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Introduction

Understanding the behavior of many interacting particles poses some major challenges both the-
oretically and experimentally. In particular, due to fermionic statistics, the study of interacting
fermions has proven to be one of the greatest challenges of modern physics. As both nucleons
inside atomic nuclei and electrons in solid state materials are fermionic particles, the understand-
ing of highly correlated Fermi systems is crucial for the description of many phenomena across
all fields of physics. However, the theoretical description of such systems is rather complicated
as even the most powerful computers struggle when dealing with simulations of even a few tens
of fermions due to the so-called fermion sign problem, the requirement of inverting the sign of
a fermionic wavefunction as two particles are swapped.
In this context, much effort has been directed towards the quantum simulation of strongly cor-
related fermionic systems. Originally proposed by Feynman in 1982 [1], the idea of quantum
simulation is based on the realization that some quantum phenomena are too complicated to be
simulated with classical computers. Feynman’s proposal was then to use a controllable quan-
tum system, whose Hamiltonian could be engineered experimentally, to reproduce another much
more complex quantum system of interest. Thanks to their unparalleled degree of controllabil-
ity, ultracold quantum gases have emerged as a prominent quantum simulator to investigate
many-body phenomena that are challenging to approach in solid state as well as in high-energy
physics [2]. With advanced technical tools it is possible to manipulate atomic samples with
high of precision and control, allowing the on-demand preparation of quantum systems with
programmable Hamiltonians. By cooling different atomic species and isotopes it is possible to
simulate both bosonic and fermionic systems and laser light allows to trap atoms in many differ-
ent geometries, including defectless, completely tunable optical lattices to simulate the motion
of electrons in periodic potentials. Ultracold atoms have also much longer coherence times than
those typical of electrons in solid state, thus making the time and length scales of quantum
phenomena much more accessible. Another appealing property of quantum gases is that they
are a powerful benchmark for theories. In fact, while in solid state systems most of theoretical
assumptions may not be completely valid, it is in principle possible to arbitrarily engineer the
Hamiltonians describing ensembles of ultracold atoms. In quantum gases it is therefore possi-
ble to artificially introduce theoretical assumptions, eventually providing minimalistic systems
where fundamental theories can be tested and verified.
The unique possibility of tuning interatomic interactions offered by Feshbach resonances [3]
has allowed to explore both weakly and strongly interacting fermionic systems, providing the
breakthrough tool for the description of fermionic superfluidity and of the celebrated BEC-BCS
crossover [4–6]. However, the development of new tools for the manipulation of ultracold atomic
samples with high resolution and control is paving the way for a new generation of ultracold
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atoms experiments. In particular, it is now possible to shape laser light to confine ultracold
matter in almost arbitrary geometries and to locally manipulate it with high spatial resolution.
These technical advances allow to generate atomic currents with a new level of control and have
led to the emergence of the field of atomtronics [7]. Most experiments have focused on investi-
gating mass transport in atomic currents, that is the equivalent of charge transport in electronic
currents, and only more recently spin transport has been addressed.
In recent years, the investigation of spin transport in fermionic systems has drawn considerable
attention due to both fundamental and technological reasons. In fact, electron spin plays a
central role in defining the transport properties of many solid state systems. Spin correlations
give rise to the wide range of magnetic phenomena and strong magnetic correlations can influ-
ence the transport properties of electrons in presence of even a single spin impurity [8]. Even
fermionic superfluidity in conventional superconductors is described by Cooper pairs of elec-
trons in opposite spin states [9] and similar singlet pairs are also expected to characterize high
Tc cuprate superconductors [10]. As many of the properties of correlated Fermi systems arise
from correlations between particles in different spin states, spin transport is also powerful tool
to probe such correlations at a fundamental level.
From a technological perspective, the coupled transport of spin and charge currents holds the
promise of new spin-based electronic devices. In fact, after decades of constant advance, the
development of electronic devices with ever-increasing performances seems to be slowing down
as we assist to the breakdown of Moore’s law due to excessive miniaturization of electronic
components. Extending the manipulation of currents to the spin degree of freedom of electrons
may lead to the development of new devices with increased data processing speed and decreased
electric power consumption.
This interest towards the coupled transport of spin and charge in solid state systems has led to
the emergence of the field of spintronics, whose main focus is the manipulation of electronic spins
for the ultimate goal of developing spin-based devices [11, 12]. First experimental demonstration
of coupled spin and charge manipulation was provided in 1988 by the discovery of giant magne-
toresistance [13, 14] and its subsequent application to magnetoresisitve memories showed that
the realization of spin-based devices was indeed possible. In the wake of this results, many spin-
tronics devices, such as the paradigmatic Datta-Das spin field-effect transistor [15], have been
proposed but their real life implementation is forestalled by the complexity of spin manipulation
and detection in solid state systems. In fact, these are intrinsically complex environments where
the electron spin is not easily accessible and the inevitable presence of external elements, such
as phonons, leads to short coherence times and fast spin-relaxation rates.
On the other hand, ultracold Fermi gases allow to investigate spin transport phenomena in a
clean and controlled environment where interactions, geometry and dissipative effects can be
tuned almost arbitrarily. Further, the spin degree of freedom of ultracold atoms is encoded in
their internal states, allowing for much more direct spin manipulation and detection. As transi-
tions between spin states can be driven by radiofrequency pulses, high resolution tailored optical
potentials give access to the local manipulation of ultracold gases. This allows to produce both
globally and locally spin imbalanced systems and to use opportunely shaped spin-selective or
spin-dependent optical potentials to imprint atomic spin currents. The versatile and tunable
environment provided by ultracold Fermi gases can therefore be exploited to investigate spin
correlations at a fundamental level and to address the many open questions concerning spin
transport in highly-correlated Fermi systems.

2



Within this framework, in this thesis work we develop an experimental setup that allows to
realize both spin-dependent tailored optical potentials for investigating quantum transport in a
degenerate gas of 6Li atoms. In particular, we demonstrate that by finely tuning the frequency
and polarization of a laser beam it is possible to differentially address ultracold lithium atoms
in different Zeeman states, which are defined by their spin quantum number. By computing
the multi-level polarizabilities of such states we show that we can realize optical potentials that
have a differential effect on the atomic spin states, or that affect only one of them, namely
spin-selective optical potentials. We therefore develop an experimental setup based on an offset-
phase-lock that allows us to set and stabilize the frequency of a laser source to the values
necessary for realizing such potentials. After stabilizing the frequency of our laser source, we
design and implement on the main experimental apparatus an optical set up for tailoring the
intensity profile of our laser beam using a Digital Micromirror Device. With this setup we shine
tailored spin-selective perturbations on a degenerate non-interacting Fermi gas composed by a
mixture of atoms in two different spin states. We show that we can selectively address each spin
state with resonant light, thus introducing local spin-selective losses. Finally, we demonstrate
that we can produce both spin-dependent and selective optical potentials by performing an op-
tical Stern-Gerlach experiment. With our experimental setup we can therefore investigate the
dynamical response of a fermionic system in presence of spin-dependent external perturbations
and explore the role of spin correlations in different geometries and interaction regimes. Our
findings will help shed light on fermionic spin correlations and on the fundamental mechanisms
underlying the spin transport properties of correlated Fermi systems.
This thesis is organized as follows:

• In Chapter 1 we give an overview of the tools enabling the production and manipulation of
a 6Li degenerate gas in our laboratory. We describe the fundamental properties ot atoms-
light interaction, with particular focus on the scattering and dipole optical forces which
are the two crucial tools for cooling and manipulating an atomic sample. We then discuss
the specific properties of 6Li atoms that are necessary to understand the techniques we
employ for manipulating them. In the third part of the chapter we give a brief overview
of the basic properties of trapped degenerate Fermi gases at zero temperature and of how
we can tune interactions between atoms using Feshbach resonances. In the fourth part
of this chapter we describe the main experimental apparatus and the techniques we use
for cooling and manipulating our fermionic sample as well as for extracting information
from it. In the last part of the chapter we focus on the experimental protocol that we
employ for producing a degenerate non-interacting Fermi gas and on how we measure its
temperature.

• In Chapter 2 we provide a framework regarding the investigation and the relevance of spin
transport in different contexts. In the first part of the chapter we give a brief overview of
the fundamental aspects of spin transport in solid-state materials, with particular focus
on applications in spintronics and spin caloritronics. In the second part of this chapter
we report on the experimental investigation of spin transport in ultracold Fermi gases,
focusing on the case of 6Li. Finally we introduce the idea of generating spin currents with
spin-dependent optical potentials and we highlight the novelty and the advantages that
this technique may offer compared to others.

• In Chapter 3 we report on the the realization of spin-selective and spin-dependent tailored
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optical potentials. We start by describing how such potentials arise from the properties of
light interacting with multi-level atoms, how we compute the multi-level atomic polariz-
ability and how this polarizability allows to realize both spin-dependent and spin-selective
optical potentials. In the second part of the chapter we describe the offset-lock setup we
developed for locking the frequency of our laser source to the values necessary for realizing
such potentials. We then show how we can manipulate the intensity profile of a laser beam
with a Digital Micromirror Device and how this allows us to tailor the spatial profile of
an optical potential. Finally we describe the optical setup we designed and built for shap-
ing our laser beam and for shining spin-selective tailored optical potentials on the atomic
sample taking advantage of a pre-existent horizontal imaging setup.

• In Chapter 4 we report on the experiments we performed for testing the spin-dependent
and spin-selective perturbations on a non-interacting Fermi gas. In the first part of this
chapter we focus on dissipative perturbations and we show that we can selectively address
spin states with resonant light in order to introduce local spin-selective losses or heating
in our sample. In the second part of this chapter we describe how we produce arbitrarily
shaped optical potentials by manipulating the intensity profile of a laser beam using a
Digital Micromirror Device. We then report on an optical Stern-Gerlach experiment that
allows us to demonstrate the capability of realizing both spin-selective and spin-dependent
optical potentials. Finally we offer a brief outlook on the possibility of using our setup for
imprinting spin currents in the atomic sample to investigate spin transport in our system.
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Chapter 1

Production and manipulation of a
6Li degenerate Fermi gas

The atomic physics’ toolbox allows to manipulate atomic ensembles with an outstanding level
of control and can be used to produce ultracold degenerate atomic gases. In this chapter we
will describe how we are able to produce a sample composed by ultracold 6Li atoms in different
interaction regimes. The first part of this chapter will be dedicated to the description of the
atom-light interaction. In the second part we will briefly describe the electronic structure of
6Li and then introduce the main properties of ultracold Fermi gases, with particular focus on
fermionic lithium. In the fourth part we will give an overview of our experimental setup and
routine for trapping and cooling an atomic gas to degeneracy. In the last part of this chapter
we will describe the experimental procedure for obtaining a non-interacting 6Li Fermi gas.

1.1 Atom-light interaction

The investigation of atoms-light interaction has been the spark that ignited the quantum revolu-
tion in the early years of the 20th century. Since then, the exploration of the response of atomic
mediums to electromagnetic radiation has been one of the most active areas of research in physics.
In the last decades, the use of laser light for atomic manipulation has been the breakthrough
tool to achieve trapping and cooling of atomic samples. Absorption and emission of resonant
light provided the first tool to slow atomic beams and nowadays the interaction between atoms
and resonant light still plays a fundamental role in all ultracold atoms experiments. However,
this interaction can be considered a dissipative process and the cooling techniques based only on
resonant light present some crucial limits. When a moving atom absorbs a counterpropagating
photon it loses kinetic energy due to momentum conservation, however when the atom re-emits
the photon it does so in a random mode and recoils in a random direction. For this reason, the
use of resonant light is not sufficient to cool atoms below a certain threshold and to coherently
manipulate them.
Since the first demonstration of the otpical tweezers technique by Nobel prize laureate Arthur
Ashkin, great effort has been directed towards the manipulation of atomic samples with non-
resonant light. As interactions between atoms and non-resonant light do not rely on absorption
of photons, non-resonant light allows to induce non-dissipative forces on atomic samples. As
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CHAPTER 1. PRODUCTION AND MANIPULATION OF A 6LI DEG. FERMI GAS 6

optical forces provide an unrivalled tool for the manipulation of biological matter, such as cells
of bacteria, non-resonant light offers a mean to cool atoms to degeneracy and coherently ma-
nipulate them.
Adopting a semiclassical approach, we can treat an atom as a quantum object with quantized
internal states |i〉 and consider a classical monochromatic electromagnetic field:

E(r, t) = E0(r)ei(φ(r)−ωt)ǫ̂+ c.c. (1.1)

The Hamiltonian of the atom in the external field is:

H = HA +HI (1.2)

where HA is the unperturbed atomic Hamiltonian, whose eigenvectors are just the atomic energy
levels, and HI is the atom-light interaction Hamiltonian. Considering a two-level atom in the
dipole approximation, the interaction Hamiltionian is [16, 17]:

HI = −d ·E(r) (1.3)

where r is the atom’s center of mass position and d is the atomic dipole operator, which is
related to the field amplitude via the complex polarizability α (d(ω) = α(ω)E(ω)).
In the Heisenberg picture, the force acting on the atom is:

F =
dp

dt
=
i

h̄
[H,p] = −∇HI . (1.4)

Since we can consider the induced dipole moment to be independent on the atomic position,
we can safely take it out of the derivative and write F ∝ ∇E(r). The electric field depends on
position both in its amplitude and in its phase, therefore computing the derivative of the electric
field results in two terms, related to the gradient of the phase and of the amplitude respectively.
The total force acting on the atom is therefore the sum of two terms:

F = Fscatt + Fdip (1.5)

where Fscatt ∝ ∇φ(r) is the scattering force, which arises from the absorption and re-emission
of photons, and Fdip ∝ ∇E(r) is the dipole force, which is a non-dissipative force related to
dispersion.

1.1.1 Photon absorption and re-emission

Every time an atom interacts with light momentum must be conserved. Therefore, when an
atom absorbs or emits a photon it recoils so that its momentum change compensates that of the
emitted or absorbed photon. This light-induced change of momentum can indeed be considered
a force that light exerts on the atom.
This scattering force therefore is:

Fscatt = h̄kΓsc (1.6)

where k is the absorbed photon momentum and Γsc is the scattering rate, which describes the
rate at which photons are absorbed and spontaneously re-emitted. Neglecting any stimulated
emission process, we can write Γsc = Γ ρ22 where Γ is the linewidth of the considered atomic
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transition and ρ22 is the probability of finding the atom in the excited state. Considering light
with a frequency detuning δ = ω − ω0 from the atomic transition, the steady-state solution of
the optical Bloch equations yields [16, 17]:

Γsc(r) =
Ω2(r)/Γ

1 + 2Ω(r)2/Γ2 + 4δ2/Γ2
(1.7)

where Γ is the transition linewidth and Ω is the Rabi frequency that describes the coupling
between the atomic transition and the field:

Ω(r) =
〈g|ǫ̂ · d|e〉E0(r)

h̄
. (1.8)

It is worth noting that the scattering rate has an inverse quadratic dependence on the detuning,
resulting in a fast decrease of the probability of photon absorption as the detuning increases.
Introducing the saturation intensity Is defined as I/Is = 2Ω2

Γ2 we can write Eq. 1.7 as a function
of the light intensity I(r) = 2ǫ0c |E0(r)|2:

Γsc(r) =
Γ

2

I(r)/Is
1 + I(r)/Is + 4δ2/Γ2

. (1.9)

This expression explicitly shows that the photon absorption probability is linear in the light
intensity as long as such intensity remains much smaller the the saturation intensity. The
scattering force that light can exert on an atom is bounded from above by the maximum value
Fscatt,max = h̄kΓ

2 which is obtained for I ≫ Is.
From Eq. 1.6 we see that if an atom moves towards a counterpropagating laser beam, the
average effect of the scattered photons is to induce a force along the propagation direction of
the beam, i.e. opposite to the velocity of the moving atom, which is thus slowed down. This
effective viscous force has been extensively exploited for slowing, cooling and trapping atomic
ensembles with Zeeman slowers, optical molasses and magneto optical traps (MOTs) [17, 18].
However, this techniques based solely on the scattering force are often non sufficient to cool
atomic samples down to the degenerate regime. This is because each time an atom emits a photon

it recoils in a random direction with recoil energy (h̄k)2

2m = kBTrec, which for the D2 line (see next
section) of 6Li is around 3.5 µK [19]. Further, the lowest temperature achievable exploiting only
absorption and re-emission processes, namely the Doppler temperature, is kBTD = h̄Γ

2 , which
is higher than the recoil temperature due to fluctuations in the number of absorbed and re-
emitted photons. This fluctuations lead to a reduction in cooling efficiency [17], thus preventing
the cooling of atomic samples below the Doppler temperature, which is orders of magnitudes
higher (TD = 140µK for 6Li [20]) than the degeneracy temperature.
As the scattering force relies on incoherent spontaneous emission, it is a non-conservative force.
This makes techniques based on the scattering force valuable tools for the first steps of the
cooling procedure, but rarely suitable for further cooling and for the coherent manipulation of
ultracold samples.

1.1.2 Optical potentials

To cool atomic gases to degeneracy and manipulate them in a non-dissipative and coherent way,
it is customary to use non-resonant light. For far detuned light, photon absorption is highly
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unlikely and the dipole force can be exploited to exert a conservative optical force on atomic
samples. While the scattering force is related to the in quadrature phase component of the
induced dipole moment [17], or, equivalently, to the imaginary part of the polarizability α [21],
the dipole force is related to the in phase component of the dipole moment and to the real part
of the polarizability. Computing these quantities leads to a dipole force that is proportional to
the gradient of the squared Rabi frequency:

Fdip(r) = − h̄δ

1 + 2Ω2(r)/Γ2 + 4δ2/Γ2
∇Ω2(r). (1.10)

It is possible to rearrange this expression to highlight that the dipole force is a conservative force
arising from a potential [16]:

Fdip(r) = −∇Vdip(r)

Vdip(r) =
h̄δ

2
log

[

1 +
|Ω(r)|2

2 ((Γ/2)2 + δ2)

]

.
(1.11)

The potential Vdip is the optical potential and it is the main element enabling laser light ma-
nipulation of atoms. If light is sufficiently far-detuned, so that |δ| ≫ Γ,Ω, we can simplify the
expression of the dipole potential as:

Vdip(r) ≃ h̄|Ω(r)|2
4δ

. (1.12)

This expression can, again, be expressed as a function of the intensity saturation parameter
s = I/Is as:

Vdip(r) ≃ 3h̄Γ2

8δ

I(r)

Is
(1.13)

where the factor 3 account for the possible states of light polarization.
When atoms are exposed to non-resonant light they feel an optical potential proportional to
the intensity of the light and inversely proportional to the detuning from the considered atomic
transition. Therefore, by using either red (ω < ω0) or blue (ω > ω0) detuned light, it is possible
to engineer attractive or repulsive potentials respectively. Notably, the optical potential has a
linear dependence on the inverse detuning 1/δ, while that of the scattering rate is quadratic.
Therefore, for large detunings, the scattering probability falls much faster than the amplitude
of the optical potential. Also, while the absorption probability saturates for high intensities, the
dipole potential can be arbitrarily large as intensity increases, even though only logarithmically
for the higher intensities. Because of these dependencies on 1/δ and I, it is preferable to ma-
nipulate atoms using high intensity far-detuned laser light, so that the dipole potential is large
while the unwanted effects related to photon absorption are largely suppressed.
The many available tools for controlling the spatial intensity profile of laser light allow to use
both attractive and repulsive optical potential for the arbitrary manipulation of atomic samples.
In particular, it is possible to use attractive red-detuned Gaussian beams as optical dipole traps
(ODTs) [21] so that atoms remain trapped in the high-intensity regions, in the same way as
biological matter is manipulated with optical tweezers. Further, it is possible to use repulsive,
blue-detuned, light to confine the atoms in arbitrary geometries and to introduce obstacles inside
an atomic sample [22–24].
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We stress that expression 1.13, despite capturing the general behavior of atoms exposed to non-
resonant light, should be used with caution, since it relies on three assumptions which may not
be valid. The first one is the rotating wave approximation, i.e. we assume that ω−ω0 ≪ ω+ω0

so that we can neglect terms proportional to 1
ω+ω0

. In the range of optical atomic transitions
this is generally true. The second assumption is that the detuning from the atomic transition
is much larger than the transition linewidth. Again, this is usually the case when we want to
use optical potentials for manipulating atoms with non-resonant light, since having a detuning
comparable with the frequency linewidth results in high photon-absorption probability. The last
assumption is considering the atom a two-level system, which, in general, is not true. Atoms in
one particular state always have many accessible higher-energy excited states and the decision
about which transitions can be neglected is quite an important one. Usually, there is one main
transition which has the smallest detuning from the light frequency and it is the one that we
would consider in a two-level approximation. We can then neglect the contribution of transitions
for which the detuning is much bigger than that of this main transition or that have an energy
difference so small that they are not resolved, therefore contributing with one transition only
(with the appropriate degeneracy).
An alternative way of describing optical potentials is that of the light shifts or dressed states

picture [21]. This approach is equivalent to our previous treatment but it is particularly ap-
pealing for the description of state-dependent optical potentials. In this picture, the interaction
between the light’s electromagnetic field and the internal atomic levels leads to an energy shift of
the involved levels, which become dressed by the interaction. For the transition’s ground state,
these light shifts or AC Stark shifts are negative(positive) for red(blue)-detuned light, thus re-
sulting in an effective attraction(repulsion) towards(from) the region of high light intensity. If
we consider an ensemble of atoms in different ground states (e.g. in different hyperfine levels of
an energy manifold) each state will feel a different light shift and, therefore, a different optical
potential. The light shifts picture can also be used to intuitively describe the atom-light inter-
action beyond the two-level approximation. In Chapter 3 will see how multi-level light shifts
give rise to state-selective optical potentials.

1.2 6Li fundamentals

All the fundamental tools for the production and manipulation of ultracold 6Li gases rely on
the properties of its level structure, which we will briefly describe in this section.
Lithium-6 is the fermionic isotope of lithium which is an alkali atom with two core electrons and
a single unpaired valence electron. Therefore, its ground state electronic configuration is 1s22s1

while the first excited state is 1s22p1, which is connected to the ground state by an optical
transition called D-line. This transition has a wavelength of almost 671 nm, corresponding to
visible red light.
However, as for all alkalis, the D-line of 6Li is split in two narrower lines, namely the D1 and
D2 lines by the spin-orbit coupling. This coupling arises from the mutual interaction between
the orbital and spin electronic magnetic moments and results in the fine structure of the atomic
energy levels. Inserting the spin-orbit interaction as a perturbation in the atomic Hamiltonian
allows to compute the energy of the D1 and D2 transitions. To do so, it is usual to work in the
total electronic angular momentum Ĵ = L̂ + Ŝ basis. In this basis, each state is finely splitted
into levels with different J for |L − S| ≤ J ≤ L + S. The 6Li ground state has S = 1/2 and
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L = 0, therefore the only allowed value for the total angular momentum is J = 1/2 and the
ground state is not split by the spin-orbit coupling.
The excited state, instead, has L = 1, and is thus split in two levels with J = 1/2 and J = 3/2
respectively. The transition to the lowest energy state (J = 1/2) results in the D1 line (670.992
nm), the transition to the highest energy state (J = 3/2) in the D2 line (670.977 nm). Com-
puting the energy difference between the two lines we get the size of the fine structure splitting
∆EFS ≃ 10 GHz [19].

670.992 nm

670.977 nm

Figure 1.1: Structure of the ground and 2P excited states of 6Li. The spin-orbit coupling splits
the excited state in two states, which are connected to the ground state by the D1 and D2 lines
respectively. The interaction with the nuclear magnetic moment results in a further splitting of
the fine sublevels. Energy splittings are not to scale. Image taken from Ref. [19].

For the cooling of alkali atoms it is also necessary to consider the further splitting of the fine
levels due to the coupling between the electronic magnetic moment and the nuclear spin mag-
netic moment Î, which is 1 for fermionic lithium. This hyperfine structure is crucial for the
manipulation of lithium atoms in presence of magnetic fields and for the generation of spin-
dependent optical potentials. As for the spin-orbit coupling, when computing the eigenvalues
of the hyperfine Hamiltonian it is useful to define a new operator and a new quantum number
related to it. We therefore define the total angular momentum of the atom F̂ = Î + Ĵ, which
can take values in the range |J − I| ≤ F ≤ J + I. The introduction of the hyperfine interaction
results in a separation of the ground state in two sublevels separated by an energy difference
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of 228.2 MHz [19]. The two excited states corresponding to the D1 and D2 lines split into two
and four sublevels respectively with even smaller energy separations. We report the zero field
structure of 6Li in Fig. 1.1.

1.2.1 6Li in magnetic fields

So far we have considered the structure of 6Li in absence of external perturbations. However, the
cooling, trapping and manipulation of ultracold atoms heavily rely on magnetic fields. There-
fore, the energy levels that we need to consider in our experiments are not the unperturbed
hyperfine states but are states that are heavily affected by the presence of external magnetic
fields. In particular, we have to consider the Zeeman effect arising from the interaction between
the atomic magnetic moment and a static magnetic field.
Since this interaction energy is proportional to the amplitude of the external field B, for suffi-
ciently low fields, the Zeeman effect can be treated as a perturbation to the hyperfine structure
of the atomic levels. As long as B remains small, F is still a good quantum number and the
perturbation can be easily computed as ∆EZ = µB

h̄ gFmFB, where µB ≃ 1.4 MHz/G is Bohr’s

magneton, gF is the Landè g factor and mF is the projection of F̂ along the quantization axis,
which is usually defined by the direction of the magnetic field. As B increases, the interaction

|1

|2

|3

Ground state Excited states(a) (b)

Figure 1.2: Zeeman sublevels of 6Li. (a) Zeeman shift of the hyperfine ground state manifold.
From the experimental point of view we are interested in the three lowest sublevels, which we
label |1〉, |2〉 and |3〉. (b) Zeeman shift of the 2P1/2 and 2P3/2 manifolds. Due to its small
size, the hyperfine splitting of the excited states can be neglected for all experimentally-relevant
magnetic fields. Image adapted from Ref. [19].

energy becomes significant compared to the hyperfine splitting. When this happens F ceases
to be a good quantum number and we must look for eigenstates of the full Hamiltonian of
the system. For 6Li both the ground and excited states have very small hyperfine splittings,
therefore the perturbation regime fails at very low values of B. In the strong-field regime, called
Paschen-Back regime, we can diagonalize the full Hamiltonian in the |J,mJ ; I,mI〉 basis and
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treat the hyperfine interaction as a small perturbation to the atom-field Hamiltonian. For in-
termediate fields the energy shifts are more difficult to compute and the full Hamiltonian must
be diagonalized numerically.
We report the magnetic field dependence of the 6Li Zeeman subleveles in Fig. 1.2. The two
hyperfine levels of the ground state manifold split in two and four Zeeman sublevels respectively.
However, as the magnetic field increases, the lowest energy state of the F = 3/2 hyperfine level
bends towards the F = 1/2 states, resulting in the formation of two triplets of Zeeman states.
From the experimental point of view we are interested in the three lowest sublevels which we label
|1〉, |2〉 and |3〉. These state differ mainly by their nuclear spin projection along the quantization
axis mI and are the states that are populated by the atoms in all our ultracold samples. Since
the 6Li excited states have a very small hyperfine splitting, for such states the Paschen-Back
regime is reached at magnetic fields lower than those experimentally significant. Therefore, we
can neglect the hyperfine structure of the exicted states manifold and write ∆EZ ≃ µB

h̄ gJmJB.
This leads to a splitting of the 2P1/2 and 2P3/2 fine levels into two and four Zeeman states
respectively.

1.3 Degenerate Fermi gases

Even though a single particle displays many interesting properties, some of the most fascinating
quantum effects arise when many quantum objects become correlated and the behavior of the
whole system is governed by the underlying quantum nature of its constituents. These correla-
tions lead to the emergence of quantum collective phenomena, which often result in spectacular
effects such as Bose-Einstein Condensation or superconductivity. However, it is usually not
trivial to observe these quantum collective phenomena, since they are often suppressed by other
effects, such as interactions with external sources or thermal motion. One way of searching
for how and when do these quantum collective phenomena occur is considering the de Broglie
wavelength of particles:

λdB =

√

2πh̄2

mkBT
. (1.14)

This quantity represents the extent of the wavepacket associated to a particle. When this wave-
length becomes comparable to the distance between two particles, their wavefunctions begin to
overlap and the quantum nature of their interaction is unveiled. Identical particles with a de
Broglie wavelength comparable to their inter-particle spacing become intrinsically indistinguish-
able and a system composed by such indistinguishable particles is said to be degenerate. Such
degeneracy is the condition for the emergence of quantum collective behaviors.

1.3.1 Quantum statistics

In quantum mechanics, identical particles are intrinsically indistinguishable and are described by
collective wavefunctions. Depending on the nature of the particles, these collective wavefunctions
must have different parity with regard to particle exchange. The wavefunction of an ensemble
of identical bosons must be symmetric under particle exchange, while that of fermions must be
antisymmetric.
The main consequence of the different parity between between fermionic and bosonic ensembles
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is their different tendency towards occupying the same quantum state with more than one
particle. While two or more identical bosons can freely populate the same quantum state, the
antisymmetric nature of fermions prevents them from doing so. This is the well-known Pauli

exclusion principle, which states that two identical fermions can never occupy the same quantum
state. Since bosons can populate the same quantum state, while fermions cannot, systems of
non-interacting bosons or fermions have very different ground state properties. All the particles
composing an ensemble of non-interacting bosons in the ground state occupy the single particle
lowest energy level. In contrast, the ground state of a fermionic system is composed by particles
filling all available energy levels up to the Fermi energy, so that there are never two particles in
the same state.
By computing the partition function of non-interacting, identical quantum particles it is possible
to obtain the distribution function of both bosons and fermions, corresponding to the mean
occupation number of a state with energy ε:

fǫ =
1

eβ(ε−µ) ± 1
(1.15)

where β = 1/kBT and µ is the chemical potential. In this expression, the − sign is referred
to bosons (Bose-Einstein distribution) and the + to fermions (Fermi-Dirac distribution). This
different sign leads to the striking differences between the properties of fermionic or bosonic
ensembles.
Atoms are not elementary particles, as they are composed by a number of fermions (electrons,
protons and neutrons) which depends on the atomic species and on the considered isotope.
Therefore, the number of fermions composing an atom defines its quantum nature. If this num-
ber is even, the atom has integer spin and is a boson, conversely atoms composed by an odd
number of fermions are fermions themselves. 6Li atoms are composed by six nucleons and an
unpaired electron, thus being fermions.
When the temperature is sufficiently high (β ≫ µ), both the Fermi-Dirac and Bose-Einstein
distributions reduce to the classical Boltzmann exponential distribution and the quantum prop-
erties of the atomic ensemble are hidden by the particles’ thermal motion. Since for atomic
samples µ/kB is usually below 1 µK, to produce a degenerate atomic ensemble it is necessary
to drastically lower the temperature of the system. However, lowering the temperature while
keeping the density fixed results in a transition to the solid state, in which atoms are fixed inside
a lattice. Fixing the atoms’ positions effectively makes them distinguishable, thus suppressing
quantum degeneracy. It is therefore necessary to prevent any classical phase transition in the
process of cooling an atomic sample. To do so, it is possible to produce a system in a metastable
gaseous dilute regime with very low number density (n < 1013 cm−3). Such low density results in
a strong suppression of three body collisions, which are necessary for the formation of the atomic
bonds that lead to classical phase transitions, and provides the way for producing degenerate
atomic gases.
The way to achieve a degenerate quantum gas is therefore to produce an ultracold and di-
lute atomic sample. As an example, we can consider a 6Li gas (m = 9.98 10−27 kg) with
n ≃ 1013 cm−3. For such a sample, the degeneracy condition λdB ≃ n−1/3 is reached for
T < 1µK.



