
High resolution imaging and production
of thin barriers for ultracold 6Li Fermi

gases

Master thesis in Physics

External Supervisor:
Prof. Massimo Inguscio

Internal supervisor:
Prof. Marco Grilli

Defended by:
Andrea Morales

Academic Year 2012-2013



Acknowledgements

First I would like to thanks Prof. Massimo Inguscio for the great occasion he
gave me to work within the lithium project; it has been a fruitful and fantastic
experience to enter this challenging field of Physics. Secondly I have to thank
Prof. Grilli for his patience in helping me in whatever I needed, from Physics
to bureaucracy. Thank you very much.
But my deepest gratitude goes to Giacomo Roati and Matteo Zaccanti, to have
welcome and accompanied me into this field, with enthusiasm and passion.
Thanks to Matteo for the wonderful talks on Physics, early in the morning
on the roof of LENS. I experienced from each of them. It has been really great
to learn physics from you. Thanks to Giacomo to have encouraged me in my
skylls and to have taught me the way of getting things to work, even when it
seems very hard. Thanks also for supporting me in these months. Thanks to
both for the responsibilities you decided to give me, it has been fantastic to work
with both of you. I will never forget the night in which eventually we obtained
our first molecular BEC with 6Li. You gave me a real feeling of what working
in a group means.

Thanks to the rest of the lithium group, Giacomo, Jorge and Alessia who
helped me during these months in understanding the experiment and answering
my doubts. You have all been very kind to me. Thanks to the rest of the
quantum degenerate physics group at LENS who have welcome me so warmly.

I would probabily not be here if it wasn’t for my wonderful family, that
supported me in these months of hard and intense work and in the previous
years of study. You have all been fundamental to this achievement. I owe you
everything. This work is dedicated to you.

Finally my thanks go to my friends in Rome, with whom I grew up as a
young physicist, sharing knowledge and fun, which I will never forget about.
Thanks to everyone. I wish you all the best.

A.M.



To my family,
Piero, Carla and Raffaello





Contents

1 Degenerate Fermi gases: Theory and Cooling Techniques 5

1.1 The role of quantum statistics in ultra cold atoms . . . . . . . . 5

1.1.1 More on Fermi gases . . . . . . . . . . . . . . . . . . . . . 9

1.2 Collisional properties of a weakly interacting ultracold gas . . . . 12

1.2.1 Elastic scattering and pseudo-potential . . . . . . . . . . . 14

1.2.2 Feshbach resonances . . . . . . . . . . . . . . . . . . . . . 19

1.3 Lithium 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 Atomic structure of 6Li . . . . . . . . . . . . . . . . . . . 23

1.4 Cooling and trapping atoms with laser light . . . . . . . . . . . . 28

1.4.1 Photon-atom interaction . . . . . . . . . . . . . . . . . . . 29

1.4.2 The Magneto-Optical Trap (MOT) . . . . . . . . . . . . . 35

2 Experimental Setup and Procedure 41

2.1 Optical scheme for cooling . . . . . . . . . . . . . . . . . . . . . . 41

2.1.1 Optical system to produce MOT and Slower lights . . . . 44

2.1.2 Imaging cold and ultra cold atoms across different regimes
of interaction . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.1.3 Optical setup for absorption and fluorescence imag-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2 Vacuum system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2.1 The oven . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2.2 Zeeman Slower . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2.3 Main chamber and MOT loading . . . . . . . . . . . . . . 57

2.3 Magnetic field coils . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3.1 Feshbach coils . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3.2 Curvature/Quadrupole coils . . . . . . . . . . . . . . . . . 59

2.3.3 Compensation coils . . . . . . . . . . . . . . . . . . . . . . 60

i



3 High-resolution imaging and thin barriers for ultra-cold atoms 63
3.0.4 Experimental implementation . . . . . . . . . . . . . . . . 63
3.0.5 Resolution test on aspheric lens . . . . . . . . . . . . . . . 67

3.1 Production of a thin barrier for double well potential implemen-
tation on ultra cold atoms . . . . . . . . . . . . . . . . . . . . . . 76

4 Quantum Degeneracy of 6Li 81
4.1 Experimental cooling sequence . . . . . . . . . . . . . . . . . . . 81

4.1.1 D2 Cooling Stage (CMOT) . . . . . . . . . . . . . . . . . 81
4.1.2 D1 optical molasses . . . . . . . . . . . . . . . . . . . . . 82
4.1.3 Single beam optical dipole trap . . . . . . . . . . . . . . . 85

4.2 Molecular Bose-Einstein condensate of 6Li . . . . . . . . . . . . . 86
4.2.1 Properties of mBEC . . . . . . . . . . . . . . . . . . . . . 86
4.2.2 Experimental sequence . . . . . . . . . . . . . . . . . . . . 88

5 Conclusions 91

A Acousto-optic-modulator 95

B Coils scheme 97



1

Introduction

In the seminal lecture of 1982 [1], R.Feynman’s proposed the idea of quantum
simulation as a novel tool to address quantum many body physics in a more
controlled way.

In this framework, ultra cold atoms are enjoying widespread interest both in
the quantum many-body and atomic physics communities, due to the unprece-
dented control of most of the experimental parameters, that allows the unique
possibility of implementing strongly-correlated quantum models [2, 3].

In particular, the combination of ultracold atomic gases and optical poten-
tials has opened up a new way to study condensed matter problems. In fact it is
possible to realize artificial quantum environments that mimic conventional but
also exotic systems in nature, as for example, ordinary crystals and graphene [4].
In addition, interactions between atoms can be freely manipulated from the
negative infinity to the positive infinity by means of Feshbach resonances [5],
allowing the studying of both weakly and strongly correlated systems.

This interest has been demonstrated by recent outstanding results achieved
with both bosonic and fermionic systems, addressing new quantum phases, typ-
ically inaccessible by conventional room temperature experiments [3].

Among the latest most exciting results, was the observation of superfluidity
in fermionic systems [6]. Superfluidity is one of the most spectacular phenom-
ena in nature, intimately connected to superconductivity, being a superfluid
essentially a superconductor carrying zero charge.

In particular some shared properties between high-Tc superconductors and
ultra-cold atomic strongly interacting fermions demonstrates as these last may
provide interesting insights into this exciting and challenging field.

With ultra-cold fermions it is possible, crossing a Feshbach resonance - to ex-
plore continuously the transition between a molecular Bose-Einstein condensate
(mBEC) and a superfluid of Cooper-like pairs described by the Bardeen-Cooper-
Schrieffer theory (BCS).

At the resonance, between the two regimes, many-body effects in the form
of strong correlations become dominant and the size of the pairs become much
smaller than the one of conventional Cooper pairs. The same feature is observed
in a high-Tc superconductor, showing the strong link among these two systems.
This regime is known in literatures as BEC-BCS crossover [7, 8].

Towards the quantum simulation of high-Tc superconductors, people are now
designing and setting up always more sophisticated experimental apparatus to
implement Fermi-Hubbard hamiltonians on these atomic systems.

These models are supposed to unveil the physics of these exotic and intrigu-
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ing superconducting materials. Their phase diagram is indeed considered the
Holy Grail in the theory of strongly correlated systems. The ground state prop-
erties are largely under debate. One possibility is that these models may support
(in some limit) the d-wave superconducting phase at high-Tc. At the moment
there is neither analytical nor numerical results that can support conclusively
this hypothesis.

The direct implementation of these quantum Hamiltonians with degenerate
atomic fermions may provide useful information to this debate, eventually ad-
dressing also the intriguing interplay between superfluidity and disorder that
may be added into those atomic systems via optical laser speckles [9, 10].

This thesis fits in this context, describing a new-generation experimental
set-up devoted to the production of superfluid Fermi gases of lithium atoms.
In particular, during my work, I have developed and applied new experimental
schemes to produce, to observe and to manipulate strongly-correlated fermions.

Within the period of my work at LENS (European Laboratory for Non-
Linear Spectroscopy) my main contributions have been:

• Project, realization and characterization of a compact optical set-up to
produce and imprint sheet-shaped optical potentials, with extension com-
parable to the correlation length of the fermionic superfluid system. This
kind of potential acts like a thin barrier that will be used for example to ini-
tially segregate different spin components or to study coherent Josephson-
like tunneling of pairs, mimicking the ordinary superfluid junctions.

• Project and characterization of an optical imaging system to image the
atoms with a final tested resolution of ∼ 1µm. High-resolution imaging
is indeed becoming one of the main and mandatory tool that allows to
extract the wavefunction behavior of the system.

• I was also deeply involved in the successful implementation of a new cool-
ing scheme which allowed us to cool the temperature of the magneto-
optical-trap (MOT) of fermionic lithium to temperatures well below the
previous limit. This technique will be surely applied in many other labo-
ratories worldwide.

• I have aligned and characterized the optical potential where the last stage
of cooling to quantum degeneracy is performed. In particular, we have
finally observed a molecular Bose-Einstein condensate of lithium atoms.
This is the first important step towards the production of an atomic su-
perfluid Fermi gas of Lithium.
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This thesis is divided into four chapters:

• In chapter one I describe the properties of Fermi gases and cooling tech-
niques; then I illustrate in some details the main features of 6Li atoms.

• In chapter two I describe the experimental apparatus which is able to
produce superfluid gases of fermionic atoms.

• In the third chapter I describe the optical setup that I have realized to
imprint optical potentials on the atomic cloud and improve the imaging
system of the experiment. Here I also report the measurements I have
done to characterize this setup.

• In chapter four I first present the experimental implementation of a new
cooling scheme based on D1 transition line. In the second part I de-
scribe the experimental realization of a molecular Bose-Einstein conden-
sate (mBEC) made of atomic fermions.
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Chapter 1

Degenerate Fermi gases:

Theory and Cooling

Techniques

This chapter is divided in three sections. In the first one we start with recalling
some concepts of quantum statistics, with particular attention to fermions. We
will then step through the collisional properties of a fermionic gas and approach
a general description of the Feshbach resonances. In the second section I de-
scribe the lithium 6 atomic structure. The third section gives an overview of
the laser cooling techniques which we employed in our experiment, giving some
fundamentals theoretical details.

1.1 The role of quantum statistics in ultra cold

atoms

Quantum statistic of particles: bosons versus fermions
Quantum statistics is what we use to distinguish fermions from bosons in a quan-
tum theory. In such a theory trajectories lose their meaning and two identical
particles can no longer be distinguished. In particular the state of a physical

5



6 Degenerate Fermi gases: Theory and Cooling Techniques

system made of N indistinguishable particles is determined by a set of quantum
numbers addressing their properties, namely the positions, the spins and the
energy. Indistinguishability means that an exchange of any two particles a and
b of the system will not be detectable in terms of any physical measure. This has
tremendous consequences on the nature of particles. In fact, if we consider for
simplicity a system of two particles (N=2)1, in terms of its wavefunction this
means that the physical state obtained by exchanging the two particles with
each other, must be, in force of their identity, physically equivalent to the first
one, i.e. their wavefunctions can differ just for an arbitrary phase2. This reads
as

ψ(ζ1, ζ2) = eiαψ(ζ2, ζ1) (1.1)

α being a real constant and ζ addressing all the relevant coordinates of the
particles. If we do the exchange again we go back to the initial configuration, but
the function ψ will be multiplied by e2iα. This can only mean that e2iα = 1, i.e.
that eiα = ±1 and to conclude we get the symmetry/antisymmetry condition
for the wavefunction

ψ(ζ1, ζ2) = ±ψ(ζ2, ζ1) (1.2)

If the wavefunction stays unchanged under any exchange of identical particles
it is said symmetric (bosons); if it does change sign it is said antisymmetric
(fermions). We point out that indistinguishability implies that we cannot de-
cide which particle is in a certain quantum state, but we can only know how
many particles occupy that state. This means that the wave function of a
fermionic/bosonic two particle system with particles in different states E1 and
E2 must take into account both the situations in which particle 1 is in E1 and
particle 2 is in E2, and its reversed situation:

ψ(ζ1, ζ2) =
1√
2

[ψE1(ζ1)ψE2(ζ2)± ψE2(ζ1)ψE1(ζ2)] (1.3)

where the plus holds for bosons and the minus for fermions. For a system of
N fermionic particles (minus sign), the state of the system can be conveniently
written in the form of a Slater determinant :

Ψn1,n2.....n∞(x1, ......, xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψE1(x1) ψE1(x2) . . . ψE1(xN )

ψE2(x1) ψE2(x2) . . . ψE2(xN )

. . . . . . . . . . . .

ψEN (x1) ψEN (x2) . . . ψEN (xN )

∣∣∣∣∣∣∣∣∣∣
(1.4)

1The argument can be extended easily to systems with an arbitrarly large number of
identical particles (see [11]).

2In fact the modulus of the wavefunction contain all the physical information.
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where the exchange of two columns (two particles) reproduce the correct change
in the sign. We also note that if two columns are equal, by definition of deter-
minant, the wavefunction is zero. This is the true fingerprint of fermions, also
know as Pauli exclusion principle, stating that two fermions can never occupy
the same quantum state, being their wavefunction always zero in that case. This
is clearly visible also in equation 1.2 and tells us that for a fermionic system the
occupancy number of any quantum state, i.e. the number of particles occupying
a certain quantum level, can only assume the values 0 or 1.

Quantum statistics of atoms
The statistics of composite particles (like atoms) is determined by the parity of
the number of elementary fermions which actually form it. Exchanging a couple
of composite particles corresponds to simultaneously exchanging multiple ele-
mentary identical particles pairs. Then all particles made up of an odd number
of elementary fermions obey the Fermi-Dirac Statistics for fermions, while the
ones made up of an even number of them obey the Bose-Einstein Statistics for
bosons.

Grand canonical ensemble
The fact that we can only know how many particles occupy a certain state
makes the so called grand canonical ensemble picture the most suited to de-
scribe quantum systems. It can be used to describe systems in contact with a
reservoir with which they can exchange particles and energy. The Boltzmann
factor e−(ET−µN)/kBT gives the probability that the system is in any state with
particle number N and total energy ET , where µ and T have to be thought
of as parameters imposed by the reservoir. We can add quantization to the
picture by considering a non interacting quantum gas of particles, characterized
by quantum levels of energy Ei, ni being the corresponding occupancy number.
Then the canonical partition function can be written as

Z =
∑
{ni}

e−(
P
i Eini−µni)/kBT = (1.5)

=
∑
{ni}

∏
i

e−ni(Ei−µ)/kBT (1.6)
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where ET =
∑
iEini. Using that ni = 0, 1 for fermions and any positive integer

for bosons we get the partition functions for bosons and fermions:

ZBosons =
∏
i

1
1− e−(Ei−µ)/kBT

ZFermions =
∏
i

(
1 + e−(Ei−µ)/kBT

)
(1.7)

Both of them at high temperature T � µ tend to the Maxwell-Boltzmann dis-
tribution.

Dilute regime
At high temperature we cannot distinguish fermions from bosons. The quantum
nature of particles is somehow obscured as long as the extension of their wave
packets is small compared to the interparticle spacing. As long as this holds,
the particles of a system stay distinguishable and their quantum statistics is not
crucial to describe the properties of the system. But as the temperature is low-
ered, quantum mechanics becomes important: the length scale associated to the
propagation of each particle or to the extent of its wave function - the so called
de Broglie wavelength- depends on temperature as λdB ∝ 1/

√
T . Thus, at very

low temperature, it eventually becomes comparable with interparticle spacing,
which depends on the density n of the gas as n−1/3. When this happens, parti-
cles start to behave as waves and their quantum statistics eventually becomes
relevant. As the temperature approaches zero, for bosons a phase transition to
a Bose-Einstein condensate (BEC) occurs (T < Tc), while identical fermions
-according to the Pauli principle - start to populate with one particle the lowest
energy states available up to a Fermi energy EF (T < TF ): we enter the regime
of quantum degeneracy of the gas. From a quantum statistical point of view this
occurs when in a volume Ω the number of available quantum states, which is
roughly given by Ω/λ3

dB becomes comparable to the number of particles N , i.e.
when the condition nλ3

dB ∼ 1 is met. Unfortunately in experimental laborato-
ries, at the temperatures required for quantum degeneracy to occur , essentially
all gases are solid, the only exception being Helium. The only way out is to
work out of equilibrium in the dilute regime n < 1015cm−3. In fact before a
gas of atoms can form a solid, a certain amount of time is needed, allowing
three atoms to collide together to form a molecule, the third particle carrying
away the released energy and momentum. We need our gas to thermalize on a
time scale smaller then this time window, so that we can perform experiments
on it. It turns out that while thermal equilibrium only requires two body col-
lisions, whose rate is proportional to the density, molecules formation requires
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(at least) three body collisions, whose rate is proportional to the density square.
Then at low enough density we enter the regime in which three body collisions
are strongly suppressed in the gas and the lifetime of our quantum degenerate
gas is extended.

1.1.1 More on Fermi gases

Fermions are all particles whose spin is a half integer number, obeying the Pauli
exclusion principle. For this reason they are much more difficult to cool when
compared to bosons, because at very low temperature the elastic scattering cross
section is strongly Pauli suppressed since identical fermions can not occupy the
same position in space: thermalization processes involved in fundamental cool-
ing techniques such as evaporative cooling becomes inefficient.
The statistic of these particles is described by the well known Fermi-Dirac dis-
tribution, which is obtained by the second of 1.7 as

〈nF 〉 = kBT
∂lnZ
∂µ = 1

eβ(E−µ)+1
(1.8)

providing the average number of fermions3 occupying the quantum level with
energy E, being µ the chemical potential of the gas and β = 1/kBT . In ac-
cordance with the Pauli Principle this averaged value is always lower than one.
The following limits hold:

• High temperature limit:

〈n〉 = ze−βE with z ≡ eβµ ≡ fugacity (1.9)

• Low temperature limit:

〈n〉 = 〈n〉T=0 +
sign(E − µ)

exp(β|E − µ|) + 1
(1.10)

A plot of the FD distribution is reported for both T = 0 and T/TF � 1,
TF being the Fermi temperature defined by eq. 1.18. At zero temperature
fermions populate all the momentum states available for the system starting
from the ground state, up to a maximum level known as Fermi level (kF ) with
an associated Fermi energy (EF ) such that:

EF =
(~kF )2

2m
(1.11)

3For bosons the calculation is the same and the result has just the opposite intermediate
sign.
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Figure 1.1: Different configurations for a system of bosons (left) and fermions
(right) at zero temperature.

