
the following relation [11]:

n2D(x, y) = OD

σ0
(2.3)

2.2 Digital micro-mirror device
In ultracold atom experiments Josephson junctions are made by trapping a
gas in the superfluid state inside an optical dipole trap, usually realized with
focused laser beams which produce an harmonic confining, as discussed in
App. A.2. The atomic cloud is then bisected into two distinct reservoirs with
the employment of an additional laser; this creates a potential barrier which
acts as the analogue of the insulating layer used in superconducting Josephson
junctions. If this barrier is sufficiently thin tunneling phenomena become im-
portant, and the Josephson dynamic sets in. In recent years the development
of new technologies, such as spatial light modulators devices, has allowed for
the possibility of sculpting the optical potential experienced by atoms. In
our experiment we are able to confine the atoms in potentials of arbitrary
shape thanks to the help of a digital micro-mirror device (DMD), allowing
for the realization of Josephson junctions having different geometries: for this
thesis work we mainly employed a hybrid potential that exerts an harmonic
trapping along the vertical direction z, while in the x-y plane the cloud is
confined within a rectangular box, to which corresponds an hard-box type
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potential. This hybrid confinement realizes the structure that makes up our
atomic Josephson junction, where the 6Li superfluid can be trapped. In our
experiment we employ a Vialux V-7000 High-Speed Module DMD equipped
with the Texas Instruments Discovery DLP7000 chip, which is composed by a
1024 × 768 array of square micro-mirrors of pitch 13.68µm. When the device
is powered down, each mirror lays on its rest position: the tilt state of a mirror
can be controlled by turning on the DMD and by applying an external volt-
age, which can put the various micro-mirrors in the ON/OFF state depending
on its sign. These two states correspond to an inclination of 12◦/−12◦ with
respect to the horizontal direction, as shown in Fig. (2.7).

Figure 2.7: Functioning of the DMD mirrors. When the device is turned off,
the mirrors lay in the rest position. When the DMD is turned on,
the application of an external voltage selectively turn the selected
mirrors in the ON state: this results in the projection of the de-
sired image on the atomic cloud.

When an image is loaded onto the device, the mirrors of the DMD are ar-
ranged in a certain combination of ON-OFF states following the coding of
the image, such that it is reproduced on the instrument’s screen. If illumi-
nated by an external laser source, the digital micro-mirror device reflects a
pattern along the ON direction, having the same shape as the loaded image.
In our experiment we shine on the DMD a green laser beam, with wavelength
of 532 nm, and the reflection of the instrument is projected onto the atomic
cloud, generating a repulsive optical dipole potential: this happens because
the laser light is blue-detuned (δ = wL − w0 > 0) with respect to the lithium
fine doublet transitions. Since the DMD acts as a light mask, the potential
which it creates mantains the original profile of the incident laser beam: in
order to shine on the atoms dynamic potentials with an homogeneous profile,
we need to remove the laser’s Gaussian profile. This is done by a feedback
program, which functioning is described in Ref. [40], that compares the mea-
sured DMD image with a target one and minimizes the error between the two
by applying a pixel-by-pixel error correction matrix on the DMD mirror array
configuration; the result is the creation of a spatially homogeneous potential.
We can modulate the intensity of the trapping by adjusting an external pa-
rameter, the intensity threshold Intth, which assumes values in the interval
{0, 255}: the feedback program rescales the target image into grayscale at the
beginning of the feedback routine, and the resulting potential will be more
homogeneous for smaller values of Intth. Another notable use of DMD is the
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possibility of creating obstacles within the Josephson junction; the most im-
portant of these is represented by a thin optical barrier, already shown in the
center of Fig. 2.5, which allows for the study of Josephson dynamics. The
barrier is realized as follows: first, we need to create a sequence of different
images, such that the first image represents only the rectangular potential in
the absence of the optical barrier, while in subsequent images a thin barrier is
gradually raised in the desired position. This first image is then loaded onto
the DMD, which proceeds to project it onto the atomic cloud. The loaded
image is changed every 0.08 ms, following the order from the rectangular po-
tential without the barrier up to the last image, where the thin barrier at its
selected height is fully raised inside the junction. The DMD reproduces the
different images by gradually turning various ON mirrors in the OFF state, so
that at the end of the process the barrier is created almost adiabatically; this
procedure is employed as it does not create perturbations related to density
imbalances within the superfluid, like sound waves or shock waves. The cre-
ated optical barrier has a width of about 1µm (about 4 DMD pixels), which
corresponds to our imaging resolution: its precise value, together with the trap
depth V0, has to be determined through a calibration procedure, as reported
in Sec. 2.4. The microscope objective adopted in the absorption imaging setup
along the vertical direction, where we employed a 621nm laser beam, can be
also used to focus the 532nm light reflected by the DMD on the atomic cloud:
this not only allows high resolution imaging, as already discussed, but also
makes possible the projection of DMD made optical potentials defined over a
micrometer length scale.

2.3 Hybrid trap properties
This section will be devoted in the calculation of thermodynamic properties
of the ultracold 6Li gas, trapped within the hybrid potential generated by the
DMD; physical quantities like the Fermi energy EF , the chemical potential µ or
the speed of sound cs will be investigated in our particular trap geometry. The
rectangular hybrid potential, which creates an harmonic confinement along
the vertical direction and behaves like a rigid box along the x-y plane, can be
written as:

VT (r⃗) = 1
2mw

2
zz

2 + Vbox(x, y) (2.4)

where wz is the trapping frequency along the vertical, while Vbox(x, y) is the
box potential on the x-y plane, supposed to be of the hard-wall type:{

Vbox(x, y) = 0 for |x| < Lx ∨ |y| < Ly

Vbox(x, y) = ∞ for |x| > Lx or |y| > Ly

(2.5)

where Lx and Ly are the sides of the rectangle-shaped potential. We can
calculate the Fermi energy EF of a degenerate gas in such a potential by
inserting the potential of Eq. (2.4) inside the expression for the total number
of particles N , Eq. (1.17), obtaining:

N = gs

6π2

(2m
ℏ2

)3/2 ∫ Lx/2

−Lx/2
dx

∫ Ly/2

−Ly/2
dy

∫
R
dz

(
EF − 1

2mw
2
zz

2
)3/2

(2.6)
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Integrating Eq. (2.6) gives the total number of atoms N , and the Fermi energy
EF can be simply found by inverting:

EF =
(
N4πℏ3wz

gsmLxLy

)1/2
(2.7)

We can also calculate the chemical potential µ in this particular trap con-
figuration by integrating Eq. (1.67), in the different cases of the BEC-BCS
crossover, to obtain the total number of atoms N : by inverting this result and
inserting the appropriate coefficients γ and gγ , shown in Tab. 1.1, we obtain
the desired expression for µ. In the strongly interacting unitary regime we
arrive at:

µUF G = ξ3/4EF (2.8)
where ξ is the Bertsch parameter defined in Sec. 1.4, while EF is the Fermi
energy reported in Eq. (2.7). The same calculation in the BEC regime returns
the following chemical potential:

µBEC =
(
N3πℏ2aMwz

2LxLy
√
m

)2/3
(2.9)

Finally, in the BCS regime, we retrieve the non-interacting result of Eq. (1.58):

µBCS = EF (2.10)

Sound velocity

We can also calculate the velocity of the sound modes in this trap profile. We
recall that the sound velocity cs is related to the chemical potential µ(r⃗) by
the following equation:

cs =
(
n(r⃗)
M

∂µ

∂n(r⃗)

)1/2
(2.11)

where n is the cloud density, while M is the mass of the atom pair. In the
framework of the polytropic approximation discussed in Sec. 1.4, we can sub-
stitute Eq. (1.66) for the chemical potential µ along the whole BEC-BCS
crossover inside Eq. (2.11), obtaining the following expression for the sound
velocity:

cs =
(
γ gγ n(r⃗)γ

M

)1/2
=

(
γµ(r⃗)
M

)1/2
(2.12)

We can calculate the speed of sound cs across the BEC-BCS crossover by
substituting the correct parameters γ and gγ , reported in Tab. 1.1. We obtain
the following results: 

cs =

√
µ(r⃗)
M

(BEC)

cs =

√
ξ3/4

3 vF (UFG)

cs = 1√
3
vF (BCS)

(2.13)

where vF =
√

2EF /M is the Fermi velocity. We notice how, in the BEC case,
the speed of sound cs depends on the square root of the chemical potential µ
and, consequently, on the cube root of the average cloud’s density on the x-y
plane, n = N/LxLy.
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2.4 Barrier creation and calibration
As explained in Sec. 2.2, the DMD employs a feedback program in order to cut
the optical potential to the desired height, so that the resulting confinement
is homogeneous in the x-y plane. Moreover, it is possible to separate the
superfluid into two independent reservoirs by raising a thin repulsive optical
barrier in the desired position, such that the two sides of the junction can
communicate with each other through tunneling phenomena, as explained in
Sec. 1.6. This potential barrier can be characterized by two notable quantities:
the trap depth V0 and the barrier width σ. To adjust the height of the optical
potential we can vary two external variables:

1. The power of the green 532 nm laser illuminating the DMD, PDMD (mW).

2. The auxiliary variable intensity threshold Intth, which value can be set
between 0 and 255 and determines the combination of mirrors in the ON
state.

In order to estimate the potential barrier’s depth V0 (in Hz units) and width σ
(in µm units) a calibration process is required, in order to relate the intensity
of the optical trapping with the adjustable parameters Intth and PDMD (mW):
the actual height U0 of a generic optical potential, exerted on the atoms due
to the DMD setup, is directly proportional to the product of these parameters
through a proportionality factor α:

U0 = α · Intth · PDMD (mW) (2.14)

which has to be determined by the calibration. The technique we adopt for
deriving this factor is that of dynamical phase imprinting: one of the two
reservoirs composing the atomic cloud is illuminated with an optical dipole
potential U0, generated by the DMD, for a certain time interval ∆t. If ∆t
is shorter than the typical time of atomic motion, ∆t < ℏ/µ, where µ is the
chemical potential of the ultracold gas, the light imprints on the wave function
Ψ of the selected condensate a phase of ℏϕ = U0 ∆t, which can be measured by
exploiting interference phenomena, as described below. The phase imprinted
on the illuminated side of the system, using Eq. (2.14), becomes:

ℏϕ = α · Intth · PDMD (mW) · ∆t (2.15)

Dividing Eq. (2.15) by the Planck constant h leads us to the following result:

ϕ̃ = ϕ

2π = α

h
· Intth · PDMD (mW) · ∆t = α̃ · Intth · PDMD (mW) · ∆t (2.16)

where ϕ̃ = ϕ/2π, while α̃ = α/h. On the other hand, the non-illuminated
reservoir acts as a phase reference, such that we can measure the relative phase
ϕ between the two reservoirs; this measurement is carried out by interfering
the condensates wave functions through the time-of-flight technique (TOF).
In this method, all optical trapping potentials are turned off and the system is
left evolving, such that the matter waves associated with the two independent
superfluids interfere: after 6 ms the absorption imaging process is performed,
extracting the density profile of the cloud. First of all, the following periodic
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function is fitted to the interference pattern data, leaving the relative phase ϕ
and the fringe wavelength λ as free parameters:

f(x) = A · cos(ϕ+ 2π λx) + off (2.17)

An interference pattern is reported as an example in Fig. 2.8 (a), together with
its corresponding density profile curve fit, shown in Fig. 2.8 (b).

(a) Interference pattern. (b) Fit result.

Figure 2.8: On the left panel (a), density profile of the two superfluids after
a 6 ms TOF procedure, where we can see at least three separate
fringes: its relative color scale is reported on the right side. On
the right panel (b), the fit of such interference pattern, effectuated
with Eq. (2.17), in the region surrounded by the white rectangle.

We can calculate an average fringe wavelength λ̄, by considering the mean
value of the wavelengths λ extracted from the fits made with Eq. (2.17), shown
in Fig. 2.9, obtaining the result λ̄ = (25.4 ± 0.4) Andor pixels.

Figure 2.9: Fringes wavelength extracted from various fits effectuated with
Eq. (2.17), as a function of Intth · PDMD (mW) · ∆t: an hori-
zontal dashed line reports its mean value, which is found to be
(25.3 ± 0.4) Andor pixels.
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The interference profiles are fitted again by fixing the wavelength to this av-
erage value λ̄, leaving only the relative phase ϕ as a free parameter. This
process is done since, in general, the parameters ϕ and λ could be dependent
from each other: by constraining λ = λ̄, a value which should only depend
on the TOF duration (6 ms in this case), we obtain a better estimate for the
relative phase ϕ. The phase extrapolated from the different fits, as a function
of Intth ·PDMD (mW)·∆t, is finally fitted with a straight line, using Eq. (2.16).
In our experiment we perform this process for five different phase imprinting
times ∆t: we report the fit results for the phase ϕ̃ in Fig. 2.10 (a).

(a) Relative phase fit results (b) Alpha fit results

Figure 2.10: On panel, (a), the fit of the phase ϕ̄ for differents imprinting
times, effectuated with Eq. (2.16), in order to extract the slope
of the straight line. Data and fits are shifted in the vertical by
ϕ/2π = 1 between each other in order to to improve the visibility
of the image. On panel (b), we report the value of ᾱ extracted
from fits, as a function of the imprinting time ∆t. The dashed
red line represent its mean value of ᾱ = 0.187 ± 0.001, together
with its error bar.

The slope of the lines returns the value of the calibration factor α̃ for the
different imprinting times ∆t. Since in principle the calibration parameter α̃
should not depend on the imprinting time ∆t, its mean value is assumed to
be the best value, calculated by averaging the results of the various fits: this
returns a mean value of ᾱ = 0.187±0.001, as shown in Fig. 2.10 (b). Knowing
the value of α̃, we could calculate the height U0 of a generic potential just by
using Eq. (2.14). Now the problem becomes how to determine the real height
V0 of the thin optical barrier, created inside the atomic Josephson junction,
as a function of the set intensity threshold value IntSet

th which, in principle,
could differ from the measured value IntMeas

th because of the finite resolu-
tion of the DMD-projecting optical system: another calibration procedure is
therefore necessary, in order to relate together the latter quantities. Since the
created Josephson barrier has a dimension comparable with the resolution of
the imaging objective, equal to 1µm, a final calibration is needed for calcu-
lating its effective trapping depth V0, experienced by the atomic cloud. The
first process to be carried out is the calibration of IntSet

th itself: this is done
by projecting an homogeneous area on a secondary Thorlabs camera placed in
the DMD optical setup, and by calculating the average number of countings
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which occur in a certain cut region as IntSet
th is modulated. This area must

be small enough to present an approximately homogeneous counting profile,
which for high intensity threshold values has a Gaussian profile. Specifically,
the calibration is carried out by fitting the following function to the average
of the counts in the area, as a function of IntSet

th :

IntMeas
th = γ · IntSet

th (2.18)

thus returning the value of the proportionality factor γ between the effective
intensity threshold IntMeas

th and the set one IntSet
th . An example of one homo-

geneous area and its corresponding cut, employed for fitting Eq. (2.18), is re-
ported in Fig. 2.11 (a), while the obtained curve fit is reported in Fig. 2.11 (b).

(a) Homogeneous area. (b) Fit results.

Figure 2.11: (a): Homogeneous area for a set value of IntSet
th = 50, reported

together with its corresponding cut (bottom left), effectuated in
the region surrounded by the white rectangle where we calculate
the average counting number IntMeas

th .
(b): Fit result of equation Eq. (2.18), effectuated for the mea-
sured value of intensity threshold IntMeas

th against the set value
IntSet

th . The slope of the straight is found to be γ = 0.859 ±
0.002.

In our experiments, the intensity threshold is always set to a constant value of
IntSet

th = 110 when realizing the thin optical barrier, constituting the Joseph-
son insulating obstacle. The last necessary step for estimating the real height
of the optical barrier, which depends on the provided IntSet

th and on the ap-
plied power of the green laser PDMD(mW), is to effectuate a 1-D Gaussian fit
of the barrier profile through the following equation:

G(x) = off +H · e−2( x−x0
σx

)2
(2.19)

where x0 is the Gaussian center, σx is the variance (estimating the barrier
width σ) while H is the Gaussian amplitude, related to the barrier’s height
V0. In order to probe the transport properties of our superfluid Josephson
junction we have to inject a tunable particle current: this is operatively done
by displacing the thin optical barrier inside the trapping potential, at a con-
trollable velocity, as explained in Secs. 3.2 and 4.1. Therefore, we also need
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to investigate the barrier’s properties as a function of the position within the
junction, addressing eventual fluctuations or imperfections. This characteriza-
tion is carried out by creating a rectangular potential which contains multiple
barriers in different positions, each one of them having the same thickness,
as shown in Fig. 2.12: their height H and width σ are extracted by fitting
Eq. (2.19).

Figure 2.12: Single rectangular optical dipole potential, having multiple thin
barriers in different positions.