CHAPTER 1. PRODUCTION AND MANIPULATION OF A 6LI DEG. FERMI GAS 14

1.3.2 Zero temperature Fermi gases in harmonic traps

As we will see in the following sections, ultracold atoms experiments are often performed in
optical dipole traps. These traps are usually obtained by crossing two red-detuned laser beams
with Gaussian profiles. Using red-detuned beams generates an attractive optical potential to-
wards the high-intensity region, so that atoms are trapped in the region where the beams cross.
This trapping potential is necessary for confining the atoms and can be well approximated by
an harmonic trap.
For harmonically trapped atoms, the energy ε of Eq. 1.15 can be written as the sum of the
kinetic and the harmonic potential energy, so that the Fermi-Dirac becomes:

f(r,p) =
1

e(
p2

2m
+V (r)−µ)/kBT + 1

V (r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)

(1.16)

where ωx,y,z are the trap frequencies along the three spatial directions.
For T → 0, this distribution is 1(0) if the total energy is below(above) the chemical potential:

f(r,p) −−−→
T→0

{

1 p2

2m + V (r) < µ

0 p2

2m + V (r) > µ.
(1.17)

This means that, in a zero-temperature non-interacting Fermi gas, particles fill all the energy
levels up to the chemical potential, while leaving empty the states with higher energy. Therefore,
at zero temperature, µ is the energy of the highest occupied state, i. e. the Fermi energy EF ,
and sets the most important energy scale of the system. The spatial density profile of a zero-
temperature non-interacting Fermi gas is given by [4]:

nF (r) =

∫

d3p

(2πh̄)3
f(r,p) −−−→

T→0

∫

|p<
√

2m(µ−V (r))|

d3p

(2πh̄)3
=

=
1

6π2

(

2m

h̄2

)3/2

(µ− V (r))3/2 .

(1.18)

The Fermi energy can be found by fixing the total number of particles N =
∫

d3r nF (r). Inte-
grating the previous expression for the particle density yields:

EF = h̄ω̄(6N)1/3 (1.19)

where ω̄ = (ωxωyωz)1/3 is the geometric mean of the trapping frequencies.
This is the global Fermi energy of the system and the globally largest momentum is the Fermi
momentum pF = h̄kF =

√
2mEF . However, an harmonically trapped system is not homo-

geneous and we should introduce a local Fermi energy and momentum pF (r) = h̄kF (r) =
√

2mǫF (r) = h̄(6π2nF (r))1/3. The global Fermi energy equals the local Fermi energy in the trap
center, therefore:

EF =
h̄2k2F
2m

=
h̄2

2m
(6π2nF (0))2/3. (1.20)
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The spatial profile of the atomic density in Eq. 1.18 can be explicitly written as:

nF (r) =
8

π2
N

RFxRFyRFz

[

max

(

1 −
∑

i

x2i
R2

Fi

, 0

)]3/2

(1.21)

where RFx,y,z =
√

2EF

mω2
x,y,z

are the Thomas-Fermi radii that define the size of the system at zero

temperature since the density profile vanishes for r > RF . While the size of a Bose gas does
not depend on the number of bosons in the system, for a Fermi gas this quantity is proportional
to the total number of particles, due the additional pressure introduced by the Pauli exclusion
principle. This pressure is the reason why, usually, a fermionic cloud is much more extended
than a bosonic one.

1.3.3 Controlling the interactions: Feshbach resonances

So far we have described the static properties of a non-interacting Fermi gas. However, the most
interesting properties of a physical system emerge in presence of interactions. One of the most
appealing properties of ultracold atomic gases is the possibility to tune the interactions’ strength
and nature using Feshbach resonances, thus allowing to explore different interaction regimes.
Neutral atoms interact via Lennard-Jones potentials V (r) = −C6

r6
+ C12

r12
. The −r−6 component

of the potential is attractive and short ranged, meaning that it is negligibly small after a certain
inter-particle distance r0. However, at few a0 distance (Bohr’s radius, a0 ≃ 0.5 Å) the electron
clouds of the atoms start overlapping and the interaction becomes strongly repulsive due to
the Pauli exclusion principle. This effect is included in the potential by the r−12 repulsive
component.
As we have seen, in order to avoid three-body collisions, ultracold gases must be incredibly
dilute. This means that the interparticle spacing is indeed much higher than the interaction
range: n r30 ≪ 1. Therefore, the probability of having three-body interactions is negligible and
we can consider only two-body elastic collisions. Since the degeneracy condition is given by
nλ3dB ≃ 1, in degenerate systems the typical atomic size is also much larger than the interaction
range (r0 ≪ λdB). This means that when two atoms interact they do not feel the details of
the short-range microscopic potential, but rather an effective potential averaged over the whole
wavefunction, so that we can neglect the microscopic details of the potential.
The Lennard-Jones is a central potential V (r) and the description of the scattering of two
particles in such a potential is described in many quantum mechanics textbooks [25] and reviews
[4, 26]. Away from the collision region the asymptotic scattered wavefunction can be written as
the superposition of the incoming and scattered waves:

ψas(r) ∼ eik·r + f(k,k′)
eik

′·r

r
(1.22)

where k and k′ are the incoming and outoing momenta respectively, and f(k,k′) is the scattering

amplitude. This last quantity describes the probability amplitude that the incoming wave is
scattered in the direction r = k′/k, where k′ = k due to energy conservation. The scattering
amplitude is related to the scattering cross section by the relation dσ

dΩ = |f(k,k′)|2, where Ω is
the solid angle.



CHAPTER 1. PRODUCTION AND MANIPULATION OF A 6LI DEG. FERMI GAS 16

Since particles interact via a central potential, it is possible to write the scattered wavefunction
with a partial wave expansion:

ψas(r) =
∑

l

Y 0
l (θ)

ul(r)

r
(1.23)

where Y 0
l are the spherical harmonics with m = 0 and ul(r) is the radial wavefunction. By

inserting such expansion in the Schrodinger equation we get:

h̄2

2m
(∂2r + k2)ul(r) = Veff (r)ul(r) (1.24)

where Veff (r) = V (r) + h̄2l(l+1)
2mr2

is the effective potential.

At low temperatures the centrifugal barrier h̄2l(l+1)
2mr2

inhibits collisions with l > 0, thus only l = 0
s-wave scattering is permitted. However, the wavefunction describing the collision between two
identical fermions must be antisymmetric, which limits the partial waves expansion to odd values
of l. Therefore, identical fermions in ultracold samples cannot interact with each other via s-
waves because of symmetry reasons, while l -wave scattering is strongly suppressed by the low
temperature. This means that identical ultracold fermions effectively do not interact with each
other, which can be an undesired feature, since interactions are needed to evaporative cool the
gas and to observe physically interesting phenomena. To overcome this limit it is possible to
work with two different atomic species or, as we do, to work with mixtures of same-species atoms
in two different hyperfine states. Since these states have a different spin, the antisymmetry of
the wavefunction is taken over by the spin degree of freedom and the spatial component of the
wavefunction must be symmetric. Therefore, fermions in different spin states can interact via
symmetric s-wave scattering processes, which are effectively the only interactions present in an
ultracold atomic sample.
Considering s-wave scattering only, the radial solution of Eq. 1.24 can be written as u0(r) ≃
sin(kr − δ0(k)), where δ0(k) is the phase-shift imprinted on the scattered wavefunction by the
collision. Introducing the scattering length

a = − lim
k→0

tan(δ0(k))

k
(1.25)

we can approximate the interaction potential with a delta-like pseudopotential:

Vp(r) =
4πh̄

m
aδ(r). (1.26)

This approximation is justified because, in cold atoms systems, the scattering length is typically
orders of magnitude larger than the Lennard-Jones potential range r0. Thus the interatomic
interactions can be approximated by a contact potential of effective range re = 0 and the whole
scattering process is described by the scattering length a whose sign and magnitude determine
the properties of the potential. In the following we will briefly describe how we can tune the
scattering length using Feshbach resonances, for a more comprehensive discussion on the topic
we refer to the review in Ref. [3].
The interaction potential between two alkali atoms in two different hyperfine states depends on
their electron spin configuration, identifying a triplet and a singlet potential. The state of the
incoming particles defines which one of the two is the open channel, that is populated before the
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Figure 1.3: Resonant coupling between the closed and open channels. Closed and open chan-
nels for a scattering event (left): the closed channel presents a bound state that affects the
properties of the scattering particles in the open channel. It is possible to tune the energy
difference between the two channels with an external magnetic field (right). When B = B0, the
two channels are resonant and the scattering length diverges.

scattering event, while the other is the closed channel. Because of hyperfine coupling between
the two channels, the presence of a bound state in the closed channel modifies the scattering
properties of particles in the open one. In fact, a bound state in the interaction potential causes
a divergence of the scattering length when its energy is resonant with the one of the scattering
particles in the open channel. Usually this is not the case, however, since the open and closed
channels have different magnetic moments, it is possible to exploit an external magnetic field to
tune the energy difference between them. When the energy shift is such that the bound state in
the closed channel is resonant with the particles’ energy in the open one, the scattering length
diverges, giving rise to a Feshbach resonance.
The phenomenological magnetic field dependence of the scattering length can be expressed as:

a(B) = abg

(

1 − ∆B

B −B0

)

(1.27)

where abg is the off-resonance background scattering length, ∆B is the resonance width and B0

is its center. When B = B0 the scattering length diverges (a → ∞) and interactions are the
highest allowed in nature. However, none of the scattering process observables actually diverges
as the cross section for s-wave scattering remains finite even for a → ∞ [27]. One of the most
appealing properties of Feshbach resonances is that it is possible to tune not only the size but
also the sign of the scattering length, thus being able to explore different interaction regimes for
both strongly and weakly interacting systems with either attractive (a < 0) or repulsive (a > 0)
interactions.
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Figure 1.4: Feshbach resonances of the three lowest 6Li hyperfine states. The scattering length
of collisions between two atom in different states depends on the external magnetic field. Thus,
by changing this magnetic field we can effectively tune the interaction strength and sign over a
wide range. Data are taken from Ref. [28]

We report in Fig. 1.4 the Feshbach resonances of the three lowest Zeeman sublevels of 6Li,
which have very broad Feshbach resonances. Both |1〉 − |2〉 and |1〉 − |3〉 Feshbach resonances
are about 250 G broad, enough to ensure a mild influence of magnetic field fluctuations on the
scattering length. Feshbach resonances are a fundamental tool for producing ultracold Fermi
gases in different interaction regimes and we exploit them extensively in all our experiments. In
particular we exploit the 690 G |1〉−|3〉 resonance [3, 29] to produce a non-interacting or weakly
interacting Fermi gas and the 832 G |1〉 − |2〉 resonance to produce fermionic superfluids [27].

1.3.4 The BEC-BCS crossover

The tuning of interactions provided by Feshbach resonances, combined with the low temper-
atures achievable in ultracold Fermi gases allow to investigate the phenomenon of fermionic
superfluidity. This kind of superfuidity arises from the pairing of atoms in opposite spin states
due to the presence of strong interactions between them. Fermionic pairs are indeed bosons
which can undergo Bose-Einstein condensation and display a superfluid behavior [4–6].
In particular, for attractive interactions the Fermi gas is unstable towards the formation of
long-ranged Cooper pairs analogous to that described by the BCS theory of conventional su-
perconductivity [9]. In the ideal zero-temperature regime even an infinitely small attractive
interaction (a → 0−) is sufficient to induce pairing between fermions living near the Fermi
surface. At finite temperature, instead, a stronger attraction is needed. This can be easily
achieved by increasing the interaction strength between atoms with Feshbach resonances, so
that for stronger attractive interactions the pairing temperature T ∗ is indeed higher. Instead,
for sufficiently low interaction strength and T > T ∗ the system is a weakly attractive Fermi gas.
On the opposite side of the resonances, where interaction are repulse, the repulsive Fermi gas
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is unstable towards the formation of tightly bound bosonic molecules. When T > Tc, where Tc
is the critical temperature of the superfluid transition, the molecules are not condensed while
they condense into a coherent system and become superfluid as temperature is lowered below
Tc. This regime is that of the molecular Bose-Einstein condensate (mBEC), usually referred to
simply as BEC regime fo fermionic superfluids.
Despite the differences in constituents, the BCS and BEC regimes are described by formally
equivalent ground state wavefunctions and are thus smoothly connected by an intermediate
regime. This is the unitary Fermi gas (UFG) region where interactions are the highest possible
and the pair size is comparable to the interparticle spacing. The whole spectra of regimes is
the so-called BEC-BCS crossover and its characterization has been one of the greatest achieve-
ments in the field of ultracold Fermi gases. [4, 5]. We report the BEC-BCS phase diagram of a
homogeneous fermionic gas composed by atoms in two spin states in Fig. 1.5.

Figure 1.5: Phase diagram for the BEC-BCS crossover of an homogeneous fermionic gas. Be-
low the pairing temperature T ∗ fermions in opposite spin states are coupled into pairs. The
pair size depends on the interactions, which can be parameterized as 1/kFa, where kF is the
Fermi momentum and a is the s-wave scattering length that can be tuned with Feshbach reso-
nances. By tuning the interaction strength between the two fermionic spin states it is possible
to smoothly cross from a regime of tightly bound molecules to a regime of long-range Cooper
pairs. In between these two extremes there is an intermediate regime where the pair size is
comparable to the interparticle spacing and the interactions are the highest (UFG). When tem-
perature is lowered below the critical temperature Tc, pairs undergo condensation, giving rise to
fermionic superfluidity. The intermediate region Tc < T < T ∗ where pairs are formed and not
yet condensed is referred as pseudogap region, in analogy with high-Tc superconductors. The
curves T ∗/TF and Tc/TF are extracted from Ref. [4, 30].

A particularly interesting condition is that of temperature above the condensation temperature
and below the pairing temperature: Tc < T < T ∗. This region is expected to be characterized
by the presence of ”preformed” pairs, where fermions in opposite spin state are already paired
but the pairs are not yet condensed. In the BCS-limit, where T ∗ → Tc, condensation occurs
at the same time as pairing, so no preformed pairs can exist, as is the case of conventional
superconductors. However, as we increase the interaction strength towards unitarity we find
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that it is possible to have uncondensed pairs. This is similar the molecular BEC case, where
we can find thermal molecules above Tc. The presence of uncondensed pairs in the crossover
region has attracted much attention since these preformed pairs also occur in a part of the phase
diagram of high-Tc superconductors, which is called the pseudogap region [10]. Even though
the existence of a pseudogap in ultracold Fermi gases is still under debate, this crossover region
of T > Tc is often referred as pseudogap in the phase diagram of fermionic gases as well. The
investigation of the pseudogap regime is currently one of the main research themes in ultracold
Fermi gases.

1.4 Cooling and manipulation of a 6Li gas

Cooling an atomic gas to the degenerate regime is quite a complex process which requires many
stages. In fact, atoms need to start from a rather high temperature to be in the gaseous phase
and their slowing, cooling and trapping is obtained with a series of different techniques. All of
these operations must be performed under Ultra-High-Vacuum (UHV) conditions, so that the
atoms are isolated from external contaminants which would significantly affect our system.
The atomic sample is initially produced inside an oven, where an artificially enriched 6Li sample
is heated up to 420◦ to create an atomic beam which is successively collimated. The hot atomic
beam is decelerated by a Zeeman slower down to a velocity of about 60 m/s before entering the
science chamber where the real cooling and trapping are performed. Pressure inside the science
chamber is kept below 10−11 mBar. Our cooling procedure starts with a standard Magneto
Optical Trap (MOT) and a gray molasses subdoppler cooling [20]. Atoms are then transferred
into an optical dipole where they are evaporatively cooled down to the degenerate regime. In
the following we will briefly describe our cooling procedure, referring to Ref. [29] for a more
detailed description.

1.4.1 Laser setup

Laser light is the fundamental tool for cooling and manipulating atomic samples. In our exper-
imental setup we use laser sources of different wavelengths to perform different operations. We
use resonant light for the first stages of cooling and for imaging our sample, while we employ
non-resonant light for the generation of the optical potentials that we use for evaporative cooling
and for manipulating our ultracold atomic gas.
As we have seen, the D1 and D2 lines of 6Li are both at almost 671 nm but are separated by
around 10 GHz, which prevents addressing them with a single laser source. Therefore, to address
the two transitions we use two Toptica TA-Pro lasers and we amplify them with one Master
Oscillator Power Amplifier (MOPA) each. The frequencies of D1 and D2 lasers are locked to
the respective atomic transition with a Saturation Absorption Spectroscopy (SAS) setup. In
particular, the D2 laser is locked to the |2S1/2, F = 3/2〉 → |2P3/2, F

′ = 5/2〉 transition and the
D1 is locked to the |2S1/2, F = 3/2〉 → |2P1/2, F

′ = 1/2〉 transition. Since the natural linewidth
of the D2 line (Γ ≃ 6 MHz) is larger than the hyperfine splitting of the excited state (4.4 MHz),
the hyperfine structure is not resolved in the absorption spectrum. Therefore, even though the
|F = 3/2〉 → |F ′ = 5/2〉 transition is theoretically closed, we can’t avoid that, as we cool atoms
using this transition, some of them decay in the |2S1/2, F = 1/2〉 hyperfine state and are lost
from the cooling cycle. To recover these atoms we employ rempuper lights that pump the lost
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Figure 1.6: Experimental apparatus for the production of ultracold fermionic gases of 6Li. (a)
Vacuum system for the production of the sample. A collimated atomic beam exits the oven,
it is slowed down by the Zeeman slower and reaches the science chamber, where it is cooled to
degeneracy. (b) Zero field structure of 6Li. We highlight the cooling and rempumping transitions
for both the D1 and D2 lines.

atoms to the |F ′ = 3/2〉 state for both the D1 and D2 transitions. Since the ground state
hyperfine splitting is 228 MHz large, we can use the D1 and D2 lasers for producing both the
cooling and rempumping lights for their respective transition. The fine tuning of the wavelength
between the cooling and repumping beams is done using a chain of Acousto-Optics Modulators
(AOMs) [29]. The D2 light is also used for imaging the atomic cloud by means of an absorption
imaging technique. Using an optical waveplate and a polarizing beam splitter (PBS) we can
couple the imaging light in one of two different optical fibers. Depending on the chosen fiber
we can either shine our imaging light from the top of the science chamber (vertical imaging) or
from the side (horizontal imaging), to observe atoms from different directions.
To manipulate the atomic gas with optical potentials we employ two different wavelengths. We
use far red-detuned light for trapping our atoms in an attractive optical dipole trap (ODT)
where we perform evaporative cooling. Once we have an ultracold sample, we can switch on far
blue-detuned lights that provide repulsive potentials through which we can spatially manipu-
late our atomic gas [27]. In particular, for the evaporation process we employ two high-power
infrared beams: the IPG and the Mephisto. The former is a 1073 nm laser with a maximum
power of 200 W that is used to trap the atoms after the MOT phase and to perform a first
evaporation. The latter is a 1064 nm laser with a maximum power of 50 W that crosses the IPG
with a 14◦ angle to create the final ODT for completing the evaporation process. The intensities
of both these beams, as well as of all the other beams we employ in our setup, are tuned and
stabilized by AOMs controlled with PID feedback loops. To manipulate the geometry and the
dimensionality of our atomic cloud we use two beams derived from the same Coherent Verdi
V-8 laser source. This is 532 nm green light that is far blue-detuned from the lithium D-line
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and provides a very good tool for manipulating our atoms with repulsive optical potentials and
negligible absorption probability. The first green beam that we use is a TEM(0,1) beam that we
can shine in the science chamber from the horizontal direction to squeeze our sample along the
vertical direction. This allows us to confine our atomic gas in an oblate, nearly two-dimensional
geometry [24, 27]. The second repulsive beam that we employ is instead shone on our sample
from the bottom, along the vertical direction. Before entering the science chamber, this beam
impinges on a Digital Micromirror Device (DMD, see Chapter 3), which allows us to manipulate
the spatial intensity profile of the light. Using the DMD and an high numerical aperture objec-
tive (more on this in the following section), we are able to shine high-resolution tailored light
on our cloud and thus manipulate our atomic sample with arbitrarily shaped optical potentials
[22–24, 27].
As we will see in Chapter 3, we have another laser source that emits near-resonant light at 671
nm that we employ for the realization of the spin-dependent and spin-selective optical potentials.

(a) (b)

Figure 1.7: Sketch of the laser beams employed to manipulate the atomic cloud in the science
chamber in a top view (a) and in a side one (b). The Zeeman slower beam is depicted as red
dashed line and it is switched off as soon as the atoms enter the science chamber. x and y
MOT beams are retroreflected by static mirrors, while the z one has a movable mirror that
retroreflects the beam during the MOT stage. The mirror is then removed to free the way for
the imaging and DMD beams, impinging on the atom cloud from top and bottom, respectively.
The angle between the IPG and Mephisto beams is 14◦, while the TEM(0,1) beam is collinear to
the horizontal imaging one.

1.4.2 Cooling the atoms to degeneracy

The hot atomic beam exiting the oven needs to be slowed down before entering the science
chamber. To do so, we employ a Zeeman slower [17, 18] that decelerates our atoms from a velocity
of around 800 m/s down to 60 m/s thanks to the interplay between a counterpropagating laser
beam resonant with the D2 transition of the outgoing atoms and an inhomogeneous magnetic
field that keeps the light resonant with the atomic transition as atoms slow down.
The slowed beam is then captured in a Magneto Optical Trap [17, 18] composed by three
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retroreflected laser beams, one for each spatial direction, and a quadrupolar magnetic field
produced by a pair of coils in anti-Helmholtz configuration. The MOT exploits the magnetic
field and the retroreflected laser beams to both cool the atomic sample and trap it in the center
of the quadrupole field. In the MOT stage we trap 109 atoms with a temperature of around 500
µK in 5/6 seconds. The minimum theoretical temperature achievable in a MOT is restricted to
the Doppler temperature (TD = 140µK for 6Li). For most alkali atoms, sub-Doppler cooling
below TD is generally achieved with Sisyphus cooling in optical molasses [17, 18, 31]. However,
in 6Li the standard sub-Doppler mechanism is hindered by the unresolved hyperfine splitting of
the 2P3/2 level. To achieve sub-Doppler cooling, we exploit a scheme based on gray molasses
acting on the D1 transition [20]. Therefore, when the loading in the MOT is completed, we
switch off the MOT lights and field while we switch on the D1 molasses light. With this sub-
Doppler cooling process we are able to lower the temperature of our sample to about 50 µK.
After this gray molasses stage, atoms are loaded into the optical dipole trap for evaporative
cooling. The sample is transferred into the IPG beam where we perform a second stage of gray
molasses and a first evaporation, where we lower the intensity of the beam with an exponential
ramp. After this first ramp, the IPG beam is crossed with the Mephisto so that we have a
crossed-beam dipole trap [21] where we complete our evaporation with another exponential
ramp. At the end of the evaporation our sample is composed by around 105 atoms per spin
state at a temperature of the order of 30 nK. Our gas is trapped in a cigar shaped potential
formed by the two infrared crossed beams.
To optimize the evaporation, we ramp the Feshbach magnetic field to 832 G, on top of the |1〉−|2〉
resonance (see Fig. 1.4), so that the interactions are the highest possible and thermalization is
enhanced. It is worth noting that before ramping up the Feshbach field the atoms are in the zero
field ground state, namely the F = 1/2 hyperfine sublevel of the 2S1/2 manifold, and it is only
when we ramp the Feshbach field that this ground state is split into the |1〉 and |2〉 sublevels.
To produce fermionic superfluids we keep the Feshbach field at 832 G for the whole evaporation
process, and we change it only at the end of the evaporation for varying the |1〉 − |2〉 scattering
length and exploring different interaction regimes. To produce a non-interacting Fermi gas, we
employ a different evaporative protocol that we will describe in section 1.5.

1.4.3 High resolution imaging and manipulation

We extract information on our atomic sample, such as number of atoms, temperature and
density distribution, by means of absorption imaging. By shining resonant light pulses on the
cloud and recording the shadow cast by the atoms on a camera we are able to acquire an image
of our sample. Using two different optical paths, we can take images of our sample both from
the horizontal and vertical directions. In order to focus and magnify the atoms’ image on the
camera, we use a simple telescope in the horizontal direction and a more sophisticated high-
resolution microscope objective in the vertical one.
The horizontal imaging setup is composed by a telescope of two f1 = 150 mm and f2 = 1000
mm lenses, providing a magnification of 6.87. The atoms image is focused on an Andor Ultra
camera, set on the Fast Kinetic Series (FKS) acquisition mode, which allows to take a sequence
of a few images with a short delay time of the order of 200 µs, at the price of using a smaller
portion of the CCD chip [32]. Each camera pixel is a 16 µm × 16 µm square, that, considering
the magnification factor corresponds to a 2.3 µm side square on the atoms. In between the
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horizontal imaging path, we can add a movable imaging setup with a low magnification of 0.5,
that we use for checking the MOT cloud and the efficiency of the IPG loading. For this secondary
horizontal imaging, the light is focused on a Stingray camera by a movable fS = 75 mm lens.

10 μm

(a) (b)

(d)
(c)

10 μm

Figure 1.8: Vertical imaging setup. (a) Optical path of the resonant imaging light. The light
is shone from the top of the chamber and it is focused on the Andor camera with the microscope
objective and a lens. Using a set of two waveplates we tune the polarization of the imaging
beam so that it is fully transmitted through the PBS. (b) Optical path of the DMD light. After
a first telescope, the DMD light is reflected by the PBS towards the objective and the atomic
cloud so that we can produce arbitrarily shaped optical potential. (c) Projection of a double
torus potential on a quasi-2D atomic cloud. (d) Projection of the Florence skyline.

The vertical imaging system is thoroughly described in Ref. [27]. Its main element is a high-
resolution, high numerical aperture, microscope objective custom made by Special Optics. The
microscope objective features the same focal point for both resonant light at 671 nm and blue-
detuned light at 532 nm, so that it can be employed both for imaging the atomic cloud and
projecting DMD-tailored optical potentials on the atomic cloud with a high resolution. The
resolution of this imaging system, defined as the minimum distance between two objects to
appear separated on the imaging plane, is below one micron for both 671 and 532 nm light. The
imaging light is focused on an Andor IXon3 EMCCD camera via a f = 1000 mm lens, resulting
in a total magnification of M = 21.8.
Both the vertical imaging beam and the z-MOT beam are shone from the top of the cell. Since



CHAPTER 1. PRODUCTION AND MANIPULATION OF A 6LI DEG. FERMI GAS 25

the z-MOT beam must be retroreflected, we need to have a mirror in the imaging path, which
will, of course, block the imaging light. To avoid this, we use a motorized movable mirror
that we insert during the MOT stage of each experimental cycle and that we remove after the
MOT loading is completed to clear the path for the other vertical beams (imaging and DMD
potentials).
To image the atomic cloud we use short (4 µs) pulses of high intensity (I ≃ Is) resonant light.
We use an AOM for finely tuning the frequency of the imaging light so that we can be resonant
with the transition from either one Zeeman sublevel or the other and we can selectively image
atoms in the two spin states. From the Lambert-Beer law (see Ref. [27] for details) we are able
to determine the atomic density integrated along the vertical direction as:

n2D(x, y) = − α

σ0
ln

(

Iout
Iin

)

+
α

β

1

σ0

Iin − Iout
Is

(1.28)

where σ0 = 3λ2

2π is the ideal value of the absorption cross section while α and β are parameters
that relate the ideal and effective cross section and saturation intensity respectively. Iin and Iout
are the incident and transmitted intensities that we measure with the fast kinetic acquisition
mode of our cameras. In particular, both from the horizontal and vertical direction, we take
three successive images separated by 200 µs. The first is an image of the atoms’ shade that
allows us to measure Iout, the second is an image of the imaging beam in absence of the atoms,
yielding Iin. The third is a dark, background image that we use to remove any offset in the two
previous images.
As mentioned, the vertical imaging setup is not used only for imaging the atomic sample, but
also for projecting arbitrarily tailored optical potentials on the cloud. To generate the repulsive
potentials we use 532 nm blue-detuned light and we shape its intensity profile using a Vialux V-
7000 High-Speed Module DMD, whose properties and characterization can be found in Ref. [27,
33]. As we will see in more detail in Chapter 3, the DMD is composed by an array (1024×768 for
this model) of tiltable micromirrors that act as a light mask: when light is shone on the DMD,
the spatial intensity profile of the reflected beam depends on the state of each micromirror.
By individually controlling these mirrors, it is possible to shape the light intensity so that the
outgoing beam has the desired intensity profile. To shine such tailored potentials on the atomic
cloud with high resolution we take advantage of the vertical imaging setup. We combine the
green DMD beam and the red imaging on a PBS in such a way that the the imaging light is
transmitted towards the camera while the DMD beam is reflected towards the atomic cloud. This
beam passes through the imaging setup and it is thus demagnified by a factor 21.8. However,
before the beam enters the imaging path we already demagnify it by a factor 2.52 using a two-
lenses telescope. Therefore the total demagnification of the DMD image is 54.99, resulting in a
0.25 µm size of each micromirror in the atomic plane. Thanks to this vertical setup, we are able
to both manipulate and image our atomic sample with very high spatial resolution.

