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Abstract

In this thesis, I report on experiments concerned with the control of single atom
internal dynamics. These experiments are performed on a Bose-Einstein con-
densate (BEC) of 87Rb atoms prepared on an atom chip. In particular, we de-
veloped a practical tomography protocol, we investigated the possibility to pre-
pare an arbitrary internal state in a given Hilbert space, and demonstrated, for
the first time, Quantum Zeno Dynamics, which consists in the confinement of
coherent dynamics in tailored sub-spaces.

Cold atomic systems and degenerate quantum gases are unique tools for
quantum simulations, but their applications outside laboratory depend criti-
cally on the simplification and downsizing of bulky experimental setups. From
this point of view, atom chips provide compact and robust platforms, which
allows high integration, and open the path to the combination of atoms with
solid state structures.

In the experiments we manipulate, by means of radio-frequency fields, a
BEC of 87Rb atoms produced in a magnetic micro-trap. The trapping, as well
as the radio-frequency fields, are provided by wires embedded on the chip sur-
face. By means of forced Rabi oscillations and Ramsey spectroscopy, we are
able to carefully set all the experimental parameters describing the dynamics
of the atoms. Exploiting this ability we implemented a tomography protocol
relying on time-resolved measurements of the population distribution among
atomic internal states during an accurately controlled coherent evolution. This
protocol allows to reconstruct with high fidelities any unknown density matrix,
even with small set of data. Equipped with this novel state reconstruction tech-
niques, and making use of the tools developed in the field of optimal control, we
demonstrate our ability to manipulate the internal state wave function in order
to prepare arbitrary superpositions. We investigated the connection between
the time length of the manipulation, and the accuracy in the target state prepa-
ration. Finally, we have proven how a coherent evolution is modified when
perturbed by measurements and strong couplings, which dynamically discon-
nect different groups of quantum states and constrain the atoms to evolve in-
side a reduced level sub-space. We have measured long living coherences in
the protected space, and we demonstrated the equivalence between different
measurement protocols.

All these results fit into the broad context of quantum control, and confirm
the versatility of the atom chip as benchmark to investigate quantum dynam-
ics.
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Introduction

There is little doubt that we are approaching the era of quantum technologies,
where increasingly complex devices grow closer to the ultimate limit imposed
by quantum mechanics, thinning the boundary between fundamental research
and technological development. As a consequence, quantum control [1] - i.e.,
the ability to prepare and control the quantum states of physical systems mini-
mizing the resources spent - promises cross advancements in many areas, from
biology to medicine, from quantum simulation and computation to engineering
and informatics [2–5].

For example the disruptive breakthrough of the realization of a quantum
computer appears not to be so far behind the horizon. The fundamental ideas
of quantum computing date back to ′70s, and the famous lecture given by R.
Feynman [6] is widely accepted has launched the field. Along the years, with
the advancement of experimental abilities, the discussion turned to be more
concrete from being merely theoretical, until the mandatory conditions to im-
plement a quantum computer [7] were defined. Nowadays we are in a situation
in which a commercial quantum simulator already exists1 and a big company
has made available a quantum processor composed of five superconducting
qubits on its cloud2.

Atom chips based experiments [8], among all, have proven to be very promis-
ing platforms for the future quantum information processors, joining most of
the necessary properties that a realistic architecture should have, like scalabil-
ity [9–11], precise control of the coherent evolution [12], and the capability of
integrating cold atoms with nanostructures [13–15]. Indeed, they have already
enabled the demonstration of some of the key components of a quantum archi-
tecture [16–18].

This thesis concerned with a Bose-Einstein condensate of 87Rb atoms pre-
pared on an atom chip, to exploit and explore the possibilities offered by quan-
tum control, in particular facing three problems related to the realization of a
reliable quantum information processor: The initialization of the system state
to a fiducial one. The creation of protected areas of the Hilbert space where
quantum informations can be stored and manipulated. The ability to read the
results of a general manipulation.

1http://www.dwavesys.com/
2http://www.research.ibm.com/quantum/
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Thesis outline

I will present the main results of my PhD work in the following order

• In Chapter 1 I review the magnetic properties of 87Rb, used to manipulate
and trap atomic cloud by suitably engineered magnetic fields. I will then
describe the experimental apparatus and the magnetic trap implemented
on our atom chip. Finally the manipulation and detection tools employed
all along the thesis will be presented.

• In Chapter 2 I present a tomography protocol which allows an easy re-
construction of the results of a manipulation accomplished on the internal
states of a condensate. Relying only on the time-resolved measurements
of the atomic population distribution among such states, it represents a
practical, experimentally undemanding tool which does not require the
access to the condensate state by means of fields created externally to the
chip. I will show how it is possible to achieve good reconstructions fideli-
ties even with a modest number of measurements, without the necessity
to spend much computational efforts.

• In Chapter 3 I address the problem of the arbitrary preparation of the
system state by applying results of optimal control theory. Starting from
a given initial state which is fixed by the BEC evaporation procedure,
by means of appropriately shaped radio-frequency manipulation pulses
I will show how to prepare different arbitrary coherent superposition of
states. I will report on the investigation of the limits of our scheme by
characterizing the dependence of the final state preparation error as a
function of the manipulation time.

• In Chapter 4 I report on the experimental realization, by means of engi-
neered strong couplings and controlled measurements, of the Quantum
Zeno Dynamics, which lead to the creation of dynamically disconnected
regions of the Hilbert space, where a qubit can be confined and protected
out from the remaining sub-levels. The measurements show how it is pos-
sible to achieve the protection enabled by the Zeno Dynamics using dif-
ferent perturbation protocols on the system. The final part of this chapter
is dedicated to the investigation of confinement strength and of coherence
in the protected sub-space.
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Chapter 1

Bose-Einstein condensation on
atom chips

1.1 Magnetic trapping on atom chips

In this first chapter I will give an overview of the basic concepts underlying
this thesis. In the first Section I will briefly introduce the physics of the atomic
element we use in our experiment, the 87Rb, especially its magnetic proper-
ties, crucial to trap the atoms by engineered potentials. The second section will
contain a brief description of the experimental apparatus used to perform the
experiments described in following chapters. Then in the third section the typi-
cal experimental sequence to reach the BEC is summarized. Finally I will briefly
present the main manipulation and probing tools extensively used all along this
work. What I will not discuss in this chapter are the Bose-Einstein condensation,
which can be found in almost every book of modern physics, and the common
laser cooling techniques, also addressed by many exhaustive books [19].

Further details on the experimental system used in this thesis work can be
found in [20].

1.1.1 87Rb hyperfine structure

Discovered in 1861, in Heidelberg, by Robert Bunsen and Gustav Kirchhoff, Rb,
but in particular its isotope 87Rb, is the evergreen of the atomic physics. Came to
fame in 1995 when the first ever Bose-Einstein condensate was achieved, today
is widely used from technological applications, to fundamental research.

