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Introduction

The interplay between disorder and interactions lies at the heart of many physical

phenomena and its study has recently attracted more and more interest. Although

it is present in any real physical system, disorder is difficult to control, to tune,

and therefore to study. Even more challenging is the investigation of the combined

effect of disorder and interactions. The possibility of tuning independently and in

a large range of values these two parameters, is in fact a rare feature for both real

and experimental systems.

Since the first experimental realization of a degenerate atomic quantum gas,

they have revealed to be extremely versatile tools and have provided important

contributions in many physical areas. In particular the possibility to trap ul-

tracold atoms in perfectly periodical potentials by means of optical lattices, has

allowed the experimental study of fundamental problems related to condensed

matter physics.

During the last few years, experiments with Bose-Einstein condensates have

also produced remarkable results in the field of the physics of disorder. Laser

light can in fact provide, not only an ideal lattice, but also a controllable and

tunable disordered potential. Furthermore in ultracold atomic gases, by means

of Feshbach resonances, it is also possible to tune the interparticle interaction in

a wide range of strengths. This gives the possibility to manage non-interacting,

weakly interacting and strongly correlated samples.

In the experiments reported in this thesis, a degenerate Bose gas of Potassium-

39 atoms is employed to investigate the different quantum phases arising from the

complex competition between disorder and interactions. We performed our studies

on both the equilibrium and the transport properties of the system. In the weakly

interacting regime we detected and characterized the crossover from Anderson

glass, to weakly-interacting Bose glass to superfluid by analyzing, in particular,

the correlation properties of the atomic wavefunction. We then studied the ex-

pansion dynamics of the atomic cloud in the disordered potential when either



2

interactions or dynamical noise are present in the system. Anomalous diffusion

evidences are shown. In the strongly-correlated regime we studied the correla-

tion and transport properties and the excitation spectra of the system aiming to

experimentally characterized the Bose glass phase. We provide the first full exper-

imental phase diagram which shows a complex structure with different insulating

and non-insulating regions for a wide range of disorder and interaction.

In the following we briefly summarize the structure of the thesis. In the first

chapter we introduce the disordered Bose-Hubbard model to describe (interact-

ing) bosonic atoms in a (disordered) optical lattice. We then consider the different

regimes that the system undergoes when varying the relative strength of interac-

tion and disorder. We describe the features of the different quantum phases and

we report and discuss the main experiments with ultracold atoms so far performed

in the different regimes.

In the second chapter we introduce the main ingredients that characterize the

experimental realization of the tunable disordered system. The chapter opens in

fact with showing how the lattice potential is realized and characterized. After a

short description of the broad magnetic Feshbach resonance that allows to finely

tune interactions between Potassium atoms, we then turn to describe the disor-

dered potential. Disorder is provided by a quasiperiodic lattice obtained by the

superposition over the main lattice of a weaker incommensurate secondary lat-

tice. The height of the secondary lattice determines the disorder strength. We

then briefly summarize the experimental sequence to produce the Bose-Einstein

condensate and, since we aim to study a one-dimensional disordered lattice, we

describe how we produce a one-dimensional system. The chapter ends with a short

description of the detection imagine techniques.

The third and the firth chapters of the thesis report the experimental results.

In the third chapter we concentrate on the weakly interacting regime. Weak repul-

sive interactions serve to screen the disordered potential and the system undergoes

a crossover from a disordered-induced localized phase (Anderson glass) to a super-

fluid one. This crossover is experimentally characterized by considering the local

shape of the wavefunction and its correlation properties. We show that in the non-

interacting situation the wavefunctions are localized and no coherence is observed.

By adding controlled weakly interactions we gradually restore coherence over the

entire system and the wavefunctions result to be extended. The second part of the

chapter is devoted to the the study of the dynamical properties. We characterize

the expansion dynamics of the atomic cloud in the quasiperiodic potential. In

the non-interacting case localization results in absence of expansion. Conversely,
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when a weak interaction between atoms is added, a slow expansion is observed.

We provide the first experimental observation of the subdiffusive expansion of a

wavepacket in a non-linear disordered potential. We also extend the study of the

out of equilibrium expansion to the case in which the potential is perturbed by a

controlled temporal noise. Noise destroys disordered induced localization resulting

in a diffusive expansion. The combination of weakly interaction and noise is also

studied.

In the last chapter we report the experiments performed in the strongly cor-

related regime. In absence of disorder the system undergoes the transition from

a superfluid phase to an interaction induced insulator (Mott insulator). When

disorder is added, cooperation between disorder and interactions results in a new

glassy phase (Bose glass). This phase is characterized by the presence of islands of

superfluid not connected together. This results in a globally insulating phase with

a gapless excitation spectrum conversely to the Mott insulator phase. Exploiting

the possibility to independently tune disorder and interactions over a large range

of parameters, we trace a complete phase diagram of the system measuring the

correlation length of the atomic wavefunction. The crossovers between superfluid

and insulator phases is also confirmed by transport measurements. Preliminary

measurements of the excitation spectrum of the system are also presented.
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Chapter 1

Bosonic atoms in disordered

optical lattices:

tuning the interactions

During the last years experiments with cold atoms have offered new possibilities

to understand the physics of interacting quantum particles in the presence of dis-

order. Using laser light it is in fact possible to shape conservative potentials for

neutral atoms at will, exploiting the dipole interaction between atoms and the

electromagnetic field. In particular a standing wave provides a perfect periodical

potential and different possibilities have been found to engineer disordered poten-

tial in a very controllable way. Also the two-body interaction in a dilute cold atom

sample is easy to model and, for some atomic species, to tune.

We will provide more details about optical potentials and interactions between

atoms in the next chapter. In this chapter we derive the Hamiltonian which de-

scribes interacting bosonic atoms in periodic potential following the Bose-Hubbard

model. We show how it is possible, in the same framework, to model also disor-

dered systems. We then analyze the regimes in which disorder or interaction

dominate and determine the physical properties of the system showing some re-

sults obtained in the cold atoms field. The regimes in which both interaction and

disorder are relevant in determining the atomic behavior are finally considered.

Also in this context we show how experiments with cold atoms are giving a strong

contribution to better understand the interplay between disorder and interactions.
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1.1 The Bose Hubbard model

The quantum state of interacting bosonic atoms in a periodic potential can be

described [1, 2] by the second quantization Hamiltonian for the boson field operator

ψ̂1:

Ĥ =

∫
dr ψ̂†

[
−~2∇2

2m
+ Vext(r) + VL

]
ψ̂ +

g

2

∫
dr ψ̂†ψ̂†ψ̂ψ̂ (1.1)

where g is the non-linear coupling term which quantifies the interaction strength

between two particles. The two-body interaction potential can in fact be written

in terms of a contact pseudo-potential:

v(r − r′) = g δ(r − r′) with g =
4π~2

m
a (1.2)

where a is the s-wave scattering length and m is the atomic mass. Vext is a

generic external potential superimposed on the periodic one, VL, that in cold

atoms experiments is usually provided by an optical lattice and it is of the form:

VL(r) = V0 sin
2(kr). (1.3)

As we will better describe in the next chapter, using laser light it is possible to

create potentials for neutral atoms by exploiting the dipole interaction between

the atom and the electromagnetic field. In particular an optical lattice of the form

given by Eq.(1.3) is obtained with a stationary wave created by a retroreflected

laser beam with wavevector k = 2π/λ. The periodicity of the potential is therefore

d = λ/2. More details on how the lattice is created and characterized in the

experiment are given in the next chapter (section 2.1).

According to the Bloch theorem the wavefunctions of a particle moving in a

periodic potential correspond to plane waves eiqr modulated by a function un,q(r)

having the same periodicity d of the potential:

ψn,q(r) = eiqr un,q(r) with un,q(r) = un,q(r + d). (1.4)

The Bloch functions ψn,q(r) are labeled by two quantum numbers: n that is the

band index, and q that indicates the quasi-momentum of the particle. We limit

the description of the system at the first band (single band approximation). In the

following we thus fix n = 1 and omit the n index. In cold atoms experiments the

energies involved in the system, starting from the temperature, are small enough

to not induce inter-band excitation, therefore this approximation applies. In the

1The normalization of the field operator is given by:
∫
drψ̂†ψ̂ = Ntot, where Ntot is the total

number of particle in the system.
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weak potential limit the Bloch functions are almost plane waves. As the potential

depth V0 increases they become more and more localized around the lattice sites.

In this regime, which is known as tight binding regime, it is thus convenient to

express the Bloch wavefunctions as a sum of orthogonal and normalized set of

wavefunctions maximally localized at each lattice site:

ψq(r) =
∑
j

eiqrj w(r − rj) (1.5)

where j is the lattice site index. w(r − rj) = wj(r) is the Wannier function

localized at j-th site. The Wannier functions are usually well approximated by a

Gaussian function and form a orthonormal basis:∫
dr w∗j (r)w

′
j(r) = δjj′ (1.6)

The field operator ψ̂ in Eq.(1.1) can thus be written as the superposition of Wan-

nier function localized at the lattice sites:

ψ̂(r) ≡
∑
j

âjwj(r) (1.7)

being âj the annihilation operator of one boson at the j-th site which satisfies the

canonical commutation relation: [â†j âj′ ] = δjj′ . This kind of description is very

convenient when one wants to describe atom-atom on-site interactions. Using

Eq.(1.7) we can rewrite the Hamiltonian in Eq.(1.1) in the following way:

Ĥ =

∫
dr
∑
j

â†jw
∗
j (r)

[
−~2∇2

2m
+ VL(r) + Vext(r)

]∑
j′

âj′wj′(r)

+
g

2

∑
jj′ll′

â†j â
†
l âj′ âl′

∫
dr w∗j (r)w

∗
l (r)wl′(r)wj′(r)

(1.8)

We can define:

Ĥ = ĤL + Ĥext + Ĥint (1.9)

with

ĤL =
∑
jj′

â†j âj′

∫
dr w∗j (r)

[
−~2∇2

2m
+ VL(x)

]
wj′(r) (1.10)

Ĥext =
∑
jj′

â†j âj′

∫
dr w∗j (r)Vext(x)wj′(r) (1.11)

Ĥint =
g

2

∑
jj′ll′

â†j â
†
l âj′ âl′

∫
dr w∗j (r)w

∗
l (r)wl′(r)wj′(r) (1.12)

We now consider one by one the terms here defined and simplify them by

applying appropriate approximations. Let us start with the term given by the
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external potential. We can take into account a potential which varies smoothly

across the lattice such that it can be assumed to be constant on the lattice site

distance. In this approximation we can define εj to be the external potential inside

the j-th site and rewrite Eq.(1.11):

Ĥext '
∑
jj′

â†j âj′Vext(rj)

∫
dr w∗j (r)wj′(r) =

=
∑
jj′

εj â
†
j âj′δjj′ =

∑
j

εj â
†
j âj =

=
∑
j

εjn̂j

(1.13)

where we define the number operator nj = â†j âj which gives the number of particles

at the j-th lattice site.

Let us now consider the term given by the lattice potential. Here we can

consider the tight binding regime neglecting the superposition of the Wannier

functions centered more than one lattice site apart and write:

ĤL ' ε0
∑
j

n̂j − J
∑
〈j,j′〉

â†j âj′ (1.14)

where the symbol 〈j, j′〉 indicates that the sum has to be considered only between

the fist neighbor sites. The single site energy ε0 is constant for all the lattice sites

and it is given by the this expression:

ε0 =

∫
dr w∗j (r)

[
−~2∇2

2m
+ VL(x)

]
wj(r) (1.15)

The tunneling energy J is essentially the superposition of the Wannier function

centered in two neighboring lattice sites j and j′:

J = −
∫
dr w∗j (r)

[
−~2∇2

2m
+ VL(x)

]
wj′(r). (1.16)

J represents the energy scale for the kinetic energy of the particles in the lattice.

The energy dispersion given by the lattice potential is indeed ε(q) = −2Jcos(qd).

We finally consider the term due to the interaction between particles. Since

the interaction is local, we need to consider only the on-site interaction term. The

Wannier functions wj are all identical except that they are centered in different

lattice sites. We thus have:

Ĥint '
∑
j

â†j â
†
j âj âj

g

2

∫
dr |wj(r)|4

=
U

2

∑
j

â†j â
†
j âj âj

(1.17)
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where we defined

U = g

∫
dr |w(r)|4. (1.18)

U quantifies the strength of the interaction in the system and gives the second

important energy scale. By using the canonical commutation relation we can

rewrite the interaction Hamiltonian in term of the number operator:

Ĥint =
U

2

∑
j

n̂j(n̂j − 1). (1.19)

We can now put the three terms together obtaining the well known Bose-

Hubbard Hamiltonian:

ĤBH = −J
∑
〈j,j′〉

â†j âj′ +
∑
j

(ε0 + εj)n̂j +
U

2

∑
j

n̂j(n̂j − 1). (1.20)

1.1.1 Introducing disorder

In this framework of the Bose-Hubbard Hamiltonian it is also possible to model a

disordered system. The presence of a disordered external potential can in fact be

taken into account. Disorder can in principle affect each of the three terms of the

Hamiltonian. In general one could consider the strength of the on-site repulsion,

the hopping term between neighboring sites and the on-site energy changing in

a disordered way from site to site. In this work we will consider only the effect

of a disordered energetic landscape below the regular optical lattice. In this case

one can see that if the lattice is deep enough and the disorder potential is not

too strong the Wannier function shape and the position of the lattice wells are

not perturbed too much by the presence of the disorder: J and U can thus be

taken as constant. We can therefore assume only εj , the on-site energy given by

the external potential, to vary in a disordered way across the lattice. We can thus

rewrite the Hamiltonian in the following way2:

ĤDBH = −J
∑
〈j,j′〉

â†j âj′ + ∆
∑
j

ejn̂j +
U

2

∑
j

n̂j(n̂j − 1). (1.21)

where εj = ∆ej changes from site to site. Here ∆ represents the characteristic

energy of the disorder an ej is a number in the interval [-1,1]. The actual distri-

bution of εj across the lattice depends on the details of the disorder. As we will

see in the following, details like the energy distribution of the εj or their spatial

correlation properties affect in a very strong way the exact behavior of the system.

2Here we omit the ε0 term, since it is constant and does not change the properties of the

system.
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From the interplay between the kinetic energy, the interaction energy and the

disorder strength, quantified in this picture respectively by J , U and ∆, many

interesting phenomena appear in a physical system. In some circumstances one

of these energies dominates over the other ruling the behavior of the particles. In

more intriguing cases they have comparable strength and compete or cooperate

in determining the different quantum phases and dynamical properties of the sys-

tem. Cold atoms experiments offer the possibility to control with high degree of

tunability the three terms independently. In the following we consider different

regimes when varying the amplitude of the three terms and, in each case, we trace

the main properties of the system.

1.2 Anderson Localization

Let us start by considering the case of non interacting particles (U = 0) and

analyzing the effect of the presence of disorder on the wavefunction and on the

transport properties of bosons in a lattice. The quantum transport properties of a

system are intimately related to the underlaying symmetries of the Hamiltonian.

In a perfect periodic system all the eigenstate are extended Bloch waves and the

system is in a conducting phase. For a random potential, where there is no trace

of translational symmetry, we instead expect to have an opposite behavior. The

eigenfunction of the particles are expected to be localized and the transport inhib-

ited. The very interesting and general phenomenon of localization of particles and

waves in random media was first studied by P.A. Anderson in 1958 [3]. Anderson

studied the transport of generic “entities”, originally electrons, in a crystal by

using a single particle tight-binding model with random on site energy similar to

the one introduced in the previous section in the case of non-interacting particles.

Nevertheless Anderson localization is a wave phenomenon which relies on destruc-

tive interference of several multiple scattering paths which results in absence of

diffusion and in wavefunctions exponentially localized in space. The Anderson’s

idea has thus been extended to electromagnetic waves and many experiments have

been performed over the last twenty years [4, 5, 6, 7].

Going back to the case of particles, we can use the Hamiltonian (1.21) to

describe the disordered system. If we consider the non-interacting case it takes

the form:

ĤA = −J
∑
〈j,j′〉

â†j âj′ + ∆
∑
j

ejn̂j , (1.22)

being ej a number which randomly varies in the interval [-1,1] from site to site.
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Figure 1.1: Schematic representation of the Anderson localization phenomenon [8]. Ander-

son localization can be thought in term of tunneling of particle (a). In an ordered lattice

particles are allowed to tunnel between neighboring sites and freely propagate across the

lattice. If the regularity of the lattice is broken by randomly changing the depth of the

potential at each lattice site, tunneling is suppressed and particle become localized with

an exponential decaying wavefunction. From another point of view, Anderson localization

can also been understood in term of destructive interference of waves propagating in a

medium with large concentration of randomly distributed scatterers (b).

Already in his original work, Anderson showed that the transport, i.e. the diffusion

of an initially localized wavepacket, is suppressed if the disordered amplitude ∆

exceeds a critical value of the order of the tunneling energy J . The original studies

by Anderson were performed for a three-dimensional lattice. In one-dimension,

in the case of a pure random potential, all the eigenstates are localized for any

value of the disorder ∆. On the contrary, in the case in which the disordered

potential has non-vanishing spatial correlations, the system shows a transition

from extended to localized states for a finite value of ∆ similar to what occurs in

pure random three-dimensional systems. Anderson localization can be thought as

both a disordered induced suppression of the tunneling of particle across a lattice

and a destructive interference of waves as schematically represented in Fig.1.1.

The first observation of Anderson localization of matter waves either in a

random potential [9] or in a perturbed periodic potential (quasiperiodic lattice)

[10, 11] has been achieved in 2008 in two complementary experiments with bosonic

ultracold atoms. Both experiments showed the suppression of the matter trans-

port across the system due to disorder and the exponential shape of the tails the

atomic spatial distribution as shown in Fig.1.2. These experiments have been

performed in one-dimensional disordered potential. More recent experiments ob-
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served Anderson localization in the three-dimensional case [12, 13].

When the disorder can be neglected, and the kinetic energy is the dominant

energy term, each atom is free to move from site to site across the lattice, i.e. each

atom is delocalized throughout the lattice and the system is superfluid. As already

pointed out, the ground state in this case is a Bloch wave and can be written as

the superposition
∑

j â
†
j |0〉 of the Wannier functions with the same phase. If we

consider N atoms we can write the many-body state as the product of identical

single-particle states,

|ψSF 〉 ∝
(∑
j

â†j
)N |0〉 (1.23)

and can thus be described by a single macroscopic wavefunction, which is equiva-

lent to a coherent state whose phase is well defined and constant across the lattice.

As a consequence the momentum distribution of the atoms in the lattice is charac-

terized by narrow peaks 2~k1 apart. When disorder is introduced particles begin

to localize in certain lattice site and there is no more coherence across the whole

lattice. This results in a broadening of the momentum distribution. Roughly

speaking a localization in the real space corresponds to a “delocalization” in the

momentum space. The experimental observation by Roati et al. [10] of the broad-

ening of the momentum distribution for increasing disorder strength is shown in

Fig.1.3.

1.3 Delocalization by weak interaction

The presence of interaction between particles can strongly affect the system and in

particular can destroy the disorder induced localization. For this reason Anderson

localization has never been observed in atomic crystals, where electron-electron

interaction represent a deviation from the Anderson model and prevent the system

from localizing. Here we take into account the situation in which a repulsive

interaction is introduced between the particles in a system that is localized by

disorder. It is known that interactions themselves can induce the localization of

each particle in a certain lattice site suppressing the tunneling from site to site.

This happens when interactions are strong enough to overcome kinetic energy. We

describe this situation, called Mott insulator phase, in the next section. Instead

we now consider the case U < J . What is interesting in this situation is the

competing effect of the disorder which tends to localize the bosons in the absolute

lowest energy state and the weak repulsive interaction which can counteract this

effect drastically changing the feature of the system. In particular a weak repulsion
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Figure 1.2: Experimental observation of Anderson localization with cold atoms. Left

panel (a) shows the result of the experiment performed in Florence by Roati et al. [10].

The expansion of the atomic cloud along an optical lattice is inhibited by the presence

of disorder. From top to bottom the pictures show the time evolution of the atomic

cloud for increasing value of the disorder strength ∆. We note that when the disorder is

strong enough the cloud does not expand in the lattice since the atoms are localized and

the transport is completely suppressed. Right panel (b) refers to the results obtained in

Paris by Billy et al. [9]. Also in this case we see that, after an initial expansion due to

residual interaction between atoms, the atomic sample does not expand in the disordered

potential as shown in the plot of the localization length in function of the time. In the top

panel we can also see the typical exponential shape of the tails of the atomic distribution

characterizing Anderson localization
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Figure 1.3: Momentum distribution of a cold atoms sample in a quasiperiodic lattice [10],

for varying disorder strength. The left panel shows the momentum distribution profiles

of atoms. From top to bottom we note that the peaks broaden for increasing value of the

disorder, which destroys the coherence in the system. The right panel plots the dependence

of the width of the central peak on the disorder strength ∆. Different colors represents

data taken for different values of the tunneling energy J .

can “screen” the disorder [14] and bring the system back to a coherent extended

superfluid, as in the clean lattice, passing through an intermediate glassy phase.

Interactions allow the coupling between localized states centered in different lattice

sites.

A detailed study of the properties of a disordered bosonic system in the weakly

interacting regime is actually one of the goals of this thesis and we will describe the

experimental results we achieved in chapter 3. Here we just give a brief qualitative

description on how a weak repulsive interaction can destroy the disorder-induced

localization. We refer to Fig.1.4. In the non-interacting case, for strong enough

disorder, only the absolute lowest energy level is populated, the many-body state

coincide with the single particle one and the wavefunction is exponentially lo-

calized. A very weak interaction pushes the bosons out of the lowest localized

state. The many-body states are however very close to the single particle ones

and there is no coherence between atoms in different lattice sites. This regime is

often addressed in literature as Anderson (or Lifshitz ) glass. For larger interaction

energies but still smaller than ∆, the many-body state are substantially deformed

and start to occupy more than one single particle state, creating islands of super-

fluid. However, the coherence across the entire system is not yet restored. This

regime is addressed in literature as fragmented BEC or weakly interacting Bose

Glass. Finally when the interaction strength is comparable with the disorder one,
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Figure 1.4: Left: schematic of the interaction-induced delocalization. In the non-

interacting case (U = 0) the system is Anderson localized in the lowest energy state

(a). For increasing interaction energy the system tends to occupy more than one single

particle state, Anderson glass (b), and to create coherent islands of superfluid, weakly

interacting Bose glass (c). When the interaction energy is comparable with the disorder

(U ∼ ∆) the coherence is restored across the entire system (d). Right: Experimental

momentum distribution of atoms in a disordered lattice for increasing interaction energy

[15]. Coherence is gradually restored in the system and this results in narrower and nar-

rower peaks until the full coherence is restored and the momentum distribution resemble

the one of atoms in a regular lattice.

a coherent state can form on the entire system. The coherence increasing across

the transition has been experimentally proved by looking for example at the mo-

mentum distribution [15]. When a large enough interaction energy is present in

the disordered system, a coherent state is recovered. This shows the same mo-

mentum distribution as in the regular lattice as can be seen by comparing Fig.1.4

and Fig.1.3.