1.5 Production of a non-interacting Fermi gas

The presence of broad Feshbach resonances between the three lowest Zeeman state of 6Li allows
to prepare systems in many different interactions regimes. Between such regimes, there is the
possibility to effectively cancel any interatomic interaction and produce an ideal, non-interacting
Fermi gas. In principle, an ultracold Fermi gas composed by atoms in one state only is really a
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Figure 1.9: Overview of the protocol for producing a non-interacting Fermi gas. (a) Hyperfine
states of 6Li at the working magnetic fields. (b) The evaporation starts with atoms in states |1〉
and |2〉 on top of the |1〉−|2〉 Feshbach resonance (832 G) in order to enhance thermalization. (c)
Using a fast RF source we mix the atoms in the two states so that we have a balanced population
with ∼ 50% atoms in each spin state. (d) We sweep the magnetic field to 585 G where a12 = a13.
Here we transfer atoms from |2〉 to |3〉. (e) Representation of the Adiabatic Rapid Passage on
the Bloch sphere. As the detuning of an external RF drive is swept around resonance, the Bloch
vector follows adiabatically from the ground (|2〉) to the excited (|3〉) state. Image taken from
Ref. [18]. (f) The |2〉 → |3〉 frequency transition is 80 MHz. Through our RF source we are
able to excite atoms from |2〉 to |3〉. (g) Effect of the Rapid Adiabatic Passage on the states’
population. While atoms in state |1〉 are not affected, all the atoms in state |2〉 are successfully
transferred to |3〉. (h) Our |1〉 − |3〉 mixture is evaporated at 300 G. (i) After evaporation we
sweep the magnetic field to 572 G where the a13 Feshbach resonance has a zero-crossing. We
now have a non-interacting Fermi gas composed by atoms in states |1〉 − |3〉.

non-interacting system due to the antisymmetry of the fermionic wavefunction and the suppres-
sion of interactions via l > 0 waves. However, to cool an atomic sample we need interactions
so that the system thermalizes during the evaporative cooling process. Therefore, to produce
a non-interacting Fermi gas we have to prepare the system in two spin states and use Fesh-
bach resonances to cancel the interaction between atoms with different spin. Here we describe
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our experimental protocol to produce such system and how we can measure its properties with
absorption imaging.

1.5.1 Experimental protocol

Since interactions play a fundamental role in enhancing thermalization during evaporative cool-
ing, as we cool down our sample we make extensive use of the different interactions regimes
at our disposal. An overview of all the stages for the preparation of a non-interacting Fermi
gas is given in Fig. 1.9. We start from the usual 832 G |1〉 − |2〉 resonance and we use radio-
frequency (RF) pulses to mix the population of the two states so that we have ∼50% atoms in
each spin state (mixing). Our RF source is provided by a fast circuit that has been developed
in our laboratory [34]. After a brief evaporation at 832 G, we change the Feshbach field before
reaching the pairing temperature in order to avoid the formation of bonds between atoms in
different states. We sweep the magnetic field to about 300 G, where interactions are not strong
enough to enter the superfluid regime. However, as visible in Fig. 1.9, the |1〉 − |3〉 resonance is
much more favorable for the evaporation at such field, presenting a scattering length a13 that is
almost 3 times a12. In order to exploit this resonance, we need to transfer the atoms from |2〉 to
|3〉 before moving to 300 G. Therefore, immediately after the beginning of the evaporation, we
sweep the magnetic field down to 585 G, where a12 ≃ a13 and here we transfer the population
from |2〉 to |3〉 by means of RF pulses. In particular, we employ the Rapid Adiabatic Passage
(RAP) technique to transfer the whole population of |2〉 in the |3〉 state [32]. By sweeping the
detuning between our RF and the |2〉 → |3〉 transition (80 MHz), we are able to adiabatically
transfer atoms from |2〉 to |3〉. This happens because the Bloch vector ~R describing the state of
each atom precedes around the vector ~Ω, whose direction is changed from the south to the north
pole of the Bloch sphere as the detuning is swept around resonance [18, 35]. Once we have a
sample composed by atoms in |1〉 and |3〉, we sweep down the field to 300 G where the rest of
the evaporative process takes place. As the scattering length a13 is much lower at 300 G than on
top of the resonance, the evaporation ramps for the ideal Fermi gas have to be slower than the
ones employed for fermionic superfluids, lasting about 3 s more. At the end of the evaporation,
the Feshbach field is swept to 572 G where a13 = 0 and the |1〉 − |3〉 mixture is non-interacting.
Typically, we can produce up to 105 atoms per spin state at T/TF ≃ 0.1, where TF = EF /kB is
the Fermi temperature of our system.

1.5.2 Thermometry of a Fermi gas

As we have seen, we extract information from the atomic cloud via absorption imaging. By
measuring the light intensity absorbed by our sample we are able (see Eq. 1.28) to determine
the two dimensional atomic density integrated in the imaging direction (vertical/horizontal). We
can then appropriately fit this density profile in order to find the physical quantities of interest.
We consider a non-interacting Fermi gas trapped in a harmonic potential and we assume that
the thermal energy kBT = 1/β is much larger then the quantum mechanical level spacing h̄ωx,y,z

(Thomas-Fermi approximation). The density distribution of the thermalized Fermi gas is then
[4]:

nth(r) =

∫

d3p

(2πh̄)3
f(r,p) = − 1

λ3dB
Li3/2(−eβ(µ−V (r))) (1.29)
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where Lin(z) is the nth-order polylogarithmic function, related to the gamma function and
Riemann zeta function that naturally appear in integrals over the Bose-Einstein and Fermi-
Dirac distributions. The polylogarithmic function smoothly interpolates between the T ≪ TF
regime near the center of the trapping potential and the higher temperature regime of the atoms
in the outer region. Therefore, for very cold Fermi gases, temperature affects only the far wings
of the density distribution. While for thermal clouds above TF the size of the cloud is a direct
measure of temperature, for cold Fermi gases we need to extract the temperature from the shape
of the distribution’s wings.

Figure 1.10: In-situ image of a non interacting Fermi gas trapped in the crossed optical dipole
trap. The image consist of an average over about 10 experimental realizations. We report the
density profile integrated along the x and y directions. Fitting the density with Eq. 1.31 allows
to estimate the temperature of our sample as T/TF = 0.11(1), corresponding to ∼ 50 nK.

In the classical regime at T/TF ≫ 1, the density distribution reduces to the Maxwell-Boltzmann

distribution and the characteristic cloud size is given by the gaussian radius σi =
√

2kBT
mω2

i

. In the

degenerate regime, instead, the cloud size saturates at the Thomas-Fermi radius RFi (see Eq.
1.21). It is thus convenient to define a fit parameter describing the cloud size that interpolates
between the two limits [4]:

R2
i =

2kBT

mω2
i

f(eβµ) −→
{

σi T ≫ TF

RFi T ≪ TF
(1.30)

where f(x) = 1+x
x ln(1 + x). For all temperatures Ri is directly related to the size of the cloud

and it is thus a better fit parameter than σi and RFi. We can fit the density profile of a thermal
non-interacting Fermi gas imaged from the vertical (z ) direction with [4]:

n2D(x, y) = n2D,0Li2

(

− exp
[

βµ− (x2/R2
x + y2/R2

y)f(eβµ)
])

Li2 (−eβµ)
(1.31)
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where n2D,0(1 − x2

R2
Fx

) is the zero-temperature distribution and n2D,0 is the peak density of the

cloud. With this expression we can fit the measured density profile of our cloud and find the
fundamental parameters β and µ describing the properties of our system. Once we know these
values we can find the degeneracy parameter T/TF as [4]:

T̃ /TF =
[

−6Li3

(

−eβµ
)]−1/3

. (1.32)

However, we find that the actual degeneracy parameter T/TF of the cloud is well approximated
by T/TF ≃

√
ξ T̃ /TF [23], where ξ ≃ 0.37 is the universal Bertsch parameter [36]. This method

is particularly robust against fluctuations of the image background, since it relies on a two-
dimensional fitting procedure, and yields a reliable estimation of the cloud temperature.
The number of atoms in the observed spin state can be obtained from the total absorption
recorded in the camera image. The transmission of resonant light for the pixel in position (x, y)
is given by P (x, y) = e−σ0

∫
n3D(x,y,z)dz, where σ0 is the resonant atom-photon cross section for

light absorption and n3D(x, y, z) is the 3D density of the cloud [4]. The number of atoms in
state i is then:

Ni =
A

Mσ0

∑

pixels

− ln(P (x, y)) (1.33)

where A is the area of a pixel and M the optical magnification. Considering the peak optical
density of the cloud n2D,0 and fitting the density profile of our sample we find:

Nfit −→
A

σ0

{

π
3 n2D,0 R̃FxR̃Fy T ≪ TF

π n2D,0 σ̃xσ̃y T ≫ TF
(1.34)

where R̃Fi and σ̃i are the Thomas-Fermi and gaussian radius in the i -direction respectively,
measured in camera pixels.



Chapter 2

Spin transport in fermionic systems

The coupling between the motion of particles and their spin degree of freedom plays a fun-
damental role in defining the transport properties of many materials. In this chapter we will
describe the fundamental features of spin transport in correlated Fermi systems. In the first
part of this chapter we will describe spin transport in solid state materials, introducing the
fields of spintronics and spin caloritronics. In the second part of this chapter we will show how
we can quantum simulate the spin transport properties of different systems in the framework
of ultracold Fermi gases, with particular focus on 6Li atoms with tunable interactions. Finally
we will introduce the idea of spin manipulation using spin-dependent optical potentials and we
will show how this allows to access new physical phenomena and to address open questions
concerning spin transport in highly-correlated Fermi systems.

2.1 Spin transport in electronic materials

The transport properties of solid state materials stem from their internal lattice structure. Vi-
brations of atoms around their equilibrium positions result in heat propagation, while mobile
particles such as electrons and holes can carry electric charge across a metallic material. However,
electrons, and consequently holes, do not carry only charge as they posses another fundamental,
intrinsically quantum, property: spin.
Many of the properties of solid state materials are indeed related to the spin degree of freedom of
the electrons composing them. All magnetic properties arise from the presence of spin-spin cor-
relations and correlations between electrons with opposite spin orientation lead to the formation
of Cooper pairs, the building block of conventional superconductivity [9]. The presence of such
attractive correlations between electrons with opposite spin is also acknowledged as the most
promising theory for describing the properties of high Tc cuprate superconductors [10]. Anti-
ferromagnetic correlations play a fundamental role also when a localized spin impurity interacts
with the surrounding bath. This effect, known as the Kondo effect [8], is responsible for the
increase of the low temperature resistivity of doped metals and for the enhancement of conduc-
tance through quantum dots [37]. Other than in quantum dots, the spin degree of freedom can
affect the electronic transport properties of other low-dimension systems, such as graphene or
two-dimensional magnetic nanostructures [38]. Such coupling between spin and charge currents
in meso- or nanoscopic structures has drawn the attention of the scientific community due to
promising technological applications.

30
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As most spin investigations have been focused on the magnetic properties of matter, until re-
cently charges and spins have been considered separately and little interest has been directed
towards the electronic transport of spin. This spin transport has been somehow overshadowed
by the great interest towards charge currents for their application in charge-based electronic
devices. However, after decades of constant advance, the development of electronic devices with
ever increasing performances seems to be slowing down. Due to the high miniaturization re-
quired by state-of-the-art technologies we are currently observing the breakdown of Moore’s law,
as further decreases in feature size and transistor speed go in parallel with intolerable levels of
ohmic energy dissipation associated with the motion of electrons in conducting circuits [39]. One
way of addressing this issue is to look for a new electronics paradigm, that is to develop circuits
based on the spin degree of freedom of the electron. Either adding the spin degree of freedom
to conventional charge-based electronic devices or using spin alone as information carrier has
the potential advantages of increased data processing speed and decreased electric power con-
sumption. However, the successful incorporation of spin control into electronic devices requires
solving a number of technical issues concerning the injection, manipulation and detection of spin
polarization as well as of spin-polarized currents [11].
Historically, the first theoretical hint at the realization of spin currents was the development
of the so-called two-current model for explaining the unusual behavior of the low temperature
resistance in ferromagnetic metals [40]. In fact, at sufficiently low temperatures electrons with
magnetic moment parallel and antiparallel to the magnetization of a ferromagnet, being the
majority or minority component respectively, do not mix in scattering events. The conductivity
can then be expressed as the sum of two independent and unequal parts for the two different
spin components, so that currents in ferromagnetic materials are spin polarized.
The first experimental demonstration of the coupled manipulation of electrons and spins was
provided by the discovery of the giant magnetoresistance (GMR) in 1988 [13, 14]. GMR is a
quantum mechanical effect observed in the resistance of superlattices composed by alternated
layers of ferromagnetic and non-magnetic metals. In such structures, it is possible to signifi-
cantly change the electrical resistance by acting on the relative orientation of the magnetization
of adjacent ferromagnetic layers. In fact, due to the dependence of electron scattering on spin
orientation, the electrical resistance is much lower for parallel than for antiparallel alignment.
Since the magnetization direction can be controlled, for example, by applying an external mag-
netic field, GMR provided the experimental breakthrough for manipulating electronic currents
through the spin degree of freedom. GMR is at the basis of magnetoresisitve-random-access-
memories (MRAMs) which are non-volatile random-access-memories where data are stored in
magnetic domains so that they can be retained without any applied power.
The discovery of GMR and its subsequent applications triggered the development of a new field
of research and technology, namely spintronics, whose main goal is to understand how to ma-
nipulate the electrons’ spin degree of freedom for the development of new spin-based solid state
quantum devices.

2.1.1 Spintronics

After the discovery of GMR, a great number of spintronics devices have been proposed, where the
spin degree of freedom complements or replaces charge as the information carrier. These devices
combine standard microelectronics with spin-dependent effects that arise from the interaction
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between the spin of the carrier and either the magnetic properties of the material or externally
applied electromagnetic fields.
The paradigmatic spintronics device is the so-called Datta-Das spin field-effect transistor (SFET)
[15]. The structure of the SFET, of which we report a scheme in Fig. 2.1, is analogous to that of
a three terminals field-effect transistor (FET) with a drain, a source and a gate for controlling the
current in the narrow channel connecting drain and source. The gate either allows the current
to flow (ON) or does not (OFF). In usual FETs this control is provided by an applied voltage,
which alters the conductivity of the channel. In the Datta-Das SFET instead, the source and
the drain are ferromagnetic materials and, since a current flowing through a ferromagnet gets
polarized, the electrons injected in the channel by the drain have a well-defined spin orientation
(usually parallel to the transport direction). Electrons are transported ballistically through the
semiconductor channel and their spin is detected when they arrive at the drain. In a simplified
picture, the electron can enter the drain (ON) if its spin points in the same direction of the drain
magnetization, otherwise it is scattered away (OFF). The gate generates an effective magnetic
field arising from the spin-orbit coupling in the semiconductive material, from the confinement
geometry of the transport channel and from the electrostatic potential of the gate. This effective
magnetic field causes the electrons’ spins to precess and, by modifying the gate voltage, it is
possible affect the precession so that the electrons’ spins at the drain will be either parallel or
antiparallel to the magnetization, effectively controlling the current.

Figure 2.1: Scheme of the Datta-Das spin field-effect transistor (SFET). The source (spin
injector) and the drain (spin detector) are ferromagnetic metals or semiconductors, with parallel
magnetic moments. The injected spin-polarized electrons move ballistically along a quasi-one-
dimensional channel formed by a semiconductive material. Electron spins precess around the
effective field Ω, which arises from spin-orbit coupling and which is defined by the structure and
the properties of the channel. The magnitude of Ω is tunable by the gate voltage. If the electron
spin at the drain is parallel to its initial direction (top row), which can happen when e.g. the
precession period is much larger than the traveling time in the channel, then the current is large.
The current is instead the smallest if the spin direction a the drain is reversed (bottom row).
Image is taken from Ref. [12].

The Datta-Das SFET exploits spin-orbit coupling (SOC) in semiconductors for introducing a
spin precession and thus controlling the current flowing in the device. Spin-orbit interactions
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arise from relativistic corrections to the electronic Hamiltonian and result in a coupling between
the spin and the momentum of an electron in an external potential V (r). We can write such
Hamiltonian as [38, 41]:

H(r,p) =
p2

2m
+ V (r) +HSO +HZ (2.1)

where the first two terms account for the electron kinetic energy and the external potential
respectively. The last two terms, instead, are the spin-orbit Hamiltonian HSO and the Zeeman
Hamiltonian HZ and are related to the electron spin s. We can write such terms as:

HSO =
h̄

2m2c2
(∇V (r) × p) · s

HZ = gµB s ·B

(2.2)

where µB is Bohr’s magneton, B is an external magnetic field and g is the Landé g-factor which
has a value of 2 for a free electron but it can vary greatly and even be negative for electrons in
semiconductors [41]. Both the spin-orbit interaction and the Zeeman effect lead to a splitting of
the conduction bands of semiconductor materials into two energy bands, populated by electrons
with opposite spin projection. This energy splitting can be exploited for the manipulation of
electron spins in semiconductor devices.
As the Datta-Das SFET, most of the proposed spintronics devices are based on the SOC instead
than on the Zeeman effect. This is because of the interest in integrating the spin degree of
freedom in existing non magnetic semiconductor devices and manipulating it by purely electrical
means, without external inhomogeneous magnetic fields. Modern day spintronics is mainly
focused on semiconductor materials because doping, gating and heterojunctions can be used to
engineer different material properties and because of the intimate relationship between optical
and transport properties in semiconductors. However, the injection and sustainment of spin
currents in non-magnetic semiconductors is indeed one of the main fundamental and technical
issues that need to be addressed for realizing efficient spintronics devices.
One of the proposed ways for injecting spin currents in semiconductors is through the spin Hall
effect, in which flowing electrons experience orthogonal, spin-dependent forces, analogous to the
magnetic Lorentz force in the conventional Hall effect. However, in the spin Hall effect the forces
have opposite signs for two spin states, due to the spin-orbit interaction resulting in anisotropic
scattering of electrons with different spin orientation. This leads to an accumulation of opposite
spins on opposite sides of the sample so that a transverse spin current arises in response to
a longitudinal charge current, without the need for magnetic materials or externally applied
magnetic fields [41]. An anisotropy of the spin-orbit interaction may arise due to the presence of
impurities (extrinsic spin Hall effect) or from asymmetries in the material itself, such as reduced
dimensionality (intrinsic spin Hall effect) [42]. Both extrinsic [43] and intrinsic [44] spin Hall
effects have been observed in semiconductor materials and the intrinsic spin Hall effect has been
reproduced with a bosonic quantum gas [45].
The spin Hall effect is a viable way of injecting a spin current in a spintronic device. Other
proposed methods for generating polarized out-of-equilibrium spin populations include optical
techniques in which circularly polarized photons transfer their angular momenta to electrons or
electrical spin injection with magnetic electrodes, similarly to the case of the Datta-Das SFET
[12].
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The injection of a spin polarization or current is only one of the technological and fundamental
issues concerning the development of spin-based devices. Other central questions relate to the
loss of such spin orientation, namely spin relaxation, and to the detection of spins in solid state
materials. When we have spin accumulation, that is an out-of-equilibrium spin polarization that
may induce, or be induced by, a spin current, the spin population relaxes back to equilibrium
at a certain rate. Also, spin relaxation phenomena lead to a finite size of the non-equilibrium
spin accumulation. If such accumulation is provided by a local spin injector such as a magnetic
electrode, then its spatial extent will be given by the spin diffusion length, after which the
polarization relaxes back to its equilibrium value.
The two main processes that lead to spin equilibration are spin relaxation and spin dephasing
[12]. Their theoretical and experimental investigation plays a central role in spintronics since only
when the spin polarization is sufficiently long lived (typically a few nanoseconds) the spin degree
of freedom can be used to encode and carry information. This two equilibration processes have
usually different timescales, namely T1 for spin relaxation and T2 for spin dephasing. Considering
not one but an ensemble of electrons, relaxation and dephasing are often referred to the average
value of the electron spin, that is the magnetization M = 〈s〉. The equations describing spin
precession and decay, as well as the diffusion of the magnetization in an applied magnetic field
B(t) = B0ẑ + B1(t), with a longitudinal constant component B0 defining the quantization axis
and a time-dependent transverse component B1, are [12]:

∂Mx,y

∂t
= γ(M×B)x,y −

Mx,y

T2
+Ds∇2Mx,y

∂Mz

∂t
= γ(M×B)z −

Mz −M0
z

T1
+Ds∇2Mz

(2.3)

where γ = µB g/h̄ is the electron gyromagnetic ration, Ds is the spin diffusion coefficient and
M0

z = χB0 is the thermal equilibrium magnetization with χ denoting the system’s static sus-
ceptibility. These phenomenological equations are equivalent to the optical Bloch equations de-
scribing the dynamics of a two-state quantum system interacting with electromagnetic radiation.
Expressions for the relaxation times T1 and T2 can be obtained from a microscopic description
of the electronic motion [12, 41]. From a phenomenological point of view, T1 describes the relax-
ation rate of the longitudinal magnetization due to phenomena such as spin-flipping in scattering
events between electrons and impurities or phonons. T2 is instead related to the dephasing of
an ensemble of transverse electron spins, initially precessing in phase around the longitudinal
field and losing their phase due to fluctuations of the precessing frequencies. Typically, these
relaxation times are of comparable size and are usually considered as a single relaxation time
τs of the order of 1 ns. Instead the single spin decoherence time τsc is usually shorter than τs,
and can be as small as a few picoseconds. While τs is relevant for spin transport applications
τsc sets the timescale for solid state spin-based quantum computing so that understanding the
microscopic mechanisms of spin decoherence and how to inhibit them may help in the develop-
ment of spin-based quantum computers.
The last fundamental challenge of manipulating spins in solid state materials is spin detec-
tion. Spin detection typically relies on sensing changes in signals caused by the presence of
non-equilibrium spin populations or currents in the system. This is usually done by either a fer-
romagnetic drain such as that of the Datta-Das transistor or by optical means. In the latter case
it is customary to use spin light-emitting diodes (LEDs) where, due to spin-polarized carriers,
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the emitted light is circularly polarized, thus allowing to detect the spin polarization. However,
as for spin injection, many issues remain to be solved before achieving efficient detection of the
spin degree of freedom of solid state electrons with high sensitivity.
Despite the many challenges, the great interest in the realization of spin-based devices has led
to a fast development of the field of spintronics. Being born from the investigation of ferro-
magnetic properties of metals, spintronics has now extended to the study of spin transport in
many promising materials from semi- [41] to superconductors [46], including interfaces between
different materials [47], nanostructures and low dimensional materials such as graphene [38]. All
these research areas focusing on spin transport in different materials are already branching into
new subfields of spintronics. Further, even other research fields are emerging from the investi-
gation of spin manipulation in solid state systems, including researches on spin-based quantum
computing and on the coupled transport of heat and spin currents, namely spin caloritronics
[39].

2.1.2 Spin caloritronics

While spintronics investigates the coupled transport of electronic spin and charge in condensed-
matter structures and devices, the field of spin caloritronics focuses on the interaction of spins
with heat currents. The interest in the coupled transport of spin and heat is motivated by newly
discovered physical effects that hold promises of applications in the development of thermoelec-
tric devices [39].
Thermoelectric effects arise from the coupling of heat and charge currents and are already widely
diffused in both in scientific and commercial areas. The two most well-known thermoelectric ef-
fects are the development of an electromotive force in conducting materials due to a temperature
gradient, namely the Seebeck effect, and its reverse process of a heat flow originating from an
electric current that is the Peltier effect. While heat is always generated by flowing currents due
to dissipative Joule heating, the Seebeck and Peltier effects are thermodinamically reversible
processes which can be exploited in many devices, including thermocouples for temperature
measuring and generators that convert waste heat into additional electrical power. However,
despite decades of research into thermoelectric materials and applications, the efficiency of such
devices has remained low. One promising approach for increasing the efficiency and versatility
of thermoelectric devices involves exploiting the spin of the electron, in addition to its charge
and heat-transport properties.
Since heat currents also interact with spin currents, the investigation of out-of-equilibrium phe-
nomena related to spin, charge and energy transport in magnetic structures and devices has led
to the emergence of spin caloritronics. This new field combines conventional thermoelectron-
ics, that does not consider spin transport, and conventional spintronics, which instead does not
consider heat transport. This research in the coupling of heat and spin transport in magnetic
materials emerged at first as a branch of spintronics but it is recently acquiring its own inde-
pendent visibility. Further, spin calorinotrics does, in a sense, run parallel to spintronics in the
race for developing new sustainable devices with improved computational power, as one of the
main issues with further miniaturization of electronic components is excessive ohmic dissipation.
Spintronics proposes to deal with this by encoding information in the spin instead of charge of
electrons while spin caloritronics may offer ways of either containing this unwanted heating or
exploiting it as waste heat.
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Since the electrons involved in thermoelectric effects are indeed spin-1/2 particles, spin-dependent
Peltier and Seebeck effects are expected to arise from spin currents or to generate them respec-
tively. The microscopic description of thermoelectric effects stems from the thermal broadening
of the Fermi-Dirac distribution (Eq. 1.15) in presence of a temperature gradient. As temper-
ature is increased the step-like profile of the Fermi-Dirac distribution around the Fermi energy
(EF ) gets smoothed, as more electrons have sufficient thermal energy to occupy states above the
Fermi energy. Thus, the hot electrons above EF diffuse from the low-temperature to the high
temperature regions of the conductive materials. Since holes below the Fermi energy flow in the
opposite direction, a net charge current is obtained whenever the electron and hole flows are
somehow different [39]. Including the spin degree of freedom, we can describe an electric current
as the sum of two currents corresponding to the two spin states of the electron (two-current
model [40]). If the energy of the two spin states is split by spin-orbit coupling or by external
magnetic fields, it is possible that the temperature-induced current described above will indeed
be a spin current.
Considering two spin states(| ↑〉, | ↓〉), we can phenomenologically write the spin current
Js = J↑ − J↓ and the spin-heat current Qs = Q↑ −Q↓ as [48]:

(

Js

Qs

)

= σs

(

1 Ss
TSs

ks
σs

(1 + Zs T )

)(

Fs

−∇Ts

)

(2.4)

where Fs = F↑−F↓ is the spin force, Ts = T↑−T↓ is the spin temperature, T is the equilibrium
temperature, σs is the spin conductivity, ks is the spin-heat conductivity and Zs = σsS

2
s/ks is

a parameter describing the efficiency of the spin thermoelectric effect. Ss is the spin-dependent
Seebeck coefficient which relates the spin chemical potential µs = µ↑ − µ↓ and the spin tem-
perature gradient: ∇µs = Ss∇Ts. The spin-dependent Peltier coefficient is related to the
spin-dependent Seebeck coefficient by the Onsager reciprocity relations connecting reciprocal
flow of thermodynamic and can be written as TSs. Notably, the above expression Eq. 2.4 is not
strictly valid in bulk solid state materials where spin-dependent temperatures Ts and heat flows
Qs are often quenched by interspin and electron-phonon scattering, so that Ts and Qs should
be substituted by their spin-insensitive counterparts T and Q. However, for nanoscopic or very
cold systems, including quantum gases [48–50], such scattering processes can be suppressed and
a spin-dependent temperature may arise.
Both the spin-dependent Seebeck and Peltier effects have been experimentally observed in solid
state magnetic|non-magnetic interfaces and in nanostructures [39]. Further, other spin-heat
phenomena are currently under investigation in ferromagnetic materials where the effects may
originate from sources other than conduction electrons. This is the case of the spin-Seebeck
effect (not to be confused with the aforementioned spin-dependent Seebeck effect) where heat
currents induce collective thermal excitations of the magnetic order parameter, namely spin
waves [51]. This phenomenon has been unexpectedly observed in magnetic materials and the
hunt for detecting its Onsager reciprocal, the spin Peltier effect, as well as thermoelectric rela-
tivistic effects such as a thermal spin Hall is currently on [39].
Despite the many open questions, the promise of useful applications such as highly localized
thermopower generation or nanoscale refrigeration have drawn a growing interest towards spin
caloritronics phenomena. In this context, where many predicted effects have yet to be observed,
while others have popped out unexpectedly, the alternative approach of quantum simulating
spin-heat phenomena with ultracold quantum gases may offer a valuable contribution to this



CHAPTER 2. SPIN TRANSPORT IN FERMIONIC SYSTEMS 37

emergent field of physics.

2.2 Spin transport in ultracold Fermi gases

In the last decades, the investigation of spin transport in solid state materials has drawn consider-
able attention due to both technological and fundamental reasons. As we have seen, understand-
ing the fundamental mechanisms favouring or obstaculating the out-of-equilibrium manipulation
of the spin degree of freedom in solid state materials may contribute to the development of the
next generation of spintronics and spin caloritronics devices. Further, many of the most inter-
esting and exotic systems across all fields of physics display strong quantum correlation which
are often related to the spin degree of freedom. Describing such spin correlations may help shed
light on the fundamental many-body phenomena underlying the macroscopic properties of such
strongly correlated systems both in and out-of-equilibrium.
However, the accurate spin manipulation and detection required for investigating such funda-
mental phenomena in solid state materials are rather difficult to achieve. As we have seen, the
spin of electrons in condensed matter systems is not an easily accessible degree of freedom and
the injection and detection of spin currents in solid state materials are research area themselves.
Moreover, solid state systems are actually rather complex environments where the presence of
scatterers such as impurities, phonons or other electrons leads to fast spin relaxation rates and
short coherence times, often being in the nanoseconds range or below. Though this typical
timescales can be tuned by working at lower temperatures or in particular geometries, they rep-
resent an evident obstacle to the investigation of quantum phenomena underlying the properties
of solid state materials.
Even though the complexity of such systems is indeed a reason behind the great interest towards
them, it also leads to difficulties in their theoretical description. Since it is nearly impossible to
include all the processes involved in out-of-equilibrium materials in a single theory, it is often
necessary to work with an increasing-complexity approach and include only the most relevant
phenomena in mean-field theories, adding other effects as successive corrections. While this
simplifying procedure can be done in theoretical works, it is impossible to exclude certain phe-
nomena from real-life systems where all processes may be strongly intertwined. Other theories,
such as Landau’s Fermi liquid theory, tend to treat many-body phenomena by appropriately
renormalizing the parameters of an ensemble of non-interacting quasiparticles. However, there
are systems where correlations and interactions are so strong that Fermi liquid and mean-field
descriptions fail. This often prevents direct comparison between first-principles theories and
experiments, thus forestalling a full understanding of many complex systems.
In this context, an increasing interest is being directed towards the investigation of spin trans-
port in ultracold Fermi gases. In fact, ultracold atoms can be exploited to quantum simulate
a wide range of quantum systems and are particularly well suited for the investigation of spin
transport phenomena. The Zeeman sublevels of alkali atoms provide a simple way of encoding
the spin degree of freedom in an atomic system. In fact, the interaction between magnetic fields,
which are ubiquitous in ultracold atoms experiments, and the atomic angular momentum results
in a splitting of the electronic ground state into different Zeeman sublevels labeled by different
spin quantum numbers. This is the case of the |1〉, |2〉, |3〉 states of 6Li but the same is true for
other commonly used alkali atoms such as rubidium or potassium. These states have a different
nuclear spin projection along the quantization axis, usually defined by the external magnetic
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field, and can thus be used to investigate spin related phenomena. In particular, considering
fermionic isotopes, ensembles of atoms in different Zeeman states are used to quantum simulate
electrons in different spin states.
Encoding the spin degree of freedom in the internal energy levels of atoms results in rather easy
spin manipulation and detection. When the energy difference between atoms in different spin
states is large compared to the linewidth of the optical transition used for imaging them, it is
possible to selectively image the two spin states. In this way, the detection of spins in a mixture
of atoms in different spin states can be achieved by simply imaging the different components
independently. This is the case of the Zeeman states of 6Li, whose energy splitting is of the
order of 80 MHz, compared to a 6 MHz linewidth of the D2 transition used for imaging them.
In non-alkali atomic species, where the Zeeman splitting can be to low to be optically resolved,
it is still possible to detect spins by mapping the spin states into either different states with a
much higher, and thus resolvable, energy difference or by spatially separating the spin states
with a spin-dependent optical force [52].
Beside detection, atomic spin states in alkali atoms can be easily manipulated with electromag-
netic radiation in the radiofrequency (RF) range. As we have seen, it is possible to use RF pulses
to drive transitions between different spin states to produce either balanced or spin-imbalanced
mixtures. Radiofrequency transitions can also be exploited as a spectroscopic tool to investigate
the energy spectra of spin states in different experimental conditions [4]. We will see that it is
also possible to use laser light to either selectively and locally remove spin components from an
atomic sample or to spatially manipulate them using spin-dependent or spin-selective optical
potentials. As we have seen in Chapter 1, Feshbach resonances are another fundamental tool
for the manipulation of spin in atomic systems as they can be exploited to tune the interactions
between atoms in different spin states, thus allowing to investigate spin transport in regimes
where spin states interact either very weakly or very strongly [3].