Moreover, a 1-D Gaussian filter is applied to each image in order to keep into
account the finite resolution of the optical system traversed by the laser beams:
this technique gives a better estimate of the real optical potential experienced
by the atoms. Fit results are reported in Figs. 2.13 (a) and 2.13 (b) as a func-
tion of the position within the optical potential: we notice how the Gaussian
height H and width σ are approximately constant for different positions, re-
flecting how the Josephson barrier’s properties are well defined throughout our
junction. We can therefore provide a reliable estimate for the barrier’s depth

(a) Fit results (σ) (b) Fit results (H)

Figure 2.13: (a): Fit results for the Gaussian variance σ, as a function of
the position inside the trapping potential.
(b): Fit results for the barrier depth H̄, here called amplitude.
Red dashed lines report the mean value of both quantities, to-
gether with their error bars. We find that σ̄ = (0.80 ± 0.02)µm,
while H̄ = (55 ± 2) a.u.

and width by taking the values H̄ = (55 ± 2) a.u. and σ̄ = (0.80 ± 0.02)µm,
obtained by averaging the fit results. The height of the barrier in terms of the
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set intensity threshold IntSet
th can be calculated from the fitted H̄ as follows:

IntBarrier
th = IntSet

th · H̄

IntMeas
th

= H̄

γ
(2.20)

where in the second passage we used Eq. (2.18). Finally, the real barrier height
in frequency units, V0 (Hz), can be obtained by means of Eq. (2.14), dividing
both sides of the equation by h:

V0 (Hz) = PDMD (mW) · ᾱ · H̄
γ

= PDMD (mW) · Γ (2.21)

where Γ = ᾱ · H̄/γ is the total calibration factor, which is measured to be
Γ = 11.9 ± 0.6. The obtained V0 provides a scale of energy comparable with
the chemical potential µ of the system; the V0 over µ ratio allows to determine
if the system can perform Josephson dynamics through tunneling phenomena.
Typical values for the DMD optical potential power are about PDMD (mW) =
130 mW, while the chemical potential in the BEC regime can be calculated by
using Eq. (2.9): in a rectangular Josephson junction of size 125 × 17.5µm2,
having N ∼ 2 · 104 atoms and a vertical trapping (angular) frequency of
wz = 2π ·420 Hz, its value is estimated to about µBEC ∼ 1.2 KHz (in frequency
units). The parameter V0/µ is therefore found to be approximately V0/µ ∼ 1.3
in this setup. Another interesting parameter to be considered is the ratio
between the healing length ξ, introduced in Eq. (1.56), and the average barrier
width σ̄. Since for the parameters given above we have that ξ ∼ 0.6µm, this
ratio is calculated to be approximately ξ/σ̄ ∼ 0.75. As discussed in Sec. 1.4,
the healing length ξ represent the distance over which a BEC restores its
density after experiencing a perturbation, and can be associated with the
extension of the macroscopic wave function Ψ associated the condensate: when
this parameter is too small with respect to the average barrier size σ̄, the order
parameters associated with each reservoir do not overlap within the barrier
region, which thus acts as a thick insulating barrier and inhibits tunneling
phenomena. Conditions V0/µ > 1 and ξ/σ̄ ∼ 0.75 ensure that we are fully in
the tunneling regime, where the Josephson dynamics is capable of setting in
and atom pairs can move from one side of the junction to the other, traversing
the optical barrier.
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Chapter 3

Atomic Josephson junction
characterization

In ultracold atom physics experiments, Josephson junctions are constituted by
two superfluid reservoirs separated by a thin optical barrier, such that the cor-
responding order parameters overlap within the barrier region; this situation
allows for the tunneling of atoms across the obstacle. Superconducting and
superfluids Josephson junctions are expected to posses similar transport prop-
erties since their macroscopic wave function Ψ, describing the low-temperature
condensed state, is represented by Eq. 1.74 in both cases. These devices allow
for a direct measurement of the most elusive physical quantity associated with
the order parameter: the relative phase ϕ between the two superfluids, which,
for barriers with a sufficiently low transmission probability, is connected with
the supercurrent flowing inside the system through the sinusoidal current-
phase relation reported in Eq. (1.82) [3, 19]. The latter dependence can be
investigated by injecting a direct current inside the system, exploring the DC
Josephson effect. On the other hand, when a finite initial chemical potential
difference ∆µ is preliminarly created within the system, we expect to observe
coherent oscillations at the same frequency of both the relative phase ϕ be-
tween the superfluids and the atom density n (or, equivalently, of the ∆µ), out
of phase by π/2 [55, 12, 25]; this constitutes the AC Josephson effect. Both
of these phenomena are a manifestation of the system’s macroscopic quantum
phase coherence, and represents the physical basis of many remarkable appli-
cations: for example, in the field of metrology, it is employed for high-precision
measurements [56]. Usually, ultracold Josephson junctions are realized with a
superfluid trapped inside a 3-D harmonic optical trap, where a focused laser
beam bisects the cloud into two distinct reservoirs, acting as a thin insulat-
ing barrier: this microscopic device has been studied under the theoretical
framework of a two-well potential model [57, 58]. The system investigated
in this thesis presents a simpler trapping geometry, as we employ a digital
micro-mirror device in order to project onto the atomic cloud a rectangular
optical potential, which exerts a repulsive trapping, as discussed in Sec. 2.2. In
the present chapter we report the characterization of the elongated Josephson
junction adopted in our experimental setup, investigating its transport proper-
ties and measuring its noteworthy physical quantities, like the critical current
Ic, the speed of sound cs or the plasma frequency ωJ , which describes the co-
herent oscillations in time occurring in the AC Josephson regime. In Sec. 3.1
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measurements regarding the speed of sound modes cs are reported, together
with its expected value, calculated from Eq. (2.12): this allows to characterize
the speed of density perturbations which can be excited inside the ultracold
cloud, and how dissipative phenomena in the physical system affect its value
with respect to the theoretical one. In order to investigate our physical sys-
tem and its transport properties, we need to inject an external tunable current
inside the optical potential; as our Josephson junction only contains neutral ul-
tracold atoms, isolated from the external environment, this request constitutes
a difficult challenge. In Sec. 3.2 we explain how the DMD ability of shining
dynamic potentials onto the atomic cloud allows to inject a particle current
within our system. The coherent oscillations of both the chemical potential
difference ∆µ and the relative phase ϕ between the reservoir’s wave functions
is reported in Sec. 3.3, where we observe the AC Josephson effect: by measur-
ing the phase difference between these oscillations we demonstrate that our
junction is indeed in the Josephson regime, where particle transport occur due
to tunneling phenomena, probing also the macroscopic phase coherence which
characterizes the superfluid state. In Sec. 3.4 we will report the measurements
of the DC Josephson effect, obtained by displacing the thin optical barrier at
a constant speed in order to generate a direct atomic current: the behavior
of important parameters, namely the conductance G and the critical current
Ic, will be investigated as a function of the system linear size Lx and of the
applied laser power, PDMD(mW). Finally, in Sec. 3.5 we report the measured
frequency of the coherent oscillations which occur during the AC Josephson
dynamics, as a function of the same quantities. We will also show the experi-
mental results for the density oscillations triggered by the creation of an initial
sound excitation, which tunnels back and forth through the optical barrier;
the values of the measured frequency corroborates the hypothesis where the
behavior of the Josephson oscillations is altered due to coupling mechanisms
between the Josephson dynamics and the sound modes.

3.1 Speed of the sound modes measurements
A fundamental phenomena associated with ultracold quantum gases is con-
stituted by the existence of collective modes. They can be divided into two
distinct categories, which properties mostly depends on interparticle inter-
actions: collisionless modes and hydrodynamic modes. In particular hydro-
dynamic modes emerge as a consequence of the presence of interactions in
the condensate [59]. A notable example is represented by sound excitations,
which propagate within a superfluid at the speed of sound cs, as introduced
in Sec. 2.3. This quantity, which depends on the junction’s properties, can be
easily measured in our experiment, where the tunability of the repulsive opti-
cal potential allows for a dynamical excitation of sound modes. The starting
point for our experiment is the creation of a superfluid of 6Li, in the desired
interaction regime of the BEC-BCS crossover, trapped in the hybrid rectan-
gular potential created by the DMD; this occurs after the various processes
of laser cooling and trapping, as explained in Sec. 2.1. In particular, in this
measurement, as in many others within this thesis work, we investigated the
ultracold gas of 6Li in the BEC regime, where interactions are weak and re-
pulsive (1/kFa ≫ 1), and molecular bound states are allowed. This regime

58



is obtained by applying a magnetic field of about 632 G, in order to exploit
the Feshbach resonance of the |1⟩ and |3⟩ Zeeman substates, as discussed in
Sec. 2.1. The presence of the thin optical barrier within the potential is not
necessary to measure the speed of sound cs, since we only need to generate
a sound excitation which has to propagate freely inside the condensate. To
create a sound wave we control the optical potential via an external program
running on a python script, Spyder, which can create the desired sequence of
images to be loaded onto the DMD; these images are shifted between each
other via a series of subsequent triggers. This procedure allows to set a wide
variety of parameters in order to modify the junction’s geometry or its profile
during time: in our case we compress one side of the junction, in a non-
adiabatic process, to subsequently stretch it back to its original size. The
latter process excitates a sound mode, which propagates within the superfluid
at a certain speed cs, to be determined experimentally. Absorption imaging
is then effectuated at different times, in order to record the time evolution of
the density profile within the cloud; the starting time, t = 0, is taken when
the shape of the potential is restored to its original condition, after the initial
compression. The position of the density excitation within the cloud at a cer-
tain time can be found by fitting a 1 − D Gaussian curve on the integrated
density profile along the y-axis:

f(x) = off +A · e

−(x− x0)2

σ2/2 (3.1)

where A is an amplitude, x0 is the sound pulse position, σ is the variance
and off is a constant offset. Examples of the generated sound wave propa-
gation within the optical potential are reported in Fig. 3.1, at different times,
together with the corresponding curve fits of their integrated density profiles,
effectuated through Eq. (3.1); this fitting procedure returns the position x(t)
of the sound excitation as a function of the time. The speed of sound cs,
supposing a density propagation with constant velocity, can be extrapolated
by fitting the following equation, describing an uniform linear motion, to the
sound-wave position x(t) as a function of the time t:

x(t) = cs t+ x0 (3.2)

where x0 is a position offset. We report the obtained curve fit in Fig 3.2, for
different compression sizes: the fitted straight lines are parallel to each other,
compatibly with their error bars, suggesting that the excitated density pulses
propagate at a velocity which doesn’t depend on the particular compression
applied. Therefore, the speed of density excitations is well defined within our
system. Its expected value, calculated from Eq. (2.13) withN = 2.7·104 atoms,
µ ∼ 1440 Hz and M = 2m = 2 ·9.9883414 ·10−27 Kg, in a trapping potential of
sizes 125 × 17.5µm2, is found to be about 7 mm/s; the measurement process
returns an average speed of c̄s = (6.09 ± 0.04) mm/s, calculated by taking
the mean value of the various cs obtained through curve fitting. The latter
value is of the same order of magnitude as the predicted theoretical value
of 7 mm/s, but not fully compatible within its experimental error bar. This
small discrepancy may arise due to the fact that during the compression of the
optical potential we aren’t solely exciting sound modes, but also density shock
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(a) t = 0.2 ms (b) t = 4.2 ms (c) t = 7.2 ms

Figure 3.1: Sound excitation dynamics after the compression of the optical
potential, where we clearly notice a density pulse (the dark red
region, in our colorscale) propagating inside the cloud, from left to
right, as time increases (Fig. (a) to (c)): its corresponding color
scale, reporting the cloud’s density, is shown on the right. The
Gaussian fits of the density profiles as a function of the position,
using Eq. (3.1), are reported underneath the corresponding figure;
this procedure accurately extracts the pulse’s position x0 within
the trapping potential, at different times.

Figure 3.2: Curve fit of the pulse’s position (straight lines) at different times,
for different compression amplitudes, labeled as Amp in the plot’s
legend; the three curves are shifted along the vertical direction in
order to enhance visibility. Data is fitted with Eq. (3.2) in order to
extract the straight’s slope, giving an estimate of the sound velocity
cs. The three straight lines are approximately parallel between each
other, returning a mean sound velocity of about c̄s = 6.09 ± 0.04
mm/s.
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waves, whose propagation dynamics within the superfluid differ from those of
the sound modes: in particular, their velocity is predicted to be higher than
the corresponding sound velocity cs [60].

3.2 Direct currents in isolated atomic junctions
In order to investigate the DC Josephson effect in superconducting junctions
the application of a direct current IDC is required, as it allows to study the
transport properties of the system and to measure important parameters which
characterize the junction itself, such as the critical current Ic; in the framework
of circuital models, discussed in Sec. 1.6, quantities like the resistance R and
the capacitance C can also be extracted, depending on the model chosen to
represent experimental data. Being our atomic Josephson junction an isolated
system composed of neutral atoms, unlike the corresponding superconducting
device, the problem of injecting an external current in order to probe the
DC Josephson effect represents a non-trivial task. To solve this problem, in
our experimental apparatus we exploit the ability of the digital micro-mirror
device to create dynamic potentials. In order to generate an atomic current,
not provided from the outside, the optical barrier can be displaced inside
the Josephson junction [19, 20]: this causes a non-resistive flow of atoms in
the opposite direction due to the quantum tunneling if the velocity of the
barrier is smaller than a critical value vc, the critical velocity, which can be
related to the Josephson critical current Ic described in Sec. 1.6. The trapping
setup employed in our experiment is such that the 6Li superfluid presents an
homogeneous density profile on the x-y plane, enabling the stable injection of
a current I(t), which does not depend on the position but rather only on the
instantaneous velocity v(t) of the barrier:

v(t) = Ly I(t)
ñ

= Lx I(t)
N

(3.3)

where we assumed propagation of the current along the x direction in the
rectangle potential with sides Lx and Ly, while N is the total number of
atoms in the junction and ñ is the cloud density along the x-y plane. The
movement of the optical barrier inside the Josephson junction is carried out
by a Python program, which allows to select the desired barrier speed v0:
a certain number of images, representing the motion of the barrier in time,
are then generated and loaded onto the DMD, which projects a repulsive
potential on the ultracold cloud having the same shape of the chosen images,
as explained in Sec. 2.2. The device is triggered to shift periodically between
these images, following the barrier’s motion: this produces an atomic current
in the opposite direction with respect to the barrier’s movement. We can
modulate a wide range of parameters in order to represent different scenarios;
in the case of a direct current (DC driving), the equation of motion of the
barrier is set to be:

x(t) = x0 + v0 t (3.4)

so that other than the barrier’s velocity v0 we can also adjust the initial posi-
tion of the barrier x0. Another parameter we can tune in our measurements is
represented by the time of the barrier’s movement tbarr, which establishes the
distance covered by the barrier during its displacement through Eq. (3.4).
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(a) t = 0 ms (b) t = 18.8 ms

(c) t = 0 ms (d) t = 18.8 ms

(e) t = 38.8 ms (f) t = 68.8 ms

(g) t = 38.8 ms (h) t = 68.8 ms

Figure 3.3: Junction response to a DC current injection at different times,
where the initial time t = 0 ms is taken when the optical barrier
starts moving inside the Josephson junction. The color scale re-
ports the cloud 2-D density. The barrier’s velocity is set to v0 =
1 mm/s. The plots below report the corresponding 1-D density
of the cloud, integrated along the y-axis, n1D(x) =

∫
n2D(x, y)dy.

We clearly observe the build-up of a non-zero ∆µ on the right side
with respect to the barrier’s driving, as time increases: atoms ac-
cumulate on one side of the junction due to resistive effects.
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An example of the barrier movement during time inside our junction is shown
in Fig. 3.3, for a 125 × 17.5µm2 rectangular potential. The DMD therefore
allows to explore different regimes within the Josephson junction: in the pres-
ence of a constant velocity v0 we can probe the Josephson DC effect, where a
finite chemical potential difference ∆µ ̸= 0 is expected to occur when a certain
critical barrier velocity vc (or, equivalently, a critical current Ic) is exceeded.
The DMD also permits to drive the barrier with an additional modulation,
thus allowing to explore a totally different transport regime, physically en-
riched with respect to the DC Josephson effect: in fact the application of an
alternating current Iext(t) to a superconducting Josephson junction causes the
emergence of Shapiro steps, described in Sec. 1.6.4. The procedure for modu-
lating the optical barrier is reported in Chap. 4, where the measurements of
Shapiro steps are discussed.

3.3 Current-phase Josephson oscillations
In order to perform the characterization of the atomic Josephson junction in-
side the rectangular trap, it is first necessary to ensure that the many-body
system we experimentally realize is well described in terms of the Josephson
Hamiltonian shown in Eq. (1.86). Its major consequences, the Josephson-
Anderson Eqs. (1.88) and (1.90), predict that for a small applied chemical
potential difference, ∆µ ̸= 0, the system should undergo Josephson oscilla-
tions at the plasma frequency ωJ , reported in Eq. (1.87). In particular, we
expect that in the tunneling regime, where V0/µ > 1, the chemical potential
difference ∆µ and the relative phase ϕ between the two superfluids oscillate
with the same frequency, having a relative phase shift ∆Φ of about π/2: this is
a consequence of the macroscopic quantum phase coherence of the condensed
state, where the quantities ∆µ and ϕ behave as canonically conjugate variables
[12]. In the present section we have performed measurements of these quan-
tities in order to observe their oscillations in time, ensuring that our system
undergoes the Josephson dynamics: in this case, particle transport within the
junction occurs due to tunneling phenomena, as explained in Sec. 1.6. In order
to investigate the evolution over time of the chemical potential difference, it is
necessary to generate an initial non-zero ∆µ imbalance, which allows for the
establishment of the AC Josephson effect. The creation of the ∆µ imbalance
occurs by varying the parameters controlling the acusto-optical modulator
that acts on the IPG laser beam, such that the centre of the optical dipole
trap due to its crossing with the Mephisto laser is displaced: the repulsive
optical potential of the DMD therefore acts on an atomic cloud which is not
symmetrical with respect to the trap center. The net result is the creation of
two ultracold atomic reservoirs with a different particle density, separated by a
thin optical barrier located at the centre of the trap. In this measurement the
first image loaded on the DMD has already the optical barrier in the center of
the potential, so that we avoid diffusion phenomena of the atomic cloud be-
tween the two superfluid reservoirs: this process could in fact re-balance the
initial ∆µ created. With respect to the previously discussed case, reported
in Sec. 2.2, where the barrier is adiabatically raised by gradually increasing
Intth in order to not excitate perturbations in the superfluid, this initial bar-
rier is particularly deep, presenting a set Intth = 255: this way tunneling
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phenomena are practically suppressed and the starting system effectively rep-
resents a density imbalanced junction. Meanwhile, the power of the trapping
532 nm laser is progressively increased from PDMD = 0 mW to a final value of
PDMD = 125 mW. Only at the end of this ramp the intensity of the barrier
is abruptly set to a final value of Intth = 110, and the system can evolve
through tunneling processes. The created junction contains roughly 21 · 103

atoms, in a rectangular potential of size 125 × 17.5µm2. The optical barrier
depth V0 can be calculated through Eq. (2.21): its corresponding ratio with
the chemical potential µ returns a value of about V0/µ ∼ 1.2, ensuring that
the Josephson dynamics is capable of setting in. An example of the chemical
potential imbalanced Josephson junction created in our setup by following the
described procedure is reported in Fig. 3.4.