The characteristic ruby absorption line of rubidium has two components
coming from a fine-structure doublet, the D1 (52S1/2 → 52P1/2) and D2 (52S1/2 →
52P3/2) transitions. Each transition has an underlying hyperfine-structure pro-
duced by the coupling between the nuclear angular momentum I and the to-
tal electron angular momentum J = L + S. The Hamiltonian describing the
ground level hyperfine structure is Hhfs = Ahfs J · I, where Ahfs is the mag-
netic dipole constant (see appendix B), and it can be diagonalized by the eigen-
kets of the total angular momentum operator F2 and its projections Fz , indi-
cated as |F,mF 〉. The total momentum F is given by F = I + J, and in the
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Rb ground state it takes the values F = 2 , and F = 1 (L = 0). Each F sub-
level is (2F + 1)-fold, and degenerate in absence of any applied fields. This
degeneracy is broken when an atom is immersed in an external magnetic field
B, and the Hamiltonian Hhfs is corrected by the interaction term HB = −µ · B,
where µ= −µB(gsS+gII)/~ , µB is the Bohr magneton, gs and gI the spin and
nuclear Landé g-factors. In presence of a B directed along the z direction, the
total Hamiltonian then reads

H = AhfsJ · I + µBB(gsSz + gIIz)/~ (1.1)

For a weak field HB can be treated as a perturbation of Hhfs, so F and Fz are
still good quantum numbers. The shifts of the energy levels of H induced by B

are well approximated by the formula

∆EF,mF
(B) = µBgFmFB , (1.2)

where gF is the total angular momentum Landé g-factor. Otherwise, when the
weak field approximation fails, and one has to diagonalize H on eigenstates
of I and S. For the ground state of Rb, in the case of intermediate fields, the
following analytical result, known as Breit-Rabi formula [21], holds

EF,mF
(B) = − ∆Ehfs

2(2I + 1)
+ gIµBmFB ±

∆Ehfs

2

(
1 +

4mFx

2I + 1
+ x2

)1/2

, (1.3)

where ∆Ehfs = Ahfs(I + 1/2) is the hyperfine splitting, sign + (−) is related to
the F = 1 (F = 2) level, and

x =
µB(gJ − gI)B

∆hfs
. (1.4)

We point out that, while the new eigenvectors ofH are still commonly indicated
as |F,mF 〉, they are different from the eigenvectors of Hhfs, as they depend by
the strength of the magnetic field B. Note that for weak fields Eq. 1.3 recover
the linear behaviour of Eq. 1.2.

To describe the internal state dynamics of the atoms in an homogeneous
magnetic field, all our numerical routines will always make use of the Breit-
Rabi formula, and, wherever not explicitly stated, we refer to |F,mF 〉 as the
eigenkets of H .

We conclude this section noting that, given the dependency of the atomic
energy levels by the external magnetic field, while moving in an spatially inho-
mogeneous B(r) the atoms will be affected by a force. If we are then able to
create a field configuration for which a minimum of EF,mF

(B(r)) exists, then
we will also able to trap atoms. In the next two sections I will describe the most
widely used trap geometries, the quadrupole trap and the Ioffe-Pritchard trap,
and how to realize the latter by using a current distribution easily achievable
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on a chip, the Z-trap.

1.1.2 Quadrupole and Ioffe-Pritchard traps

Realized by means of two coils in anti-Helmholtz configuration, the quadrupole
trap consists in a field B(r) which is vanishing in some position, say r = 0.
Around this vanishing point, B(r) increases approximately linearly, i.e.

B(r) = B′xx ex +B′yy ey +B′zz ez , (1.5)

still fulfilling the divergenceless condition ∇·B(r)= 0. If we assume that a mov-
ing particle keeps a constant projection of the total magnetic moment on the
field line direction, then Eq. 1.2 (or Eq. 1.3, in the case of intermediate field) will
hold everywhere. The magnetic potential in a nearby of r = 0 will be given by

∆EF,mF
(B(r)) = µBgFmF

√
(B′xx)2 + (B′yy)2 + (B′zz)

2 , (1.6)

and it will produce a magnetic force FB ∝ r̂ directed towards the center of the
trap, or outwards, depending on the sign of the product gF mF . The mF sub-
states such that gFmF > 0 , i.e. |F = 2,mF = +1/+ 2〉, and |F = 1,mF = −1〉,
are confined and thus called “low field seeking states”, unlike those for which
gFmF < 0 which are repelled and then called “high field seeking states”. The
difficulty in using this trap for ultra-cold atoms, is represented by the zero field
point. Indeed, moving across this position (and its very nearby) an atom feels a
magnetic field which change direction abruptly, thus it cannot keep a constant
projection of the magnetic moment on the field orientation, undergoing a spin
flip process after which the output state can be an high field seeking state, which
is expelled from the trap. This loss mechanism is known as Majorana spin flips
[22].

To overcome the spin flip problem, to the quadrupole field it can be super-
imposed an homogeneous field BIP . The effect is to avoid the zero in r = 0,
still leaving this position as a minimum for the total B(r) . The combination
homogeneous-quadrupole field is the so-called Ioffe-Pritchard (IP) trap [23],
which provides a quadratic magnetic confinement. For example, in the case
of axial symmetry the trapping field close to the trap center is given by

B(r) = BIP

 1

0

0

+B′

 0

−x
z

+
B′′

2

 x2 + (y2 + z2)/2

−xy
−xz

 , (1.7)
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and its modulus, expanded to the second order in r, produces an harmonic
trap having trap frequencies

ωaxial =

√
µ

m
B′′

ωradial =

√
µ

m

(
B′2

BIP
− B′′

2

)
,

(1.8)

where µ = µBmF gF , and m is the mass of the trapped particle.
The evolutions of the IP trap, as the cloverleaf trap [24] and the QUIC trap [25,

26], are the most used magnetic traps in cold atoms experiments. In the next
section we will show how to implement a Ioffe-Pritchard trap by means of a
planar distribution of current.

1.1.3 Z-trap

A Z-trap is a special case of wire trap, which consists in current conducting
wires arranged so as to create a trapping magnetic potential. To illustrate the
working principle of this kind of traps, let us start from the most simple exam-
ple: an infinitely thin straight wire carrying a current I . This creates a magnetic
field given by Bw(r) = µ0 I × r/2π r2. At distance r0 from the wire the field
modulus will beB0 = µ0 I/2π r0, so, by superimposing to Bw an homogeneous
magnetic fieldB0 perpendicular to the wire direction, a line of 0 field will be cre-
ated parallel to the wire. In the region around this zeros line, the total magnetic
field is well approximated by a quadrupole field, as shown in Fig. 1.1.

Given that the confinement is only radial, this geometry is suitable to trans-
port atoms along the wire direction, but it does not provide an axial confine-
ment, necessary to form a three dimensional trap. To confine the atoms in all
direction we can to provide a straight wire with endcaps. In other words, by
bending a finite length wire to form a Z, it is possible to create closely enough
to the central wire a line of zeros, to which the field produced by the Z arms
adds up creating the axial confinement. In the particular case of the Z-trap, the
field produced by the arms has a finite value at the trap center, as shown in Fig.
1.2, so the total field results in a three-dimensional Ioffe-Pritchard trap.

The Z-wire trap is harmonic near its minimum, yet it has a strong confine-
ment by a nearly linear gradient further away from the wire, allowing efficient
evaporative cooling. It is actually the wire geometry we use in our experimental
setup to trap the BEC, as we are going to show in the next section.
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FIGURE 1.1: (a) The combination of the field produced by a straight wire,
varying as Bw ∼ 1/r, with a homogeneous bias field Bbias, produces a two-
dimensional quadrupole field in the plane perpendicular to the wire. (b) Mag-
netic field strength dependence as a function of the distance from the wire. Red
line correspond to Bw and black line to the bias field Bbias. In the plane where
these fields have opposite direction, they will sum up to zero in r0, which will
be the center of the quadrupole trap

1.2 Experimental setup

1.2.1 Chip layout

The chip installed in our apparatus consists of a 2µm thick gold layer evapo-
rated on top of an extremely flat silicon surface, and it was produced by the
Quantum Optics group of the University of Vienna. The wires on the surface
were obtained by opportunely removing gold portions in such a way to shape
the appropriate structures. In particular, before the evaporation of gold, the sil-
icon surface it is allowed to oxide, creating a very thin layer (less than 100 nm)
of isolating SiO2, then is covered with photoresist which is patterned by pho-
tolithography, after that an adhesion layer of Ti, 30 nm thick, is deposited every-
where. Finally, after covering everything with gold, the remaining photoresist
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FIGURE 1.2: Layout of z-shaped IP, and calculated magnetic fields generated for
I = 1A. The bias field along y was set to have the trap at positions r0 = 0.5 mm
(red line) and 0.1 mm (blue line). The fields shown in the figure take into account
a wire width of 125µm

was removed. The resulting wires has several widths (50, 125, 300µm), and are
defined by 10µm-wide gaps. The whole surface is remarkably smooth, with
grain size < 50nm.