2.2.1 Spin transport across different interaction regimes

Due to its light mass and broad Feshbach resonances, 6Li is one of the best suited atomic iso-
topes for investigating fermionic spin transport in different interaction regimes. The interaction
strength in fermionic quantum gases is usually parameterized by 1/kFa, where kF =

√

2mEF /h̄
is the Fermi momentum (considering an homogeneous system for simplicity) and a is the s-wave
scattering length that can be tuned with Feshbach resonances. As we have seen in the previous
chapter, we can produce both weakly (|1/kFa| > 1) and strongly (|1/kFa| ≃ 1) interacting sys-
tems, with either attractive (1/kFa < 0) or repulsive interactions(1/kFa > 0). To discriminate
between weak and strong interactions, we take into account kF since, in a degenerate Fermi
system, kF sets the typical interparticle spacing. Therefore, we call weakly interacting a system
where the interparticle spacing is smaller than the scattering length and strongly interacting
a system where the two length scales become comparable. In the extreme case of diverging
scattering length 1/kFa → 0, the interactions are the highest possible and the system is in the
UFG regime. This regime has attracted particular interest since the divergence of the scattering
length leaves kF as the only remaining length scale and the Fermi energy EF as the only energy
scale. Thus, the properties of a UFG do not depend on the nature of its constituents and an
atomic gas at unitarity shares universal properties with other strongly interacting systems such
as neutron stars and quark-gluon plasma [53].



CHAPTER 2. SPIN TRANSPORT IN FERMIONIC SYSTEMS 39

For weak interaction strength the system is well described by Landau’s Fermi liquid theory where
the ensemble of interacting fermions is described as a non-interacting Fermi gas with the ”bare”
particles substituted by quasiparticles. The Fermi liquid picture successfully describes many of
the most common fermionic systems, including electrons in a normal metal, liquid helium-3 and
nucleons inside the atomic nucleus. However, we are now aware of many systems where this
picture breaks down. Interacting fermions in one dimension [54], heavy fermions and high-Tc

superconductors near their quantum critical point [55] and other strongly correlated materials
are all systems that cannot be described by simple Fermi liquid behavior. The power of ultra-
cold quantum gases is that, by tuning the interaction strength, it is possible to purposefully
move away from the Fermi liquid regime and investigate the properties of all the aforementioned
systems.
Many spin transport experiments in ultracold atomic gases are performed by spatially separat-
ing atoms in the two spin components, hereafter called | ↑〉, | ↓〉, and observing spin currents
develop as the two components diffuse in the trapping potential [56, 57]. This diffusion can be
captured by the magnetization continuity equation [58]:

∂M

∂t
+
∂Js,i

∂xi
= M× ωL (2.5)

where M(r, t) is the local magnetization, Js(r, t) is the spin current and ωL is the Larmor
frequency of the magnetization precession. In fact, the magnetization is a Bloch vector in spin
space and may evolve due to either a spin current or to an external torque. This torque may
lead to spin rotation and to the precession of the spin current around the magnetization axis,
in the Legget-Rice effect [58]. While this phenomenon can indeed be investigated with ultracold
Fermi gases [59], in this work we focus only on the longitudinal components of the spin current
and neglect the rotational term in Eq. 2.5.
Considering the even simpler picture of a one dimensional system we can write [56]:

Js = −Ds
∂(n↑ − n↓)

∂x
(2.6)

where n↑,↓ are the densities of atoms in the two spin states and Ds is the spin diffusion coeffi-
cient.
Spin diffusivity does indeed depend on both temperature and scattering length. At high temper-
atures T ≫ TF , where TF is the Fermi temperature, the system can be considered classical and
Ds will be determined by the kinetic theory of gases. When the gas is degenerate and weakly
interacting, instead, it can be described by Fermi liquid theory. In either case we can write [58]:

Ds = v lmfp = v2 τD (2.7)

where v is the root-mean-square (quasi)particle velocity, lmfp is the mean free path and τD is a
characteristic diffusion time. When spin is efficiently transported through the system with large
mean free path between collisions, the spin diffusion coefficient is maximum. This is the case of
both the high-temperature and Fermi liquid limits. In the classical limit, the high-temperature

diffusion coefficient has the universal behavior Ds ∝
(

T
TF

)3/2
so that diffusivity increases with

increasing temperature [56, 58]. On the other hand, the diffusivity of an unpolarized Fermi
liquid at T ≪ TF increases with decreasing temperature as Ds ∝ T−2. This is due to fermionic
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excitations near the Fermi surface becoming long lived quasiparticles, leading to longer τD.
A very different behavior of Ds is observed in strongly interacting systems near the superfluid
transition. Here the mean free path between collisions is lmfp ≃ 1/kF and the root-mean-
square velocity is of the order of the Fermi velocity v ≃ vF = h̄kF /m. Therefore, in a strongly
interacting system diffusivity has a minimum value Ds ≃ h̄/m, where m is the particles’ mass
[56, 58]. This is an example of a transport bound in which quantum mechanical scattering
imposes a lower bound on a transport coefficient, setting a quantum limit of diffusion that
depends only on h̄ and the particles’ mass. This bound arises due to the strong interactions
breaking the quasiparticle picture at unitarity, where interactions are so strong that no long lived
quasiparticle survives and transport is suppressed by frequent atomic collisions. In such case,
the transport properties of the system do not depend on the system itself, but have a universal
behavior shared by all strongly interacting Fermi systems. For this reason, the investigation
of spin transport in strongly interacting Fermi gases can help shed light on the spin transport
properties of other strongly correlated fermionic systems across all fields of physics.
To the spin diffusivity minimum at strong interactions corresponds a maximum of the spin drag
coefficient Γsd [56–58]. This coefficient is defined as the rate of momentum transfer between
atoms in opposite spin states and it is therefore related to the collision rate. Typically, Γsd is
measured, along with the spin diffusion coefficient, by observing the relative motion of two spin
imbalanced clouds moving towards one another (spin-dipole mode). Considering the relative
position of the centers of mass of the two spin states d(t) = 〈x↑(t) − x↓(t)〉, its motion inside a
trapping potential, such as that provided by a crossed optical dipole trap, follows the equation
of a damped harmonic oscilator [58]:

d̈(t) + Γsd ḋ(t) + ω2
x d(t) = 0 (2.8)

where ωx is the trap frequency along the considered direction. This expression shows that spin
drag results in an effective viscosity damping the spin current. The microscopic origin of this
drag is related to atoms in opposite spin states colliding and transferring momentum between
each other, thus suppressing the spin current in case of counter propagating spin states. Another
consequence of spin drag is that when atoms in only one spin state are moving, the collisions with
atoms in the other state should set the latter into motion [60]. This results in a suppression of the
spin current as both spin states will eventually move together. As expected, the spin drag effect
is stronger in presence of stronger interactions and Γsd has indeed an opposite behavior compared
to the spin diffusivity having a maximum in correspondence of the diffusivity minimum.

The last fundamental quantity relevant to spin transport is the spin susceptibility χs =
∂(n↑−n↓)
∂(µ↑−µ↓)

.

This quantity describes the spin response to an infinitesimal chemical potential difference µ↑−µ↓
between the two spin states [56]. In non-degenerate systems the susceptibility follows the Curie
law χs ∝ 1/T , while it is described by Fermi liquid theory at lower temperatures. As T is
lowered below the the critical temperature for the superfluid transition, χs is expected to drop
as bound singlet pairs may prevent the development of a spin current.
In fact, since superfluidity arises from pairs of bound fermions in opposite spin states, spin
currents are expected to be strongly suppressed in superfluids, as atoms with opposite spin
follow one another resulting in a suppression of spin transport. This is expected to result in
negligible spin diffusivity and the highest spin drag coefficient between all possible regimes.
From this reasoning emerges that it is not the superfluid phase itself that is spin-insulating,
rather it is the presence of bound fermionic pairs that prevents the developing of a spin current.



CHAPTER 2. SPIN TRANSPORT IN FERMIONIC SYSTEMS 41

Therefore, investigating spin transport in a paired system could provide information on the pairs
themselves. While the spin-insulating behavior of the superfluid regime has been observed in
the spin transport properties of a quantum point contact [61, 62] many questions, including
the presence of transport bounds and the stability of the superfluid and of the pairing to spin-
dependent perturbations remain open.
Investigating spin transport in a paired system by trying to inject a spin current, which can be
achieved by setting in motion only one spin state, may help to further probe its spin insulator
properties. The injection or non-injection of spin currents can be used to probe the stability
of the superfluid and of the pair-binding across different regimes. Other ways of probing the
stability of the superfluid include temperature, scattering length and, focusing on the spin degree
of freedom, population imbalance [4]. Considering the BCS side, a balanced gas below the critical
temperature is unstable towards Cooper pairing for arbitrarily weak attractive interactions and
the pairs condense as soon as they are formed, resulting in superfluid behavior. Instead, in
an imbalanced case the superfluid will become normal for too weak interactions as the spin
imbalance suppresses pairing. This effect gets stronger as the imbalance is increased, eventually
leading to a normal fluid behavior at all interaction regimes for a highly polarized Fermi gas,
where pairing is strongly suppressed. Therefore, by imbalancing the relative population of
the two spin states of an attractive Fermi gas it should be possible to tune its spin transport
properties from a perfect spin insulator to a very good spin conductor.
Spin transport and the effect of the spin degree of freedom on transport properties can indeed be
investigated in both paired and unpaired systems, exploiting temperature, population imbalance
and Feshbach resonances to access different regimes within a single physical system.

2.3 Spin transport with spin-dependent optical potentials

As we have seen, by spatially separating atoms in opposite spin states and then letting them
propagate in the trapping potential it is possible to investigate spin diffusion in different inter-
action regimes. The two spin populations are often segregated using a magnetic field gradient
that induces opposite motion to the two spin states. This requires working at a magnetic field
for which one spin state is attracted by a low magnetic field (low field seeker) whereas the other
is attracted by a high magnetic field (high field seeker). The behavior of atomic states in inho-
mogeneous magnetic fields is determined by the slope of their energy E(B) (see Fig. 2.2 (a)):
states with a positive slope have lower energy for lower magnetic fields and are low field seekers
while states with a positive slope are high field seekers. In the case of 6Li, but this is true for
all alkali atoms, the Paschen-Back regime, where the experimentally relevant spin states share
the same slope, is attained at rather low magnetic fields, so that separating spin states with a
magnetic field gradient requires working at fields of the order of 1-50 G [56, 57]. As shown in
Fig. 2.2, such values are indeed very far from the Feshbach resonances located at 700-800 G
so that it is not possible to tune the interaction strength as the two spin states are separated.
To investigate spin currents in strongly interacting systems, the spin states are thus segregated
into spin imbalanced reservoirs, possibly adding an optical barrier between to prevent any over-
lap [57], and only then interactions are ramped up as the two spin states are let free to move
towards each other. This allows to access fundamental spin transport properties, such as the
spin diffusivity and the collisional spin drag coefficient. However, this approach does have some
limitations.
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Figure 2.2: Comparison beyween the magnetic field dependence of Zeeman energy levels and
scattering lengths. (a) Low field behavior of 6Li Zeeman states. A positive slope indicates a
low field seeker state, whereas a negative one indicates an high field seeker. The three lowest
sublevels have different character for low (¡ 50 G) magnetic fields. For fields higher than 100 G
they have the same negative slope and they cannot be differentially manipulated with magnetic
fields. Figure from [19]. (b) Feshbach resonances of relevant 6Li hyperfine states. The magnetic
fields necessary to tune the interaction strength are much higher than those where relevant
Zeeman states can be addressed differentially. Data are taken from Ref. [28]

First, spin currents are generated by the free motion of spin states into the trapping potential.
This does not allow to have complete control on the spin current itself as the velocity of the
atoms is set by the trapping frequency ωx. While this frequency can indeed be tuned, doing so
results in changing the properties of the trapping potential, which in turn affect the properties
of the whole atomic sample thus intertwining many different parameters.
Second, this approach is not well-suited for studying spin imbalanced systems. The two spin
states can be either completely segregated, thus having two perfectly polarized reservoirs as in
[56, 57], or they can be partially separated so that the reservoirs have a certain degree of spin
imbalance [61]. The latter case induces a chemical potential difference for the spin states in the
two reservoirs and this chemical potential difference drives the spin current. However, while in
both cases the two reservoirs are indeed spin imbalanced, the whole system is not. Moreover,
investigating transport in a spin imbalanced system with this segregation technique may be
rather complicated. In fact, separating the minority and majority components of an imbalanced
mixture results in two reservoirs with very different properties. One reservoir will contain many
more atoms than the other so that the reservoirs will have either different densities or different
spatial extents. Extracting information on spin transport from the relative harmonic motion of
such different atomic clouds may indeed be non-ideal.
Moreover, separating the two spin states poses some limitations to the investigation of spin
currents in fermionic superfluids. The spin-insulating nature of the superfluid state has indeed
been observed as a decrease of spin conductance between terminals [61]. This is due to atoms
in different spin states coming from the two reservoirs forming singlet pairs which do not carry
any spin current. The inverse phenomena, that is the breaking of pairs due to a spin-dependent
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force is instead difficult to observe in the aforementioned experiments.
Therefore, to extend the range of spin transport phenomena that can be investigated in the
ultracold atoms framework new tools for the manipulation of the atomic spin degree of freedom
need to be developed. The most promising approach to achieve better control on spin manipu-
lation is offered by spin-dependent optical potentials. These potentials allow to use laser light
to differentially manipulate atomic states, providing numerous advantages over the traditional
magnetic-based spin segregation.
By tuning the laser frequency it is possible to introduce not only opposite forces for the two spin
states but also spin-selective effects. A spin-selective optical potential is a potential that is zero
for one state and not zero for the other, allowing to manipulate atoms in one spin state without
affecting the other:

spin-dependent potentials

{

V↓ = −V↑ opposite potentials

V↓(↑) = 0, V↑(↓) 6= 0 spin-selective potential.
(2.9)

where V↓(↑) is the optical potential applied to state | ↓ (↑)〉. Such spin-dependent optical poten-
tials allow to combine the versatility of atomic manipulation through optical potentials with a
differential effect on the two spin states.
One of the greatest advantages of spin-dependent optical potentials is the decoupling between
magnetic field and spin manipulation. As we have seen, at the high magnetic fields near a Fesh-
bach resonance, the relevant spin states are both high field seekers. Therefore, it is not possible
to induce spin-dependent forces with magnetic field gradients and spin states need to be seg-
regated at low field before ramping up the magnetic field. Instead, using laser light to induce
relative motion between the spin states allows to avoid the low field segregating process. This
not only simplifies the experimental procedure, but also allows to tune the interaction strength
before, after or as the spin currents are developing thanks to the decoupling between magnetic
field and spin manipulation.
Moreover, generating a spin current with an optical potential gives access to a much higher
degree of control on the properties of the current itself, compared to simply letting the spin
states move in the trapping potential. In fact, tuning the intensity or the shape of the laser
beam allows to give higher or lower velocities to the atoms, thus controlling the magnitude of the
induced current. As we will see in more detail in section 4.4, by giving different shapes to a laser
beam it is also possible to imprint currents in systems with many different geometries. These
atomic currents can mimic charge currents in solid state materials and the quantum simulation
of electronic circuits with atomic circuits has led to the emergence of the field of atomtronics

[7], which is one of the most active research areas in the quantum gases community. Imprinting
an atomic current with a spin-dependent potential allows to give opposite velocities to atoms
in different spin states, whereas a spin-selective potential imprints a velocity to only one of two
spin states. In both cases the resulting current is indeed a spin current, as the spin degree of
freedom is transported by the moving atoms. Using spin-dependent optical potentials it is there-
fore possible to extend the field atomtronics to the quantum simulation of spintronics devices.
Combining optical potentials with high resolution optical elements, allows to realize local spin-
dependent perturbations that address only some areas of the atomic sample, opening up the
possibility of introducing spin-dependent elements such as barriers or obstacles. Further, a local
spin-dependent laser beam can be used to introduce a local spin-imbalance in the atomic sample,
that is a spin or magnetic impurity. This can be achieved by removing one spin component from
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the trap with a resonant light pulse. However, the same local polarization can be achieved by
a spin-dependent Gaussian potential that attracts atoms in one state and repels atoms in the
other as proposed in [63]. The resulting spin impurity is a spin polarized droplet usually referred
to as a ferron [63, 64]. Spin-dependent optical potentials allow to introduce and investigate such
impurities in ultracold Fermi gases at all interaction regimes. In particular, ferrons are expected
to arise even in the superfluid regime, where atomic pairs can be broken by the spin-dependent
optical potential. It is however necessary to take into account that the energy required to break
a pair may indeed be sufficient to ultimately destroy superfluidity itself and that, due to the
near-resonant light usually employed to realize spin-dependent potentials, the heating effect of
the laser beam may result in unacceptable levels of thermal excitations [63].
A sufficiently strong spin-dependent perturbation may indeed affect the spin transport proper-
ties of a fermionic superfluid or, more generally, of a paired system. As we have seen, a paired
system has vanishing spin susceptibility, thus being a spin insulator. However, an optical po-
tential that has an opposite sign for the particles composing the pairs may indeed break them,
leading to an increase of spin conductivity. The pairs broken in this way may in principle dif-
fer from those broken by thermal excitations, and spin-dependent optical potentials may open
up the possibility of realizing a Cooper pair splitter [65, 66]. In this way it may be possible
to quantum simulate the crossed Andreev reflection process, that is the reverse process of the
formation of a Cooper pair.
The energy required to break a fermionic pair does indeed depend on the nature of the pair itself,
being the lowest in the BCS side and increasing towards the molecular BEC regime. A spin-
dependent optical potential may provide an alternative way to more traditional RF spectroscopy
[4] to probe the pairing energy across different interaction regimes. A spin-selective potential,
instead, can be used to test the spin-insulating nature of the superfluid by imprinting a velocity
to only one spin state and observing the unaddressed state follow as a consequence of pairing. As
the presence of fermionic pairs results in a spin insulating character, the investigation of the spin
transport properties of a Fermi gas in the pseudogap regime may help shed light on the actual
presence of preformed, non superfluid, pairs. Combining measurements of pair binding energy
with measurements of spin conductivity may help investigate the spin transport properties of a
fermionic spin mixture as a function of both temperature and interaction strength [67].
Other than offering advantages over typical spin transport experiments, optical potentials allow
to investigate spin drag phenomena with unprecedented control over length and timescales. As
we have seen, a spin current in a strongly interacting system is damped by collisions between
atoms in opposite spin states, leading to the phenomenon of collisional spin drag. This effect
may add to pairing in giving a velocity to the unaddressed spin component, thus complicating
the interpretation of experimental data. However, while collisional spin drag is a dissipative
process, pairing should transform a spin current into an unpolarized current without significant
dissipation so that it should be possible to discriminate between the two phenomena. Moreover,
collisional spin drag is expected to take place over relatively long timescales, thus investigating
the dragging effect at short timescales (fast spin drag [68]) allows to exclude this dissipative
effect. We report intuitive sketches of the described phenomena concerning spin transport in
different regimes in Fig. 2.3.
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Figure 2.3: Spin transport in a two-components Fermi mixture. (a) Collisional spin drag.
Imprinting a velocity v0 to one state with a spin-selective potential leads to collisions with the
other component. This results in transferring the velocity vcoll.drag to the unaddressed spin state
and in a damping of the spin current. (b) Fast spin drag in an unpaired systems. On short
timescales the drag phenomenon is non dissipative and it is driven by correlations between the
two spin states. (c) Spin drag in a paired system. Since a paired system is a spin insulator,
giving a velocity to one spin state results in the other following with comparable speed. (d) Pair
breaking due to spin-dependent perturbations. By pulling atoms in opposite directions with a
sufficiently strong spin-dependent optical potential it should be possible to break a fermionic
pair and restore spin conductivity.

2.3.1 Short timescales accessibility: fast spin drag and AC spin currents

Compared to experiments based on spin transport between reservoirs, spin-dependent optical
potentials allow to access a wider range of timescales. Thanks to the fast timing properties
of the tools used to manipulate laser light, the most diffused being Acousto Optic Modulators
(AOMs), the time dependence of the spin-dependent perturbations produced through optical
potential can be controlled with microseconds resolution. It is therefore possible to produce laser
pulses and shine the spin-dependent optical potentials on the atomic cloud for very short times
in order to investigate the short time response of the system. Further, by tuning and shaping the
light intensity it is possible to realize time-dependent optical potentials and generate periodic
AC spin currents which have yet to be observed in ultracold atomic systems [69].
As we have seen, putting in motion one spin state with a spin-selective potential affects the other
state that is thus put into motion as well. Such spin drag effect can have a dissipative nature
and arise from collisions between atoms in the two spin states (Fig. 2.3 (a)). This is the origin
of spin diffusion and the collisional spin drag coefficient as been measured in both weakly and
strongly interacting Fermi gases [56, 57]. However, this collisional effect is expected to develop
on a timescale that is comparable to the low energy excitations of the system, corresponding
to the frequencies of the trapping potential. While spin currents induced by separating spin
components are inevitably developed on the typical timescales of the trapping potential, the
employment of spin-dependent optical potentials allows to induce spin currents on much shorter
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timescales. This gives access to a short time regime where a different spin drag effect is expected
to develop, namely fast spin drag [68].
Fast spin drag is a collisionless and non dissipative effect driven by correlations between atoms
in different spin states. Such correlations may arise from current-dependent interactions, where
the momentum of one state has an effect on the momentum of the other. This is the case of the
Andreev-Bashkin effect, which is a beyond mean-field phenomenon taking place in mixtures of
interacting superfluids [68]. A similar effect is also expected to arise in normal Fermi systems
described by Landau’s Fermi liquid theory. The dynamic properties of such systems can be
described by the Landau parameters F1 and G1, accounting for the in-phase and out-of-phase
interaction effects respectively. In a weakly interacting Fermi gas these parameters can be
computed with perturbation theory [68], while they cannot be theoretically determined for
strongly interacting systems where the Fermi liquid theory is expected to fail. If we induce a
velocity v↑ to state | ↑〉, as can be done a with spin-selective optical potential, the velocity v↓
acquired by state | ↓〉 is predicted by perturbation theory to be [68]:

v↓ =
〈ndrag/n〉

〈1/2 − ndrag/n〉
v↑

ndrag =
F1 −G1

3 + F1

n

4

(2.10)

where n is the atomic density. For a weakly interacting 3D system (kfa = −0.5) the predicted
effect is rather small as the ratio v↓/v↑ is of the order of 4%. However, the effect is expected
to increase in lower dimensions and in presence of stronger interactions. Also, investigating
deviations from the predicted behavior at higher interaction strengths may help shed light on
the applicability of Fermi liquid theory to strongly interacting systems. Further, fast spin
drag measurements can be used to probe the effective mass of polaronic quasiparticles in spin
imbalanced systems. These are particular fermionic quasiparticles where atoms in a minority
component get dressed by interactions with the majority atoms so that the resulting impurity
is a so-called polaron quasiparticle [70, 71]. Inducing a velocity to the majority atoms in | ↑〉
results in the polaron being dragged with velocity [68]:

v↓ =
〈1 −m↓/m

∗
↓〉

〈m↑/m
∗
↑〉

v↑ ≃
〈

1 − m↓

m∗
↓

〉

v↑ (2.11)

where m↑,↓ and m∗
↑,↓ are the mass and the effective mass of the particles in the two spin states.

Therefore, the polaron effective mass m∗
↓ can be measured by investigating its short time response

to a spin-selective perturbation to the majority component.
Beside fast spin drag, the rapid manipulation of laser light allows to introduce time and spin-
dependent optical potentials which can be used to investigate frequency-resolved spin transport,
as proposed in [69]. This will give access to the AC optical spin conductivity σS defined as:

〈J̃S,α(ω)〉 = σSα,β(ω)f̃β(ω) (2.12)

where α and β denote Cartesian components while J̃S,α(ω) and f̃β(ω) are the Fourier transforms
of the spin current JS,α(t) and the time-dependent perturbation fβ(t) respectively [69]. The AC
spin conductivity is expected to depend non trivially on ω and to have a different behavior in
different interaction regimes as the excitation spectra may or may not be gapped due to the
presence of fermionic pairing.
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2.3.2 Coupling heat and spin transport

Finally, spin-dependent optical potentials may be used to quantum simulate the two fundamental
spin caloritronics processes, namely the spin-dependent Seebeck and Peltier effects. The question
on whether it is possible to quantum simulate spin caloritronics phenomena with ultracold atoms
has been addressed in the case of both Bose and Fermi gases [48–50] and the answer seems to
be affirmative.
Looking at Eq. 2.4, we see that to introduce a spin current Js and a spin-heat current Qs

it is necessary to have a spin-dependent force Fs and a spin-temperature gradient ∇Ts. Both
these elements can be realized with spin-dependent optical potentials. By using these potentials
to induce a spin current in an atomic sample it should be possible to investigate the spin-
dependent Peltier effect, that is the generation of a spin-heat current. This spin-heat current
could be detected by looking at differences between heat currents carried by the two spin states.
On the other hand, to investigate the spin-dependent Seebeck effect it is necessary to induce a
gradient in the spin-temperature and look for the generation of a spin current. As we already
mentioned, the observation of spin currents in ultracold atomic gases is easily achieved by looking
at the relative position of the centers of mass of the two spin states. The generation of a spin-
temperature gradient, instead, may prove rather complicated. Nonetheless it should be possible
to realize it with a spin-selective optical potential that can be employed to heat one side of the
atomic cloud in a spin-selective way. Heating only part of the atomic cloud, or shaping the
intensity profile of the laser beam, allows to achieve a temperature gradient, while the spin-
selectivity of the heating process ensures that the temperature of the two spin states is indeed
different.
Many questions remain open on the feasibility of such spin caloritronics measurements as the
detection of the spin-heat current generated in the spin-dependent Peltier effect can indeed be
non trivial. Further, the sustainability of a temperature difference between the two spin states
cannot be taken for granted due to thermalization processes. In fact, as the externally applied
spin-dependent heating is turned off, the spin-dependent temperature will ultimately equilibrate
due to interspin scattering. A possible way of stabilizing the spin-temperature may be to use
a Feshbach resonance to tune the p-wave scattering length so that intraspin scattering, which
is forbidden in the case of s-wave interactions, is much more favoured then interspin scattering
[48]. This may help in preventing thermalization between the two spin components but requires
an usual tuning of the p-wave scattering length which could lead to other experimental issues.
To quantify the stability of a spin-temperature it is possible to compute the spin-heat relaxation
time and length, that are the typical time and length scales over which the spin-temperature
accumulation is lost. Computing such quantities for different temperatures and interaction
strengths seems to confirm the stability of the spin-temperature accumulation for ultracold
atomic gases due to a divergence of the relaxation parameters at degenerate temperatures [48,
50]. Further, depending on the interspin scattering lengths, the spin-heat relaxation length in
fermionic systems can be of the order millimeters, which is well within experimental resolution
being actually larger than the typical sample size. These theoretical predictions seem to confirm
that the realization of spin caloritronics with ultracold Fermi gases is indeed feasible and that
spin-dependent optical potentials could be the most suited tools for the task.



Chapter 3

Realization of tailored

spin-dependent optical potentials

In this chapter we present the physical origin of spin-dependent optical potentials and the setup
we have realized for their implementation on the main experimental apparatus. First we show
how spin-dependent and spin-selective optical potentials arise from the polarizabilities of the
hyperfine 6Li Zeeman levels and how we have to go beyond the two-level approximation for
accurately computing such polarizabilities. Further, we show how we realize such potentials
by tuning the frequency of a laser source between the 6Li D-lines and by controlling the light
polarization. Since the laser frequency is a fundamental parameter for the realization of spin-
dependent optical potentials, we describe the offset-lock setup we implemented for tuning and
stabilizing the frequency of our laser source. In the last part of this chapter we present the
experimental setup we designed and built for tailoring the spin-dependent optical potentials
using a Digital Micromirror Device and for shining them on our atomic cloud, taking advantage
of the horizontal imaging optical path.