Figure 3.4: Density imbalanced Josephson junction with a thin barrier in the
centre, created by the DMD potential after displacing the optical
dipole trap realized through the green laser: this is the configura-
tion we probed for studying the coherent oscillations of ∆µ and ϕ.
The color scale on the right reports the cloud 2-D density n(x, y).
We notice a clear density accumulation on the left side of the
junction, obtained with the procedure descripted in this section.

After the creation of a junction presenting a non-zero ∆µ between its super-
fluid reservoirs, the system is let to evolve freely without displacing the optical
barrier, as we follow the time evolution of ∆µ and ϕ by monitoring the in-situ
density and the time-of-flight interference pattern during time, respectively.
Using the absorption imaging technique the optical density OD of the atomic
cloud is measured, as described in Sec. 2.1: the chemical potential difference
∆µ can be successively calculated from Eq. (2.9), valid in the BEC case, once
this quantity is known. As shown in Fig. 3.5, we observe density oscillations
from one side to the other of the optical trap, which are damped in time due
to resistive effects occurring during the motion of the atoms inside the cloud.
The following equation is fitted to the ∆µ− t experimental curve:

∆µ(t) = off +A0 sin (2πν t+ ϕ) · e(−t/τ) (3.5)

where τ represents a characteristic damping time, while ν is the oscillation
frequency and ϕ the associated phase shift. The corresponding curve fit (black
line in Fig. 3.5) returns an oscillation frequency of ν = 18.07 ± 0.07 Hz.
On the other hand, the interference profile, from which the relative phase
ϕ between the condensates can be inferred, is obtained through the time of
flight (TOF) technique already employed for the measurement of the phase
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Figure 3.5: Oscillations of ∆µ inside the trap as a function of the time, occur-
ring due to quantum tunneling effects. The time t = 0 corresponds
to when the optical barrier is ramped down to Intth = 110, and the
system is able to evolve freely. Data is fitted with Eq. (3.5), where
we extracted an oscillation frequency of ν = 18.07 ± 0.07Hz.

during the barrier calibration, as shown in Sec. 2.4: in this procedure all
optical traps are switched off, allowing for the interference of the two atomic
clouds. The absorption imaging process is then effectuated after 3 ms with
respect to the trap removal, in order to obtain the interference profile. The
relative phase between the two reservoirs, ϕ, can be extrapolated by fitting the
obtained interference patterns with Eq. (2.17), at different times with respect
to the start of the Josephson dynamics, but always after a TOF of 3 ms. An
example of such an interference pattern, together with its respective curve fit,
is reported in Fig. 3.6.

(a) Interference pattern (b) Fit result

Figure 3.6: (a): On the left, the interference profile of the two superfluids
after a 3 ms time of flight process, with the associated color-scale,
reporting the 2-D density n(x, y).
(b): On the right, the fit of such an interference pattern, effectu-
ated with Eq. (2.17) on the integrated density along the y-axis as
a function of the position, in the region surrounded by the white
rectangle in Fig (a).
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The data for the relative phase as a function of the time ϕ(t) is reported in
Fig. 3.7, and can be fitted with the following equation:

f(x) = A sin (2πν t+ Φ) + off (3.6)

in order to extract the frequency ν and the phase Φ of the oscillations.

Figure 3.7: Oscillations of the relative phase ϕ during time, obtained with a
3 ms TOF. Data is fitted with Eq. (3.6), where we extracted an
oscillation frequency of ν = 18.08 ± 0.15 Hz. This value is com-
patible, within its errorbar, with the frequency found for the oscil-
lations of ∆µ in Figure (3.5), as predicted from the AC Josephson
effect theory.

The corresponding curve fit (black line in Fig. 3.7) returns an oscillation fre-
quency of ν = 18.08±0.15 Hz. As we can see from these results the extracted
oscillation frequency, for both the relative phase ϕ (Fig. 3.7) and chemical
potential difference ∆µ (Fig. 3.5), has the same value of about ν ≈ 18 Hz,
as expected. Moreover, the phase difference ∆Φ between their oscillations in
time is found to be ∆Φ = Φϕ − Φ∆µ ≈ (1.59 ± 0.22) rad, compatible with
the expected value of ∆Φ = π/2 within the experimental error bar. From
these measurements we proved how the Josephson dynamics, predicted by
Eqs. (1.88) and (1.90), is well reproduced inside our system, where the thin
optical barrier produced by the DMD behaves as an effective Josephson bar-
rier; therefore we can study the ultracold gas, trapped in the hybrid repulsive
potential, in the framework of Josephson junctions. These results also show
the conjugate nature of the relative phase ϕ and of the chemical potential
difference ∆µ between the superfluid reservoirs, representing a striking man-
ifestation of the system’s macroscopic quantum phase coherence. This is a
consequence of the spontaneous symmetry breaking associated with the tran-
sition to superfluidity.
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3.4 DC Josephson effect characterization
In the present section we investigate the DC Josephson effect in our partic-
ular experimental setup, where we have an elongated superfluid Josephson
junction of 6Li atoms in the BEC state of tightly-bound molecules, held to-
gether by weakly repulsive interactions, as explained in Sec 1.4. For barriers
with sufficiently low transmission probability (V0/µ > 1 in superfluid junc-
tions), where tunneling processes can be treated as perturbations, a sinusoidal
current-phase relation is expected to hold, as reported in Eqs. 1.82 and 1.88.
A current-biased ultracold Josephson junction can be realized by displacing
the thin optical barrier within the trapping potential at a constant speed over
time, as previously discussed in Sec. 3.2, generating an atomic current be-
tween the two superfluid reservoirs; if this movement occurs with a sufficiently
small speed, with respect to a certain critical value vc of the barrier’s velocity,
no finite difference in chemical potential develops as all the particles tunnel
from one side of the barrier to the other. On the other hand, since at high
barrier velocities dissipative phenomena set in, the tunneling of atoms occurs
only partially, causing a density accumulation in the direction of the barrier’s
movement. This results in the creation of a non-zero ∆µ, which increases al-
most linearly while increasing the velocity of the barrier above its critical value
vc; we recall that, in solid-state Josephson junctions, the Ohm law ∆V = IR
is retrieved when applying an external current Iext such that Iext > Ic, where
Ic is the junction’s critical current, as shown in Fig. 1.9. Moreover the Python
program, which permits to set the desired barrier parameters as its initial
position x0 and velocity v0, also allows for the tuning of hybrid potentials
with different sizes Lx × Ly along the x-y plane. Therefore, it is possible to
probe the system’s response to an external current as its linear size changes:
in Sec. 3.4.1 we investigated the transport properties of the junction by fixing
the linear size Ly of the rectangle along the y-axis while we varied the system
size Lx along the x-axis. The green laser’s power PDMD(mW) is kept constant
during this part of the experiment, resulting in a fixed value of V0/µ. We
can also study the behavior of the system in the opposite case, changing the
power of the trapping laser which generates the optical potential while not
altering the junction’s dimensions, as done in Sec. 3.4.2. In both cases, we will
show how the measured critical current Ic and conductance G depend on these
tunable parameters, adjustable from the outside, characterizing the Josephson
DC dynamics within our experimental setup.

3.4.1 DC response for different size junctions

We want to study how the Josephson DC dynamics, triggered by a constant
current, behaves for different horizontal sizes Lx, which is the dimension of the
junction along the direction of the particle current, or, equivalently, along the
barrier’s movement. In particular, we will investigate the behavior of both the
critical current Ic and the conductance G as a function of the horizontal length
Lx, while fixing the vertical length at a value of Ly = 17.5µm: the particle
density is always kept at a constant value of about n ∼ 13.6 Part/µm2 between
the various measurements such that all the different junctions present the same
chemical potential µ. The power of the green laser (λ = 532 nm) is also set at
a constant value of PDMD(mW) = 135 mW during this part of the experiment,
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resulting in a barrier depth, in frequency units, of about V0 ∼ 1.6 KHz (see
Sec. 2.4). Its corresponding ratio with the chemical potential µ is approxi-
mately V0/µ ∼ 1.1 for all horizontal sizes investigated in this section, ensuring
tunneling phenomena. Measurements are made as follows; after creating a
superfluid Josephson junction in the hybrid box potential of Eq. (2.4), with
the procedure described in Sec. 2.1, we make sure that the system’s density
is initially balanced before starting the dynamics, such that the difference of
chemical potential ∆µ between the two reservoirs is approximately zero at the
beginning of the experiment. This process occurs via precise displacements
of the final repulsive optical dipole trap, the latter realized through the green
532 nm laser which causes an harmonic confinement along the vertical direc-
tion; this is performed in order to change the position of the atomic cloud
with respect to the center of the rectangular repulsive trap, realized with the
DMD optical setup. These fine movements are made through the use of a
pico-motor, which allows to displace the optical dipole trap along both the
horizontal and vertical directions, of the desired amount of micro-steps. Af-
ter this preliminary density balancing, the measurement starts by moving the
thin optical barrier inside the junction with the desired speed v0, for a time
equal to tbarr, with the procedure explained in Sec. 3.2: this generates an
atomic current in the opposite direction with respect to the barrier’s motion.
At the end of this displacement the absorption imaging process is performed,
allowing to obtain the value of the optical density OD of the system, and,
consequently, the value of the atomic 2-D density n(x, y). Using the measured
result for the atom density, the chemical potential difference ∆µ correspond-
ing to the velocity v0 can be evaluated by using Eq. (2.9) from the number
of atoms in the left and right reservoir. This process has to be repeated for
different values of the barrier velocity v0, in order to obtain the ∆µ− v0 char-
acteristic of the junction, while keeping the system’s total size fixed. Next,
we can set different values of the horizontal length Lx and perform the same
measurements, in order to study the transport properties as a function of the
system’s size. The velocity v0 set by terminal can be converted into a particle
current I, since the latter represents a more significant physical quantity, by
exploiting Eq. (3.3), where the number of atoms N is obtained by averaging
the measured atom number over the many repetitions done at a fixed velocity.
The obtained ∆µ − I curves are then fitted with one of the circuital models
introduced in Sec. 1.6, in order to extract the notable parameters that char-
acterize our atomic junction: the critical current Ic and the conductance G,
which have to be studied as a function of the system’s size. We chose to fit
the data with Eq. (1.94), which reports the stationary solution for the chem-
ical potential difference ∆µ (in the overdamped regime βc ≪ 1) that occurs
when injecting a current (i.e. driving the optical barrier) for a sufficiently
long time with respect to the transport dynamics: in what follows we will
suppose to satisfy this assumption. Typical values for the total atom number
inside the system are about N ∼ 104 atoms, for a junction with an horizontal
size of about Lx = 50µm: these values correspond to an estimated critical
particle current of order of Ic ∼ 1.5 · 105 Part/s. The measurement results,
together with their corresponding curve fits, are reported in Fig. 3.8, for both
driving times tbarr = 10 ms and tbarr = 5 ms, at different values of the hori-
zontal length Lx: we notice how the chosen fitting function well interpolates
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Table 3.1: Fit results for G and Ic with their relative error bars, obtained by
fitting Eq. (1.94) to experimental data, as shown in Fig. (3.8).

Lx (µm) tbarr (ms) G · h Ic (105 Part/s) vc (mm/s)

50 10 584 ± 55 2.08 ± 0.05 0.99 ± 0.03
75 10 749 ± 38 2.05 ± 0.04 0.99 ± 0.02
100 10 854 ± 51 2.14 ± 0.06 1.09 ± 0.03
50 5 1001 ± 68 2.09 ± 0.12 0.99 ± 0.04
75 5 1586 ± 67 2.48 ± 0.02 1.21 ± 0.01
100 5 1658 ± 73 2.33 ± 0.06 1.17 ± 0.03

the experimental data. We also report in Fig. 3.9 the 1-D integrated density

(a) tbarr = 10 ms (b) tbarr = 5 ms

Figure 3.8: Measured ∆µ-I characteristic, for different junction sizes and
driving times: Fig. (a) reports tbarr = 10 ms, while Fig. (b) shows
tbarr = 5 ms. Data is fitted with Eq. (1.94) (solid lines). The dif-
ferent colors correspond to different horizontal lengths Lx of the
junction, expressed in µm, as shown in the plots legend. Along
the upper x-axis we report the values of the barrier velocity which
correspond to the particle current I. In both panels, the measure-
ments corresponding to different system sizes {50, 75, 100}µm are
respectively shifted on the vertical axis by {−20, 0, 20} Hz, in order
to increase visibility.

plot, which shows the establishment of a density imbalance in the compressed
reservoir as the displacement velocity of the barrier is increased. In particular,
we observe a noticeable density accumulation on the left side of the junction
after the critical velocity vc (white dashed line) is overcome. Fit results for
the extrapolated values of the conductance G and the critical current Ic are
reported in Fig. 3.10 and in Tab. 3.1. For both driving times tbarr, the conduc-
tance increases monotonically with the system size, showing a reduction in the
resistive behavior, while the critical current stays approximately constant as
the horizontal length is varied: this is expected because the junction’s density
profile is homogeneous in the x-y plane, depending only on the trapping laser
power PDMD(mW), regardless of the dimension of the trap. As a consequence,
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Figure 3.9: 1-D density profile, showing the integrated particle density along
the y-axis as a function of the barrier’s velocity (y-axis). The
corresponding color bar is reported on the right. We note that,
for high barrier velocities (v ≳ vc), a density accumulation sets
in along the direction of the barrier’s displacement. White dots
correspond to the position of the barrier’s center during time, cal-
culated through Eq. (3.4), while the dashed horizontal line repre-
sents the critical velocity vc = (0.99 ± 0.02) mm/s, obtained by
fitting Eq. (1.94).

(a) G · h vs Lx. (b) Ic vs Lx.

Figure 3.10: Fit results for the various DC Josephson effect measurements: in
panel (a) we report the extracted values of G, while Ic is reported
in panel (b). Both of these quantities are plotted a function of
the horizontal length Lx. When the system’s size is increased
we observe a monotonic increasing behavior for G, while Ic is
approximately unaffected. These results are true for both driving
times tbarr = 10 ms and tbarr = 5 ms.

the critical current Ic, which depends only on the density of the cloud (together
with the condensed fraction N0/N and the interaction parameter 1/kFa, as
shown in Ref. [19]), should be independent on the system size. Moreover, the
conductance G is found to be higher for the smaller driving time tbarr = 5 ms,
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as the chemical potential difference ∆µ saturates to a lower value with respect
to the tbarr = 10 ms case, where the barrier is driven for a longer time: in fact,
lower values of the final ∆µ correspond to less-resistive systems, which should
present an higher conductance. The dependence of the conductance on the
driving time, related to how information propagates in our system (that is,
at the speed of sound cs), is discussed more deeply in Sec. 4.3. The critical
velocity of the barrier’s displacement, reported in Tab. 3.1, is a fraction of the
measured speed of sound cs, for the same experimental conditions: the latter
quantity represents the Landau critical velocity for superfluidity in the case
of Bose-Einstein condensates, as discussed in Sec. 1.5. Actually, when the DC
Josephson effect sets in and a finite ∆µ develops, the driving velocity v0 of
the optical barrier overcomes the local speed of sound near the barrier itself,
and excitations are created as Landau’s criterion is violated. The local value
of the speed of sound is lower than its bulk value cs, measured in Sec. 3.1, as
the density of the cloud near the barrier region is lower and the speed of sound
depends on the superfluid density n, as cs ∝

√
n: this scaling as a function

of the particle density is due to the presence of the chemical potential µ in
Eq. (2.13), which reports the expression for the speed of sound in the BEC
regime.