1.4 Mott insulator

We have described in the previous section the delocalizing effect of a weak repulsive

interaction against disorder. We can now trace out the role of the interaction in a

clean system (without disorder) before moving to the more complex case in which

disorder and interaction have comparable strength and drive the system to more

complex phases. The Hamiltonian (1.21) in this case simplifies and reads:

ĤHBH = −J
∑
〈j,j′〉

â†j âj′ +
U

2

∑
j

n̂j(n̂j − 1). (1.24)
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We have already observed that the many body ground state of N particle in a

clan lattice without interaction is a superfluid state (Eq.(1.23)) characterized by

full coherence across the lattice. In a superfluid the phase is perfectly defined for

each site whereas the number of particles is not determined and exhibits Poissonian

fluctuations in agreement with the Heisenberg uncertainty principle, according to

which the phase operator and the number operator are conjugate variables. This

assumption continues to hold also for interacting particles, as long as the first

term in Eq.(1.24) is the dominant one, i.e. until U � J . In this case in fact it

is energetically favorable for the system to enhance the tunneling processes of the

atoms from site to site.

On the contrary when U � J , interactions dominate the Hamiltonian (1.24).

Under this condition, the Poissonian fluctuations in atom number become ener-

getically very costly and tunneling from site to site is suppressed. The ground

state of the system will therefore consist of localized atomic wavefunctions with a

fixed number of atoms per site that minimize the interaction energy. The strong

repulsive interaction in fact forces the atoms to not share the same lattice sites.

This system takes the name of Mott insulator. The many-body ground state is a

product of local Fock states which are the eigenstate of the number operator of

each lattice site. In this limit, the ground state of the many-body system for a

commensurate filling of n atoms per lattice site in the homogeneous case is:

|ψMI〉 ∝
∏
j

(
â†j
)n|0〉. (1.25)

The homogeneous site filling n is determined by the chemical potential µ. In strong

contrast with the superfluid phase, the number of particle per site is perfectly

determined. On the contrary, the conjugate variable, that is the phase, has the

maximum uncertainty. For this reason in a Mott insulator there is not coherence

across the lattice.

Quantum phase transition

Increasing the strength of the interaction energy the systems undergoes a quantum

phase transition between a superfluid and an insulating phase when the interac-

tion energy becomes the dominant energy U > J . The exact critical value (J/U)c

at which the transition occurs depends on the chemical potential µ as shown in

the phase diagram in Fig.1.5 [1]. This transition is induced by quantum fluctu-

ation and it is present also at zero temperature, where the thermal fluctuation

is suppressed. For two and three-dimensional lattices the mean field approach to
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Figure 1.5: Phase diagram of the superfluid (SF) to Mott insulator (MI) transition for a

clean homogeneous Bose-Hubbard model. The MI lobes are characterized by constant site

filling n. Note that the larger the average occupancy n̄, the larger the critical interaction

energy to enter the Mott insulator phase. In an inhomogeneous case, for a fix interaction

atoms alternate different phases according to the local chemical potential as one can get

by moving along the red arrow.

calculate the quantum critical point has been shown to be in good agreement with

more sophisticate calculation which nevertheless result to be necessary in the one

dimensional case. For a given average occupation n̄ = N/M (where M is the

number of lattice sites), the estimates for the critical energy (U/J)c result to be:

(U/J)c =

3.84 , if n̄ = 1

2.2 n̄, if n̄� 1
(1.26)

in the one-dimensional case, and

(U/J)c =

5.8 z , if n̄ = 1

4 n̄ z , if n̄� 1
(1.27)

in higher dimensions, being z the number of nearest neighbors.

Experimental observation of the superfluid-Mott insulator transition

with ultracold atoms

The transition from a superfluid phase to a Mott insulator phase for increasing

value of the interaction energy with respect to the kinetic one has been probed

during the last years in different cold atoms experiments. The first observation

was made by Greiner et al. in 2002 [16] by looking at the momentum distribution
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Figure 1.6: Observation of the superfluid to Mott insulator transition by measuring the

momentum distribution [16]. Images are taken for increasing value of U/J . In the su-

perfluid case (a) a clear interference pattern indicates phase coherence across the entire

system. Conversely, when the system enters the Mott insulator phase, atoms are localized

in single lattice sites and phase coherence is lost. This results in a broadening of the

momentum distribution and eventually the peaks completely disappear. These picture

refer to a three-dimensional optical lattice.

of the atoms (see Fig.1.6). When the system is superfluid in fact the momentum

distribution is given by a clear interference pattern with narrows peaks. On the

contrary in the Mott insulator there is not phase coherence in the system and the

interference is lost similarly to what happens in the Anderson’s case.

Another experimental prove of the appearance of a Mott insulator phase in

an atomic system is given by the measurement of the excitation spectrum. In

the Mott insulator state in fact, the excitation spectrum is substantially modified

compared to the one of the superfluid state: it shows an energy gap. In the limit

U � J the energy gap is equal to the on-site interaction energy. This can be

understood within a simplified picture as follows. We consider a Mott insulator

state with exactly one atom per lattice site. The lowest lying excitation for such

a state is the creation of a particle-hole pair, where an atom is removed from a

lattice site and added to a neighboring one. Due to the on-site repulsion between

two atoms, the energy of the state describing two atoms in a single lattice site is

raised by an amount U in energy above the state with only a single atom in this

lattice site. Therefore in order to create an excitation the amount of energy U is

required. It can be shown that this is also true for number states with exactly n

atoms per lattice site. Also here U is the energy required to make a particle-hole

excitation3. Through this picture one can also get a better idea of why hopping of

3Actually U depends on the number of particles that occupy a single lattice site since the
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Figure 1.7: Measured excitation spectrum of atoms in a one dimensional lattice for dif-

ferent values of the ratio U/J [18]. For small value of U/J the system is in the superfluid

phase and its spectrum is gapless (red curve): any amount of energy can be transfer in

the system. On the contrary when the interaction energy become the dominant energy,

the system enters in the Mott Insulator phase and an amount of energy equal to U is

required in order to excite the system. When the excitation energy is equal to U in fact a

particle-hole excitation can be created in the lattice. If the perturbation is strong enough

also double particle-hole excitation can occur: this happens for an excitation energy equal

to 2U . The excitation spectrum is thus characterized by two narrow peaks (yellow curve).

particles throughout the lattice is suppressed in the Mott insulator phase. In the

superfluid case instead any amount of energy can be transfer in the system and

the excitation spectrum is gapless. Fig.1.7 [18] shows the excitation spectrum for

an atomic gas undergoing the superfluid-Mott insulator transition.

The different microscopic occupation of the lattice sites which determines the

two quantum phases, translates in drastically different properties of the entire

system as many experiments showed. The more recent experiments were also able

to observe the single site occupation across the lattice and measure the vanishing

atom number fluctuations across the transition to Mott insulator [19, 20].

wavefunction of interacting atoms is also dependent on the atom number. Then the excitation

energy needed to move one atom from a site to another one depends, in turn, on how many atoms

were occupying the two involved lattice sites. A precise measurement of the excitation spectrum

allows to resolve number-dependent shift in the excitation energy caused by effective multi-body

interactions[17].
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Figure 1.8: Fluorescence images of atoms in a two-dimensional lattice in the Mott insulator

regime U � J . The typical wedding-cake structure is observed. Moving from the center

towards the edges an alternation of Mott insulator shells with even (full) and odd (empty)

site occupation is shown. Images are taken for increasing number of atom [20].

Inhomogeneous case: shell structure

In cold atoms experiment an external potential is always present and the ideal

homogeneous case is never realized. The typical confinements in the experiment

are given by harmonic potential and can be included in the Bose-Hubbard model

in the term
∑

j εjn̂j of the Hamiltonian (1.20). This confinement helps the system

to achieve in some region of the lattice the commensurate filling necessary for the

Mott insulator to form. The system can be thought to be characterized by a local

chemical potential which slowly varies from site to site and reaches its maximum

at the center of the harmonic potential. For a constant J/U < (J/U)c the atoms

alternate different phases according to the local chemical potential as one can get

by moving along a vertical line in Fig.1.5 (red arrow in the picture). Moving from

the center of the trapping potential towards the edges, Mott Insulator shells with

decreasing occupation filling alternate with superfluid ones. In the limiting case

of U � J only Mott insulator shells remain and the density profile of the trapped

atoms shows the so called wedding-cake shape. This peculiar distribution of the

atoms in the lattice has been experimentally observed as shown in Fig.1.8 [20].

1.5 Bose glass

Let us now come to consider the more complex and by far more debated regime of

strong interaction and disorder. In section 1.3 we have seen how a weak interaction

can delocalize a disordered localized system and in section 1.4 we have instead

spoken about the Mott insulator regime in which interaction itself is strong enough

to compete against the kinetic energy and have a localizing effect in a regular

lattice. We can now discuss the interplay between disorder and interaction in the

strongly interacting regime. Do the two effects cooperate in creating an insulating

phase or, on the contrary, inhomogeneities induced in the system by disorder tend

to destroy the ordered Mott Insulator phase leading to a more coherent state?
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Figure 1.9: Phase diagram for disordered interacting bosons. Depending on the relative

strength of the tunneling energy J , the interaction energy U and the disorder ∆, the

system is in a superluid (SF), Mott insulator (MI) or Bose glass (BG) phase.

Many theoretical and numerical works predict, in this regime, the appearance of

a glassy phase called Bose glass, which is not too different from the glassy phase

of the weakly interacting regime introduced in section 1.3. A clear experimental

characterization of this complex phase is still missing.

The forth chapter of this thesis will be devoted to the analysis of experimental

studies performed in this thesis’ work in the strongly interacting regime. Here we

simply summarize the main properties of the Bose glass phase and briefly describe

the transition that the system undergoes from Mott insulator when disorder is

gradually added in the system.

As discussed in the previous section, when the system is ordered, its properties

are totally determined by the competition between the tunneling energy J and the

interaction energy U . In particular in the limit of strong interaction (U � J), the

system is characterized by Mott insulator domains, each of them with an integer

site occupation n determined by the local effective chemical potential (Fig.1.9a).

When weak disorder (∆ < U) is added in the system, the Mott insulator lobes

are expected to shrink, and give room to another quantum phase, known as Bose

glass (Fig.1.9b) [1]. For larger disorder, when ∆ ≥ U , the Mott insulator lobes

completely disappear and, for sufficiently small J , only the Bose glass phase should

hold (Fig.1.9c).

The Bose glass phase is an insulating although compressible phase. Like the

Mott insulator, the Bose Glass is insulating since it does not have long-range phase

coherence. Like a superfluid, it has a gapless excitation spectrum and consequently

a finite compressibility. We note that the coexistence of these two properties is not

in contraction: despite the absence of a gap in the excitation spectrum, excitations
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Figure 1.10: Excitation spectra of an interacting bosonic gas for a fix value of interaction

energy and increasing value of the disorder strength (a)-(e) [21]. Effect of excitation at

a frequency of 1.9kHz as a function of the disorder (f). The progressive vanishing of the

Mott insulator excitation peaks is clearly visible.

at low energy only occur locally in regions of superfluidity. The Bose glass phase

is thus characterized by a short-range phase coherence given by these superfluid

regions but, globally, it is insulating.

As already pointed out a clear experimental investigation of the Bose glass

phase is, up to now, still missing. However few experiments with cold atoms have

studied during the last years bosonic disordered systems in the strongly correlated

regime. In the following we report on some of the main experimental results.

Experimental investigation of the strongly interacting disordered regime

with cold atoms

The first experiment towards the Bose glass was performed in Florence in 2007 [21].

In this experiment Fallani et al. demonstrated the progressive broadening and

eventually flattering of the Mott insulator excitation energy peaks as the disorder

amplitude ∆ increases as shown in Fig.1.10. The vanishing energy gap in the
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Figure 1.11: Effect of disorder on the transport of interacting bosons [22]. Dependence

of the center of mass velocity on the interaction energy for increasing disorder strengths

(black, dark blue, light blue). The conductor-insulator transition is shifted towards smaller

value of U/J as the disorder increases. The inset shows how disorder affects the velocity for

a fix value of the interaction (U/J ' 45). Red points refer to high temperature transport

in a clean (without disorder) lattice.

excitation spectrum of an insulating strongly-interacting gas of bosons is a strong

indication of a new phase, different from a homogeneous Mott insulator. However

these spectra are also compatible with the formation of a strongly inhomogeneous

Mott insulator which is a conceptually different phase with respect to the Bose

glass.

A more recent work performed in Urbana demonstrated how, by adding disor-

der in an interacting superfluid system, one observes a greater energy dissipation

i.e. the appearance of an insulating phase [22, 23]. Pasienski et al. by measur-

ing transport in a disordered lattice, experimentally proved a disorder-induced

superfluid-insulator transition in an interacting system, compatible with the ap-

pearance of the expected Bose glass phase. The velocity of the center of mass

of the bosonic gas after an impulse is applied decreases by increasing either the

interaction or the disorder as shown in Fig.1.11. In a certain range of parameters

disorder and interaction can thus cooperate in making the system an insulator

conversely to what happens in the weakly-interacting regime where interactions

screen the effects of disorder.
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Chapter 2

A 39K Bose-Einstein condensate

with tunable interaction in a

quasiperiodic potential

The experiments reported in this thesis have been performed by investigating the

behavior of a Bose-Einstein condensate (BEC) of Potassium-39 atoms in a po-

tential created by two incommensurate optical lattices in one dimension. The

quasiperiodic potential created by the lattices provides a disordered distribution

of the on-site energies and mimics the Anderson physics. The single-particle eigen-

states feature a transition to a localized regime for a finite value of the disorder

strength. In the experiment the three important energies introduced in the pre-

vious chapter following the Bose-Hubbard model, J , U and ∆, can be measured

and independently tuned in a controlled way.

39K, in absence of any external magnetic field, has a negative scattering length

which corresponds to an attractive interaction which would make the BEC to

collapse. Nevertheless in its ground state it shows a broad magnetic Feshbach

resonance (see sec.2.2.1). It is therefore possible to tune the scattering length to

positive value to condense the atoms, and adjust it at will to access various regimes

of interaction. Thanks to this high degree of tunability of the scattering length,

39K BEC is actually an excellent sample to study the physics of disordered systems

in the non-interacting, weakly interacting and strongly correlated regimes.

In this chapter we first give a brief description of optical lattices, i.e. of the

perfectly periodic potentials for neutral atoms created by light (sec.2.1). We also

show how the kinetic energy J is measured and controlled in the experiment.

In sec.2.2 we characterize the interaction energy in the condensate and give a
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qualitative idea on how it can be tuned by an external magnetic field. We then

speak about disordered optical potential and in particular about quasiperiodic

lattices (sec.2.3). We show how the disorder strength ∆ can also be easily measured

and tuned. After a short description of the experimental procedure to create

the 39K Bose-Einstein condensate (sec.2.4) we then explain how we use imaging

techniques to investigate its behavior (sec.2.5). The chapter ends with sec.2.6

about the experimental realization of one-dimensional systems for ultracold atoms.

2.1 Optical lattices

Laser light can be exploited to trap neutral atoms in attractive or repulsive con-

servative potentials, the shape and depth of which can be easily engineered and

dynamically controlled. Optical traps are commonly realized in cold atoms ex-

periment focusing a gaussian laser beam on the atomic cloud. The trap depth is

typically in the millikelvin range, orders of magnitude smaller than the thermal

energy of atoms at room temperature. Anyway, once the gas has been driven to

the ultralow temperatures necessary to reach Bose-Einstein condensation at mod-

erate density, it can be easily trapped in these weak potentials. We now focus our

attention particularly on the possibility to create with light a perfect periodic lat-

tice where atoms are axially confined in the nodes or antinodes of a standing wave.

Bosonic atoms in this kind of potential are thus perfect candidates to study the

physics described by the Bose-Hubbard model introduced in the previous chapter.

Optical lattices rely on the dipole force that is the conservative force that arises

from the dispersive interaction between the intensity gradient of a light field E

and the induced atomic dipole moment d. We consider a far-off resonance laser

beam. This means that the detuning ∆ = ω − ω0 between the field frequency ω

and the atomic resonance frequency ω0 is much larger than the atomic radiative

linewidth Γ. It can be shown from a semiclassical approach [24], that in this case

the dipolar potential generated by the beam can be expressed as follow:

Vdip(x) =
3πc2

2ω2
0

Γ

∆
I(x) (2.1)

being c the speed of light in vacuum and I(x) = |E(x)|2 the light intensity.

The scattering rate due to the far-detuned photon absorbed and subsequently

spontaneously remitted by the atoms, in the same semiclassical framework, results

to be: Γsc = 3πc2

2ω2
0

( Γ
∆)2I(x). If, as it happens in the experiment, ∆ is chosen to be

much larger than Γ, Γsc can be neglected and the potential in conservative.
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The method to create an optical lattice is in principle simple. A laser beam is

retroreflected by a mirror in order to obtain a standing wave resulting from the

interference of the two counter-propagating light fields. In our experiment we use

a solid state Nd:YAG laser with wavelength λ '1064nm. Such a laser, which is

optical pumped by a diode laser, is a very stable source characterized by a spectral

linewidth ∆ν ≤1KHz.

If we consider the two sinusoidal counterpropagating fields E1 and E2 having

the same wave number k = 2π/λ, the same amplitude E0 and the same polar-

ization, the time-averaged interference pattern is given by I(x) = |E1 + E2|2 =

I0cos(kx)2 with I0 = 2ε0cE
2
0 . Replacing this expression in Eq.(2.1) we obtain the

potential exerted by the standing wave on the atoms:

Vlatt(x) = V0cos
2(kx) with V0 =

3πc2

2ω2
0

Γ

∆
I0 (2.2)

This corresponds to a perfect sinusoidal optical lattice with spatial periodicity

d = λ/2. Commonly the lattice depth V0 is expressed in terms of recoil energy as

the dimensionless quantity:

s =
V0

Erec
with Erec =

~2k2

2m
(2.3)

Erec is the energy with which an atom of mass m recoils when it absorbs a photon

with momentum ~k and it is the natural energy scale for atoms in an optical

lattice. For s ≥ 3 the system is already in the tight-binding regime for which the

Bose-Hubbard Hamiltonian applies.

Calculation of the tunneling energy J

We now show how to calculate the tunneling energy between neighboring sites J

given the lattice depth s [25].

If the lattice is depth enough it is possible to approximate the potential well

of each lattice site with a harmonic well:

Vlatt(x) = V0cos
2(kx) ' sErec(kx)2. (2.4)

The oscillation frequency ωlatt of a lattice site can then be obtaining by solving

the equation:

sErec(kx)2 =
1

2
mω2

lattx
2, (2.5)

and results to be:

ωlatt =
2Erec
~
√
s. (2.6)
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Under this approximation the Wannier function centered in the j-th lattice site

can be written as the eigenfunction of the ground state of the harmonic oscillator

with frequency ωlatt and harmonic length:

alatt =
√
~/(mωlatt). (2.7)

To estimate the tunneling energy we have to calculate the overlapping integral

between the function centered in two neighbor sites as defined in Eq.(1.16). If we

consider the Gaussian approximation introduced above we get:

J

Erec
=

4√
π
s0.75e−2

√
s. (2.8)

We observe that the term J strongly depend on the overlapping of the tails of the

Wannier functions where they differ more from the gaussian functions. For a more

precise evaluation of the tunneling energy one has therefore to take into account

the actual shape of the Wannier function and from a numerical fit one obtains

[26]:
J

Erec
= 1.43s0.98e−2.07

√
s. (2.9)

2.1.1 Lattice calibration: Raman-Nath spectroscopy

As discussed in the first chapter of this thesis, the kinetic energy scale is very

important in determining the physical properties of the system. In order to have

a good characterization of the physical system under investigation and a good

interpretation of the experimental data it is thus fundamental to know, with high

precision, the tunneling energy J of the optical lattice which can be calculated

using Eq.(2.9) from the lattice depth s. However we have to note that Eq.(2.2)

results to be only an approximation of the real potential felt by the atoms. In

fact in a real experiment an unbalance between the powers of the two counter-

propagating beams, a slight misalignment or a not completely parallel polarization

of the beams field could result in an effective potential which differs from the

one theoretically calculated. A direct measurement of the lattice depth is thus

necessary in order to estimate J in a reliable way.

In the experiment we calibrate the height of the optical lattice by using an

interferometric technique relying on the so-called Raman-Nath diffraction. The

basic idea of this phenomenon is the following: as the light can be diffracted by a

grating, in a similar way a Bose-Einstein condensate (which can be thought as a

macroscopic matter wave) can be diffracted by an optical lattice. We shine on the

BEC a short pulse of the laser light which creates the lattice. The duration of the
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Figure 2.1: Absorption images of the BEC diffracted by the optical lattice in the Raman-

Nath regime (Tpulse=10µs) after a free expansion during tTOF=16ms. A larger number of

peaks corresponds to a deeper lattice. From the fit of the density profile integrated over

the transversal axis with a sum of gaussian peaks we extrapolate the width of the central

peak and the second momentum of the distribution. We can then calculate the lattice

depth s with Eq.(2.17). From top to bottom the images correspond to s ' 0, 5, 15

pulse Tpulse has to be short enough for not allowing the atoms to move along the

lattice. The BEC diffracts and, after a free expansion during tTOF , interference

peaks appear in the density distribution. As shown in Fig.2.1 the number of peaks

increases for increasing lattice depth.

Let us analyze this technique in a more quantitative way. Let us consider a

standing wave potential of the form (2.2) and an atomic wavepacket, which can

be treated as a plane wave with momentum p0. The coupling between them will

change the momentum of the atoms in p0 ± 2n~k, where n is an integer number.

If we now apply the standing wave only for a limited time Tpulse we can ask which

is the probability of finding the atoms in the n-th plane wave. The calculation is

straightforward if one can neglect the motion of the atomic center of mass along

the lattice during the time Tpulse: in this case we are in the so called atomic

Kapitza-Dirac regime, corresponding to the Raman-Nath light diffraction from a

thin grating and the probability is given by [27]:

Pn =
∣∣∣Jn(V0

~
tpulse

)∣∣∣ (2.10)

being Jn the n-order Bessel function. The Raman-Nath regime applies when the

kinetic energy of the involved plane wave is small with respect to the height of the

optical potential. Taking as nmax the largest significant order of diffraction and

neglecting the initial momentum p0, one has that the condition to be satisfied is

the following:
(2nmax~k)2

2m
< sErec (2.11)
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An estimation of nmax can be done reminding that |Jn(z)|2 < 1 if |z| < n. We can

thus assume nmax = (V0/~)Tpulse and rewrite the thin grating condition in terms

of the duration of the pulse:

Tpulse <
1

ωrec
√
s
, (2.12)

where we define ωrec = Erec/~. The typical value of the lattice depth in the

experiment is s ' 10. In order to use this technique to calibrate the lattice we

thus have to apply very short pulses Tpulse < 1ms.