3.1 Origin of spin-dependent optical potentials

As we have seen in Chapter 1, a two-level atom exposed to non-resonant light feels an optical
potential whose sign and magnitude are related to the intensity of the light and to the detuning
between the light frequency and the considered atomic transition. In the light shifts picture [16,
21], this potential can be interpreted as a dressing of the atomic levels by the electromagnetic
field. This dressing shifts the energy of the levels so that the atoms see an energy landscape that
depends on the presence and on the intensity of the external field, as if under the action of an
external potential. For a given light frequency, different internal states get different light shifts,
so that the optical potential acting on an atom depends by the atom’s internal state. Therefore,
in principle, every light frequency has a differential effects on atoms in different states.
In many cases, these differential effects can either be neglected or they can be a troublesome
feature which needs to be coped with. However, exploiting this effect for purposely engineering
state-dependent optical potentials opens up the possibility of using laser light for differentially
manipulating atoms in different internal states. In our experiment we work with atoms in two
of the three lowest 6Li hyperfine Zeeman sublevels (|1〉, |2〉, |3〉) which have an energy spacing

48
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of the order of 80 MHz. For trapping and manipulating these states in our experiments we
usually use far-detuned laser light (infrared or green) so that the whole 6Li internal structure
is not resolved and can be completely neglected. In particular, we can neglect the fine splitting
of the D-line and consider lithium as a two-level atom with just one available transition from
the 2S ground state to the 2P excited state. Since the state-dependent effect arises due to the
laser light having different detunings from the transitions available from each state and since
we work with ≃ 108 MHz detunings compared to an energy difference of ≃ 80 MHz between
the internal states, the differential light shift between such state can be completely negligible.
There are, however, situations in which these effects are not negligible and can actually be a
troublesome experimental issue. Usually this happens in experiments working with mixtures
of atoms in very different states, such as mixtures of different atomic species or of atoms in
the ground and in metastable excited states. In such cases, the energy difference between the
states composing the system can be much more significant than our 80 MHz splitting and state
dependent light shifts are actually the norm. This can be a problem when it is necessary to act
on the different components in the same way for cooling and trapping them together. However,
this difficulty can be overcome by exploiting so-called magic wavelengths, that are particular
wavelengths that allow to have the same light shifts for different atomic states. On the other
hand, once the system is sufficiently cold and trapped in the desired potential, manipulating the
components in a differential way opens up many interesting possibilities such as addressing one
component without affecting the other. The wavelengths resulting in light shifts that affect one
atomic state significantly more than another are usually called tune-out wavelengths and are a
very promising tool for selectively trapping or manipulating components in a two-components
mixture. State-selective optical potentials result from ideal tune-out wavelengths where the light
shift of one state is zero while that of the other is not, thus resulting in an optical potential that
addresses only one of the two components. As already mentioned, these special wavelengths
are usually exploited in experiments working with systems where the components have very
different transition energies and the light needed to realize such selective potentials is usually
quite off-resonance (≃ nm) for all the components involved.
Conversely, the components of our 6Li system are atoms in different hyperfine levels and the
energy difference between transitions to the excited state starting from one level or the other
are indeed small, thus suppressing the effect of differential light shifts for nearly all wavelengths.
However, we will show that there are particular configurations of light frequency and polarization
that lead to the emergence of state-dependent optical potentials even for our 6Li hyperfine states.
In particular, we will show that to resolve the atomic internal structure and thus realize state-
dependent effects it is necessary to use near-detuned laser light.

3.1.1 Multi-level light shifts of 6Li Zeeman states

Since our system is composed by atoms in different hyperfine spin states, their energy difference
is indeed small and to induce differential light shifts on them we need to work with near-detuned
laser light. In this particular condition, the two-level approximation breaks down and we have
to compute the multi-level light shifts of our hyperfine states considering all the relevant atomic
transitions. While this is indeed more complicated than considering only two atomic levels,
it is the presence of more than one available excited state that gives rise to the strong state-
dependency of our optical potentials.
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Starting from Eq. 1.12 and relaxing both the two-level and the rotating wave approximation we
can find the most general expression for the AC Stark shift of a level |g〉 [16]:

∆Eg(ω, r) = −
∑

e

2ωeg|〈g|ǫ̂ · d|e〉|2
4h̄
(

ω2
eg − ω2

) |E0(r)|2 (3.1)

where the summation is over all possible excited states |e〉, ωeg is the transition frequency
between |g〉 and |e〉, d is the dipole operator while E0 and ω are the field amplitude and
frequency respectively. To eliminate the linear dependency of the light shift on the squared laser
amplitude we can introduce the state’s complex polarizability αg(ω), whose real part determines
the light shift.

∆Eg(ω, r) = Re [αg(ω)] |E0(r)|2

Re [αg(ω)] = −
∑

e

2ωeg|〈g|ǫ̂ · d|e〉|2
4h̄
(

ω2
eg − ω2

) .
(3.2)

Therefore, for computing the polarizabilities of our hyperfine states we need to know the energy of
all the possible excited states and dipole matrix elements 〈g|ǫ̂ ·d|j〉 associated to each transition.
Our light source for realizing the spin-dependent potentials is a 671 nm laser, which is near-
detuned with respect to both the D1 and D2 lines but it is far-detuned from the next transition
(the UV 2S-3P transition at 323 nm) so that we can neglect this last transition and consider
only the available states in the 2P1/2 and 2P3/2 manifolds.
Since all our experiments heavily rely on the 6Li Feshbach resonances, both our ground state
and all the available excited states are strongly affected by the external Feshbach fields which
are typically in the range 300− 1000 G. Therefore, the fine structure energy levels of our atoms
are shifted by an Hamiltonian that includes both the hyperfine coupling and the interaction
with the external magnetic field:

H =
µB
h̄

(gJ Ĵ ·B + gI Î ·B) +
ahf

h̄2
Ĵ · Î (3.3)

where gJ and gI are the electronic and nuclear gyromagnetic factors, and ahf is the hyperfine
coupling energy. While gI = −0.0004476540 [19] is not affected by the atomic state, gJ and ahf
depend on the electron orbital momentum L and total angular momentum J which characterize
each level manifold. We report the values of gJ and ahf for the relevant states in Table 3.1 [19].
Both the excited states have a very small hyperfine energy splitting so that we can completely

2S 2P1/2 2P3/2

gJ 2.0023010 0.6668 1.335

ahf 152.1368407 MHz 17.386 MHz -1.155 MHz

Table 3.1: Values of the electronic gyromagnetic factor gJ and hyperfine coupling energy ahf
for the experimentally relevant states of 6Li. Values are taken from Ref. [19].

neglect their hyperfine structure for all significant magnetic fields. Further, being the nuclear
gyromagnetic factor much smaller than the electronic one we can neglect also the nucleus-
magnetic field interaction term of Hamiltonian 3.3. Therefore, the eigenvalues that give the
energy of the states in the 2P1/2 and 2P3/2 manifolds at high fields can be approximated by:

∆EZ ≃ µB
h̄
gJmJB (3.4)
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where mJ is the projection of the total angular momentum along the quantization axis. From
this expression it is evident that the external magnetic field lifts the mJ degeneracy of the 2P1/2

and 2P3/2 states that are thus splitted into two and four levels respectively. We report the
Zeeman shifts of the 2P1/2 and 2P3/2 manifolds in Fig. 3.1 (a)-(b).
Due to a stronger hyperfine coupling, the diagonalization of the Hamiltonian for the 2S ground
state is more complicated and it is usually done numerically. We report its eigenvalues as a
function of the external field in Fig. 3.1 (c). These values are computed with a Wolfram Math-
ematica code available in Ref. [19]. While it is customary to solve the hyperfine Hamiltonian

(a) (b)

(c)

Figure 3.1: Zeeman states of 6Li in strong magnetic fields. (a) Zeeman shift of the 2P1/2 man-
ifold. The zero-field state is split in two Zeeman subleves labeled by their mJ quantum number.
(b) Zeeman shift of the 2P3/2 manifold. (c) Zeeman levels of the ground state manifold. Here
the stronger hyperfine coupling causes a non negligible shift between states with the same mJ .
This results in a splitting into six levels labeled in order of increasing energy. The experimentally
relevant states are the three with the lowest energy, namely |1〉, |2〉 and |3〉. Data in (a) and
(b) are computed analytically, data in (c) are obtained from a numerical diagonalization of the
Hamiltonian with a Wolfram Mathematica code available in Ref. [19].

numerically, when either J = 1/2 or I = 1/2 the eigenvalues have an analytical expression given
by the Breit-Rabi formula [16]. Since the ground state of 6Li has J = 1/2, the Hamiltonian
can be analytically diagonalized and its eigenstates can be expressed as linear combinations
of |J = 1/2,mJ ,mI〉 states [19, 72, 73]. The resulting eigenstates are six energy levels which
we label |1, 2, 3, 4, 5, 6〉 in increasing energy order. From an experimental point of view we can
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consider only the three lowest energy states which we can write in the |mJ ,mI〉 basis as:

|1〉 = sin θ+|1/2, 0〉 − cos θ+| − 1/2, 1〉
|2〉 = sin θ−|1/2,−1〉 − cos θ−| − 1/2, 0〉

|3〉 = | − 1/2,−1〉
(3.5)

where:
sin θ± = 1/

√

1 + (Z± +R±)2/2

R± =
√

(Z±)2 + 2

Z± =
gI + gJ
ahf

µBB ± 1/2

cos θ± =

√

1 − sin2 θ±.

(3.6)

With the exception of |3〉, which is a pure |mJ = 1/2〉 state, all these levels are expressed as
linear combinations of states with different quantum numbers. For all significant magnetic fields
the energy spacing between these Zeeman levels is around 80 MHz so that the difference between
|1〉 and |3〉 is 160 MHz. Knowing the zero field energies of the D1 and D2 transitions and having
computed the Zeeman and hyperfine shifts of the involved levels we can easily determine all the
transition frequencies ωge in the summation of Eq. 3.2.
To compute the multi-level polarizability of each state we also need to determine the dipole
matrix elements 〈g|ǫ̂ ·d|e〉 between each ground state and each excited state. Since all our levels
can be labeled as |J,mJ〉, we can use the Wigner-Eckart theorem to write [16] :

〈J,mJ |ǫ̂ · d|J ′,m′
J〉 = 〈J ||ǫ̂ · d||J ′〉〈J,mJ |J ′,m′

J ; 1, q〉

= 〈J ||ǫ̂ · d||J ′〉(−1)J
′−J+m′

J
−mJ

√

2J + 1

2J ′ + 1
〈J ′,m′

J |J,mJ ; 1,−q〉
(3.7)

where 〈J ||ǫ̂·d||J ′〉 is the reduced matrix element of the |J〉 → |J ′〉 transition, 〈J ′,m′
J |J,mJ ; 1,−q〉

is a Clebsch-Gordan coefficient and q = 0,±1 for π or σ± polarized light respectively. Decom-
posing the matrix element in this way allows to decouple the radial dependence, taken over by
the reduced matrix element, and the orientation dependence of the dipole matrix element, which
appears as a Clebsch-Gordan coefficient. We can express these coefficients through the Wigner
3-j symbols as [16]:

〈J ′,m′
J |J,mJ ; 1,−q〉 = (−1)J−1+m′

J

√
2J ′ + 1

(

1 J ′ J
q m′

J −mJ

)

(3.8)

where the term in parenthesis is the Wigner3-j symbol.
Since all the considered excited states belong to either the 2P1/2 or 2P3/2 manifolds, there are
only two possible values for the reduced matrix element 〈J ||ǫ̂ · d||J ′〉. These can be calculated
by explicitly overlapping the radial part of the atomic wavefunctions, however a much easier
way to obtain them is through the spontaneous decay rate from the |J ′〉 to the |J〉 level, which
are known to good precision:

ΓJ ′,J =
ω3
0

3πǫ0h̄c3
2J + 1

2J ′ + 1
|〈J ||ǫ̂ · d||J ′〉|2. (3.9)
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Combining the previous expressions and computing the reduced dipole matrix elements from
the linedwith of the D1 and D2 transitions (ΓD1

= ΓD2
= 2π 5.8724 MHz) allows to obtain the

final expression for our dipole matrix elements [74]:

〈J,mJ |ǫ̂ · d|J ′,m′
J〉 = (−1)J

′−1−mJ
√

2J + 1

(

1 J ′ J
q m′

J −mJ

)

〈J ||ǫ̂ · d|J ′〉 (3.10)

Knowing the energy and the matrix elements of all possible transitions we can compute the
multi-level polarizability of each 6Li Zeeman state for all magnetic fields and for all possible
light polarization.

3.1.2 Spin-dependent and spin-selective optical potentials

We compute the real part of the polarizability α(ω) of the |1〉, |2〉 and |3〉 states using expression
3.2. We report a comparison between such polarizabilities for the relevant state mixtures (|1〉 −
|2〉, |1〉 − |3〉) in Fig. 3.2, computing them for different light polarization at fixed magnetic
field (572 G). The atomic polarizabilities present resonances at the frequencies corresponding
to the D-lines of lithium, appropriately shifted by the hyperfine coupling and Zeeman shift.
Furthermore, the |1〉 and |2〉 polarizabilities display other resonant frequencies at wavelengths
slightly smaller than the D2 line, corresponding to additional transitions to excited states that are
accessible thanks to their |mJ = 1/2〉 component. On the other hand, |3〉 is a pure |mJ = −1/2〉
state and it does not have any available transition at such frequencies, resulting in a much lower
polarizability. This frequencies, which are resonant for |1〉 and |2〉 but not for |3〉, could in
principle be used in a |1〉 − |3〉 mixture to generate strongly spin-dependent perturbations, as
proposed in Ref. [73].
Another frequency range displaying strongly spin-dependent polarizabilities correspond to the
region between the D2 transitions of the two spin states. For such frequencies, the light will be
red-detuned for the state with the highest transition energy (state |1〉) and blue detuned for the
other state (either |2〉 or |3〉), resulting in light shifts with opposite sign for the two spin-states.
By finely tuning the laser frequency in this region we can find a so-called anti-magic wavelength,
that is a wavelength for which the two states have a equal and opposite polarizabilities (see Fig.
3.4 (a)).
A particularly appealing region is that corresponding to frequencies between the D1 and D2

lines. Here, the contributions of the two transitions add up resulting in zero-crossings of the
multi-level polarizability. In fact, light with frequency ν, where νD1

< ν < νD2
, is blue-detuned

with respect to the D1 transition and red-detuned with respect to the D2. Therefore the two
atomic transitions yield oppositely-signed light-shifts which, for a particular value of ν, have also
the same magnitude. When this happens the light shifts related to the two transitions cancel out
yielding a zero crossing of the polarizability, which can be exploited to realize a spin-selective
optical potential (see Fig. 3.4 (b)).
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Figure 3.2: Polarizabilities of the three lowest Zeeman states of 6Li at 572 G for different
light polarization. Polarizabilities are computed using Eq. 3.2 and are plotted as a function
of the detuning ∆ν from the zero field D2 transition (lower x-axis) and of the light wavelength
(upper x-axis). We report the D1 and D2 wavelengths as dashed red lines. (a) and (b) are
the polarizabilities of states |1〉 − |2〉 and |1〉 − |3〉 for σ− polarized light. (c) and (d) are
the polarizabilities of states |1〉 − |2〉 and |1〉 − |3〉 for π polarized light. (a) and (b) are the
polarizabilities of states |1〉−|2〉 and |1〉−|3〉 for σ+ polarized light. Polarizabilities are reported

in atomic units, where 1 a.u. = 1.64877727436×10−41 C2m2

J2 .
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When deciding which are the most suited frequencies for generating spin-dependent optical
potentials we need to also take into account the probability of photon absorption. As mentioned
in Chapter 1, each time a photon is absorbed and spontaneously re-emitted the atom recoils in
a random direction, resulting in an heating of the sample or in losses due to atoms escaping the
optical confinement whenever their temperature reaches a sufficient fraction of the trap depth.
To quantify the scattering rate of photons by our atoms we can, analogously to what we did for
the light shifts, generalize expression 1.7 to the case of many excited levels:

Γsc,i(ω, r) =
∑

j

Ω2
ji(r)/Γ

1 + 2Ω2
ji(r)/Γ2 + 4δ2/Γ2

(3.11)

where Ωji(r) = 〈i|ǫ̂·d|j〉E0(r)
h̄ is the Rabi frequency for the |i〉 → |j〉 transition and Γ = 2π 5.8724

MHz is the linewidth of both the D1 and D2 transitions. We report the computed scattering
rates for our Zeeman levels at 572 G and I = 0.1 ,W/cm2 for different light polarization in
Fig. 3.3. The resonances corresponding to the transitions from the |mJ = 1/2〉 components
of states |1〉 and |2〉 are clearly visible as peaks in the scattering rates on the right shoulder of
the D2 resonance. Therefore, while those frequencies provide strongly spin-dependent polariz-
abilities, they are not ideal for the generation of spin-dependet optical potentials as they lead
to high photon absorption and strong heating of the sample. Nonetheless, such frequencies can
indeed be exploited for producing spin-selective dissipative perturbations in a |1〉 − |3〉 mixture
by strongly heating the spin component in state |1〉 while having only a mild effect on atoms
in |3〉. Unfortunately, this selective heating cannot be applied to |1〉 − |2〉 mixtures since both
these states present resonances related to the mixing of |mJ = 1/2〉 components.
The requirement of engineering non-dissipative perturbations also prevents us from exploiting
the high spin-dependency of the polarizability for frequencies between the D2 transitions of the
two spin states. In fact, these near-resonant frequencies come, again, with the downside of
strong dissipation due to high photon absorption. Therefore, while having large and strongly
state-dependent polarizabilities, these frequencies are not suited for the implementation of spin-
dependent optical potentials.
Instead, the most appealing frequencies for the realization of such potentials are those between
the D1 and D2 lines, as these are the frequencies giving spin-dependent polarizabilities which
are the farthest from the atomic resonances. In Fig. 3.4 we report a comparison between the
polarizabilities and scattering rates for near-resonant light (i.e. light that is almost resonant
with the D2 transition) and for light with frequency between the D1 and D2 atomic lines. As
already mentioned, while using near-resonant light results in much larger polarizabilities and
light shifts, it comes at the cost of much larger photon absorption. Conversely, finely tuning
the light frequency between the two atomic resonances allows to achieve state-dependent po-
larizabilities with a much smaller scattering rate. While the smaller size of the polarizabilities
results in smaller light shifts, their size can be easily increased by increasing the light intensity.
This inevitably leads to larger photon absorption as well, however, being a few GHz detuned
from the transitions, the scattering rate remains reasonably low even increasing the light inten-
sity. In general, when evaluating the scattering rate for a given light frequency it is not the
absolute value of the detuning that is relevant, but rather the ratio between the detuning and
the linewidth of the atomic transition Γ. Therefore, whenever we say that a few GHz detuning
results in a low scattering rate we are always implicitly comparing this detuning to the 5.8 MHz
linewidth of both the D-lines of 6Li. In the previous comparison of the scattering rates for
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Figure 3.3: Scattering rate of the three lowest Zeeman states of 6Li at 572 G for different
light polarization. Scattering rates are computed using Eq. 3.11 and are plotted as a function
of the detuning ∆ν from the zero field D2 transition (lower x-axis) and of the light wavelength
(upper x-axis). We report the D1 and D2 wavelengths as dashed red lines. (a), (b) and (c) are
computed for σ−, π and σ+ polarization respectively. For all plots the light intensity is I = 0.1
mW/cm2, corresponding to a saturation parameter s = I/Is = 0.01 for the D1 line and s = 0.04
for the D2. Values for the saturation intensity of the 6Li lines can be found in Ref. [19].

near-resonant light and for a few GHz detuned light we are actually comparing a detuning of
∼ 15 Γ to one of ∼ 103 Γ.
Another very appealing perspective of the polarizabilities’ spectra for frequencies between the
two lines of lithium is the presence of the zero-crossing itself, which opens up the possibility
of engineering spin-selective optical potentials. Setting the wavelength of our laser source to
the value where the polarizability of one state is zero (tune-out wavelength) allows to produce
a state-selective optical potential that affects only the state that has a non-zero polarizability.
Such selective potential is an ideal tool for manipulating the spin degree of freedom in our sample
in a controlled way since it allows to address only one spin component in our mixture. More-
over, by tuning the light wavelength between the zero crossings of the two states it is possible
to find an anti-magic wavelength that results in opposite light-shifts for the two spin states, as
in the near-resonant case. Therefore, tuning the light frequency in the range between the two
zero crossings allows to produce optical potentials that smoothly change from being selective
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(a) (b)

Figure 3.4: State-dependent polarizabilities (top) and scattering rates (bottom) for the |1〉
and |3〉 Zeeman states. Data are plotted as a function of the detuning ∆ν from the zero field
D2 transition (lower x-axis) and of the light wavelength (upper x-axis). Light that is almost
resonant with the D2 transition results in large state dependent polarizabilities (a, top) at the
cost of high scattering rates (a, bottom). Frequencies between the D1 and D2 lines are more
detuned from the transitions and result in smaller polarizabilities (b, top) and scattering rates
(b, bottom) while retaining their state-dependent character. Therefore, these frequencies are
more suited for the realization of state-dependent optical potentials. All data are computed for
π-polarized light at 572 G. The light intensity for computing the scattering rates is arbitrarily
set at I = 0.1 mW/cm2.

for one state to being selective for the other, passing for a wavelength where they are opposite
for the two spin states. While in this region the real part of the polarizability clearly depends
on the light frequency and on the considered state, the imaginary part, related to the photon
absorption probability and scattering rate, is effectively the same for all the spin states and it is
nearly independent from the light frequency. This is a desirable feature since it allows to tune
the laser frequency to change the character of the optical potential without having any incidence
on its dissipative effects.
For all these reasons, we elect this frequency range between the two resonances to be our working
region for the generation of spin-dependent optical potential, while we use near-resonant light
to engineer spin-selective dissipative perturbations. Such effects are not the main focus of our
work, but they are interesting nonetheless and we will show that, beside tailored spin-dependent
and spin-selective optical potentials, our experimental setup is capable of producing local spin-
selective dissipative perturbations as well.
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Discussing the origin of the spin-selective optical potentials we have focused on computing the
multi-level polarizabilities at a 572 G fixed magnetic field because this value corresponds to a
zero crossing of the |1〉 − |3〉 scattering length a13 (see Fig. 1.9) and it is the magnetic field we
employ for producing the non-interacting Fermi gas over which we test our potentials. However,
for investigating more interesting phenomena it is necessary to introduce interactions between
the two spin components by changing the external magnetic field. Due to the Zeeman effect,
changing the magnetic field affects the energies of the atomic transitions and the frequencies
needed to generate the spin-dependent optical potentials. However, assuming a linear relation
between the energy shift and the external magnetic field for simplicity, we expect a linear coef-
ficient of less than 1 MHz/G for the shift of the zero crossings in presence of an external field.
Therefore, a few hundred Gauss span results in less than 1 GHz shift in the frequency necessary
for realizing the spin-dependent potentials. As we will see in the following section, this shift can
be easily achieved by our frequency-locking setup, so that we are able to set our light frequency
to the desired values for all the relevant magnetic fields.
As a final remark, it is worth to highlight the role of the light polarization in determining the
shape and the features of the atomic polarizabilities. When computing the multi-level polariz-
ability of the Zeeman states, the contribution of each transition is weighted by the corresponding
dipole matrix element which strongly depends on the light polarization. In particular, to differ-
ent light polarization correspond different dipole-allowed or prohibited transitions as it is evident
in the polarizability of state |3〉 for σ−-polarized light. For this polarization there is no allowed
transition from |3〉 to any of the excited states of the D1 manifold (see Figs. 3.2, 3.3).Therefore,
these states do not contribute to the polarizability and state |3〉 does not have any zero crossing
in the considered frequency range. This makes working with σ−-polarized light unsuitable for
the generation of spin-dependent optical potentials in a |1〉 − |3〉 mixture. On the other hand
both π and σ+-polarized light allows to generate spin-dependent and spin-selective potentials for
both |1〉−|2〉 and |1〉−|3〉 mixtures, even though the relevant frequencies for the two polarization
states are a few GHz different.

3.2 Laser locking

As we have seen in the previous section, a key parameter for realizing spin-dependent optical
potentials is the frequency of the laser light used to generate them. Therefore, it is crucial to
use a monochromatic laser source and to tune and stabilize its frequency as reliably as possible.
For these reasons, we implement an offset-lock setup based on a Phase-Locked Loop (PLL)
circuit that allows us to reliably set and lock the frequency of our laser. The PLL circuit reads
the frequency difference between our laser source and a locked reference laser. It compares
this frequency difference to an externally provided offset signal and acts on our laser to set the
detuning between our laser an the reference equal to the provided offset via a feedback loop.
As laser source for the spin-dependent potentials we use a commercial 671 nm diode laser
(Toptica D.L. Pro) which is amplified by an external home-made tapered amplifier [75]. The
reference for locking the frequency of our laser is provided by a beam derived from the D2 laser
of the main experimental apparatus, which is locked to the |F = 3/2〉 → |F ′ = 5/2〉 hyperfine
transition of the 6Li D2 line via Saturated Absorption Spectroscopy (SAS). However, due to
the presence of a 140 MHz double-pass Acousto Optic Modulator (AOM) in the lock path, the
frequency of this reference laser is 280 MHz red-detuned with respect to the atomic transition.
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We report a scheme of the frequencies involved in the lock setup in Fig. 3.5.

Figure 3.5: Frequency scheme of the lock setup. The D2 reference laser is red-detuned com-
pared to the atomic line by a -140 MHz double pass AOM. The laser source that we use for
realizing spin-dependent optical potentials is locked to a target offset from the reference laser.
Before impinging on the atomic cloud the spin-dependent beam is frequency shifted by -640
MHz through a -320 MHz double pass AOM. ∆ν is the final detuning between the light used
for the spin-dependent optical potentials and the D2 line.

To compare the frequency of our source to the D2 reference we superimpose two beams coming
from the two lasers and we detect the combined light with a fast photodiode. The signal of this
photodiode is then sent to the PLL, which acts as a feedback loop: it reads the beat note between
the two frequencies, compares it to the externally provided frequency offset and outputs an error
signal proportional to the phase difference between them. This output signal is amplified and
sent to our laser driver which tunes the laser frequency in order to compensate for the error,
thus allowing to set and stabilize the frequency of our laser by changing the target offset from
the D2 reference.

3.2.1 Phase-locked-loop scheme

The PLL circuit is based on a XOR gate which works as a phase detector and generates an
output error signal that represents the phase difference between two input signals. In our case,
one of the input signals is the beat note between our laser and the D2 reference while the other
is provided by a programmable frequency generator whose frequency is set at the target offset
value for the frequency difference between the two lasers. The XOR gate output is zero when the
two input signals are completely in phase, while it gets larger the more they are out of phase.
Thus, the phase detector produces an output error signal proportional to the instantaneous
phase difference between the inputs. This logic error signal is converted in an amplitude signal
through a low-pass filter placed after the phase-detector. This filter includes a capacitor that
gets charged when the error signal is high while it discharges when it is low. Therefore, a large
phase difference between the signals generates a large voltage on the capacitor, i.e. a large
output signal from the phase detector. This signal is sent to the driver of our laser, which acts
on the diode injection current in order to reduce the phase difference between the input signals.
A change in diode current results in a change in temperature of the active medium inside the
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laser, which affects its index of refraction and the cavity’s optical length. Therefore, by acting
on the injection current of our laser we are able to finely tune the frequency of our laser and to
stabilize it to a desired detuning from the D2 reference. We report a simple scheme of the PLL
circuit in Fig. 3.6.

Δν

νspinνD2

Offset reference
XOR

R
C

Error signal

νspin

671 nm laser

Phase Lock Loop 

Circuit

Fast Photodiode

Figure 3.6: Phase Lock Loop circuit. The PLL reads as input the beat note signal (∆ν)
between our 671 nm laser source (νspin) and a laser locked to the 6Li D2 line (νD2

). The circuit
also read a reference signal with frequency equal to the target offset. Using a XOR gate as a
phase detector and a low pass filter it outputs an error signal that acts on the diode current of
our laser to set the beat note signal equal to the offset reference.

3.2.2 Implementation of the offset-lock setup

In order to set and stabilize the frequency of our laser source using the described PLL-based
offset-lock we implement an experimental setup on a dedicated optical table. We report an
optical scheme and a picture of our setup in Fig. 3.7.
We use a polarizing beam splitter (PBS) to split the laser beam coming from our source into two
paths, a main path that is carried to the main experimental table and shone on the atomic cloud
and a secondary path that we use for locking the laser frequency. Through a set of λ/4 − λ/2
waveplates we tune the intensity ratio between the main and the secondary path to be around
90:10. The main path, carrying most of the power (∼ 35 mW), passes through a double pass -320
MHz AOM which provides a -640 MHz shift. This AOM allows to control the beam intensity
and could in principle be used to finely tune the light frequency. However, we never use it to this
purpose as the degree of control on the frequency provided by our offset-lock is satisfactory for
our needs. On the other hand, we use this AOM to produce short light pulses by turning on and
off its radiofrequency injection. After the AOM, the polarization of the main beam is stabilized
by a set of λ/4 − λ/2 waveplates and the beam is coupled to a polarization-maintaining optical
fiber which carries the light to the main experimental apparatus, where it is further manipulated
before being shone on the atomic sample.
The secondary path is used for the offset lock itself. The lower power beam (∼ 5 mW) is
superimposed with the reference beam which is obtained from a secondary port of the the D2

laser and it is carried to the lock-dedicated optical table through an optical fiber. The combined
light is focused on a fast photodiode (818-BB-45A Amplified High Speed Photodetector, 20 kHz
- 10 GHz bandwidth) which detects the beat note between the two beams, corresponding to the
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Figure 3.7: Optical scheme (a) and picture (b) of the offset-lock setup. We split the beam
coming from our 671 nm laser into two paths. The light from the main path goes through a -320
MHz double pass AOM and it is carried to the DMD setup in the main experimental apparatus
with a polarization-maintaining optical fiber. The secondary beam is combined with a beam
originating from the D2 reference using a 50%-50% beam splitter. The combined light is detected
by a fast photodiode which provides the beat note signal for the PLL circuit. The Fabry-Perot
cavity in (b) is not strictly necessary for the offset-lock and we use it only for checking that our
laser source is single-moded before locking.

frequency difference between our laser and the reference. The output signal of the photodiode
is split into two equal-amplitude signals using a RF power splitter (model: ZX10-2-183-S+).
One signal is sent to a spectrum analyzer (Tektronix RSA306B) for monitoring the beat note
between the lasers, the other is amplified by +15 dBm with a ZX60-6013E-S+ amplifier and
then sent as input to the PLL circuit. The PLL reads the beat note signal and compares it to an
externally provided frequency offset which we produce using an appropriate function generator.
The output error signal of the PLL is then sent to the laser driver and the laser frequency is
tuned to stabilize the beat note frequency to the desired offset reference.
Our offset lock is efficient only if the detuning between our unlocked laser source and the D2

reference is already close to the target value. Therefore, before being able to lock we have to
adjust the laser frequency by tuning the laser current, temperature and the laser piezoelectric
voltage control, which changes the length of the external cavity. We measure the D2 laser
wavelength with a wavemeter, then we use the same wavemeter to measure the wavelength of
our laser source and we tune the parameters at our disposal to bring this wavelength close to
that of the D2 laser. As we change the laser wavelength, we use a Fabry-Perot cavity to monitor
that the laser remains single-moded. Once the detuning between the two lasers is sufficiently
small (a few GHz) we can monitor the beat note peak with the spectrum analyzer and use only
the piezoelectric control to bring the peak close (∼ 300 MHz) to the target offset. We use a
function generator to generate a periodic signal of 1.5 V amplitude with a frequency equal to
the target offset and we feed this signal as input to the PLL circuit. When we turn the PLL
circuit on, we see the beat note signal shift and stabilize to the target offset value. We confirm
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the efficiency of our lock by changing the target offset and observing the beat note signal change
accordingly. Further, when our laser is locked we are not able to change the beat note frequency
by slightly touching the laser’s piezoelectric control, since the PLL circuits locks its frequency.
To realize a spin-selective optical potential in a non-interacting Fermi gas using π-polarized light
(see next section for the choice of light polarization) we need to lock our laser at a detuning
of ∼ −6.1 GHz from the zero-field D2 line. Due to the presence of the -280 MHz AOM in the
lock path of the D2 laser and the - 640 MHz AOM in the main path of the spin-dependent laser
source, we effectively need to lock our laser to an offset of −6100 + 280 + 640 = 5180 MHz from
the D2 laser. Our setup allows us to lock to such offset and we report a comparison between
the locked and unlocked beat note signals measured with the spectrum analyzer in Fig. 3.8.
When our laser is unlocked, the beat note peak is unstable due to the laser’s fluctuations and it
drifts with time due to thermal effects. Once the laser is locked the beat note peak is, instead,
centered on the provided offset, having only a small jitter due to high-frequency fluctuations.
With our setup, we achieve frequency locking for offsets between 0 and – 5.5 GHz, with a jitter
of about 2 MHz. This stability allows us to reliably lock at a frequency where the two spin states
have oppositely-signed light shifts, since this happens in a ∼ 160 MHz wide region (see Fig. 3.4).
To produce a spin-selective potential we need to fix the frequency of our laser as close as possible
to the zero crossing of the polarizability for one spin state which requires locking our laser with
higher precision compared to the previous case. However we find that, locking the frequency to
the zero crossing for one state, the jitter of our laser results in a frequency uncertainty that is
sufficiently small to have a spin-selective potential. In fact, an uncertainty of 2 MHz around the
zero-crossing of one state results in a polarizability for such state that is at most ± 0.5% that of
the other state. Therefore, with our set up we can reliably lock at frequencies resulting in both
spin-dependent and spin-selective optical potentials for all three 6Li lowest Zeeman states.
Our lock is stable for long period of times (hours) and it is robust against ambient noise.
However, we see a general tendency of our lock to become less stable as we increase the size of
target offset below −5.5 GHz. We ascribe this to the difficulty of our PLL circuit in processing
high-frequency signals. This could become a limit of our setup in the investigation of weakly
interacting Fermi systems. In fact, reducing the magnetic field from 572 G (non-interacting
Fermi gas) to 300 G (weakly-interacting Fermi gas) results in a ∼ −270 MHz shift in the zero
crossings, which would push our lock to its limit. However, this limit can be easily overcome by
employing appropriate tools for manipulating the input signal of the PLL circuit and reducing
its frequency. By inserting a HMC-C006 divide-by-4 prescaler before the PLL circuit we have
been able to feed to the circuit a signal whose frequency is four times lower than the real beat
note signal, thus effectively reducing the target offset of the PLL. In this way we can in principle
lock our laser up to a ∼ −20 GHz offset from the D2 line which is a detuning far larger than our
needs, being the D1 transition at ∼ −10 GHz from the D2. Further, we observe that inserting
the frequency-divider results in a slightly more precise and stable lock.
Another way of reducing the input offset frequency of the PLL circuit, while maintaining the
spin-selective nature of the potentials, is to tune the light polarization. We have seen that for
π-polarized light the zero-crossing of the polarizability is found at ∼ −6 GHz from the D2 line,
which is close to the limit of our lock setup. The zero-crossing for σ+-polarized light is, instead,
much closer to the atomic line (∼ −2 GHz). Thus, realizing a spin-selective optical potential
using σ+-polarized light requires locking at a lower offset, which is less demanding for our circuit.
For experimental reasons (see next section), we choose to work with π-polarized light. However,
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Figure 3.8: Beat note signal for -5.2 GHz target offset. When the laser is unlocked (a) but
it is brought close to the target frequency with the piezoelectric control, the beat note peak
drifts with time and it is not fixed at the target frequency. When the laser is locked (b, c) the
lock circuit keeps the beat note peak at less than 1 MHz from to the target offset. The red
dashed line indicates to the target frequency offset of - 5.2 GHz, corresponding to an optical
potential that is selective for state |3〉 (i.e. the light shift of |1〉 is zero while that of |3〉 is not)
of a |1〉 − |3〉 non-interacting Fermi gas. The beat note signal is measured with a Tektronix
RSA306B spectrum analyzer and is reported in logarithmic (a, b) and linear (c) scale. Data
correspond to 10 successive measurements of the beat note signal taken at a few seconds steps.

we will see that the presence of a small σ+ component in the polarization does indeed help in
reducing the detuning necessary for the realization of spin-selective optical potentials.