3.4.2 Different barrier velocity junction

We now investigate the transport properties of our superfluid junction as we
change the power of the green laser which realizes the trapping, PDMD(mW),
while we keep unaltered the system size: the horizontal length is here fixed at
a value of about Lx = 50µm, while Ly = 17.5µm. The process to collect the
experimental data is exactly the same described for the previous case of a junc-
tion with variable length Lx, where the optical barrier is displaced within the
junction at a certain constant velocity v0. We report in Fig. 3.11 the collected
∆µ − I data, together with its corresponding fit carried out via Eq. (1.94);
again, the chosen fitting function nicely interpolates the experimental data.
We notice that the critical current of the junction Ic occurs at lower values for
increasing power PDMD(mW) of the green laser. This is caused by the fact
that increasing the power of the laser also increases the depth of the trap, and
tunneling phenomena are gradually suppressed (while V0/µ increases). The

Table 3.2: Fit results for G and Ic with their relative error bars, obtained by
fitting Eq. (1.94) to experimental data, as shown in Fig. 3.11.

PDMD(mW) G · h Ic (105 Part/s) vc (mm/s) V0/µ

135 590 ± 93 2.08 ± 0.05 0.99 ± 0.02 1.1
200 394 ± 23 0.73 ± 0.04 0.37 ± 0.02 1.6
300 284 ± 19 0.16 ± 0.04 0.09 ± 0.02 2.4
400 260 ± 15 0.04 ± 0.008 0.024 ± 0.05 3.3

critical current Ic subsequently decreases, since its value depends on the tun-
neling amplitude |t| as Ic ∼ |t|, as shown in Ref. [19]; the critical velocity vc of
the barrier, at which tunneling processes are not sufficient to cause the passage
of all atoms from one side to the other, decreases accordingly. Therefore, for
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(a) GBarr(mW ) = 135, 200 mW . (b) GBarr(mW ) = 300, 400 mW .

Figure 3.11: Measurements of the ∆µ − I characteristic for different V0/µ
ratios, together with their corresponding curve fits (solid lines)
done via Eq. (1.94). The chemical potential difference ∆µ is
reported in frequency units (∆µ/ℏ). Different colors correspond
to different V0/µ ratios, as shown in the figure’s legends. In both
panels (a) and (b), measurements are shifted by {−20,+20} Hz
along the vertical direction, in order to increase visibility.

(a) G · h vs V0/µ. (b) Ic vs V0/µ.

Figure 3.12: Fit results for the DC Josephson effect measurements, reporting
the extracted values of G and Ic as a function of the V0/µ ratio;
we clearly observe a monotonic decrease for both quantities while
increasing the trap depth V0, which is directly proportional to the
applied laser power PDMD(mW), as reported in Eq. (2.21).

very deep barriers (corresponding to high laser intensities) a small displace-
ment velocity is enough to cause density accumulations along the direction of
the barrier’s movement, in the compressed reservoir. This ultimately gener-
ates a finite chemical potential difference ∆µ ̸= 0, even when low currents are
applied. We report in Fig. 3.12 and in Tab. 3.2 the results of the fit of the
∆µ − I characteristics, as a function of the applied laser power PDMD(mW).
These results confirm the observation we just made, as the critical current
Ic is a monotonous decreasing function of the laser power, and, therefore, of
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the barrier depth V0. The same is true for the conductance G, which shows
the same behavior of the critical current, as a function of the laser intensity.
Again, this occurs because for higher trapping intensities the system becomes
more resistive as tunneling processes become less relevant; in particular, the
conductance depends on the tunneling amplitude as G ∼ |t|2, as shown in
Refs. [40] and [48]. Therefore, the junction’s conductance G has to decrease,
resulting in an increasing resistance R = G−1.

3.5 AC Josephson effect characterization
In the present section we will investigate more thoroughly the AC Josephson
effect, introduced in Sec. 1.6 and probed in Sec. 3.3, by characterizing the
Josephson oscillation modes as a function of the trapping parameters. In
superconducting Josephson junctions, the application of an initial ∆V at the
sides of the device generates an alternating current I(t), which flows inside the
junction and is driven solely by the relative phase difference ϕ: by integrating
Eq. (1.83), we obtain that the phase difference between the order parameters
evolves over time as ϕ(t) = ∆V0 sin (ωJ t), oscillating at the plasma frequency
ωJ . When considering a superfluid Josephson junction, an initial imbalance of
∆µ between the two reservoirs induces a time evolution of the relative phase
similar to that of the superconductive case, ϕ(t) ∼ sin (ωJ t). By inserting
this expression for the phase difference inside Eq. (1.88), we obtain that inside
the atomic Josephson junction an alternating particle current flows, as in the
superconductive case. In this regime, the chemical potential difference ∆µ
oscillates in time between the two reservoirs, ∆µ(t) ∼ cos (ωJ t), at a frequency
still given by the plasma frequency ωJ , reported in Eq. (1.87); this process
ultimately corresponds to coherent density oscillations within the junction, as
those measured in Sec. 3.3. When the density imbalanced junction presents a
large enough initial ∆µ, density pulses are expected to propagate within the
junction at the speed of sound cs in finite size systems: we therefore expect
the Josephson oscillations phenomena, occurring at the plasma frequency ωJ ,
to mix with the sound excitations. We investigate density oscillations within
the junction by measuring their corresponding frequency ωJ , in two different
ways:

1. The first method, as mentioned above, consists in creating a certain non-
zero chemical potential difference, ∆µ ̸= 0 between the two reservoirs
constituting the junction. The system is then allowed to evolve, keeping
the barrier in the center of the junction without moving it: tunneling
phenomena will set in causing density oscillations, and it is possible to
image the junction at different times in order to obtain the temporal
evolution of the density (∆µ-t curves). We probe these oscillations as
done before with the DC Josephson effect, by varying the system size
and the intensity of the optical barrier. This is reported in Sec. 3.5.1.

2. Another technique for probing the AC Josephson effect in our system
consists in exciting a density pulse, which propagates at the speed of
sound cs within the junction. This is done by compressing one side of
the optical potential, with the same modality discussed in Sec. 3.1, where
we excited sound modes. If a thin barrier is present inside the junction
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Josephson, separating two independent superfluid reservoirs, oscillations
of the cloud’s density should be observed, roughly at the sound modes
frequency νs = cs/2Lx. We will compare these oscillations with the
Josephson oscillations reported in Sec. 3.5.1, which occur due to a finite
initial ∆µ that trigger the tunneling dynamics. This measurement is
shown in Sec. 3.5.2, and the results we obtain suggest the existence
of a coupling mechanism between the Josephson oscillation frequency
νJ = ωJ/2π and the frequency of the sound modes νs.

3.5.1 Oscillations with ∆µ imbalance

In order to generate a starting non-zero ∆µ within the superfluid Josephson
junction, we proceed as described in Sec. 3.3, displacing the optical dipole
trap center first while successively ramping up the trapping potential. The
optical barrier is subsequently lowered, leading to the creation of a density
imbalanced junction where atom pairs can tunnel through, and the system
begins to effectuate density oscillations between the two sides of the device.

Figure 3.13: Measurement results of the ∆µ(t) oscillations, obtained in
the AC Josephson effect measurements for different horizontal
lengths Lx. Data is fitted through Eq. (3.7). The laser power
is fixed to a value of PDMD = 135 mW, corresponding to a ra-
tio of V0/µ ∼ 1.1. We clearly see that for higher system sizes
the period T of the oscillations increases, resulting in a smaller
frequency νJ . Plot are respectively shifted from the measured
values along the y-axis, in decreasing order from the vertical, by
{400, 200, 0,−200,−400} Hz, in order to increase visibility.

To extract the ∆µ-t curves we carry out the absorption imaging process in
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situ at different times, in order to calculate the chemical potential imbalance
within the junction. During measurements the trapping parameters, namely
the junction horizontal size Lx and the power PDMD(mW) of the green laser
realizing the optical trap, can be set as desired: therefore, Josephson oscilla-
tions can be studied as a function of these quantities. We report in Fig 3.13 the
experimental results for Josephson oscillations occurring for different system
size, with an applied laser power of PDMD(mW) = 135 mW, the corresponding
trap depth to chemical potential ratio being of about V0/µ ∼ 1.1: this data is
fitted with a damped periodic function, chosen as follows:

∆µ(t) = off +A0 cos (2πν t+ ϕ0) · e(−t/τ) (3.7)

where A0 is the amplitude of the oscillations, ν is the oscillation frequency, τ is
the time scale associated with the damping of ∆µ over time, while ϕ0 is a phase
factor. The results of the fit for the oscillation frequency ν, as a function of Lx

and of PDMD(mW), are shown in Fig 3.14 and in Tab. 3.3. We can see how the

(a) Fit result for ν (b) ν vs Lx hyperbole fits

Figure 3.14: (a): Fit results of ν curves, extracted from the measured ∆µ(t)
curves by fitting Eq. (3.7). The frequency νJ decreases as the
system size is increased.
(b): Fit of the experimental results with a function of the type
f(x) = off + ν0/Lx, reported as a dashed line in the plot: in
our setup the frequency νJ seems to have an approximately hy-
perbolic dependence on the system’s size. Plot are respectively
shifted from the measured values along the y-axis, in decreasing
order from the vertical, by {260, 200, 135} Hz, in order to in-
crease visibility.

measured frequency ν of the Josephson oscillations decreases monotonously as
the size of the system increases, with an approximately hyperbolic dependence
of the type ν ∝ 1/Lx. This scaling property is shown in Fig. 3.14 along with
curve fits, which corroborate the latter observation as the data well matches
the fitting function ν = off +ν0/Lx, where ν0 is a fixed amplitude. The same
monotonic decreasing behavior of the frequency is found when increasing the
power of the trapping laser PDMD(mW), and consequently, when increasing V0
with respect to µ. This phenomena is shown in Ref. [41], where, in the frame-
work of a LCSJ model the Josephson inductance LJ is shown to increase when
increasing the barrier’s depth, resulting in a decrease of the oscillation plasma
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PDMD : 135 mW
V0/µ : 1.1
Lx(µm) ν(Hz)

17.5 152 ± 4
25 109 ± 1

37.5 72 ± 1
50 N.M

62.5 42.7 ± 0.2
75 35.7 ± 0.3
100 27.1 ± 0.6
125 20.3 ± 0.3

PDMD : 200 mW
V0/µ : 1.7
Lx(µm) ν(Hz)

17.5 141 ± 2
25 84.6 ± 0.8

37.5 63 ± 1.3
50 N.M

62.5 39.3 ± 0.4
75 30.8 ± 0.9
100 23.2 ± 1.2
125 17.2 ± 0.4

PDMD : 260 mW
V0/µ : 2.2
Lx(µm) ν(Hz)

17.5 111.4 ± 2.2
25 72.1 ± 1.4

37.5 N.M
50 46.2 ± 0.4

62.5 28.4 ± 4.5
75 26.8 ± 0.4
100 N.M
125 N.M

Table 3.3: Fit results for ν, obtained by fitting Eq. (3.7) to experimental data
curves of ∆µ as a function of t, as done in Fig. 3.14.

(a) Measured ν, expected νj and νs (b) Logarithmic scale plot

Figure 3.15: (a): Fit results of ν curves (black dots), reported together with
the values of νs = cs/2Lx (orange dots), for the sound modes
frequencies (blue dots), and the expected values of the plasma
frequency νj =

√
ECEJ/h. We observe that for increasing sys-

tem size the measured frequency becomes more compatible with
the sound frequency.
(b): On the right, we report a plot which shows these results
in a logarithmic scale. Here we can see how the slope of the
curve describing the measured frequency changes as we increase
the system size. For small sizes, it is compatible with the slope
of the calculated plasma frequency νJ (blue solid line), while for
high values of Lx it seems almost parallel with the sound fre-
quency curve (orange solid line).

frequency ωJ : this is compatible with the expected behavior of the frequency
in such a model, ωJ = 1/

√
(LB + LJ)C, where LB and LJ represent the bulk

and the Josephson inductance respectively. We also report in Fig. 3.15 (a) the
obtained results for the speed of sound frequency νs = cs/2Lx (orange dots)
and the expected plasma frequency νJ =

√
ECEJ/h (blue dots), compared

with the measured Josephson oscillation frequency (black dots), for the mea-
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surements with PDMD = 200 mW; a plot in log-log scale is also reported by
side in Fig. 3.15 (b), in order to highlight the different scaling powers with re-
spect to the system’s size of the various frequencies. The value of the charging
energy EC (required to calculate the plasma frequency ωJ) is found through
Eq. (1.102), while the Josephson tunneling energy EJ = ℏ Ic has to be calcu-
lated in the hypothesis that Ic stays constant if the laser intensity is kept fixed
while varying the system’s longitudinal length Lx. This was shown to be true
in the analysis effectuated in Sec. 3.4: we therefore take the measured value
of Ic = (2.08 ± 0.05) · 105 Part/s for the considered case of PDMD = 135 mW,
the former being reported in Tab. 3.2. In the AC Josephson regime we expect
these ∆µ oscillations in time to occur at the plasma frequency ωJ , as predicted
by the Josephson-Anderson Eqs. (1.88) and (1.90). The discrepancy between
the measured value of the oscillation frequency and the predicted value νJ ,
observed in Fig. 3.15, may arise because of dissipative mechanisms during the
density propagation inside the cloud and through the optical barrier, which
could decrease the frequency of oscillation. For high values of the horizontal
length Lx some kind of coupling mechanism between the coherent Josephson
oscillations and the sound modes seems to exist: this could change the scal-
ing of the oscillation frequency ν with respect to Lx. This phenomena may
happen because the two-mode model, which predicts the expression of the
plasma frequency reported in Eq. (1.101), is valid only for point-like systems
[61]; the more we increase the system size, the more we are likely to stray from
this assumption. A more detailed discussion of this intrinsic coupling between
Josephson oscillation modes and sound modes in elongated bosonic Josephson
junctions is found in Ref. [62].

3.5.2 Oscillations with sound waves

In this section we want to confirm that the dynamics of the Josephson oscil-
lations observed in our system, which should be characterized by the plasma
frequency ωJ , becomes gradually more intertwined with the phenomena of
sound excitations as the system’s linear size Lx is increased. The measure-
ment is effectuated as follows: one side of the junction is quickly compressed,
to be then returned to its initial condition. This process, as already discussed
in Sec. 3.1, generates a sound wave that propagates within the superfluid at
a speed equal to cs. In the present case, the thin Josephson barrier in the
middle of the junction causes the AC Josephson dynamics to occur, where the
density imbalance generated within the cloud starts oscillating between the
two reservoirs.

Table 3.4: Fit results for ν, obtained by fitting Eq. (3.7) to experimental data,
as done in Fig. 3.16.

PDMD(mW) V0/µ ν (Hz)

70 0.6 38.0 ± 0.2
135 1.1 36.6 ± 0.2

898 200 1.6 32.2 ± 0.2

Measurements are taken by fixing the side of the junction Lx = 75 nm, while
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varying the intensity PDMD(mW) of the DMD trapping laser. Fit curves are
reported in Fig. 3.16, while fit results for the frequency ν as a function of the
applied laser power are reported in Tab. 3.4.

Figure 3.16: Measurements of the ∆µ(t) oscillations for different V0/µ ratios,
together with their corresponding curve fits, obtained by fitting
Eq. (3.7), for the case of a sound-wave excitation. Plot are re-
spectively shifted from the measured values, in decreasing order
from the vertical, by {200, 0,−200} Hz, in order to increase vis-
ibility. We observe how in the red curve (V0/µ ∼ 1.6) the initial
part (before ∼ 10 ms) is clearly not sinusoidal: this is probably
related to the fact that the corresponding speed pulse is very small
at the beginning of the dynamics, and the crossing of the optical
barrier through tunneling effects changes the curve’s behavior,
which then oscillates as a sine.