In a more realistic situation in which the atomic plane wave is replaced by

a Bose-Einstein condensate we can follow the same reasoning as above: the con-

densate get diffracted by the laser standing wave and atomic wavepackets with

momenta spaced by 2~k are generated. These packets can be directly seen after

the expansion as it is clearly shown in Fig. 2.1. If we indicate the condensate

wavefunction as ψ0(x), the wave function after the interaction with the lattice in

the thin grating approximation is given by

ψ(x) =
∑
n

inJn

(s
2
ωrec Tpulse

)
e−2inkxψ0(x). (2.13)

The corresponding momentum distribution is obtained with a simple Fourier trans-

form:

ψ̃(p) =
∑
n

inJn

(s
2
ωrec Tpulse

)
ψ̃0(p− 2n~k). (2.14)

With the assumption that ψ0(x) extends over many lattice sites and therefore

ψ̃0(p) is narrow on the scale of ~k, it is possible to write the second moment of

the momentum distribution as

〈p2〉 = (
∑
n

Pn)〈p2〉0 + 4~2k2(
∑
n

n2Pn) (2.15)

where we indicate with 〈p2〉0 the second moment of the momentum distribution of

the trapped condensate. Using Eq.(2.10) and the sum rules for the Bessel function

one finds:

〈p2〉 = 〈p2〉0 +
1

2
(~k)2(sωrecTpulse)

2. (2.16)

This quantity is simply proportional to the RMS width of the cloud after expan-

sion σRMS provided that the original size in the trap can be neglected and that

the atomic interactions play a negligible role during the expansion. Under these

approximation in fact we have:

σ2
RMS =

tTOF
m
〈p2〉 = σ2

0 +
1

2

(kErec
m

tTOFTpulse

)2
s2. (2.17)
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Since σRMS and the width of the central peak σ0 can be obtained from the ab-

sorption images of the atoms, one can calculate s by using Eq.(2.17).

Besides measuring the lattice depth, this technique is also used in the daily

procedure of alignment of the lattice: in fact it is easy to see that, for a given

total intensity, the height of the optical lattice is maximum when the two beams

are perfectly counterpropagating. We thus finely adjust the direction of the back-

reflected beam in order optimize the diffraction pattern.

2.2 Interaction energy in a Bose-Einstein condensate

In the previous section we have shown how it is possible to control and measure the

kinetic energy of the atoms in the periodic optical lattice. We can now consider

the interaction energy in the Bose-Einstein condensate and describe the way in

which we are able to tune it. In an atomic gas in the dilute regime and at very

low temperature only binary collisions are relevant and the two-body interaction

potential can be written in terms of a contact pseudo-potential:

v(x− x′) = g δ(x− x′) with g =
4π~2

m
a. (2.18)

The strength of the interaction energy thus depends only on a single parameter:

a, the s-wave scattering length. It is in fact possible to demonstrate that at low

temperature s-wave scattering processes dominate over higher order ones which

are strongly suppressed. The scattering length a depends on the details of the

interaction potential. The sign of a determines the kind of interaction: positive

values of the scattering length correspond to repulsive interaction and negative

values to attractive one.

2.2.1 Tuning the interactions: Feshbach resonances

By means of a homogeneous magnetic field it is possible to tune a changing the

intensity and the sign of the interactions. This phenomenon, known with the name

of magnetic Feshbach resonance, has been first studied in nuclear physics [28, 29].

Successively Feshbach resonances found their application also in many atomic

physics experiments [30] since they offer the possibility to tune the inter-atomic

interactions in an easy and very controllable way.

The physical origin and the elementary properties of a Feshbach resonance

can be understood from a simple picture. We consider two molecular potential

curves Vbg(R) (ground state) and Vc(R) (excited state), corresponding to two spin
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Figure 2.2: Basic two-channel model for a Feshbach resonance. The phenomenon occurs

when two atoms colliding at energy E in the open channel resonantly couple to a molecular

bound state with energy Ec supported by the closed channel potential. In the ultracold

domain, collisions take place near zero energy, E ≈ 0. When the magnetic moments cor-

responding two the two potentials differ, resonant coupling can therefore be conveniently

realized by magnetically tuning Ec near 0.

configurations for atoms as shown in Fig. (2.2)1. For large the interatomic distance

R Vbg(R) corresponds to the energy of the two free atoms (dashed line), which is

chosen as reference energy Vbg(∞) = 0.

In ultracold gases two atoms can collide having small energy. The level Vbg(R),

called open channel, is accessible for a collisional process. The other potential

Vc(R), which is not accessible and is called closed channel, can however support a

bound molecular state close to 0 energy. The two atoms have thus the energeti-

cally allowed possibility to make a (temporary) transition to this molecular state

and their scattering cross section can extremely increase. Even a weak coupling

can lead to strong mixing between the two channels. Provided that the states

corresponding to the two channels have different magnetic moments, the relative

energy difference can be controlled via a magnetic field B since they have a dif-

ferent response (Zeeman shift) to the applied B. This leads to a magnetically

tunable Feshbach resonance. The dependence of the scattering length a on the

1In principle a molecule has several potential curves corresponding to the different hyperfine

and Zeeman levels. For simplicity we consider only one excited state which is appropriate for an

isolate resonance
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Figure 2.3: Magnetic field dependence of the scattering length a of 39K in the proximity of

the Feshbach resonance centered at B0 ' 400G. a vanishes at the zero-crossing magnetic

field Bzc ' 350G.

magnetic field B can be described by a simple expression [31]:

a(B) = abg(1−
W

B −B0
). (2.19)

The background scattering length abg, which is the scattering length associated

with Vbg(R), represents the value far from resonance. The parameter B0 denotes

the resonance center, where the scattering length diverges, and the parameter W

is the resonance width. Note that both abg and W can be positive or negative.

An important point in a Feshbach resonance is the zero crossing of the scattering

length which occurs at a magnetic field Bzc = B0 +W .

From Eq.(2.19) we can extrapolate the behavior of a around the magnetic field

Bzc at which a vanishes:

a(B) ∼
abg
W

(B −Bzc). (2.20)

The parameter that is important in order to control interaction around a=0 is the

ratio abg/W : the smaller it is, the better is the accuracy in tuning the interaction.

Feshbach resonances of 39K

In the experiment we employ Potassium-39 atoms. This isotope is characterized

by several magnetic Feshbach resonances [32]. In particular we exploit the broad

one that 39K shows in its absolute ground state |F = 1,mF = 1〉 which is centered

at B0 ∼400 G. The dependence of the scattering length a on the magnetic field

in the proximity of a Feshbach resonance is given by (2.19). The resonance we
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exploit in the experiment is shown in Fig. (2.3). For this resonance W ' 52G and

abg ' −29a0. The sensibility around Bzc=350 G is thus da/dB ' 0.56a0/G. The

stability of the Feshbach magnetic field in our experiment is of the order of 0.1 G,

which allows a fine tuning of the scattering length around zero and to achieve a

good control up to few hundreds of a0.

2.3 Disordered optical potential

We now turn to discuss the way in which disorder is realized in ultracold atoms

experiments and, in particular, in our laboratory. In practice, two different possi-

bilities have been exploited to create a disordered potential: a laser speckles field

and a quasiperiodic lattice. Both configurations rely once more on the dipole force

that light exerts on the atoms and that can be used to shape very different kind

of well controllable and characterizable potentials. The possibility to add and to

control the disorder in ultracold atoms systems is quite remarkable, especially as

compared with real system in nature where, conversely, it is intrinsically present

and can not be controlled.

A first way to create disorder with light is to shine a laser beam onto a dif-

fuser rough surface, a speckle pattern is in fact created by the interference of the

different paths of the light scattered by different facets of the surface [33]. Since

the dipole potential is proportional to the laser intensity, the disordered spatial

intensity produced by the speckles results in a spatially disordered potential for

the atoms (fig. 2.4). The speckles induced disorder is constant in time and can

be characterized by two parameters, its intensity standard deviation σI and its

lengthscale ∆x, which is essentially the correlation length, i.e. the width of the

autocorrelation function.

Figure 2.4: Speckles laser field. A laser beam is shined onto a diffusive plate to create a

speckles interference pattern which provides a disordered potential for the atoms given by

the random intensity distribution sketched on the left of the picture.
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A quasiperiodic potential instead consists of two overlapping lattices with in-

commensurate wavelength (fig.2.5). The superposition over the main lattice of a

second weaker one with incommensurate periodicity creates a potential which is

described, according to Eq.(2.2) and (2.3), by the following expression:

V (x) = s1Erec1 sin
2(k1x) + s2Erec2 sin

2(k2x+ φ). (2.21)

where ki = 2π/λi (i=1,2) are the lattice wavenumber and si are the lattice heights

in unit of recoil energy Erec i. Provided that s2 � s1 and β = k2/k1 is an irrational

number, the secondary lattice induces a perturbation on the main one resulting in

an inhomogeneous and non-periodic shift of the energy minima. The quasiperiodic

lattice is characterized by potential wells every D = 1/(β − 1) sites of the main

lattice. In the experiment we use a Nd:YAG laser with wavelength λ1 '1064 nm

to create the main lattice and a Ti:Sapphire laser with wavelength λ2 ' 859nm

for the secondary one. The quasiperiodic wells appear approximatively every 4.2

lattice sites. We note that disorder introduced by the bichromatic lattice is not

a random disorder since it has a quasiperiodic structure characterized by well de-

fined incommensurate frequencies which results in a deterministic and spatially

correlated sistribution of the energy across the lattice sites. However the transla-

tional symmetry of a perfect lattice is broken in a non-trivial way and it is thus

suitable for the study of disorder physics.

2.3.1 Quasiperiodic lattice

Using the expression for the quasiperiodic potential (2.21) in Eq.(1.21), one can

rewrite the disordered Bose-Hubbard Hamiltonian in this form:

ĤQuasiperiodic = −J
∑
〈j,j′〉

â†j âj′ + ∆
∑
j

cos(2πβj+φ)n̂j +
U

2

∑
j

n̂j(n̂j − 1). (2.22)

For non-interacting atoms (U = 0) the full Hamiltonian can be mapped onto that

of the Harper or Aubry-André model. The disordered Bose-Hubbard model for the

quasiperiodic potential is presented in ref.[34, 35]. It can be demonstrated that the

perturbation induced by the secondary lattice does not change significantly the

position of the lattice site, the tunneling energy from one site to the neighboring

one J (which is given by the height of the primary lattice according to Eq.(2.9))

and the on-site interaction energy U . ∆ results to be proportional to s2, the

depth of the secondary lattice, and its expression can be obtained by numerical

calculation [36] and results to be:

∆

Erec
= 0.5 s2 β

2e−2.18/s0.61 , (2.23)
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Figure 2.5: Bichromatic lattice. The superposition of two lattices with heights s1 = 10

and s2 = 1 created by laser beam with wavelengths λ1 '1064nm (red line) and λ2 '859nm

(blu line), creates the quasiperiodic potential represented by the violet line in the bottom

figure. The modulation (dashed line) introduced by the secondary lattice creates potential

wells approximately every D = 1/(β − 1) ' 4.2 sites of the main lattice.
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Figure 2.6: Energy of the eigenstates of the quasiperiodic potential with ∆ = 4J ordered

for increasing energy. The minibands structure clearly appear in the spectrum. The

shape of the eigenfunction in the first band is the same for each state. On the inset the

profile of a typical eigenfunction is plotted: it shows the exponential shape characteristic

of Anderson localization.

Erec is the recoil energy determined by the main lattice. The Aubry-André model

displays a transition from extended to localized state for a finite value of the

disorder ∆/J = 2. This differs from the one dimensional pure random situation

in which any amount of disorder is sufficient to localize the system. Above the

localization threshold however all single particle eigenstates of the first band of the

lattice are exponentially localized and the system behave similarly to the random

case. The disorder dependent localization length ξ ≈ d/ln(∆/2J) (being d = λ1/2

the lattice site spacing) is the same for all the eigenstate. It should be notice that

in the lowest band of a quasiperiodic lattice there are no mobility edges, i.e. all

the states are either localized or extended. Conversely for the speckles potential

effective mobility edges exist due to the spatial correlation of the disorder [37].

By diagonalizing the Hamiltonian, the spectrum of such a potential can be

calculated2. A striking feature of the spectrum is the splitting of the first band of

the lattice in many “minibands” besides a global spreading of the band width from

4J in the regular lattice to approximately 4J+2∆ in the bichromatic case. In Fig.

2.6 the spectrum for a fixed value of disorder (∆ = 4J) is shown. The quasiperiodic

potential is correlated on all length scales, with maxima of its autocorrelation

2An additional harmonic confinement along the longitudinal axis of the lattice, typically

present in the experiment, can be also taken into account in the calculation of the eigenvalues.
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separated by D. The absolute lowest-energy eigenstates are those for which a

lattice site coincides with a minimum of the potential well. These states populate

the first miniband of the spectrum. When two neighbors lattice sites are nearly

symmetric in potential energy in a well, the potential appear locally like a double

well, for which the two lowest-lying eigenstate have a separation in energy of 2J .

The fact that the width of the first minigap is approximately 2J for any value of

the disorder can be justified by this simple consideration.

2.4 Experimental realization of the 39K BEC with tun-

able interaction

39K BEC is a good candidate for the study of physical phenomena in which a

non-interacting system is required and in which it is important to control and

tune the interparticle interaction at will. Nevertheless, due to 39K level structure

and collisional properties at zero magnetic field, the production of a BEC is not

trivial. In our laboratory we employ 87Rb, which is easier to cool to the BEC

regime, to sympathetic cool 39K. In spite of the small heteronuclear scattering

length of 87Rb-39K collisions, the sympathetic cooling has been proven to work

efficiently. A more recent experiment in Florence [38] shows however how it is

possible to condense 39K without employing another atomic species by performing

an efficient sub-doppler cooling and using a large and depth optical dipole trap.

The apparatus and experimental procedure used to produce the BEC has al-

ready been widely described in previous theses of our group [39, 40, 41, 42, 43]. In

the following we only shortly list the steps performed to achieve the condensation:

1. Laser cooling in magneto-optical traps produces overlapped samples of K

and Rb at a temperature T ≈ 100µK and densities of about 1010cm−3.

2. Evaporative cooling in the magnetic trap: The two atoms are prepared

in their low-field seeking state |F = 2,mF = 2〉 and trapped in a QUIC mag-

netic trap. A forced, selective evaporation of Rb atoms on the microwave

transition to the |F = 1,mF = 1〉 state cools both samples to about 1.5µK.

3. Optical trapping: In order to further cool the sample and achieve conden-

sation it is necessary to tune the scattering length by means of a magnetic

Feshbach resonance. We thus need to transfer the atoms from the magnetic

trap to an optical dipole trap which is compatible with the application of the

Feshbach field. We employ a cross dipole trap realized by two focused red
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Figure 2.7: Left: Hyperfine structure of 39K. Right: Zeeman shift of the ground state

levels. The red dots show magnetically trappable state at low magnetic field.

detuned laser beams at a wavelength λ=1032 nm. The waist of the beams

is around 80 µm and we employ an initial power of around 800 mW for each

beam. A schematic representation of the geometry in our experiment is

given in Fig. 2.8.

4. Transfer in the ground state |F = 1,mF = 1〉: The two species are trans-

ferred by two separate µ-vawe pulses from the |F = 2,mF = 2〉 state to the

absolute ground state |F = 1,mF = 1〉. Here 87Rb-39K have several inter-

species Feshbach resonance and 39K has a broad intraspecies resonance at

around 400 G. Residual Rb atoms in the |F = 2,mF = 2〉 state can cause a

depolarization of the K sample and heating. For this reason we clean these

atoms by a resonant light pulse.

5. Evaporation in the optical trap: The evaporation in the optical trap is

performed in two steps by exponentially lowering the intensity of the two

trap beams. Before starting the evaporation we ramp up a homogeneous

magnetic field (Feshbach field).

• In the first part of the evaporation the magnetic field is tuned to one of

the several interspecies Feshbach resonance at around 316 G, in this way

we can enhance the collisional rate between 87Rb and 39K resulting in

a more efficient thermalization among the two species. In this first part

the evaporation ramps are shaped in such a way to obtain evaporation

mostly on the vertical direction where the potential is shallower for the

heavier Rb atoms. K atoms are sympathetically cooled.
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Figure 2.8: Schematic representation of the experimental setup. Bose-Einstein condensa-

tion of 39K atoms is reached in a crossed optical dipole trap obtained with two perpendic-

ular focused laser beams. The laser wavelength, λ=1032nm, is red-detuned with respect

to the atomic transition. A couple of coils in Helmoltz configuration provide an homo-

geneous magnetic field (Feshbach field) that we use to tune the interparticle scattering

length. Another couple of coils create a magnetic field gradient which compensate for the

gravity. This gradient prevent the atoms to fall down due to the gravity when the dipole

confinement is turned off.
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Figure 2.9: Magnetic field dependence of the heteronuclear scattering length between 39K

and 87Rb atoms (blue line) and of the homonuclear scattering length 39K-39K (black line).

During the first stage of the evaporation in the optical dipole trap we set the magnetic

field at 316 G to exploit the heteronuclear Feshbach resonance and enhance the scattering
39K-87Rb providing a better thermalization between the two species. In the second step

we switch to the K Feshbach resonance and we set the field at 395 G where the scattering

length is good to condense, about 180 a0.

• In the second part of the evaporation the magnetic field is tuned to the

homonuclear Feshbach resonance in order to get a positive scattering

length, in this phase of the evaporation the cooling relies on the in-

traspecies collisions. The final vertical depth of the trap is not enough

to compensate gravity for Rb atoms which are lost. We thus have a

pure 39K condensate. The final average harmonic trap frequency is

around 50 Hz. The typical number of atoms in condensate is around

5× 104 at a temperature of few tens of nK.

2.5 Imaging techniques

Our experiment consists of several stages with an overall duration of approxima-

tively one minute. The whole sequence is in cycles. After producing the BEC,

we load it into the (disordered) optical potential, we perform the actual experi-

ment and then we measure the result. The measurement is realized by absorption

imaging, which is a destructive technique. The atoms are illuminated with a res-
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onant light beam, and the shadow they cast in the beam by absorption is imaged

trough an appropriate lens system onto a CCD camera. Each atoms scatters sev-

eral photons during this process, and is therefore excited out of the trap. On the

timescale of the imaging process, which is typically 50µs, the atoms cannot move

significantly and one therefore detects their density distribution.

2.5.1 In situ images

Some of the results presented in this thesis are extracted from in situ images. This

means that we image the atoms while they are trapped in the optical potential.

From these images one can directly get the spatial density distribution of the

atomic cloud which is the modulus square of the atomic wavefunction ψ(x, y, z):

ρ(x, y) =

∫
|ψ(x, y, z)|2 dz (2.24)

The main limitation of these technique is the finite resolution of the imaging

system. The typical size of the atomic cloud we study is in fact a few µm which is

of the same order of magnitude of the imaging resolution given by the diffraction

limit and aberrations. Our imaging system is basically constituted by a telescope.

The magnification for this system is simply given by M = f2/f1, being f1 and f2

the focal lengths of the two lenses of the telescope which in our experiment are

respectively 150 mm and 500 mm, giving M ∼ 3. The diffraction limit can be

estimated by the simple expression:

d =
λ

2NA
, with NA ∼ r

f1
, (2.25)

where r ∼ 1.2 cm is the radius of the first lens and λ = 776 nm is the wavelength of

the light resonant with the atomic transition of 39K. The best resolution we can

get with this simple imaging system is therefore about 4µm. The actual resolution

is even lower (about 10µm) mostly due to spherical aberration introduced by the

first lens of the telescope.

With this technique it is impossible to resolve structures in the spatial distribu-

tion of the atoms with typical dimension smaller than the resolution. For example

it is impossible to observe the distribution of atoms in the single sites of an optical

lattice. Sharp edges are also broadened by the imaging system since the actual

density profile has to be convoluted with a Gaussian function with a width given

by the resolution. A new generation of experiment with cold atoms are developing

in the last few years imaging techniques with better resolution. These techniques

are resulting to be very useful to study for example the physics of atoms in optical

lattices since they are able to detect a single atom in a single lattice site [19, 20].
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These methods are basically based on a microscope objective, which has a high

NA and is almost free from any kind of aberration. A larger optical access on the

atoms would be required in our experiment in order to implement this technique

and at the moment this is impossible given the configuration of the coils we use

to produce the magnetic field for the magnetic trap. However other methods exist

to extract information about the atomic distribution in the trapping (disordered)

potential as explained in the next section. The imaging resolution of our system

is thus enough for our purposes.

We note that the atoms we want to detect are in the |F = 1,mF = 1〉 state at a

magnetic field as large as 400 G. Even if at this strong field we are in the Paschen-

Back limit where F and mF are no more the good quantum number to describe

the atomic state, we found convenient to keep the same label for the state along

all the sequence. The imaging is performed using light near the 39K repump-

ing transition at 767.1 nm on a partially open transition from |F = 1,mF = 1〉
to|F ′ = 1,mF ′ = 0〉 . The atoms pump to this excited state can either decay to

the ground state or to the |F = 2,mF = 2〉 state. From here the close transition

to |F ′ = 3,mF ′ = 3〉 can be exploited. The two transition have almost the same

frequency at a magnetic field of 390 G. The same light is thus efficient for both

transitions.

With this technique we are able to keep the magnetic field on during the

imaging. This allows us to take images of the Bose-Einstein condensate in the

trap where the density is high, avoiding the collapse due to the negative scattering

length at zero magnetic field. With this technique we detect approximatively one

third of the total number of atoms that we usual detect using the almost close

cooling transition from |F = 2〉 to |F ′ = 3〉 at zero magnetic field. We take this

limited efficiently into account when calculating the atom number from the images.

2.5.2 Time of flight images

Another possibility we have is to take an image of the atoms after releasing them

from the trap confinement and letting them free to expand for a certain time of

flight (TOF). At the time of the release, the scattering length is set below 1 a0 in

less than 1 ms and kept there until the Feshbach field is switched off 7 ms before

taking the images. By this time the system has expanded by a sufficient amount

to have a low density and thus neglect the effect of interactions. If the TOF is

sufficiently large to be in the ‘far-field’ limit and the interactions can be neglected

during the expansion, the image of the atoms that is acquired is approximatively

the in-trap momentum distribution. To recover information about the in-trap
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wavefunction, we can therefore use an inverse Fourier transform.