All these states together form the Fermi sphere. At low but finite temperature
the distribution is significantly modified only in the vicinity of the Fermi level,
i.e. in the vicinity of the Fermi surface of the sphere: these states are the only
one important to affect the physical properties of the system described by its
thermodynamics quantities (E, S, N, ecc).

Figure 1.2: Plot of the average occupation number of fermionic system for T = 0

and T < TF . The function is modified only in the vicinity (∼ kBT/EF )of the
fermi value of the energy. For T=0 the first derivative diverges at E = EF ; as
soon as T 6=0 it become finite.

To calculate thermodynamics quantities it is useful to introduce the density
of states g(E) which counts how many states the system has for each energy
value. We can use it to evaluate the total number of particles

N =
∑

statess

〈ns〉 =
∫
dE g(E)

1
eβ(E−µ) + 1

(1.12)
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The analytic dependence of the g(E) on the relevant quantities reads as

g(E) = cαE
α−1 (1.13)

α being a coefficient dependent on the dimension and on the potential acting
on the system and cα a coefficient independent from the energy.

Interesting Physical Systems

Homogeneous Gas Harmonic potentials

3D α = 3/2 α = 3

2D α = 1 α = 2

1D α = 1/2 α = 1

We shall see that in ultra-cold atoms experiments the trapping potential
is realized via magnetic fields or focussed laser radiation; this potentials are
usually harmonic near the center of the trap. We report in the table above
some values of α for the most relevant physical situations. The total energy of
the system reads as

E =
∫ ∞

0

g(E′) n(E′) E′ dE′ (1.14)

Since the levels in a narrow interval centered around the Fermi sphere are the
only one that contribute to the thermodynamics at very low temperature, we
can evaluate integrals in 1.12 and 1.14 expanding g(E) near its value at EF

g(ε) ∼ g(EF ) +
dg

dE

∣∣∣
E=Ef

δE (1.15)

We get respectively

Small T :


N ∼ 1

α
EF g(EF )

[
1 +

π2

8
(KBT

µ

)2
α(α− 1)

]
E ∼ E(T = 0)

[
1 +

π2

8
(KBT

EF

)2(α+ 1)
] (1.16)

these being correct on the order O( T
EF

)2 [12].

Homogeneous gas

• 3D
In this case we have cα=3/2 = Ω (2π)(2m)3/2

~3 . Using 1.16 we find

T = 0 :


E =

3
5
NEF

N = Ω
k3
F

6π2
= Ωρ
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• 2D
In this specific case, in which cα=1 =

(
2πm
h2

)
Ω, we can evaluate both N

and E in a non approximated way (analitically) to find

Any T :


E =

3
5
NEF

N

Ω
=

1
λ2
T

log(1 + eβµ)
with λT =

h

(2πmkBT )1/2

Harmonic Potential
As mentioned before the trapping potential employed in an ultra-cold atom
experiments is usually harmonic. We assume here the potential to be isotropic.

• 3D
For this physical configuration we have cα=3 = 1

2(~ω)3 and for 1.12 and
1.14 we find:

T = 0 :


E =

3
4
NEF

N =
1
6
E3
F

(~ω)3

Inverting the first equation we get the following value for the Fermi Energy

EF = (~ω)(6N)1/3 (1.17)

We observe that the same dependence on total number of particles and
trapping potential frequency is found for the BEC critical temperature
Tc ∝ ~ωN1/3 (see for example [13]). This allows us to say that the energy
scale for Fermi degeneracy in a harmonic potential, is basically given by
the Fermi energy. In term of temperature one can introduce a Fermi
temperature simply defined by:

TF =
EF
kB

(1.18)

1.2 Collisional properties of a weakly interacting

ultracold gas

Here we recall the collisional properties of an ultra cold gas, meaning we de-
scribe how the scattering cross section and amplitude behave when we change
the energy and/or some parameters of the system, as a magnetic field. Scatter-
ing amplitude is linked to the parameters which control the interaction between
atoms.
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General overview
In any real gas the atoms interact mutually through some interatomic poten-
tial. If we neglect the weak magnetic dipole interaction between the spins, the
interatomic interaction is described by a central potential V(r) that, at large
relative distances, is given by the van der Waals potential ∼ −C6

r6 due to mu-
tual interaction between the fluctuating electric dipoles of the atoms. In fact
the fluctuation of the electronic cloud around the nucleus of the atom 1 can
temporarily generate a dipole moment p1 with an associated electric dipole field
E1 ∼ p1

r3 . This field can induce a second dipole moment p2 on a close atom
(2). If atom 2 has polarizability α, the strength of the induced dipole is given
by p2 = αE1 = α p1r3 . Then the interaction potential energy between atoms
1 and 2 depends only on the relative interparticle distance r and is given by
V (r) ∼ −p1p2r3 = −αp

2
1

r6 < 0, whose sign means attractive interaction. This in-
teraction is then isotropic (central field like) and short range (∼ 1/r6), the
latter meaning that beyond a certain distance rvdW the interaction is negligible.
This holds down to a few a0 distance, below which the two electron clouds touch
each other and strong Coulomb interaction prevents the atoms to come further
close by. This can be approximated as a hard-wall repulsive interaction. The
distance rvdW is called the range of the potential. From a general point of view,
it is important to point out that interactions among atoms does affect the ther-
modynamics of the gas as well as its kinetics. With thermodynamics, we mean
that interaction does change the relation between pressure and temperature, i.e.
the equation of state of the gas. With kinetics on the other side, interactions
determine the time scale over which thermal equilibrium is reached.
At very low temperatures the stable phase of any gas is the solid one (Helium
being the only exception). But as we said, in ultra dilute regime it can take min-
utes for the gas to fall in its solid ground state. This is due to strong suppression
of three-body collisions -which are required to form molecules and larger clusters
of bond atoms (see paragraph Dilute regime)- with respect the two-body kind,
that allow thermalization of the gas through elastic collisions and subsequent
redistribution of momentum among atoms. In this sense, inelastic collisions be-
tween particles are strongly unwanted, for they lead to change in the internal
states of the involved atoms and subsequent trap loss. Fortunately they can be
eliminated by keeping atoms in the lowest internal energy states.
Thus for sufficiently low densities the behavior of the gas is governed by two-
body interactions, i.e. the probability of finding three atoms simultaneously
within a sphere of radius rvdW is much smaller then the one of finding just two
of them within it. This condition is satisfied in the dilute regime, when the mean
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inter particle spacing n−1/3 is much larger than the range rvdW , i.e. when:

nr3
vdW � 1 (Dilute) (1.19)

More, the gas is ultra cold, which means that typical collisions occur at low
relative momenta compared to the scale 1/rvdW of the potential:

k � 1
rvdW

(Ultra cold) (1.20)

and the relative de Broglie wavelength is λdB = 2π/k � rvdW . In these regime
of low-energy scattering processes, the details of the true short-ranged interac-
tion potential is never explored. In other words it can be thought that, since
particles are widely delocalized in space at very low temperature, they experi-
ence the interaction potential on a large region of space, and thus are sensitive
to an effective interaction resulting from the average potential within this re-
gion. This allows for modeling the real two body scattering potential in real
space with a delta-like pseudo potential, which is much easier for theoretical
description.

1.2.1 Elastic scattering and pseudo-potential

In this section we follow the approach of [14]. As we saw due to the diluteness
of the gas, two body collisions are predominant. Two body physics is easy to
describe in the center-of-mass frame of the colliding atoms, where µ = m/2 is
the reduced mass and ~k the relative wave vector before the scattering. The
Schrödinger equation for the scattering problem can be written as

(H0 + V )|ψ〉 = E|ψ〉 (1.21)

where H0 is the kinetic energy for the free particle4 (plane wave) and V is the
interaction potential. The solution for the ket |ψ〉 can be found in the complex
plane avoiding the singularity of the operator 1

E−H0
as

|ψ〉 = |φ〉+
1

E −H0 +±iε
V |φ〉 (1.22)

This is the so called Lippman-Schwinger equation for the ket in the Hilbert
space. It shows how the wave function in the presence of a center of diffusion is
made up by the sum of the incident plane wave plus the effect of the diffusion5.

4Because we are dealing with elastic scattering, the eigenstate of the energy E is the same
for the states of the system who do not experience V.

5V is assumed to have a finite range, as in all physically interesting problems, and to be
local, i.e. diagonal in the position representation: 〈x′|V |x”〉 = V (x′)δ3(~x′ − ~x”). The finite
range can be introduced manually with a cut-off in momentum space, or it can be deduced
by the proper scale of the potential at play.
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For V → 0, ψ reduces to the solution φ of the unscattered plane wave. Projecting
equation 1.22 on the basis of the positions and using the residues theorem, the
Green function of the problem can be evaluated as

G±(~x− ~x′) =
~2

2µ
〈x
∣∣∣ 1
E −H0 ± iε

∣∣∣x′〉 =

=
∫

d3p

(2π)3

ei~p·(~x−~x
′)

k2 − p2 + iε′
= − 1

4π
e±ik|~x−~x

′|

|~x− ~x′|
(1.23)

the plus and minus sign being referred to the incoming or outgoing spherical
wave. Eq. 1.23 contains all the meaningful physical properties of the scattering
processes and it can be used to write the explicit form of the scattered wave
function:

ψ±(~x) = ei
~k·~x +

∫
d3x′G±(~x− ~x′)V (~x′)ψ±(~x′) (1.24)

Eq. 1.23 is also the solution of the Helmholtz equation (∇2 + k2)G±(~x− ~x′) =

δ(3)(~x− ~x′) for a point-like source of scattering. It is indeed a more general
result [12] that the effect of any finite range potential can be described in terms
of point-like (delta) sources of scattering. Considering the outgoing wave (+)
far from the region of interaction, i.e. for r = |~x| � |~x′| = r′, one can use
|~x− ~x′| ∼ r − r̂ · ~x′ to find that

ψ+(~x) = 〈x|ψ+〉 r�1−−−→ ei
~k·~x + eikr

r f(~k′,~k) (1.25)

where ~k′ = k r̂ is the diffused wavevector (in accordance to elastic condition
k = k′), and f(~k′,~k) is the scattering amplitude defined as

f(~k′,~k) = − 1
4π

∫
d3x′e−i

~k′·~x′ 2µ
~2
V (x′)〈x′|ψ+〉 (1.26)

This is easily related to the differential scattering cross-section as dσdΩ = |f(~k′,~k)|2,
while the total scattering cross section σtot is provided by integration over the
solid angle. Despite the appearance, equation 1.26 is an integral equation for
the scattering amplitude, where the n-th order contains n times the potential V.
It is thus perfectly suited to implement a perturbative approach. Substituting
eq. 1.25 in 1.26, to second order one gets:

f(~k′,~k) = −2µV (~k′ − ~k)
4π~2

+
∫

d3p

(2π)3

V (~k′ − ~p) f(~p,~k)
k2 − p2 + iε

(1.27)

The latter equation shows explicitly how interactions due to the interparticle
potential are mediated by scattering processes, described by the scattering am-
plitude f(~k′,~k). For a contact potential in real space of the form

V (~r) = g δ3(~r) (1.28)
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we get a constant potential in momentum space and equation 1.27, at the lowest
order, gives the so called Born approximation

f ∼ − 1
4π

g m

~2
= fBorn (1.29)

Within this model f is independent of the scattering angle between k and k′

and is therefore adequate to describe isotropic scattering. In ultra cold atoms
interaction potential has a Lennard-Jones shape due to van der Waals inter-
actions (∼ − 1

r6 ) at long distances and strong repulsion of electronic clouds at
short distances (∼ 1

r12 ). Therefore the central nature of this potential allows
to express the scattering amplitude in terms of the scattering angle θ between
k ad k′ and of the incident energy E ∼ k2. This spherical symmetry means
the hamiltonian H commutes with the angular momentum L ([H,L] = 0) lead-
ing to factorization of the radial part of the wavefunction from its angular one.
The scattered wavefunction thus results axially symmetric with respect to the
incident wavevector k and can be written as

ψk(~r) =
∞∑
l=0

m=l∑
m=−l

Yl,m(θ, φ)
uk,l,m(r)

r
(1.30)

where φ is the azimuthal angle and Yl,m(θ, φ) are the eigenfunctions of the
angular momentum L. The problem 1.21 is solved when equation

u”k,l,m(r) +
(
k2 − l(l + 1)

r2
− 2µV (r)

~2

)
uk,l,m(r) = 0 (1.31)

is satisfied for every k, l,m. Thus, the Schrödinger equation for the complete
wavefunction splits into infinite equations, one for each angular momentum
component. This is the mathematical expression of the physical fact that central
fields cannot change angular momentum. If we assume k parallel to z, the
incoming wave is eigenstate of Lz operator with eigenvalue m = 0 6, and can
be written with partial wave expansion [11] in terms of Legendre polynomials
Pl as

ψk(~r) =
∞∑
l=0

Pl(cosθ)Rk,l(r) (1.32)

where Rk,l(r) = uk,l,m=0(r)
r . Solving equation 1.31 one finds Rk,l(r) ∝ 1

r sin
(
r −

lπ2 + δl
)
that can be substituted in 1.32 and by comparison with the partial

wave expansion of 1.25 gives, for the scattering amplitude, the expression

f(k, θ) =
1

2ik

∞∑
l=0

(2l + 1)(e2iδl − 1)Pl(cosθ) (1.33)

6The fact that the angular momentum component along the propagation axis must vanishes
is pretty clear classically since ~L · ~p = (~r × ~p) · ~p = 0
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Due to conservation of the flux for each l, each component of the scattered wave
differs, from the one of the incoming wave, by only a phase shift δl [11, 14]. If
we furthermore consider the ultracold regime, i.e. the limit k � 1/r0 - r0 being
the range of the potential- the phase shifts behave as δl = k2l+1 and for small
k, all terms with positive l are negligible with respect to l = 0 (δl>0 � δl=0).
This can be heuristically explained by classic arguments: the effective potential
in eq. 1.31 is made of two parts,

Veff = V (r) +
~2

2µ
l(l + 1)
r2

(1.34)

where the short ranged interaction potential is summed to the centrifugal bar-
rier. For small k values, particles with l > 0 can not penetrate the centrifugal
barrier and thus they never experience the potential V (r) inside it. In contrast,
particles with l = 0 (s-wave) do not feel any centrifugal repulsion, and thus they
are the only one scattering in the small k limit. Thus at low energy and for any
short ranged potential, particles interact only in the isotropic s-wave channel7.
Equation 1.33 reduces in this limit to [11]

f ∼ fs−wave(k) =
1

2ik
(e2iδs − 1) =

1
kcotδs − ik

∼ 1
(− 1

a + reff
k2

2 )− ik
(1.35)

where we have expanded k · cotδs for k � 1
r0

up to 2nd order in k and defined
the scattering length as

a = − lim
k→0

tanδs
k

(1.36)

where reff is the effective range for the potential. The value of both a and reff
are set by the microscopic details of the interatomic potential. Importantly
completely different microscopic interactions can lead to the same low-energy
scattering amplitude: one can thus substitute the true complicated interatomic
potential with a much simpler effective interaction parametrized by the scatter-
ing length a and the effective range reff .

Accounting for indistinguishability among particles results in (anti) sym-
metrization of the wave function for (fermions) bosons, which slightly modifies
the differential cross section as:( dσ

dΩ

)
identical

= |f(θ)± f(π − θ))|2, 0 < θ < π/2 (1.37)

7In equation 1.26 for finite range (r0) potentials, only ~x′ inside the range contribute to
f : when k → 0, e−i~k′·~x′ ∼ 1 and f become independent of the scattering direction. Time
reversal symmetry guarantees independence also on the incident direction, and thus f(θ) is
independent of the scattering angle θ.
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This leads from eq. 1.35 for k → 0 to [11]:
σid.bosons =

8πa2

1 + k2a2

σid.fermions = 0 (Pauli Principle)

σnon id.particles =
4πa2

1 + k2a2

(1.38)

The second equation results from the fact that identical fermions (f.e. a spin up-
spin up pair) have symmetric spin-wavefunction and thus can only interact via
a spatially antysimmetric wavefunction, the first one (lower in energy) being the
p-wave configuration (l = 1). This requires for the two scattering particles an
energy at least equal to the centrifugal barrier ~2/2µr2. For 6Li the maximum
height of the p-wave barrier is 600 µK.

From equation 1.35 we get some interesting limits:

• k|a| � 1 and k reff . 1: f becomes independent of momentum and
the entire physics - i.e. f - is described only by one parameter: f = −a.
In this limit, within the Born approximation 1.29, the interaction can be
described by a contact pseudopotential8

V (r) = g δ3(r) (1.39)

with coupling constant

g =
4π~2a

m
(1.40)

Eq. 1.38 in this limit read as
σid.bosons = 8πa2

σid.fermions = 0

σnon id.particles = 4πa2

(1.41)

Of course the latter equations can not hold in general, since a divergence
in the scattering length would produce an unphysical divergence in the
total scattering cross-section.

• k|a| � 1 and k reff � 1: this is called unitary limit. The scattering am-
plitude from equation 1.35 is now f = i

k . This situation occurs whenever
a bound state is supported by V [15]. The resultant total scattering cross
section for fermions from the third of eq. 1.38 is σtot = 4π

k2 which is the
maximal possible for s-wave collisions.

8We are interested in contact potential since it can be shown [12] that the effect of any
short ranged potential on the wavefunction can be modeled at low-energies as the one of an
hard-core potential where the radius of the core is the scattering length a.
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Bound states
The poles of the scattering amplitude determines the energy of the bound states
of the interaction potential [16]. For a > 0 and reff = 0, eq. 1.35 admits a sin-
gle pole, describing a molecule (dimer) with binding energy Eb = −~2/(2µa2).
In general for a non zero reff the binding energy reads as Eb = −~2/(2µa∗2),
with a∗ = 2R∗/(

√
1 + 4R∗/a− 1) and R∗ = −reff/2 > 0.