This results are comparable with the measured Josephson oscillation frequen-
cies at the same experimental conditions, being Lx = 75 nm and identical
PDMD(mW), reported in Tab. 3.3; this again suggests that for long junc-
tions the Josephson oscillations of ∆µ may experience a coupling with the
sound modes, propagating at a speed of cs inside the cloud. We also report
in Fig. 3.17 the 1-D density profile of the AC Josephson effect measurement
with Lx = 62.5µm and PDMD = 135 mW (reported in Fig. 3.13 and Tab. 3.3),
integrated along the y-axis, as a function of both the time (vertical axis) and
the position (horizontal axis). We clearly see the propagation in time of a
density pulse inside the optical potential, tunneling through the barrier and
moving at approximately the speed of sound cs.
The latter statement can be verified by plotting two straight lines f(t) =
cst+ x0 (white dots), having angular coefficient equal to the measured speed
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Figure 3.17: 1-D density profile (of the measurement having Lx = 62.5µm
and PDMD = 135 mW) as a function of the time t, taken with
respect to the start of the oscillation dynamics. We notice the
propagation of a density pulse from the left side to the right
side of the junction, tunneling through the optical barrier. Two
straight lines, having angular coefficient equal to the measured
speed of sound cs, are plotted above the experimental density pro-
file (dotted lines), in order to corroborate our claims regarding
the propagation of density pulses at the speed of sound cs.

of sound cs ∼ 6.09 mm/s, reported in Sec. 3.1: these lines overlap compatibly
with the underlying density pulses, confirming that the density oscillations
which occur during the AC Josephson effect propagate at the speed of sound
cs inside our system.
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Chapter 4

Shapiro steps in the 6Li
atomic Josephson junction

In the present chapter we will report the experimental results relating to
the main physical phenomena investigated in this thesis: the emergence of
Shapiro steps in the ∆µ − I curves, characterizing the transport response
of our superfluid Josephson junction when an alternating current I(t) is in-
jected inside the system, as discussed in Sec. 1.6.4 for the particular case of
a superconducting junction. The mechanism underlying their occurrence can
be understood in the framework of the tilted washboard potential U(ϕ), in-
troduced in Eq. (1.98), where we expect a Shapiro step to occur whenever the
relative phase ϕ jumps between n nearby local minima of the potential curve,
undergoing phase-slip processes and changing its value by 2πn. This last chap-
ter is organized as follows: first and foremost, in Sec. 4.1 we explain how an
alternating current I(t) ∝ IAC cos (2πνt), oscillating at a certain frequency ν,
can be experimentally generated inside our atomic Josephson junction with
the DMD optical setup. This will extend the treatment given in Sec. 3.2, de-
scribing the process behind the creation of a direct current IDC , which involves
the displacement of the thin barrier at a constant speed v0 inside the optical
potential. Time evolution measurements of the chemical potential imbalance
∆µ for the case of an applied oscillating current, carried out both during and
after the barrier dynamics (i.e, the current’s injection), are reported in Sec. 4.2.
In particular, AC Josephson oscillations are observed when the system is let to
evolve freely after the barrier’s movement: these oscillations occur at the same
frequency reported in Sec. 3.5, for the same experimental conditions. Measure-
ments of the ∆µ− I characteristic associated with alternating current-biased
atomic Josephson junctions, carried out through a periodic displacement of
the optical barrier within the system, are reported in Sec. (4.3), leading to the
observation of Shapiro steps: data is collected for different values of the driving
frequency ν and of the driving amplitude x1. Noteworthy quantities, namely
the i-th step height ∆µSi and the i-th step position ISi , can be extracted by
fitting to experimental data an opportune phenomenological function f(I):
the main objective is to compare the measured step height ∆µS with its ex-
pected value, reported in Eq. (1.6.4), which predicts that this quantity should
depend only on the modulation frequency ν and on the number n of relative
phase jumps, occurring between different local minima of the tilted washboard
potential. The emergence of quantized vortices in our experimental system is
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analyzed in Sec. 4.4: here we measure that phase slippage processes, which
lead to the emergence of Shapiro steps, occur together with the nucleation of
vortex dipoles within the superfluid. Therefore, we expect vortex excitations
and Shapiro dynamics to be intertwined in our atomic Josephson junction.
The former statement is supported by investigating the behavior of the vortex
number Nvort as a function of the driving velocity v0 of the barrier, and by
comparing the obtained results with the respective ∆µ− v0 curve. Finally, in
Sec. 4.5 we showcase the measurement of the ∆µ − I characteristic within a
Josephson junction in the strongly interacting regime (UFG) of the BEC-BCS
crossover, described in Sec. 1.4. When driving the optical barrier with a mod-
ulated trajectory x(t) (or, equivalently, by injecting an alternating current)
we expect to observe Shapiro steps also in this interaction regime, occurring
with the same modality already discussed for the BEC case.

4.1 Alternate currents in isolated atomic junctions
As explained in Sec. 1.6.4, the application of an alternating atomic current
I(t) ∼ IAC sin (2πνt) inside the system is necessary in order to probe the
emergence of Shapiro steps, which arise due to a resonance between the veloc-
ity of the relative phase ∂ϕ/∂t and the modulation frequency ν. In Sec. 3.2
we discussed how to generate a direct atomic current IDC in our experiment;
the optical barrier is displaced at a constant speed inside the superfluid 6Li
junction, allowing to investigate the DC Josephson dynamics. This is opera-
tively done by loading a certain sequence of images onto the DMD that can
be shifted via a series of equally time-spaced triggers. Our experimental setup
allows to investigate the system more thoroughly: we can in fact not only
apply a direct atomic current IDC , but also an alternating atomic current I(t)
whose value oscillates in time at a given frequency. The procedure which we
employ to generate a modulated current is exactly the same described for the
DC case, where we can set the value of a certain number of parameters as-
sociated with the barrier’s movement. When injecting an alternating current
I(t), the equation of motion of the barrier is described by:

x(t) = x0 + v0 t+ xosc(t) = x0 + v0 t+ x1 sin (2πν t) (4.1)

so that we can also adjust the initial position of the barrier x0 and its initial
velocity v0, together with the amplitude x1 and the frequency ν of the oscil-
lating modulation xosc(t). The velocity associated with the barrier’s motion
can be calculated by differentiating Eq. (4.1) with respect to time:

v(t) = dx(t)
dt

= v0 + vosc(t) = v0 + 2π ν x1 cos (2πν t) (4.2)

so that the velocity of the barrier is made up by two contributions: a constant
velocity term v0 and an alternate velocity term vosc(t), which oscillates at a
frequency ν and with an amplitude of v1 = 2π ν x1. We report in Fig. 4.1
the plots of Eq. (4.1) and Eq. (4.2), effectuated for different values of ex-
perimentally feasible parameters x1 (∼ {0, 5}µm), ν (∼ {70, 280} Hz) and v0
(∼ {0, 2} mm/s). By combining Eq. (4.2). and Eq. (3.3), we obtain the ex-
pression for the injected current in the AC case as a function of the motion
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(a) x(t) vs t. (b) v(t) vs t.

Figure 4.1: (a): Plot of Eq. (4.1), describing the law of motion x(t) of the
optical barrier when subjected to an modulated driving.
(b): Plot of Eq. (4.2), representing the barrier’s velocity v(t)
obtained by differentiating Eq. (4.1). Both panels show vari-
ous curves, corresponding to the same modulation frequency of
ν = 140 Hz but different values of the driving amplitude x1 and of
the initial velocity v0, as shown in the plot’s legend.

parameters x1, ν and v0:

I(t) = v0N

Lx
+ 2πνx1N

Lx
cos (2πν t) = IDC + IAC cos (2πν t) (4.3)

where we defined IAC = 2πνx1N/Lx as the amplitude of the oscillating cur-
rent term, while IDC is the direct current component. By tuning the afore-
mentioned parameters, namely IDC , IAC , and ν, we can explore the junction’s
transport properties under different driving conditions. We can also change
the time of the barrier’s movement (or, equivalently, of the current’s injection)
before the absorption imaging process; we often choose to image the system,
with respect to the start of the dynamics, at a time equal to tbarr, which is
related to the chosen modulation by the following equation:

tbarr = NCycles

ν
(4.4)

where ν is the set modulation frequency, while NCycles is the number of os-
cillation periods considered when driving the barrier. The v0 t term reported
in Eq. (4.1) represents the DC component of the barrier driving: this obsta-
cle always travels a distance given by v0 tbarr, since its movement is modu-
lated for an integer number of periods NCycles. In fact, the oscillatory driving
term vosc(t) presented in Eq. (4.2) averages to zero over a driving period
(
∫ T

0 cos (2πν t) = 0), resulting in no net barrier displacement due to this mod-
ulation. The only contribution to the total distance spanned by the barrier is
thus given by the DC term v0 t. An example of the thin barrier movement dur-
ing time inside our junction, obtained by driving the system via the modulated
trajectory of Eq. (4.1), is shown in Fig. 4.2: this corresponds to the injection
of a periodic atomic current, whose expression is described by Eq. (4.3), for a
time period equal to tbarr = 45.4 ms (NCycles = 11).
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(a) t = 0 ms (b) t = 14.4 ms

(c) t = 0 ms (d) t = 14.4 ms

(e) t = 15.4 ms (f) t = 45.4 ms

(g) t = 15.4 ms (h) t = 45.4 ms

Figure 4.2: Josephson dynamics due to the AC barrier’s displacement at dif-
ferent times, such that the initial time t = 0 ms is taken when the
optical barrier starts moving within the Josephson junction. The
color scale reports the cloud 2-D density n(x, y). The law of mo-
tion is described by Eq. (4.2), where the velocity is set to a value
of v0 = 1.2 mm/s, with a modulation amplitude of x1 = 1.14µm
and an oscillation frequency of ν = 245 Hz. The power of the
trapping laser is set to PDMD = 135 mW.

As in the DC driving case, reported in Sec. 3.2, we clearly observe the build-up
of a non-zero ∆µ on the same direction of the barrier’s movement (right side),
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as time increases: this phenomena manifests as a density imbalance within
the junction, occurring since the average driving velocity ⟨v(t)⟩T = v0 is com-
parable with the junction’s critical velocity vc (of order of ∼ 1 mm/s in these
experimental conditions, as shown in Sec. 3.4).

4.2 Time evolution of ∆µ during the barrier driving
Before discussing the experimental measurement of Shapiro steps we want to
observe how the chemical potential difference ∆µ evolves over time during
the movement of the barrier. The latter is driven via an oscillating modula-
tion, such that its law of motion is described by Eq. (4.1): the correspond-
ing trajectory parameters are here set as ν = 245 Hz, v0 = 1.2 mm/s and
x1 = 1.14µm. Moreover, since the displacement of the optical barrier gener-
ates a nonzero ∆µ after a certain critical velocity vc is exceeded, we can also
observe the density oscillations typical of the AC Josephson effect, discussed
in Secs. 3.5.1 and 3.5.2, once the movement of the barrier is halted and the
system is left evolving through tunneling phenomena. In this measurement
we employ a rectangular Josephson junction with linear sizes Lx = 125µm
and Ly = 17.5µm, realized by following the procedure described in Sec. 2.1,
which contains N ≈ 20 K atoms. The trapping laser power is here set to
PDMD = 130 mW, resulting in a trap depth to chemical potential ratio of
about V0/µ ∼ 1.3, the latter quantity being calculated through Eq. (2.21). For
all the measurements reported in this chapter, unless otherwise specified, the
Josephson junction is created under the same experimental conditions. The
first measurement is effectuated as follows: the thin optical barrier is set into
an oscillatory motion, described via Eq. (4.1), allowing the chemical potential
difference within the junction to grow over time: the absorption imaging pro-
cess, described in Sec. 2.1, is carried out at different times in order to extract
the ∆µ(t) curve during the barrier’s driving. Since the displacement of the
optical barrier is modulated by an oscillatory term with frequency ν = 245 Hz,
we expect the ∆µ to oscillate in time at the same frequency ν while the optical
barrier is displaced across the Josephson junction. We report in Fig. 4.3 the
time evolution of the chemical potential difference ∆µ, which occurs during
the alternating motion of the optical barrier. Experimental data is fitted by
the following equation, representing a straight line modulated by a periodic
function:

f(t) = A cos (2πν t+ ϕ0) +mt (4.5)

where ν is the oscillation frequency, A is the modulation amplitude, ϕ0 is the
starting phase and m is the angular coefficient of the line. In Fig. 4.3, the
chemical potential difference ∆µ (or, equivalently, the density imbalance) be-
tween the reservoirs increases over time during the barrier’s driving, since the
constant velocity term of the displacement (v0) is higher than the junction’s
critical velocity in these experimental conditions (vc ∼ 1 mm/s). This growth
does not occur in a linear way, but ∆µ oscillates in time with a certain fre-
quency ν due to the fact that the barrier’s trajectory is described by Eq. (4.1):
this causes a time-modulated velocity v(t) which oscillates above and below
the critical velocity vc. Therefore, the junction experiences both resistive (∆µ
increases) and unresistive (∆µ constant) dynamics as the barrier is moved,
depending on whether the speed at a certain time is supercritical or not. The
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Figure 4.3: Time evolution of the chemical potential imbalance ∆µ, occurring
during the displacement of the Josephson barrier. Data is fitted
with Eq. (4.5), in order to extract the oscillation’s frequency. The
observed oscillation during the growth of the ∆µ in time is due to
the periodic driving of the barrier via Eq. (4.1). The modulation
frequency was set to ν = 245 Hz, while the measured oscillation
frequency is found to be νmeas = 242 ± 8 Hz.

extracted oscillation frequency is measured to be 242 ± 8 Hz, compatible with
the set modulation frequency within its error bar. The corresponding 1-D den-
sity profile of the superfluid cloud, measured during the barrier’s movement
inside the junction and integrated along the y-direction, is shown in Fig. 4.4
as a function of both the position within the optical potential (x−axis) and of
the driving time (y−axis). In Fig. 4.4 we reported the predicted barrier’s po-
sition as a function of time (white solid line and dots), effectuated by plotting
Eq. (4.1) above the 2-D density profile. This curve overlaps compatibly with
the actual position of the optical barrier, represented by the blue region inside
the density profile: the Josephson barrier is therefore in the expected posi-
tion during time, confirming that its movement is being performed correctly.
On the other hand, the chemical potential imbalance ∆µ observed in Fig. 4.4
was induced by driving the potential barrier with a periodic motion, having
a mean velocity ⟨v(t)⟩T > vc over a modulation period: therefore, density
accumulations occur along the direction of the atomic current (or, equiva-
lently, along the direction of the barrier’s displacement), from right to left in
Fig. 4.4. These density pulses are expected to propagate within the junction
at a speed comparable with the speed of sound cs, as discussed in Secs. 3.1
and 3.5.2. This statement is corroborated by plotting above the experimental
profile the function f(t) = cst+x0, describing an uniform motion occurring at
the speed of the sound modes: this curve follows correctly the density pulses
which are created during the barrier’s driving, confirming that they represent
sound excitations. In order to effectuate the second measurement (i.e. Joseph-
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Figure 4.4: 1-D density profile of the junction as a function of time during the
barrier’s movement, integrated along the y-axis. The position of
the barrier at different times (calculated through Eq. (4.1)), that
are the ones reported on the x-axis of Fig. 4.3, is represented by
white dots on the plot: the law of motion of the barrier is instead
shown by plotting Eq. (4.1) with a white solid line. We observe the
excited density pulses propagating inside the junction due to the
movement of the barrier (the red structures going left-downwards).
As discussed in Sec. 3.1, these excitations propagate at the speed
of sound cs: this is verified simply by plotting a series of straight
lines with an angular coefficient equal to cs (white dashed lines),
which overlap nicely over the red pulses. These lines are described
by the function f(t) = cst + x0, where x0 is their starting point
(white diamonds).

son oscillations) we halt the displacement of the optical barrier, and the ∆µ
imbalance which has been created during the driving triggers the AC Joseph-
son dynamics: the absorption imaging process, done at different times after
the barrier is stopped, allows to obtain the ∆µ(t) curve during the Josephson
oscillations. The measured ∆µ − t oscillation is shown in Fig. 4.5, together
with its corresponding curve fit; the latter is effectuated through the damped
periodic function reported in Eq. (3.5). A priori, we expect the ∆µ oscilla-
tions in time, which set in at the end of the barrier’s movement, to occur at
a frequency comparable with the result reported in Sec. 3.5, obtained for the
same experimental conditions (namely, junction size Lx × Ly and trapping
laser power PDMD). In the latter case, where the density dynamics was trig-
gered by a preliminary ∆µ imbalance realized by displacing the optical dipole
trap position, the oscillation frequency was found to be νJ = (20.3 ± 0.3) Hz,
as reported in Tab. 3.3. In the present measurement, the extracted oscillation
frequency is found to be νJ = (19.7 ± 0.2) Hz, compatible within its error
bar with the previous result. This outcome confirms that the behavior of the
Josephson oscillations, occurring in the AC regime and discussed in Sec. 3.5,
does not depend on the particular mechanism employed for generating the
initial non-zero ∆µ.
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Figure 4.5: Damped oscillations of ∆µ during time occurring due to tunneling
phenomena, which set in at the end of the barrier’s movement
when a non-zero ∆µ has accumulated between the sides of the
junction. Experimental data is fitted with Eq. (3.5) in order to
extract the oscillation frequency, returning a value of about νJ =
(19.7 ± 0.2) Hz.