The chip layout is shown in Fig. 1.3. The asymmetric dimensions compen-
sate the beam diameter during the mirror MOT phase (described in the next
section), since the beams hit the chip at 45◦. In the picture we highlight in pink
colour the z-shaped wire which generates the potentials for the IP trap where
the condensate is produced. The z has a central body length d of d = 2 mm and
6 mm long arms. The width w of this wire was set to w = 125µm. The resulting
resistance is 1.63 Ω. The values of w and d were chosen in order to have a com-
promise between a low ohmic heating of the wire (large w, small d) and large
attainable trap frequencies trapping volume(small w, large d and I ).

2 mm

23
 m

m

30 mm

FIGURE 1.3: Layout of the chip wires. The z-shaped on-chip wire used to create
the IP trap is highlighted in pink. In green we also highlight the u-wire used to
create a radio-frequency magnetic field for the internal state manipulation.
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The measured trap frequencies in the center of the Ioffe-Pritchard trap cre-
ated by an external bias field of 15 Gauss directed along the −x direction are

ωaxial = 2π × 76 Hz

ωradial = 2π × 975 Hz .
(1.9)

In Fig. 1.3 we highlight in green a u-shaped wire originally included to
create an intermediate confining potential between the z-trap and the previ-
ous trapping stages. The purpose of this wire was to facilitate the loading in
the z-trap by creating a shallower and wider potential which was better fit-
ting the characteristics of the external trapping fields. However, because of its
close proximity to the atoms, it is currently exploited to create a radio-frequency
field for the atomic internal state manipulation. Given the width this wire (w =

300µm) its resistance is lower than that of the z-wire (R = 0.8÷0.9 Ω), and its re-
active component is almost negligible up to frequencies of tenth of MHz. Thus,
by directly applying to the wire heads a voltage signal V (t) = A cos(ωRF t), it
will carry a proportional current I(t) = RV (t). In correspondence of the cen-
tral body of the u-wire, at the distance of d = 190µm from the chip surface,
i.e. where our condensate is created, provided that ωRF does not goes over few
tenth of MHz, the electromagnetic field created by I(t) is a near-field, and it can
be approximately considered as created by an infinitely long wire. The atoms
will be then interested by a time varying magnetic field given by

B(t) = (µ0R/2π d)V (t)

= A(µ0R/2π d)cos(ωRF t)
(1.10)

As we will show in the following, this magnetic field is able to drive transi-
tions between the internal mF states of the hyperfine structure, and thus it will
provide a suitable tool for the state manipulation.

1.2.2 Coils and lasers

Like many atom chip experiments, our apparatus consists of a single steel vac-
uum chamber at which, in the bottom part, is attached a rectangular glass paral-
lelepiped (science cell) made in Vycor. The chip emerges from the steel chamber
in the science cell, with the surface oriented upside down. The vacuum in the
science cell is sustained by a 125 l/s ion pump, and the background gas pres-
sure measured by the pump controller is constantly about 10−10 mbar during
normal experimental activity. A Ti-sublimation pump is also attached to the
main steel chamber. Close around to the science cell (see Fig. 1.4), 6 pairs of
Helmholtz coils, 2 for each direction, generate the homogeneous magnetic bias
fields {Bx, By, Bz} used to set the position of the traps center, nullify the envi-
ronmental magnetic field, and to set the sub-levels energies for the internal state
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manipulation (e.g. by Eq. 1.3), while a 45◦ tilted external pair in anti-Helmholtz
configuration creates the quadrupole magnetic field for the preliminary cooling
in the mirror MOT phase.

FIGURE 1.4: Coil suit and MOT laser beam propagation. (1) The MOT coils are
45◦ degrees tilted, to create the mirror MOT configuration, (2) 6 pairs of coils
in Helmholtz configuration generates opposite bias fields in each direction, (3)
MOT beams.

Behind the chip surface (see Fig. 1.5) an addition z-shaped kapton wire (big-
Z) provides an intermediate large volume Ioffe trap to enable a better transfer
from the molasses into the magnetic trap of the chip. The big cross-section of
this wire (0.61 mm, 0.87 mm with jacket, KAP2) allows to push high currents
and thus to form the minimum of the trap away from the chip surface. Keeping
the external field constant and decreasing the big-Z current, the trap position
moves closer to the chip surface, until the trapping potential of the z-trap on the
chip can be turned on. An additional benefit of such small-scale circuits is that
their low inductance enables rapid changing and switching of the potentials. In
Fig. 1.5 it can also be noted, under the kapton z-wire , an additional couple of
u-shaped conductors, one of which is actually used to generate on the cloud the
radio-frequency field for the forced evaporation.

To cool down the atoms to temperatures of the order of 10µK, several dif-
ferent laser light frequencies are required. These are illustrated in Fig. 1.6 along
with the hyperfine structure of the ground 52S1/2 and excited 52P3/2 states of the
D2 transition in 87Rb. In our setup this frequencies are generated by two DFB
lasers, whose beams are split and modulated by acousto-optic modulators. This
two lasers with the optical elements and devices for the frequencies manipula-
tion, are placed in a black closed box, and connected to the optical table where
the science cell is by polarization maintaining fibers (with the exception of the
optical pumping beam).
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FIGURE 1.5: Photograph of the Z kapton wire. Embedded in the white sustain-
ing structure, two u-shaped conductor which closest one to the chip surface is
used to carry the radio-frequency signal for the evaporation.

The DFB master laser provides lights for the MOT cooling, optical pumping
and absorption imaging. Its output is frequency stabilized on the crossover
F = 2→ F ′ = CO(2, 3) by a frequency-modulation (FM) locking system which
acts on the supply current. After passing through an optical isolator and an
anamorphic prism, the light is divided in two beams which are sent to a double
pass AOM, and to an optical amplifier. The beam going to the AOM (AOM1)
is shifted almost in resonance with the transition cooling F = 2 → F ′ = 3,
and then is further divided in two part, one is sent to the FM spectroscopy
setup for the frequency stabilization, the other to another double pass AOM
scheme (AOM2) to get the optical pumping light. The light injecting the optical
amplifier is amplified up to 850 mW. This amplification is necessary to capture
a large number of atoms in the preliminary cooling stage accomplished by the
MOT. After being amplified it is red-shifted respect to the cooling transition
by a single pass AOM (AOM3), aligned to get the maximum efficiency on the
negative diffracted order. The negative first diffracted order is finally sent to
a PBS cube to clean the polarization and coupled to an optical fiber to be used
as cooling light. Due to the great power from the optical amplifier the first
positive order diffracted by the AOM3 has enough power to be used,∼ 15 mW.
This light, after a double-pass trough an AOM (AOM4), it is frequency shifted
down in order to be resonant with the F = 2 → F ′ = 3 transition. Finally an
optical fiber cleans the spacial profile of this beam to get the imaging beam.

The second DFB laser provides the light for the repumping F = 1→ F ′ = 2.
It is stabilized using the polarization spectroscopy and locked to F = 1→ F ′ =

CO(1, 2) crossover resonance. A small part of the light produced by the laser
is sent to the spectroscopy setup, and the other through a single pass AOM,
shifting the frequency in order to be resonant with the required transition.