3.3 Tailoring the optical potentials

Once we have set and stabilized the frequency of our laser source with the offset-lock setup we
can shine our spin-dependent optical potentials on the atomic cloud. To this end, we couple the
main beam of our laser source to a polarization-maintaining optical fiber and we carry it to the
main experimental apparatus. Out of the fiber, our beam has a Gaussian intensity profile, thus
resulting in a Gaussian-shaped potential on the atomic cloud.
However, being able to manipulate the light intensity spatial profile opens the possibility to
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sculpt the potential felt by the atoms and realize arbitrarily shaped optical potentials. To this
end, an entire class of devices, the Spatial Light Modulators (SLMs) has been exploited in recent
years. In our experiment, we shape the intensity profile of our laser beams using two Digital
Micromirror Devices (DMDs), each composed by a grid of tiltable square micromirrors. The tilt
state of each mirror can be independently controlled by applying an external voltage to set it into
an ON or OFF state. Mirrors in ON and OFF states reflect the light impinging on the device
in different directions, so that a DMD acts as a light mask. In fact, when a black-and- white
image is loaded on the device, the DMD mirrors are arranged in the ON and OFF states and
the intensity profile of the light reflected in the ON direction has the same shape of the binary
image sent to the DMD. The DMD can be used in both static and dynamic mode, thus allowing
to generate both stationary and time-dependent tailored optical potentials. In our setup we use
a DMD for manipulating a 532 nm green beam to shape repulsive optical potentials (see Chapt.
1 and Ref. [27] for details) and we implement a new DMD for tailoring the spin-dependent
potentials.

3.3.1 Digital Micromirror Device static characterization

The DMD we use for tailoring the spin-dependent potentials is a DLP9500 0.95” produced
by Vialux, with a V4395 board. This device is composed by an 1920 × 1080 array of square
micromirrors, with 10.8 µm pitch.
Each mirror can be independently tilted over its diagonal axis by an angle of 12◦. The state of
a single mirror is thus binary and can be accessed using a computer through the board. Mirrors
can be arranged in any kind of binary pattern to reproduce a previously generated black and
white image. Pictures of the DMD, of its board and mount are reported in Fig. 3.9 together
with a sketch of the tiltable mirrors functioning.

(a) (b) (c)

Figure 3.9: The Digital Micromirror Device (DMD). (a) Picture of the DMD at rest with its
control board and mount. (b) Sketch of the tilt states of the DMD: when the DMD is off all
micromirrors occupy the rest position. When a voltage is applied to a mirror it tilts by either
+12◦ or -12◦, labeled as ON and OFF state, according to the sign of the voltage. Mirrors in
different states reflect light in different directions, thus acting as a light mask. (c) DMD mounted
at 45◦ and displaying the image of a star.

To fully understand the optical behavior of the DMD, its diffraction properties have to be taken
into account. In fact, the DMD is composed by an array of micrometer-sized mirrors that have
a dimension comparable to that of the impinging laser light (0.5−0.7 µm). Thus, the DMD acts
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as a diffraction grating that reflects the incident light into several diffraction orders and not only
in the two directions defined by the tilt state of the mirrors. This is an unfavorable situation
since only one order can be used for shining the light on the atomic cloud. However, the light
power in the main order can be maximized by fulfilling the blazing condition of the diffraction
grating. We refer to References [27, 33] for a detailed description of the blazing condition for a
DMD. We find the blazing condition by optimizing the light intensity in one of the diffraction
orders (the central order), which we do by slightly changing the relative angle between the
DMD surface and the impinging beam. It is worth mentioning that, while obtaining the blazing
condition, it is preferable to have the smallest possible angle between the normal to the DMD
surface and the reflected beam. This means that the plane where the DMD surface lies is almost
orthogonal to the propagation direction of the reflected light, which is useful to avoid aberrations
and distortions in the DMD image caused by an imaging setup aligned to the selected order.
Since the square micromirrors are tilted along their diagonal axis, if we mount the DMD parallel
to the horizontal plane (as in Fig. 3.9 (a)) the reflected light will not travel along the horizontal
direction but will be tilted with respect to the horizontal plane and the propagation direction of
the light will have a vertical component. This is particularly unpractical for building an optical
path for this light. To avoid this, we rotate the DMD by 45◦ respect to the horizontal plane as
in Fig. 3.9 (c). In this way the tilting angle of the micromirrors is horizontal and the light is
completely reflected along the horizontal direction. By comparing the power of the impinging
and reflected light we optimize the reflection efficiency of the central order to be around 60%.

3.3.2 Digital Micromirror Device dynamic characterization

One of the most appealing properties of the DMD is the possibility to store a sequence of images
into its memory and then display them at fixed time intervals to obtain a time-dependent light
pattern. The dynamical properties of the DMD can therefore be used to project time-dependent
optical potentials on the atomic cloud. This was done in previous works by our group where
the Vialux V-7000 DMD working with blue-detuned green light was used for moving a repulsive
barrier [22, 23] or a couple of beams [24] in the atomic cloud. The crucial parameter determining
the dynamical properties of the DMD is the maximum switching rate of the device. For our
Vialux DLP9500 DMD the nominal switching rate is 17.857 kHz, corresponding to a minimum
picture time of 56 µs. To test the dynamical properties of the DMD we switch the displayed image
between a completely black (all mirrors in the ON state) and a completely white (all mirrors
in the OFF state) image. We shine laser light on the DMD displaying the white image and we
set the DMD to work in SLAVE mode, so that the sequence timing is controlled by external
triggers. We align a photodiode along the main order of diffraction for the ON direction, using
an iris to block all the other orders, and we switch between black (ON) and white (OFF) images.
By monitoring the rise time of the photodiode signal and changing the switching rate between
the images we are able to characterize the dynamical properties of our DMD. We find that the
minimum picture time is indeed 56 µs, corresponding to the nominal switching rate of ∼18 kHz.
Despite being a few GHz out of resonance, our spin-dependent perturbations are not detuned
enough to completely neglect photon absorption. For this reason, if we want to introduce non-
dissipative effects on our sample, we cannot shine our light on the atomic cloud for long times,
unless drastically reducing the light intensity. It is therefore necessary to produce short light
pulses in order to minimize the exposure time of the atoms to our laser. The tools that allow
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us to generate light pulses from a continuous source are the -640 MHz AOM in the main optical
path and the DMD itself. In Fig. 3.10 we report a comparison between 100 µs pulses produced
with the DMD (a), the AOM (c) and a combination of the two (b). To characterize our pulses

(a) (b)

(c)

Figure 3.10: Comparison between 100 µs pulses produced using the DMD and the AOM.
We report the light detected by the photodiode aligned on the ON direction of the DMD for
pulses produced in different ways. (a) DMD pulse: light is always impinging on the DMD and
the pulse is produced by switching between a white (OFF direction) and a black (ON direction)
image. We also report the TTL trigger signal that controls the DMD switching in SLAVE mode.
(b) DMD and AOM pulse: the pulse is started by switching from a white to a black image as
before but it is ended by turning off the radiofrequency injection of the AOM. Since the beam
passes through the AOM before impinging on the DMD, turning off the AOM results in the light
not impinging on the DMD, thus ending the light pulse. (c) AOM pulse: we keep the DMD
stationary on the ON image and we produce the pulse turning on and off the radiofrequency
injection of the AOM.

we again use the photodiode aligned on the ON direction of the DMD-reflected light. One
way of shining our tailored potentials for only a short time is to use the DMD as a switch,
alternating between white and black images. In this case, light is always impinging on the DMD
which starts from a white (OFF) image. The pulse is then obtained by switching to a black
(ON) image and then back to a white one. Since light arrives to the photodiode only when
the DMD displays a black image, it is possible to use the DMD to produce short light pulses
(Fig. 3.10 (a)). However, producing light pulses in this way presents some limitations as it is
impossible to produce pulses shorter than the minimum DMD picture time (56µs). To overcome
this limitation it is possible to produce pulses using a combination of both the AOM and the
DMD (Fig. 3.10 (b)). Since the laser beam passes through the AOM before impinging on the
DMD, by turning off the radiofrequency injection of the AOM the laser beam is blocked before
reaching the DMD, thus providing a way of ending the light pulse without switching the DMD
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back to a white image. In this way we can obtain light pulses that are shorter than the minimum
picture time of the DMD, since during the pulse sequence the DMD switches image only once.
However, such pulses are again not satisfactory because when the DMD switches between a
white and a black image it needs to tilt all its micromirrors, which results in a transient of ∼ 20
µs. During this transient time the light intensity on the photodiode changes non-monotonically
until it reaches a stable value. Since 20 µs may be a time comparable, or even longer, than the
target pulse duration, this transient time makes the DMD unsuitable for producing short light
pulses. Therefore, for stabilizing the pulses we let the DMD display a stationary black (ON)
image and we make the pulses using the AOM only. By turning on and off the radiofrequency
injection of our double-pass AOM it is possible to either let our beam pass through or to block
it. In particular, we can keep the radiofrequency injection off, therefore blocking the beam, and
then turn it on and off again for producing a short light pulse (Fig. 3.10 (c)). The AOM has a
much faster response and a much shorter transient time compared to the DMD, which makes it
an optimal tool for the generation of short light pulses. For this reason, in all our experiments
we keep the DMD stationary and we produce light pulses using only the AOM, even when we
do not need to use very short pulses.

3.3.3 Optical layout

We design and build an optical setup for shining our DMD-tailored spin-dependent optical
potentials on the atomic cloud. Since we already have two beams propagating along the vertical
direction (the green beam for the repulsive potentials and the vertical imaging beam) we choose
to shine our spin-dependent potentials along the horizontal direction, exploiting one of the
side windows of the vacuum cell. As for the green DMD setup we take advantage of the vertical
imaging path for focusing and demagnifying the tailored potentials, we make use of the horizontal
imaging setup for doing the same with the new DMD. We show a scheme of the vacuum cell
indicating the direction of the vertical imaging light as well as that of both the green (repulsive)
and red (spin-dependent) DMD-shaped lights in Fig. 3.11 (a).
We report in Fig. 3.12 an optical scheme of the whole experimental setup for DMD-tailoring
and shining the spin-dependent potentials on the atomic cloud from the horizontal direction. As
previously mentioned, we carry the main beam of our laser source from the dedicated offset-lock
optical table to the main experimental apparatus using a polarization maintaining optical fiber.
We use a λ/2 waveplate and a PBS to split the laser beam into two beams, of which one carries
most of the power (∼ 10 mW) and is shone on the atomic cloud after passing through other
optical elements and the other (∼ 1 mW) is detected by a photodiode for stabilizing the light
intensity. To keep the ratio between these two beams constant over time we have to stabilize
the polarization of our laser light before it enters the optical fiber. For this reason, we insert
the set of λ/2 − λ/4 waveplates before the optical fiber on the offset-lock table (see Fig. 3.7)
and we tune them to stabilize the polarization of the beam emerging from the fiber, using a
Schäfter-Kirchoff polarimeter for monitoring such polarization.
The beam reflected by the PBS is detected by a photodiode whose output signal is monitored
with an oscilloscope and sent as input to a proportional–integral–derivative controller (PID).
Feeding the output signal of the PID to the radiofrequency driver of the AOM in the path of
our beam allows to tune the radiofrequency power and thus control the intensity of our light.
Further, it is possible to use the PID as a feedback loop for stabilizing the light intensity in



CHAPTER 3. REALIZATION OF TAILORED SPIN-DEPENDENT OPTICAL POT. 68

DMD light

@ 532 nm

Imaging light

@ 670 nm

NEW DMD light

@ 670 nm

From Lock setup

Shu�er

DMD

Vacuum cell

(a) (b)

HOR Andor

camera
Stabiliza�on 

photodiode

Figure 3.11: Horizontal setup for shining DMD-shaped laser light on the atomic cloud. (a)
Scheme of the vacuum chamber with the vertical imaging light and the two DMD-shaped beams
shone on the atomic sample from the bottom (green DMD) and the side (spin DMD). (b) Picture
of our experimental setup for shaping the spin-dependent optical potentials and shining them
on the atomic cloud.

order to compensate possible fluctuations of polarization and AOM efficiency. Wse can input
the target intensity into the PID from the control program, measure the light intensity detected
by the stabilization photodiode and, after an appropriate calibration, use the PID to tune the
AOM power in order to set and stabilize the light intensity to a target value.
The transmitted beam, instead, impinges on the DMD and it is reflected back with the desired
intensity profile. By optimizing the angle between the DMD and the impinging beam we are able
to superimpose the incoming and the DMD-reflected beam so that the latter is again impinging
on the PBS. Inserting a λ/4 waveplate between the PBS and the DMD allows to rotate the
polarization of the incoming beam by 90◦ since the light passes through the waveplate twice.
Thus, while the beam impinging on the DMD is transmitted through the PBS, the DMD-
reflected beam is reflected by the PBS in the direction opposite to that of the stabilization
photodiode. Since the DMD acts as a diffraction grating, the reflected light consists of many
diffraction orders that we block by inserting an iris right after the PBS. In this way we are
able to keep only the main diffraction order, whose power is maximized by fulfilling the blazing
condition. This beam has an arbitrarily-shaped intensity profile and it is the beam that we use
for realizing our tailored, spin-dependent optical potentials.

3.3.4 Focusing and demagnifying the laser beam

Manipulating an atomic sample with arbitrary optical potentials requires to demagnify the laser
beam used for their realization and to focus it on the atomic cloud. In fact, what it is actually
needed is an imaging setup that projects the image produced by the DMD on the atomic sample.
For this reason we take advantage of the pre-existent horizontal imaging path that allows us to
focus our spin-dependent potentials on the atomic cloud an to demagnify our beam by a factor
6.8. However, this demagnification is not sufficient for manipulating our sample with high spatial
resolution and for producing smooth potentials. In fact, each DMD micromirror has a 10.8 µm
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Figure 3.12: Optical scheme of the horizontal setup. We use the DMD to tailor the beam
coming from the dedicated offset-lock table and realize arbitrarily-shaped spin-dependent optical
potentials. We take advantage of the horizontal imaging optical path for demagnifying, focusing
and shining our laser light on the atomic cloud.

side which, considering a demagnification factor of 6.8, results in a ∼ 2.5 µm2 square on the
atomic cloud. Since the typical size of the sample in the optical dipole trap is ∼300 µm, but it
can be much smaller when trapped in different geometries, we cannot consider a potential that
is discretized in pixels of a few micrometers to have a smooth spatial profile. Further, having
such a low demagnification prevents us from manipulating our sample with local perturbations
below a few micrometers size. For these reasons, we add to the optical path another telescope
composed by a couple of lenses with focal length f1 = 300 mm and f2 = 75 mm respectively. The
two lenses are positioned at a relative distance equal to f1 + f2 = 375 mm, so that the expected
telescope demagnification is 300/75 = 4. This telescope is coupled with an iris placed between
the two lenses, in correspondence of the focal point of the first one. This iris acts as a spatial
filter cutting the high frequency components of the DMD image. This effectively smooths the
image intensity profile thus helping to realize smooth potentials on the atomic cloud, starting
from a black and white image on the DMD.
To measure the actual magnification of our telescope we add a mirror after the second lens,
mounting it on a magnetic base so that it can be inserted or removed at will without losing
track of its previous position in the optical path and alignment. We focus the reflected light on
a Thorlabs CCD camera, we display on the DMD an image of 3 dots of well known distance
and we acquire a picture of the resulting image on the camera. Fitting each dot with a two-
dimensional Gaussian we can find their relative distance on the camera and comparing such
value to their distance on the DMD screen we can find the demagnification of our telescope. We
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report an example of one of the images used for measuring the demagnification in Fig. 3.13.
The measured demagnification factor for our telescope is 4.05(3), which is consistent with our
expected value of 4.

(a) (b) (c)

Figure 3.13: Telescope demagnification measurement. (a) Calibration image displayed on the
DMD screen. (b) CCD camera picture of the three dots displayed on the DMD screen. (c)
Coordinates of the three dots in the CCD screen found by fitting each of them with a two-
dimensional Gaussian function.

To properly focus the image of the DMD-shaped light on the atomic cloud, the distance between
the first lens and the DMD must be equal to the lens’ focal length (300 mm), so that the DMD,
which generates the image, is in the lens’ focal point. Analogously, the distance between the
second lens of our telescope and the first lens of the horizontal imaging telescope must be equal
to the sum of their focal distances (75 + 1000 mm). This double telescope allows us to achieve
a total demagnification factor of 27.2, resulting in each DMD micromirror being focused on the
atomic cloud as a ∼ 0.16µm2 square. In this way we are able to manipulate our sample with
good spatial resolution (∼ 5µm) and to efficiently tailor our intensity profile to produce spatially
smooth potentials.
We use the CCD camera and the magnetic mount mirror also for monitoring and feedbacking
the intensity profile of our DMD-tailored beams. In fact, since the beam impinging on the DMD
has a Gaussian profile, the reflected light will retain its Gaussian shape on top of the profile
determined by the image displayed on the DMD. To remove this undesired Gaussian shape from
our potentials we use a feedback program that compares the target intensity profile to an image
of the beam taken with the CCD camera. We will describe the feedback program in more detail
in Chapt. 4.

3.3.5 Realizing spin-dependent light pulses

Right after the removable mirror we insert a shutter for blocking our laser beam during most
of the experimental cycle. As mentioned before, our spin-dependent perturbations are always
accompanied by a non-negligible photon absorption probability. Therefore, we have to shine our
light on the atoms only for short time intervals. We do this by using the radiofrequency control
of the AOM for producing light pulses in the µs - ms range. However, keeping the AOM off
for the whole experimental cycle (∼ 10 s) and turning it on only for a short pulse hinders the
PID stabilization, since the PID does not have sufficient time to efficiently stabilize the light
intensity. Moreover, once the AOM itself is turned on it needs some time to thermalize before
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reaching its stationary working condition. This makes the pulses obtained by keeping the AOM
off for most of the experimental cycle quite unreliable and shot-to-shot dependent. To overcome
this problem we keep our AOM working at a stabilized power for most of the experimental cycle
and we block the laser beam using the shutter inserted in the optical path. The transient time
for the shutter to switch between its closed and open states is of the order of 500 ms. Therefore,
we open the shutter ∼ 500 ms before producing the light pulse and at the same time we turn off
the AOM radiofrequency injection so that no light is shone on the atoms as long as the shutter
is still opening. After the shutter is completely open we make a short pulse with the AOM, thus
applying the spin-dependent perturbation for a short time, and we close the shutter, turning
the AOM on again only when the shutter is completely closed. An overview of the experimental
sequence for shining short light pulses on the atomic cloud is reported in Fig. 3.14.

(a) (b)

Figure 3.14: Pulse generation sequence. We report the light detected by the stabilization
photodiode (orange line) and the trigger signals (dotted gray lines) for changing the shutter
state. Since the stabilization photodiode is positioned before the shutter it detects a signal even
when the shutter is closed, while the light is shone on the atoms only as long as the shutter is
open. (a) The AOM is working and it is stabilized for the whole experimental cycle until the
realization of the light pulse. 500 ms before the pulse (0 ms in the plot) the AOM power is
turned off and the laser beam is blocked before arriving to both the photodiode and the shutter.
At the same time the shutter is opened by the first trigger. After the shutter’s transient time
(500 ms) we quickly turn on and off again the AOM power to make a short light pulse and we
close the shutter again with the second trigger. After the shutter is completely closed we turn
the AOM on again for the next experimental cycle (1000 ms on the plot). (b) Zoom in the pulse
region.

Thanks to this protocol, we are able to produce pulses that are stable and reproducible over
all experimental cycles. However, we cannot produce arbitrarily short pulses as both the PID
control and the AOM itself have typical transient times that need to be taken into account.
In particular, we find that even optimizing the PID parameters for having the fastest response
possible it is difficult to stabilize pulses below a few tens of microseconds. In Fig. 3.15 we report
the profile of pulses of 50, 20 and 10 µs. While the 50 µs pulse is stabilized quite efficiently, the
shortest pulses are more difficult to stabilize as the rise time of the pulse becomes comparable
with the pulse duration itself. Despite being not ideal, it is still possible to work using such short
pulses since, even though they may not be fully stabilized, they appear to have low shot-to-shot
fluctuations. Of course an alternative approach is to reduce the light intensity and work with
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(b)(a) (c)

Figure 3.15: Short AOM pulses stabilization. It is difficult to stabilize the shortest light pulses
since both the AOM and the PID have typical response times that need to be taken into account.
While we can successfully stabilize a 50 µs pulse (a) we are not able to completely stabilize a 20
(b) or 10 µs pulse (c), since the rise time of the AOM is of the order of 5 µs, which is comparable
with the pulse duration. Signals are detected using the stabilization photodiode which has an
estimated rise time of 0.12µs, much smaller than the other elements’ typical timescales.

slightly longer pulses.
As we have seen in section 3.1, the light polarization plays a central role in the realization
of the spin-dependent optical potentials. For controlling the light polarization we insert a set
of λ/2 − λ/4 waveplates that allow us to tune the light polarization at will. However, when
tuning the polarization we have to consider the geometry of our experimental setup. Since our
laser beam is propagating along the horizontal direction and the Feshbach magnetic field, which
defines the quantization axis of our system, is aligned vertically, the propagation direction of the
light and the quantization axis are orthogonal. This prevents us from using σ-polarized light
for the generation of our spin-dependent optical potentials. In fact, for having a pure σ+ or
σ− polarization it is necessary to have a circular polarization and the electric field must rotate
around the quantization axis, which is impossible in our geometry since the light propagates
orthogonally to the magnetic field direction. Therefore, in our setup any non-linear polarization
results in a non-trivial polarization on the atomic cloud. On the other hand, we can set the
polarization to be linear and align it to the vertically magnetic field, thus obtaining π-polarized
light. As we have seen in section 3.1, this light polarization is optimal for the realization of spin-
dependent and spin-selective optical potentials. Therefore, we tune the λ/2−λ/4 waveplates in
order to obtain a light polarization that is maximally linear and we align it parallel to the vertical
direction. For monitoring the polarization while we tune the waveplates we use the Schäfter-
Kirchoff polarimeter that we insert in front of the vacuum cell window. We are able to obtain
a ∼ 98% linear polarization tilted by less than 1◦ from the vertical axis. Moreover, in these
polarization measurements the vertical axis is the internal axis of the polarimeter which may be
slightly different from the magnetic field direction. As we will see in the next chapter, this non
perfect linear polarization and the misalignment between the polarimeter and magnetization
axis may result in a non perfect π polarization on the atoms. In conclusion, exploiting all
the elements of our experimental setup we are able to produce short light pulses of tailored
spin-dependent or spin-selective optical potentials and to use them for manipulating our atomic
sample.



Chapter 4

Testing the spin-dependent optical

potentials

In this chapter we demonstrate that our experimental setup allows us to realize both spin-
dependent and spin-selective optical potentials. First we show that our offset-lock is capable of
reliably locking our laser source to the atomic resonances of the two spin states by resonantly and
selectively addressing each spin state in a non-interacting Fermi gas. In this way we demonstrate
the efficiency of our lock and we open up the possibility of introducing local spin-selective
dissipative perturbations. In the second part of this chapter we show how we can use the DMD
for arbitrarily shaping the intensity profile of a laser beam and tailoring the spin-dependent
potentials. In particular, we focus on using a feedback program for giving a linear shape to
the intensity profile. In the third part of this chapter we demonstrate that we can realize
both spin-dependent and spin-selective optical potentials by performing an optical Stern-Gerlach
experiment. Finally, we give a brief outlook on the possibility of exploiting the spin-selective
optical potentials for the generation of spin currents in our sample.

4.1 Producing a spin-selective dissipative perturbation

Computing the the photon scattering rates of the 6Li Zeeman states we can quantify the dissipa-
tive effects introduced by our close-detuned laser light. Considering the case of a light resonant
to the D2 transition, the lifetime of the excited state is 27 ns [19] which is a time shorter than our
experimental resolution. Therefore, each time a lithium atom absorbs a photon we can consider
its momentum to instantly change by the sum of the momenta of the incoming photon and of the

randomly emitted one. Each momentum transfer results in a recoil energy (h̄k)2

2m corresponding

to a recoil velocity h̄k
m where k is the momentum of the absorbed or emitted photon and m is

the mass of a lithium atom. This recoil energy results in the atoms acquiring a kinetic and
increasing their temperature accordingly. For for the D2 line of 6Li this recoil temperature is
of the order of 3µK. Thus, when photons are absorbed by an atomic ensemble which is colder
than a few µK the temperature of the system inevitably increases. This will happen even if pho-
tons are absorbed by only a few atoms, since the hotter atoms will collide with their neighbors,
leading to thermalization and heating of the whole sample. Therefore the main effect of shining
near-resonant light on an interacting ultracold atomic gas is to increase its temperature.

73
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When considering the effects of photon absorption in an ultracold sample we also have to take
into account that the system is confined by an external trapping potential of fixed depth. If
such depth was infinite, then atoms could not escape the trap and the only effect of photon
absorption would be an increase in the temperature of the atomic sample. However, in real life
experiments atoms are usually confined by optical potentials of finite depth. For this reason it is
possible that the recoil energy acquired by an atom after absorbing a photon is sufficiently high
that the atom escapes from the optical confinement and is lost from the experimental cycle.
Computing the scattering rates of the Zeeman states composing our sample allows to describe
the photon absorption probability of atoms in different spin states. Since such spin states are
separated by 80−160 MHz, depending on the considered states, their resonances will be splitted
by a comparable gap. This splitting allows us to lock a laser to frequencies where one spin state
has a much higher photon absorption probability than the other. In this way we can address the
resonances of the two spin states composing our sample independently, as we do with our state-
selective imaging. Besides imaging the two states independently we can exploit this splitting of
the atomic resonances to selectively address the two spin states with resonant or near-resonant
light for introducing spin-selective dissipative perturbations in our system. This can be easily
achieved by our experimental setup for the realization of spin-dependent optical potentials since
we just need to lock our laser source in the vicinity of the atomic resonances. Further, we can
exploit the DMD for shaping the intensity profile of our laser beam for engineering dissipative
local spin-selective perturbations, such as a spin filter [73, 76].
In the following we show how we can exploit our experimental setup for obtaining local spin-
selective photon absorption in our system.