4.3 Shapiro steps measurements
As we discussed in Sec. 1.6, the application of an alternating current I(t) in-
side a superconducting Josephson junction causes the emergence of particular
structures in the I−∆V characteristic, known as Shapiro steps, where almost
discontinuous jumps between plateaus having constant potential difference ∆V
occurs, as shown in Fig. 1.13. In the present section we will report the measure-
ment results associated with this phenomena, obtained by current-biasing our
6Li superfluid Josephson junction with the procedure described in Sec. 4.1: an
atomic oscillating current I(t) = IDC +IAC cos (2πν t) is generated by driving
the optical barrier through the law of motion reported in Eq. (4.1). Measure-
ments are made as follows: the atomic Josephson junction is realized in the
rectangular hybrid potential of the DMD, in the same experimental conditions
reported in Sec. 4.2. Since approximately N = 20 K atoms are loaded before
starting the barrier’s dynamics, the calculated trap depth to chemical poten-
tial ratio is found to be about V0/µ ∼ 1.3. The cloud’s density within the two
reservoirs composing the junction is preliminary balanced by finely displacing
the TEM0,1 optical dipole trap through a pico-motor, so that at the beginning
of the measurement we have ∆µ = 0: this is done in order to avoid couplings
between the barrier’s driving and the oscillations of density occurring in the
AC Josephson dynamics, which could set in if a finite ∆µ is initially present.
The thin optical barrier is then set into motion, its velocity during time being
described by Eq. (4.2), in order to generate the alternate current which triggers
the dynamics: this displacement occurs for a time equal to tbarr, which value
depends on the particular modulation employed through Eq. (4.4). When
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the barrier’s movement is halted, the absorption imaging process described
in Sec. 2.1 is carried out, extracting the in-situ 2-D optical density OD and,
consequently, the chemical potential difference ∆µ between the two sides of
the junction, which can be evaluated through Eqs. (2.3) and (2.9). The afore-
mentioned process is repeated for different values of the initial velocity v0,
representing the DC driving component of the barrier’s motion, in order to
obtain the ∆µ − v0 (or, equivalently, the ∆µ − IDC) characteristic, in which
we expect to observe the Shapiro steps if a modulated component IAC ̸= 0 of
the current is present. As discussed in Sec. 3.2, the displacement velocity of
the barrier can be converted into a particle current by means of Eq. (3.3). The
injection of the alternating current I(t) is effectuated with the possibility of
varying two external parameters, other than the direct current term IDC : the
modulation amplitude x1 and the oscillation frequency ν. These quantities
are chosen such that their product ν · x1 assumes only certain values: in the
following, we fix this amount to either ν · x1 = 140µm/s or ν · x1 = 280µm/s.
As a consequence, the IAC term of Eq. (4.3), which represents the intensity
of the alternate driving component of the total current I(t), remains constant
for different measurements having the same value of ν ·x1. Moreover, for each
Shapiro steps measurement obtained through the application of an alternate
current I(t), we also measure the respective ∆µ − IDC characteristic occur-
ring in the DC Josephson dynamics, where a direct non-modulated current
IDC is applied: since the modulation frequency ν changes between the various
measurements, this procedure allows also to extract the critical current Ic as
a function of the driving time tbarr, which value depends on the particular
driving via Eq. (4.4). An example of the measured ∆µ−v0 DC characteristic,
occurring due to the application of a direct current IDC within our junction,
is reported in Fig. 4.6, together with its corresponding AC-driven charac-
teristic (where the modulation amplitude is set to x1 = 2µm): the optical
barrier is driven for a time of approximately tbarr = 21.4 ms (corresponding
to NCycles = 3, for ν = 140 Hz). The extracted critical current Ic and the
conductance G, obtained by fitting Eq. (1.94) on the DC data, are shown in
Figs. 4.7 (a) and 4.7 (b) as a function of the driving time tbarr: we expect
the value of the critical current to be approximately constant between the
various measurements, as it shouldn’t depend on the time of the barrier’s dy-
namics but rather on the applied trapping laser’s power (which influences the
barrier’s depth V0), on the bulk chemical potential µ of the ultracold cloud,
on the condensed fraction N0/N and the interaction parameter 1/kFa, which
are kept approximately constant for different measurements [19]. The fitted
critical current Ic shown in Fig. 4.7 (a) is found to fluctuate a bit between
the various measurements (around a value of Ic = 1.65 ± 0.05 · 105 Part/s),
carried out for different driving times tbarr. This possibly occurs due to the
fact that during the junction’s realization the various quantities presented
before (µ, N0/N , 1/kFa) inevitably fluctuate for different experimental real-
izations, and since the focus of the microscopic objective is done manually it
can change slightly for successive days: nevertheless, every measurement is
compatible with a value of order of 105 Part/s, which constitutes the typical
order of magnitude of the critical current within our junction, for the exper-
imental conditions presented in Sec. 4.2. For a Josephson junction where the
driving parameters are chosen such that ν · x1 = 280µm/s, the amplitude of
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(a) DC Characteristic (b) AC Characteristic

Figure 4.6: Experimental results for the ∆µ−I characteristic of the Josephson
junction in the case of a DC (panel (a)) and an AC driving (panel
(b)) where the driving amplitudes are set respectively to x1 = 0
and x1 = 2µm. The optical barrier is displaced for time equal
to about tbarr ∼ 21.4 ms, corresponding to Ncycles = 3 and ν =
140 Hz. The purple line in panel (a) represents the curve fit of the
data, effectuated via Eq. (1.94). The corresponding conductance
is found to be G · h = 580 ± 10, while the critical current is given
by Ic = (1.73 ± 0.02) · 105 Part/s. On panel (b) we observe the
typical plateau-like structure exhibited by Shapiro steps, obtained
by injecting an AC current.

(a) Ic vs ν (b) G vs ν

Figure 4.7: (a): Extracted critical current Ic as a function of the driving
time tbarr: this quantity is approximately centered towards a mean
value of Ic = (1.65 ± 0.05) · 105 Part/s. We represent this amount
with the red dashed horizontal line reported in figure, together with
its error bar (orange shaded region).
(b): Extracted conductance G as a function of the driving time
tbarr.

the alternating current is approximately IAC = 2πνx1N/Lx ≈ 2.8 · 105 Part/s:
this value is greater than the measured average value of the critical current
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(Ic = (1.65 ± 0.05) · 105 Part/s), and resistive behaviors occur during the bar-
rier’s movement, as explained in Sec. 4.2. On the other hand, the value of
the conductance G, reported in Fig. 4.7 (b), decreases while increasing the
driving time tbarr. This behavior has already been observed in Sec. 3.4, and
occurs due to the fact that for longer driving times the chemical potential
difference ∆µ grows to larger values when v0 is fixed: the system is therefore
found to be more resistive for longer times, resulting in a higher resistance R
and a smaller conductance G = R−1. The reason behind the dependence of
the measured conductance G on the driving time tbarr is to be found in the
way we measure the ∆µ: in fact, by displacing the optical barrier we generate
an excitation that propagates within the system at the speed of sound cs, as
shown in Secs. 3.1 and 3.5.2. The density imbalance is successively measured
along the entire junction, regardless of the particular driving time chosen. If
this value is too small, the density impulse does not propagate across the
whole junction, and the information created due to the injected current does
not reach all particles within the system: this results in a measured lower ∆µ
and a higher conductance G. Conversely, if the driving time is too high, these
excitations can rebound on the edge of the optical potential. The chemical
potential difference which sets in after this phenomena is therefore due to the
combined action of the external current and the free propagation of density
pulses inside the system. As an estimate of the true value of the conductance
G characterizing our system, we choose the one measured at a driving time
such that a density pulse generated at t = 0 in the initial position of the bar-
rier (92.5µm from the left side of the junction) is able to propagate exactly
to the end of the junction (left side), in order to avoid the problems discussed
above: a sound mode having a speed of cs = 6.09 ± 0.04 mm/s (see Sec. 3.1)
covers this distance in a time equal to about t = (15.4 ± 0.1) ms. Therefore,
since for the measurement effectuated with Ncycles = 3 and ν = 175 Hz the
barrier’s driving time (at the end of which absorption imaging is performed) is
set to tbarr = 17 ms, similar to the required time t ≈ 15.4 ms, its corresponding
value of the conductance G ·h = 680 ± 5.8 represents the best estimate of this
quantity for our experimental system.

4.3.1 Data analysis

As we observe from Fig. 4.6 (b), a different behavior from a typical ∆µ−I DC
characteristic is observed when injecting an alternating current I(t), having
plateaus of almost constant chemical potential difference ∆µ separated by
resistive regions: the measured structure corresponds to the phenomena of
Shapiro steps, introduced in Sec. 1.6.4. This paragraph is devoted in discussing
how to perform the data analysis of such experimental curves, obtained by
displacing the thin optical barrier with different driving frequencies ν. In
particular, we will study the behavior of two physical quantities as a function
of the modulation frequency ν: the position of the first step IS1 (in current
units) and the distance (in frequency units) between two successive plateaus
at constant ∆µ, the step height ∆µS . As we discussed in Sec. 1.6.4, we expect
the latter quantity to be comparable with the oscillation frequency ν of the
barrier’s motion, as a consequence of the resonance between the modulation of
the barrier and the phase velocity ∂ϕ/∂t: on the other hand, the step position
value IS is predicted to depend on the driving current IAC = 2πνx1N/Lx
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Table 4.1: Fit results for ∆µS1 and IS1 of the first step together with their
relative error bars, obtained by fitting Eq. (4.6) to the experimental
data reported in Fig. 4.9.

ν (Hz) x1 (µm) ∆µS1 (Hz) IS1/Ic Ic (105 Part/s) ν · x1 (µm/s)

105 1.3 156 ± 28 0.66 ± 0.03 1.81 ± 0.02 140
175 0.8 122 ± 7 0.77 ± 0.02 1.56 ± 0.01 140
245 0.57 178 ± 11 0.79 ± 0.03 1.64 ± 0.02 140
70 4 80 ± 14 0.14 ± 0.02 1.55 ± 0.01 280
105 2.6 120 ± 23 0.16 ± 0.03 1.81 ± 0.02 280
140 2 129 ± 7 0.45 ± 0.02 1.79 ± 0.02 280
175 1.6 156 ± 18 0.47 ± 0.03 1.56 ± 0.01 280
210 1.3 205 ± 7 0.59 ± 0.02 1.68 ± 0.01 280
245 1.14 182 ± 13 0.61 ± 0.04 1.64 ± 0.02 280
280 1 243 ± 8 0.72 ± 0.02 1.45 ± 0.01 280

in a non-trivial way, being analytically represented by Bessel functions. In
order to extract ∆µS and IS1 from experimental data, we decide to carry out
a phenomenological fit through a function able to pinpoint these quantities
from the ∆µ − I curve. The chosen fitting curve is the following multiple
sigmoid function:

f(IDC) = off +
2∑

i=1

∆µSi

1 + exp (−(IDC − ISi)/si)
(4.6)

where si quantifies the steepness of the i − th sigmoid, while ∆µSi and ISi

represent respectively the relative height and the position of the i− th Shapiro
step. The second step height (with respect to the ∆µ value obtained at v0 = 0)
is calculated by fitting the sigmoid function reported in Eq. (4.6) on the exper-
imental data, and then by summing the height values of the first and second
plateau, ∆µS2nd

= ∆µS1+∆µS2 . We report in Fig. 4.8 examples of such a curve
fit, carried out on various datasets having different modulation frequency ν and
different driving amplitudes x1. The height ∆µS and the position IS1 of the
first Shapiro step, both quantities obtained by fitting Eq. (4.6) to experimental
data, are reported in Fig. 4.9 as a function of the modulation frequency ν, for
two different values of the ν · x1 product (140 and 280µm/s): the step height
∆µS , reported in frequency units, has been normalised by the corresponding
modulation frequency, while the step position IS is divided by the critical
current Ic. We also report in Tab. 4.1 the fitted values for the position IS1

and the height ∆µS1 of the first Shapiro step. We observe that the ∆µS1/hν
ratio, reported in Fig. 4.9 (a), is compatible with unity for low-frequency mea-
surements within the experimental error bar: this behavior is explained in
the framework of the tilted washboard potential discussed in Sec. 1.6.4, where
Shapiro steps are predicted to occur due to a synchronization between the
phase dynamics and the barrier’s displacement, resulting in Eq. (1.107). On
the other hand, this ratio is found to be a bit lower for the high-frequency ones
since the barrier is moved for a lower driving time tbarr = NCycles/ν, and the
chemical potential imbalance does not saturate around its maximum value for
this time. The position of the first step IS1 , normalised by the critical current
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(a) ν = 140 Hz, x1 = 2.0 µm (b) ν = 245 Hz, x1 = 1.14 µm

(c) ν = 175 Hz, x1 = 0.8 µm (d) ν = 280 Hz, x1 = 1 µm

Figure 4.8: Experimental data together with multiple Shapiro steps fit, per-
formed via Eq. (4.6), for different values of the driving amplitude
x1 and of the modulation frequency ν. The first Shapiro step is
always fitted in our data analysis, while the second step is fitted
whenever possible.
(a): Experimental data obtained by setting ν = 140 Hz and x1 =
2.0µm, such that ν · x1 = 280µm/s. The extracted step height is
∆µS1 = 123 ± 6 Hz for the first step, and ∆µS2nd

= 282 ± 22 Hz
for the second step.
(b): Experimental data obtained by setting ν = 245 Hz and x1 =
1.14µm, such that ν ·x1 = 280µm/s. The extracted step height is
∆µS1 = 137 ± 6 Hz for the first step, and ∆µS2nd

= 343 ± 20 for
the second step.
(c): Experimental data obtained by setting ν = 175 Hz and x1 =
0.8µm, such that ν · x1 = 140µm/s. The extracted step height is
∆µS1 = 122 ± 5 Hz for the first step, and ∆µS2nd

= 343 ± 20 Hz
for the second step.
(d): Experimental data obtained by setting ν = 280 Hz and
x1 = 1µm, such that ν ·x1 = 280µm/s. The extracted step height
is ∆µS1 = 243 ± 7 Hz.
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(a) ∆µS/ℏν vs ν (b) IS1 /Ic vs ν

Figure 4.9: (a): Step height ∆µS1, normalised by the modulation frequency
ν, as a function of the latter.
(b): Step position IS1, normalised by the critical current Ic ex-
tracted by the associated DC fits, as a function of the modula-
tion frequency ν, reported together with its corresponding Bessel
function J0 (dashed line). In both figures, different data for
ν · x1 = 280µm/s (black points) and for ν · x1 = 140µm/s (green
squares) are shown.

Ic, is reported in Fig. 4.9 (a) as a function of the modulation frequency ν: we
can see a monotonically increasing behavior of this quantity with increasing
frequency. More specifically, it is expected that the half-width of the n-th step
can be analitically represented by the n-th order Bessel function [63, 4, 64],
such that ∆In/Ic = |Jn( IAC

ℏGω )| (where ω = 2πν), in presence of a voltage-biased
junction and in the overdamped regime of the RCSJ model (βc ≪ 1), where
the particle’s inertia (C) is dominated by dissipative processes (G). The curves
J0(x) = sin (x)/x (where x = IAC/(ℏGω)), describing the position of the first
step IS1 normalised by the critical current Ic, are reported in Fig. 4.9 (b),
plotted by using the value of the conductance estimated in the precedence
(G = 680 ± 5.8): they catch at least phenomenologically the behavior of the
measured data. The discrepancy with the experimental data is given by the
fact that Bessel functions predict the behavior of the steps position only in the
case of an applied alternating voltage V (t), as ∆In/Ic = |Jn( V

hν )| [27]: since in
our experiment the external driving is due to an alternating current I(t), the
width of the steps for low values of the modulation amplitude IAC can deviate
from this predicted behavior. For completeness, we report in Fig. 4.10 the y-
axis integrated density profile associated with the AC curve of Fig. 4.8 (b), as a
function of the constant speed v0: we observe that, for high DC velocities v0, a
density accumulation sets in along the direction of the barrier’s displacement,
as shown in Fig. 3.9 for the case of a purely DC driving. In the AC case, this
occurs because the mean driving velocity ⟨v(t)⟩T is higher than the junction’s
critical velocity vc. We report in Fig. 4.11 the results of numerical simulations
of the RSJ model, compared with experimental data: the simulations are done
by numerically solving Eq. (1.93) using the set modulation frequency ν , while
G and vc are extracted from the DC curves by fitting Eq. (1.94).
From Fig. 4.11 we see that numerical solutions are compatible with experimen-
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Figure 4.10: Integrated density along the y-axis as a function of v0, obtained
from the data of Fig. 4.8 (b). White dots correspond to the po-
sition of the barrier’s center at the end of the driving process
(occurring in a time equal to tbarr = 12.2 ms), calculated through
Eq. (4.1).

(a) ν = 175 Hz, x1 = 1.6 µm (b) ν = 280 Hz, x1 = 1 µm

Figure 4.11: Numerical solutions of the RSJ model, compared with the exper-
imental data. Fig.(a) is reporting the dataset (black dots) with
ν = 175 Hz and x1 = 1.6µm, and the corresponding simulation
(purple dashed line). In Fig.(b), the data with ν = 280 Hz and
x1 = 1µm is shown.

tal data: this confirms that the transport properties of our atomic Josephson
junction are well described in terms of the RSJ circuital model, where C = 0.
In order to extend the obtained results for the chemical potential difference
jump ∆µS2 occurring in the second plateau, we report in Fig. 4.12 the mea-
sured values of the step height for the first and the second Shapiro step as
a function of the driving frequency ν, extracted by fitting Eq. (4.6) on the
experimental data.
The extracted values of the second Shapiro step height reported in Fig 4.12 are
reported in Tab. 4.2, together with their corresponding error bars. In Fig. 4.12
two straight lines described by the equation f(ν) = n · ν are shown together
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Figure 4.12: Measured height for the first and the second Shapiro step, re-
ported as a function of the modulation frequency ν. The dashed
lines represent the curve f(ν) = n · ν, where n is the step num-
ber.

Table 4.2: Fit results for the second step height ∆µ2nd, obtained by fitting
Eq. (4.6) to the experimental data reported in Fig. 4.12.

ν (Hz) x1 (µm) ∆µ2nd (Hz)

140 2 282 ± 22
175 1.6 338 ± 40
245 1.14 343 ± 20

with the experimental points, in order to further validate the expected be-
havior of the n-th Shapiro step height, reported in Eq. (1.107). As already
discussed, we expect that for each Shapiro step, occurring due to phase slip-
page phenomena, the chemical potential must jump by ∆µS ∼ h ν. Since the
plotted lines are compatible with the measured data for low-frequency mea-
surements, within the latter’s error bar, this prediction is well reproduced in
our experiment. The discrepancy observed for the high-frequency points may
again occur due to lower driving times tbarr, which cause the chemical poten-
tial imbalance ∆µ to not be measured at its real maximum value as the density
perturbation has not spread throughout the whole junction yet. Nevertheless,
the results obtained in this section clearly show how the height of the Shapiro
steps strongly depends on the set modulation frequency ν, as expected.