1.3 Reaching BEC

In every cold atoms experiment, the path from a gaseous atomic species to a
BEC is made of several subsequent cooling and trapping steps. Even the most
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1 2 3 4

FIGURE 1.6: Left side: The hyperfine structure of the 52S1/2 and 52P3/2

states of 87Rb D2 line, from [21], showing the laser frequencies required for
the experiment, and the intervals (in MHz) between the hyperfine levels. 1)
MOT/molasses cooling, 2) optical pump, 3) imaging, 4) repumper. Right side:
Small map of the laser sources and the final lights beams.

prepared research team would spend several months designing the experimen-
tal system and tuning all the parameters involved, but once every single vari-
able is under control, an usual condensation cycle is accomplished in few tens
of seconds. Atom chips based systems are remarkable from the point of view of
the condensation velocity, being usually able to produce a BEC in few seconds.
The sketch I will provide of our procedure for the production of the BEC does
not do justice to the work previously done to make it possible, but a detailed
exposition can be found in [20].

Our experimental cycle lasts 23 s : during the first 8 s we produce, manipu-
late, and probe the BEC, while in the remaining time the chip cools down for
the successive cycle. As Rb source we use two dispensers placed behind the
chip (SAES dispensers). They are activated at the beginning of the cycle by a
2 s long pulse of current at 7 Amps , which causes the evaporation of atoms at a
temperature of about∼ 970 K. The confining potential generated by the on-chip
z-wire has a maximum depth of ∼ 150µK at 190µm from the surface, and thus,
to efficiently load it, we need to cool down the atoms at a lower temperature.
This cooling can be broken down in 6 main steps, during which the tempera-
ture of the trapped atomic cloud is lowered and simultaneously its phase space
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density is increased. These steps are listed below.

Mirror-MOT

The first cooling step is carried out by a mirror-MOT, in which the mirror role
is played by the gold chip surface. In particular the cooling light is divided in 4

beams (see. Fig 1.4). Two are counter propagating and aligned along the y di-
rection, parallel to chip surface, touching it. The other two impinge on the chip
at 45◦ from opposite directions and lay in the xz plane. In this phase the cooling
light is −3 Γ detuned from the cyclic transition F = 2 → F ′ = 3 (Γ ∼ 2π 6 MHz

is the natural line width of the D2 transition), and the beams power density is
the maximum available, i.e. ∼ 10 mW/cm2. The repump light, with the total
power of 7 mW after the fiber, is mixed with the cooling light by a polariz-
ing beam splitter. The 45◦ tilted anti-Helmholtz coils create a quadrupole field
which minimum is set, with the aid of the homogeneous bias field generated by
the Helmholtz coils, 7 mm away from the chip surface, in an overlapping region
of the beams.

The mirror-MOT phase starts simultaneously to the activation of the dis-
pensers, and lasts for 4.5 s, when approximately N = 70× 107 atoms are cooled
at a temperature of about T = 120µK. At this point the trapped cloud phase
space density is Φ = 8.5× 10−8.

CMOT and optical molasses

After loading the mirror-MOT, the atomic cloud is moved at a distance of 2 mm

from the chip surface, in the place where the magnetic trap generated by the
kapton z-wire will be switched on. This transport is achieved by linearly ramp-
ing up the bias fields along z and x directions in 450 ms. Once the atoms have
reached their final position, they undergo a compression in a CMOT.

The CMOT step consists of a normal MOT with increased red detuning of
the trapping laser, decreased power of the cooling light and greatly reduced re-
pump laser power. It has the effect of reducing radiation pressure in the trap
and thus creating a denser cloud of atoms. Specifically, the repump power is re-
duced to 50µW, and simultaneously we jump the detuning of the cooling light
to−14 Γ, while its power is reduced by 80%. The entire CMOT stage lasts about
14ms, during which the temperature of the atoms is reduced to T = 25µK, and
their phase space density increased to Φ = 8.5× 10−7.

At the end of the CMOT stage a short molasses step is performed. During
4 ms the quadrupole field is switched off and the bias field is adjusted in order
to compensates the environment magnetic fields. The benefits of the molasses
are greatest in terms of temperature: at the end of the stage the cloud has a
temperature of T = 10µK and a phase space density of Φ = 4.5× 10−6.
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Optical pumping

The optical pumping cycle starts immediately after we switch off the molasses
light, and lasts 300µs. First a magnetic field of 1 Gauss is set along the y di-
rection in 100µs, then we turn on the repump light and the optical pumping
light. The latter is also oriented along the y direction and is σ+ polarized, in
order to transfer the whole atomic population in the strong field seeking state
F = 2,mF = +2 by successive absorption and spontaneous emission cycles.
We illuminates the atoms with the pumping light for 150µs, and for further
50µs with the repump light. At the end of the process the cloud temperature
slightly increase to T = 12µK, however the improvements of the magnetic trap
loading is dramatic.

Magnetic trapping in the big Z trap

This is formed by rapidly increasing the current IZ through the Z-shaped kap-
ton wire, and simultaneously setting the bias field along x (Bx) in order to ob-
tain the position of the minimum of the resulting confining potential 2 mm away
from the surface, and the bias field along y (By) to set a non vanishing value of
the field in the minimum so as to prevent the Majorana flipping. In particular,
we set Bx = 10.5 Gauss, and By = 3 Gauss. Actually IZ is ramped up from 0 to
the maximum value of 25 Amps given by our supply, by a double-MOSFET cir-
cuit to speed-up the switching which is accomplished in a total time of 300µs.
Simultaneously the −x and −y bias coils currents are set to about 2 Amps.

Magnetic transfer and trapping in the z on-chip trap

After having loaded the Z-shape kapton wire (big Z) trap, we adiabatically
transfers the atoms to the magnetic trap potential made by the on-chip z-wire
(small z). By linearly turning off the current in the big Z, and keeping constant
the bias field along x, the position of the minimum of the trap is moved toward
the chip surface. Simultaneously the current through the small-z is turned on,
from 0 to 1.7 Amps, and the bias field in the y-direction is decreased to main-
tain the residual field at the trap center. This transfer is accomplished in 250 ms,
which follows a second compression in the small-z trap by rising up the x bias
field from Bx = 10.5 Gauss to Bx = 15.5 Gauss in 250 ms. At the end of this
compression, the trap minimum is located 190µm above the chip surface, the
number of atoms held is decreased to N = 1.5× 107, their temperature goes up
to T = 90µK, and the phase space density to Φ = 1.8× 10−5.

Radio frequency forced evaporation

The last step along the path to BEC is to apply forced radio frequency evapo-
rative cooling to the compressed atom cloud. After compression we apply to
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the U-shaped conductor behind the chip (see Fig. 1.5) a radio frequency sig-
nal whose frequency is exponentially swept from 22 MHz to a final value of
0.7 MHz in 3 s. The phase space density overcome the critical value Φ = 2.614

at the expense of the atom number, indeed the condensation is reached with
N = 90×103 atoms in the pure state |2,+2〉, at a the temperature of T = 480 nK.
The dimensions (Thomas-Fermi radii) of the condensed cloud in the anisotropic
magnetic trap are daxial = 15.5µm along the axial direction, and drad = 1.26µm

in the radial direction.

1.4 Manipulating and probing BEC

The experiments presented in the following chapters of this thesis will have has
common ingredient the quantum dynamics in the hyperfine ground manifold
of Rb atoms, i.e. the coherent evolution ofmF sub-states superpositions in pres-
ence of a driving field. A versatile tool to realize such driving is provided by
the radio-frequency near-field produced by the u-wire structure integrated on
the chip surface (see section 1.2.1 and Fig. 1.3). Hereafter, given the intended
use of this particular wire, we will refer to it as chip “antenna”.