Born approximation at higher orders
The form of eq. 1.22 is perfectly suited to perform perturbation theory and
diagrammatic calculations. If we consider higher orders of equation 1.27, we
find divergences yet at the second order. This is due to the unphysical nature
of the delta potential which does not exhibit a characteristic scale, neither in
real space or in momentum space: all physical potential must fall off over a
certain distance. To overcome the problem, an explicit cut-off in momentum
must be introduced. This can be done manually by simply impose the potential
to be zero outside a certain region, or by proper renormalization of the coupling
constant. Details on this procedure can be found in [6].

1.2.2 Feshbach resonances

An extremely useful tool available in ultra cold atoms experiments is the possi-
bility to tune interactions through the so called Feshbach resonances, by simple
means of a homogeneous magnetic field B. Interactions lay at the heart of the
formation and dynamics of our degenerate gas. As discussed already, the mag-
nitude of the scattering length a basically gives a measure of the strength of the
interaction and its sign eventually indicates whether the interaction is repulsive
(a > 0) or attractive (a < 0). Thus tuning the interaction means tuning the
scattering length a.

Coupling between open and closed channels
A Feshbach resonance occurs in scattering processes between atoms in different
internal hyperfine states, when the energy of a bound state in the interatomic
potential is brought into resonance with the energy of the two colliding atoms.
For the two colliding atoms interaction is mediated by some kind of potential
which depend on their internal states: for alkali atoms (with one external elec-
tron per atom) it might be a triplet potential or a singlet one. Conservation of
energy allows processes only into the so called "open channels" of scattering.
Forbidden channels are referred to as "closed channels". In general different
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internal atomic states are characterized by different interatomic potentials, as
the different relative spin orientation of the valence electrons may change the
nature of the interaction - for example from triplet to singlet. In particular, if
the open and closed channels have different magnetic moments, their relative
energy can be tuned by adjusting an external magnetic field, and, if bound
states are supported by the potential of the closed channel, one of them can
become degenerate (resonant) with the energy of the open channel (see figure
1.3). A coupling between open and closed channel arises, leading to second

Figure 1.3: Picture of scattering channels of colliding atoms. The energy of the
continuum can be brought to resonance with a bound state of the potential of a
close channel by tuning an external magnetic field.

order processes where the closed channel may be temporarily occupied by the
colliding atoms during the interaction processes, which eventually come back to
the open channel when the interaction ends. The accounted phase shifts, which
depends on the coupling between the channels, and eventually on the external
magnetic field B, modifies the scattering length according to equation

a = abg

(
1 +

∆B
B −B0

)
(1.42)

where abg is the background, i.e. the non resonant, scattering length indepen-
dent on the magnetic field, ∆B is the width of the resonance and B0 the value
of the resonance. Because of the dependence on 1/(B − B0), large changes in
the scattering length can be produced by small variations in the magnetic field.
A detailed derivation of this formula can be found in [15].
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|1〉-|2〉 resonance in 6Li

Accurate knowledge of the two body interaction potential is required to calculate
the curve a = a(B) for a certain atom. In the case of 6Li one can refer to [17] [18].
All combinations of two of the three lowest hyperfine state of 6Li, hereafter
denoted as |1〉, |2〉 and |3〉, exhibit Feshbach resonances for magnetic field below
1000G. In our experiment we prepare our fermionic Lithium gas in the lowest
hyperfine states which we address as |1〉 and |2〉. At low and high field they are
identified by the following quantum numbers:

State B = 0 High field B > 100 Gauss

|1〉 = |F = 1
2 ;mF = − 1

2 〉 |mI = +1 ; mj = − 1
2 〉

|2〉 = |F = 1
2 ;mF = + 1

2 〉 |mI = 0 ; mj = − 1
2 〉

They exhibit a broad Feshbach resonance which according to equation 1.42 is
described by the following parameters [19]:

B0 (G) ∆B (G) abg (rBohr)

≈ 832 ≈ 262 ≈ −1582

Referring to figure 1.4, we can distinguish two main behaviors: the right side
–or BCS side- of the resonance where a is negative, and the left side –or BEC
side- where a is positive. When a potential gives a state that is only weakly
bound, a is large and positive, as the case of the molecular BEC side of the
resonance, while a slightly shallower potential in which the state is not bound,
produces a large and negative value of a. Then for a fermionic gas such as 6Li,
a large and negative scattering length may enable the observation of a BCS-like
phase transition to a superfluid state: here in fact the Cooper condition of an
arbitrary weak attractive interaction between fermions on top of a Fermi sea is
fulfilled [6]. On the BEC side, due to three body processes three atoms collide,
two bind together with energy EB = − ~2

ma2 , the third absorbs the released ki-
netic energy: Feshbach molecules are created. The closer to resonance on the
left side, the less the molecules are bound, the more the fermionic nature of the
atoms prevails. As we decrease the B field, the binding gets stronger and the
atoms get closer: the molecules start to behave as bosons and, if the tempera-
ture is enough low, Bose-Einstein condensation occurs.
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Figure 1.4: Scattering Feshbach resonance between states |1〉 and |2〉 of 6Li at
832 Gauss. A picture of the many body quantum states (BEC, BCS, crossover)
that can be explored is presented. Their nature depend on the sign of a.
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1.3 Lithium 6

Why Lithium 6?
In the ultra-cold atom community, lithium is one of the most exploited atomic
species involved in the realization of toy model of condensed matter physics
within the quantum degenerate regime. It exists in both bosonic (7Li) and
fermionic (6Li) stable isotopes, which are widely used to perform experiments
respectively with BECs and quantum degenerate Fermi gases. The great inter-
est of this species is due to the large number of Feschbach resonances among
different hyperfine levels which are extremely broad compared to others alkali.
This allows a fine tuning of the scattering length of the two body process across
different regimes of interaction [20,21]. In our case the presence of these broad
resonances makes of 6Li the ideal candidate for studies of both Fermi- and
Bose-Hubbard models [22]. Furthermore, due to its small mass, Li has a larger
photon-recoil energy compared to other alkali. This results in a larger tunneling
rate and faster timescale for super-exchange processes, and allows easier access
to spin dominated regimes [23].

1.3.1 Atomic structure of 6Li

Among alkali elements, 6Li is one of the only two stable isotope -the other
one being 40K. It has configuration [He]2s1 and atomic weight 6.015 u=
9.988×10−27Kg with three neutrons and atomic number Z=3 (N=6 nucle-
ons). Having just one s-electron in the outer shell, determines its total elec-
tronic spin |~S| = 1

2 . The fine interaction due to spin-orbit coupling writes as
∼ ~L · ~S = J2 − L2 − S2 with the proper constant of proportionality, where the
electronic angular momentum ~J = ~L + ~S has been introduced. The nuclear
angular momentum (or nuclear spin) is |~I|=1 and thus the atom experiences
hyperfine interaction between the associated nuclear magnetic moment9 and the
magnetic field created by the surroundings electrons. This interaction writes as

HHF ∼ ~I · ~J (1.43)

This interaction breaks the degeneracy on the mj and gives origin to a hyperfine
structure. The vector ~F = ~I + ~L + ~S = ~I + ~J is used to classify the associ-
ated hyperfine states: in fact the energy operator 1.43 is diagonal in the basis

9If a charged particle posses an angular momentum ~I the g-factor is the constant of pro-
portionality between ~I and a magnetic dipole moment (µ) naturally associated with ~I.

~µ = gI
~I

and gI has the sign of the electric charge.
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|L,S,J,I;F;MF 〉 and the energy splitting can be calculated as [24]

∆HHF =
1
2
Alevel

(
F (F + 1)− I(I + 1)− J(J + 1)

)
(1.44)

where the constant A depends on the atomic level. Useful values of A for ground
and first excited state from ref. [25], are reported in tab.1.

Associated atomic level Value [MHz]

A22S1/2
152.1368407

A22P1/2
17.386

A22P3/2
-1.155

Table 1: Hyperfine constants of the atomic levels of 6Li.

We report in figure 1.5 a schematic and yet useful scheme of the atomic level to
picture the situation.

Ground state and first excited
In the ground state configuration 1s22s1 the electronic angular momentum is
|~L| = 0: spin orbit interaction is zero. Here ~J = ~S and thus from elementary
addition of angular momentum, the quantum number F can only takes values
in integral steps in the range:

|J − I| 6 F 6 J + I (1.45)

which in this case means F = 1/2, 3/2.

• F = 1
2

Hyperfine splitting from equation 1.44 -using the appropriate value from
table - results ∆HHF ' −152 MHz.

• F = 3
2

In the same way one get ∆HHF ' 76.068 MHz.

The distance in energy between this two states then results ∆E(F = 3/2 ↔
F = 1/2)=228 MHz. The same procedure can be extend to other levels10. The
half integer values of F are fingerprint of the fermionic character of 6Li.
In the excited state configuration 1s22p1 the total electronic angular momen-
tum is |~L| = 1. Thus, in addition to hyperfine interaction, spin-orbit interaction

10For the 22P3/2, quadrupole interaction should also be taken into account [26].



1.3 Lithium 6 25

Figure 1.5: Atomic levels of fermionic Lithium in a region of space where no
external fields are present. Levels are classified with quantum numbers L,J and
F. Energy splittings are not at scale. Figure taken from [26].

is now present due to the coupling between the magnetic dipole moment arising
from electronic spin and the angular momentum 11. It has the usual form

HSO ' ~L · ~S =
1
2

(
J2 − L2 − S2

)
(1.46)

When we include also the hyperfine interaction 1.43 we can distinguish two cases:
J=1/2, for which ~F can assume the same values of the ground state; J=3/2, for
which F=-5/2, -3/2, -1/2,1/2, 3/2, 5/2 are all possible states. The transition
lines between the ground state level L=0 and the excited fine-splitted sub-levels
L=1 are referred to as D1 and D2 lines, being D1 (22S1/2↔22P1/2)=670.992 421

nm and D2 (22S1/2↔22P3/2)=670.977 338 nm. The fine structure energy split-
ting of the excited state is found to be ∆EFS = 10.053 044 GHz [27].

External magnetic fields: Zeeman shift
If atoms are put in a non zero magnetic field region, energy splitting of the
hyperfine levels into a total of (2S + 1) (2I + 1) = 4I + 2 states occurs. In the
presence of a static ~B field the interaction energy is given by:

∆E = −~µ · ~B (1.47)
11In general the interaction between two angular momenta is due to the gyromagnetic ratios

(g-factor or g). Two angular momenta will produce two dipole moments which interact with
each other.
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where the atom’s total magnetic moment has two distinct contributions from
the electrons and the nucleus: ~µF = ~µJ + ~µI

12. The Zeeman Hamiltonian for
an alkali atom in a static external magnetic field B is obtained by minimal
substitution of the momentum operator. Neglecting the diamagnetic term the
part of the Hamiltonian including the B-dependent terms can be written as

Ĥtot = Ĥ0 + ĤSO + ĤHF + ĤZeeman(B) =

= − ~2

2me
∇2 + V (~r) + ξ(~r)~L · ~S︸ ︷︷ ︸

Spin−Orbt

+ ζ(~r)~I · ~J︸ ︷︷ ︸
Hyperfine

+ĤZeeman(B) (1.48)

Referring the energies to the fine structure levels, the interesting part of the
hamiltonian is

ĤHF + ĤZeeman = ζ(~r)~I · ~J + ĤZeeman(B) (1.49)

The quantization axis is chosen along the z-direction. For low fields (� 102G

for the case of 6Li which is a very light atom) ĤZeeman � ĤHF , and its effect
can then be considered as a perturbation to the hyperfine atomic structure
(anomalous Zeeman effect). Interaction between ~I and ~J is yet strong and
thus F remains a quite good quantum number to distinguish the atomic levels,
despite their energy splitting follow the mF component as

∆EZeeman =
µB
~
gFmFB (1.50)

where the Landè factor gF associated to each hyperfine level is mixing gJ with gI
as gF = gJ

F (F+1)−I(I+1)+J(J+1)
2F (F+1) + gI

F (F+1)+I(I+1)−J(J+1)
2F (F+1) , µB ∼ 1.4MHz/G

the Bohr magneton and B = | ~B|. Properly speaking F is no longer a good
quantum number and is substituted by MF . States with same value of MF

are now mixed13. The values of electronic and nuclear g-factors from [25] are
reporter in the following table

12|~µI | ∝ µN = e~
2mp

and |~µJ | ∝ µB = e~
2me

=µN ×N ·2000, N being the number of nucleons.
Thus the nuclear contribution ~µI is much smaller then the electronic one ~µJ and it can often
be neglected.

13The elements of matrix of the Zeeman hamiltonian in 1.49 can be computed in the di-
agonal basis of quantum numbers |L, S, J, I;F ;MF > which can be obtained from the basis
|L, S, J,MJ , I,MI > by means of Clebsh-Gordan coefficients as

|I, J, F,MF >=

=
X

MI+MJ=MF

|I,MI , J,MJ >< I,MI , J,MJ |I, J, F,MF >

where we omitted for simplicity the quantum numbers L and S.
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g-factors Value

gI -0.000 447 654 0
gJ(22S1/2) 2.002 301 0
gJ(22P1/2) 0.666 8
gJ(22P3/2) 1.335

The atomic scheme of the levels in presence of an external magnetic field is
reported in figure 1.6.

Figure 1.6: Energy splitting due to external magnetic field induced Zeeman shift
for ground state level 22S1/2 (left) and excited level 22P3/2 (right). Note that
the scales of the two figures are different: due to very low hyperfine splitting
of the excited state level (∼ 5MHz), the Paschen-Bach regime is entered for
small magnetic field (B ≈ 3Gauss), while for the ground state level it starts at
B ≈ 100Gauss. Figure taken from [26].

As it can be seen in fig. 1.6, both ground and excited states enter the
intermediate Paschen-Bach regime at relatively small values of the magnetic
field: about 2 Gauss for excited state and 100 Gauss for ground state. Zeeman
shift can no longer be considered as a perturbation to the hyperfine structure.
J and I are basically decoupled and their separate magnetic interaction 1.47
with B become dominant over the Hyperfine one. The energy splitting is thus
given by:

∆EZeeman =
µB
~

(gJmJ + gImI)B (1.51)

Usually the second term can be neglected being gI � gJ .
Subsequent quantization of space imposes selection rules for transitions in dipole
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approximation which are given by:

∆l = ±1 ∆j = 0,±1 (no 0↔ 0) ∆mj = 0,±1 (1.52)

where

Observation (k̂) ⊥ B :

∆mj = ±1 lin. polar. ⊥ B (σ lines)

∆mj = 0 lin. polar. ‖ B (π line)
(1.53)

and

Observation (k̂) ‖ B :

∆mj = ±1 circular polarization

∆mj = 0 forbidden
(1.54)

1.4 Cooling and trapping atoms with laser light

Basic concepts
The principle of cooling matter with laser light is based on the transfer of
momentum involved in a scattering process due to absorption/emission of a
photon by one atom. We imagine the atom as a two level system at rest in
the ground state. When a photon of wave vector ~kph is absorbed by the atom,
its momentum (~~kph) is acquired by the two level system which recoils with an
energy of

Erec =
~2k2

ph

2Mat
(1.55)

and the photon’s energy is used by the atom to get excited in the upper level.
After a typical time τ = 1/Γ, Γ being the natural width of the excited state,
the atom will spontaneously emit a photon falling back into the ground state,
this time losing the same amount of momentum gained with photon absorption.
The fundamental difference between the two processes is that while spontaneous
emission is a directionally random process, absorption is not. The immediate
consequence of it, is that averaging on a great numbers of absorption-emission
processes, the transfer of momentum due to spontaneous emissions will average
zero, while the one due to absorption will not14. The atom will then experience
a macroscopic force in the direction of the radiation. The change in velocity in
a single absorption-emission cycle is δv = ~kph/Mat and its order of magnitude
is mm/s. Using D2 line transition δv ∼ 100mm/s for 6Li and ∼ 5.9mm/s for
87Rb, because of its greater mass. Atomic clouds are created by evaporation
of a heated reservoir. At this point the speed of a Li atom is about 1000m/s

14Here we are completely neglecting the effect of stimulated emission: this is a good ap-
proximation provided that Γ is not too small.
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Figure 1.7: Basic principle of laser cooling technique is to transfer momentum
from radiation to atoms so that in a great number of absorption-emission cycles,
atoms will exchange a net negative momentum with photons. In figure we have
sketched the situation for an atom at rest (v=0): radiation is here resonant with
a two level atomic transition.

fast so that the number of photons the single atom should absorb to decrease
significantly its speed is about N = 1000(m/s)/δv ∼ 104.
Thus, the most basic principle behind the use of coherent radiation for cooling
techniques is that when a photon is scattered by an atom, the change in its
translational energy - and thus in momentum - results in a net mean force
acting on it. This idea can be explored and developed in many contests which
we will describe in some more details in the following paragraphs.

1.4.1 Photon-atom interaction

Let us consider the effect of a laser light characterized by frequency ω/(2π)

and wavevector ~k, on a free atom moving with a certain velocity (~v). We are
interested in calculating the number of photons scattered (Nph) by the atom in
the unit of time (∆t). Indeed the radiative pressure force can be written as

~F = ~~k
Nph
∆t

(1.56)

where ~~k is the single photon momentum. This force is proportional to the rate
of scattering events and even if inappreciable at macroscopic level, nonetheless
became extremely relevant when acting on an atomic cloud. If the frequency
of the laser is close to be resonant with an atomic transition, the atom can be
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Figure 1.8: Real and imaginary part of the polarizability. The imaginary part
can be linked to a quasi-resonant interaction: it is responsible for absorption
of photons as already described in 1.4.1 and causes dissipation of energy. The
real part instead has a typical dispersive behavior: it can be associated to a
conservative force and can be used to implement optical traps or optical lattices.
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approximated as a closed two level system15 [28]. The quantity δ0 = ω − ω0 is
known as the detuning of the laser frequency from the natural atomic transition
ω0

16. Each event of scattering is associated with an absorption-emission cycle.
Atoms must populate the excited state in order to be scattered. Thus the
ratio Nph

∆t can be expressed as the product between the average population of
the excited state due to the strength of laser-atom interaction, and the inverse
of the typical time after which it comes back to the ground state, which by
definition is the natural width Γ. A basic theory of photon-atom interaction
makes use of the dipole hamiltonian

HAL = −~d · ~E(t) (1.57)

where d is the atomic electric dipole. When an electric field is acting on an
atom, an electric dipole ~d is induced. The latter can be written in term of the
atomic polarizability α as ~d = α~E. Classically we can think to the induced
electric dipole as due to the displacement of the electrons from their equilib-
rium position, while quanto-mechanically it is due to mixing of orbitals with
different spatial charge distribution. Within the density matrix formalism [29]
the polarizability has the form:

α = −
e2µ2

eg

~
δ − iΓ

2

δ2 + Γ2

4 + |Ω|2
2

(1.58)

where ~µeg is the transition dipole moment, Ω =: e ~µeg·
~E0

~ is the Rabi frequency
and E = E0

2 e
−iωt + h.c.. Even if oscillating at the same frequency of E, the

complex nature of α accounts for dephasing due to the induced dipole moment
with respect to the driving field.