4.4 Vortex nucleation and Shapiro steps
As described in Sec. 1.5, one of the possible types of excitations which can
be generated within a condensate is represented by quantum vortices: they
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are closely related to the peculiar rotational properties of a superfluid, whose
irrotational velocity field (∇⃗ × v⃗ = 0, consequence of the gauge symmetry
breaking) is associated with a quantized circulation through any closed path.
Each vortex is characterized by an integer index, the winding number w, which
has been introduced in Eq. (1.77) and determines the amount of angular mo-
mentum carried by the excitation. In particular, this latter quantity is found
to be a multiple of the circulation quanta h/m via the aforementioned index
w, such that Lvort = w h/m. In the present section we investigate the relation-
ship between the emergence of Shapiro steps and the nucleation of quantized
vortices during the barrier’s modulated driving: in our physical system vortex
excitations can be observed as density depletions within the cloud’s profile,
generated due to dissipative effects. The measurement procedure employed
for detecting these excitations is carried out as follows: first, a density bal-
anced superfluid Josephson junction is realized in the optical hybrid potential
of the DMD with the specifics reported in Sec. 4.2, employing the experimental
sequence discussed in Sec. 2.1. The thin optical barrier is then set into mo-
tion within the potential, according to the trajectory described by Eq. (4.1).
When the external driving is stopped, we remove the optical barrier through
a 0.24 ms ramp down process: after waiting for a time of about 4 ms with
respect to the barrier removal, a 2 ms time-of-flight (TOF) is effectuated by
turning off all optical traps, as explained in Sec. 2.4. This technique further
increases the vortex’s visibility inside the atomic cloud. Finally, at the end of
the TOF the absorption imaging process is carried out, allowing to measure
the number of vortices Nvort that have been generated during the barrier’s
driving. This number has to be manually counted for each different repeti-
tion. We report in Fig. 4.13 an example of the superfluid Josephson junction,
imaged at the end of the barrier’s movement for both DC and AC drivings,
where single vortices and vortex dipoles are observable. One possible way for
studying the connection between Shapiro steps and vortex dipoles consists in
measuring the number of vortex Nvort as a function of the barrier’s velocity
v0: this result can be compared with the ∆µ − v0 characteristic which we
observe as a consequence of the external driving. For extracting the Nvort −v0
curve we carry out the absorption imaging process at the end of the barrier’s
movement, which is stopped after a time equal to tbarr = 17 ms (NCycles = 3,
for ν = 175 Hz), for different values of the driving velocity v0. We effectuate
this measurement both in the presence of a DC driving (x1 = 0) and in the
case of a modulated trajectory (AC current, x1 = 1.6µm, ν = 175 Hz). The
measurement results of the vortex number Nvort are reported in Fig. 4.14 for
both cases of DC and AC driving, together with their corresponding chemical
potential difference characteristic, ∆µ− v0. In our system, quantized vortices
can be therefore observed during the displacement of the Josephson barrier
inside the superfluid junction. Their nucleation is associated with the ex-
ceedance of the Landau’s critical velocity near the thin optical barrier, where
the local particle density nloc is lower than the average density n within the
rest of the junction: in Bose-Einstein condensates this critical value is repre-
sented by the sound velocity cs, which depends on the cloud’s density through
the chemical potential µBEC , as reported in Eq. (2.13). For smaller densities,
the resulting sound velocity decreases: therefore, it is much easier to generate
this kind of excitations in the proximity of the optical barrier since the thresh-
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(a) Vortex observance after a DC driving.

(b) Vortex observance after an AC driving.

Figure 4.13: (a): Density profile within the Josephson junction after the
barrier’s driving, done for the following barrier parameters:
v0 = 2.0 mm/s, x1 = 0 (DC driving), and tbarr = 17 ms.
(b): Density profile within the Josephson junction after the
barrier’s driving, done for the following barrier parameters:
v0 = 2.0 mm/s, x1 = 1.6µm (AC driving), and tbarr = 17 ms.
Red circles highlight the presence of vortices within the junction
in both cases.

old velocity of the process is lower. As discussed in Sec. 3.4, this mechanism
also explains why the critical velocity vc of the junction, measured in the DC
Josephson effect, is found to be smaller than the sound velocity cs: in this
regime the establishment of a non-zero ∆µ occurs due to the exceedance of
the Landau’s critical velocity near the optical barrier, that is, the local speed
of sound cloc

s ̸= cbulk
s . Since the optical barrier is displaced along one side of

the Josephson junction without applying a net torque to the trapped ultracold
gas, the total angular momentum of the system must be conserved: therefore,
vortex excitations nucleate in pairs, having opposite winding numbers w, in
order to satisfy this condition. The generated physical entity is known as a
vortex dipole, and is made up by a vortex (winding number w) and an anti-
vortex (winding number −w). According to the previous discussion, in both
the DC and AC case of Fig. 4.14, when the set barrier speed v0 is sufficiently
high we observe the occurrence of vortex-antivortex pairs inside the conden-
sate, generated on the opposite side with respect to the barrier’s movement.
Phase-slippage mechanisms are responsible for the emergence of Shapiro steps:
in this phenomena the relative phase ϕ between the two reservoirs changes by
2πn each modulation period, by jumping across n local minima of the tilted
washboard potential, as discussed in Sec. 1.6.4. We want to prove that the

97



(a) Nvort, ∆µ vs v0, DC driving (b) Nvort, ∆µ vs v0, AC driving

Figure 4.14: (a): Number of vortex Nvort (purple dots) as a function of the
barrier’s velocity v0, in the case of a DC driving (x1 = 0µm).
The corresponding ∆µ−v0 characteristic is reported on the same
plot (black dots), which shows a typical DC Josephson behavior,
where a finite ∆µ is observed after exceeding the critical velocity
vc.
(b): Number of vortex Nvort (purple dots) as a function of the
barrier’s velocity v0, in the case of an AC driving (x1 = 1.6,
ν = 175 Hz). The corresponding ∆µ − v0 characteristic, fea-
turing Shapiro steps, is reported on the same plot (black dots):
we observe in both cases that the behavior of the vortex number
Nvort mimics the behavior of the ∆µ.

Shapiro steps dynamics can be traced back to the formation of vortex pairs
within the superfluid, both occurring during phase slips processes. In order for
this assumption to be true, the number of vortices Nvort observed at the end of
the Josephson dynamic as a function of speed v0 should have a similar struc-
ture to the measured ∆µ-v0 characteristics, exhibiting a step-like behavior. In
the case of a constant driving (DC Josephson effect), shown in Fig. 4.14 (a),
we observe that the number of emitted vortex Nvort as a function of the bar-
rier’s velocity v0 has the same phenomenological behavior of the respective
∆µ − v0 curve: a non-zero vortex number is measured when the driving ve-
locity (current) is greater than the critical velocity (current) vc (Ic) of the
system. This phenomenon helps to relate the Josephson dynamics with the
creation of excitations within the superfluid: in our system, the development
of a non-zero ∆µ during the driving can be associated with the emission of
quantized vortices, which start to nucleate in the cloud when the Landau’s
critical velocity for superfluidity is exceeded. On the other hand, when we
apply an alternating current I(t) (which expression is described by Eq. (4.3))
that allows for the observation of Shapiro steps, the behavior of the vortex
number as a function of the barrier’s velocity becomes more complex. Similar
to the DC case, the Nvort − v0 curve follows the same trend of the underlying
chemical potential imbalance characteristic, as observed in Fig. 4.14 (b): in
particular, the number of vortices exhibits almost a step-like structure, similar
to the one measured when probing the ∆µ − v0 curve, where Shapiro steps
emerge. This phenomena can be explained in terms of the phase slippage
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processes, occurring in the framework of the tilted washboard potential U(ϕ),
shown in Eq. (1.98), employed for describing the relative phase ϕ dynamics. In
particular, whenever the relative phase jumps between two successive minima
of the washboard potential due to an alternate driving current, its value must
change by 2π, resulting in the creation of a Shapiro step in the ∆µ−v0 charac-
teristic: in our system, this process is accompanied by the emission of a vortex
dipole, being constituted by a vortex-antivortex pair with opposite winding
number w. We can corroborate this observation by noting that in Fig. 4.14 (b)
the measured vortex number Nvort on the first Shapiro step ranges between 1
and 2 (∼ 1 vortex dipole), while on the second step roughly 4 vortices (∼ 2
vortex dipoles) are present. This behavior, together with the step-like struc-
ture exhibited by the vortex number as a function of the driving velocity of
the barrier, seems to confirm the presented theory: the emergence of Shapiro
steps is correlated with vortex dynamics in our experimental system, as the
observation of a quantized plateau is always associated with the nucleation of
a finite number of vortex dipole.

4.5 Shapiro steps in Unitary Fermi gas
Previously we discussed the emergence of Shapiro steps in the ∆µ − I char-
acteristic of our superfluid Josephson junction, occurring when an alternating
current I(t) = IDC + IAC sin (2πνt) is injected inside the system. The chemi-
cal potential difference has been shown to jump approximately by hν between
nearby plateaus having constant ∆µ (Tab. 4.2, Fig. 4.9 , Fig. 4.12), as pre-
dicted by Eq. (1.107). Up until now, in our measurements we always employed
a 6Li gas in the weakly repulsive regime (1/kFa ≫ 1) where atoms bound to-
gether in pairs to form Feshbach molecules, creating a BEC superfluid. In the
present section we briefly show the phenomenon of Shapiro steps occurring
in the strongly interacting case (1/kFa ∼ 0), where our atomic Josephson
junction contains a Unitary Fermi gas of 6Li: in this particular regime of the
BEC-BCS crossover, the superfluid is made up of short-distance Cooper pairs.
Regarding the ∆µ − I characteristic, measured by injecting an AC current
inside the junction, we expect that the height of the steps shouldn’t depend
on the particular interaction regime considered but only on the modulation
frequency ν. In fact, Shapiro dynamics is the direct consequence of a synchro-
nization phenomena, occurring between the external driving (characterized by
a frequency ν) and the phase velocity ∂ϕ/∂t, regardless of the nature of in-
terparticle interactions. In conclusion, we expect to observe nearby Shapiro
steps separated by a chemical potential difference of about ∆µ ∼ hν also for
a Josephson junction made-up of a Unitary Fermi gas. The measurements are
made as follows: an atomic Josephson junction of linear size 125 × 17.5µm2 is
created following the procedure described in Sec. 2.1, containing a 6Li super-
fluid in the Unitary regime. This strongly-interacting gas is realized by keeping
the magnetic field to a value of about B ∼ 690 G during the ultracold gas re-
alization, in order to employ the broad Feshbach resonance located at 696 G,
occurring between the |1⟩ − |3⟩ hyperfine states, as reported in Fig. 2.3. The
mean number of particles trapped within the junction accounts to N ∼ 20 ·103

atoms, resulting in a chemical potential of approximately 5 kHz, which is cal-
culated via Eq. (2.8). Since for the same experimental conditions (namely,
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system size Lx × Ly and atom number N) the chemical potential in the UFG
case is of order of µUF G ∼ 5 · 104 Hz, which is higher than the correspond-
ing chemical potential in the BEC regime (µBEC ∼ 103), the applied laser
power is set to a value of PDMD = 650 mW: this way, the corresponding bar-
rier height to chemical potential ratio is calculated to be about V0/µ ∼ 1.4,
comparable with the values employed for the various BEC measurements at
PDMD = 130 mW, ensuring we are in the Josephson tunneling regime.

(a) ∆µ vs I, DC driving (b) ∆µ vs I, AC driving

Figure 4.15: (a): Experimental data in the case of a DC driving, reported to-
gether with its corresponding curve fit and numerical simulation,
effectuated through Eq. (1.94), for a UFG superfluid Josephson
junction.
(b):Experimental data in the case of a AC driving, reported to-
gether with its corresponding curve fit and numerical simulation,
effectuated through Eq. (4.6). Both measurements are taken with
driving parameters set as ν = 175 Hz and x1 = 0, 2µm, while the
driving time of 17 ms.

The measurements are carried out exactly as described in Sec. 4.3: the optical
barrier is set into a modulated motion within the junction, so that its trajec-
tory results described by Eq. (4.1): the modulation’s parameters are chosen
as ν = 175 Hz, x1 = 2µm and NCycles = 3. The absorption imaging is carried
out after a driving time of tbarr = 17 ms, for different values of the barrier’s
velocity v0, in order to extract the ∆µ− I curve from Eq. (4.2). Measurement
results for both the DC curve and its corresponding AC curve are reported in
Fig. 4.15, together with their relative curve fits (blue solid lines), effectuated
by fitting Eq. (1.94) and Eq. (4.6) respectively: we also report the numerical
simulations of the RSJ model (blue dashed lines), plotted above the experi-
mental data. We also report in Tab. 4.3 the fit results for the steps height
∆µSi of the first three Shapiro steps shown in Fig. 4.15. The measured values
for the various step height are comparable with the expected height (in fre-
quency units) of 175 Hz: we can further corroborate this statement by plotting
in Fig. 4.16 the three steps height (with respect to ∆µ = 0) together with the
straight line f(n) = n · ν, where n is the step number.
We observe that the plotted curve is compatible with the measured data within
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Table 4.3: Fit results for the first, second and third step height ∆µSi, obtained
by fitting Eq. (4.6) to the experimental data reported in Fig. 4.15
(a).

Step number ∆µSi (Hz)

1 153 ± 46
2 286 ± 55
3 158 ± 25

Figure 4.16: Measured results for the first, second and third step reported in
Fig. 4.15 (b). The nth step is obtained by summing together the
previous steps, in order to obtain the total height with respect
to ∆µ = 0. A straight line described by f(n) = nν is plotted
underneath, where n is the step number while ν = 175 Hz is the
modulation frequency.

the latter’s error bar, confirming our initial assumption; Shapiro steps also oc-
cur in the strongly-interacting regime of the crossover, where the chemical
potential difference jumps by ∆µS = hν between nearby plateaus.
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Conclusions

In this thesis we investigated the behaviour of an elongated 6Li superfluid
Josephson junction, made-up of atoms in the weakly-repulsive BEC regime,
probing its transport properties when an alternating atomic current I(t) is
applied: moreover, we also characterized the well-known DC and AC Joseph-
son effects within the system, extracting noteworthy quantities as the critical
current Ic and the Josephson oscillation frequency ν as a function of both the
junction’s size and the trapping strength. If a thin optical barrier is displaced
according to a modulated trajectory x(t), Shapiro steps appear inside the junc-
tion’s ∆µ − I characteristic, occurring due to a synchronization phenomena
between the driving frequency ν and the relative phase velocity ∂ϕ/∂t. Quan-
tized plateaus are clearly observed in the measurements shown in Sec. 4.3,
where chemical potential difference jumps are found to be compatible with
the theoretically expected value presented in Sec. 1.6.4: in particular, the
height of the n-th Shapiro step is measured to depend solely on the modula-
tion frequency via ∆µSn = nhν. This behavior has been confirmed for both
the first and second step, as shown in Figs. 4.9 (a) and 4.12. We also mea-
sured the number of observed quantum vortices at the end of the barrier’s
displacement, as a function of its velocity v0, in order to relate the emer-
gence of Shapiro steps with the nucleation of vortex dipoles in our system:
in particular, we found out that whenever a Shapiro step is measured, this
phenomena occurring due to phase-slip processes, it is always accompanied
by the creation of a vortex-antivortex pair within the superfluid. The device
investigated in this thesis work constitutes one of the first examples of peri-
odically driven many-body systems realized in ultracold atoms physics: these
circuits represent important prospects for successive studies, as DMD optical
setups allow for the arbitrary manipulation of optical potentials. For exam-
ple, synchronization phenomena could be probed in more complicated arrays
of Josephson junctions, these devices being disposed either side by side or in
annular configurations [65]. In particular, we could couple together two rect-
angular superfluid junctions having different lengths, and modulate both of
them by injecting the same atomic current to study their eventual interac-
tions. Another possibility is given by the realization of ring-shaped potentials
through the fine tuning of optical potentials: collective phenomena could be
investigated by sectioning such a device in different sectors, each one having
its corresponding Josephson barrier, and by modulating simultaneously every
optical barrier with the same trajectory in order to disclose synchronization
processes The Kuramoto-Daido model, describing the dynamical behavior of
a large set of coupled harmonic oscillators, has already been employed in the
study of superconducting Josephson junctions arrays [66, 67]. Regarding our
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physical system, this model could be applied in order to investigate the dy-
namics across the various interacting regimes of the BEC-BCS crossover, even
in the presence of disordered couplings between the device’s links [68, 69]. In
this thesis work we have also briefly shown how the dependence of the steps
height on the modulation frequency ν is the same regardless of the particular
interaction regime considered (UFG or BEC). Successively to this thesis work,
the Shapiro step phenomena has been successfully measured in our laboratory
with strongly-interacting Unitary Fermi gas Josephson junctions, presenting
the same experimental results reported in this thesis (∆µSn = nhν). In this
particular regime of the crossover, as in the weakly-interacting BEC regime,
the equation of state (EOS) describing the relationship between the particle’s
density n and the chemical potential difference ∆µ is well known: unfortu-
nately, the EOS has not yet been determined analytically in the intermedi-
ate regime of the BEC-BCS crossover, where its calculation still constitutes
a formidable task. In analogy with superconducting physics, where Shapiro
steps are employed in Josephson voltage standard devices, we could use this
phenomena in order to accurately measure the bias chemical potential differ-
ence ∆µ between a superfluid junction’s reservoirs as a function of the external
magnetic field: this approach would be particularly useful for allowing an ex-
perimental determination of the EOS across the whole BEC-BCS crossover.
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Appendix A

Laser cooling and trapping

When interacting with a quasi-resonant light source a two-level atom experi-
ences radiative forces, which can be exploited to modify the atom’s dynamics.
In ultracold atoms experiments two remarkable applications of these forces
stand out: laser trapping and laser cooling, which constitute fundamental
tools for investigating low-temperature quantum gases. First and foremost,
laser cooling is necessary for slowing down the particles of the cloud, eventu-
ally obtaining a degenerate gas where many-body effects set in, depending on
the particular quantum statistic describing the system. Laser trapping tech-
niques are subsequently employed in order to spatially localize and sometimes
to further slow down the atomic cloud. In Sec. A.1 we will discuss about
radiative forces and how they arise in the context of atom-light interaction.
The following Sec. A.2 is dedicated to describing the major applications of ra-
diative forces in ultracold atoms experiments, namely laser cooling and laser
trapping techniques, for the general case of a two-level atom.