After a generic manipulation of an mF superposition we need to extract
some information about the output state, and here again we exploit the mag-
netic properties of the Rb, applying the Stern-Gerlach method, combined with
an absorption imaging technique, to determine the occupation probabilities of
each mF sub-level.

In the following two sections I will enter into the details of the state mani-
pulation and the Stern-Gerlach discrimination.

1.4.1 Radio-frequency manipulation

As seen in section 1.1.1, an homogeneous magnetic field perturbs the Hamil-
tonian describing the Rb hyperfine structure, and this perturbation is semi-
classically introduced in H by an interaction term between the vector of mag-
netic moment operators µ and the classical field B0, i.e. by the term HB =

−µ · B0 . Of course this description holds also in the case af a time varying
magnetic field B(t) having polarization ξ̂, thus in general we will have

H = Hhfs +HB(t)

= AhfsJ · I + µB

(
B0 +B(t) ξ̂

)
· (gsS + gII)/~ .

(1.11)

By exploiting the non-diagonality of the terms ξ · S and ξ · I, we can connect
different sub-states, making possible transitions between them.

The first approximation introduced in Eq. 1.11 is to neglect the interaction
with the nuclear magnetic moment, since |gI/gs| ≈ 0.5× 10−3. A second one is



18 Chapter 1. Bose-Einstein condensation on atom chips

to considered the coupling between B(t) and S as a perturbation, if B(t)� B0.
In this case we can represent the related term in the basis of the eigenstates of
the Hamiltonian as given by Eq. 1.1. These field dependent eigenstates are still
labelled as |F,mF 〉, and indeed, for the magnetic fields of few Gauss considered
here, they are well approximated by the true eigenstates of the operators F2 and
Fz . Finally, when we consider an oscillating fieldB(t) = BRF cos(ωRF t), we can
make a RWA approximation. Changing reference to the frame rotating at fre-
quency ωRF , in the case of |ωRF −∆ωF | � ∆ωF , where ∆ωF is the mean energy
distance between neighbouring mF sub-levels, the Hamiltonian 1.11 reads

H =
∑
F,mF

(EF,mF
(B)− ~mF ωRF ) |F,mF 〉 〈F,mF |+

+
~
2

∑
F,mF ,mF ′

ΩF,mF ,mF ′ |F,mF 〉 〈F,mF ′ | ,
(1.12)

where we have introduced the coefficients

ΩF,mF ,mF ′ =
µB gsBRF

~
〈F,mF | ξ̂ · S |F,mF ′〉 . (1.13)

Depending on the field polarization ξ̂ and the quantization axis direction,
these coefficients can lead either to a coupling between different mF sub-levels,
or to a correction on the diagonal elements of H . We consider here a linear
polarized field along the x direction (as it is the case in our experiment), or-
thogonal to the quantization axis imposed by B0. In this case only the terms
ΩF,mF ,mF ′ with mF 6= mF ′ will be different from 0.

The RWA approximation lead to ignore in H the couplings between sub-
states belonging to different hyperfine levels, too far out of resonance to pro-
duce any effect on the dynamics. Thus the total Hamiltonian can be written as
H = HF=2 ⊕ HF=1, allowing to treat the dynamics in the two manifold inde-
pendently. We can then individually shift the sub-levels energies by a quan-
tity EF,0(B)1, and redefine the diagonal elements as EF,mF

(B) − EF,0(B) −
~mF ωRF ≡ δF,mF

(B,ωRF )/~. We also define, from Eq. 1.13, the Rabi frequency
Ω = µB gsBRF /~. Ultimately, for our purposes, a matrix representation of Eq.
1.12 results more convenient, as well as more intuitive. The Hamiltonians acting
on the two hyperfine sub-spaces then read

1This correspond to a unitary transformation U(t) =
∑

F exp {−i EF,0(B) 1F t}.
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HF=2 = ~


δ2,+2(B,ωRF ) Ω 0 0 0

Ω δ2,+1(B,ωRF )
√

3
2 Ω 0 0

0
√

3
2 Ω δ2,0(B,ωRF )

√
3
2 Ω 0

0 0
√

3
2 Ω δ2,−1(B,ωRF ) Ω

0 0 0 Ω δ2,−2(B,ωRF )

 ,

(1.14)

HF=1 = ~


δ1,+1(B,ωRF )

√
1
2 Ω 0√

1
2 Ω δ1,0(B,ωRF )

√
1
2 Ω

0
√

1
2 Ω δ1,−1(B,ωRF )

 . (1.15)

All along this thesis we will represent the internal state of the atoms by us-
ing the density matrix formalism. The state dynamics will be then described by
the von Neumann equation, in which we include the Lindblad super-operator
termL, acting on a density matrix ρ asL [ρ] =

∑
j γj [−{|j〉〈j|, ρ}+2|j〉〈j|ρ|j〉〈j|],

where j runs over all the {F,mF } sub-states, and γj are dephasing rates uni-
formly set, for simplicity, to γj ≡ γ ∀j. Then the dynamical equation reads

d

dt
ρ(t) = − i

~
[H(t, B,Ω, ωRF ), ρ(t)] + L [ρ(t)] . (1.16)

As seen in section 1.2.1, we can employ the chip u-wire (the antenna), to
generate on the BEC a time varying magnetic field, whose strength depends on
the amplitude A of the voltage signal applied at the antenna ends, as Eq. 1.10
shows. Given that the Rabi frequency Ω defined above is linear inBRF , and this
is linear in the A, it turns out that Ω ∝ A.

We now make some considerations on the space homogeneity of Ω. To per-
form our experiments, we turn off the chip z-wire trap which holds the atoms,
and after 800µs of free falling, we apply to the antenna a voltage signal to ma-
nipulate the BEC. Typically a manipulation is accomplished in about 100µs

or less. During the manipulation time the radial radii of the BEC increases
from approximately 6.1µm to 7µm, while the axial radii is almost constant at
16µm. On the other hand, after the 800µs of free fall the condensate moves
3µm down from the trap position, and during the subsequent manipulation it
further fall for 0.8µm. Summing the contributions of both the cloud expansion
and the fall, we can estimate a maximum variation of the Rabi frequency of
∆Ω = (∆d/d)Ω ∼ 5.2 × 10−3 Ω. We can then safely approximate Ω as constant
on the whole BEC during the entire manipulation time.
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1.4.2 Stern-Gerlach and absorption imaging

An unique tool extensively used thorough this thesis is the Stern-Gerlach dis-
crimination. As discussed in section 1.1.1 and 1.1.2, an inhomogeneous mag-
netic field B(r) exerts on an atom a force arising from the interaction Hamilto-
nian HB = −µ · B(r). In particular, an atom in a pure mF state will experience
the force

〈F,mF | ∇(−µ · B(r)) |F,mF 〉 = −µBgFmF∇B(r) . (1.17)

It follows that atoms belonging to different mF sub-states, while moving
across the inhomogeneous field region (deflection area), will be physically de-
flected in different directions. Let us suppose that for each of these directions,
and thus for each mF sub-state, it is available a detector ΠmF which clicks for
every atom on that path. If we now let pass through the deflection area a single
atom prepared in a particular coherent superposition ψ̃ =

∑
mF

cmF |F,mF 〉,
this will be measured by one of the detectors according to the probabilities of
occupying the single sub-states |cmF |

2. Repeating the passage and detection
procedure N times, having care to start from the same identical state ψ̃, each
detector ΠmF will click a number of times nmF . If N is statistically relevant
then the set of measurements will be a good approximation of the theoretical
expectations, i.e. nmF ∼ N |cmF |

2 , allowing us to extract information about the
state of the atoms. This is actually the case of a non interacting BEC, made of N
identical atoms, all crossing together the deflection area.