4.1.1 Absorption spectra of non-interacting Zeeman states

To perform a first test of our experimental setup we lock our laser source to the atomic reso-
nances of the |1〉 and |3〉 spin states and we find that we are able to selectively address each
state with resonant light. This allows us to test the reliability of our offset-lock and paves the
way for the realization of spin-selective dissipative perturbations.
While the most interesting physical phenomena that we can investigate are related to the pres-
ence of interactions between atoms in different spin states, we perform our experiments on a
|1〉 − |3〉 non-interacting Fermi gas. This allows us to exclude any mutual interaction between
the two spin states so that the only effects we have to take into account are those introduced by
our spin-selective perturbations. We prepare the non interacting Fermi gas through the experi-
mental protocol described in section 1.5, obtaining a sample composed by ∼ 105 atom per spin
state at T/TF ≃ 0.1.
By looking at the trend of the scattering rates of our system for different light polarization (see
Fig. 3.3) we find that the most well-suited choice for selectively addressing the resonances of
the spin states in our setup is to use σ−-polarized light. This is because the offset-lock setup is
designed and optimized to control the frequency of our laser source in the range between the D1

and D2 lines, while addressing the spin states’ resonances using π or σ+ polarized light requires
to work with light that is blue-detuned with respect to the D2 transition. However, we have
seen that in our setup we cannot shine a fully σ−-polarized beam on the atomic cloud because of
geometric reasons. Since our laser light propagates perpendicularly to the quantization axis it is
impossible to have a pure σ− circular polarization, nonetheless we can work with light that has
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a non-zero σ− component. In fact, we can decompose the polarization state of electromagnetic
radiation in the basis of {π, σ+, σ−} polarization states and we can write:

ǫ̂ = a ǫ̂π + b ǫ̂σ+ + c ǫ̂σ− (4.1)

where ǫ̂ is the light polarization and a, b, c are the coefficients for the state decomposition. In
our experimental setup the quantization axis is given by the Feshbach magnetic field direction
which is vertical. Therefore a linear vertical polarization corresponds to pure π-polarized light
(a = 1, b = c = 0). On the other hand, a linear horizontal polarization is orthogonal to such
state, thus corresponding to an equal mixture of σ+ and σ−-polarized light (a = 0, b = c = 1/2).
While this horizontal polarization state is not completely σ−, it is the state with the highest σ−

component achievable in our setup. Further, it is the polarization state that we use for imaging
our atomic cloud from the horizontal direction, so we already have a setup that is capable of
shining horizontally polarized light on the atomic cloud from the horizontal direction. For these
reasons, we test our spin-selective dissipative perturbations using light with linear, horizontal
polarization.
To know the target frequency at which to lock our laser, we have to compute the scattering rate
of our spin states for light with horizontal polarization. This can be done using expression 3.11
for the multi-level scattering rate. We take into account the horizontal polarization by equally
dividing the light intensity into σ+ and σ− components and summing the computed scattering
rates for the two components. We report the scattering rates of states |1〉 and |3〉 at 572 G for
horizontal polarization in Fig. 4.1, computed for an arbitrary intensity of 0.1 mW/cm2. The
peaks that are present in the scattering rate of state |1〉 and not in that of state |3〉 are related
to transitions allowed by the |mJ = 1/2〉 component of state |1〉, which is absent in |3〉. As men-
tioned before, these peaks would be ideal for the implementation of spin-selective dissipative
perturbations. However, to access the corresponding frequencies, which are either blue-detuned
with respect to the D2 line or red-detuned with respect to the D1, we need to slightly adapt
our experimental setup. While this can be done quite easily we restrain from doing so since the
scope of this work is to realize spin-dependent potentials using frequencies that are between the
two atomic resonances. Moreover, we can realize equally selective dissipative effects also using
the ∼ −1 GHz detuned resonances of the two spin states. Therefore we resolve to produce our
spin-selective perturbations by tuning our laser frequency around such resonances.
At first we avoid using the DMD horizontal setup described in section 3.3.3 and we instead plug
the optical fiber coming from the offset-lock table in the fiber mount of the horizontal imaging
light. In this way we take advantage of the imaging setup and our beam is already aligned to
the atomic cloud as well as already having the desired horizontal polarization.
We shine our spin-selective laser beam on the whole non-interacting cloud trapped in the har-
monic confinement provided by the optical dipole trap. Since we want to selectively address
the spin states using resonant and near-resonant light we need to work with light pulses that
are long enough to produce a detectable effect while being short enough to observe a difference
between the addressed and unaddressed states. In fact, shining near-resonant light for a long
time would eventually result in all the atoms in both spin states escaping the optical confine-
ment due to photon absorption. For this reason we tune our experimental parameters finding
the optimal conditions to be 15 µs long light pulses with 5.5 mW power. For our Gaussian beam
this corresponds to an intensity of 5 mW/cm2, resulting in a saturation parameter I/Is ≃ 2 [19].
To monitor our sample we employ a double imaging technique that allows us to independently
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(a) (b)

Figure 4.1: Scattering rates of spin states for horizontally-polarized light. (a) Full profile of
the scattering rate for frequencies between the D-lines of 6Li. (b) Zoom in the relevant region
for the generation of spin-selective perturbations. Data are plotted as a function of the detuning
∆ν from the zero field D2 transition (lower x-axis) and of the light wavelength (upper x-axis).
We report the D1 and D2 transitions as dashed red lines. The light intensity is arbitrarily set
to I = 0.1 mW/cm2, corresponding to a saturation parameter I/Is = 0.04.

but almost simultaneously image both the spin states of our Fermi gas. By shining a light pulse
and looking at the number of atoms remaining in each spin state we can estimate the dissipative
effect of the spin-selective perturbations. Since all atoms that escape the trap are lost due to
the light pulse, by comparing the relative losses of the two spin states we can demonstrate the
spin-selectivity of our perturbation.
We tune and stabilize the frequency of our laser source in the vicinity of the atomic resonances
using the offset-lock setup. By changing the target offset we are able to scan the frequency
region around the resonances and effectively measure the absorption spectrum of the two spin
states. We report such spectra in Fig. 4.2 (a), where the peaks corresponding to the resonances
of the two spin states are clearly visible. When we lock our laser to the resonant frequency of one
spin state the atoms in such state get blasted by the light due to photon absorption and escape
the harmonic confinement, thus resulting in a decrease of the state’s population. We observe
that resonantly blasting atoms in one spin state does not significantly affect the population of
the other state. While this happens mainly because we are working in a non interacting system,
it demonstrates that it is possible to use our experimental setup for introducing spin-selective
losses in our system.
Measuring the temperature of one of the two spin states, namely of state |1〉, we see that it
does not change unless we address such state with resonant light (Fig. 4.2 (b)). While this may
be a hint that our spin-selective perturbation do not introduce heating in our sample, drawing
conclusions from a temperature measurement in a non-interacting system is not trivial. Due to
the absence of interactions, atoms cannot, in principle, thermalize after being perturbed by our
laser pulse, which opens the question concerning the meaning of the temperature we measure.
A possible answer to such question could be that we measure the temperature of the atoms that
do not absorb any photon and remain trapped in our confining potential. If every atom that
absorbs a photon escapes the trap without interacting with any other atom it seems reasonable
that the temperature of the atoms remaining in the trap is not affected by our external pertur-
bation. If this is the case, the only conclusion we can draw from this temperature measurement
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(a) (b)

Figure 4.2: Spin-selective atomic losses. (a) Absorption spectra of the |1〉 − |3〉 spin states.
Scanning the frequency of our laser source we can selectively remove atoms in one spin state
from our system. (b) Temperature of atoms in state |1〉. Here TF ≃ 450 nK. The dashed red
indicates the state |3〉 resonant frequency. Data are plotted as a function of the detuning from
the zero field D2 line and of the laser wavelength. Each point corresponds to the mean of at
least 5 experimental data and error bars are computed as the standard deviation of such data.

is that it demonstrates that we are working with a truly non-interacting system. For investi-
gating the heating effects caused by our spin-selective perturbations we should instead perform
measurements on interacting systems. Moreover, we could compare out T/TF measurements
with measurements of the cloud’s size, that should increase with increasing temperature. As of
now we describe our spin-selective dissipative perturbations focusing only on the induced losses.
By comparing the measured resonances with the computed scattering rates we find that they
are indeed found at the expected frequencies. Further, we can obtain the resonances’ width by
fitting them with a Lorentzian function. In particular, we find the Full Width at Half Maximum
(FWHM) to be 8.4(5) MHz and 10(1) MHz for state |1〉 and |3〉 respectively. These values are
compatible with the 6 MHz natural linewidth of the D2 transition [19] and the observation of
such relatively narrow resonances demonstrates the reliability of our offset-lock setup.
To completely describe the width of our resonances we also consider the power broadening
caused by working with non-negligible saturation parameter. In fact, the width of an absorption
line is not simply the natural linewidth of the transition Γ but it is broadened by an amount
related to the ratio between the light’s and the saturation intensity (2.54 mW/cm2 for the D2

transition). Therefore, we can write the power broadened linewidth as ΓPB = Γ
√

1 + I/Is. By
measuring the experimental width of our resonances and inverting this relation we obtain the
saturation parameter I/Is associated to our intensity, finding I/Is = 1.1(1) and I/Is = 2.1(3)
for |1〉 and |3〉 respectively. The expected saturation parameter for our experimental condition
is 2, therefore the value found for state |3〉 is in excellent agreement with our expectations while
we can ascribe the discrepancy for state |1〉 to acceptable experimental errors. We report the
Lorentzian fit of our experimental data and we compare them to the expected scattering rate in
Fig. 4.3 (a).
We further investigate the role of power broadening by exploring the behavior of only one res-
onance as we change the light intensity and the pulse duration. We find that the resonance
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gets both deeper and wider as we increase the power and the duration of the pulse, resulting
in higher atom losses. Fitting the resonances for different experimental conditions we find that
doubling the light power does indeed result in a resonance that is a factor

√
2 wider, while the

depth of the peak is not affected by a change in power as long as light is shone on the cloud for
a sufficiently long time. On the other hand, reducing the pulse time while keeping the intensity
fixed results in reducing both the width and the depth of the resonances due to inferior losses
in the atomic sample. We report the behavior of the resonance of state |1〉 to the change of
experimental parameters in Fig. 4.3 (b).
Looking at the expected number of photons absorbed by a single atom for one of our light pulses
(Fig. 4.3 (b), bottom) we see that this number is surprisingly high. We therefore suspect that we
either overestimate the magnitude of the photon absorption probability or that an atom needs
to absorb many photons before it has sufficient energy to escape the trapping potential. Due to
this uncertainty, we prefer to evaluate the losses introduced by our laser light by directly looking
at experimental values instead of trying to estimate them from our scattering rate calculations.

(a) (b)

Figure 4.3: Resonances fitting and scattering probability. (a) Atomic resonances of the |1〉 and
|3〉 spin states. Top: experimental data (diamonds) and Lorentzian fit (dashed line). Bottom:
scattering rate computations for our experimental parameters. (b) Resonance of state |1〉 for
different experimental conditions. Top: experimental data and Lorentzian fit. Bottom: Plot of
the expected number of photons absorbed by each atom during the light pulse. Each experi-
mental point is obtained by the mean of at least 5 data. Error bars are standard deviation of
such values.

4.1.2 Local dissipative perturbations

The spin-selective losses induced by our perturbations can be exploited for imbalancing the
spin population of the sample by shining resonant laser light on the whole atomic cloud as we
have shown in the previous section. Such imbalanced system provides a very good platform for
investigating the physics of impurities and quasiparticles in a Fermi system. In particular, it has
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been shown that impurities formed by particles of the minority component can be dressed by
particles in the other state, which act as a bath, and form a so-called polaron quasiparticle [70,
71]. A globally imbalanced system for the investigation of such fermionic quasiparticles can be
obtained by driving radiofrequency transitions between internal states which does not require
all the tools we developed for selectively addressing spin states with laser light. However, our
experimental setup allows us to shape the intensity profile of the laser light and it opens up the
possibility to produce locally imbalanced fermionic systems. To produce such local imbalance
we need to induce local spin-selective losses in our sample. This can be achieved by locking our
laser source to the resonance of one spin state and exploiting the DMD optical setup for shaping
the profile of our laser beam. We can use the DMD as a light mask to simply reduce the waist
of the Gaussian beam that we shine on the atoms, so that it covers only a defined region of the
sample, or we can use it to produce more complicated shapes or patterns including barriers and
arrays of focused beams.

(a)

(c)

(b)

(d)

Figure 4.4: Examples of images displayed on the DMD screen. (a)-(b) Narrow barriers aligned
parallel or perpendicularly to the main axis of the atomic cloud. (c) Homogeneous square:
the reflected beam retains its Gaussian profile with a smaller waist. (d) Gradient-like pattern:
the grayscale profile is obtained with a dithering procedure of the black and white image. All
displayed images are tilted and centered in order to be aligned to the atomic sample.

Before shining our tailored laser beam on the atomic cloud we need to make sure that it is
actually well aligned with the cloud itself. To do end we use a couple of irises to align the
beam reflected by the DMD to the horizontal imaging beam, that we know is impinging on
the atomic cloud. After doing this, we center the beam on the atomic sample by shining short
resonant light pulses and looking at the density profile of the atomic cloud. When the DMD
displays a completely black image the mirrors are all in the ON direction and the reflected beam
has a Gaussian shape with the largest possible waist, so that it covers the whole atomic cloud.
Therefore, we roughly center our beam using its maximum waist to verify that all the cloud is
covered by the beam. Then we reduce the beam waist by displaying progressively smaller black
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squares on the DMD screen, so that we can center our beam more precisely by looking at the
density depleted region in the atomic cloud. We find the tilting angle between the atomic cloud
and the DMD screen by shaping the beam profile as a thin rectangle around 10 DMD mirrors
wide. Shining this light barrier on the atoms results in depleting the atomic density in a narrow
region. By looking at the tilting angle between such region and the axes of our cloud we find
the tilting angle of the DMD. Knowing such angle we can easily compensate for it by displaying
opportunely tilted images on the DMD screen, so that the image projected on the atomic cloud
has the desired orientation.
Once the laser beam is correctly centered on the atomic cloud, we proceed to a finer focusing of
our imaging system. To do so, we again shine short pulses of resonant light shaped as a narrow
barrier and we look at the atom losses in the region of the cloud that is covered by such barrier,
expecting them to be the highest when the beam is focused on the atomic cloud. By using a
T-stage mount for moving the f = 75 mm lens in our setup we can maximize such losses and
focus our DMD-tailored beam on the atomic cloud. We report in Fig.4.4 (a-c) a few examples
of the images displayed on the DMD screen during this alignment and focusing procedure. In
Fig.4.4 (d) we instead report a gradient-like image that we use for giving a linear profile to our
laser beam (see next section).
Once the optical setup is focuse,d we can use the DMD for arbitrarily shaping the intensity
profile of our laser beam to realize local spin-dependent perturbations. In order to produce a
locally spin-imbalanced system we display a small black square on the DMD screen so that the
reflected beam covers only a defined region of the atomic cloud. By locking our laser source close
to the resonance of one state and shining a short light pulse we are able to remove the atoms in
that state from the region of interest without having a strong effect on the other component. In
Fig. 4.5 we show the differential and local effect on the two states of a light pulse locked to the
resonance of state |1〉. While we test our setup using intensity profiles such as simple squares

20 μm20 μm

Figure 4.5: Local spin-selective blast. By shining a tailored laser beam that is resonant for
state |1〉 we are able to locally remove atoms in |1〉 from our sample without having a strong
effect on atoms in |3〉. We report experimental images of the density profile of atoms in |1〉 (left)
and |3〉 (right) after shining our spin-selective beam.

or rectangles, we are in principle able to arbitrarily shape such intensity profile introducing
features as small as a few micrometers. This may allow to realize spin filtering barriers or
channels similarly to what was done in Refs. [73, 76].
Further, by appropriately tuning the experimental parameters at our disposal we can introduce
local dissipative perturbations which may be tuned to selectively heat one spin component
without removing it from the trapping potential. This will probably require to employ either
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non-resonant or lower intensity light in order to reduce the absorption probability. Further, we
may need to increase the depth of our optical dipole trap in order to keep the atoms trapped
after they absorb a photon. Introducing a local spin-selective heating in an interacting spin-
mixture may allow us to investigate heat transport in a quantum environment. Moreover this
could allow us to address the many open questions regarding the coupled transport of heat and
spin, paving the way for the quantum simulation of spin caloritronics [39, 48, 50].

4.2 Arbitrarily tailored optical potentials

In the previous discussion about the realization of local dissipative perturbations we focused on
how we can use the DMD for shaping the intensity profile of a laser beam for shining it over
finite regions of the atomic sample. To do this we just need to display simple patterns on the
DMD screen, such as squares or rectangles with the desired size and orientation. However the
realization of arbitrarily DMD-tailored optical potentials requires a more complicated shaping
of the intensity profile. In fact, the spatial shape of an optical potential is directly proportional
to the light’s intensity profile: Vdip(r) ∝ I(r). Therefore to arbitrarily tailor an optical potential
it is necessary to have a high degree of control on the profile of the laser light.
As each DMD micromirror can be in either the ON or OFF state, the DMD is able to display
arbitrary black and white patterns but it cannot display any grayscale image. Conversely, the
potentials we want to realize will often have a continuous and smooth profile. Further, as we
have already mentioned, since the laser beam impinging on the DMD has a Gaussian profile,
this profile is retained after the beam is reflect by the DMD. The resulting profile of the optical
potential is then given by the convolution between a Gaussian and the light mask provided by
the DMD pattern. This particular effect prevents the straightforward realization of uniform
potentials with the DMD. In fact, displaying a uniform black image on the DMD screen results
in the DMD acting as a simple mirror so that the tailored optical potential will not be spatially
homogeneous but Gaussian.
These two limitations seem to severely hinder the realization of arbitrarily tailored optical poten-
tials using a DMD. However, it is possible to obtain a grayscale image by displaying a dithered
pattern on the DMD screen where the density of ON mirrors reproduces the smooth profile of
the target image as in Fig. 4.4 (d). Combining such dithering with an iris positioned at the
focal point of one of the lenses of the imaging setup allows to effectively smooth the profile of
the optical potentials, thus allowing to realize a continuous potential with a black and white
pattern. To solve the issue related to the Gaussian profile of the laser light we use a particular
feedback program that is capable of compensate for it and that we will describe in the following.

4.2.1 Intensity profile feedback program

In order to realize arbitrarily shaped optical potentials and to remove the Gaussian component
from the profile of the DMD-reflected beam we exploit a feedback program that has been devel-
oped in Refs. [27, 33]. We briefly describe such program, referring to [27, 33] for a more detailed
treatment.
The idea behind the feedback program is that, since the light profile on the atomic plane is not
the same as in the image displayed on the DMD screen, it is possible to change such image in
order to have the desired profile on the atoms. The two main reasons for differences between
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the target and the actual image are the Gaussian profile of the laser beam and the presence of
defects in the imaging setup such as dark regions in the light pattern created by flecks of dust on
the optical elements. The feedback program corrects these two issues, realizing on the atomic
plane a light pattern that is closer to the desired one.
The program operates as follows: the DMD mirrors are arranged in order to reproduce the tar-
get image and a picture of the resulting image is taken by the CCD camera in our experimental
setup. This picture is then compared to the target image and the DMD mirrors are rearranged
in order to compensate for discrepancies. To compare the target image to the actual one we
compute the pixel-by-pixel error matrix, i.e. the difference between the two images for each
pixel. This error matrix is then summed to the previous DMD image, weighted by a propor-
tional and an integral coefficient, to obtain a new image. The new image is sent to the DMD
and the process is iterated as long as the difference between the acquired and the target images
is not sufficiently low.
Before being able to feedback our images we have to calibrate the DMD screen into the CCD,
since the two have a different pixel number and orientation. This is achieved by a calibration
routine where we find the affine transform that maps the DMD screen into the CCD by taking
a CCD picture of the DMD screen displaying three dots at known relative positions.
Using our feedback program we can realize arbitrarily shaped potentials, including spatially
homogeneous optical potentials. In this case, the rearrangement fo the DMD mirrors is such
that the intensity is lowered near the peak of the Gaussian while it is maximized close to its
tails, thus realizing a uniform intensity profile. Since with the DMD we cannot increase the
light intensity on the edges of the beam, the reflected profile, while being spatially uniform has
a lower intensity because it is bounded by the intensity in the tails of the Gaussian beam.
We focus on giving a linear shape to the intensity profile of our laser beam since this allows us
to imprint either a uniform force or a uniform velocity to the atomic sample. We report the
results of the feedback program of such an intensity profile in Fig. 4.6.

4.2.2 Linear optical gradients

The optical dipole force acting on a particle subjected to an optical potential is proportional to
the gradient of the light intensity. In fact, being Vdip(r) ∝ I(r), the dipole force is given by:

Fdip(r) = −∇Vdip(r) ∝ −∇I(r). (4.2)

Considering a one-dimensional situation for simplicity, a linear potential does indeed result in
a spatially constant force: V (x) ∝ x → F (x) = const. Therefore, a linearly-shaped optical
potential allows to manipulate an atomic sample with a force that is homogeneous over the
whole beam area.
To realize such potential we use the DMD to give a profile to the light intensity that is linear
along one direction, so that I(x) = I0 x, while it is constant along the other one. To reproduce
this continuous profile on the DMD screen we again use a dithered image in which the density
of ON pixels is linear along the desired direction. Using our feedback program we are able to
correct for the Gaussian profile of the beam and we can successfully give a gradient-like shape
to our laser beam. We report an example of such linear profile before and after applying our
feedback procedure in Fig. 4.6.
Since such linearly-shaped beam results in a constant force over the whole beam area, we can
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Figure 4.6: Linearly-shaped light intensity profile and feedback program. We show a CCD
picture of a DMD-shaped laser beam and its intensity profile integrated along the vertical and
horizontal directions. Without the feedback program (a) the DMD-shaped beam retains part of
its Gaussian profile which can removed by our feedback procedure (b).

use it give a uniform acceleration to our atomic sample, thus generating an atomic current
which is the fundamental building block of the whole field of atomtronics [7]. Further, the
degree of control offered by tailored optical potentials allows to produce atomic currents along
different directions and in different geometries, including the realization of circulating currents
in not-simply-connected geometries [77–80]. We report the light intensity profile necessary for
generating a linear current or a circulating current in an ultracold atomic gas in Fig. 4.7.
Following a classical description, a liner potential result in a constant force F over the whole
beam area. This force imprints a momentum change to each atom, which can be quantified by
simply using Newton’s second law:

∆p =

∫ t1

t0

Fdip(t)dt = Fdip ∆t (4.3)

where p is the atomic momentum and ∆t = t0−t1 is the time interval for which we shine the laser
beam on the sample. This very simple picture shows that we can generate an atomic current by
shining a linearly-shaped optical potential on the atomic cloud for short time intervals. However,
as we will see in the following, this classical treatment is not suited to describe the generation of
an atomic current using a linear optical potential, as an appropriate description should take into
account the profile of the quantum mechanical phase of the atomic wavefunction. Nonetheless,
the experimental procedure required to generate controlled currents in ultracold atomic gases
is the same. If the optical potential used for imprinting the current is spin-dependent or spin-
selective then different currents will be generated for atoms in different spin states. Considering
two states only, the resulting effect will thus be a spin current:

Js = J↑ − J↓ (4.4)
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Figure 4.7: CCD pictures of the light intensity profiles for generating a linear (a) or circulating
(b) current in an atomic sample. When light is blue-detuned atoms are repelled by the peak
of the intensity and the induced current flows ”down” the intensity slope. On the bottom we
report different cuts of the feedbacked intensity profile.

where J↑ and J↓ are the atomic currents of the | ↑〉 and | ↓〉 spin states respectively.

4.3 Optical Stern-Gerlach experiment

One of the most direct way of introducing and observing a spin-dependent effect in an ultracold
atoms experiment is to perform a so-called optical Stern-Gerlach (OSG) experiment [81]. The
name originates from the analogy between this kind of experiments and the 1929 Stern-Gerlach
experiment which demonstrated the quantization of angular momentum [82]. That particular
experiment involved sending a beam of silver atoms through an inhomogeneous magnetic field
and observing their deflection by letting them struck a detector. Due to the interaction between
the atomic angular momentum and the inhomogeneous magnetic field, each atom composing
the beam is affected by a force that deflects its trajectory. The breakthrough observation
of the Stern-Gerlach experiment was that the atomic beam was split in two smaller beams,
thus demonstrating the quantization of angular momentum. Considering an inhomogeneous
magnetic field B(z) directed along the vertical direction z and an atomic beam propagating
perpendicularly to it, we have that the vertical component of the force acting on each atom is:

Fz = gJ µBmJ
dB

dz
(4.5)
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where gJ is the Landè g-factor, µB is Bohr’s magneton and mJ is the atomic angular momentum
projection along the quantization axis, here defined by the magnetic field direction z. If we
consider atoms with l = 0 and J = s = 1/2, as was the case of Stern and Gerlach’s silver atoms,
we have that only two values of mJ are possible, namely mJ = ms = ±1/2. In this case the
atomic beam is split into two beams, each composed by atoms in only one spin state.
From the discussion above we can see that in a Stern-Gerlach experiment it is possible to use
an magnetic field gradient for introducing a spin-dependent force on an atomic beam so that
atoms are deflected in different directions depending on their spin. Analogously, we can use a
spin-dependent optical potential for applying a spin-dependent force on an atomic cloud and
separate atoms in different spin states. In this case the z-component of the force acting on each
atom will be given by:

Fz = − αi

2ǫ0c

dI

dz
(4.6)

where αi is the real part of the polarizability for atoms in spin state |i〉 and I is the light’s
intensity. While this spin-dependent can be applied when the atomic gas is confined by an op-
tical dipole trap, doing so results in introducing center of mass oscillations inside the trapping
potential which add to the experimental shot-to-shot fluctuations of the trap position, needlessly
increasing the complexity of the experiment. Therefore, in an optical Stern-Gerlach experiment
the spin-dependent beam is shone on the atoms after they are released from the trapping po-
tential. When atoms are released in the absence of any external perturbation they fall under
the action of gravity and expand in the so-called time of flight expansion. By shining a spin-
dependent optical potential on the falling atoms it is possible to give a differential acceleration
to the different spin states which deflects their trajectory. In strong analogy to the traditional,
magnetic Stern-Gerlach an optical Stern-Gerlach experiment allows to split the trajectories of
moving atoms depending on their spin quantum number, exploiting a spin-dependent optical
potential instead of the angular momentum-magnetic field interaction to do so.
Usually the OSG technique is used for measuring the population of different spin states in ul-
tracold atoms experiments working with atomic species such as ytterbium where it is rather
complicated to image different spin states independently due to a very small Zeeman splitting
[52, 83, 84]. Since in such experiments the different spin states cannot be resolved energetically,
the OSG is used to resolve them through a spatial separation. Conversely, the larger energy
splittings of the Zeeman states of 6Li atoms allow us to image the two spin states independently
so that we don’t need an OSG to resolve them. In this work, we perform the optical Stern-
Gerlach experiment to demonstrate that we can realize both spin-dependent and spin-selective
optical potentials, since the OSG is a powerful tool for revealing differential effects of forces
acting on atomic spin states.
For reproducing the magnetic field gradient of the classic Stern-Gerlach, we shape the intensity
profile of the optical potentials as a vertical gradient. This results in a spin-dependent force
that is also aligned to the vertical direction, thus being parallel to gravity. Therefore, as atoms
fall through the laser beam, they feel a vertical force that is added to the gravitational force.
Appropriately tuning the frequency of our laser source we can produce opposite forces for the
two spin states or a selective force that affects only one of them. By imaging our cloud from the
horizontal direction we can detect the center of mass position of the two spin states at different
times to follow their trajectory. Comparing the trajectories of the two states in presence or
in absence of the OSG beam we are able to demonstrate that we can successfully realize both
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spin-dependent and spin-selective optical potentials. We report sketches of both the magnetic
and optical Stern-Gerlach experiments in Fig. 4.8.

𝜇𝑧 = 𝑔𝐽𝜇𝐵𝑚𝐽
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Figure 4.8: Magnetic and optical Stern-Gerlach experiments. (a) Magnetic Stern-Gerlach: a
magnetic field gradient produces a spin-dependent force that deflects the trajectory of atoms
traveling as a collimated beam depending on their spin. (b) Optical Stern-Gerlach: a linear
spin-dependent optical potential obtained by a gradient-shaped laser beam gives a differential
acceleration to the two spin states composing our system. Observing the trajectory of the two
components as they fall in time of flight allows to reveal the spin-dependent effect of the optical
potential.

4.3.1 Optical Stern-Gerlach setup

We perform all the optical Stern-Gerlach experiments on a |1〉 − |3〉 non-interacting Fermi gas
exploiting the 572 G zero crossing of the scattering length between such states. As in the case
of the spin-selective blast, we work in a non-interacting system in order to prevent any physical
phenomena related to the presence of interactions from affecting our observations.
In order to characterize the spin-dependent optical potentials we observe their effect on the
center of mass trajectories of the two spin states. To do this, we compare their trajectory to
what it would be in absence of any external perturbation. To find the unperturbed trajectory we
simply prepare our system confined in the optical dipole trap, we release the trapping potential
and we measure the center of mass position of the two states as they fall. Since we do not
introduce any spin-dependent effect, the trajectories of the two states are exactly the same. We
image the falling cloud from the horizontal direction and we fit the atomic density profile with a
Gaussian distribution so that we can find the z coordinate of the center of mass of the system.
We can follow this trajectory up to around 10 ms of time of flight, after which the atoms’ motion
and expansion brings them out of the objective of our horizontal camera.
Measuring the unperturbed free fall of the two states also allows us to calibrate the magnification
of the horizontal imaging setup. In fact, the center of mass position measured with the camera
is obtained in units of 16 µm wide camera pixels. However, one micrometer in the camera
picture does not correspond to one micrometer in real space since the system is magnified by
the telescope described in section 3.3.3. This telescope is composed by two lenses in the f + f
configuration, resulting in an expected magnification factor of 6.67. To measure the actual
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magnification we can fit the free fall trajectory of our sample with the simple quadratic function
zpx = 1

2apx t
2, where zpx is the center of mass position measured in camera pixels, t is the

time at which the image is taken and apx is the acceleration in pixels/s2. Since we know that
the atoms are falling under the action of gravity alone, we can assume this acceleration to be
proportional to the gravitational acceleration g = −9.81 m/s2, with a coefficient that is the
calibration parameter for converting camera pixels into micrometers. By writing apx L = g we
can find the coefficient L, which rescales pixels into µm. Knowing the size of each camera pixel
(16 µm) we can then divide L/(16µm) to find the actual magnification of our telescope. We
find a magnification of 6.87, so that each camera pixel corresponds to 2.33 µm on the atomic
cloud. In this way we both calibrate the imaging setup magnification and find the factor for
converting our data from camera pixels to micrometers.
After calibrating the imaging magnification and observing the unperturbed motion of the two
spin states we can apply the spin-dependent optical potentials on them and investigate how
such potentials affect their trajectories. To apply a vertical and spatially uniform force we
shape our laser beam as a vertical gradient with a size sufficiently large to cover nearly all of
the atomic cloud. We use our feedback protocol to produce such linearly-shaped laser beam and
we find that we can obtain a ≃ 200µm wide gradient that is capable of covering most of the
atomic sample. As we report in Fig. 4.9 (a), we efficiently shape our beam along the vertical
direction, corresponding to the linear profile of the gradient, while we have issues in obtaining a
homogeneous profile along the horizontal direction due to the size of our target image. In fact,
the width of the target gradient is comparable to the diameter of our laser beam, so that the
feedback program does not have to remove only a portion of the Gaussian profile but it really
needs to reshape the whole Gaussian beam. The combined requirements of having a linear
profile along the z direction and an homogeneous one along x are rather difficult to satisfy and
our program is able to only partially remove the Gaussian profile along the x direction. Since
for the OSG experiment we are mainly concerned about the vertical direction, we are satisfied
with this result and we employ the intensity profile reported in Fig. 4.9 (a). We align the DMD
so that the gradient covers most of the atomic cloud, taking care that the step of the gradient,
corresponding to the maximum of the intensity, is positioned above the cloud. In this way we
avoid that the atoms get strongly repelled or attracted by the steep increase of light intensity
in correspondence of the maximum of the gradient profile. We report a sketch of the relative
position between the light gradient and the atomic cloud in figure 4.9 (b).
When we shine the OSG beam on the trapped atoms, the two spin states feel a spin-dependent
force that can be directed either downwards or upwards. Being affected by such force, the
atoms will start moving inside the optical trap along the vertical direction, giving rise to in-
trap oscillations. Releasing the atoms from the trap as they oscillate inside it results in them
starting their motion with non-trivial initial velocities and positions which greatly complicates
the experiment. For this reason, we first release the optical trap and only then we shine the
OSG beam. By shining the beam less than 1 ms after releasing the trap we are able to apply the
spin-dependent force to our atoms as they fall through the OSG beam and avoid issues related
to in-trap oscillations. Since the atoms fall under the action of gravity, and we are not able to
imprint accelerations greater than g, we do not need to pulse our laser light as atoms naturally
pass through the beam as they fall.
We lock the frequency of our laser source to a value where we expect a spin-dependent effect
and we see that the center of mass position of the two spin states after a fixed time of flight
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Figure 4.9: Experimental realization of the optical Stern-Gerlach. (a) CCD picture of the
intensity profile of the linearly-shaped laser beam. (b) Sketch of the relative position between
the OSG beam and the trapped gas. The atomic cloud is trapped in a cigar-shaped optical
dipole trap (dark red dashed lines) and the OSG beam is aligned in order to cover most of the
cloud. When the spin-dependent beam is applied on the atoms and the trap is turned off the
two spin states fall with a differential acceleration.

is indeed different. Moreover, we see that by increasing the light intensity we can enhance this
difference. However, doing this results also in an increase of the width of the atomic density
distribution. This is due to the atoms absorbing photons from the laser beam and acquiring a
higher kinetic energy. Since we want to investigate the conservative effects of the spin-dependent
optical potentials we optimize the intensity of our laser beam by finding a compromise between
evident differential effects on the two states and low photon absorption. We find that this is
achieved for 350 µW power of the laser beam.