A.1 Radiative forces
The concept of a "mean force" due to an external laser light acting on a two-
level atom in the position R⃗ is valid only when the spread of the atomic
wave-packets is sufficiently small, which means that the uncertainties ∆R and
∆P must satisfy the following conditions:{

∆R << λ

k∆P << Mγ
(A.1)

where λ is the laser wavelength, while γ is the natural line width of the con-
sidered atomic transition. The inequalities reported in Eq. (A.1) must hold
simultaneously with Heisenberg’s uncertainty principle, ∆R∆P ≥ ℏ,
and ensure that the atom’s position is well localized within the laser beam.
We can derive a force operator F̂ , in the quantum-mechanical framework, by
considering the time derivative of the center-of-mass momentum operator P̂ ,
associated with the atomic motion. This derivative is given by Heisenberg’s
equation:

F̂ = dP̂

dt
= 1
iℏ

[P̂ , Ĥ] (A.2)
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where Ĥ is the full hamiltonian of the system:

Ĥ = ĤCM + Ĥr + ĤA−L + ĤA−R (A.3)

which takes into account both the atomic (ĤCM ) and electronic (Ĥr) dy-
namics, as well as the atom interactions with the laser wave (ĤA−L) and the
reservoir (ĤA−R) of initially empty modes of the electromagnetic field. In or-
der to obtain the mean force acting on the atom due to the external radiation
field we should consider the average of Eq. (A.2): the only term of Ĥ which
gives a non-zero averaged commutator is the interaction term ĤA−L = −d⃗ · E⃗,
describing the coupling between the atomic dipole d⃗ and the electric field E⃗
of the laser. In the following we will consider the laser field to be described
by an oscillating function which amplitude depends on position, such that:

E(R⃗) = E(r⃗) cos(wt+ ϕ(R⃗)) ê (A.4)

where we suppose that ϕ(R⃗) = k⃗·R⃗. Taking the expectation value of Eq. (A.2),
whose calculation is carried out with the density matrix formalism of quantum
statistical mechanics, we obtain the following expression for the mean force
acting on the atom [35]:

⟨F⃗ ⟩ = −1
2

ℏ δΩ(R⃗) (∇⃗Ω(R⃗))
δ2 + γ2/4 + Ω2(R⃗)/2

+ ℏ k⃗ γ Ω2(R⃗)/4
δ2 + γ2/4 + Ω2(R⃗)/2

= F⃗dip + F⃗rad (A.5)

where k⃗ is the wave vector of the laser wave, δ = wL − w0 is the detuning
between the (angular) frequency of the atomic transition w0 and the laser
frequency wL, while Ω(R⃗) is the Rabi frequency, defined as:

Ω(R⃗) = −E(R⃗) · ⟨e| d⃗ |g⟩
ℏ

(A.6)

where E(R⃗) is the electric field amplitude of the laser beam, while ⟨e| d⃗ |g⟩ is
the matrix element of the dipole operator d between the excited and ground
states of the atomic transition. The first term F⃗dip of Eq. (A.5) constitutes
the optical dipole force, dominating for high values of δ, while the second term
F⃗rad is the dissipative force due to radiation pressure, which instead dominates
at resonance (δ = 0), describing absorption processes between an atom and
the photons that constitute the laser beam. Both contributions are employed
for different reasons in ultracold atoms experiments: the radiation pressure
force is mostly used in laser cooling processes, while trapping mechanisms are
usually based on the optical dipole force.

A.2 Laser cooling and trapping techniques
The physical mechanism behind laser cooling, where the motion of the atom is
slowed down thanks to interactions with light, is the transfer of the momentum
of a laser photon to the atom. Due to Doppler effect, a two-level atom in the
energy ground state E0, moving with an initial velocity v0 against a counter-
propagating laser beam with frequency ν = ω/2π, will perceive an angular
frequency ω′ ̸= ω equal to [35]:

ω′ = ω
v0
c

+ ω = k v0 + ω (A.7)
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Resonance condition occurs if the angular frequency separation between the
considered atom levels ω0 = (E1 − E0)/ℏ is equal to the perceived ω′: as
a consequence a photon is absorbed by the atom, which transitions to the
excited state E1. This process causes the atom to slow down to a smaller
velocity vf due to momentum conservation, Mv0 − ℏk = Mvf . After a time
scale Tint ∝ γ−1, much smaller than the one associated with the motion of the
atom in the laser field, Tint << Text ∼ (ℏ k2/M)−1, a photon is spontanously
emitted from the atom in a random direction: this results in the de-excitation
of the atom to the ground state and to another change of its momentum.
Since spontaneous emission phenomena occurs in random directions, the total
recoil due to a macroscopic number of emissions averages to zero, unaffect-
ing the mean velocity of the atom. On the other hand, absorption processes
always occur in the same direction, fixed by the wave vector k⃗ of the laser
beam, causing a significant decrease of the atom velocity over many cycles
of absorption/emission. The procedure just described to slow down an atom
is only possible around resonance, where absorption processes are most likely
to occur. However, the speed of the atom gradually decreases over time due
to continuous interactions with photons, causing a departure from resonance
conditions, thus suppressing the absorption of photons. Laser cooling tech-
niques used in experiments, such as Doppler cooling or Zeeman cooling, are
designed to overcome this problem.

Zeeman cooling

The application of an external magnetic field causes a separation of the atomic
energy levels known as Zeeman effect, due to the interaction between the spin
of the atom and the field itself; the good quantum number in this case becomes
the projection of the total angular momentum F = I ⊕ J along the quantiza-
tion axis, mF , which can take values in the range mF ∈ {−F,−F + 1, ...., F −
1, F}, where I is the nuclear spin while J = L⊕S is the total electronic angu-
lar momentum. The Zeeman cooling technique employs a magnetic field B(x)
which varies in space, such that the energy shift of atomic levels compensates
for the decrease in speed of the atom, keeping the process at resonance while
the sample is slowed [35]:

ω0 + ∆µ
ℏ
B(x) = k v(t) + ω (A.8)

where ω0 = (E1 − E0)/ℏ is the level separation in angular frequency at zero
field, while ∆µ = µ1 − µ0 is the difference in magnetic momentum of the lev-
els. For large laser intensities Ω ≫ γ, near resonance, the component of the
radiative force F⃗rad related to the radiation pressure in Eq. (A.5) saturates to
a maximum constant value, F⃗rad ≈ ℏ γ k⃗/2, thus implying a constant deceler-
ation of the atom. Solving Eq. (A.8) by using the formulas for an uniformly
accelerated motion we obtain the requested expression for the magnetic field
B(x) as a function of the position:

B(x) = ℏ k v0
∆µ

(√
1 − x

L
− 1

)
(A.9)

where L = v2
0/2a is the braking distance, k is the wave vector of the laser and

v0 is the initial velocity of the atom. The magnetic field reported in Eq. (A.9)
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is the one necessary to maintain the absorption process at resonance during
the deceleration of the atom, and can be generated by a set of solenoids.
Experimental devices whose operation is based on the Zeeman cooling are
known as Zeeman slowers: in our experimental setup, a Zeeman slower is
employed as the first device for slowing down the atomic beam, right before
the magneto-optical trap.

Doppler and sub-doppler cooling

Let us consider a two-level atom moving with velocity v in the field produced
by two counter-propagating weak laser beams (Ω ≪ γ) with angular frequency
ωL, as illustrated in Fig. A.1, such that the process is red detuned (δ =
ωL − ωA < 0) with respect to the atomic transition, ℏωA = E1 − E0.

Figure A.1: Experimental setup for Doppler cooling. In the reference frame
of the atom, the frequencies of the two laser waves are Doppler
shifted in a different way, such that the atom experiences counter-
propagating travelling waves with frequencies ω′ = ω ± kLv.

The respective polarizations of the lasers are chosen to be orthogonal to each
other in order to avoid interference phenomena. The total force acting on the
atom due to radiation pressure can be calculated by expanding the expression
of the dissipative force F⃗rad in Eq. (A.5) in a power series of v near zero,
considering the contributions of both lasers. In the 1-D case we obtain:

Frad = FkL
− F−kL

= −α v +O(v3) (A.10)

where α is the damping coefficient:

α = 8 ℏ k2 s
|δ|/γ

(1 + 4 δ2/γ2)2 (A.11)

and s = 2 Ω2/γ2 is the saturation parameter. The maximum value of the
damping coefficient α is obtained when δ = −γ/2, such that Frad ∼ −ℏ k2 s v
is the maximum force which can act on the atom in this setup. As shown in
Fig. A.2 there is a finite velocity range around zero for which the radiative
forces of the two red-detuned and counter-propagating waves act as an effective
damping force. This velocity interval is centered around the Doppler capture
velocity vdopp = γ/kL, which for alkali atoms is of order of 10−1 m/s. The
minimum temperature that can be reached with Doppler cooling, estimated
to be of order of 100µK, is constrained by two competing contributions: that
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Figure A.2: Radiation pressure forces acting on the atom as a function of its
velocity in the Doppler cooling setup. Darker plot represents the
total dissipative force due to both laser beams, while the lighter
ones represent the single contributions. A maximum/minimum
occurs at resonance, when kLv = ±(ωL −ωA). Figure taken from
Ref. [35].

due to absorption of photons, which tends to cool the system, and that due
to the fluctuation in the number of absorbed photons, which tends to heat
the system. In reality, during experiments temperatures much lower than
those expected a priori can be reached. This is due to the presence of ad-
ditional effects which have been neglected, such as polarization gradients or
optical pumping, which constitute the physical mechanisms underlying the
sub-Doppler Sisyphus cooling, where the temperatures achievable experimen-
tally are of the order of 10µK. The setup described above can also be adapted
to three dimensions, where three pairs of counter-propagating laser beams
out of resonance, detuned towards the red, are employed. In this case, the
structure of light which is formed is called an optical molasses.

Magneto-optical traps

The working principle of one-dimensional magneto-optical trap (MOT) con-
sists of two counterpropagating laser beams oscillating at the same frequency
ωL, with opposite circular polarizations σ+ and σ−. Both beams are red-
detuned with respect to the atomic transition, δ = ωL − ω0 < 0. Furthermore
a spatially inhomogeneous magnetic field, B ∼ B0 x, modifies the atomic en-
ergy levels through the Zeeman effect. We also assume the angular momentum
of the ground and excited states g and e, involved in the trapping, to be re-
spectively Jg = 0 and Je = 1. Because of the selection rules in quantum
mechanics, when the atom absorbs a photon with polarization σ± it will go
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into an excited state such that ∆m = ±1, where m is the projection of the
angular momentum onto the quantization axis. This situation is represented
in Fig. A.3.

Figure A.3: Working principle of the magneto-optical trap (MOT) using an
optical transition from a ground state with J = 0 to an excited
state with an angular momentum of J = 1. Here J = L ⊕ S is
the total angular momentum of the electrons, neglecting hyperfine
structure. The two counter-propagating laser beams, are σ+ and
σ− polarized, and they have the same intensity and frequency. A
gradient of the magnetic field creates a situation where atoms feel
a restoring force towards the zero magnetic field position.

At the center of the trap O, the magnetic field is zero: by symmetry the two
radiation pressure forces exerted by the lasers at this location have the same
magnitude, but opposite direction, so that an atom at O feels no net force.
For an atom to the left (right) of the center of the trap, the σ+ (σ−) polarized
beam (m = 0 → m = +1 (−1)) is closer to the resonance than the other, and
its radiation pressure dominates the dynamics of the system: the atom expe-
riences a net force towards the center of the trap, regardless of the side. One
therefore achieves a stable trapping around O. The total force experienced by
the atom in the trap can be calculated with the same procedure of Eq. (A.10),
expanding the total radiation pressure force in a power series of v near zero:

F = Fσ+ − Fσ− ≈ −α vx − k x (A.12)

where α is the friction coefficient introduced before, while K is the system
"stiffness":

K = 2 kL µeB0 s
|δ| γ

δ2 + γ2/4 (A.13)

where µe is the magnetic moment of the excited state, while s is the sat-
uration parameter. The total force in Eq. (A.12) describes the motion of
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a damped harmonic oscillator, with a characteristic oscillation frequency of
ω =

√
K/M , where M is the atom’s mass. Therefore, magneto-optical traps

are used both for laser cooling and for laser trapping: temperatures achievable
in these devices range from few µK to 1mK depending on the atomic species
and the MOT parameters. Such a configuration can be extended to three
dimensions, where the magnetic gradient is usually made with a pair of coils
in anti-Helmholtz configuration [52].

Optical dipole traps

The optical dipole force introduced in Eq. (A.5) is a conservative force, and
can be thus associated with a potential energy Udip:

Udip(R⃗) = ℏ δ
2 log

(
1 + Ω2(R⃗)/2

δ2 + γ2/4

)
(A.14)

which satisfies F⃗ = −∇⃗Udip(R⃗). When δ >> Ω, γ the optical dipole potential
reported in Eq. (A.14) can be expanded in powers of Ω, obtaining, at first
order [35]:

Udip(R⃗) ≈ ℏΩ2(R⃗)
4 δ (A.15)

such that for high values of the detuning δ the potential energy experienced
by atoms due to a laser field is directly proportional to the laser intensity,
since Ω2(R⃗) ∝ I(R⃗). Moreover, the shape of the potential curve depends on
the particular intensity profile employed: real laser beams are well described
in terms of Gaussian beams, whose intensity profile can be expanded in terms
of the Hermite-Gauss normal modes [70]. Thus, the optical potential acting
on a two-level atom due to a single laser field has approximately a Gaussian
shape and depends on the sign of the detuning δ, as reported in Fig. A.4.

Figure A.4: Profile of the optical dipole potential as a function of position,
where r = 0 represents the center (of the radial coordinate) of the
laser beam. Its nature depends on the sign of the detuning δ: the
potential is attractive for δ < 0, and repulsive for δ > 0.
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Optical dipole traps used in experiments employ red detuned beams with
δ < 0, such that the potential is attractive and the atom can be trapped in
the intensity maximum of the laser (high intensity seeking). On the contrary,
for blue detuning (δ > 0), the force exerted on the atoms tends to push them
away from high intensity regions (low intensity seeking). If the thermal energy
of the trapped cloud is small compared to the depth of the trap, kBT << U0,
we can expand the optical dipole potential reported in Eq. (A.15), supposing a
Gaussian intensity profile, in order to show that atoms experience an harmonic
confining potential [35]:

Udip ≈ U0

[
−1 + 2r2

w2
0

+ z2

z2
r

]
= −U0 + 1

2mw⊥ r
2 + 1

2mw2
z z

2 (A.16)

where r =
√
x2 + y2 is the radial coordinate, w0 is the beam waist, which

is the minimum transverse dimension of the beam, while zr = π w2
0/λ is the

Rayleigh length. The optical dipole trap generated by a single focused beam
can be very anisotropic, since wz/w⊥ ≈ λ/w0 << 1.

Evaporative cooling

The most efficient cooling technique, capable of bringing the atomic cloud to
temperatures of the order of 100nK, is evaporative cooling. To describe its
functioning, suppose we have an atomic sample, trapped in a potential with
non-infinite depth U0, not in thermal equilibrium. Particle collisions lead to
the thermalization of the system, at certain temperature T : the most energetic
atoms, which are those that possess an energy comparable to U0, are expelled
from the trap, and only the coldest particles remain trapped in the potential.
By lowering the trap depth to a different value U ′

0 < U0, the system thermal-
izes again due to interatomic collisions, cooling down to a lower temperature
T

′
< T which depends on the trap depth U

′
0. The evaporation process stops

when the temperature of the trapped sample decreases to values such that
kBT ≪ U

′
0, since elastic collisions can no longer transfer enough energy to

allow atoms to leave the trap. This mechanism is reported in Fig. A.5.

Figure A.5: Representation of the evaporative cooling process, where the depth
U0 of the trapping potential is progressively lowered: as a conse-
quence, the most energetic particles are expelled from the trap.
Thermal equilibrium is subsequently restored through particle col-
lisions. Figure taken from Ref. [71].

The net result is that while the total population in the trap decreases, so does
the mean energy of the remaining population. This process can be repeated
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many times, gradually reducing the height of the trap, allowing to reach tem-
peratures at least one order of magnitude lower than those obtainable with
sub-Doppler cooling. The only physical constraint in this technique is related
to the number of trapped atoms, which decreases with each cycle of evapora-
tion, so that beyond a certain point the density in real space is so low that
collisions are suppressed, and the system does not thermalize easily. In our
experiment the forced evaporation process is carried out in an optical dipole
trap, where we can lower the trap depth by reducing the intensity of the lasers.
As already pointed out in Sec. 1.3, ultracold fermionic gases composed of iden-
tical particles do not experience collision phenomena due to Pauli’s exclusion
principle, and therefore cannot be cooled by evaporative cooling techniques,
where the system is thermalized through collisions. To overcome this problem,
in our system we employ a mixture of 6Li atoms in different Zeeman sublevels,
as explained in Sec. 2.1.
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