In our set-up the inhomogeneous magnetic field B(r) is generated by a pairs
of anti-Helmholtz coils placed in proximity of the science cell (see Fig. 1.4), with
the axis aligned along the y direction. After the manipulation, while the atoms
are falling under the effect of the gravitational field, the quantization axis is set
along y by a bias field of By = 1 Gauss, and a current pulse of 16 Amps, 10 ms

long, is sent through the coils. After further 13 ms of free falling we turn on our
detectors, i.e. we perform an absorption imaging procedure, taking a picture of
separated atomic clouds.

In the absorption imaging the shadow cast in a probe beam due to the ab-
sorption by the atoms is imaged on a CCD camera. In order to ensure a strong
absorption process, and thus a large signal-to-noise ratio, the probe beam is
resonant with the transition |F = 2〉 → |F ′ = 3〉 (see section 1.2.2), and σ+ po-
larized.

When a beam propagating along x direction, with an intensity profile I0(y, z),
crosses an atomic cloud with spatial density n(r), the transmitted beam inten-
sity is given by

It(y, z) = I0(y, z)e−σ
∫
n(r)dx (1.18)

where σ = 3λ2/2π is the resonant absorption cross section. Using the above
equation, and taking images of the probe beam profile with and without the
atoms, one can extract the column atom density ñ(y, z) =

∫
n(r)dx. Actually,
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in order to avoid offset errors due to spurious light sources, it is also useful to
take a “dark” image Id, which consists in an image with no atoms, nor imaging
beam. The final column density, corrected by the CCD camera pixel area, and
the magnification of the optical system, is given by

ñ(y, z) = − A

σM2
ln

(
It − Id
I0 − Id

)
(1.19)

The integral of this quantity over all pixels gives the total number of atoms.
However, to determine a cloud population we prefer to measure relative-quantities,
excluding the influence of the sensor features.

In the actual imaging procedure we illuminates the cloud for 25µs with a
pulse of only imaging light propagating along x, parallel to a bias magnetic
field of Bx = 1 Gauss. The shadow projected on the CCD camera comes from
the atoms in the F = 2 manifold, which at this point, have accumulated enough
recoil to be blown away from BEC. A successive equally long pulse of imaging
light it’s used to record the beam profile with no shadows.

A third image is taken by simultaneously illuminating the atoms with the
imaging and repumping light, again for 25µs. In this case the shadow is pro-
duced by the atoms in the F = 1 manifold. Successively, an equal imaging
and repumping light pulse gives the beam profile with no shadows. Finally
we take the dark image. In Fig. 1.7 we show a typical image recorded by our
procedure after a free-falling time of 24 ms during which we also performed the
Stern-Gerlach discrimination.

F=1F=2

FIGURE 1.7: Left side: Layout of the probe beams to image of the atom cloud.
The beam is horizontal to chip surface and perpendicular to the axial shape
of the cloud. Right side: example of false colour absorption images of Stern-
Gerlach separated cloud, in the two hyperfine manifolds.

1.4.3 Experimental parameter setup

In a typical experimental situation, we need to accomplish some desired ma-
nipulation on the internal state of the atoms, which evolution is described by
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Eq. 1.16. As a consequence, we have to precisely tune the values of the set of
parameters Γ = {Ω, ωRF ,B} appearing in this equation, and uniquely identi-
fying the atomic Hamiltonian. While setting ωRF is a straightforward task, the
procedure to set the Rabi frequency Ω and the magnetic field B is slightly more
involved. The sensor we use to adjust both the parameters is the same BEC we
manipulate, in particular, Ω can be adjusted by observing some number of Rabi
oscillations, and B by means of Ramsey spectroscopy. In the following we will
detail this two procedure, restricting our attention to the dynamics in the only
F = 2 sub-manifold, i.e. where we produce our BEC.

Rabi oscillations

Applying to the chip antenna for a time τ a radio-frequency signal s(t) = A cos(ωRF t)

with constant amplitude A, and frequency ωRF resonant with the levels energy
distance, the atoms in the BEC coherently oscillates between the |mf = +2〉
and |mf = −2〉 sub-states, passing through all the intermediate levels. For ex-
ample, left side of Fig. 1.8 shows the oscillations of the five relative populations
pmF (τ) = NmF (τ)/NT (τ), NmF is the number of atoms recorded in each mf

sub-level, and NT (τ) =
∑

iNi(τ) is the total number of atoms, as measured in
the experiment.
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FIGURE 1.8: a) Rabi oscillations in the F = 2 manifold as a function of the radio-
frequency pulse length τn = 2π n/ωRF , n being an integer number. Each point
with error bars represents the mean values and standard deviation calculated
from five experimental realizations under the same conditions. Using Ω as free
parameter, we fit the theoretical evolution to the collected data, obtaining the
result represented with dashed line. b) Rabi frequencies Ω resulting from fitting
the evolutions produced by different radio-frequency signal amplitude A, and
linear fit of the data, which yields Ω/2π ' 13.78A kHz/V.
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The oscillations are described by Eqs. 1.16 . In particular if we integrate this
set of differential equations leaving Ω as free parameter, we can fit the theoreti-
cal evolution to the experimental data, obtaining a correspondence between the
amplitude A and the strength of Ω.

Then, if we measure the oscillations induced by radio-frequency signals at
different amplitudes and fixed ωRF = 2π 4.323 MHz, by fitting the data we ob-
tain the dependence of Ω by A, as shown in the right side of Fig. 1.8. A linear of
the data yields Ω/2π ' 13.78A kHz/V for this configuration, in which the exter-
nal bias magnetic field is directed along the ŷ direction, and the local magnetic
field induced by the radio-frequency signal along x̂.

As we said at the beginning of this section, the value of ωRF chosen it’s res-
onant with the sub-level energy splitting induced by the magnetic field B =

6.1794 Gauss, therefore to measure on-resonance Rabi oscillations we need to
adjust B at this value. In order to perform a preliminary tuning of B we check
that, changing the current sent to the bias coils involved, the radio-frequency
pulse with the chosen A and time length shorter than half a Rabi oscillation,
transfers the maximum number of atoms towards the |mf = −2〉 sub-level. Us-
ing this method we have an accuracy in determiningB of about ∆B ∼ 10 mGauss

at best, which is sufficient to measure several resonant oscillations for an accu-
rate determination of Ω.

Ramsey spectroscopy

We perform time domain Ramsey spectroscopy to tune the value of the mag-
netic field at some desired value. The spectroscopy sequence consists in three
phases: a first (preparation) radio-frequency pulse that creates a symmetrical
superposition around the mf = 0 sub-state, a free evolution time TB in which
each sub-state accumulates a phase under the effect of only the magnetic field,
and a second (recombination) pulse [27]. The final state superposition, and thus
the relative populations pmF , will depend by the different phases acquired dur-
ing TB by each mf sub-state, as shown in left side of 1.9.

The two pulses used in the sequence are equal and defined by the parame-
ters Ω = 2π 60 kHz, ωRF = 2π 4.323 MHz, and a time-length of TP = 2π 18/ωRF
(TP ' 4.16µs). The magnetic field is constant through the whole sequence,
and dependent on the current IB applied to the external Helmholtz coils. Us-
ing TB � TP the final population distribution is more sensitive to the phases
acquired during the free evolution, than to the preparation and recombination
phases, where imperfections in the experimental settings can introduce uncer-
tainty in the determination of B.