Dipole force: If we just consider the real part of α we see that for δ � Γ,Ω

H ' αE2 ' I(~r)
δ . Depending on the sign of the detuning, the real part of α can

flip the sign of d with respect to E, causing local maxima (δ < 0) or minima
(δ > 0) of the energy. This results in a trapping or in an anti-trapping potential
for the atoms. The explicit expression of the force is given by the gradient of the
dipole potential, which in analogy with classic physics can be written as [29]:

Udip = −1
2
〈~d · ~E〉 = − 1

2ε0c
Re(α)I(~r) ' 3πc2

2~ω3
0

(Γ
δ

)
I (1.59)

where the average is intended over fast oscillations and I(~r) = ε0c|E(~r)|2/2.
In the last passage we have taken the detuning δ >> Γ,Ω. Only the Re(α),

15If the transition is not closed a repumper must be add to close the loop of the transition
cycle (see next chapter).

16We will refer to δ0 and δ = δ0 − ~k · ~v respectively as the detuning for an atom at rest
(v=0) and for a moving atom.
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Figure 1.9: Depending on the sign of the detuning with respect to the atomic
transition, is common use to distingue between red and blue traps, meaning
trapping and anti-trapping potentials.

describing in phase oscillations of the dipole moment (coherent processes) with
the electric field, intervenes in the potential. Thus the resulting conservative
force is,

Fdip(~r) =
1

2ε0c
Re(α)~∇I(~r) (1.60)

and vanishes for uniform intensities. At this point it is clear that a focussed
beam with gaussian shaped intensity profile will trap or expel atoms from its
focus depending on the sign of the detuning with respect to the atomic transi-
tions (see fig.1.9). This is the basic principle on which optical traps work.

Radiative force: The imaginary part Im(α) of alpha accounts for the dephas-
ing (Incoherent processes) of the dipole moment and the field. In the classical
picture, the power transferred to the light field by a charged oscillator is 〈ṗE〉
which results in a scattering rate of photons

Γscattering(~r) =
〈ṗE〉
~ω

=
1

~εc
Im(α)I(~r) (1.61)

which are spontaneously emitted in the laser field. Thus the radiative force of
eq.1.56 can be written in the form:

~F = ~~k
Γ
2

|Ω|2
2

δ2 + Γ2

4 + |Ω|2
2

= ~~k
Γ
2

s

1 + s

1

1 +
(

2δ
Γs

)2 (1.62)

with  s =
I

Is
=

2|Ω|2

Γ2
Saturation Parameter

Γs = Γ
√

1 + s Power Broadened Linewidth

which describes a Lorentzian function with linewidth Γs dependent from the
intensity of the radiation through |Ω|2.
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The maximum17 Fmax = ~kΓ/2 of the force is obtained for zero detuning (res-
onance) when the radiation intensity saturates the transition (s→∞) i.e., for a
moving atom, when the Doppler effect due to atomic motion compensates the
difference between the radiation (ω) and natural transition frequency (ω0), i.e.
when

δ = ω − ω0 − ~k · ~v = 0 (Resonance Condition). (1.63)

Optical Molasses
A clever way to employ the radiative force is that to combine two red detuned
counter-propagating laser beams with same angular frequency ω, to create what
are commonly known as optical molasses. We will now see how the radiation
pressure gives the light the property to behave as a viscous fluid with respect to
moving atoms. To have a better picture of it, imagine to have an atom moving
on the same axis of the two beams with velocity ~v. Due to Doppler effect, in
the atom reference frame, the effective frequency of the counter-propagating
photons will be upshifted to ω′ = ω(1 + v

c ), while the effective frequency of
the photons co-propagating will be down shifted to ω′′ = ω(1 − v

c ). Because

Figure 1.10: The red and blue curves represents the forces due to single beams,
while the black one is the sum of the two. Figure taken from [30].

the beams are both red detuned, one of these frequency will get closer to be
resonant with the atomic transition while the other will do the opposite. Thus

17The saturation value of the force is given by the the recoil momentum due to single photon
scattering, multiplied for the maximum absorption rate of photon Γ/2 and thus is limited only
by the lifetime of the excited state 1

Γ
.
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the probability of absorbing a photon will be higher for those photons with ~k
opposite to ~v, and the atoms will be slowed, no matter their versus of motion
along the axis.
Quantitatively, we get two opposite contributions of the same kind of equation
1.62 which, taken into account the correct Doppler shift, reads as

~Ftot =~~k
Γ
2

[ I/Is

1 + I
Is

+ (2(δ0 − kv)/Γ)2
− I/Is

1 + I
Is

+ (2(δ0 + kv)/Γ)2

]
≈

≈ ~~k
Γ
2

[ I/Is
1 + (2(δ0 − kv)/Γ)2

− I/Is
1 + (2(δ0 + kv)/Γ)2

]
(1.64)

where we have taken for simplicity the small intensity limit I/Isat << 1. A small
velocity |kv| << Γ, δ0 expansion of the equation above yields the viscous-like
result for the force:

~Ftot = −α ~v +O(v3) (1.65)

with the damping coefficient (δ0 < 0):

α = 4~k2 I

Is

2|δ0|/Γ
(1 + (2δ0/Γ)2)2

(1.66)

Limits of laser cooling
We might be interested in addressing the smallest temperature possible with this
method of cooling. Low temperature for a classical gas means that the velocity
of the atoms follows a Maxwell-Boltzmann distribution with a very small width.
Since for a moving atom the radiative force depends on its velocity through the
detuning due to Doppler effect, variations of δ from the resonance condition
eq. 1.63 must be compensated in the slowing process in order to keep the light
resonant with the atoms. The engine that solves this problem is described in
paragraph 2.10.
In a radiative pressure cooling process, spontaneous emission induces atoms to
perform a random walk of step ~kph in momentum space after each random
emission. This process can be described with a diffusion equation for the mo-
mentum:

dp2

dt
= −2γp2 + 2Dp (1.67)

where γ is the viscous coefficient of the molasses and Dp its diffusion coefficient.
The subsequent heating mechanism competes with the cooling one since equilib-
rium is reached when p2

2m = Dp
2mγ . A temperature can be associated through an

analogy with the Maxwell-Boltzmann distribution where p2/(2m) = (3/2) kBT .
Using the diffusion coefficient for a 3D molasses [31] one finds:

KBT =
~Γ
4

1 + (2δ0/Γ)2

2|δ0|/Γ
(1.68)
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which for δ0 = Γ
2 gives a relative minimum for the temperature called Doppler

temperature

TD =
~ Γ
2KB

(1.69)

and for 6Li it’s of the order of 140µK. Eventually, this temperature becomes
extremely low in case of cooling on narrow lines [32]. Furthermore, since the
exchange of momentum between photon and atom is discrete, the smallest inde-
termination on the velocity is given by the recoil limit of single photon emission
process. The best way to visualize it, is to look at the radiation laser field as
a thermal bath at very low temperature18. Atoms in the bath cannot have, in
any case, energy lower then the photons energy, stated that in each spontaneous
emission they acquire a random momentum ~kph that heats up the cloud. Then
the absolute minimum for the temperature, called recoil temperature, is defined
as

Trec =
Erec
kB

(1.70)

This temperature is usually of the order of 1µK and depends on the laser wave-
length.
It is worth to observe that the semiclassical description done so far for inter-
action processes between atoms and laser radiation has some limits. So far we
considered the atom as a point like particle with precise values of position and
velocity. This is clearly an approximation since the atom has itself a quantum
behavior. Nevertheless it can be used for simplicity as long as the extension of
the wave packet associated to the atom remains much smaller of the wavelength
of the radiation and the uncertainty on the velocity is such that the Doppler
broadening is much smaller then the natural width of the resonance.
But when the temperature approaches the recoil temperature, the de Broglie
wavelength of the atom become of the same order of magnitude of the wavelength
of the radiation, and both matter and light start to behave as pure quantum
systems. The semi-classical approximation eventually falls.

1.4.2 The Magneto-Optical Trap (MOT)

To perform experiments on our gas we need a trapping technique which can keep
our cold atom cloud localized in the space for a reasonable amount of time. Un-
fortunately the optical molasses does not provide a spatial confinement for the
atoms: after a certain time in the molasses they will inevitably escape from it.
In 1986 J.Dalibard used an inhomogeneous magnetic field to produce a trapping

18This is reasonable if one thinks to the coherence properties of a laser beam.
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force toward a well defined trapping center.
The basic ingredients of a magneto-optic-trap (MOT) are a quadrupole magnetic
field created by a pair of coils in anti-Helmoltz configuration (see fig. 1.11), and
three pairs of counter propagating red-detuned laser beams intersecting orthog-
onally in the region of zero magnetic field. In addition, beams having opposite
directions, must have opposite circular polarization. Due to Zeeman shift of
the atomic levels, the inhomogeneous magnetic field ensure the establishing of a
trapping harmonic-like force. The total field is the sum of the two independent
fields generate by the two coils (fig. 1.11) and near the center of the trap is
given by ~B(z) = (b · z)ẑ.

Figure 1.11: Configuration of the beams and magnetic field coils necessary to
produce a MOT.

To benefit in clearness we will consider the simple case of an atom with
ground state Jg=0 and excited state Je=1. Zeeman shift will split the excited
state into the three manifolds me=-1,0,1 as reported in figure 1.11. Due to
selection rule, deriving from the conservation of the projection Jz of total angu-
lar momentum along z axis, the σ− polarized beam coming from one side can
induce only transitions to the me=-1, while the σ+, coming from the opposite
direction, will induce those to me=+1. If the beams are both red detuned with
respect to the atomic transition, due to Zeeman shift, an atom in z>0 will inter-
act much more with the beam coming from the right side of the trap, inducing a
mg = 0→ me = −1 transition and the symmetric thing will happen in the po-
sition z<0 where the mg = 0→ me = 1 transition will be preferentially induced
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by the left coming beam. The result is that an atom at near the center at z 6= 0

will be pushed back to the center of the trap. In this kind of trap, atoms are
then both trapped and cooled with the same mechanism of the optical molasses.

The effective force acting on the atoms has the same form of eq. 1.62 where
now also Zeeman shift 19 must be included in the detuning by replacing kv →
kv + µ′bz

~ . In the limit kν, ∆E/~� δ0 this force can be reduced to the form:

~Ftot = −α~v −Kz with K =
µ′B

~k
α (1.71)

This is the differential equation of a damped harmonic oscillator, the K-constant
being proportional to the gradient of the magnetic field. A capture range and
velocity can be defined as functions of the parameters of the trap (δ0, B, µ′).
An interesting study on the capture range can be found in [30]. Thus equation
1.71 demonstrates that the described configuration of laser beams and magnetic
field is able to produce both a viscous and a spatial dependent spring-like force
around the center of the trap, thus providing both trapping (typical density val-
ues are 1010 − 1012 cm−3) and cooling for the atoms. Thus is able to compress
the phase-space density of the cloud.

Optical dipole trap
The conservative part of the force of eq. 1.60 is widely used to confine atoms
into optical dipole traps. In the limit δ � Γ,Ω and far from resonance, it can
be approximated using Ω2 = Γ2I

2Is
= 6π

~ck2 as [33]:

Fdip ' −
3π

2ck3

Γ
δ
∇I (1.72)

By comparison between dipole force (conservative) and radiative force of eq.
1.62 (dissipative) the following things can be noted:

• they are respectively proportional to the real and imaginary part of the po-
larizability. They are linked to each other by the Kramers-Kronig relation
and thus dispersion cannot occur without absorption.

• they depend respectively on the detuning as ∼ 1
δ and ∼ 1

δ2 : moving out of
resonance the contribution of the dispersive dipole force becomes dominant
over the dissipative one.

• due to the dependence of 1.72 on the ratio I
δ , a change in detuning can be

compensated with a change in the intensity.
19The Zeeman energy shift is given by ∆E = µ′Bz with µ′ = µBgF ′mF ′ , gF ′ being the

Landè factor of the atomic level.
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Focussed red-detuned gaussian beams are the easiest choice for optically trap-
ping atoms. A single focussed beam has transversal intensity profile

I(ρ, z) =
2P

πW (z)2
e
− 2ρ2

W (z)2 (1.73)

where P is the laser power, W (z) = w2(1 + z2/z2
R) contains the Rayleigh

range zR = πw2/λ (W (zR) = w
√

2) and the beam waist w20, while ρ and z

are respectively the radial and axial distances from the focus. Near the focus
the trap profile can be well approximated with a harmonic shape VHO(ρ, z) =
1
2 (ω2

ρρ
2 + ω2

zz
2), the trapping frequencies being

ωρ
2π

=

√
2P

π3mw4
(1.74)

ωz
2π

=
ωρ
2π

w

zR
(1.75)

and the aspect ratio λ = ωρ
ωz

= zR/w. The latter quantity gives a measure of
the ellipticity of the trap.

Evaporative cooling
Due to the intrinsic recoil limit 1.70 of laser based cooling techniques, a last
stage of cooling is usually required to achieve quantum degeneracy or Bose
Einstein condensation at the experimentally achievable densities. The idea of
evaporative cooling is to selectively eliminate from a trapped gas the particles
having an energy higher than the average energy of the system. In this way the
remaining particles are cooled. To implement this idea on an optical trap, the
intensity of the light can be decreased in time so that the depth of the trap is
reduced and the hottest particles, which are more likely to populate the higher
levels of the trap, will escape it. In other words, the particles of our thermal
gas will be Maxwell-Boltzmann distributed. The selective remotion of hottest
particles is obtained by means of cutting the wings of the distribution. The
resultant out-of-equilibrium condition of the gas, will thermalize through elastic
collisions among particles and will find a new equilibrium Maxwell-Boltzmann
distribution with smaller width: the resultant temperature is lower. Usually a
constant step decreasing ramp of the trapping laser intensity is implemented to
run evaporative cooling. Furthermore the elastic collision rate must be large
with respect to the time between two successive step of the ramp so to allow
thermalization, i.e. redistribution of the energy, after each cut of the wings.
This technique is much more difficult to implement for fermions with respect to
bosons, due to Pauli suppression of elastic collisions at low temperature. As we

20Defined as the radius where the intensity drops of 1/e2.
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discussed within 1.2.1, the elastic scattering cross section for identical fermions
in normal conditions is zero. Mixtures of fermions in different atomic levels must
be used in order to allow interparticle collisions to happen and thermalization
to be possible.



40 Degenerate Fermi gases: Theory and Cooling Techniques



Chapter 2

Experimental Setup and

Procedure

In this chapter we present the optical setup used for cooling and trapping of 6Li.
We also introduce our high field imaging scheme allowing atoms detection across
different regimes of interaction. The cooling scheme is described in the first part
of the chapter. The middle part is dedicated to the imaging, while in the last
part we describe both the Zeeman slower and the magnetic coils that produce the
Feshbach and curvature fields.

2.1 Optical scheme for cooling

In our experiment, in addition to the widely used D2 (22S1/2↔22P3/2) cooling
transition (see figure 2.2), we also developed a cooling procedure on the D1 line
(22S1/2↔22P1/2) following the method recently demonstrated in [34] on 7Li.
Details on the D1, exception made for the lock-in scheme which we will present
here, can be found in the next chapter. The D1 molasses allows us to achieve
a temperature of ∼ 40µK, more than 3 times smaller than the Doppler limit.
We report in tab. 2.1 the characteristics of these two lines.

41
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Property D1 line D2 line

wavelength (λ) 670.979 421 nm 670.977 338 nm
frequency (ν) 446.789 634 THz 446. 799 677 THz
Lifetime (τ) 27.102 ns 27.102 ns

Natural Linewidth (Γ) 2π· 5.872 MHz 2π· 5.872 MHz
Saturation intensity (Isat) 7.59 mW/cm2 2.56 mW/cm2

Table 2.1: Optical properties of the D1 and D2 lines of the 6Li.

Figure 2.1: Schematic sketch of the experiment. Continuos lines indicate the
light brought by means of optical fibers across different tables and breadboards.

The experiment is divided into three main parts: a table (Table 1) on which
lasers source are placed and switches on D1 and D2 lights are assembled using
fast1 acousto-optic-modulators (AOM). A second one (Table 2) with all optical
components to prepare MOT light, Zeeman slower light, imaging light (zero and
high field) and with the lock-in scheme for the lasers. This part is actually made
on three distinguished breadboards arranged one above the other so to separate
imaging, lock-in and the optics for preparation of MOT’s lights and whatever.
The third part (Table 3) is the actual heart of the experiment and is made of
the oven where atoms are evaporated, the Zeeman slower, the vacuum system
plus the chamber where the Fermi gas is eventually cool to degeneracy. In figure
2.1 we draw a schematic sketch. In the following paragraphs we provide basic
description of each of these parts. The scheme of the experiment is described
and commented.

1Time scale < 1 µs.
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Laser sources

Figure 2.2: Level diagram of 6Li. On the left: hyperfine structure of 6Li. On
the right: splittings of levels 22S1/2 and 22P3/2 in the presence of an external
magnetic field. Energy splittings are not to scale. Figure adapted from [26].