In this case at the moment of the imaging the Feshbach field is off. To image

the atoms is just enough to pump the atoms from the |F = 1〉 to the |F = 2〉 state

just before taking the picture with a short pulse of repumping light, and then use

the cooling transition.

2.6 One-dimensional systems

In this thesis we aim to study the physics of disorder and in particular we focus our

attention on the one-dimensional case. Generally speaking, besides being easier to

be analytically and numerically studied than systems with higher dimensionality,

1D systems are also conceptually interesting since they present phenomena strictly

related to the dimensionality. In the three-dimensional world, one-dimensional sys-

tems occur because of a confining potential along two directions which freezes the

particles along these directions. In this case the interesting physical phenomena

occur only along the third direction. In this section we show how a one-dimensional

sample is obtained with cold atoms. The wavefunction of a particle free to move

along the z direction and confined along the x and y directions can be written in

the form:

ψ(r, z) = eikzφ(r), (2.26)

where we define r =
√
x2 + y2. The function φ(r) depends on the shape of the

confining potential. In cold atoms experiment this confinement is usually well

described by harmonic approximation with frequency ωr. In this case φ(r) is

proportional to a Gaussian function:

φ(r) ∝ e−r2/2aho , (2.27)

where aho =
√
~/mωr is the harmonic oscillator length, m being the mass of the

particle. The energy of the system is quantized and can be written as the sum of

the radial and axial part:

E = Ez + Er =
~2k2

2m
+ ~ωr(nr + 1), (2.28)

where nr = nx +ny being nx and ny integer numbers. The system is thus charac-

terized by transverse levels. If the separation in energy between these levels, i.e.

~ωr, is larger than the temperature and the interaction energy only the ground

state is populated. The transverse degree of freedom is frozen and the dynamics

of the system develops only along the axial direction. In the experiment an har-

monic confinement is present also along the axial direction, this confinement is
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Figure 2.10: Schematic representation of a one dimensional system experimentally achiev-

able. The radial harmonic confinement is very tight and atoms can occupy only the ground

state. The radial degree of freedom are thus freezed. On the contrary the longitudinal

harmonic trap is shallower. We represent in red the occupied state and in gray the empty

ones.

usually much weaker than the transverse one satisfying the condition: ωz � ωr.

In this case the longitudinal confinement does not invalidate the simple model

we introduced so far even if in some circumstances it results in some important

modifications in the physics of the system. Anyway if the temperature T and the

interaction energy Eint fulfill the condition ~ωz ≤ Eint, kBT � ~ωr, the system

still occupies the transverse ground state. A sketch of this situation is reported in

Fig.2.10.

We would like to point out that an indefinite increase of the radial confinement

would bring the gas into a regime of extreme interaction, the so called Tonks-

Girardeau regime [44, 45, 46]. It is indeed possible to demonstrate [47] that if

the length of the radial harmonic oscillator becomes comparable to the scattering

length, the nature of the two-body collisions changes, since the collisional energy

can no longer be distributed in the radial direction, but only in the axial one. This

has in turn a drastic impact on the properties of the system, which can show a

“fermionization” phenomenon where basically the individual bosons tend to avoid

each other and get segregated in limited spatial regions along the 1D system. For

the strongest radial confinement that we realize in the experiments reported in this

work, the length of the radial harmonic oscillator is about 3500a0, indeed larger

than the scattering length. For this reason, the experiments we have performed

are however out of the Tonks-Girardeau regime and, therefore, we will not give

a description of its properties. We just note that the parameters that is usually
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defined to measure the closeness to such regime of very strong interactions is:

γ ≈ 2a

a2
rn1D

(2.29)

where a is the scattering length, and ar is the radial harmonic lengths, and n1D

is the one-dimensional atomic density. One enters the extreme-interactions one-

dimensional regime when γ � 1. In our case γ is typically smaller than 1. We can

thus say that the experiments here reported are performed in the quasi-1D regime,

in which the dynamics along the radial direction is frozen though the nature of

the collisional properties remains 3D.

2.6.1 1D optical lattice on a 3D BEC

In our experiment we study the ground state and the dynamics properties of

bosons in a one-dimensional bichromatic optical lattice. At low temperature and

for weak interaction one can realize a one-dimensional system by superimposing

the disordered lattice along one of the axes of a 3D harmonic trap. One can

study the physics which happens along the lattice independently on the radial

degree of freedom. A part of the experiment presented in this thesis has been

performed by using this simple technique. We have been able to characterize the

ground state and the transport properties of a disordered system in the weakly

interacting regime.

This technique fails when one wishes to study the strongly correlated regime.

In this case in fact one wants to increase the interaction energy and make it larger

than the hopping energy J , which, in this case, is comparable with the radial

harmonic energy ~ωr given by the optical trap and the lattice beams themselves

(ωr ' 2π×70Hz). For these reason an increase of the interaction energy would lead

the radial distribution in the Thomas-Fermi regime where the width of the sample

depends on the interaction. The radial broadening of the radial distribution, in

turn, lowers the density and the interaction energy itself. With this geometry it is

actually impossible to achieve interaction energies larger than the radial harmonic

quantum of radial energy. With this configuration is thus possible to study only

the weakly interacting regime U < J . In order to get the strongly correlated

regime one has to increase the radial confinement and make it larger than the

hopping energy and the interaction energy. A very well known strategy to obtain

this strong confinement is to employ an auxiliary 2D tight optical lattice, as we

discuss in the following.
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2.6.2 Three-Dimensional optical lattice

In the experiments intended to investigate atoms in the strongly correlated regime

we realize a two-dimensional array of one dimensional tubes by loading the three-

dimensional condensate into a pair of tight orthogonal optical lattices aligned

along the x and the y directions. The bichromatic lattice is then produced along

the vertical direction as shown in the schematic Fig. 2.11. Each single tube can

be considered as an independent system since the tunneling rate from tube to

tube is negligible on the experimental timescale. For the tight lattices we use

(sx ' sy ' 30) the tunneling rate is in fact about 2Hz. The frequency of the

harmonic confinement in the tubes in this situation is much larger than before,

in fact ωr ' 2π × 50kHz. The radial energy thus becomes the dominant energy

scale, ~ωr � U, J . Under these conditions the interaction energy can be made

much larger than the tunneling one, and the regime of strong interaction, U � J ,

can be reached. This is the regime of interest for the last part of the experiments

reported in this thesis.

Figure 2.11: Schematic representation of the experimental configuration. Two tight lat-

tices are aligned along the x̂ and ŷ directions of the system forming a two dimensional

array of one dimensional tubes. The quasiperiodic lattice is aligned along ẑ, the axial

direction of the tubes.
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Chapter 3

Experimental investigation of

weakly-interacting bosons in a

disordered lattice

In the first chapter we described how the interplay between disorder and interac-

tion strongly affects the behavior of bosons in a lattice. In fact, according to the

relative strength of these two parameters, the system undergoes different phases

that are characterized by drastically different properties. As discussed in the sec-

ond chapter, ultracold atoms experiments offer a nicely controllable and tunable

system to study the physics of disorder. Bose-Einstein condensate in disordered

optical lattice can be described by the Bose-Hubbard Hamiltonian and the differ-

ent phases predicted by the model can be experimentally investigated.

We now focus the attention on the weakly interacting regime and we show how

we experimentally characterized the entire delocalization crossover of a disordered

bosonic system caused by a weak repulsive interaction. In a first class of exper-

iments we study the local shape of the states and the coherence and correlation

properties in the different regimes (sec.3.1). Furthermore, in sec.3.2, we investi-

gate the dynamical properties of the system by characterizing the expansion of

the atomic cloud in the disordered potential when the localization is destroyed by

interaction. In sec.3.3, we characterize the diffusive expansion of the atoms in the

disordered lattice driven by a controlled noise and we show how a weak repulsive

interaction cooperate with noise in the transport dynamics.
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3.1 Observed disordered regime: from the localized to

the superfluid phase

We concentrate in this section on the study of the properties of the ground state

of weakly-interacting bosons in the disordered lattice. An overview on the effect

of weak repulsive interactions on a disordered localized system has already been

given in section 1.3. Here we review the delocalization caused by interaction

considering the quasiperiodic nature of the disordered potential that we realize in

the experiment.

Let us consider atoms in the quasiperiodic optical lattice above the localization

threshold ∆/J = 2. In section 2.3 we described the main features of the quasiperi-

odic lattice and in particular the minibands structure of the energy spectrum. A

schematic representation of the energy level distribution along the lattice is shown

in fig.1.4. Given the quasiperiodicity of the potential, the lowest energy eigen-

states are D = 1/(λ1/λ2 − 1) lattice sites apart from each other, in the potential

wells created by the beatnote of the two lattices. We remind that in our case the

wavelengths of the laser beams are respectively λ1 = 1064.4nm and λ2 = 859.9nm

and thus D ' 4.2 lattice sites. Since in the experiment both temperature and in-

teraction energy are small, only the states in the first “miniband” are populated.

We can therefore restrict our analysis to these energies.

Let us outline the expected evolution of a disordered Bose-Einstein condensate

when we vary the interaction strength. Non-interacting bosons would condense

into the absolute lowest energy state of the quasiperiodic lattice. The single parti-

cle eigenstate of the system is an Anderson-like exponentially localized state. For

very weak interactions, several low energy eigenstates of the non-interacting sys-

tem, which seat in the potential wells created by the beatnote of the two lattices,

can become populated. This phase is often called Anderson glass [48]. When

enough interaction energy is present in the system, states sitting D lattice sites

apart become degenerate, locally forming coherent fragments. This phase is called

weakly interacting Bose-glass [49] or fragmented BEC [50]. Repulsive interactions

indeed serve to smooth over the disordering potential in the occupied sites, pro-

viding a flatter energetic landscape on which more extended states can form. The

number of independent fragments should decrease for larger interaction energies,

until, for sufficiently large interaction, a single phase-coherent state is formed, and

the extended BEC phase is recovered.

The center of the crossover from localized states to a coherent BEC is expected

to occur when the interaction energy is comparable to the standard deviation
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Figure 3.1: Phase diagram of a weakly interacting Bose gas in a quasiperiodic lattice, from

the evolution of the momentum distribution [15]. The coherent phase is characterized by

a narrow momentum distribution in contrast to the localized phase in which no coherence

is present between states and the momentum distribution broadens. The position of the

crossover is in good agreement with energetic arguments. The dashed white line indeed

indicates where the interaction energy is equal to the standard deviation of the first

“miniband” (Eint = 0.05∆)

of disordered energy distribution of the first “miniband” which is approximately

0.05∆. All the lowest states should then be coupled together, forming an extended

state, when the interaction energy becomes comparable with the full extension of

the “miniband” Eint ≈ 0.17∆.

In a previous work in our group [15], exploiting the independent and well

controllable tunability of interaction and disorder, the phase diagram of weakly

interacting bosons in the quasiperiodic lattice has been traced (fig.3.1). Those

measurements show a clear transition from localized to extended state. The posi-

tion of the crossover is in good agreement with such energetic consideration.

In the following we describe a more extensive study of the local shape of states

and of the correlation properties of the system [51]. We have characterized the

entire delocalization crossover across the three different regimes described here

above (Anderson glass, Bose glass and extended Bose-Einstein condensate).

3.1.1 Experimental procedure

We produce a Bose Einstein condensate of about 40 000 atoms of 39K in a crossed

optical dipole trap following the procedure previously summarized (sec.2.4). The

scattering length during the last step of the evaporation in the optical trap is set
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Figure 3.2: Left: Experimental sequence for the loading of the interacting atoms in the

quasiperiodic lattice. Right: Sketch of the final optical potential. Green dashed line shows

the residual longitudinal harmonic confinement given by the optical trap.

to 250a0 and the final average harmonic trap frequency is around 50Hz.

The condensate is then loaded into the quasiperiodic lattice which is aligned

along the vertical direction. At the same time the optical trap is decompressed to

reduce the harmonic confinement and, during the last part of the loading of the

quasiperiodic potential, also the scattering length a is changed to values ranging

from a ≤ 0.1a0 to about a = 300a0. The experimental sequence is sketched in

fig.(3.2). The main lattice is ramped up to the final height s1 = 6.6 (well inside

the tight binding regime) in 250ms with a “S-shaped” ramp in order to minimize

the heating of the atoms due to a non perfectly adiabatic process. The loading

of the secondary lattice is less critical since its height is smaller compared to the

primary lattice one, and it introduces less heating in the system. The final height

of the secondary lattice is varied up to s2 = 1.2, which corresponds to ∆/J ' 10

, well above the localization threshold. At the end of this procedure, the lattice

lasers give a harmonic confinement of ω⊥ = 2π × 50Hz in the radial direction.

In the vertical (axial) direction, a weak confinement of 5Hz is given by a weak

remaining optical trap as well as by a curvature from the gravity-compensating

magnetic field. A sketch of the final potential felt by the atoms is also shown in

fig.(3.2).

Since many interacting particles populate the same site, U , as previously de-

fined (sec.1.1), does not give a good estimation of the interaction energy per

particle. In this experimental configuration the Bose gas has a three-dimensional

geometry and there is coupling into the radial direction of the system; the shape of

the on-site wavefunction thus depends on the interaction energy itself. We chose

to quantify the relevant interaction energy per particle calculating the average
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interaction energy per lattice site and dividing by the average number of particles

per site. We define this quantity with the following expression:

Eint =
g

2
N

∫
ϕ4d3x, with g =

4π~2a

m
. (3.1)

where ϕ is a 3D Gaussian approximation, normalized to have
∫
|ϕ(r)|2d3x = 1,

of the single site wavefunction1 and N is the average atom number per occupied

lattice site. We note that the Eint here defined does not scale linearly with the

scattering length a, as in the canonical definition of U , since not only the coupling

constant g depends on a, but also the on-site atomic distribution.

We estimate that around 30 lattice sites are populated during the loading of

the lattice. This corresponds to about 7 adjacent localized states of the first “mini-

band”. We therefore estimate N as the total number of atoms divided by 7. This

is strictly valid only in the localized regime. In fact when the system delocalizes

more sites are occupied and we thus overestimate the actual interaction energy

since the number of atoms per occupied site decreases. Nevertheless, comparison

with a numerical simulation of our experimental loading procedure has shown that

the estimated N is a good approximation for all values of the scattering length up

to an error of 30%.

The loading process is adiabatic for most of the parameter range explored until

Eint becomes sufficiently low for the system to enter the fully localized regime.

Here, several independent low-lying excited states are populated even when it

would be energetically favorable to populate just the ground state. In the experi-

ment we detect a loss of adiabaticity by measuring the energy transferred into the

radial direction. We measure the radial temperature and the condensed fraction

in time of flight, after having inversely repeated the loading procedure, and we

compare the results with the case in which only the primary regular lattice is

loaded. Throughout the parameter range explored, the radial temperature as well

as the condensate fraction are approximately constant; we can therefore assume

that the loading process is in good approximation adiabatic2.

1Along the lattice axis we consider the gaussian approximation of the Wannier function. Along

the radial direction we consider the wavefuntion of the ground state of the condensate in the

harmonic confinement induced by the lattice beams. In the non-interacting case it corresponds to

the single particle ground-stete i.e. to the harmonic oscillator ground state. In the interacting case

the BEC has a Thomas-Fermi profile [52]. In both cases we consider a Gaussian approximation

of the wavefunction.
2In the previous work on our setup [15], a radial heating was seen to occur in the very weak

interaction region for values of the disorder larger than what we consider here.
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Figure 3.3: Example of image analysis. After integration along the radial direction of

the acquired absorption image (a), the profile of the momentum distribution is fit with a

cosine modulated Gaussian to recover the phase fluctuations (b). The Fourier transform

of the square root of the profile can be fitted with three generalized exponential functions

as in Eq.(3.4)to extract the exponent and local length of the localized states (c). The

correlation function g(x) is given by the Fourier Transform of the momentum distribution

itself, and can be fitted with three generalized exponentials, as in (c) in order to get

g(4.2d)and g(8.4d), or it can be fit with a generalized exponential decay up to 20 lattice

sites (d).

Analysis of the momentum distribution images

The system can be characterized by analyzing its momentum distribution and de-

rived Fourier transforms. These techniques are used to extract information about

the local shape of the wavefunction, the spatial correlations and the coherence

properties of neighboring states. The momentum distribution of the atomic cloud

is obtained from absorption images (Panel (a) in fig.3.3) taken after 46.5 ms of

ballistic expansion3 as explained in 2.5.2. Such a large time of flight is allowed by

the gravitation-compensating magnetic gradient which prevents the atoms to fall

out from the imaging beam once released from the optical confinements.

Due to the quasiperiodic nature of the employed potential, we expect that

3Such a large time of flight is permitted thanks to a gravity-compensating magnetic field

gradient that prevents the atoms to fall out of the imaging beam during the expansion from the

trap.
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for a sufficiently homogeneous system like ours, the in-trap wavefunction can be

decomposed into copies of the same state with real and non-negative envelope

ξ(x), spaced by D = 4.2d. The overall in-trap wavefunction along the lattice

direction can therefore be approximated as:

ψ(x) =
∑
j

ajξ(x− jD)e−iφj , (3.2)

where φj is the local phase, and ξ(x) can be taken as a generalized exponential

function exp(−|x/L|α). By doing the Fourier transform of Eq.(3.2), we obtain that

the magnitude of the overall wavefunction in momentum space, can be written as√
ρ(k) = |ξ(k)|S(k), where

S(k) =
∣∣∣∑

j

aje
−i(jkD+φj)

∣∣∣ (3.3)

is an interference term. For many envelope functions ξ(x), such as the generalized

exponentials with 0 < α ≤ 2, the Fourier transform ξ(k) itself is real and non-

negative, so that the inverse Fourier transform of
√
ρ(k) can be written as ξ(x) ◦

S(x). This is simply the convolution of the envelope of a single state ξ(x) with

the Fourier transform of the interference term, S(x), which can be approximately

described as a series of sharp peaks (approaching δ-distributions) spaced by D,

with a decreasing amplitude and phases that depend on the local phases φj and

amplitudes aj .

The inverse Fourier transform of the square root of the momentum distribution

ρ(k), therefore allows an estimate of the average local shape of the (wave)function

ξ(x). On the other hand, the inverse Fourier transform of the momentum distribu-

tion itself can be employed to investigate the correlation properties of the system

and in particular we can extract information about the extent of the coherence.

3.1.2 Local shape of the wavefunction

Information about the shape of the wavefunction of the occupied states can be

obtained by analyzing the Fourier transform of the square root of the momentum

distribution as justified here above. Due to the finite resolution of the imaging

system the Fourier transform has an envelope with a width of about 10 lattice sites.

This means that we can only distinguish easily up to three neighboring states. As

shown in panel (c) of Fig.3.3, the averaged wavefunction is then analyzed by fitting

to the sum of three generalized exponential functions modulated by the primary

lattice:

f(x) =
[ 2∑
j=0

Ajexp
(
−
∣∣∣x− jD

Ls

∣∣∣α)] · [1 +Bcos(k1x+ δ)]. (3.4)
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Figure 3.4: The exponent α (a) and local extension of states Ls (b) are extracted from a

fit of three generalized exponential states to the Fourier transform of the square root of

the momentum distribution (Eq.(3.4)). The blue circles are for ∆/J = 6.2 and the red

squares for ∆/J = 9.5. In the localized regime the states are well fitted with an expo-

nential function (α = 1) and their extension is small, less than the lattice site dimension.

For increasing interaction the shape and the extension of the states change giving the

indication of the crossover to the delocalized regime.
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In Fig.3.4 we present the result of the analysis of localization properties of our

system. We consider the evolution of the exponent α and of the local extension

of the states Ls as a function of the interaction energy Eint. We find that for

very small Eint, the states are exponentially localized, since the exponent α ' 1,

and the local length Ls is small, consistent with the Anderson glass regime. The

increase of Eint produces a growth of the local length and of the exponent up

to α > 2. Repulsive interactions therefore delocalize the system as expected, or

alternatively, the localization crossover is shifted to higher values of the disorder

strength ∆/J when interactions are introduced into the system.

3.1.3 Phase fluctuations

As already pointed out, the restoration of an extended state can be understood in

terms of phase lock of neighboring states to form coherent islands. An extensive

study on the shot-to-shot fluctuations of the phase φ of the interference in the

momentum distribution gives indication on the degree of localization of the system.

As shown in panel (c) of Fig.3.3, we extract this phase by fitting directly (without

any Fourier transform) the momentum distribution within the first Brillouin zone

with the following fitting function:

ρfit(k) = Aexp
(
− (k − kc)2

2w2

)
· [1 +Bcos(D(k − kc) + φ)], (3.5)

where kc is the center of the distribution, determined by fitting the average of all

images of a given dataset.

If the states are not phase locked, φ changes almost randomly at each repetition

of the experimental sequence. In Fig.3.5 we show the standard deviation of φ,

estimated from a large number of repeated runs of the experiment with the same

parameters. We see a decrease of the phase fluctuations by increasing Eint, that

nevertheless remains relatively large in the crossover region and finally drop to

the background value (i.e. the value measured in the case of a regular lattice)

only when Eint is comparable to the full width of the lowest miniband of the non-

interacting spectrum (dotted lines in figure). In this situation the system behaves

as a single extended coherent state as in the regular lattice case. On the contrary

in the localized regime the states are totally independent, which together with the

localization properties summarized in Fig.3.4 indicates that the system can indeed

be described as an Anderson glass.
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Figure 3.5: Standard deviation of the phase measured by repeating the experiment up to

26 times for a given set of parameters, for ∆/J = 6.2 (a) and ∆/J = 9.5 (b). The error

is estimated as ∆φ/
√
N , where N is the number of images from which the phase was

extracted. The gray shaded bar shows the phase fluctuations measured for an extended

system below the localization threshold. The dashdotted line gives the standard deviation

for a purely random distribution. The dashed (dotted) lines give the standard deviation

(full extension) of energies in the lowest miniband. ∆φ reaches its background value when

the interaction energy is comparable with the full extension of the miniband, i.e. when

the system is expected to be in a single extended coherent state.
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3.1.4 Correlation properties

We now report about the investigation of the correlation properties of our sys-

tem. To directly determine the first-order correlation function G(x′, x + x′) =

〈Ψ̂†(x′)Ψ̂(x + x′)〉 we would need to have explicit knowledge of the in-trap den-

sity distribution which is not possible in the experiment. Nevertheless using the

Wiener-Khinchin theorem we can extract the spatially averaged correlation func-

tion from the Fourier transform of the momentum distribution, which is, con-

versely, experimentally accessible :

g(x) =

∫
G(x′, x+ x′)dx′ =

∫
dk

2π
ρ(k)eikx (3.6)

A first way to analyze the decay of correlations experimentally is to fit g(x)

with the same generalized exponentials of 3.4. In this way we can recover the

spatially averaged correlation between states 4.2 (8.4) lattice sites apart as A1/A0

(A2/A0). As in the analysis of the local shape, also here, the finite imaging

resolution limits our analysis to three neighboring states, and it follows that g(4.2d)

(g(8.4d)) saturates at a value around 0.6 (0.3). Experimental results are reported

in Fig.3.6.