As in the case of the Rabi oscillations, to describe the dynamics during the
three phases we numerically integrate Eqs. 1.16, this time leaving B as free
parameter. Then fitting the theoretical evolution to the experimental data we
are able to link IB and B. In the right side of Fig. 1.9 are shown the magnetic
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FIGURE 1.9: a) Ramsey fringes of the F = 2 hyperfine levels in two time win-
dows. Each point with error bars represents the mean values and standard
deviation calculated from five experimental realizations under the same con-
ditions. B is the free parameter to fit the collected data with the theoretical
evolution. The fit result is represented with dashed line. b) Magnetic field B
resulting from fitting the fringes produced by different currents IB , and linear
fit of the data, which slope is B ' 1.727 IB Gauss/A.

fields measured in correspondence of different values of IB . A linear fit of the
data gives a slope B ' 1.7269 IB Gauss/A.

To determineB, we typically set a current value, measure the interferometer
output behaviour, and then we pass to the next value of current. In this way
from one set of measurements to the next we are influenced by the slow drifts
of the environmental magnetic field, which appear as noise in Fig. 1.9. We have
to notice that B is known with a precision of few mGauss if we fit a single set
of data related to one value of current IB , while, as a consequence of the slow
drifts, the uncertainty goes above 10 mGauss in the case of linear fit of the results
which belongs to different interferometers.
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Chapter 2

Quantum state reconstruction

In this chapter I will present our protocol for the reconstruction of the internal
quantum state af an 87Rb atom. Beyond the significant role that this kind of tools
plays in the context of quantum information processing, I will directly make
use of it in the following chapters, to corroborate our experimental results. Un-
like most of the common quantum tomography schemes, our procedure does
not require stringent constraints on the family of measurement to perform on
the unknown state to estimate, but relies on time-resolved measurements of
the atomic population distribution while it dynamically evolves under the in-
fluence of a known driving field. After a general theoretical introduction to the
quantum estimation problem, I will introduce our approach and its connections
to a standard tomography procedure. Then, in the last section, I will present the
experimental results of two particular reconstructions, and how the estimation
accuracy is influenced by the amount of data collected.

The result reported in this chapter were published in [28].

2.1 Quantum state tomography

The goal of quantum state tomography (QST) is to obtain an estimation of an
unknown quantum state, a problem that can be traced back to the dawn of
quantum mechanics, and has become popular in the fields of quantum compu-
tation and quantum information science [7, 29]. Most of the efforts in this two
fields are pointing toward possible implementations of a quantum computer,
and many proposals based on different quantum systems were already devel-
oped. As a consequence of this growing number of “quantum architectures”,
it doesn’t exist a general QST algorithm or method that can be used in all the
cases, but rather many system-specific procedure: optical homodyne tomog-
raphy of electromagnetic fields [30], recently extended to ultracold atoms [31],
“spin tomography” protocol derived in the optical homodyne framework [32],
atomic density matrix characterization [33], Josephson qubit tomography [34],
to name few examples. However, for synthesis duty, hereafter we will restrict
our attention to the atomic case only.
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All the estimation schemes developed can be broken down into the follow-
ing two phases:

(i) Measure of some set of observables a sufficient number of times in order
to determine the statistical properties (mean and standard deviation) of
the related outcomes.

(ii) Search of the state which better reproduce the collected data.

Both this steps can be carried out with a certain degree of freedom. Regard-
ing the first, for example, we may choose between a weak-continuous measure-
ment protocol on a single ensemble of atoms [35], or a series of independent de-
structive perturbations to perform on many identically prepared copies of the
unknown state. Once one of the two schemes is chosen, we can almost freely
decide the set of (eventually continuous) measurements to use, having care to
fulfil the prescription of informationally completeness of the operator basis in
order to have a good estimation of the initial state. This method was stated for
the first time by Fano in the 1950s [36], who introduced the concept of quorum.

From the experimental side, every measurement operator correspond to a
precise subset of physical parameters, like orientation of magnetic fields, laser
light intensity, phase between radio-frequency fields, and so on, thus a consid-
erable amount of work has to be dedicated to reproduce accurately the whole
family of operators.

In the second step, the system state has to be deduced from the set of col-
lected data, which in general is always affected by the noise coming from the
external environment, and by the uncertainties on the experimental parame-
ters. In particular, we have to choose an estimator that, from the statistics of
the input data, gives us an estimation of the unknown state. Many options
have been developed, like simple linear inversion [37], least square minimiza-
tion [38], maximum-likelihood estimation [33], Bayesian mean tomography [39,
40], minimax mean estimation [41], and so on, and so forth. According to the
set of measurements used and the number of data available, one choice is more
suitable than another, but no general formula exist.

Before introducing our proposal for a QST protocol, I will briefly introduce
the simpler tomographic scheme, the linear inversion, and the most widely
used method in the atomic field, i.e. the maximum likelihood estimation.

2.1.1 Linear inversion

Consider the case of a d-dimensional Hilbert space where quantum states, when
described by density matrix operators, are uniquely specified by d2 − 1 param-
eters. One approach which can be adopted to assess these parameters is to
observe the states through quantum measurement operators.
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The most common description of an observable in quantum mechanics is by
means of projection operators, which can be thought as ideal, perfect measure-
ments of a quantum system. Suppose we have, in the experimental setup, M
measurement channels Πj , each one associated to a projector

Πj = |yj〉 〈yj | , j = 1 . . .M. (2.1)

Let us denote with the physical quantities oj the possible measurement out-
comes of the (projective) channels. We can then define the observable O com-
posed by the set {Πj} together with the outcomes oj

O =
M∑
j=1

ojΠj . (2.2)

As an example, these observables can correspond to the magnetic moment pro-
jections along the z direction of a spin-F system, and are detectable by using a
Stern-Gerlach setup identical to our measurement system (see section 1.4.2).

The quantum object we observe is a dilute BEC containingN non-interacting
atoms, formally equivalent to an ensemble of N identical copies of the same
quantum state ρ. The action of O on this ensemble, using the definition 2.2,
gives as result the quantity〈

N∑
i=1

O

〉
= Tr

[
N∑
i=1

Oρ

]
= N

M∑
j=1

ojpj , (2.3)

where pj = Tr [Πj ρ] is the probability of a single atom to be detected in the mea-
surement channel j, and it depends only on the elements of the density matrix
ρ once the measurements Πj are normalized. When the number of atoms N
is statistically relevant, we can approximate the probability pj with the relative
number of atoms fj = nj/N experimentally detected by the j-th channel, and
from the realistic set of equation

fj = Tr [Πjρ] = 〈yj |ρ| yj〉 , j = 1 . . .M, (2.4)

we might be tempted to extract the unknown matrix elements of ρ. Of course,
a first constraint is given by the number of equations and unknown parameters
involved, which imposes to have a number of measurement channels equal to
the unknown parameters in ρ , i.e. M = d2 − 1. However, without any other
constraint, these equations have generally no physical solutions, i.e. they do not
lead to semi-positive definite hermitian operators describing physical states.
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The non-hermitianity of the unknown ρ can be prevented imposing the lin-
ear parametrization

ρ = I/d+
d2−1∑
k=1

skSk, sk ∈ R (2.5)

where Sk are members of an orthonormal Hermitian basis of traceless opera-
tors, and sk the unknown parameters to identify. Furthermore, to be confident
of being able to reconstruct the entire ρ from the measurements, we can use
a more complex set of M = d2 − 1 non-commuting operators {Πj} such that
Πj ≥ 0 (positive operator) and

∑
j Πj = I (informationally complete, or IC,

set). An example of such set for a spin-1/2 system are the Pauli matrices with
the identity S = {σ1, σ2, σ3, I}. The σis correspond to projection of three mu-
tually orthogonal spin components (σx, σy, σz), which are physically detectable
by Stern-Gerlach apparatus oriented along the principal directions.