We use D1 and D2 lines to laser cool the atoms. Each of them require both
repumper (νrep=νF= 1

2→F ′=
3
2
) and cooling (νcool=νF= 3

2→F ′=
5
2
)2 frequency to

work. These lines at zero magnetic field are about 228 MHz far in frequency
(see section 1.3) as reported in figure 2.2, so that we can use a single frequency
laser source to produce both of them with acousto-optic-modulators (AOM) (see
appendix A for some basics). The master laser we use is a Tapered Amplifier
High Power Diode Laser produced by TOPTICA. The Master Oscillator Power
Amplifier (MOPA) inside it is able to extract a maximum power of 400 mW

at a frequency of 671 nm. Using polarization maintaining fibers the light can
be brought to other parts of the experiment. All the lights required by the
experiment are prepared in power –by meaning of amplifiers- and frequency- by
meaning of AOM- on the same table (table 2). The scheme of table 1 is reported
in figure 2.3.

2We refer to level 22S1/2 with the symbol F and to level 22P3/2 with F’.
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Figure 2.3: Optical scheme of table 1: we use fast AOMs to switch on/off the
light of D1 and D2.

Lock-in scheme
Having two laser source for D1 and D2 lines, we need two different lock-in
schemes for them. The D2 laser is frequency locked by saturated absorp-
tion spectroscopy with frequency modulation technique (using an Electro Op-
tic Modulator at 12 MHz), using as lock point the cooling transition line
F = 3/2 → F ′ = 5/2, through a +140 MHz double passage configured AOM.
Details of our procedure can be found in the master thesis [30]. For the D1
line we arranged a completely different scheme. The difference between the two
wavelengths corresponds to a distance in frequency of ' 10 GHz. We lock the
D1 laser on the D2 laser through an offset lock at 10 GHz. To compensate the
possible small relative shifts between D1 e D2 transitions, we use both the value
of the lock’s offset of the D1 laser and the AOMs that we used to produce the
D2-frequencies.

2.1.1 Optical system to produce MOT and Slower lights

Frequency shifts
The optical scheme of table 2 concerning the production of MOT lights and
Zeeman slower light is reported in figure 2.4. The light is initially split into two
paths: one is used for repumping, while the other is used for cooling. Due to
lack of separation of hyperfine splitting at low field, their distance in frequency
is just due to hyperfine splitting of the ground state level (228 MHz). We
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Figure 2.4: The shifts in frequency reported in figure are referred to single pas-
sage of the light. Accounting for double passage configuration they must be
multiplied for a factor two to obtain the total shift. The principal beam is used
for MOT cooling light, imaging and slower light.
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report in figure 2.5 a scheme of the frequencies shifts. In νL we include the
frequency shift due to the D2 switch’s AOM. Referring to figure 2.3 and 2.4 as

Figure 2.5: Frequencies scheme of the experiment. The laser light entering the
MOT table is frequency locked at ∼ −202 MHz of distance from the resonance
F = 3/2→ F ′ = 5/2.

outputs of the two BoosTAs we get the MOT beams of frequencies

νMOT :

 νCooling = ν+91×2 = νL + 91× 2 MHz

νRepumper = ν+205×2 = νL + 205× 2 MHz
(2.1)

Their difference νRepumper − νCooling exactly equals the 228 MHz hyperfine
splitting of the ground state (see paragraph 1.3.1). The light power amplifiers
(BoosTA) need a linear H-polarized light (in transmission from a PBS system) to
work efficiently: entering with about 28 mW of laser light we are able to extract
a maximum power of 410 mW from each of them. We then realign the beams
along the same track and use a 50% NPB (non-polarization-beam-splitter) to
split their powers: half of it goes to the MOT beams - about 200 mW of cooling
plus 200 mW of repumper which we split along the three directions x, y, z by
means of optical fibers- and the other half is used for both Zeeman Slower light
and Imaging. We can control the relative powers of slower and imaging using a
λ/2 plus PBS system.

• Slower light: We red-detune this light of −400 MHz with respect to
MOT (and imaging) light by means of double passage through −200 MHz

shifting AOM.

νSlower = νMOT − 400 MHz (2.2)
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where with νMOT we intend both the repumper and cooling frequencies.
Details on the Zeeman slower are reported in the paragraph "Zeeman
slower".

• Imaging light: We inject the light of the slower into an optical fiber and
prepare the imaging light on another breadboard. In particular to create
the imaging light resonant with the F = 3/2′ = 5/2 transition we make
use of an additional AOM to compensate the shift required for Zeeman
slower (see section 2.1.2 for the details).

Independent shutters are used for MOT beams (Uniblitz), imaging (electrome-
chanical shutter), and slower light (Uniblitz plus AOM deflection). All the fibers
are stabilized in polarization by means of λ/2 positioned at their entrances. We
can remotely control the detuning of MOT’s beams by changing the AOM shifts
before the BoosTA; the resultant change in Zeeman slower light’s frequency can
be compensated with its own AOM.

2.1.2 Imaging cold and ultra cold atoms across different
regimes of interaction

Implementation of the optical setup for high field imaging
Since we want to image strong interacting systems, we have to develop a suited
optical scheme able to compensate the Zeeman shift at different values of the
magnetic field. The main issue that we have to deal with is that, the fast switch-
ing off of high magnetic fields, is not straightforward for our apparatus, due to
both inductance of our coils and the auto inductance of the chamber. Further-
more at high field we may use non-destructive phase contrast imaging, sensitive
to the single spin state, to address the physics close to the Feshbach resonance
(834 Gauss) [35]. This may result in switching off times of the order of tens of
milliseconds. The scheme we developed is reported in figure 2.6. In particular
we perform the imaging along the horizontal direction, thus observing the cloud
with light (k) ⊥ to B: selection rules 1.53 apply.
To perform 0 field imaging, we need to compensate the shift of the slower light
and the MOT detuning (+210 MHz). Instead for high values of the magnetic
field, we image the closed atomic transition (σ line) from level |Mj = −1/2〉
of the ground state and |M ′j = −3/2〉 of the excited state which scales as
µBB

3. For example at B = 800G, the total Zeeman shift is ∆E(800) '
3Their individual split -neglected the nucleus contribution- is given by 1.51:

• 22P3/2: mj = −3/2 → ∆Ez ' µBgjmjB = −µB(1.335) 3
2
B ∼ −2µBB

• 22S1/2: mj = −1/2 → ∆Ez ' µBgjmjB = −µB2 1
2
B ∼ −µBB
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Figure 2.6: Optical setup for zero field imaging and high field imaging.

µBB = 1.4 MHz
Gauss · 800Gauss ∼ 1100MHz. We can produce the required light

shift for imaging adding to the slower’s detuning others −350×2 = −700MHz.

Absorption Imaging Scheme

To extract from the atomic cloud all the interesting information, such as the
number of atoms or the temperature, we use absorption imaging. A sketch of the
absorption scheme is reported in figure 2.7. Absorption scheme is much suited
to detect atoms in the dipole trap. While in fluorescence the spontaneously
reemitted light by the atoms is collected by a lens and focused to form the
image of the cloud, in absorption imaging we detect the presence of the gas
from the shadow cast on the imaging quasi resonant laser pulse detected by the
CCD camera. The power per unit time emitted by atoms as a consequence of
the spontaneous decay from excited state is given by [29]

P = (~ω0)(Nρ̃ee)Γ (2.3)

At equilibrium we have equal and constant rates of absorbed and emitted energy
from the cloud so that, being Σ the laser beam cross section, the decrease of

This means their distance in energy reduces with the field as their difference ∼ −2µBB +

µBB = µBB.
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Figure 2.7: Sketch of experimental setup of absorption imaging. The intensity
signal detected by the CCD camera has in the reality two camera coordinates:
in figure we reported just one for simplicity.

laser intensity after a certain distance dz in the gas is given by

dI = − 1
Σ
P = − 1

Σ
N~ω0Γscatt(~r) = · · · = −σ(ω0)n(~r)I(~r)dz (2.4)

where we used equation 1.61 and 1.63, σ(ω0) being the photon scattering cross
section of the gas and n the number of atoms per unit of volume. The CCD
detects the light passed throughout the entire cloud (as shown in figure 2.7),
which means that in the experiment we are actually measuring the integral
quantity

I(x, y, z) = I0e
−σ(ω0)

R∞
−∞ n(x,y,z)dz (2.5)

We can then extract the so called column density of the cloud, i.e. the integral
of density distribution along the probe beam direction

n(x, y) =
∫ ∞
−∞

n(x, y, z)dz =
1

σ(ω0)
ln
(I0(x, y)
I(x, y)

)
(2.6)

At resonance (δ = 0) and in the linear absorption regime (s << 1) we get

σ(ω0) = ~ω0
Γ

2Is
= ~ω0

Γ

2
( ~Γω3

o

12πc2

) =
3λ2

2π
(2.7)

that is the resonant absorption cross section. To compute equation 2.6 we must
measure the intensity before (I) and after (I0) the atoms. In our experiment
three images are actually taken by the same CCD: first the absorption image of
the atoms (I), second the intensity profile of the laser probe beam without the
atoms (I0), and third the background with all light off to identify stray light
or electronic background noise in the camera picture. To avoid fluctuations in
power and direction of the probe beam the first to images should be taken as
close as possible compatibly with the acquisition time of the camera: we set
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their distance to approximately 200 µs. The first one is a TOF-Time of Flight-
image of the atom after a free ballistic expansion time that depend on the
temperature of the cloud: the hottest the cloud the shortest the TOF should be
to allow detection of the atoms before escaping the probe path. More the light
pulse must be as short as possible: this is for preventing momentum diffusion of
the atoms due to pressure forces arising from resonant scattering process used
to picture them. Typical numbers are 30/40 µs. The real density profile is
calculated as follow

n(x, y) =
1

σ(ω0)
ln
(Iatoms(x, y)− Ibackground(x, y)

Ino atoms − Ibackground

)
(2.8)

To precise measure the density 2.8 we need also to account for efficiency of
CCDs as explained in the next paragraph.

CCDs cameras
The camera adopted for both absorption and fluorescence is a Stingray F-145B
model. The first one is a 1388x1038 pixels matrix the size of each pixel being
of 6.4µs per side. Calibration of the CCD is required to measure its efficiency.
This was done [30] by shining a laser beam of known intensity for a fixed amount
of time. The signal on the camera is converted by a software in the number of
counts of incident photons during the operation time. Knowing the power of
the incident laser beam and the energy of a single photon, we obtain the ratio

η =
number of counts

number of photons shined onto CCD
(2.9)

which gives the efficiency of the CCD. We found η = 0.89 counts
photons . The number

of photons can be evaluated with the formula:

Nph =
Ptexp

~ω
=
texp
~ω

IA

M

1
η

(2.10)

where P is the incident power, M the magnification of the optical system, A the
surface of the pixels, t the illumination time of the CCD and the denominator
is the energy of the single photon. The quality of the imaging depends on the
time of exposure of the cloud to the laser light: in fact the signal to noise ratio
for Poissonian statistic of laser light is S/N '

√
Nph which is indeed propor-

tional to the duration of the imaging pulse. Of course the duration can not
be increased arbitrarily since the increase in number of scattered photons leads
to displacement of atoms and affects their initial momentum distribution. The
displacement induced by single photon scattering event can be estimated with
classical arguments using the recoil velocity vrec multiplied for the illumination
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time.

Fluorescence imaging
When shined by a laser beam, an atomic vapor will emit a fluorescence signal
proportional to the absorbed light. The absorption depends on the scattering
rate as already explained in chapter 1. We have to assume that the cloud is
transparent to spontaneously emitted photons, so that the fluorescence signal
will be directly proportional to the scattering rate and to the total atom number
as well. Thanks to eq. 1.64 this can be written as:

V = AN~ω
Γ
2

I/Is
1 + I/Is + (2δ0/Γ)2

(2.11)

where V is the intensity of the signal, N is the total atom number and A is the
conversion factor of our detecting system. The constant A depends both on the
response of the photodiode and on the fraction of solid angle covered by our
imaging system. The final expression for the determination of the total atom
number has the following form:

N =
R

V

δΩ
4π

2
~ωΓ

1 + I/Is + (2δ0/Γ)2

I/Is
(2.12)

where R is the response of the photodiode and δΩ
4π is the fraction of solid angle.

We use fluorescence both for imaging trapped cloud in the MOT and for the D1
stage of cooling and proper alignment on the MOT itself. Furthermore, for the
optimization of the atom number trapped by the MOT, we look at the atoms
through their emitted fluorescence signal, from which we can easily estimate the
total atom number. The fluorescence signal from the MOT is collected onto a
photodiode, placed just outside the science chamber, the fraction of solid angle
we measured for our configuration is δΩ

4π = (9± 2) · 10−3.

2.1.3 Optical setup for absorption and fluorescence imag-
ing

Horizontal imaging:
We can image the atomic cloud horizontally at both zero and high field. We
bring the light from table 2 (see figure 2.6) by means of polarization maintaining
fibers close to the science chamber. The optical scheme is reported in figure 2.8.
At zero field the polarization of the light is not relevant since quantization of
space does not occur. For high field imaging we use a λ/2 wave plate to rotate
the polarization ⊥ to the direction of the Feshbach field: we image the σ lines
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(see eq. 1.53). The fluorescence and absorption signals are collected on a CCD
through a ×2 magnification system using lenses of focal f = 150 mm4 and
f = 300 mm5.

Figure 2.8: Horizontal optical setup for zero and high field imaging.

Vertical imaging:
We are going to implement a vertical imaging system, allowing observation
along the magnetic field (k ‖ B). Given the selection rules 1.53, we will use
circularly polarized light to image the cloud on the close transition |2S1/2,mj =

−1/2〉 → |2P3/2,mj = −3/2〉. This improves the imaging contrast due to larger
absorption. Furthermore this scheme is much more suited to image our cigar-
shaped cloud with respect to the horizontal one, due to the angle between the
1070 nm laser light used for ODT and the horizontal imaging light.

2.2 Vacuum system

The vacuum system of the experiment is composed of different sections. They
are schematically reported in figure 2.9. With the help of laser cooling tech-
niques (see section Cooling scheme) the experimental apparatus we are going to
describe allows for achievement of quantum degeneracy of fermionic Lithium,
eventually in the superfluid regime.

4Model: Thorlabs AC508-300-A
5Model: Thorlabs AC508-150-A
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Figure 2.9: Project of the vacuum apparatus. It can be thought as composed
of two main parts: the first (Oven and Differential pumping) is assigned to
the production of a thermal lithium beam; the second (Zeeman slower, Science
chamber) is devoted to cool the gas down to superfluid regime.
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2.2.1 The oven

In this part we will basically report the summary of what already described
in details by [30]. Our experiment has a source of bulk enriched 6Li of about
10 g with purity of 95%. This source is heated up to ∼ 400 ◦C in order to
produce a suitable vapor pressure of lithium atoms. The atomic vapor from the
effusive oven is collimated by two small successive apertures: the first one is
called nozzle, and is adjustable in its position, so to achieve a better alignment
of the out coming beam with the science chamber. After it a second regulable
aperture, a copper plate called the cold plate, is kept cold using a Peltier cell6:
hot atoms with misaligned direction with respect to the science chamber will
strike and be stuck onto it and they will be stopped before entering the rest of
the experiment. A pneumatic shutter is used to stop the atomic beam preventing
it from entering the Zeeman slower. It is kept closed after loading the MOT.
The differential pumping stage is not described here. For further details refer
to [30].

2.2.2 Zeeman Slower

In order to efficiently load the atoms from the beam into the MOT, we need to
affect their velocity distribution. Indeed only the atoms with a velocity lower
than the MOT capture velocity- which is about a few tens of m/s- can be
trap [30]. Since the oven temperature is about 400◦, the average velocity of the
atoms coming out of it is approximately:

1
2
m6Liv

2 = kBT ⇒ v ∼ 1350m/s (2.13)

This velocity is roughly two order of magnitude higher than the MOT capture
velocity. Therefore to reduce it, we take advantage of the light pressure of
a counter-propagating red-detuned laser beam. The red detuning takes care of
Doppler effect experienced by moving atoms with respect to the frequency of the
radiation: because of their velocity and the counter propagating configuration,
the radiation will be ”seen” by the atoms as blue-detuned by an amount pro-
portional to their velocity, and must than be red-detuned in advance to match
the resonant condition 1.63 that maximizes its slowing force. It must also be
noticed that this is not enough to provide an efficient drift of the average veloc-
ity toward the capture limit. As soon as atoms are slowed, the Doppler effect
will decrease and laser light will no longer affect their velocity distribution. For

6A common Peltier cell is formed by two p and n doped semiconductor materials connected
with each other by a thin copper plate. Based on Peltier effect, the cell is able to transfer
heat from a junction to another when a current is fluxed in the copper circuit.
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example after the absorption of N=80000 photons, the detuning δ = δ0 − ~k · ~v
will be shifted by an amount of ∆δ = −kN~k

m ∼ −2.5Γ from resonance7. In a
Zeeman Slower the Doppler shift of moving atoms with respect to resonance
with laser light is compensated by the energy shift due to an external magnetic
field which is tuned in space to maintain the resonance condition. So starting
with velocities around 1350 m/s, only atoms absorbing around N = m∆v

~k ∼ 105

photons will be trapped. All the others will escape the trap. The magnetic
field gradient is generated by a set of in series coils designed in such a way that
the deceleration acting on the atoms due to radiative pressure is constant. The
design of our Slower is sketched in figure 2.10.

Figure 2.10: Sketch of the slower with the simulated and measured magnetic
fields plotted one on the other for each coil. The simulated field is the one
maximizing the deceleration of atoms for certain boundary conditions.

This condition of resonance δ = 0 is met when the detuning also include
Zeeman splitting of hyperfine levels:

δ = ω − ω0 − ~k · ~v +
∆Ezs(B)

~
(2.14)

being ω the frequency of the laser radiation, ω0 the atomic transition frequency
between hyperfine levels on which the slower is working, ∆Ezs(B) the energy

7In fact the variation of velocity due to single (counter propagating) photon absorption is
∆v = −~k/m while for N photons will be N times larger.
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splitting due to Zeeman effect of these levels and ~k · ~v the well known Doppler
effect contribution.