In the localized regime the correlation is finite but small. Atoms occupy inde-

pendent neighboring localized states. As Eint is increased, the correlation features

quite a broad crossover towards larger values, signaling that coherence is progres-

sively established locally over distances of first 4.2d and then 8.4d. The position

of this crossover is in good agreement with the prediction of the simple disorder

screening argument, from which we expect the center of the crossover to occur

when Eint is comparable to the standard deviation of energies in the lowest mini-

band (dashed lines in the picture).

We can now consider together the behavior of the correlation between neigh-

boring state and the phase fluctuations analyzed in the previous section, in order

to have a more complete picture of the properties of the system for increasing

interactions. The system crosses a large crossover region of only partial coherence

indicated by a large g(4.2d) but also relatively large phase fluctuations ∆φ. This

is consistent with the formation of locally coherent fragments expected for a Bose

glass. Ultimately, the features of a single extended, fully coherent state, i.e. a

BEC, are seen for Eint comparable to, or larger than, the full width of the lowest

“miniband”. In this region of parameters in fact g(4.2) and g(8.4) approach their

maximum values and the phase fluctuation is reduced to the background value.
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Figure 3.6: The spatially averaged correlation function g(x) is extracted from the Fourier

transform of the momentum distribution itself, and fits with three generalized exponential

functions evaluate g(x) at 4.2d (a) and 8.4d (b). The blue circles are for ∆/J = 6.2 and

the red squares for ∆/J = 9.5. The error bars denote the standard error of the mean. The

correlation at 4.2d starts to increase when the interaction energy is comparable with the

standard deviation of the energies in the first miniband (indicated by the dashed lines).

This indicates the presence of coherent fragment larger than a single state.

Shape of the correlation function

More information about the extent and decay of the spatially averaged correlation

function can be gained by examining the Fourier transform of the momentum

distribution at larger distances. Though the detailed structure is not resolvable,

making the data there unsuited for the analysis described above, we can extract

information about the general shape of g(x). The data are then fitted with the

following function:

gfit(x) =
[ 4∑
j=0

exp
(
−
∣∣∣jD
lg

∣∣∣β) · exp(−∣∣∣x− jD
Ls

∣∣∣α)] · 1 +Bcos(k1x)

1 +B
(3.7)

where β is the correlation exponent and Lg is the correlation length. This describes

the sum of five generalized exponential functions spaced by D, with amplitudes

determined by the global shape of the correlation function.

The overall behavior of the correlation function is shown in Fig.3.7. The

correlation length Lg increases at larger interaction energy to values larger than

the mean separation of states (4.2d). It saturates at values around 6d, consistent
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Figure 3.7: Decay of the correlation function. (a) Correlation length; (b) exponent of the

generalized exponential function. Also in this figure the blue circles are for ∆/J = 6.2

and the red squares for ∆/J = 9.5. The gray triangles are for a single lattice (s1 = 5.7),

fitted to a single generalized exponential function. The dashed line denotes the average

separation of states, 4.2d. The error bars denote the standard error of the mean.

with the imaging resolution, for both quasiperiodic and single lattice potentials4.

The increase in correlation length shows that the average size of fragments found

in the fragmented BEC regime increases with Eint until only a single fragment

describes the system as in the regular lattice case.

The exponent β of g(x) is seen to increase from values of about 0.5 to values

slightly larger than 1. While such an increase is qualitatively expected, the values

of β are not in agreement with expectations from theory. For a 3D Bose gas at

zero temperature, we expect a transition from exponential decay (β = 1) in the

insulating regime [1] to a shape of the correlation function given by the confining

potential, β = 2 in our case. However in our analysis, any finite thermal com-

ponent artificially reduces the exponent by increasing the values of the Fourier

transform at small x-values. Indeed, we observe an exponent of 1.5 or less even in

the single lattice potential, for which the system is superfluid. In the quasiperiodic

lattice, the exponent approaches that of the single lattice potential for large values

of the interaction energy. If we look at the plot it is possible to note a decrease

4We note that the atoms are trapped in a harmonic confinement, the correlation function

itself, in this case features a decay due to the atomic density profile even when the system

is fully coherent. For example the degree of coherence, defined as g̃(x′, x + x′) = G(x′, x +

x′)/(
√
ρ(x′)

√
ρ(x+ x′)), is often used in substitution to the normal definition of the first order

correlation function when inhomogeneous systems are taken into account.
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in Lg and β at the largest values of Eint. This can presumably be explained by

an experimental imperfection: the interaction energy is probably not completely

removed from the system during the initial stage of expansion from the lattice.

This would lead to a broader peak in the momentum distribution and therefore a

narrower shape at short distances in the correlation function.

In recent theoretical works on disordered bosonic systems, the change in shape

and in extension of the correlation function in one dimension at T = 0 from expo-

nential decay to algebraic decay has been used to distinguish the Bose glass from

the superfluid phase [53, 54, 55]. These theoretical investigations have the advan-

tage of being able to consider large system sizes, where a jump in the extension

of the correlation function G(x0, x) is an indication that fragments form, leading

moreover to an exponential decay of g(x) in the Bose glass regime. In the exper-

iment, the correlation function can only be recovered for smaller distances, due

to the finite imaging resolution and system size. Fragments with sizes larger than

approximately 2D cannot be distinguished from the superfluid. In this sense, the

evolution of the correlation function can give information about the crossover from

the Anderson glass to the fragmented BEC (where the correlation length starts

to increase), but cannot quantify the crossover to the superfluid. The use of a

higher resolution imaging system and eventually larger system sizes might enable

the observation of the correlation function at larger distances. The crossover from

fragmented BEC to superfluid might then be experimentally quantified.

3.2 Subdiffusive expansion in the disordered lattice

In the previous section we have presented an extensive study on the ground state

of a gas of bosonic atoms in a disordered lattice. We have analyzed in detail the

transition from a disorder localized state to an extended coherent state driven by

a weak interaction. Interactions are able to screen the effect of disorder and create

a coherent state which has similar properties compared to the superfluid phase of

a Bose gas in a regular lattice.

The natural question to pose now is about the transport properties of such a

system. A localized system is in fact expected to be characterize by the absence

of transport since it is in an insulating phase. On the contrary an extended

Bose Einstein condensate in a regular lattice is known to be in a conducting

phase where atoms are free to move from site to site. What about a disordered

interacting system? This question can be posed in two complementary ways.

Can atoms move across the disordered lattice by tunneling from state to state
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thanks to the coupling given by interaction? Can an initially localized wavepacket

spread in a disordered potential when a non-linearity is added in the system? We

experimentally addressed this problem and in the following we report about our

results [56].

In particular we study the expansion of the bosonic cloud in the disordered

lattice when the initial longitudinal harmonic confinement is removed. This pro-

cedure causes a big perturbation in the system which is suddenly carried out of

equilibrium. We observe that a non interacting gas does not expand, confirming

the localized nature of the single-particle states. By adding a controlled interaction

we observe instead a slow increase of the cloud size, which follows a subdiffusive

law in agreement with theoretical models and numerical simulations.

Measured time-evolution of the width

The experimental procedure we employ to study the transport dynamics of our

system is similar to the one used to investigate the ground state even if they differ

in few essential points. The condensate of about 5× 104 atoms is produced in the

crossed optical trap at the scattering length a = 280a0. The trap potential has a

radial (axial) frequency of 2π×50 (70)Hz. We first load the interacting condensate

into the quasiperiodic lattice with a constant ∆/J ∼ 3; the lattice beams give an

additional radial confinement and the final radial frequency is ωr = 2π × 70Hz.

At a given time t = 0 the optical trap is the suddenly switched off, allowing

the sample to expand along the lattice; at the same time, ∆ and a are tuned

to their final values within 10 ms, and kept there during the evolution. The

experimental sequence is sketched in Fig.3.8. We note that, conversely to the

experiment devoted to the study of the ground state, here the system is prepared

always in the same conditions and the final values of disorder and interaction are

set during few ms in a non-adiabatic way. For this reason we do not expect to

occupy only the states in the lowest miniband of the quasiperiodic lattice but to

populate in a more homogeneous way all the states which lie under the envelope

of the initial density profile.

The initial interaction energy per particle is estimated as in Eq.(3.1). Also in

this case we have an uncertainty on the estimate of the number of the initially

occupied lattice sites and therefore on N . We calculate that the initial distribution

occupies on average 20± 7 sites; this translates into a 35% uncertainty on Eint.

After the opening of the trapping potential we follow the evolution of the

atomic distribution along the disordered lattice. A first qualitative characteriza-

tion of the effect of repulsive interactions on the transport capability of the system
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Figure 3.8: Experimental sequence for the diffusion experiments.

Figure 3.9: Axial width of the cloud after 10 seconds of evolution in the quasiperiodic

lattice in the non interacting case (blue squares) and for initial interaction energy Eint =

1.5J (red circles). The dashed line shows the initial size of the cloud.
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Figure 3.10: Time evolution of the width σ for different initial interaction energies: Eint =

0 (blue squares), Eint = 1.8J (green triangles), and Eint = 2.3J (red circles). Solid lines

are fits with Eq.(3.9). The dashed lines show the fitted asymptotic behavior, while the

dash-dotted line shows the expected behavior for normal diffusion. The slow expansion

of the non-interacting sample is due to technical noise. The lattice parameters are J/h =

180Hz and ∆/J = 4.9.

can be given by comparing the width of the cloud after 10s of evolution with the

initial one. The final size of the cloud σ10 versus the disorder strength ∆/J is

plotted in Fig.3.9. We measure the width of the radially-integrated spatial distri-

bution n(x) by in-situ absorption imaging (see sec.2.5.1 for details). The width of

the distribution is calculated as the square root of its second moment5:

σ =

√∫
x2n(x)dx. (3.8)

In absence of interaction, we observe than for value of the disorder larger than

∆/J = 2, where the eigenstate of the system are expected to be localized over a

few lattice sites, expansion is gradually suppressed and for ∆/J > 3 we are no

more able to appreciate any expansion on the timescale of the experiment. If we

add some repulsive interaction, we still observe a crossover between an expanding

and a non-expanding system, but the crossover position is shifted to larger value

of ∆/J , i.e. a lager disorder is needed to prevent the observation of an expansion

over 10 seconds. This indicates that a localized non-interacting system is turned

into a non-localized system by the interaction.

5Here
∫
n(x) = 1.
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In order to characterized the expansion of the interacting atoms for ∆/J > 2,

we have also performed a systematic study of the time evolution of σ for increasing

times, up to t = 10s. In Fig.3.10 we show for instance the time evolution of σ

for a fixed value of the disorder ∆/J = 5 and three different values of the initial

interaction energy Eint. In absence of interaction the system is localized and the

width essentially does not change in time. Only a very small expansion can be

observed, presumably due to the noise intrinsically present in the experiment. The

noise is mostly provided by the vibrations of the retroreflecting mirror of the lattice

beams. An extensive characterization of the noise-induced delocalization will be

given in the next section. The introduction of a repulsive interaction allows the

wave-packet to expand: the expansion is however not ballistic as it is for a non-

interacting superfluid below the localization threshold, since its velocity decreases

with time. Note that the expansion is very slow if compared with the characteristic

time given by the tunneling energy of the primary lattice (J/h ∼ 5ms for s1 = 7 as

in figure). To model the expansion dynamics we fit the measured evolution with

the solution of a generalized diffusion equation:

σ(t) = σ0

(
1 +

t

t0

)α
(3.9)

Here σ0 is the initial width, t0 is an “activation time” and α is the expansion

exponent. Ballistic expansion would correspond to α = 1 and normal diffusion

to α = 0.5. By fitting the experimental data we instead extract exponents α ≈
0.2 − 0.4. This indicates a subdiffusive expansion. The results of a systematic

study on the coefficient α for different values of initial interaction energy Eint

and disorder strength are report in Fig.3.11. In the following we will show that

Eq.(3.9), with three fitting parameters, is expected to correctly model the overall

behavior from short times to the asymptotic regime t � t0. The initial size at

that point does not play a role in the expansion, two parameters in the fitting

procedure are enough and the expansions shows a linear behavior in the log-log

scale. However, in order to decrease the uncertainty on the parameters and to

extract information also from the measurements at shorter times, we chose to

fit also the data taken for t < t0 using the three parameters fitting function.

This gives us also the possibility to confirm that the asymptotic regime has been

reached by comparing the fitted t0 with the maximum observation time. The

characteristic value for the activation time t0 is indeed around one second (except

for the non-interacting case, where it is larger), i.e. one order of magnitude smaller

than the maximum observation time. This indicates that the asymptotic behavior

is achieved for approximately one decade. Note also that by fitting only the data
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Figure 3.11: Expansion exponents α for two different values of the primary lattice height

(J/h ' 180Hz for the red triangles and J/h ' 300Hz for the blue squares). In (a) the

disorder strength is fixed to ∆/J = 5 and the initial interaction energy Eint is varied. In

(b) Eint ' 2 and ∆/J is varied. The fitted exponent is always smaller than 0.5 (dashed

gray line), indicating a subdiffusive behavior.

points for t > t0 with the asymptotic form of Eq.(3.9), as shown by dashed lines

in Fig.3.10, we obtain results in good agreement with what we extract from our

fitting procedure.

The dynamics of a wavepacket in a disordered potential in presence of a non-

linearity has been the subject of many theoretical predictions and debate based

on numerical simulations over the last 20 years starting from the first results

published by Shepelyansky in 1993 [57]. He has been the first to numerically

obtain that non-linearity prevents localization leading to a subdiffusive dynamics

of an initially localized wavefunction. However, our data are the first experimental

evidence of such a subdiffusive expansion.

The observed subdiffusion confirms the microscopic mechanism of the expan-

sion expected for an interacting disordered system where all the single-particle

states are localized. Interaction breaks the orthogonality of the states and allows

the transfer of population between neighboring states. Since the transfer rate

depends on Eint, the velocity of expansion decreases as the sample expands and
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becomes less dense. Various authors have built models for the expansion that

relate the transfer rate to the variation of the width [57]. We now review these

results presenting a heuristic model for our system based on a perturbative ap-

proach, which qualitatively justifies the observed subdiffusion. We also compare

our results with the solution of a non-linear diffusion equation which, according

to some authors [58], could be used to describe the behavior of a system like ours.

3.2.1 Perturbative model

We present in this section a heuristic model which aims to link the macroscopic

subdiffusive expansion of the atomic cloud in the disordered potential with the

microscopic interaction assisted hopping of atoms between single-particle localized

states.

Let us start by considering the localized eigenstates of the 1D single-particle

problem, ϕi, labeled by the site index i. These states have individual energies

εi with typical separation δE ≈ ∆ and a characteristic localization length ξ ≈
d/ln(∆/2J). A schematic representation of the axial states along one quasiperiod

of the quasiperiodic lattice is shown in Fig.3.12. We consider the interaction term

in the second quantization Hamiltonian for a bosonic gas of cold atoms (Eq.(1.1))as

the perturbative term in the single particle problem:

Ĥint = Ĥ ′ =
g

2

∫
dx ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x) with g =

4π~2a

m
. (3.10)

In chapter 1 we deduced the Bose Hubbard Hamiltonian by decomposing the

wavefunction ψ̂(x) over the basis of the Wannier functions, here, instead, we choose

ϕi, which are orthogonal and normalized to unity:

ψ̂(x) =
∑
i

âiϕi(x), (3.11)

being ai the bosonic destruction operator at site i. In general, four states can be

coupled by the interaction. It can be seen that the dominant contribution in the

expansion process is the one in which two particles are moved from two states i

and j with occupation N to two initially empty states k and l. Here N is again

the mean number of atoms per occupied state in the initial distribution, which is

related to the width σ by the relation N = Ntot/σ. The off-diagonal term of the

interaction Hamiltonian for this process has the form:

V ′ijkl =
g

2
N Iijkl with Iijkl =

∫
ϕ∗l (x)ϕ∗k(x)ϕj(x)ϕi(x)dx. (3.12)

From perturbation theory we know that this kind of process can happen at asymp-

totic times only if the energy is conserved, i.e. ∆E = |εi + εj − εk − εl| = 0. In a
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Figure 3.12: Cartoon of the axial states along one quasiperiod of the quasiperiodic lattice.

The localization length of the localized single particle eigenstates is of the order of the

lattice spacing d and the mean separation in energy between neighboring states is of the

order of ∆.

disordered system it is impossible to have perfect energy matching of the states.

Anyway, if the transition rate for the process is large enough, even a finite energy

difference might not be resolved and the transition can take place. As discussed

for example in [59, 60] the appropriate energy conservation requirement is actually

|V ′ijkl| > ∆E. (3.13)

The transfer rate associated to this microscopic process is:

Γijkl =
2π

~
|V ′ijkl|2

∆E
(3.14)

From Eq.(3.12) one sees that the coupling term |V ′ijkl| is essentially the in-

teraction energy per particle Eint times an overlap integral I ≈ exp(−L/ξ), where

L is the mean separation between the four states. We can therefore conclude that

the macroscopic expansion of the system will be determined by all the microscopic

processes between states that are laying within a few localization lengths from each

other.

We can distinguish two different regimes of expansion. The first one occurs

when the initial interaction energy is sufficiently large to provide that all the

strongest couplings of each localized state to the other states within one localiza-

tion length are active. This regime is reached when Eint > δE. Here one can

define a macroscopic rate Γ = 〈Γijkl〉, where the symbol 〈...〉 denotes an average

over the system extension. From Eq.(3.12) and Eq.(3.14) we obtain that the trans-

fer rate from state to state Γ ∝ (gN)2 ∝ σ−2. The second regime occurs when

the interaction energy is weaker, Eint < δE. In this case only a reduced number
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Figure 3.13: Numerical simulations for the expansion in random system in presence of non-

linearity [61]. Log-Log plot of the time evolution of the second moment of the distribution

(left) and of the instantaneous diffusion exponent α (right) for three different value of the

strength of the non-linear term (we note that the exponent here reported is twice what

we usually consider since σ =
√
m2). When Eint > δE (green line) the diffusion exponent

is expected to be 0.5, when Eint < δE, (blue line) 0.33. A transition between the two

regimes can be seen in the green curve which tends to smaller value for longer times.

of microscopic transitions are activated by interaction, and the rate Γ has thus an

additional dependence on Eint and scales faster with the width6.

We can now relate Γ to a rate of change of the width of the distribution itself.

In the case in which the expansion is assumed to be instantaneously diffusive, as

it is usually done to describe a lattice with random disorder [62], the diffusion

coefficient is essentially Γ itself, and in the first regime (Eint > δE) one obtains:

dσ2

dt
∝ σ−2. (3.15)

More in general we can write an equation of motion for the width of the

distribution of the form: dσ/dt = Cσ−p, where p is a positive rational number

and C is a constant which takes into account all the terms that do not depend

directly on σ. The integration of this equation with the initial condition σ(0) = σ0

leads to:

σ(t) = σ0

(
1 +

C

ασ
1/α
0

t
)α
, (3.16)

with α = 1/(p + 1). Note that the fitting Eq.(3.9) is derived from this. From

Eq.(3.15) we get p = 3, and thus we obtain α = 0.25. In the random disorder

6According to some authors working in the quantum chaos field, these two regimes can be

called strong chaos and weak chaos regime [61].
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case, 0.25 is therefore the maximum value of α that one should expect from the

perturbative approach traced so far. The exponent α is also expected to be smaller

when the system enters the regime in which Eint is no more enough to couple all

the possible states. These expectations are consistent with the results of the

extensive numerical simulations of disordered lattices based on the Discrete Non-

Linear Schrödinger Equation (DNLSE) or similar models. One example is shown

in Fig.3.13.

Quasiperiodic disorder: role of the spatial correlation

So far we have shown a general perturbation approach to the problem, treating

our system like a randomly disordered lattice. We can now consider more in detail

the effect of the quasiperiodic disorder used in our experiment. We need indeed to

justify our observation of exponents as large as 0.4, therefore definitely larger than

the maximum value expected for random disorder. As we will see, larger values

of alpha can be justified if one considers the spatial correlation of the disorder in

a quaisperiodic lattice.

In this sense it is instructive to numerically calculate the quantity |V ′iikk|/∆E
in the quasiperiodic lattice, for various spatial separations between the two states.

Fig.3.14 shows for example the calculations for transitions between doublets of

states. It is clear that the largest coupling is achieved on average for states that

are separated by one quasiperiod D = d/(β − 1). This result is a consequence of

the peculiar spatial correlation of the eigenstates in the quasiperiodic lattice. The

large coupling of states separated by one quasiperiod suggests that in the expan-

sion might have a more coherent nature than in the case of a random disorder.

The expansion in this case would be dominated by sequential hopping between

states close in energy and separated by D. It is instructive to rewrite Eq.(3.15)

by assuming that the rate Γ represents an instantaneous velocity instead of an

instantaneous diffusion coefficient. In this case one obtains:

dσ

dt
∝ Γ ∝ σ−2. (3.17)

This equation gives an expansion exponent α = 1/3 in the time evolution of the

width expressed by Eq.(3.16) or equivalently by Eq.(3.9).

This is valid for the strong regime of large interactions. We can also give

an estimate on how much the exponent should decrease in the regime of weaker

interactions. For example, we numerically evaluated the behavior of the coupling

between doublets of states for our quasiperiodic lattice with ∆/J = 3.5, which

correspond to δE ≈ 3J . We followed the analysis presented in [59, 60, 61, 62, 63]
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Figure 3.14: Calculated mean coupling for doublets of states in the quasiperiodic lattice

versus the distance between the state. The dominant couplings are those between states

that sit one quasiperiod, D ≈ 4.2d, apart.

and we selected the strongest coupling |V ′iikk|/∆Eik for each initial state i. We then

calculated the probability to have such coupling active for a varying interaction

energy. Finally we averaged this result over many initial states along the lattice.

As shown in Fig.3.15, we find that the normalized rate is about constant above a

certain interaction energy, Eint > δE, while it decreases for decreasing interaction

energy. If we consider a inverse linear dependence, we get that the rate Γ scales as

N3 ∝ σ−3, since Eint ∝ N . This changes the expansion exponent in the equation

of motion for σ. For example, in the case of a coherent expansion we supposed to

occur in the quasiperiodic case, one obtains

dσ

dt
∝ σ−3 ⇒ σ ∝ t1/4. (3.18)

In conclusion we have shown that assuming a more coherent expansion in the

quasiperiodic lattice than in the pure random case, the expansion exponent α is

expected to be 1/3 in the regime of larger interaction, where each initial state

can be couple by interaction to at least another state. For smaller interaction

energy, the exponent is smaller and close to 1/4. These value of α are larger

than the one found in the random case and closer to what we measure in the

experiment. Furthermore, numerical simulations performed on the quasiperiodic

potential confirm theses expectation [64].