4.3.2 Differential trajectories of spin states

We scan the frequency of our laser source and we look at the trajectories of our spin states as a
function of the detuning from the D2 line. Comparing the trajectories to the unperturbed one
we can reveal the effect of our spin-dependent forces. To quantitatively analyze our data we
proceed along two parallel directions: we fit the experimental trajectory of the spin states using
a simple equation of motion and we compare them to the expected trajectories obtained with a
simulation.
The equation of motion of a uniformly accelerating object is given by:

z(t) =
1

2
a t2 + v0 t+ z0 (4.7)

where t is time, a is the uniform acceleration while v0 and z0 are the initial velocity and po-
sition respectively. Considering our falling sample, its center of mass acceleration is given by
the contribution of both gravity and the optical potentials. However, our system is not uni-
formly accelerating since the optical force is acting on the atoms only as long as they are passing
through the laser beam, while as soon as they exit the beam area they are only affected by
gravitational acceleration. The simplest analysis we can make is to neglect this situation and fit
the whole trajectory of the spin states with Eq. 4.7 imposing v0 = z0 = 0. In this way we can
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find the mean acceleration of the spin states across the whole trajectory. By subtracting g from
this value we can have a rough estimate of the differential acceleration given to the spin states
by the spin-dependent potential. We find that we can obtain a differential acceleration between
the spin state of the order of 10% g, i.e. |a|1〉 − a|3〉| ≃ 1 m/s2. Scanning the frequency of our
laser source we can realize both spin-dependent and and spin-selective forces: a|3〉/|1〉 = g ± 0.5
m/s2 (spin-dependent) or a|1〉/|3〉 ≃ g and a|3〉/|1〉 ≃ g ± 1 m/s2 (spin-selective).

(a)

(c)

(b)

Figure 4.10: Spin state trajectories and fit. (a) |3〉-selective force: atoms in |3〉 are affected by
an optical force pointing upwards, while atoms in |1〉 do not feel any force other than gravity. (b)
|1〉-selective force: atoms in |1〉 are affected by an optical force pointing downwards, while atoms
in |3〉 do not feel any force other than gravity. (c) Opposite force: atoms in |3〉 are affected
by a force pointing upwards, while atoms in |1〉 are affected by a force pointing downwards.
We report experimental points as diamonds and fitting curves as dot-dashed lines. Each point
corresponds to the mean value of at least five experimental shots. Errorbars are the standard
deviation of such values.

To have a more reliable estimate of the atoms’ acceleration we can consider separately the re-
gion covered by the beam and the region where atoms fall under the action of gravity alone.
Comparing the measured trajectories and the size of the light gradient we estimate that atoms
exit the beam area after a ≃3 ms fall. After such time, the equation of motion describing their
fall is 4.7 with fixed a = g and with x0 and v0 depending on the motion of the atoms during the
3 ms in which they fall inside the OSG beam. Therefore, we neglect the data corresponding to
t < 3 ms and we fit the trajectories with z(t) = 1

2g t
2 + v0 t + z0, finding both v0 and z0. We

can then obtain the acceleration due to the optical potential as: a = v0/(3ms) − g. We again
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find that the differential acceleration of the two states is of the order of 10% g, in agreement
with our first estimations. We report the experimental trajectories of the spin states and their
fit obtained with the above procedure in Fig 4.10.
Through the optical Stern-Gerlach experiment we demonstrate that our setup is capable of real-
izing both spin-dependent and spin-selective optical potentials. However, we find that the laser
frequencies that allow us to realize such potentials are not consistent with the ones predicted
by the polarizability computations presented in section 3.1. In particular, we find that the ex-
perimental frequencies corresponding to the polarizabilities’ zero crossings are shifted by ≃ 700
MHz with respect to our expectations. The expected detuning from the D2 line for having a
zero crossing in the state |3〉 polarizability is ≃ −6.3 GHz. However, our experimental findings
indicate that a spin-selective potential for state |1〉, i.e. V|3〉 = 0, is obtained for a ≃ −5.6 GHz
detuning. We find that the spacing between the zero crossings of the two states is ≃ 160 MHz,
which is consistent with our expectations. We suspect this ≃ 700 MHz shift to be due to the
light polarization being not completely π. In fact, while our theoretical computations assume
perfectly π-polarized light, this may not be true in the real experiment. As we have seen in
section 3.3, we can tune the light polarization with a couple of λ/2− λ/4 waveplates and, mon-
itoring it with a polarimeter, we can set the waveplates’ angle in order to have a linear vertical
polarization. However, it is difficult to achieve 100% linear polarization and this polarization is
measured with respect to the polarimeter’s internal vertical axis which may be slightly differ-
ent from the quantization axis defined by the Feshbach magnetic field. We therefore conclude
that our assumption of perfect π polarization may not describe the experimental configuration
accurately. To account for this, we tune the polarization state in our theoretical computations
until they match the experimental data and we find that the observed light shifts are consistent
with a light polarization that has a 85% π component and a 15% σ+ component. We ascribe
this experimental deviation from a perfect π polarization to both the tilting between the po-
larimeter’s and the quantization axis and to the effect of optical elements which may slightly
affect the beam polarization. We report a comparison between the theoretical and experimental
detunings for realizing spin-selective and spin-dependent potentials in Table 4.1.

a|1〉 [m/s2] a|3〉 [m/s2] ∆νexp [GHz] ∆νπ [GHz] ∆νmix [GHz]

Selective |1〉: -1.1(1) 0.1(1) -5.618(2) -6.326 - 5.614

Opposite: -1.0(2) 0.5(1) -5.573(2) -6.240 - 5.549

Selective |3〉: 0.3(1) 1.3(1) -5.478(2) -6.146 - 5.468

Table 4.1: Detunings comparison. We report the experimental detunings (∆νexp) and the
theoretical detunings computed for both π (∆νπ) and mixed (∆νmix) light polarization necessary
for realizing spin-selective and opposite optical potentials. Accelerations are measured with the
fitting procedure described above.

To confirm this hypothesis and validate our polarizability calculations we simulate the trajec-
tories of the spin states in the optical Stern-Gerlach experiment and we compare them to our
experimental observations. We consider the one-dimensional motion of a single point, corre-
sponding to the center of mass of our sample, falling along the z axis with non-uniform accel-
eration. We divide its trajectory into steps separated by time intervals ∆t = 2µs. Given the
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Figure 4.11: Optical Stern-Gerlach simulations. We report a comparison between the OSG
experimental data (diamonds) and simulations (continuous lines) for the cases of: (a) selective
potential for state |3〉, (b) selective potential for state |1〉, (c) opposite potentials. We report the
shape of the gradient-shaped laser beam as a dashed red line. Experimental data are reported as
diamonds and correspond to the mean value of seven experimental shots. Errorbars are standard
deviation of such values.

center of mass position and velocity at step i, we compute them at the following step as:

zi+1 = zi + vi∆t+
1

2
ai∆t

2

vi+1 = vi + ai∆t
(4.8)

where ai is the acceleration at step i. Diving the trajectory into steps allows us to account for
the spatially varying acceleration. For all the steps corresponding to a position where atoms
are outside the region covered by the beam, we set ai = g as atoms feel only the gravitational
acceleration. Conversely, when they travel inside the OSG beam we have to consider the ac-
celeration caused by the optical force. To account for this acceleration we compute the optical
force considering the intensity profile of our laser beam. We obtain such profile integrating the
CCD picture of the OSG beam along the horizontal direction as in Fig. 4.9 (a) and we use
it for computing the spatially varying optical potential acting on our sample. A pixel-by-pixel
numerical derivative of the optical potential profile allows us to find the spatial dependence of
the resulting force, which is mostly constant over the beam area but presents some inevitable
fluctuations. From this spatially varying force we obtain a position-dependent acceleration that
we insert in our simulation as ai = g + aopt(zi), where aopt(zi) is the acceleration induced by
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the optical force when the atoms’ center of mass is in zi. We find very good agreement between
our simulations and the experimental data and we report a comparison between them Fig. 4.11.
We observe a little discrepancy between experiment and simulations for the case of a potential
selective only for state |3〉. In this case the optical force is directed opposite to gravity as ex-
pected, while the measured acceleration is smaller than the one predicted by the simulations.

(a)

(b) (c)

Figure 4.12: Frequency dependence of the optical potentials. (a) Theoretical light shifts of
|1〉 and |3〉 spin states in the experimentally explored frequency range. Light shifts are reported
in units of the Boltzmann constant kB and as a function of the detuning from the D2 line. (b)
Center of mass position after 6 ms time of flight as a function of the light detuning. y-axis is
the deviation from the unperturbed value, corresponding to the free fall in absence of the OSG
beam. Experimental points (diamonds) are the mean value of al least five experimental shots,
while errorbars are standard deviation. Simulation data (continuous line) are obtained with
the above procedure. (c) Linear fit (dashed-dotted line) of the experimental data. We report a
corrected fit taking into account only the first three points of state |3〉 as a dotted red line.

As a final measurement we investigate the relative position of the two states’ center of mass at
fixed time (6 ms) as a function of the laser source frequency. We report our findings in Fig.
4.12. Comparing the experimental results with the simulations we find good agreement between
them, however we again observe a discrepancy for the data of state |3〉. We see that such devi-
ation is enhanced when atoms in |3〉 feel a larger force, resulting in a larger displacement from
the unperturbed trajectory. Conversely, for the frequency range we explore, we do not see any
discrepancy for atoms in |1〉. This allows us to ascribe such deviation to the fact that, for the
frequencies where we observe a discrepancy, atoms in |3〉 are attracted by the laser beam and
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thus spend more time inside it. This results in higher photon absorption, which is not considered
in our simulations and which may affect the center of mass position after the atoms exit the
beam area. Further a more attractive potential results in a longer time passed by the atoms in
the beam area and in a higher scattering probability, which may explain why discrepancies seem
to become more relevant as the attractive force increases. On the other hand, atoms in |1〉 are
mostly repelled by the laser light and they pass through the beam rather quickly, thus being
less affected by scattering phenomena. This reasoning may explain the simulation-experiment
discrepancy we see for state |3〉 data in correspondence of the most attractive optical forces.
To qualitatively investigate the agreement between the experimental data and the simulations
we fit their slope across the zero crossings approximating their profile to a line. We find good
agreement for state |1〉 as we find the slope of the simulation data to be 0.1459(6) µm/MHz
compared to 0.15(1) µm/MHz for the experimental data. On the other hand, we find a coeffi-
cient of 0.162(8) µm/MHz and 0.116(7) µm/MHz for the state |3〉 simulation and data. Since
we suspect that our simulations cannot properly describe the points corresponding to the largest
negative potentials we fit again the slope of |3〉, considering only the three points closest to the
zero crossing, corresponding to the lowest forces. This fit (Fig. 4.12 (c), red dotted line) results
in a slope of 0.15(2) µm/MHz which is compatible with our experimental observations.
In conclusion through the optical Stern-Gerlach experiment we demonstrate that our experi-
mental setup is capable of realizing both spin-selective and spin-dependent optical potentials.
Further, by comparing the simulated trajectories to the experimental data we validate our multi-
level polarizabilities computation.

4.4 Outlook: spin currents

While the optical Stern-Gerlach is a powerful tool for revealing the spin-dependent nature of
our optical potentials, their implementation opens up much more interesting possibilities. In
particular, we can exploit spin-dependent optical potentials for generating spin currents in an
atomic sample.
As we have seen in Chapter 2, a spin current can be generated by spatially separating spin states
with a magnetic field gradient and then letting atoms with different spin move towards one
another [56, 57]. However, generating spin currents through spin-dependent optical potentials
allows to achieve a much greater control over time and length scales and to decouple the current
generation from the external magnetic field. In particular, optical potentials allow to control the
magnitude of the spin currents by changing their shape or the time for which they are applied
to the atomic cloud.
To detect a spin current in our sample we take advantage of our state-selective imaging. Since
we can selectively image atoms in different spin states, we can describe a spin current by simply
monitoring their relative motion. If we apply a spin-selective potential we will detect a motion
of the center of mass of atoms in the addressed state while the atoms in the other state remain
stationary. Such selective potentials result then in a coupled spin and mass current as the center
of mass of the whole cloud is displaced by the motion of atoms in only one spin state. On
the other hand, an opposite motion of the two states results in a spin current with negligible
mass transport. In the atomtronics picture [7], a mass current of neutral atoms is analogous
to the charge current in solid-state electronic circuits. In such systems it is usually impossible
to separate the spin and charge degrees of freedom, a notable exception being the spin-charge
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separation in the one-dimensional Tomonaga-Luttinger liquid [54], so that electric and spin
current are always coupled. In this context optical potentials are a versatile tool that allow to
induce either coupled or decoupled spin and mass currents.

4.4.1 Phase imprinting method

From a classical perspective, the simplest way of generating a current through an optical poten-
tial is to give it a linear shape, so that the atoms are affected by a uniform force. As we have
previously mentioned, shining this linear potential on the atomic sample for a short time results
in an effective ”kick” to the atoms, which acquire a momentum and thus a velocity due to the
externally applied force. This velocity results in an atomic current which can survive for longer
or shorter times depending on the nature of the system. While this classical treatment can in-
deed offer a simple picture of the origin of optically-induced atomic currents, it is not sufficient
to accurately describe the generation of currents through optical potentials in ultracold atomic
gases.
To properly describe how we can excited a current in an atomic sample with a linear optical
potential we need to consider the quantum nature of the system. An ultracold atomic gas can
be described by a many-body wavefunction ψ(t) whose time evolution is given by:

ψ(x, t) = e−
i
h̄
(H0+V (x))tψ(x, 0) (4.9)

where H0 is the Hamiltonian describing the unperturbed system and V (x) is the applied optical
potential. If at t = 0 the potential is pulsed on the atomic cloud for a time τ that is much shorter
than the typical timescales of the system, given by the frequencies of the trapping potential and
by the chemical potential, we can neglect H0. Therefore, the wavefunction at time τ will be

ψ(x, τ) = e−
i
h̄
V (x) τψ(x, 0). (4.10)

Hence in the limit of small τ , the external potential will simply add a phase ϕ(x) = −V (x) τ/h̄
to the system’s wave function.
Considering a one dimensional system, the probability current operator for the i-th particle
composing our sample is:

Ji(x, t) = − ih̄

2m

(

ψ∗
i (x, t)

∂ψi(x, t)

∂x
− ψi(x, t)

∂ψ∗
i (x, t)

∂x

)

. (4.11)

Inserting the time-evolved wavefunction 4.10 and summing over all the N particles composing
the system we have that the total probability current is:

J(x, t) =
1

m
ρ(x, 0)

∂V (x)

∂x
τ (4.12)

where ρ(x, t) =
∑N

i=1 |ψi(x, t)|2 is the numerical particle density. If the external potential is a

linearly shaped optical potential then ∂V (x)
∂x = β = const. and the resulting current will just be:

J(x, t) =
1

m
ρ(x, 0)βτ. (4.13)

Such current is imprinted by manipulating the phase profile of our sample using an external
potential. This method, appropriately named phase imprinting method [80, 85], is one of the



CHAPTER 4. TESTING THE SPIN-DEPENDENT OPTICAL POTENTIALS 95

most promising techniques for inducing controlled currents in ultracold atomic gases. In fact
by controlling both the imprinting time τ and the slope β, which can be tuned by changing
the intensity of the laser beam, it is possible to control the magnitude of the induced currents.
In the case of spin-dependent or spin-selective optical potentials each spin state will develop a
current:

J↑↓ =
1

m
ρ↑↓(x, 0)β↑↓τ. (4.14)

The resulting spin current will just be given by Js = J↑ − J↓. In the case of spin-selective
potentials one of the two states will not develop any current so that the total spin current
will coincide with the mass current of the addressed state. Further, expression 4.14 allows to
highlight how the density of atoms in each spin state ρ↑↓(x, 0) is a parameter that affects the
magnitude of the spin current and that we can tune by locally imbalancing the spin population
with resonant light.
With our experimental setup we can obtain imprinting times τ arbitrarily long and as short as a
few microseconds. Since typical timescales of our system range from hundreds of microseconds
to tens of milliseconds we can easily access the phase imprinting regime. Therefore, to imprint
a spin-current in our sample we just need to give a gradient shape to the intensity profile of our
laser beam as in the optical Stern-Gerlach experiment and pulse it on the atomic cloud finding
the optimal configuration for generating a measurable spin current while keeping the scattering
rate contained. Oppositely to the OSG case, for the generation of spin currents we want to align
the gradient horizontally so that the current develops on the long axis of our cigar shaped trap.
Once the current is generated we can detect it by measuring the relative motion of the two spin
states’ centers of mass inside the trapping potential. From very preliminary observations we
find that it may be good to eliminate experimental shot-to-shot fluctuations of the trap center
in order to increase the signal-to-noise ratio. This can be achieved by using the green DMD
that we have in our experimental setup to add a stable confining potential to the crossed dipole
trap. This can be for example done by adding solid walls near the edges of the dipole trap as in
[22, 23], where this allowed to increase the signal to noise ratio by suppressing the shot-to-shot
fluctuations in the center of mass position. The combined used of both our DMDs and of the
TEM(0,1) beam (see Chapter 1) may open exciting possibilities for investigating spin transport
in different geometries or in presence of repulsive obstacle inside the sample.



Conclusions and perspectives

In this work we designed and implemented an experimental setup for the realization of tailored
spin-dependent optical potentials which are a promising tool for the investigation of spin trans-
port and spin excitations in ultracold Fermi gases.
We showed that the Zeeman levels of 6Li atoms in magnetic fields display strongly state-
dependent polarizabilities for laser light with frequencies between the atomic D1 and D2 lines.
We found that by finely tuning the frequency and the polarization of a laser source it is possi-
ble to realize both state-dependent and state-selective optical potentials with tolerable photon
scattering rates. Since the considered Zeeman states differ by their nuclear spin, such potentials
allow to manipulate atoms with different spin in a differential way.
We developed an experimental setup for realizing such spin-selective potentials. First we imple-
mented an offset-lock setup capable of setting and stabilizing the frequency of a 671 nm laser
source. In particular, the offset-lock scheme allows us to lock the laser source to a frequency
offset from a reference laser locked to an atomic transition. We achieve frequency control and
stabilization in a range from 0 to - 6.5 GHz detuning from the D2 atomic line, which is sufficient
for the realization of both spin-dependent and spin-selective potentials.
After developing the offset-lock setup necessary for controlling the frequency of the laser source,
we focused on tailoring the spatial profile of the optical potentials. To this end, we designed and
built an optical setup for shaping the intensity profile a laser beam using a Digital Micromirror
Device. This setup also allows us to focus such tailored light on the atomic sample after a
demagnification process, taking advantage of the pre-existent horizontal imaging setup. Thanks
to appropriate tools we achieve control on the light polarization and intensity.
We performed a first test of our setup by selectively addressing atoms in different spin states
with resonant light. To avoid coping with physical phenomena related to the presence of interac-
tions, all our tests are performed over a non-interacting Fermi gas composed by 6Li atoms in the
lowest and third-lowest Zeeman states. We demonstrated that we can resonantly and selectively
address atoms in one state by looking at the population of the two spin states after shining them
with light resonant with only one state. Performing the same experiment with a DMD-shaped
beam allowed us to show that our setup is capable of producing local spin-selective dissipative
perturbations with a spatial resolution of the order of a few micrometers.
We then tested and characterized the spin-dependent potentials by performing an optical Stern-
Gerlach experiment. By applying a spin-dependent force and observing the differential tra-
jectories of the two spin states we demonstrated that the setup we developed is capable of
realizing both spin-dependent and spin-selective optical potentials. Comparing the trajectories
of the two spin states in the optical Stern-Gerlach experiment to the trajectories of unperturbed
falling atoms we have been able to quantify the effects of the optical forces we can produce.
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We found that we can give a differential acceleration to our falling spin states of the order of
1 m/s2 with almost negligible photon scattering. Finally, we validated the multi-level polariz-
ability computations by comparing the experimental trajectories to simulations based on such
theoretical predictions.
In conclusion, in this work we implemented a new setup for the realization of spin-selective
tailored optical potentials. This setup allows to differentially and selectively manipulate nuclear
spin states of 6Li atoms with a new level of control over time and length scales. Moreover, com-
bining the spin-dependent potentials with the other optical potentials at our disposal we can
control the shape of the atomic sample and investigate spin transport phenomena in different
geometries.
The simplest geometry we can investigate is that of the atoms confined in the cigar-shaped op-
tical dipole trap that we use for their evaporative cooling. As this trap has a harmonic profile,
shining a linear spin-dependent optical potential directed along the main axis of the trap allows
to induce relative oscillations between the two spin components. Such oscillatory spin current
can be detected by looking at the relative position of the two spin states’ centers of mass (Fig.
C1 (a). Considering the case of a spin-selective potential, while in the non-interacting case the
unaddressed state is expected to remain stationary, the presence of interactions between spin
states leads to the unaddressed atoms being dragged by the moving component. As we have
seen in Chapter 2, this spin drag can be both dissipative and non-dissipative [68] depending
on the considered timescales. Thanks to our versatile spin-selective optical potentials we are in
principle able to access both short and long timescale and investigate these spin drag regimes.
A possible limitation to our experiments is given by the limited imprinting time that we can
employ for inducing a spin current with contained scattering rate (Γsc ≤ 103 photons/s). With
an imprinting time of the order of 80 µs and a saturation parameter I/Is ≃ 400 we expect to
observe the center of mass of the addressed state oscillate with an amplitude smaller than 10
µm. Thus, at least for weakly interacting non paired systems, the dragged component will oscil-
late with an even smaller amplitude, possibly below one micrometer. While we can in principle
detect such small amplitude oscillations thanks to our high-resolution imaging setup, this three
dimensional (3D) geometry may not be ideal for the investigation of spin drag in all interaction
regimes
On the other hand, spin drag is expected to be a enhanced in two-dimensional (2D) geometries.
Further, most of modern-day solid state quantum devices are based on low-dimensions nanos-
tructures, motivating the great interest in the quantum simulation of one (1D) or 2D systems.
We can achieve a 2D or quasi-2D geometry by squeezing the atomic gas along the vertical direc-
tion using a repulsive TEM(0,1) beam [27]. Exploiting both the TEM(0,1) and the DMD-tailored
repulsive potentials we can also obtain oblate homogeneous degenerate gases, as in [24]. We can
therefore combine both the spin-selective and the repulsive optical potentials to investigate spin
transport in 2D or quasi-2D, homogeneous or non-homogeneous, systems. (Fig. C1 (b)).
Moreover, the tailored repulsive optical potentials allow us to trapping our atomic sample in
even more exotic geometries. In Fig. C1 (c-d) we report sketches of two geometries that we can
realize in our experimental setup. By realizing a squeezed toroidal system (Fig. C1 (c)) we could
investigate circulating spin currents, in a geometry similar to that of superconducting squids.
However, to introduce a spin current in such geometry it is necessary to adapt our optical setup
for shining the spin-dependent potentials along the vertical direction. With our current setup
we could instead investigate spin conductance through narrow channels, which we can realize
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using again the tailored repulsive optical potentials provided by our green DMD setup (Fig. C1
(d)).
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Figure C1: Spin transport experiments in different geometries. (a) Generation of spin currents
in the optical dipole trap obtained by two crossed IR beams. (b) Spin transport in an oblate
homogeneous system obtained by combining the vertical squeezing provided by the TEM(0,1)

beam and DMD-tailored repulsive potentials. (c) Toroidal geometry for the investigation of
circulating spin currents. (d) Spin transport between terminals. The confining potential and
the narrow channel can be obtained with the tailored repulsive potentials.

Once the geometry of our system is set, we can further exploit different optical potentials to inves-
tigate spin transport in many experimental conditions. The easiest, but nonetheless interesting,
situation would be to generate a spin current through either spin-selective or spin-dependent
potentials and simply investigate the properties of such current, looking for hints of spin drag
or other phenomena related to correlations between spin states in relative motion. However,
we can also exploit the green DMD to introduce a set of repulsive obstacles in our system and
investigate how they affect its spin transport properties. In Fig. C2 (a, c) we sketch two possible
experiments for the investigation of spin currents in presence of a repulsive barrier (Fig. C2 (a))
or of a pattern of either ordered or disordered repulsive obstacles. In such cases, the spin ma-
nipulation is provided by the spin-dependent potentials and the DMD-shaped green light has a
repulsive effect on both the spin states, which could be exploited for investigating the robustness
of spin currents.
Conversely, we can use the green repulsive potential for imprinting an equal current to both spin
states and use the spin-selective potentials for introducing spin-selective obstacles that may act
as spin filters as in Fig. C2 (b). In this case we will need to take into account the dissipative
effects introduced by the close-detuned light of the spin-selective potentials.
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(a) (b)

(c) (d)

ω

Figure C2: Spin transport experiments with DMD-tailored optical potentials. (a) Spin currents
in presence of a repulsive barrier. (b) Mass currents in presence of a spin-selective barrier. This
barrier could also be engineered to introduce losses to either one or both spin states. (c) Spin
currents in presence of patterns of either ordered or disordered repulsive obstacles. (d) AC spin
currents obtained by switching the image displayed on the DMD screen between gradients with
opposite slopes.

Finally, we can use our experimental setup to investigate the AC optical spin conductivity of our
sample by imprinting time-dependent spin currents. To imprint such currents we can exploit the
dynamical properties of the DMD and switch between images of differently oriented gradients
at a rate ω, which defines the frequency of the spin current (C2 (d)). As the maximum picture
time of the DMD is 56 µs, corresponding to a maximum frequency of ∼ 10 kHz, we have an
upper boundary to the range of frequencies we can experimentally investigate. Further, due to
the non-negligible scattering rate, we cannot shine the DMD-tailored beam on the atomic cloud
for the whole time interval between two different DMD images, as this can be of the order of
hundreds of microseconds or even more in the case of low-frequency currents. To overcome this,
we can combine the dynamic properties of the DMD with the AOM stabilization in order to
reduce or modulate the light intensity parallel to the switching of the DMD images.
While the scattering rate associated with the spin-dependent potentials is generally an unde-
sired effect, it can be exploited for introducing selective heating or losses on one spin state. In
particular, we could investigate the effect of a spin-dependent barrier such as that of C2 (b)
in experimental conditions where the barrier introduces strong spin-selective losses, acting as a
dissipative spin-filter [73, 76]. Further, heating only one spin component may allow to investi-
gate heat transport in spin mixtures across different geometries, interaction regimes and in both
balanced and spin-imbalanced mixtures. As the scattering rate is proportional to the intensity
of the laser beam, using a linearly-shaped beam results in a linear dependence of the photon
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absorption probability. By opportunely tuning the experimental parameters we could find a
configuration where we can achieve a linear heating of our sample and thus realize a gradient
of temperature for either one or both the spin states. We stress that it may prove rather diffi-
cult to obtain such temperature gradient due to atoms thermalizing into a system with uniform
temperature. However, the tunability of interatomic interactions allows us to produce weakly
interacting systems in order to reduce such thermalization process, or to enhance it by increasing
the interactions’ strength. Having such control on thermalization effects may help us find the
best experimental conditions for investigating spin and heat transport in ultracold Fermi gases
[48–50].
The versatility of our experimental setup and of the spin-dependent optical potentials allows
us to in principle investigate spin transport in ultracold Fermi gases combining features of all
the described geometries and experiment. Further, all the aforementioned experiments can be
performed in either balanced or spin imbalanced systems across all possible interaction regimes.
In conclusion, spin-dependent optical potentials allow to investigate spin transport phenomena
that have so far eluded experimental observation including fast spin drag and time-dependent
spin currents. Moreover, our experimental setup can be also exploited for introducing local spin-
selective perturbations which opens up interesting possibilities for probing the spin-conductivity
of fermionic systems in presence of both dissipative and non-dissipative structures. This local
and differential manipulation of spin states in degenerate Fermi gases will allow us to address
spin transport in strongly correlated fermionic systems across different geometries and interac-
tion regimes.
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al tuo corso che ho capito a quale parte della fisica volevo dedicarmi. Grazie per avermi fatto
conoscere Giacomo e Francesco e per essere stato sempre disponibile per tutta la durata della
tesi. A posteriori, grazie per la tesi triennale perchè, anche se non lo sai, mi hai indirettamente
aiutato anche in quella. Visto che siamo in tema, grazie ai miei relatori triennali Tommaso e
Giovanni, se amo la fisica sperimentale molto è merito vostro.
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