Our Slower is working on the transition

|2S1/2 mj = 1/2〉 → |2P3/2 mj = 3/2〉 (2.15)

The light inducing this transition is parallel to the direction of the magnetic field
inside the slower. Thus from selection rules 1.54 this transition can be driven by
σ+ polarized light. The Zeeman shift inside the coils can be calculated through
eq. 1.51, that for this transition, as explicitly calculated in section 2.1.2, is
approximately ∆Ezs ' µBB. Now from equation 2.14, at resonance, we get for
counter propagating configuration

B =
~
µB

(δ0 + kv) (2.16)

We designed the slower to get a constant deceleration along the direction of
propagation of the atoms as shown in figure 2.11. It can be seen that fast

Figure 2.11: Schematic phase space diagram of the atom trajectories for different
initial velocities. For value higher then the capture range v0 the atomic motion
is not affected by the slower. Figure taken from [30].

atoms are the first ones to be slowed due to their great Doppler effect, while
slower ones will be captured in the latest part of the tube. The velocity varies
with the position along the axis as v2(z) = v2

i − 2az which means the magnetic
field must vary as B = ~

µB

(
δ0 + k

√
v2
i − 2az

)
. For our slower we set vi ∼

800m/s. This gives a starting Doppler shift (νSlower vc ) at the first coil of ∼
1.1 · 103MHz which must be summed to the red detuning of the light of the
slower which is -400MHz. Thus, at the entrance of the slower, the total shift from
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the transition resonance 2.15 that has to be compensated with Zeeman effect,
is about 700MHz. This requires a magnetic field of ∼ 500Gauss according to
∆Ez ∼ µBB. The parameters of our slower, i.e. the powers and detuning of
cooling and repumper lights are reported in table 2.2.

δ0, Cool.&Rep PCooling PRepumper Final velocity

−400 MHz = −68Γ 50 mW 50 mW ∼ 30 m/s

Table 2.2: Optimal parameters of our Zeeman slower.

In addition to the cooling light, we add to the slower beam also the repumper
light. This is due to the so called spin flip configuration (the last coil of the
slower has an inverted magnetic field which produces a flip of the atom’s spin):
in fact the magnetic field goes to zero at the position were the B field changes
its sign. Here mj is no more a good quantum number and the transition 2.15
is no longer closed. Atoms can escape the cooling cycle and fall in the "dark"
state |F = 1/2〉 of the ground state. Repumper light brings back those atoms
into the cooling cycles. The big advantage of this configuration over a simple
decreasing one, is that slowed atoms coming out of the Zeeman slower are not
resonant with the counter propagating beam, allowing a better loading of the
MOT. The relative percentage of cooling and repumper light are due to the
intrinsic design of the optical scheme: reducing the repumper intensity on the
Zeeman slower beam would reduce also the repumper intensity on the MOT
(see figure 2.4). Since the capture velocity of our MOT is ∼ 60 m/s the slower
allows good loading. For details refer to the next section.

The magnetic field generated inside the tube has been measured with a Hall
sensor. In figure 2.10 we plot the measured field over the simulated field profile
optimizing the capture range of the MOT given the initial velocity distribution
from the oven, which is Maxwell-Boltzmann distributed. As can be seen the first
three coils have value slightly different from the computed ones. To compensate
for it we run these coils on independent suppliers and optimize the loading of
the MOT. We obtained an increase of about 10% on the loading efficiency. The
overall optimization was also run in detuning of Cooling and Repumper light.
For details on the windings of the coils see [30].

2.2.3 Main chamber and MOT loading

Atoms leaving the Zeeman slower enter the main vacuum chamber where we
perform the experiments. The chamber manufactured by Kimball Physics, has
an octagonal shape and it is equipped with re-entrant vertical windows (see
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section 3.0.4) allowing close positioning of short focal optics with high NA (and
thus high resolution) to its center. The scheme of the chamber is reported in
figure 2.12 with an image of the magneto-optical trapped cloud. The differential
pumping stage of figure 2.9 provide a pressure drop of about three order of mag-
nitude from ∼ 10−8 mbar in the oven to ∼ 10−11 mbar in the main chamber.
For details on its functioning, we address to [30]. We realize our MOT with
three retro-reflected opposite circular polarized beams (see configuration 1.11)
of 1” diameter. Operating the oven at 400◦C gives a flux of atoms entering the
Zeeman slower of about ∼ 1.57 ∗ 1010 atoms/second. In tab. 2.3 we report the
parameters of our MOT and its capture rate.

δCool/Rep PCool/Rep [mW ] ∂B/∂z[ Gcm ] ΓCapture [ atomssecond ] T [mK]

−3.5Γ ∼ 30 24 ∼ 3 · 108 ∼ 1

Table 2.3: The powers showed are referred to single beam.

The overall loading efficiency is thus ∼ 10−3. In approximately 4 seconds we
are able to load a MOT of ∼ 109 atoms.

Figure 2.12: On the right: draw of the main vacuum chamber. On the left:
fluorescence image of a MOT of ∼ 109 atoms at ∼ 1 mK temperature.
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2.3 Magnetic field coils

2.3.1 Feshbach coils

To tune the scattering length of 6Li across the Feshbach resonance of the states
|1〉 and |2〉, we need a set of coils which are able to produce high uniform values
of the magnetic field (up to 832 G). The coils we used are placed outside the
science chamber as shown in figure 2.13. They are made of a squared hollow
wire (4.6× 4.6mm including the kapton insulating sheet). Their internal radius
is 79 mm and they are 57 mm apart from the atomic cloud. They consist of
6×8 turns. They are in quasi-Helmholtz configuration: at 180 A, corresponding
to B ∼ 840G, they provide a radial8 magnetic curvature of about ∼ 3G/cm2,
which gives a radial frequency for 6Li atoms in the lowest hyperfine states (|1〉
and |2〉) of 10 Hz. These coils9 are vacuum impregnated, using ARALDIT F. It
is an epoxy resin, allowing a maximum temperature of 155◦C. The maximum
field they are able to produce is ∼ 1 kG corresponding to the maximum current
of our power supply10 of 220 A.

2.3.2 Curvature/Quadrupole coils

Since the axial frequency of a single focussed beam is reduced by a factor w/zR
with respect to the radial one (see 1.4.2), during evaporation a single-beam trap
is not able to provide a convenient confinement for the atoms along its axis. Thus
along that direction, in addition to the curvature produced with the Feshbach
coils, we make use of an additional magnetic curvature providing a trapping
potential Ucurv(B) = 1

2µBB
′′(0)r2 = 1

2mω
2
curvaturer

2: in this way at low power,
the curvature frequency compensates the low axial frequency of our ODT. We
produce this main curvature using relays to switch the currents of the MOT
coils from anti-Helmholtz to quasi-Helmholtz configuration11. The relay system
is mounted in series to the lower coil and in parallel to the upper one, and it’s
meant to invert the direction of the current in the upper coil of the quadrupole,
in such a way that the magnetic curvature field results summed to the Feshbach
magnetic field. The MOT coils are a distance Rcoil = 54 mm away from the
trapped atoms. For high field seekers states |1〉 and |2〉, which we use as fermions
mixture to perform evaporative cooling efficiently, the coils provide a trapping

8We mean with respect to the axis of the coils.
9Company: Oswald, Germany.

10Model SM 15-200 D, Delta Elektronika.
11Perfect Helmholtz configuration would not provide any curvature. Curvature is obtained

provided that the distance between the coils is kept a bit larger then their radius.
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curvature12 field along the axis of the optical trap (horizontal) with estimated
trapping frequency ωcurvature = 2π ·16 Hz, while in the vertical direction states
|1〉 and |2〉 experience an anti-curvature (anti-trapping potential) of estimated
frequency ωanti−curvature = 2πi · 16 ·

√
2 Hz. The quadrupole/curvature coils

we use are placed in the re-entrances of the vertical windows of our vacuum
chamber (figure 2.13). The calibration of the MOT coils was performed with a

Figure 2.13: Scheme of the coils around the science chamber. Outside the cham-
ber we have the Feshbach coils, while inside the re-entrant windows we have
placed two set of coils: the top ones are used for compensation; the bottom are
the quadrupole coils used to produce the MOT and curvature field in the last
stage of evaporation.

Hall sensor outside the chamber.

2.3.3 Compensation coils

To compensate spurious magnetic field inside the chamber we use compensa-
tion coils. In correspondence to each optical horizontal access of the chamber
we placed compensation coils. Vertical compensation is achieved by placing a
second pair of coils beneath the MOT coils (see figure B.1). We can also use
this latter pair of coils to produce a displacement of the zero of the magneto-
optic-trap. This can be useful particularly in the stage of D1 molasses, since
the displacement of the MOT along vertical direction can be used to center the
molasses beams on the atoms. To displace the center of the trap of z0 along ẑ,
we need to add to the MOT field another field such that

Btot(z) = Bcomp(z) +BMOT (z)

= (bcomp + bMOT )[G/cm](z − z0)[cm]

12The curvature or anti-curvature provided by the magnetic field must be referred to the
sign of the magnetic moment of the atoms in a certain internal state.



2.3 Magnetic field coils 61

Figure 2.14: Pictures of the Feshbach coils described in the text.
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Another use we may want to do of these coils is linked to the vertical imaging
system we are going to implement in the near future. In fact, moving the
cloud along vertical axis could allow to achieve better focussing on the vertical
imaging, which we will perform with short focal (f = 32 mm) aspheric lens.
We report in appendix B.1 the configuration of the quadrupole/curvature and
compensation coils.



Chapter 3

High-resolution imaging and

thin barriers for ultra-cold

atoms

In this chapter I will describe a good part of my thesis work, i.e. the character-
ization and design of an optical setup to both perform imaging with resolution
(∼1 µm) approaching the diffraction limit and imprint on our superfluid system
a sheet-like optical potential barrier. Indeed we are interested in observing and
resolving the dynamics of fermionic systems with resolution of a few inter par-
ticle spacing ( 1

kF
∼ 1 µm for typical experimental values). We will also discuss

how to integrate this imaging with the MOT setup and, eventually, with the rest
of the experiment.

3.0.4 Experimental implementation

Within the experiment we have to superimpose several beams along the vertical
direction.

• MOT light beams

• Imaging light beam

• Green sheet of light

A sketch of the experimental setup is shown in figure 3.1. The MOT and
the imaging beams are superimposed via a polarizing beam splitter. After the
chamber (see figure 3.1) to separate the imaging from the retro-reflected MOT

63
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Figure 3.1: Scheme of the experimental setup to superimpose the MOT, imaging
and green beams along the vertical direction. The z-MOT beam is retro-reflected
by means of a WGP and λ/4 waveplate. The imaging beam (670 nm) and the
green barrier (532 nm) are combined by a dichroic plate.

beam with the required σ+ − σ− polarization, we use in close sequence a very
thin 2" diameter λ

4 wave plate (200 µm thick) and a 2" wire grid polarizer 1

(700 µm thick).
To achieve optimal retro-reflection of the MOT beam after crossing the aspheric
lens, the WGP and λ

4 wave plate are displaced of ∼32 mm from it. Due to the
damage threshold of the WGP (50 kW/cm2 for our model) we can not place
the optics exactly in its focus. We have designed a compact holder to keep
all the optics in the correct position, which for sake of clarity is not shown in
fig.3.1.The combination of this holder with a 3D tilter will allow the alignment
of the optics on the atoms. The green light (532 nm) required for the barrier is
superimposed to the imaging beam by a dichroic plate.
The imaging will be performed using the f = 32 mm and a sequence of lenses
of focal f = 300 mm, f = 40 mm (achromat) and f = 150 mm. A CCD will
collect the signal in the focus of the last lens. The f = 300 mm and f = 40 mm
will be mounted in telescope configuration on flip montages. This allows fast
switching between a ∼ ×5 and ∼ ×50 magnifying imaging system which can be

1A WGP is an optical element which reflects light with polarization orthogonal to a certain
axis and transmits light with polarization parallel to it. We used Meadow Lark optics model
VLR-200-NIR
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Figure 3.2: Image of the designed holder for the f = 32mm lens, λ/4 waveplate
and wire grid polarizer.

used respectively to image the cigar-shaped cloud and the thin barrier.

Re-entrant windows
One of the key features of our vacuum chamber are the two large re-entrant
vertical windows. A technical draw is shown in figure 3.3. They are a-magnetic
6mm thick CF100 viewports, made of Spectrosil, a synthetic fused silca pro-
duced by UKAEA. Their clear view is 60 mm. The transmitted wavefront error
is λ/8 at 670 nm. They are anti-reflection (AR) coated (R<0.5%) at 323, 532,
670, 780 and 1064 nm. They have been designed in order to have the minimum

Figure 3.3: Technical draw of the re-entrant vertical windows. The large clear
view (60 mm) and their design provide a large numerical aperture.
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possible distance between their inner glass surface and the atoms working with
1" diameter MOT beams. Then the distance between the inner surface of the
window and the center of the chamber is 12.7 mm meaning a minimum possible
distance of the aspheric lens from the atomic cloud of 18.7 mm. The presence
of the thick Spectrosil windows may introduce spherical aberrations that must
be taken into account to design a proper imaging system. In the following we
provide some details on spherical aberrations.

Optical aberrations
The fundamental ray-tracing formulas that can be found in standard optics
text-book [36] are affected in reality by various kind of aberrations. The effect
of spherical aberration of a lens is clearly visible in figure 3.4.

Figure 3.4: Here we explicitly show the surface dependent effect of spherical
aberrations: incident rays close to the lens axis are focussed in different position
with respect to rays near its edge.

Rays incident on different spot of the lens are focussed in different points along
the axis of the lens. This results in bad reconstruction of the image, and of course
in bad resolution. Particular surface shaped lenses are meant and designed to
compensate for this position dependent effect. Aberrations can be described
by expanding the sine of each angle in figure 3.4 into its power series sin(θ) =

θ − θ3

3! + θ5

5! −
θ7

7! + . . . keeping the leading orders which significantly affect the
image formation. The resulting equations give a reasonably accurate account of
the principal aberrations. The differences between sin(θ) and θ are measures of
spherical aberration and, therefore, of image defects. If one keep just the first
order of the sine expansion, one gets the so called first order theory ; if one keeps
also the second term θ3

3! , the theory is said to be third order, and is affected by
spherical aberration. Their derivation is beyond the interest of this work and
can easily be found on text-books. On important result of this theory is that
using a standard (non aspheric) plano-convex lens, would limit the resolution of



67

the imaging to spot diameters (SD) of

SD limit(third order theory) =
0.067 · f

( fD )3
(3.1)

f being the focal length of the lens and D its diameter. This formula is valid for
uniform illumination of the lens surface [37]. If we are interested in setting up
an imaging system with a certain resolution, we should use this formula to select
lenses with SD equal or smaller to the chosen one. In the next paragraphs we
will describe the choice made by us. Before doing this, we give a fast description
of the science chamber where the optics may be positioned.

3.0.5 Resolution test on aspheric lens

At the heart of the optical scheme is a high numerical aspheric plano-convex lens
AL4532 with focal f = 32 mm and short working distance and large numerical
aperture, NA = 0.6122. Such lenses have surface profiles which are not portions
of either sphere or cylinder and their shape is such to compensate for spherical
aberration while moving farther from the axis. A single aspheric lens can often
replace a much more complex multi-lens system to reduce aberrations. The
resulting device is smaller and lighter, and sometimes cheaper than the multi-
lens design. The relevant experimental properties of the lens are reported in the
following table.

model f [mm] WD [mm] EFL [mm] diameter [mm] NA

AL4532 32 24.12 27 45 0.612

The given numerical aperture NA=0.612 of the lens gives an expected theoretical
resolution of

R = 0.6
λ

NA
∼ λ (3.2)

where λ is the wavelength of the incident light and is then the perfect choice for
our case.
We also stress out here, that using a standard spheric lens with the same fo-
cal length and diameter, would limit its resolution according to equation 3.1 to
∼ 5µm. We tested its resolution by shining He-Ne light (λ=632 nm) on ob-
jects of progressively smaller dimension -a grid of 10 µm spaced wires (Thorlabs

2A similar lens has been successfully used in the group of Prof. S.Jochim at Heidelberg.
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model R1L3S3P), a pinhole of 5 µm (Thorlabs model P5S), a diffraction pattern
of 1.6 µm spacing (CD Rom) and a sample with deposited 0.5µm size gold struc-
tures on it- and taking images of them. For these preliminary experiments a
CCD (Thorlabs DCC1545M) of resolution 1280x1024 pixels has been used. The
dimension of each pixel is 5.2x5.2 µm. Because of the multiple optical elements
required along z to arrange the whole setup (WGP, dichroic, λ/4, window of
the chamber), our resolution tests must take into account their possible effects
on the image.

Grid
As a first test a 10µm spacing grid has been used. By simply shining light on
the grid and positioning the lens after it at the working distance a fast check
can be made on the resolution. Of course there is no true interest in imaging
such large objects, but still it can be useful to get confidence with the system
with an easy task.

Pinhole
We use a 5µm pinhole to characterize the resolution of the lens. To image the
pinhole we must find an efficient way to align our optical imaging system. The
pinhole is mounted on an x,y,z translator stage and can be moved arbitrarily in
space. Here the basic idea of the scheme is to use the high focussing performance
of the aspheric lens to produce a guide beam (2 in figure 3.5 a) with waist smaller
then the aperture of the pinhole, therefore reducing the effect of diffraction. The

Figure 3.5: On the left: scheme used to align the pinhole on the lens; on the
right: X10 magnifying optical system used to image the pinhole size aperture; the
f=200mm has been used to increase the light (thus the signal) that contributed
to pinhole diffraction.
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strong suppression in the diffraction pattern3 will manifest only near the focus,
within an uncertainty of the order of the Rayleigh range. This implies that the
pinhole is in the focus of the aspheric lens. Referring to figure 3.5, once beam
2 has passed through the pinhole it can also be used to align beam 1 on its
path. The beam from the laser is initially split into two lines by a BS. Beam
1 shines the pinhole from its front side 4 while beam 2 passes initially through
a telescope. The telescope is such to provide a beam waist in the focus of the
aspheric lens (A) smaller at most of a factor 1√

2
5 with respect to half the

pinhole aperture.