This heuristic model, and in particular the assumption of a more coherent

process for a quasiperiodic disorder, are far from being a rigorous way to describe

the complex dynamics of such a system and derive the correct value of the ex-

pansion exponent. Nevertheless it gives a hint to the microscopic processes ruled
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Figure 3.15: Calculated probability of coupling for doublets of states in a quasiperiodic

lattice with ∆ = 3.5J . When the interaction energy is large enough the probability is

1. This means that all the couplings are active and therefore each initial state can be

coupled at least with another state. For smaller interaction energies this probability has

a strong dependence on Eint itself. The dashed and dotted lines are a guide for the eye

for decay proportional to
√
Eint and Eint respectively.

by non-linearity which determine the expansion and finds general results in good

agreement with both simulation and experiment.

3.2.2 Numerical simulations for the quasiperiodic potential

Numerical simulations of the spreading of a wavefunction in disordered potentials

in presence of non-linearities have been extensively performed for random disor-

der. However, it is also possible to simulate also the quasiperiodic situation. In

particular, a one dimensional DNLSE [64] has been used by our theory colleagues

to simulate the expansion of a wavepacket for the same lattice parameters as in

the experiment. We now briefly introduce the DNLSE and discuss the numerical

results in comparison with the experimental data.

The evolution of non-interacting system in a one dimensional quasiperiodic

potential is described by the Aubry-André model, which is obtained from the

Schrödinger equation by expanding the single-particle wave function ψ(x) over a

set of Wannier states as in the Bose-Hubbard model. The Wannier functions are

maximally localized at the minima of the primary lattice in the lowest Bloch band

and they are all identical. In the presence of interactions between the atoms,

one can instead use a mean field approach and start from the Gross-Pitaevskii
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equation:

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x
+ V (x)ψ + gNtot|ψ2|ψ, (3.19)

here ψ(x) is normalized in order to have
∫
|ψ(x)|2dx = 1. Using the same pro-

cedure as in the non-interacting case and decomposing ψ(x) over the Wannier

functions |ψ(x)〉 =
∑

i ψi|wi〉, one gets a generalized Aubry-André model which

includes an additional non-linear term that represents the mean-field interaction

[36]. The interaction term in the Hamiltonian is

Hint =
β

2

∑
i

c4
i with β = gNtot

∫
|w(x)|4dx, (3.20)

where Ntot is the total number of particle in the system and ψi is a complex

variable whose modulus square gives the probability of finding a particle at the

lattice site i. To get the right normalization we have that
∑

i |ψi|2 = 1.

Expression 3.20 gives the interaction energy per particle. In order to compare

the experimental finding with the numerical one we have to relate the interaction

coupling β with the estimate of the mean interaction energy per particle that we

defined for the experiment. To do this some assumptions have to be made. First

of all we have to apply this one dimensional equation to the three dimensional

condensate of the experiment. We can assume that the three dimensional wave-

function can be separated into a radial and an axial part ψ = φrφx. Making the

approximation that the radial shape of the condensate does not change during

the expansion, we can include
∫
|φr|4 in the β constant. This is not rigorously

true since the radial shape of the interacting condensate depends on the interac-

tion energy itself, which decreases as the sample expands7. Furthermore we can

approximate both the radial wavefunction and the axial Wannier function with

gaussian functions. We then remind that we defined N as the average atom num-

ber per occupied state. We can then get Ntot ≈ nsiteN , where nsite is the number

of average occupied lattice sites. Under this assumptions, reminding the definition

of Eint given in Eq.(3.1) we obtain:

β ≈ 2Eint nsite. (3.21)

We note that, while Eint decreases during the expansion of the sample, β is con-

stant. In the experiment we initially occupied around 20 sites; this means that a

typical value of the initial interaction energy for the experiment reported in this

thesis, Eint = 2J , correspond to β ∼ 80J .

7A variation in the radial shape of the condensate is also given by a radial heating which

occurs during the expansion. We will discuss about the role of this heating in the axial dynamics

in the next section.
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Figure 3.16: Mean field simulations of the expansion in the quasiperiodic lattice. Panel

(a) shows the dependence of the expansion exponent α on the interaction coupling term β.

The red crosses are the experimental results. The dashed gray lines indicate respectively

the normal diffusion exponent (0.5) and the exponent found from a perturbative approach,

supposing a coherent expansion (1/3). Panel (b) shows the time evolution of the width

of the distribution for ∆/J = 5 and β = 80. Fits with the same Eq.(3.9) used for the

experiment (red solid line), or with a linear behavior in the asymptotic regime (black

dashed line), give very similar results for the exponent α.
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In Fig.3.16 we show some results of the numerical simulations. The time evo-

lution of the width of the distribution is fitted either with the fitting Eq.(3.9) as

in the experiment, or with a line in log-log scale neglecting the first part of the

expansion. The two fitting procedure give very similar values for the expansion

exponent α. The exponent increases for increasing β and approaches a saturation

value around 0.35. This value is definitely larger than 1/4, which is the value for

the random disorder case, and similar to 1/3 that is the value obtained from the

perturbative approach assuming a coherent expansion. The numerical results are

in qualitatively agreement with the experimental ones. However we note that the

exponent extracted from the experimental data are typically larger than the nu-

merical one. This is probably due to the temporal noise that, as already pointed

out, is intrinsically present in the experiment and not in the simulation. We also

note that the saturation value of α is reached in the experiment for smaller value

of the interaction energy than in the simulation. Furthermore the activation time

in the simulations is much longer than in the experiment. A smaller initial size

and a longer simulated expansion is in fact needed in order to get an expansion

comparable with the experimental one. These discrepancies are due to the finite

temperature of the atomic sample in the experiment and to the presence of the

radial degrees of freedom which are not taken into account in the simulations. In

the next section we give a justification to this statement with a better characteri-

zation of the effect of the finite temperature and of the radial degrees of freedom

on the axial expansion.

3.2.3 Finite temperature and radial degrees of freedom effect

An important feature of the experimental system is the presence of the radial de-

grees of freedom, something that is absent in all numerical simulations and models

developed so far. The radial confinement is harmonic since it is provided by the

gaussian laser beams which create the optical lattice. The radial quantum for the

experimental parameters is ~ωr ≈ J/2, about one order of magnitude smaller than

the typical average energy difference between axial states δE. Therefore several

radial states might be populated in presence of the interaction which couples the

various degrees of freedom and is typically of the order of J . A cartoon of the

axial and radial states for our quasiperiodic lattice is shown in Fig.3.17.

The presence of the radial degrees of freedom in the experiment can be taken

into account in the perturbative model introduced in the previous section modeling

the effect on the microscopic hopping dynamics. There are two main effects of the

radial excitations to be considered:
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Figure 3.17: Schematic representation of the energy spectrum of the axial states along

one quasiperiod of the quasiperiodic lattice (continuous lines) together with the relative

redial states (dashed lines).

1) The 4-states overlap integral Iijkl in Eq.(3.12) must be modified to include

also the radial plane:

Iijkl =

∫
ϕ∗l ϕ

∗
kϕjϕidx

∫
ϕ∗rlϕ

∗
rkϕrjϕrid

2r (3.22)

An increasing radial excitation of the system therefore results in a broadening of

the radial wavefunctions, with a consequent decrease of Iijkl and the associated

coupling term |V ′ijkl|. This could decrease the expansion exponent.

2) The possibility of populating excited radial modes softens the energy conser-

vation requirement, since, as we have already observed, the radial level separation

~ωr is smaller than the characteristic energy spacing of the quasiperiodic lattice

δE (by approximately one order of magnitude in the present experiment). This

implies that axial states that could not be coupled because of a too small Eint in

a 1D system, might be at least partially coupled in presence of a radial excita-

tion since the energy mismatch between axial states is reduced by the presence of

the radial states. This increases the number of active coupling for a given Eint

with respect to the pure 1D situation and could therefore give a larger expansion

exponent.

The relative magnitude of these two competing effect is difficult to estimate

and could influence the axial expansion, and in particular the value of α, in oppo-

site ways. We can indeed conceive two possible limits for the radial temperature.

When kBTr < ~ωr the excited radial population is negligible, and one has effec-

tively a 1D problem. In our case ~ωr/kB ≈ 5nK: this temperature is very small,

close to the minimum temperature achievable in the Bose-Einstein condensate.

Anyway, this limit cannot be achieved as a stationary state, since the thermal-

ization of the axial and radial degrees of freedom, which occurs in the case of an
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Figure 3.18: The time evolution of the width for the three data-set shows the effect of the

finite radial temperature. The scattering length and the mean temperature in the three

cases are respectively: a = 100 a0 and Tr = 60 nK for the blue circles, a = 400 a0 and

Tr = 60 nK for the gray triangles and a = 400 a0 and Tr = 200 nK for the red squares.

When the radial temperature is lower the expansion is slower even in the case in which

the interaction energy is bigger than in the high-Tr data-set. The continuous lines are fits

with Eq.(3.9) while the dashed lines are the fits to the asymptotic behavior. The fitted

exponents are: α = 0.32(2) for the blue circles, α = 0.34(2) for the gray triangles and

α = 0.40(5) for the red squares. The lattice parameters are J/h = 290 Hz and ∆/J = 3.9.

interacting sample, will rapidly bring the radial temperature to a minimum value

of the order of Tr ≈ δE/kb ≈ 50nK. Conversely, when kBTr � δE, many radial

states are excited. In this limit the energy mismatch that must be compensated

by the coupling terms to provide the axial hopping, is no longer of the order of

δE, but it becomes of the order ~ωr. The critical Eint to reach the regime of large

interaction will therefore be ~ωr. The experiment is performed in an intermediate

regime of temperature, kBTr ≈ δE, where we can expect that the critical energy

for the strongly interacting regime lays somewhere in between δE and ≈ ~ωr.
This expectation is confirmed by the comparison between the experimental and

numerical energy dependence of the exponent α as discussed above and shown in

Fig.3.16.

To experimentally check the relative magnitude of the two competing effects

of the presence of the radial modes, we have compared the evolution of interact-

ing samples at low radial temperature Tr with those of samples with the same

g, but with a larger Tr prepared via controlled parametric heating. The typical

observation is reported in Fig.3.18: the expansion of the high-Tr sample is faster,
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Figure 3.19: Time evolution of the radial temperature for a non-interacting sample (black

squares) and for an interacting one (Blue triangles).

despite a reduction of Eint by approximately a factor 2, indicating that the sec-

ond effect dominates. Raising the temperature therefore helps the coupling of a

larger number of states by the interaction. In order to separate out the effect of

the reduced Eint at the larger Tr, we have also measured the time evolution of

the sample at low Tr in which a similar Eint was achieved by reducing g. This

measurement shows a slower expansion, as expected since now the reduced Eint

is not compensated by an increased coupling efficiency.

We stress that for non-interacting samples we do not observe any dependence

of the axial dynamics on the radial temperature: samples prepared via controlled

parametric heating at different radial temperatures never show expansion in ab-

sence of interaction8. This experimental test confirm the secondary role of the

radial modes in the subdiffusion. Nevertheless when interaction is added in the

system, the finite temperature and the presence of the radial degrees of freedom

influence the axial dynamics. The expansion is in fact faster than in the 1D situa-

tion and in particular the activation time is smaller. This allows the observation of

subdiffusive expansion over the experimental time scale (10 seconds). Numerical

1D simulations require much longer evolution time for initial size of the distribu-

tion, lattice and interaction parameters comparable with the experimental ones.

From a study of the radial momentum distribution of the expanding samples

we also detect a radial heating during the 10s evolution time for samples that

8This is valid until the temperature is not high enough to populate the second band of the

lattice where the eigenstates are not localized
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are initially prepared as Bose-Einstein condensate, i.e. at the lowest measurable

temperatures, Tr ≤ 50nK. The typical evolution is reported in Fig.3.19. In ab-

sence of interaction we see a slow heating with a rate of the order of 1-3 nK/s,

presumably due to pointing or amplitude noise on the lattice beams. The inter-

acting samples show instead a larger initial Tr ∼ δE/kB, which presumably arises

from a thermalization of the axial and radial degrees of freedom. The following

heating during the full evolution time is typically 3-5 nK/s, hence larger than the

one of non-interacting samples. This excess heating presumably arises from the

axial noise to the radial degrees of freedom mediated by interaction. This noise,

as mentioned before, also cause a slow expansion in the non-interacting sample.

This noise might be due to variations in the laser wavelengths and to vibrations

of the retro-reflecting mirror that creates the standing waves, which result in a

spatial movement of the two lattices and a consequent excitation of the axial dy-

namics even in the case of orthogonal localized states, as we will discuss in the

next section.

Finally we note that the maximum temperature that can be reached in the

experiment while preserving a single-band dynamics is of the order of 200nK. For

higher temperatures we see a clear excitation of the second band of the quasiperi-

odic lattice, whose single-particle eigenstates are not localized for the range of

parameters we explored. This excitation is detected as the appearance of rapidly

moving tails in the density distribution and as a fast decreasing of the number of

atoms during the evolution.

3.2.4 Time evolution of the density profiles

So far we have studied in detail the time evolution of the width of the spatial

distribution of a wavepacket expanding in a disordered potential in presence of

non-linearities. We have shown how theory, numerical simulations and the exper-

imental results presented in this thesis, agree in demonstrating the subdiffusive

nature of the expansion. More information about the spreading of the wavepacket

is given by the evolution of the shape of the spatial distribution. In the experiment

we have the possibility to characterize this evolution, since the in situ images we

take directly represent the density distribution of the atomic cloud.

Since the coupling between localized states is larger at the center of the sample,

where the atom number per site N and therefore the interaction energy is larger,

we can expect a faster expansion in the center than in the tails of the distribution.

This translates in the appearance of a flat region in the central part of the distri-

bution as already predicted by Shepelyansky in the first work on the topic [57]. In
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Figure 3.20: a) Density profile of the interacting atomic cloud (Eint ≈ 2J) after 10

seconds of expansion in the disordered lattice. The distribution shows a clear flat-top

shape. Dashed line is a Gaussian fit of the tail. b) Evolution in time of the kurtosis of

the density distribution for the interacting atoms.

the experiment this behavior is clearly visible in the typical shape of the atomic

cloud at long expansion times as shown in Fig.3.20. Initially the atomic cloud

has a Gaussian profile since it is prepared in a harmonic trap. The flat-top shape

gradually emerges during the expansion as can be seen in the typical evolution of

the kurtosis of the distribution:

γ =

∫
x4n(x)dx

σ4
− 3. (3.23)

By definition γ = 0 for a Gaussian distribution.

An analogous change of shape is predicted by general models of non-linear dif-

fusive systems. In the following we introduce a non-linear diffusion equation that

correctly describes the behavior of many physical systems in which the diffusion

coefficient results not to be constant during the evolution. This kind of equation is

used for example to describe the dynamics of a classical fluids in a porous medium.

We compare the solutions of such equation with the experimental results.

Non-linear diffusion equation

The evolution of a diffusive system is described by the well known diffusive equa-

tion.

∂n(x, t)

∂t
= D

∂2n(x, t)

∂x2
(3.24)
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Figure 3.21: Time evolution of the width of the numerical solution of the non-linear

diffusive Eq.(3.27) for different values of the exponent a. Lines are fit with the usual

fitting formula Eq.(3.9). The fitted expansion exponent α is in good agreement with the

relation: α = 1/(2 + a).

If we take as initial condition a Gaussian distribution of width σ0 normalized to

1, the solution of the equation at any time remains a Gaussian of the form:

n(x, t) =
1

√
2π
√
σ2

0 + 2Dt
e
− x2

2 (σ20+2Dt) (3.25)

the time-evolution of the width of the distribution is therefore given by:

σ(t) =
√
σ2

0 + 2Dt (3.26)

This expression is of the same form of Eqs.(3.9) and (3.16) with the expansion

exponent α = 0.5, as expected.

It is possible to generalized the diffusion equation in such a way that it can

describe the behavior of non-linear systems. Different non-linear diffusion equa-

tions exist in literature according to the detail of the non-linear process that one

wants to describe. In our case the expansion can not be described by the regu-

lar diffusion equation since the diffusion coefficient, as we discussed above, is not

constant but it depends on the local interaction energy which allows the coupling

between different states. This interaction energy is not homogeneous across the

distribution and is not constant in time. One can then imagine to replace the dif-

fusion coefficient D of Eq.(3.24) with an effective diffusion coefficient proportional

to the density profile to some power a:

∂n(x, t)

∂t
=

∂

∂x
D0n

a(x, t)
∂n(x, t)

∂x
(3.27)



Chapter 3. Experimental investigation of weakly-interacting bosons in a
disordered lattice 83

The asymptotic solution of this equation is [65]:

n(x, t) ∝

t1/(2+a)
(

1− x2

x0

)1/a
, for x < x0

0 , for x > x0

(3.28)

The front of the diffusion x0 has the following time dependence:

x0 ∝
√

2 + a

a
t1/(2+a) (3.29)

This means that the number of occupied sites and hence the width of the distri-

bution, i.e. the square root of its second moment, also evolve as:

σ(t) ∝ t1/(2+a). (3.30)

The relation between a and the expansion exponent in Eqs. 3.9 and 3.16 is thus

given by the simple relation α = 1/(2 + a).

The self-similar solution (3.28) is valid only for asymptotic times. We then nu-

merically solved the non-linear diffusion Eq.(3.27) taking a Gaussian distribution

as initial condition. The time evolution of the square root of the second moment

of the numerical solution is plotted in Fig.3.21. Fitting the points with Eq.(3.9),

we get expansion exponents in good agreement with (3.30).

The shape of the distribution evolves from a Gaussian to the asymptotic solu-

tion during the expansion. We tried to fit the numerical solution with an expres-

sion of the same form as the asymptotic one, leaving the spatial exponent 1/afit

as a free parameter. In Fig.3.22 we show on the left the numerical results of the

non-linear diffusion equation for three different evolution times, fitted with the

asymptotic solution. The initial Gaussian distribution is well fitted with an expo-

nent 1/afit � 1. One gets 1/afit = 1/a when the asymptotic regime is reached.

For intermediates evolution time the tails of the distribution are not perfectly fit-

ted. However the discrepancy between the numerical solution and the fit is only

at a level that might not be experimentally resolved. We can conclude that, for

our aim, the asymptotic solution with a free exponent is a good approximation

for the solution of the non-linear diffusion equation at any time.

The evolution of the fitted exponent during the expansion is shown in Fig.3.23.

We can see that the shape of the distribution rapidly changes in the first stages

of the expansion and the asymptotic value for the exponent is already reached

when the width of the distribution in approximately 1.2 times the initial one. In

the experiment, when the interaction energy is large enough, the final size of the

cloud is as large as twice the initial one. We can therefore expect, for the longer

evolution times, to have reached the asymptotic regime.
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Figure 3.22: Density profiles of the numerical solution of the non-linear diffusion equation

with a = 2 (left) and of the experimental atomic distributions (right). Green lines are fits

with the asymptotic solution 3.28, red lines are fit with a Gaussian.
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Figure 3.23: The numerical solution of the non-linear diffusion equation (3.27) is fitted

with the asymptotic solution 3.28 leaving the spatial exponent 1/afit as a free parameter.

The graph shows the evolution of 1/afit during the expansion for different values of the

coefficient a. The fit fixes the maximum value of the exponent to 200, where the solution

is a good approximation of a gaussian distribution. The asymptotic value 1/a is reached

when the width of the distribution is about 1.2 times the initial one.

We perform the same fitting procedure for the experimental data. Results are

shown on the right in Fig.3.22 and in Fig.3.24. As soon as the size of the cloud

increases with respect to the initial one, i.e. for expansion times larger than the

activation time t0, data are better fitted with the solution of the non-linear diffu-

sion equation than with a Gaussian. We note that when the interaction energy is

too strong, heating processes during the expansion cause a non-negligible transfer

of atoms in the second band of the lattice where the single particle eigenstate

are not localized. These atoms are thus free to move across the lattice causing a

faster expansion of the tails of the distribution that comes back to be well fitted

by a Gaussian. Furthermore the presence of this non-localized atoms also causes

an effective faster increase of the width. We have to take care of neglecting these

points in fitting the time evolution of the width in order to avoid an overestimation

of the expansion exponent α.

The time evolution of the fitted exponent 1/afit shows the same qualitatively

behavior as the numerical solution. We compare the experimental results with

the numerical results for a = 2, that is the expected value of a for a subdiffusive

expansion in a random system. The asymptotic value is significantly different.

Furthermore we do not see any difference in the asymptotic spatial exponent 1/afit
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Figure 3.24: Experimental data for different values of the initial interaction energy are

fitted with the solution of the non-liner diffusion equation. The evolution of the spatial

exponent 1/afit during the expansion is shown in the graph. When the interaction energy

is not strong enough (blue points) we do not appreciate any change in the shape of the

atomic distribution. On the other hand, when the interaction energy is too strong (red

points) we detect the effect of the presence of atoms in the second band of the lattice as

explained in the text.

for different interaction energy, i.e. for different expansion exponents α. This is

due to the finite resolution of the imaging system. We are in fact not able to

resolve sharp edges of the density distribution. In order to compare the numerical

solution with the experimental results we have to take this limitation into account.

In Fig.3.25 we compare a set of experimental data with the numerical solution of

the non-linear diffusion equation with a = 2 convolved with a Gaussian of the same

width as the measured spatial resolution of our imaging system (12µm). With this

correction we see a better agreement of the Non-linear diffusive equation model

with the experiment.

In conclusion we have experimentally verified that the evolution of the shape

of the distribution during the subdiffusive expansion is in qualitative agreement

with the solution of a general non-linear diffusion equation of the form (3.27).

The study of the evolution of the profiles potentially provide a more complete

characterization of the expansion with respect to the study of the evolution of

the width alone. The finite resolution of the imaging system unfortunately does

not allow us to resolve the difference between the solution of non-linear diffusion

equations with different a.
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Figure 3.25: Evolution of the spatial exponent 1/afit for experimental data with a = 500a0

(green points), for the numerical solution of the non-linear diffusion equation with a=2

(red line) and for the numerical solution convolved with a Gaussian to simulate the effect

of the finite imaging resolution of the experiment (black line).

3.3 Noise-induced delocalization

In the previous section we have already outlined some consequences of the intrinsic

presence of noise in our experimental system. We have seen that noise is a source

of heating for the atoms and, more interestingly, that a slow expansion in the

disordered lattice, driven by noise, can be observed even in absence of interaction.