Figure 3.6: The position of minimum of the waist is found to be about one
Rayleigh range of distance from the starting position (origin) as expected. The
error on the measurements is within the size of the data symbols. A transverse
cut of the beam in the waist is shown in figure to clarify the meaning of wx and
wy. We also report the gaussian fit (in µm) of the waists along both directions:
it is compatible with a real size of the aperture respectively of 4.5µm and 4.7µm,
magnified 10 times. The error admitted by the company on the nominal aperture
value of 5 µm is ± 1µm which is compatible with the measured aperture.

This means that ’non diffracted’ light will be only visible when the pinhole is
32 mm distant from the lens within an error of the Rayleigh range (zR), while
moving the lens away from the focus will rapidly cause a diffraction pattern to

3Of course diffraction will never be completely absent since the intensity profile is gaussian
shaped, but can be reduced significantly.

4If necessary a lens can be used to focus the beam and increase the diffraction signal after
the hole.

5The Rayleigh range is defined as the distance after which the beam radius increases by a
factor

√
2
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appear. The advantage now is that for such focussed beam, zR is very small,
and the resultant accuracy in the focusing is strictly bounded in all directions.
In our case (see figure 3.5 b) the laser source has an initial radius of 1.2 mm. We
used a telescope with magnification ×3 to obtain a ∼3.5 µm beam diameter in
the focus of the aspheric. The Rayleigh range is then zR = πw2

0
λ ∼ 15µm. Once

the pinhole is in the focus of the aspheric, we shine light from its front side and
we can set up the optical magnification system. This is done by using lenses
of high quality not to affect the resolution of the initial image. We used a two
inches diameter achromatic lens with focal f=300 mm to magnify 300

32 ∼ ×10
the size of the pinhole. When the system is in the ’non diffracted’ configuration,

Figure 3.7: On the left: schematic sketch of the atoms in the cigar shaped
ODT. Some of them will necessarily be out of the focus of the lens. On the
right: Sensitivity of the lens on the displacement ∆r from the focus, measured
by moving the pinhole along two spatial directions: axial and transverse. The
error on the measurements is within the size of the data symbols. The slow
oscillations in the transverse direction are most likely due to small misalignment
of the beam on the pinhole aperture.

we expect to be at a distance from the focus of ∼ zR. This is visible in plot
3.6 where the measured dimensions of the waist along the radial directions are
reported as functions of the axial position of the pinhole. The origin signs the
starting position found by looking the strong suppression in diffraction signal.
The resolving image of the pinhole in focus is shown in figure 3.6. As can be
seen the classical diffraction pattern from single aperture is not visible, that is
the image is taken from the radiation field on the edge of the aperture, before
diffraction takes place (near field). With a ×10 magnification system of the 5µm
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pinhole aperture we expect a measured waist of about 25µm, in agreement with
what is shown in fig 3.6. To extract the size of the pinhole aperture, a gaussian
profile is used to fit the counting on the CCD matrix. Since our optical dipole
trap (ODT) is made of a single focused laser beam, as already said, it results
in a cigar shaped cloud of atoms, meaning it is much longer in one direction
with respect to the others. Thus, referring to figure 3.7, we want to test the
resolution of this lens while we scan the point P along the cigar shaped cloud
axis. On our testing table, P is substituted with the pinhole and we do the scan
by simply moving the pinhole in the transverse plane, parallel to the surface of
the lens. The results for these measurements are reported on the left side of
figure 3.7. We observe basically no variation on the imaging resolution within
a lateral extension of ∼200 µm.

This indicates that the lens conserves a good resolution even on objects
which are misaligned with respect to the axis within a scale >100µm, thus al-
lowing good detection on the entire elongated cigar shaped cloud.

CD gratings or “Commercial Diffraction” gratings
To further test the resolution of the aspheric lens we image the diffraction grat-
ing from a CD-Rom. A CD is built from a plastic (polycarbonate) substrate and
a thin, reflective metallic film (24-carat gold or a silver alloy). The reflective

Figure 3.8: Here is a basic sketch of the structure of a CD.

layer is then covered with an anti-UV acrylic finish, creating a protective surface
for data. Finally, an additional layer may be added so that data can be written
on the other side of the CD as well. The reflective layer contains tiny bumps.
When the laser passes over the polycarbonate substrate, light is reflected off the
reflective surface, but when the laser reaches a bump, that’s what allows it to
decode information. This information is stored in tracks engraved in grooves
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(or better a single long track spiralling inwards). In order to allow for an easier
experimental configuration, we removed the reflective layer and observed the
diffraction pattern in transmission of the CD. This method does not allow us
to resolve in the image dark spots corresponding to bumps, since the reflection
principle on which the CD works does not apply any more. Still, this allows us
to observe the diffraction signal on a scale smaller then the one of 5µm, which
is what we are just interested in at the very end. To perform an imaging of
dark spots on the scale of ∼1.6µ m, reflection measurements should be done
on the surface of the CD, in near 180◦ back scattering configuration, which is
clearly much more difficult to be implemented in laboratory. We can verify the
diffraction signal coming from the CD is actually referred to a diffraction grat-
ing of the expected size, i.e. 1.6µm. This can be done just by remembering the
rays law of diffraction d (sin(α) + sin(βn)) = n λ which for normal incidence
(α = 0) reads as d sin(βn) = nλ, d being the size of the grating (distance
between two successive apertures), n the order of diffraction and α the angle
shown in figure 3.9. The angle between the first order and the incident beam is

Figure 3.9: On the left: slice of fringes originated by diffraction grating. Taken
account of the ×20 magnification, the distance between the peak fringes (60
pixels) corresponds to a 1.66µm spacing. On the right: diffraction pattern of re-
flected light. The same situation is found if the incident beam is in transmission
of the grating.

directly related to the spacing between the arms of the spiral. This is measured
to be 23◦, perfectly consistent with the 1.6µ m spacing. We can then collect
the diffraction pattern image (far field) on the camera and measure the spacing
between the fringes. A cut of the fringes is shown in figure 3.9.

Gold spheres
Referring to figure 3.10 , to further test the resolution of the lens we implemented
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a back scattering experimental setup using as sample, gold made structures of
approximately 0.5µm size (below diffraction limit) deposited on the surface of
a glass. Such structures scatter the light of wavelength 632nm and are then
appropriate for our He-Ne laser source. Back scattering configuration allows

Figure 3.10: The back scattering setup of the experiment is described. Very
critical is having the pinhole mounted on a 3D-translational slit; useful could
also be having the lens on one of them to allow micrometric alignment. In the
squared picture we show the reference image of the 5 µm pinhole magnified 200
times.

one to eliminate the signal of the laser pump and conserve just the scattered
signal. The sample is prepared using a highly concentrated solution of gold
spheres: a small chip is sandwiched between two glasses and the balls get stuck
on the glass surface. To remove any other unwanted substance contained in the
solution, water is flushed between the glasses. This usually cause these golden
structures to dispose on almost straight lines along the direction of the water
flow. In order to bring the optical system in focus, before the back-scattering
configuration is implemented on the sample, we first take a reference image of
the pinhole (of well known dimensions) with exactly the same configuration as
before. The sample is glued on the top of its holder so that, once one has a clear
image of the expected magnification of the system with the pinhole, then one
can simply move along the vertical direction the pinhole and get at focus with
the sample. In practice there is a marginal error of namely a couple millimeters
due to the thickness of the holder’s edge. A scheme of the experiment is shown
in 3.10. Mirror M is used to switch between reference configuration (line 1) to
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back scattering one (line 2). The optical imaging system is made of a first two

Figure 3.11: Back scattering signals from the gold spheres detected on the CCD.
Their imaged dimension, with a magnification of ∼ ×200, turned out to be
about 1µm. The ellipticity of some images is artificial and just due to image
treatment: the scales along x and y may not be the exactly the same.

lenses telescope with magnification ∼ ×10 (f1 = 32mm+f2 = 300mm) plus an
objective that guarantees a magnification of ×20 if a lens of focal f=200 mm is
used to refocus the beam after it. The total magnification of the image on the
CCD is then ∼ ×200. Because the dimensions of the golden balls are below the
diffraction limit, we would expect to image them on the scale of λ = 632nm.
With pixels of size 5.2µm, this means an image on the CCD of 0.632×200

5.2 ∼ 24

pixels corresponding to dimensions of 24×5.2 ∼ 126 µm. With the same Gaus-
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sian fitting procedure as before, we extract the radius of the spheres. Results
are shown in figure 3.11. Sometimes it is clear that they arrange themselves in
array as expected from the sample flushing procedure. The averaged measured
dimension is found to be 81µm which means a resolution of 1.3 × λ, which is
near the diffraction limit. We also report in figure 3.10 the reference image of
the pinhole taken to confirm the optical system to be in focus. Importantly
we found that WGP and dichroic mirror, together with the 6mm glass window,
have little effect on the resolution of the presented imaging: still the scale of 1
µm seems to remain accessible. As reference, in figure 3.12, we also show an
image of the background when the sample is dismounted. This ensures that the
signal is coming from the sample and is not due to speckle in the room. One
could wonder if the effect of the WGP and λ/4 wave plate is independent or
not from their position with respect to the lens, meaning if the resolution is
somehow different if we place them before or after it. In our case, due to the
short working distance and the chamber design, we can only place them after
the lens, where the MOT beams are diverging. Of course in principle one would
prefer a setup where they are positioned before the lens, where the beam is
still collimated, avoiding the problem arising from the damage threshold of the
WGP. For this reason within the framework of these experiments, testing such

Figure 3.12: Background signal by the light in the dark room. The fits do not
show any interesting signal.

dependence was considered of little relevance. In any case we performed these
measurements just as a side notion when testing the sheet like beam for our
thin barrier (refer to section 3.1).
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3.1 Production of a thin barrier for double well

potential implementation on ultra cold atoms

To observe and resolve the dynamics of fermionic systems, we are interested in
implementing a barrier whose width is comparable with the interparticle spacing
(∼ 1

kF
) of the fermions in the trap. In the zero temperature limit, the Fermi

energy EF = ~2k2
F

2m can be calculated using eq. 1.17 with angular frequency
ω̄ = (ω2

r · ωcurv)1/3 characteristic of our single beam optical dipole trap6. For
N = 104 trapped fermions, we get 1/kF ∼ 0.5µm: this approximately fixes the
order of magnitude of the barrier we are interested in producing.

By means of a single cylindric lens, we succeeded in the realization of an
anti-trapping potential barrier with spatial extension of 1.5 × (> 1000) µm
in the plane transversal to the direction of propagation of the focussed laser
light. The Rayleigh range of the beam corresponding to the two directions is
(> 106) × 25 µm. We can then superimpose this sheet-like shaped barrier to
our single focussed ODT beam to implement with very good approximation a
double well potential with highly tunable properties.

Anti-Trapping potentials with laser light
As explained by eq.1.59, the sign of the light detuning with respect the atomic
transition determines the nature of the potential experienced by the atoms, i.e
if it is attractive or repulsive while the intensity controls the depth of the well
(δ > 0) or the height of the barrier (δ < 0). As we pictured in figure 1.9,
realizing an anti-trap requires a blue (detuned) trap: we choose green light (532

nm) . Our request is for a barrier being larger than the Fermi radius in two
directions and extremely narrow (1.5 µm) in the third one (the axis of cigar), as
a very long and thin sheet. The height of the barrier can be controlled through
the intensity of the light.
The green laser used for testing is generated by a source7 which is able to
produce a maximum power of 5mW. The mode of the laser is cleaned by means
of injecting the light into an optical fiber. The sheet-like shape is realized using
a very simple optical scheme: the light out from the fiber is collimated to a
gaussian beam of radius 5 mm and then passes into a cylindric lens of focal
f = 200 mm; the resulting sheet-shape beam is focussed on the atoms taking
advantage of the same aspheric lens (f = 32 mm) used for the high resolution

6Our ODT has ωr ' 2π × 250 Hz and ωcurv ' 2π × 20 Hz - see next chapter or section
2.3 for further details.

7Model: Thorlabs CPS 532.
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vertical imaging (AL4532). In this configuration we can squeeze the mode to
obtain a highly focussed beam in one direction (∼ 1.5 µm) while having a very
broad waist onto the other (∼ 800 µm). To characterize the optical properties

Figure 3.13: A snap of the grid on the camera is shown (left) with a horizontal
cut (right). The average distance between the wires has been measured to be
approximately 10 µm.

of the barrier, in particular the dimensions of the waist in the focus, we make use
of a ×20 imaging setup: to image the sheet-of-light in the focus of the AL4532
we use a microscope8 (w.d.=32 mm) giving a magnification of ×20 if a lens of
focal f = 200 mm is used to refocus the beam after it. First of all we tested the
goodness of the magnification power of the microscope using as reference a grid
with known spacing (10 µm). The camera used for the test is the same used
for the vertical imaging experiments. The image taken is shown in figure 3.13.
Taking a horizontal cut of it we can extract the magnified spacing on the CCD
in number of pixels, and knowing the dimension of the pixel, convert it in µm9:
as can be seen on the right side of figure 3.13, the result of the cut confirms
the ×20 magnification. Then we proceeded in measuring the dimensions of the
waist in the focus. The laser beam that enters the cylindric lens has a gaussian
profile with waist of 1 cm. We injected the light in a fiber and used a collimator
10 to obtain easy collimation. The beam is than squeezed by the cylindric lens
in the direction of its curvature while it is left unaltered along the perpedicular
direction. It results in a sheet like beam which we then focus by means of the
aspheric lens (see figure 3.14). We stress out that in both directions the beam
stays approximately gaussian and so we can use at the zero order the well known

8Model: Mitutoyo M Plan Apo SL20x:378-810-3.
9As can be seen in 3.13 the spacing is about 45 pixels, which means a dimension in microns

of about 40·5.2 µm = 208 µm, which is 20 times larger than the real spacing.
10Model: 60FC-T-4-M60-10, Shäfter-Kirchoff
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relation for Gaussian beams to estimate the beam waist in the focus w ∼ λ f
πw0

.
According to this formula, large waists entering the aspheric will be focused
much more than small waists. To measure wx and wy in the focus, in principle

Figure 3.14: On the top left: Beam shape before using the f=200 mm cylindric
lens. On the top right: beam shape after its use.

would be sufficient to shine the beam on the CCD screen and fit its shape along
the two directions. This is feasible to do with the thin waist (wy), but not that
easy with the stretched one: it is in fact too long to fit the small CCD matrix.
We used a razor blade mounted on a micrometric translator to gradually shutter
the beam in its focus and simultaneously took measures of the decreasing power
of the beam: we found wx ∼ 800 µm. We also tested the effect on the waists of

Figure 3.15: On the left: Reference image of the beam in the focus without WGP.
In the center: beam waist with WGP before the aspheric (planar side). On the
right: beam waist with WGP after the aspheric (convex side).
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interposing a WGP on the path of the green light before and after the aspheric
lens, to check possible differences in focusing power or focus shape. The test
was made without the cylindric lens. We found that WGP does not really affect
the focal properties of the system, as shown in figure 3.15. We also checked the
sensitivity of the waists dimensions on the position of the cylindrical lens. We
found a substantial independency of them, which turns out to be very useful
allowing more flexible design of the experimental scheme. Substituting eq. 1.73
in equation 1.59 the potential barrier is proportional to

U ∼ P

wxwy
(3.3)

meaning that highly focused light in one direction results in a high barrier, even
for low power of the laser used. In particular for our values of the waists and
using a 100 mW laser source we are able to produce a barrier of height ∼2 µK,
larger then the Fermi energy which, for typical parameters, is of the order of
hundreds of nK.
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Chapter 4

Quantum Degeneracy of 6Li

As we have seen in chapter 2, the initial temperature of the cloud in our MOT
is ∼ 1mK. Since we want to exploit an all-optical trapping method to produce
superfluid Fermi gases, we need to reduce the temperature of the atoms to hun-
dred µK before the evaporation stage. Indeed an effective loading in the optical
trap requires a ratio η = ε/kBT ' 10 where ε is the depth of the trap and T the
temperature. In fact, as we are going to explain in the following, the maximum
trap depth of our single focussed ODT is of the order of 5 mK. Furthermore
since the ODT waist is limited to ∼ 30µm we need also to spatially compress
the cloud. Such achievements are obtained by performing two different cooling
stages, namely D2 and D1 cooling stages. While the first one is routinely applied
in many experiments of this kind, the second one is applied for the first time
on 6Li1. We will show that using these two cooling stage we can decrease the
temperature to about 50 µK and increase phase-space density of one order of
magnitude (10−5). These values are the optimum starting point to proceed with
the successive trapping and evaporation into our ODT.

4.1 Experimental cooling sequence

4.1.1 D2 Cooling Stage (CMOT)

We optimize the MOT loading with a detuning of ∼ −3.5Γ, allowing a larger
capture range of the MOT and an overall faster loading. Nevertheless, for such
parameters the temperature of the 6Li cloud is still pretty high (of the order of
1 mK). Thus an additional cooling stage is required. On the D2 transition line,

1D1 cooling stage is actually applied and proposed by C. Salomon group at ENS on Potas-
sium40 and Li7.

81
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this stage is performed reducing the powers of both the repumper and cooling
lights to about 20%. This procedure reduces the overall rate of photon-atom
scattering (see eq. 1.61), thus resulting in a net reduction of the temperature
and in an increase of the density of the cloud. In addition, just before the full
transfer into the optical trap and the switching off of the MOT beams, we bring
the detuning of the cooling light to about −Γ where an experimental minimum
of the temperature is achieved (see eq. 1.68) and we increase the gradient of
the quadrupole field of the MOT up to ∼ 35G/cm . This last stage must last
no longer than a couple of milliseconds, after which, light-induced losses begin
to occur due to the increase of the density2. Reducing the intensity of the re-
pumper light is also very critical since this light is necessary to keep the atoms
in the MOT: indeed, atoms will not stay trapped without it, falling in the dark
ground state |F = 1/2〉, scaping from the cooling cycle, and thus from the MOT.
The last sequence of this stage is the loading of the ODT: while we ramp the
power of the ODT-laser to its maximum value (∼ 170W) we abruptly reduce
the powers of both repumper and cooling to almost zero. In particular we per-
form hyperfine pumping to the lowest hyperfine state |F = 1/2〉 by means of
turning off the repumper light few hundreds of microseconds before the cooling
light: here they don’t scatter anymore with photons and are able to achieve
temperatures of about 200 µK.
At the end of the D2 cooling stage we obtain a sample of ∼5×108 atoms at 200
µK occupying the fundamental ground state F=1/2. The atoms equally pop-
ulate the two lowest Zeeman sub-levels |F,mF 〉 = |1/2,−1/2〉 and |F,mF 〉 =

|1/2,+1/2〉 creating a mixture of non identical fermions ready for evaporative
cooling.

4.1.2 D1 optical molasses

D2 transition is widely used in laser cooling schemes since it has a closed optical
transition (|2S1/2, F = 3/2〉 → |2P3/2, F = 5/2〉). However for 6Li, standard
sub-Doppler cooling techniques does not work efficiently because of the small
separation between the hyperfine states of the 2P3/2 atomic level [38]. In fact
, the transition linewidth (∼5.4 MHz) is of the same order than the separation
between the hyperfine states (∼ 4.4 MHz). To reduce furthermore the tempera-
ture of our cloud we perform an additional cooling stage using the D1 transition
(22S1/2 → 22P1/2), as already demonstrated in previous works on different
atoms [34, 39]. As we said, the D2 and D1 optical transitions are separated by

2Multiple scattering of photons may occur resulting in an increasing of the temperature.
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Figure 4.1: Scheme of the D1 transition line showing both cooling and repumper
frequencies.

about ∼ 10GHz. To generate the D1 lights (cooling and repumper frequencies
as shown in figure 4.1), we use another solid state amplified laser source TApro
from TOPTICA equal to the one used for the D2 setup. This laser is able to
generate a power up to 400 mW. As we already discussed previously the D1
laser is frequency locked on the D2 laser via an offset lock scheme at 10 GHz.
The optical scheme is shown in figure 2.3. Another important characteristic of
our scheme is that it allows to use the same amplifiers for both optical lines,
significantly simplifying the optical setup and reducing costs. By means of two
independent switch AOMs we can turn on and off the two cooling stages inde-
pendently. Indeed they are performed at different times to avoid overloading of
the MOPAs.

Parameters Experimental optimal values

δC +5.2 Γ

δ +0.08 Γ

IC 8 Isat

IR 1.2 Isat

tmol 2 ms

Tmin ∼ 40 µK

Table 4.1: Optimal values of the D1 cooling stage.
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Figure 4.2: Upper panel: In red we report the temperature of the atomic cloud.
We obtain an absoulte minimum corresponding to an absolute detuning of 0.6Γ.
In black we over-plot the corresponding number of atoms. Lower panel: Phase-
space density calculated from the experimental points of the upper plots.

Without entering into details -see [34]- this cooling stage combines a gray mo-
lasses of σ+ − σ− polarized beams: both are detuned from the |F = 3/2〉 →
|F ′ = 3/2〉 transition (cooling) and the |F = 1/2〉 → |F ′ = 3/2〉 transition
(repumper), respectively by δC and δR. With this scheme it is possible to cre-
ate dark states at the two-photon resonance. In particular we observe a strong
influence of the relative detuning between the two cooling lasers and a strong
decrease of the temperature of the cloud. The optimal parameters are reported
in table 4.1. The characterization of the cooling scheme was performed by tun-
ing the different parameters of the beam and measuring the temperature of the
atoms via TOF (Time-of-Flight) imaging. After a D2-CMOT cooling stage of
25ms3, the D1 stage is performed. While the magnetic field of the MOT is
turned off, the MOT lights are substituted with the D1 molasses by means of
fast AOMs switch. The cooling in the D1 molasses lasts ' 2 ms. After it,
absorption imaging after 11 ms of TOF is performed to extract the temperature
of the cloud. Indeed a free expansion of the cloud leads to a broadening of the
gaussian density profile of the cloud, according to

σ2(t) = σ2
0 + 〈v2〉t2 (4.1)

3Not including the changing in detuning of the cooling light to −Γ.
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where σ(t) is the width of the cloud at time t and σ0 = σ(t = 0). Since
the average velocity for a thermal gas can be related to the temperature via
equation 1

2m〈v
2〉 = 1

2kBT , the temperature of the system can be extracted as
T = m

kB

(
σ2(t)− σ2

0

)
/t2 ' m

kB
σ2(t)/t2 for TOF > 10 ms. In figure 4.2 we report

the behaviour of the number of atoms and temperature versus the absolute
detuning δ referred to the optimal values shown in table 4.1. As shown in
figure 4.2, we can achieve temperatures as low as ∼ 30µK for a cloud of about
108 atoms. We also calculated the corresponding phase-space density which is
significantly increased thanks to this stage of about one order of magnitude,
approaching 10−5.

4.1.3 Single beam optical dipole trap

Our dipole trap is produced by a single polarization multimode laser4 at 1070
nm, with a maximum output power of 200W. The trap is a FORT (far-of-
resonant-trap) made by a single focused red-detuned gaussian beam. The in-
tensity of the laser is controlled by an AOM which allows both the switch on and
off of the power and its continuos control. The intensity is actively stabilized
using a PID5 control through a logarithmic photodiode. As shown in figure 2.8
the laser enters into the chamber with an angle of ∼ 15◦ with respect to the
MOT beams. The parameters of our trap at maximum power are:

w[µm] zR[mm] Ploading[W ] Uloading [mK]

∼31 2.8 150 ∼5

The maximum depth of the trap, allows efficient loading of the atoms directly
from the MOT and provides good conditions for evaporative cooling. If the
depth of the trap is higher compared to the thermal energy of the gas, it will
trap the cloud. In the case of lithium 6 magnetic traps can not be used due
to the high field seekers nature of the states |1〉 and |2〉 which are necessary to
have good collisions rate at low temperature to perform evaporative cooling.
A single focused beam trap, has intensity profiles along the axial and radial

directions respectively of I ∼ e−
x2+y2

w2 and I ∼ e
− z2

z2
R where zR is the Rayleigh

range of the beam and w the beam waist of the beam. Thus, as can be seen from
equation 1.59, the radial and axial trapping frequencies scales with the intensity
of the beam respectively as ωr ∼

√
I and ωax ∼

√
I · wzR . Thus ωax is smaller

then ωr by a factor w
zR

. At low intensity the axial confinement (∝ ω2
ax) is not

4Model:YLR-200-LP-WC, IPG Photonics.
5Model: SIM 960 from SRS.
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enough to keep the atoms in the trap. For these reasons, as we already discussed
in section 2.3, we superimpose a magnetic curvature to the optical potential.
We make use of both Feshbach coils and curvature coils which give a total
confinement defined by a frequency of 2π · 18 Hz at 834 G. The anti-curvature
along the axis of the coils is sensitively smaller then the optical confinement
even at low intensities and therefore can be neglected.

Astigmatism: It is important to say that we took care of designing and
aligning the optical path to suppress the astigmatism of the ODT beam. Indeed
we found an extremely sensitive dependence of the astigmatism on the centering
of the optics. For this reason in our optical scheme almost all our lenses have
two inches of diameter and all the reflections of the beam on the mirrors are of
45◦ or 0◦. This provides a better quality of the beam, reducing significantly the
astigmatism to values < 100µm. Furthermore to reduce the thermal lensing we
use Suprasil 3001-made lenses 6.

4.2 Molecular Bose-Einstein condensate of 6Li

The first experiment performed with our machine is the production of a molec-
ular Bose-Einstein condensate (mBEC) of 6Li atoms in a 50%-50% mixture of
|1〉 and |2〉 states. We evaporative cool our atomic cloud at 804 G, starting from
a potential depth of few mK to a final value of 0.4 µK. In particular we can
produce a BEC of about 50 ·103 molecules with a condensed fraction up to 85%.
In the following paragraphs we describe briefly the experimental procedure to
obtain quantum degeneracy.

4.2.1 Properties of mBEC

Molecules begin to form in the cloud as soon as its temperature becomes com-
parable with the binding energy of the molecules (kBT ∼ ~2

ma2 ). For the offset
value B = 804 G this means molecules begin to form at ∼ 200 nK.
Above the transition temperature (Tc) the density of the thermal gas can be
conveniently be described by a gaussian distribution profile. When the tem-
perature is reduced below Tc, the bosonic nature of the molecules manifests
as they condense into a Bose-Einstein condensate. For na3 << 1, the density
distribution of a interacting BEC of particles can be extracted by solving the
time-independent Gross-Pitaevskii equation [40]:( p̂2

2m
+ Vext(r) + g|Ψ(r)|2

)
Ψ(r) = µΨ(r) (4.2)

6From LaserComponents Germany.



4.2 Molecular Bose-Einstein condensate of 6Li 87

where µ is the chemical potential of the gas. Here the mean-field interaction
is proportional to the density |Ψ(r)|2 and g = 4π~2a/m. When the kinetic
energy of the particles (ultra-cold limit) is much lower then the interaction
term, Thomas-Fermi approximation applies and eq. 4.2 yields to the simple
solution for the spatial density:

nBEC(r) = |Ψ(r)|2 = max
(µ− V (r)ext

g
, 0
)
. (4.3)

This may be thought as the condensate filling the bottom of the trap up to the
value of the chemical potential. For harmonically trapped clouds [35] one finds
the shape of an inverted parabola where the size of the condensate is given by the

so called Thomas-Fermi radius R̄ = ( 2µ
m )
(

1
ω2
xω

2
yω

2
z

)1/3

where the wavefunction
of the BEC goes to zero. As the cloud is released from the trap and expands

Figure 4.3: Bimodal distribution is the clear evidence of the formation of a Bose-
Einstein condensate in our gas. Here the Thomas Fermi profile clearly emerges
from a thermal (gaussian) distribution. The gas is imaged by absorption imaging
after 5 ms of TOF.

freely, the interaction energy is converted in kinetic energy: since interaction
depends on the density, in an anisotropic trap, the stronger the confinement the
faster the expansion. As soon as condensation occurs the Thomas Fermi profile
emerges from the gaussian profile of the thermal cloud (see figure 4.3). Time-
of-flight measurements are thus appropriate for the experimental detection of
condensation through bimodal distribution of the density profile. The critical
temperature of a non-interacting Bose gas harmonically confined is given by:

Tc = (0.94)
~ω̄
kB

N
1/3
mol (4.4)

where ω̄ = (ω2
rωaxial)

1/3 for a cigar shaped trap.
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4.2.2 Experimental sequence

As first step we transfer the atoms from the MOT into our optical dipole trap:
as we ramp the power of the ODT laser from 0 to 150W, we perform the D2
cooling stage (CMOT) discussed above. At this point we are not using the D1
cooling stage, since the merging of the atomic cloud with the ODT is still not
optimized. The use of the D1 cooling stage to improve the ODT loading will
be done in the near future. We are able to transfer 1% of the atoms of the
MOT into the ODT. Even if the transfer is not so efficient, we obtain 106 atoms
per spin state (|1〉 and |2〉) which are enough for our goals. We estimate the
temperature to be of the order of hundreds of µK. The experimental sequence is
shown in details in figure 4.4. Immediately after the transfer in the optical trap

Figure 4.4: Experimental sequence showing the timings of the cooling sequence.

we tune the magnetic field close to the Feshbach resonance at a value of 804 G:
here the scattering length is approximately 15000 ·a0 (a0 being the Bohr radius)
and collisions are strongly enhanced. Evaporation is much more efficient if the
scattering rate of the atoms stays high enough to allow atoms to exchange and
redistribute energy in the cloud quite fast in time. Indeed, from eq. 1.38, the
scattering rate is approximately given by:

Γ = nσ〈v〉 ∼ n 4πa2
√
kBT/m (4.5)
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being n the density of the gas, σ ' 4πa2 its scattering cross section far from
the resonance7 and 〈v〉 ∼

√
T the average scattering velocity. The density n

Figure 4.5: Bose Einstein condensation of molecules. The picture shows three
5ms TOF images of the cloud distribution, taken at different times along the
last ramp of the evaporation stage. Thomas Fermi profile arises from a thermal
cloud.

in direction xi actually depends on both the temperature and on the harmonic
confinement as

n(xi) ∼ e−m
ω2
i x

2
i

kBT (4.6)

where 2πωi is the trapping frequency along the direction xi
8. The magnetic

field is ramped from zero up to 804 G in 20 ms. We then perform evaporation
using four successive ramps till a final trap depth of 0.4µK. The temperature
of the system after the last evaporation ramp is so low that molecules condense
as soon as they are formed in the gas. To observe a mBEC we perform a
fast sweep (20 ms) to 690 G: here the interaction energy is lower and allows a
better observation of the bimodality of the cloud (see figure 4.3). Imaging is
performed by simply releasing the atoms from the trap: the free expansion of
the cloud can be imaged in TOF, allowing easy detection of its density profile.
The BEC formation appears as a Thomas-Fermi distribution (inverted parabola)
centered on a gaussian thermal profile. In figure 4.5 we can see the Thomas-

7Valid for (ka)2 << 1.
8Here we stress out how the magnetic axial curvature we use to increase the axial density,

results in a good scattering rate and in a subsequent efficient evaporation.
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Fermi profile emerging from a thermal gaussian cloud. From eq. 4.4 we estimate
the critical temperature to be Tc=190 nK. The measured temperature on the
residual thermal fraction after the last ramp results of 40 nK and is compatible
with a condensated fraction larger than 90%.



Chapter 5

Conclusions

During the period of my thesis at LENS my main research activities have been
focused on two main directions: from one side I realized optical schemes to tailor
light potentials that will be used to manipulate superfluid Fermi gases. In par-
ticular I developed a new optical setup to produce and imprint thin sheet-shaped
barriers on the atomic cloud. I have also designed and realized an optical scheme
to image the atoms with high resolution (∼ 1µm) approaching the diffraction
limit. Both these tools are now ready to be implemented on the experiment.

Moreover, on the present apparatus, I implemented a completely new cool-
ing scheme for the first time realized on 6Li atoms, that allows the reduction
of the MOT temperature to ∼ 40µK, far below the standard Doppler limit of
140µK.
I have also characterized the final cooling stage of lithium atoms in the optical
dipole trap (ODT) which eventually allowed the observation - on the positive
side of the Feshbach resonance - of molecular Bose-Einstein condensate of 6Li
atoms. The number of condensed molecules is Nmol ∼ 5 · 104 with a final con-
densed fraction larger than 90%. This is the first step toward the production of
strongly interacting Fermi gases at the BEC-BCS crossover.

The future perspectives of this work are:

• merging the new D1 cooling stage with the evaporation stage in our dipole
trap. We are confident that the lower initial temperature will allow a bet-
ter loading in the ODT and thus a more effective evaporative cooling to
quantum degeneracy. The faster and more efficient production of super-
fluid gases of fermions, thanks to the combination of all optical traps and
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Figure 5.1: Sketch of the cigar-shaped atomic sample cut by a thin optical bar-
rier. We prepare two-component degenerate Fermi gases of 6Li and we then
separate the two states by applying a combination of a magnetic field gradient
and a barrier. We study the spin dynamic while lowering the barrier for different
regimes of interaction.

D1 cooling, is of worldwide interest in the ultra-cold atoms community.
This step is actually under implementation in the present days. In ad-
dition it would be possible to use the D1 cooling to perform single-site
addressing in optical lattices preventing the light lithium atoms to escape
from the lattice sites during the fluorescence measurements [41,42].

• implementation of thin barriers on the cigar shaped atomic cloud to study
the spin transport properties of a fermionic gas across different regimes
of interaction. In particular we may address two physical situations: the
first one concerns the experimental investigation of the ground state of a
repulsive Fermi gas (Stoner model), which was first theoretically demon-
strated in 1933 to be ferromagnetic [43]. This model finds one possible
realization in the study of a two-spin-component atomic Fermi gas close
to a Feshbach resonance [44]. So far, three body recombinations, lead-
ing to molecules formation, hinders a clear experimental evidence of such
phase. It has been recently suggested [45] that the combination of a cigar-
shaped trap, i.e. with large aspect ratio, with the addition of an optical
lattice (fig.5.1), may stabilize the ferromagnetic ground state, allowing for
its experimental detection. In our system we could easily implement this
theoretical proposal, opening the possibility of studying still unexplored
phases.
The second one is the study of Josephson tunneling of paired fermions
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across the barrier. This experiment mimics the ordinary superconduct-
ing junctions. By studying the dynamic in this double-well potential, we
can measure the superfluid gap as done in ordinary superconductive sys-
tems [46].
The experimental study of the Josephson effect with a superfluid Fermi
gas through optical barriers is still an unexplored research topic. Only
recently [47], it has been reported the first observation of solitons gener-
ated by phase imprinting on superfluid Fermi gases at resonance .The two
phenomena are deeply connected and rely on the nature of the superfluid
wavefunction. The theoretical description of such strongly-interacting sys-
tems at finite temperature is still to be developed. We think that the
implementation of our experimental scheme could trigger even more the
research in this area, creating the conditions required to develop new the-
ory and to promote new experimental investigations.
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Appendix A

Acousto-optic-modulator

We use AOM to tune the frequency of the light. They take advantage of the
photon-phonon interaction to deflect the angle and change the frequency of an
incident photons beam. The scattering process can be described diagrammati-
cally as shown in figure A.1. By absorbing N phonons with wavelength Λ, the
photon changes both its direction and energy (λ) according to

Figure A.1: Diagrammatic representation of photon-phonon interaction.

ωf = ωi +Nωphonon (A.1)

sin(φ) =
Nλ

2Λ
(A.2)

An AOM is basically made of a transparent crystal whose refractive index can
be modulated through a piezo crystal driven by a radio frequency signal who is
able to generate mechanical stress on the medium. We can separately operate on
the amplitude and the frequency of the scattered light by changing the RF and
its amplitude. Because of the deflection of the incident beam we can also use
AOMs as fast optical switch. This is done both on D1 and D2 lines. Each AOM
can be controlled with amplitude modulation (AM) and frequency modulation
(FM) analogic signal and with digital TTL signal.
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Appendix B

Coils scheme

Figure B.1: Scheme of the coils placed inside the re-entrant windows of the
science chamber. The holder of these coils is done by polyether ether ketone
plastic (PEEK), a thermoplastic with excellent mechanical and chemical resis-
tance properties kept also at high temperatures. The PEEK melting temperature
of about 350 C. In these supports the coils are immersed in fluxing water to
assure their correct cooling during the normal operation.
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