Actually noise has been recognized to have an important role in disordered systems

and in particular its delocalizing effect is well-known [66]. More generally speaking,

noise can have a strong impact on the behavior of quantum systems and, while

the importance of a full understanding of its role has been recognized since many

decades, mainly theoretical studies have been performed so far. The problem with

experiments is that the noise is typically already present in the system and, while

it can often be fully characterized, it can hardly be controlled.

We employed our experimental setup to characterized the delocalization of the

disordered localized system induced by noise [67]. Furthermore we investigate the

interplay of noise and interaction in the expansion dynamics of the atomic cloud

in the disordered lattice. In our case, with the word “noise” we intend a random

in time modification of the lattice potential. In this sense a source of noise is the

shaking of the lattice caused by fast variation of the frequency or of the power

of the laser beams as well as by vibration of the retroreflecting mirror or rapid



88 3.3. Noise-induced delocalization

Figure 3.26: Schematic of the noisy modulation of the power of the secondary lattice after

the loading and its power spectrum.

pointing movements. This is what we call “intrinsic noise”. We took care to

reduce as much as possible these sources of noise. The lasers we use to create

the quasiperiodic lattice have in fact a narrow linewidth and the power of the

beams on the condensate is actively stabilized. Nevertheless some intrinsic noise

is unavoidable and its effect has been already outlined. However it is possible to

add in the system a controlled non-equilibrium noise by a proper active modulation

of the lattice potential.

We study the impact of such controlled noise on the expansion dynamics of

the atoms. We find that noise breaks the single-particle localization and induces a

diffusive expansion dynamics. The combination of noise and repulsive interactions

with variable strengths gives instead rise to an anomalous diffusion with variable

expansion exponent α.

Experimental procedures

We adiabatically prepare a non-interacting Bose-Einstein condensate in the quasiperi-

odic potential with ∆/J ≈ 3. During the loading of the lattices we slowly vary

the scattering length from the value we usually employ during the evaporation,

around 280 a0, to almost zero. The final axial frequency is around 2π× 70Hz. At

a certain time we suddenly switch off the axial confinement and within few ms we

change the disorder strength to its final value. During the subsequent evolution

of the non-interacting cloud in the quasiperiodic potential we modulate the am-

plitude of the secondary lattice in a noisy way and we detect by in situ absorption

images the width of the cloud for increasing times up to 10 seconds.

The strategy we chose to introduce noise into the system without causing a

direct excitation of the higher bands of the lattice or of the radial modes is to
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apply a sinusoidal amplitude modulation of the disorder. The time dependent

potential given by the secondary lattice results to be of the form:

V2(t) = V0 (1 +Asin(ωmt+ φm)). (3.31)

The frequency of the modulation ωm is randomly varied with time step T in a

proper interval, ωm/2π ∈ [200 Hz, 300 Hz]. The phase φm is adjusted in order to

preserve the continuity of the modulation and the sign of its first derivative. The

width of the effective power spectrum during 10 s, with T=10 ms is essentially the

entire frequency interval9 as shown in Fig.3.26.

3.3.1 Non-interacting diffusive expansion

The time evolution of the width of the non-interacting atomic cloud in the disorder

noisy potential is shown in Fig.3.27. We observe that a sufficiently large noise

amplitude A results in an evident expansion of an initially localized sample. To

analyze the nature of such expansion, we fit the time-evolution of the width σ with

Eq.(3.9) as we did to characterized the interaction induced dynamics. We typically

reach the asymptotic regime of expansion for approximately one decade. The

typical value of the fitted expansion exponent is α = 0.45(5), which is consistent

with normal diffusion. In the asymptotic regime σ thus evolves as:

σ2 ∼ D t (3.32)

The diffusion coefficient is related to the fit parameters by the relation D =

σ2
0/t0. Diffusive expansion is actually the kind of dynamics that is predicted for a

white-noise source from first-principle considerations. For example, the diffusion

can be seen as the result of incoherent hopping between the single-particle localized

states10. The accepted idea is that the noise induced hopping is totally analogous

to the classical Brownian motion of particles in a scattering environment.

The statement that the noise induced dynamics has a diffusive nature is also

confirmed by the fact that the spatial profile of the atomic cloud remains a Gaus-

sian during the expansion. As pointed out in sec.3.2.4 a Gaussian distribution is

the solution of the normal diffusive equation with a constant diffusion coefficient

at any time.

9A proper Fourier analysis of the noise signal shows that for T < 1/(2πωm) ' 5ms the effective

power spectrum shrinks.
10Such an effects already has been observed in a few atomic systems, such as in atom-optics

realization of the kicked rotor [68].
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Figure 3.27: Time evolution of the non-interacting system in the quasiperiodic lattice

with ∆/J = 6 for various values of the noise amplitude. For A = 0 the system is localized

(black). For A = 0.54 (blue) and A = 0.9 (green) the system exhibits normal diffusion.

Lines are fits with Eq.(3.9): the fitted exponent α is compatible with 0.5.

As in the case of the interaction induced delocalization, a one-dimensional

DNLSE has been used to simulate our system. Numerical simulations confirm

that the diffusion exponent α is independent on the amplitude noise, i.e. the noise

induced expansion is diffusive for any value of A.

The dependence of the diffusion coefficient on the noise and the lattice param-

eter is not trivial. As for the interaction induced expansion, also in the case of

noise, we can apply a similar perturbative approach. Here the perturbative term

of the Hamitonian (1.1) is of the form:

H ′ =

∫
dx ψ̂†(AV0(x) sin(ωmt+ φm)) ψ̂ where V0(x) =

∆

J
cos(2πβx+ φ)

(3.33)

The transfer rate Γ, and thence the diffusion coefficient in this case are constant

in time since the perturbative term strength does not depends on the width of

the system and therefore does not vary during the expansion. The quasiperi-

odic nature of the disorder is expected not to influence the expansion dynamics

since, conversely to the interaction induced delocalization, the process now is not

sensitive to the ordering of the energies level across the lattice. From simplified

perturbative arguments Γ is expected to be proportional to A2 (∆/J)2 multiplied

by an overlap integral that, neglecting the time evolution term, is of the form:

Iij =
∣∣∣∫ ϕ∗j (x) cos(2πβx+ φ)ϕi(x)

∣∣∣2, (3.34)
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Figure 3.28: Dependence of D/A2 on ∆/J in the regime where the perturbative approach

applies. Red points refer to numerical simulations, blue stars to experiment. The pertur-

bative approach results, shown by the dashed gray line, are to be in good approximation

proportional to the numerical results.

where ϕi(x) is the single particle eigenfunction centered at the i-th lattice site.

To get the diffusion coefficient we have to multiply the rate Γ by the square of a

length scale; since the hopping happens between localized states, we expect that

the the proper length scale is the localization length of the single particle states

ξ ∼ d/ln(∆/2J). This is valid as far as ξ > d, where d is the lattice spacing. For

higher degree of localization the scale becomes d itself. Summarizing, if we follow

a perturbative approach and ξ > d, the diffusion coefficient results to have this

proportionality:

D ∝ A2 f(∆/J), where f(∆/J) = (∆/J)2 Iij ξ
2. (3.35)

In Fig.3.28, we show some numerical and experimental results in the regime

where this approach applies and we find a good agreement between experiments,

simulations and perturbative calculations. Nevertheless, when the noise strength

is too strong, the perturbative approach fails. Indeed, a theoretical analysis, in a

kicked rotor system [69], predicts that when the noise amplitude is large compared

to the degree of localization, the dependence of the diffusion coefficient on A and

ξ is of the kind: D ∝ A2 + ξ2. A systematic characterization of the dynamic

expansion in the disorder potential for different values of noise amplitude and

lattice parameters is presently being performed. Preliminary results confirm the

predicted dependence also in our system.
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Figure 3.29: Time evolution of the width of a system with ∆/J = 4. The blue triangles

show the expansion of a non-interacting sample in presence of noise (A=0.6). The red

squares refer to a static interacting sample (Eint ' 0.8J). Purple circles combine the two

effects. Solid lines are fits with the fitting formula (3.9) whereas the dashed line is the

numerical solution of Eq.(3.36) with the initial condition fixed by the fit.

3.3.2 Combined effect of noise and weak interactions

We have so far presented the study of two independent effects that cause de-

struction of disorder induced localization and consequently dynamic expansion:

weakly repulsive interaction and noise. We can now wonder what happens when

we combine the two effects.

With similar experimental procedures as the ones summarized before, we also

investigate the expansion of the atomic cloud in presence of both repulsive in-

teraction and noise. We observe that the combination of the two effects always

produces a faster expansion than the two individual sources of delocalization. The

expansion exponent fitted for data up to ten seconds of expansion time, is how-

ever typically intermediate between the ones due to noise and interactions alone.

This suggests that the two delocalizing mechanisms might cooperate additively.

One example of these observations is shown in Fig.3.29, where one clearly sees the

faster expansion caused by the cooperation between noise and interactions.

We studied how such anomalous diffusion depends on the two relevant con-

trolled parameters, i.e. the interaction energy Eint and the noise amplitude A.

Fig.3.31 provides a summary of our observations. Results are extracted from fits

of the experimental data with the usual fitting formula (3.9). For a fix value of
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Figure 3.30: Numerical simulation of the time evolution of the width of a system with

∆/J = 2.5. The blue data show the expansion of a non-interacting sample in presence of

noise (A=0.4). The red data refer to a static interacting sample (β = 40). Purple data

combine the two effects. Solid lines are fits with the fitting formula (3.9) whereas the

dashed line is the numerical solution of Eq.(3.36).

the noise amplitude, the measured exponent features a crossover. In the non-

interacting case the expansion is ruled only by noise and thus α = 0.5. When the

interaction energy increases, the value of the exponent approaches the one of the

static interacting case α ≈ 0.3. We can define a generalized activation time t∗,

defined as σ(t∗) =
√

2σ0. It is a measure of the inverse of the diffusion coefficient.

t∗ decreases as either A or Eint increase, indicating a faster expansion.

If we suppose an additive cooperation of the two effects a more correct anal-

ysis can be performed in the following way. We first determine from the fit the

diffusion coefficient Dnoise due to noise alone, and the generalized diffusion coeffi-

cient D̃int = (σ0/t
α
0 )2 due to interaction alone. We then evaluate numerically the

solution of the combined diffusion equation:

dσ

dt
=
Dnoise

2σ
+ α D̃

1/2α
int σ1−1/α (3.36)

and we compare it with the experimental and numerical data for the combined

noise and interaction. The good agreement, shown in Figs.3.29-3.30, supports

the idea of cooperation. The underlaying idea of this model is that the hopping

between localized states is now induced by both noise and interactions. These two

mechanism are independent on each other.

As already discussed, while in the case of noise the hopping rate is constant

over time, in the case of interaction the rate is density dependent and therefore
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Figure 3.31: Top: Expansion exponent vs the initial interaction energy, for a fixed noise

amplitude A = 0.4. Bottom: Generalized activation time t∗ vs the noise amplitude for

a non-interacting sample (red points) and for a fixed value of initial interaction energy

Eint = 0.8J
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Figure 3.32: Time evolution of the radial temperature for a non-interacting system in

presence of noise with A=0.8 (red squares), for a static interacting system with Eint '
0.8J(black triangles) and in presence of both noise and interactions (blue points). Lines

are guides for the eyes.

tends to drop to zero as the sample expands. We therefore expect a long-time

crossover to a regime where the interactions effects are negligible, and the system

diffuses normally. We have not observed this crossover in the experiment, in

agreement with a crossover time exceeding 10 s that we derive from the solution

of the combined diffusion equation. The results showed in Fig.3.31 give just an

indication of the behavior of the system in the transient regime in which both

interaction and noise give their contribution in the expansion.

We note that the agreement of the numerical data with the solution of Eq.(3.36)

is very good whereas the experimental expansion is faster. This is due to the

presence of the radial modes that are not taken into account in the simulation.

During the expansion the system heats up as we can see, in presence of interaction,

from the time evolution of the radial temperature in Fig.3.32. The presence of

noise causes an increase of the total energy of the system (this has also been

confirmed by the numerical simulations), which translates in an increase of the

temperature. In a pure one-dimensional case, as in the simulations, the energy

is limited by the width of the band. As discussed in sec.3.2.3, because of the

presence of the radial modes, an increasing temperature during the expansion

affect the dynamics leading to a faster expansion. We experimentally verified that

the larger is the heating, the larger is the disagreement between the measurement

and the solution of Eq.(3.36).
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Chapter 4

Experimental investigation of

strongly-interacting bosons in a

disordered lattice

In order to complete the study of the interplay between disorder and interaction

in a bosonic system, after the study of weakly-interacting atoms presented in the

previous chapter, we also moved our experimental investigation to the strongly-

correlated regime. Here new interesting and complex quantum phases are pre-

dicted but few experimental observations are available. In this chapter we describe

our preliminary results in the strongly-interacting regime. The experimental re-

sults are compatible with the observation of the predicted strongly-interacting

Bose glass phase even if further measurements and analysis are still in progress.

In sec.4.1 we give a brief description of how we prepare one dimensional systems

in which the interaction energy can be larger than the kinetic one (U > J). Thanks

to the high degree of independent tunability of the interaction energy and of the

disordered strength over a large range, we have been able to trace a complete and

complex ∆−U phase diagram. This diagram, as measured through the correlation

length of the system, shows a complex structure with different insulating and

non-insulating regions. We show and comment this phase diagram in sec.4.2.

We then report on the measurements of the transport capability (sec.4.3) and of

the excitation spectrum of the system (sec.4.4) in different regions of the phase

diagram.
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interactions

4.1 Experimental realization of the one-dimensional

system with tunable interactions

The study of the weakly interacting regime reported in the previous chapter has

been performed by loading a one-dimensional quasiperiodic lattice on a three di-

mensional condensate. This technique fails when one wants to reach interaction

energies U larger than the tunneling energy J . To investigate also the strongly

interacting regime, we therefore load the condensate in a tight two-dimensional

lattice, creating an array of independent quasi-one-dimensional systems. The

quasiperiodic potential is then aligned along the longitudinal axis of these “tubes”,

as schematically represented in Fig.2.11.

The temporal sequence for the optical lattices loading is shown in Fig.4.1. A

condensate of about 40 000 atoms is prepared in the optical trap with a scattering

length a = 280a0. The optical trap is kept constant in intensity during the entire

sequence with an average trap frequency ω ' 2π×50Hz (not shown in the figure).

Before starting the lattices loading, the scattering length is tuned in 50 ms to

the value aload. This value of the scattering length determines the size of the

condensate at the moment in which the lattices are loaded and therefore also the

number of populated tubes, the number of atoms in each tube, and subsequently

in each lattice site. The two-dimensional tight lattice is then loaded with S-shaped

ramps lasting 400 ms; when it is strong enough to avoid tunneling from tube to

tube during the loading process, also the quasiperiodic lattice is ramped up. The

final value of the two horizontal lattices is about sx̂ = sŷ = 30. In the last part

of the loading procedure, the scattering length is set with a slow ramp to its

final value ameas and kept there for the rest of the experiment. This value of a

determines U , the interaction energy of the atoms according to Eq.(1.18). We

calculate U from a Gaussian approximation of the Wannier function as:

U = g
1

(2π)3/2 a2
tube alatt

, (4.1)

where atube and alatt are the harmonic oscillator lengths calculated from the har-

monic approximation of the lattice wells with Eqs.(2.6-2.7), in the tight confined

radial direction and in the axial direction of the tube, respectively.

An accurate estimation of the distribution of the atoms in the one-dimensional

tubes and in the lattice is important for a reliable characterization of the exper-

imental system and for a comparison with theory. In particular it is necessary,

though not trivial, to estimate the number of atoms per lattice site to get, for

example, the theoretical value for the superfluid-Mott insulator transition. A



Chapter 4. Experimental investigation of strongly-interacting bosons in a
disordered lattice 99

Figure 4.1: Experimental sequences for the loading of the condensate in the lattices.

first rough calculation can be done in the following way1. We first consider a

three-dimensional Thomas-Fermi distribution for the interacting condensate in

the optical trap. Let us consider a cilindrical simmetry and call Rr and Rz the

Thomas-Fermi radia of the condensate along the radial and axial direction. In-

tegrating the distribution along the vertical direction we get that the number

of atoms per tube can be described by Ntube = Nmax [1 − (r/Rr)
2]3/2, where

Nmax = (5/2)Ntotd
2/πR2

r is the number of atoms in the central tube and d = λ/2

is the spacing of the tubes. Let us now consider what happens inside a single tube.

Here the radial confinement is very strong, the transverse level spacing is large

and atoms occupy only the groundstate. The system becomes effectively one di-

mensional. In particular the interparticle interaction in the longitudinal direction

modifies, and we have to replace the three-dimensional s-wave scattering length

a, by an effective one-dimensional scattering length defined as [72]:

a1D = −a
2
r

2a

[
1− C

( a
ar

)]
, (4.2)

where ar is the harmonic oscillator length along the radial direction of the tubes

and C = 1.4603... is a constant. If the atomic density is not low enough to enter

the Tonks-Girardeau regime, the axial density distribution remains a Thomas

Fermi-inverted parabola as in the three-dimansional case. The Thomas-Fermi

distribution in one-dimension takes this form:

n(z) = n0
TF

(
1− z2

R2
TF

)
, (4.3)

1Similar calculations have been also considered for example in [70, 71, 46]
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interactions

where n0
TF = [(9/64)N2

tube(mωz/~)2|a1D|]1/3, and

RTF =
[3Ntube(~/mωz)2

|a1D|

]1/3
. (4.4)

To calculate the longitudinal harmonic frequency ωz we take into account the

confinement induced by the optical trap beams and by the lattices beams.

The experiments reported in the following refer to two different situations. For

a first set of measurements aload = 20a0. Following the calculations summarized

above and averaging the atomic distributions in the tube, we estimate an average

atom number per tube of 150. In a second set aload = 190a0, the average atom

number per tube in this condition reduces and is approximately 60. The number

of particle per lattice sites depends on the interaction energy determined by ameas.

It is very important for a good characterization of the different quantum phases

of the system to have a very cold sample. The thermal energy has in fact not to

dominate over the other energies of the system. Too large temperatures mask

the physics related to the interplay between disorder and interaction we are inter-

ested to study. Indeed, very interesting physics could arise from the study of the

role of temperature in disordered systems and, although this kind of experimen-

tal investigation could be possible in future experiments on our apparatus, this

is out of the aims of this thesis. For example the recently theoretically predicted

temperature-induced metal-insulator transition [59] could be experimentally inves-

tigated. A good control over the temperature is however fundamentally important

also in present experiments specially if we want to investigate correlation prop-

erties. Furthermore the most part of the many theoretical works on the topic

considers the T = 0 condition and for a comparison with our experimental results

we need a very cold sample. For these reasons we concentrated our efforts in min-

imizing the heating during the experimental preparation of the sample. First of

all the alignment of the lattices on the position of the condensate resulted to be

very critical. Furthermore we optimize the duration and the shape of the ramps

for the lattices and for the scattering length in order to minimize the heating. An

active power stabilization of the lattices is also necessary to avoid heating during

the loading and the measurements.

A good measurement of the temperature in the lattice is not trivial. However

we obtain a first rough estimation in the following way. Starting from the con-

densate in the optical trap we ramp up the lattices following the procedure above

described. With symmetrical ramps we then decrease the lattices potential down

to zero and we measure the temperature of the atoms in the optical trap from

time of flight images. We then have to make some assumptions in order to get
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the temperature of the atoms in the lattice. First of all we assume that ramping

up and ramping down the lattices heat up the system by the same amount and,

therefore, that the entropy in the lattice is half than the one measured at the

end. If we then assume that the loading process is isentropic, we can estimate the

temperature in the lattice by rescaling the measured temperature with the know

modification of the potential. For example the axial frequency in the tubes is ap-

proximately twice the one in the optical trap, because of the confinement induced

by the two tight lattices beams. Furthermore the presence of the lattice potential

is taken into account by considering the effective mass instead of the atomic mass.

These considerations should be reasonable for a superfluid in a regular lattice,

but possibly fails in the other situations and the estimation of the temperature is

even more complex. In the presence of the quasiperiodic lattice, for example, the

lattice band structure is modified and therefore also the effective mass. Starting

from an initial temperature of the condensate in the trap of approximately 15 nK,

typical estimated value of temperature are T ' 25− 35 nK.

4.2 Correlation measurements

In Fig.3.1 we showed a ∆− U phase diagram of the width of the momentum dis-

tribution traced in a previous work in our group [15]. We note that the maximum

interaction energy reached in that experiment was of the order of the tunneling

energy J , far from being strong enough to allow the system to enter the Mott

insulator regime. In a first experiment performed with the new experimental

configuration described in the previous section, we repeated the momentum dis-

tribution measurements being now able to trace a complete ∆−U phase diagram.

Furthermore from the analysis of the Fourier transform of the momentum distri-

bution we extract the correlation length of the atomic wavefunction and we obtain

the phase diagram for this quantity too.

4.2.1 Analysis of the momentum distributions

The experimental procedure for the momentum distribution measurements is quite

easy and not too different from the one used to investigate the weakly interacting

sample. The momentum distribution of the atoms trapped in the one-dimensional

(disordered) tubes is in fact simply obtained by imaging the atoms after a free

expansion of 16 ms from the trapping potential which is suddenly switched off.

From the analysis of the momentum distribution and of its Fourier transform we

can measure the correlation length of the atomic wavefunction. In the superfluid
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Figure 4.2: Momentum distribution of a superfluid atomic sample in a lattice aligned

along the ẑ direction. The picture on the left refers to atoms in a single three-dimensional

tube, the picture on the right refers to atoms in an array of quasi one-dimensional tubes

phases the (Wannier) wavefuntions centered in each lattice site are phase-locked

to each other and interfere giving rise to sharp peaks in the density distribution.

The distance between the peaks corresponds to the sized of the Brilluin zone in

the momentum space, that is 2π~/d = 2~k1, being d = λ1/2 the lattice spacing.

On the contrary, insulating phases are characterized by the absence of coherence

between atoms sitting in different lattice sites which results in the broadening of

the momentum distribution.

In Fig.4.2 we compare the momentum distribution of two superfluid samples

in a lattice. On the left, we show the momentum distribution of atoms trapped in

a one dimensional lattice aligned on a three dimensional condensate, i.e. the con-

figuration we used for the experiments in the weakly interacting regime reported

in the previous section. On the right, the image refers to atoms trapped in the

two-dimensional array of one-dimensional tubes obtained with two tight lattices

along the x̂ and ŷ direction. A shallower lattice is instead align along the ẑ direc-

tion where the atoms are in the superfluid phase. Along the ẑ direction the two

momentum distributions coincide since they both refers to superfluid atoms in a

lattice. Horizontally the atoms showed in the first image are trapped in a single

(three dimensional) tube and we do not observe any structure in this direction.

The stripes in the second image are instead a clear evidence of the absence of

phase coherence between the wavefunctions belonging to the different tubes cre-

ated by the two-dimensional tight lattice and are thus a confirmation of the fact

that atoms are trapped in an array of one-dimensional systems independent from

each other.



Chapter 4. Experimental investigation of strongly-interacting bosons in a
disordered lattice 103

Figure 4.3: Analysis of the time of flight imaging for a non interacting sample in a clean

lattice (a), and in the quasiperiodic lattice with ∆/J = 8 (b) and ∆/J = 12 (c). The

radially integrated momentum distribution images are fitted with three Lorentzian peaks.

The Fourier transform, which gives the correlation function, is fitted with a sinusoidally

modulated exponential decay.
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The Fourier transform of the momentum distribution gives the spatially aver-

age correlation function according to Eq.(3.6). For a uniform non-interacting gas

in one-dimension the mean square fluctuations of the phase of the atomic wave-

function can be calculated following [47]. They are expected to feature a linear

diverge for large separation x:

〈[∆φ(x)]2〉 =
mkT

n1D~2
|x|, (4.5)

where n1D = N/L is the number of particles per unit length. Thus the correlation

function decays exponentially,

ρ(x) ' n1De
−|x|/2Lφ , (4.6)

with correlation length

Lφ =
n1D~2

mkBT
. (4.7)

For an infinite system a condensate is obtained only for T = 0. In finite systems,

the phase is well correlated throughout the system, which thus behaves as a true

condensate, provided the linear dimension of the system L is less than Lφ. This

implies that:

T � T1D

N
, (4.8)

where we define T1D =
~2n2

1D
mkB

. In a trap, the region with larger density domi-

nates and the effective correlation length is larger and can be estimate as Lφ/0.67

[73, 74]. The momentum distribution of a trapped one-dimensional gas at finite

temperature, which is the Fourier transform of the correlation function, is therefore

a Lorentzian distribution whose width is inversely proportional to the correlation

length:

P (p) ∝ 1

p2 +
(

0.67~
Lφ

)2 . (4.9)

In the experiment we study atoms in one dimensional lattices. The presence of

the lattice along the one-dimensional system also affects the correlation properties

of the system. In particular, a more proper estimation of the correlation length has

to be taken into account the reduce mass of the atom in the periodical potential

[46]. In order to calculate Lφ for our system we substitute m with m∗ = 2~2/Jλ2

in Eq.(4.7).

The time of flight images of the atomic cloud are analyzed as shown in Fig.4.3.

The radially integrated momentum distribution is fitted with three Lorentzian

peaks 2~k1 apart from each other. Its Fourier transform, the correlation function,

is instead fitted with an exponential decay, which is periodically modulated by
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the presence of the lattice potential. The period of the sinusoidal modulation

is d = λ1/2. The values of correlation length extracted from the two fitting

procedures are in good agreement.

4.2.2 ∆− U Phase diagram

The analysis of the atomic momentum distribution for various values of the disor-

der strength and of the interaction energy gives the possibility to characterize the

crossover between superfluid and insulating phases. Narrows peaks in the momen-

tum distribution and large correlation lengths are indication of a superfluid phase,

whereas, on the contrary, an insulating phase is characterized by broad peaks and

short correlation length. Besides the disorder induced insulating phase (Anderson

glass), the new experimental configuration allows us to access also the interacting

induced one (Mott insulator) and to trace a full phase diagram.

The density of the sample during the measurements is typically large and, in

average, more than 3 atoms populate the same lattice site. To avoid three-body

losses, the atoms are kept only for a short time (few tens of ms) in the three-

dimensional lattice before opening the trapping potentials and taking the time of

flight image.

Let us starting by considering the non-interacting case. In Fig.4.4 we show

the measured correlation length for a non-interacting system. We repeat the same

measurement for the two different value of aload which correspond to two different

atomic densities in the tubes. When we increase the disorder strength the corre-

lation length decreases indicating the crossover from a superfluid to a disorder-

induced localized system. For ∆/J > 2 the system has localized eigenfunction

with localization length ξ = 1/ln(∆/2J). The value of the measured correlation

length is close to the one expected for the localized wavefunction shown in the fig-

ure by the dashed gray line. In the clean lattice the correlation length is expected

to be the one calculated by Eq.(4.7), considering the effective mass of the atoms

in the lattice. Actually if we estimate the temperature and the atomic density as

previously described, we get a larger value of Lφ. According to the calculation, for

the two different densities, we obtain in fact Lφ ' 2.5, 5. The smaller measured

value can be due to an underestimation of the temperature and an overestimation

of the density. The measured value of Lφ approaches the calculated one when

we consider a superfluid interacting sample indicating a more reliable estimation

of the density and of the temperature. For example if we consider the density

estimated for U/J = 3 we get a correlation length smaller than 2 lattice sites.

In Fig.4.5 we compare the measured evolution of the correlation length Lφ for
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Figure 4.4: Measured correlation lengths of the non-interacting system for increasing value

of ∆/J . Red (black) points refer to the situation in which aload = 20(190) and the average

atom number per tube is 150 (60). The dashed line indicates the correlation length of a

localized wavefunction with localization length ξ = 1/ln(∆/2J).

Figure 4.5: Measured correlation lengths for increasing U/J and in the quasiperiodic

lattice with ∆/J = 8 and ∆/J = 12.
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increasing interaction energies in a clean lattice and in a disordered one (∆/J =

8). In the clean case (∆/J = 0), we observe, as expected, a decreasing of the

correlation length for increasing U/J which corresponds to a transition from a

superfluid to an insulating phase. The transition is not sharp and well defined but

it is spread over a wide range of U/J and it can be more properly called crossover.

The reason is that the system is not homogeneous neither along the tubes nor

in the density of the different tubes. As discussed in section 1.4 the transition

to a Mott insulator (MI) state occur at a n-dependent critical value of U/J that

in the one-dimensional case can be calculated with Eq.(1.27). The transition to

MI domains with a small occupancy n occurs at lower interaction values than

those required to enter MI domains with higher n. The center of the crossover

coincides with the calculated critical value for the interaction energy considering

the calculated mean site occupation n̄ ' 5: (U/J)c ' 11. The dashed line in the

picture indicates such value of interaction.

In the disordered case, the non-interacting correlation length is smaller than in

the clean case. For weak interacting energies it increases indicating the crossover

from the localized Anderson glass phase to the supefluid phase passing through

the weakly interacting Bose phase. Keeping increasing the interaction strength,

Lφ decreases again. It is interesting to note that in this regime of interactions

(before the fully localization induced by the interaction) the disorder system has a

smaller localization length with respect to the clean lattice. This is an indication of

a cooperation of disorder and interaction in creating an insulating phase conversely

to what happens in the weakly interaction regime. The decrease of the correlation

length for large interaction in the disordered lattice is compatible with the fact

that the system enters the insulating Bose glass phase.

We repeated the momentum distribution measurement and analysis for various

values of the disorder ∆/J , ranging from 0 to 20, and of the interaction energy

U/J , ranging from 0 to 80. By interpolating the experimental results we can trace

the phase diagrams of Fig.4.6 for both the width of the momentum distribution

(calculated as the rms of the momentum distribution central peak) and the corre-

lation length. By referring to the rms plot we can qualitatively describe the phase

changes occurring in the atomic system. At small disorders and small interactions,

the momentum distribution is narrow (blue zone), and the system is in a super-

fluid (SF) phase. At larger disorder and interaction the momentum distribution

progressively broadens (green, yellow and red zones) meaning that the system is

more and more insulating. We can recognize in the phase diagram the different

quantum regimes described in the first chapter of this thesis. In an ordered system
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Figure 4.6: Phase diagrams. Top: rms of the momentum distribution central peak. Bot-

tom: Correlation length Lφ extracted from the fit of the Fourier transform of the momen-

tum distribution. With BG we label the zone of the phase diagram where we expect a

Bose glass phase.
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(∆/J = 0), as already mentioned, the system undergoes a crossover from a SF to

a MI phase as the interaction becomes sufficiently large. The vertical dashed line

on the diagram indicates the calculated critical value of interaction energy (U/J)c

for the transition to MI for a one-dimensional system with occupancy n = 5.

An analogous crossover from supefluid to insulator is also observed in the non-

interacting case (U/J ' 0). For increasing disorder amplitude ∆/J the system

enters in fact the disorder-induced localized Anderson glass (AL) phase. For weak

interaction energies, as expected, for a given ∆/J value and increasing U/J (i.e.

moving along a horizontal line in the phase diagram) the system delocalizes. Ac-

cording to the discussed screening arguments (sec.1.3), the AG-SF crossover occurs

at an interaction energy U = 0.1∆, which is the full width of the first “miniband”

of the quasiperiodic lattice (sec.2.3.1). The dashed gray line on the phase-diagram

indicates such a value2.

Let us now come to the most recently debated and still poorly experimentally

explored zone of the phase diagram: the strongly correlated disordered system.

If we keep increasing the interaction for a given disorder, we observe that, after

an intermediate coherent zone, the the momentum distribution starts to broaden

again. Interestingly, this broadening happens for smaller values of interaction

energy than in to the clean case. This can also be appreciated if one fixes a given

U/J values and moves vertically on the phase-diagram increasing the disorder:

the momentum distribution width increases indicating a more insulating state. In

this zone of the phase diagram, where a disordered insulating phase is observed

even though the interaction is not yet strong enough to induce localization by

itself, the system has the expected behavior of a Bose glass.

Even if the weakly interacting and the strongly interacting Bose glass show the

same glassy features, the roles played by disorder and interactions in the two cases

are pretty different. In the weakly interacting regime, interactions and disorder

have competing effects: interactions serve to smooth the disordered potential and

create a more coherent state. Conversely, in the strongly correlated regime, they

cooperate in creating an insulating phase. One possible mechanism we can imag-

ine, for example, in the region close to the Mott insulator, is that inhomogeneities

introduced in the system by the disorder potential help the system to reach in

2Since the crossover from the localized to the superfluid system occurs over a large range of

interaction energy, it is difficult to fix a transition value for the interaction energy. However

the full width of the first “miniband”, 0.1∆, seems to be a reasonable estimation. In previous

experiments in our group [15, 51] we observed the transition for smaller values of the interaction

energy. In that case, however, the presence of populated higher radial modes could have shifted

the transition towards smaller values of interactions
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Figure 4.7: ∆ − U phase diagrams obtained by numerically solving the Bose-Hubbard

problem for an occupancy n = 1 (left) and n = 0.5 (right). The dashed line in the phase

diagram on the left shows [34].

certain region the commensurate filling necessary for the Mott-insulator to form,

acting as local traps. This would break the superfluid into smaller pieces.

The presence of a Bose glass phase has to be confirmed by other measurements

aimed to investigate the transport capability and the excitation spectrum of the

system. Preliminary measurements of these kinds are reported in the next sections.

Theoretical phase diagram

The ∆ − U phase diagram for atoms in a quasiperiodic potential has been also

traced in theoretical works [34, 35], numerically solving the Bose-Hubbard prob-

lem. Referring to Fig.4.7 we note that, besides the MI and the SF phases, a

unique glassy phase, indicated as Bose glass (BG), is present for large disorder

amplitudes. The weakly interacting glassy phase studied in the previous chapter

and the strongly interacting one we intend to investigate here, present in fact the

same features. Both phases are globally insulating though they are characterized

by the presence of superfluid zones. This fact results in a finite compressibility of

the system and in a gapless excitation spectrum.

We also note that the phase diagram shows different quantum phases according

to the occupancy of the lattice sites. Since an integer occupancy is required for the

Mott insulator to form, in the case n = 0.5 showed in the right of the picture for

example, only the SF and the BG phases exist. These phase diagram are traced

for a single homogeneous one-dimensional system. The experimental situation, as

already pointed out, is by far more complex. The experimental system is in fact
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composed by several (few hundreds) one dimensional inhomogeneous systems with

different atomic densities. Different phases can thus coexist in the system accord-

ing to the local chemical potential. The experimental phase diagram results to be

a “combination” of different theoretical phase diagrams with different occupancies

of the lattice sites and the theoretical sharp transitions become crossover between

different phases.

4.3 Transport measurements

A confirmation of the insulating or conducting (superfluid) nature of the different

phases can be obtained by transport measurements. Measurements of this kind

are expected to be less sensitive to the finite temperature of the experimental

system and to the possible variations of the temperature across the phase diagram.

To evaluate the transport capability of the system we apply an impulse on the

condensate in the lattice and we measure the momentum transferred to the atoms.

In insulator phases the system dissipate the energy that does not translates in

momentum [75]. A similar experiment to study a strongly interacting disordered

system has been performed by Pasienski et al. [22].

Transport measurements are performed in the same experimental conditions

as the correlation measurements reported in the phase diagrams in Fig.4.6. The

experimental procedure is also similar except that the harmonic vertical confine-

ment induced by the optical trap beams is switched off 300µs before the lattices

potentials. The sudden change of the vertical potential applies an impulse on the

condensate. We then evaluate the momentum transferred to the atoms, ∆p, by

measuring the displacement of the central peak of the momentum distribution as

shown in Fig.4.8. When the system is in a superfluid phase we transferred mo-

mentum is around 0.32 ~k1. This value approaches zero when the system enters

an insulating phase. In the superfluid system we can also appreciate an unbalance

in the high of the lateral peaks.

We repeat this measurement for increasing values of the interaction energy

U/J for the clean lattice and for two values of disorder (∆/J = 8 and ∆/J = 12)

i.e. moving along three horizontal lines in the phase diagram. The results are

reported in panel a) of Fig.4.9. The interpretation of these data is similar to what

already discussed for the correlation measurements and gives a confirmation of

the results. In the clean case the system undergoes a crossover from a conducting

to an insulating phase by increasing the interaction. The center of the crossover

is around the calculated critical interaction energy for the transition to a Mott
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Figure 4.8: Analysis of the transport measurements. Figure a) shows the momentum

distribution of a superfluid sample when the optical trap confinement is simultaneously

switched off with the lattices potentials. We take the central peak position as a reference.

Figure b) shows the momentum distribution of a superfluid sample (∆/J = 0 and U/J =0)

and figure c) of an insulating sample (∆/J = 0, U/J = 70) when the optical trap is

switched off 300µs before the lattice. The applied impulse translates into a transferred

momentum ∆p in the superfluid case and the position of the central peak moves. In the

insulating case, on the contrary, the peak, besides broadening, stays centered at the same

position as the reference one.
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insulator phase considering an occupation density of 5 atoms per lattice site. The

momentum distribution peaks in fact progressively broaden and the transferred

momentum vanishes. The applied impulse does not transfer almost any momen-

tum to the atoms for U/J ≥ 80 and the system is in a completely insulating

phase.

In the two disordered cases, for very small U/J , the system is in an insulator

state (Anderson glass) and the transferred momentum ∆p is small. Increasing

the interaction energy we observe that ∆p first increases, indicating the crossover

from the Anderson glass to the superluid, and then decreases again demonstrating

the presence of a crossover to a new disordered insulating phase. Increasing the

disordered strength generally leads to greater dissipation, confirming the presence

of an insulating disordered phase for interaction energies that are not large enough,

in a clean lattice, to lead the system in a Mott insulator state.

In panel b) of Fig.4.9 we plot the dependence of the rms of the momentum

distribution on the interaction energy. In the clean lattice case, when the system

is superfluid, the rms after the applied impulse is the same as the one of the

unperturbed system. Interestingly we note that the we do not detect any difference

in the width of the distribution in the two disordered cases. This is probably due

to the fact that the dissipation of the applied impulse causes an increase of the

temperature, that translates into a larger momentum distribution, even when the

system is not completely insulating.

The transport measurements together with the correlation measurements give

a clear indication of the insulation nature of the system in a range of parameters

where it can not be neither an Anderson glass or a weakly interacting Bose glass,

because of the strong interaction energy between particles, nor a Mott insulator

since the interaction alone is not strong enough to induce localization. The mea-

surement of a gapless excitation spectrum of the system in this zone of the phase

diagram would give the confirmation of the presence of superfluid islands in a

globally insulating sample, i.e. of a Bose glass.

4.4 Excitation spectra measurements

In this section we present preliminary measurements of the excitation spectrum of

our system. As briefly discussed in sec.1.4 and 1.5 we expect that in a superfluid

gas any amount of energy can be transferred into the system. Conversely in a

Mott insulating phase the lowest possible excitation is at energy U . The excitation

spectrum of a Mott insulator is thus characterized by a gap at low energies whereas
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Figure 4.9: Transferred momentum ∆p (a) and rms of the momentum distribution (b)

after an applied impulse vs U/J . Three sets of data refer to three different value of the

disorder: ∆/J = 0, ∆/J = 8 and ∆/J = 12. The dashed gray line in panel b) indicate

the rms of the momentum distribution of system when no impulse is applied.
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Figure 4.10: Excitation spectra of a superfluid gas (∆/J = 0 and U/J ' 15) and of

a Mott-insulator (∆/J = 0 and U/J ' 50). Excitations are detected from a double

component Gaussian fit of the atomic cloud after expansion as an increase in the size of

the thermal component. Dashed lines indicate the value of the interaction energy U .

the superfluid excitation spectrum is gapless. A gas in the Bose glass phase, even

though it is globally insulating, is characterized by the presence of superfluid

islands. The excitation spectrum of a Bose glass is thus expected to be gapless as

the superfluid one.

Experimentally the excitation spectrum of the one-dimensional gases is mea-

sured with the following procedure. A sinusoidal modulation of the main lattice

height s1, with frequency ν and amplitude 20%, stimulates the resonant produc-

tion of excitation with energy hν. We detect the excitations produced after 200 ms

of modulation by decreasing to zero, with exponential ramps lasting 300 ms, the in-

tensities of the confining lattices and of the quasiperiodic lattice. At the same time

we increase the optical trap confinement in order to keep trapped also the atoms

heated by the excitation. We then take images of the atomic cloud after 16 ms

of free expansion from the optical trap and we fit them with a bimodal Gaussian

distribution. Excitations are detected either by the decreasing of the condensed

fraction or by the increasing of the size of the thermal component, since both

effects indicate an increase of the thermal energy of the system. To avoid three

body losses during the modulation of the lattice, for these measurements we use

aload = 190 in order to have a lower density along the tubes.

In a first experiment, whose results are shown in Fig.4.10, we consider atoms in

a clean lattice (∆ = 0). We compare the excitation spectra of the system for two
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Figure 4.11: Excitation spectra of a Mott insulator (∆/J = 0 and U/J ' 50) and of a

Bose glass (∆/J = 7 and U/J ' 30). Excitations are detected from a double component

Gaussian fit of the atomic cloud after expansion as an decrease in the condensed fraction.

Dashed lines indicate the value of the interaction energy U .

different values of the interaction energy; U/J ' 15 and U/J ' 50. For the lower

interaction strength the gas is in the superfluid phase and the modulation of the

lattice causes excitation at any frequency. On the contrary, when U/J is larger,

modulations under a certain frequency do not excite the system indicating a Mott-

insulator state. The minimum energy needed to excite the system is expected to

be U (see sec.1.4). This reference value for the energy is indicated in the figure

with dashed lines for the two cases.

In a second experiment, shown in Fig.4.11, we compare the excitation spectra

of the system in the Mott insulator phase (∆/J = 0 and U/J ' 50) with the

one of a disordered interacting system (∆/J = 7 and U/J ' 30). The value of

interaction energy for the disordered system has been chosen in order to have a

comparable value of the correlation length Lφ in the two situations. Lφ has been

measured from the momentum distribution analysis as previously described. The

disordered system spectrum shows the same characteristic as the spectrum of a

superfluid gas. The system is in fact excited for any value of the modulation

frequency.

In conclusion, we have shown that, for a certain range of large interactions and

disorder, the system is insulating since it has a short coherence length as a Mott

insulator or an Anderson glass, although it has a gapless excitation spectrum like
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a superfluid. We note that the disorder strength is however not strong enough to

dominate the behavior of the system and in particular we have ∆ < U . In this

range of the parameter we have thus observed the presence of a Bose glass phase.
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Conclusions

In conclusion, in this thesis we have studied bosonic atoms in a quasiperiodical

one-dimensional lattice investigating the ground state properties and the transport

of such a system in both regimes of weak and strong interactions. Experiments

with cold atoms in general have demonstrated their capability to give responses

to open questions in the field of the physics of disorder thanks to the possibility

that they offer to tune all the important parameters of the physical system in a

controlled way. The experiments reported in this thesis are an example of the

contribution given by quantum gases experiments.

Disorder has been recognized to have a dominating role in determining many

physical phenomena. The complex and intriguing physics of disordered systems

has been attracting an increasing interest not only in the quantum gases commu-

nity but in many different fields. From condensed matter physics to optics from

statistical mechanics to biophysics, the study of disordered induced phenomena

is, for sure, still open and in evolution.

More in details in this thesis, in the weakly interacting regime, we characterized

the crossover from the disordered induced localized phase (Anderson glass) to the

superfluid phase, passing through an intermediate glassy phase (weakly interacting

Bose glass). We measured, in particular, the local shape of the wavefunction and

its correlation length when we vary the interaction energy. We also studied the

transport induced in the disordered system either by a weak interaction between

atoms or by a temporal noise on the potential. We gave the first experimental

evidence of the subdiffusive expansion of a wavepacket in a disordered medium in

presence of non-linearities. We also provide a first investigation of the combined

effect of noise and interaction on the dynamical delocalization.

In the strongly correlated regime we performed measurements of the correlation

length, of the transport properties and of the excitation spectrum of the system.

We provided the first full experimental phase diagram which shows a complex

structure with different insulating and non-insulating regions for a wide range of
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disorder and interaction. This experiments aim to experimentally characterize the

theoretically predicted strongly interacting Bose glass phase.

Many questions remain open and have to be addressed in the future. For

example, one important point to be clarified is the role of the spatial correlations

of the disordered potential in both the transport dynamics and in the ground-

state properties. In this sense it might be interesting to shape potentials with

tunable spatial correlation length, both perturbing a periodical lattice and in

free space. To do this, speckle potentials or holographic potentials created by

spatial light modulators might be used. With these kinds of potentials one might

also investigate the barely explored topic of disorder physics in two and three

dimensions. In fact, the most part of the experiments, have been so far performed

in one-dimension and also the theoretical works are mostly devoted to the study

of one-dimensional systems. Another interesting issue is the role of the finite

temperature in disordered systems. Also in this case from the theoretical side

few results are available [59], and the experimental investigation has just started.

Another line of interesting research is the physics of disorder induced by impurities.

This is a common situation in condensed matter systems and can be simulated in

cold atoms experiments by quantum mixtures [76, 77, 78].
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