If we adopt the parametrization in Eq. 2.5, Eq. 2.4 then reads

fj = Tr [Πj ] /d+

d2−1∑
k=1

sk Tr [SkΠj ] . (2.6)

By defining the vector of coefficients f̃j = fj − Tr [Πj ] /d , and the matrix of
entries Π̃jk = Tr [SkΠj ], we can write Eq. 2.6 in vector notation

f̃ = Π̃ · s . (2.7)

Finally, it can be shown that whenever the set {Πj} fulfil the IC requirement
stated above, then the matrix Π̃ is invertible [42], which leads to substitute in
Eq. 2.5 the coefficients sj obtained inverting Eq. 2.7. We then obtain the density
matrix estimation

ρ = I/d+
d2−1∑
k=1

(Π̃−1 · f̃)kSk (2.8)

which is by construction Hermitian and normalized, and in the absence of noise,
semi-positive definite. However, in practice, there is always noise in real mea-
surements, thus the estimation will often leads to not semi-positive definite den-
sity matrices.

2.1.2 Maximum likelihood estimation

Maximum likelihood (ML) is the most commonly used tomography reconstruc-
tion method which avoid estimating non-physical states [33].

Suppose we experimentally implemented a set of M = d2− 1 measurement
apparata corresponding to the IC set of positive operators {Πj} (

∑M
j=1 Πj = 1 ,

Πj ≥ 0 ), and let use the members of this set to compose the observable O as in
Eq. 2.2. In correspondence of the measurement of O on a single atom described
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by the unknown density matrix ρ , one among the M physical apparata clicks.
Repeating the measurement ofO onN identically prepared copies of the atomic
states ρ, we obtain an history of detections in which each output channel j clicks
nj times. Obviously

∑
j nj = N . The probability of the outcome j depends by

the density matrix via the usual relation pi = Tr [Πjρ] , so the overall probability
of a recorded clicks sequence is given by the likelihood functional

L (ρ) =
N !∏
i ni!

∏
j

Tr [Πjρ]nj . (2.9)

Once the occurrences nj are extracted from the history record and substituted
in Eq. 2.9, we have a functional which quantifies the degree of belief in the
hypothesis that the initial state of the system was ρ. The aim of ML estimation
it is to selects that particular ρ for which the likelihood attains its maximum
value according to the recorded data.

As a classical example, we can imagine to toss a coin N times, recording 50

times a head, and 50 times a tail. The likelihood functional in this case is L ∝
(phpt)

50 = p50
h (1− ph)50, which of course is maximum when the probabilities

of tail and head are equal, ph = pt = 0.5 (see Fig. 2.1).

… , 𝑡, 𝑡, ℎ, 𝑡, ℎ, 𝑡, 𝑡, 𝑡, ℎ, 𝑡, ℎ, … ⟹ ℒ ∝ 𝑝ℎ
𝑛ℎ(1 − 𝑝ℎ)𝑛𝑡 

𝑂 

𝑛𝑡 𝑛ℎ 

FIGURE 2.1: Pictorial representation of the maximum likelihood estimation for
the fair coin flip process. The coin “observed” by O gives as result head (h) or
tail (t). Repeating N time the toss, we record a sequence of outcomes in which
h appears nh ' 0.5N times, and the same for t (nt ' 0.5N ). Accordingly, a plot
of the likelihood function respect to ph shows a maximum in correspondence of
ph = 0.5.

In the case of a density matrix, the maximization of L is not straightforward
as for a coin, but many algorithms are available and well documented. Most of
them recasts the maximization in a fixed points problem, and solve the semi-
definite positivity issue by decomposing ρ as ρ = A†A, where A is a lower
triangular matrix.
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2.2 Our proposal

The theoretical frame of the schemes above mentioned are well developed, and
they leave no room for doubt with respect to the capability of reconstructing
unknown states, giving in some cases also an estimation of the reconstruction
error. Despite this reliability, the necessary condition for the set {Πj} to be infor-
mationally complete often prevents a straightforward experimental realization
of the procedure. In fact each projector correspond to a physical measurement
apparatus which has to be appropriately designed, and all together the appa-
ratus must be carefully tuned to fulfill the completeness condition. A further
complication is given by the fact that, in the general case of an N d−level sys-
tem, the density matrix ρ is described by a linear combination of direct products∏N
i=1 s

(i)
k S

(i)
k , thus the number of measurement apparatus needed to determine

the sik parameters exponentially increases as d2N .
Conversely, the tomographic procedure we propose is straightforward, since

all the essential tools used are commonly employed in almost every cold-atoms
experiment. For example in our case it does not require any further improve-
ment of the pre-existing experimental set-up. The idea is simple:

(i) The only observable we measure is the projection of the atomic spin along
the quantization axis, O = Fz . The measure of O is performed after a
controlled evolution of the unknown state to be reconstructed. We repeat
this step changing in an appropriate range the controlled evolution time
τ preceding the measurement of O.

(ii) The dynamics of the same observable is numerically simulated starting
from a randomly chosen initial state. We run an optimization protocol
that minimizes the difference between the simulated and measured data
in such a way that the optimal solution provides the tomographic recon-
struction of the initial state – see also the reconstruction protocols in Refs.
[35] and [38].

Both the data collection step (i), and the data analysis step (ii) are simpler
to perform respect to other solutions of the estimation problem, resulting in a
quick, robust, and experimentally accessible methodology, in which there are
no many theoretical subtleties to take into account.

We now analyse in details the two steps.

Data collection

Hereafter we restrict our attention to states in the 5-fold hyperfine level F =

2. As mentioned above, we want to estimate the unknown density matrix
of a single atom by measuring the projections of the atomic spin along the
quantization axis. The related observable is the traceless operator O = Fz =



2.2. Our proposal 31

∑+2
mF =−2mFΠmF , where ΠmF = |mF 〉 〈mF | , which is physically measured via

a Stern-Gerlach discrimination followed by an absorption imaging sequence.
We recall from section 1.4.2 that, given the destructive nature of the absorption
imaging, in each experimental cycle we can perform only one measurement of
O, and that ideally this couples uniformly to the BEC, which contains up to
N = 105 non-interacting atoms in the same state ρ . It follows that one observa-
tion on one BEC gives as result 5 atomic populations nmF , but it can be thought
as N observations on N identical copies of ρ , i.e. 〈ΠmF 〉BEC = NTr [ΠmF ρ] . In
other words, for a non-interacting BEC, measuring the number of atoms in each
sub-level is equivalent to measuring the probability for each atom to occupy
any of the sub-levels.

Let we suppose that, after an unspecified manipulation, the BEC (not neces-
sarily pure) state is described by the unknown density operator ρ0 ≡ ρ(t = 0),
which we aim to reconstruct. Instead of measuring Fz directly on ρ0 , we use
this state as initial condition for an accurately controlled coherent evolution,
then, after evolving for a time τ , we measure the 5 atomic populations nmF (τ)

and calculate the relative frequencies with which the atoms are observed in the
mF channels, i.e. by the relative populations

fmF (τ) =
nmF (τ)

N
. (2.10)

For “accurately controlled” we mean that we are able to perfectly determine
the full Hamiltonian H of the atoms by experimentally controlling all the pa-
rameters in it. If we also assume that for each experimental cycle we are able
to start exactly from the same ρ0 we want to reconstruct, then we can repeat
many times the process of controlled evolution and measurement, calculating
the mean values fmF (τ) and the standard deviations σmF (τ) of the outcomes.
Furthermore, changing τ from one realization to another we gather the set of
data

{
fmF (τi)

}
, representing the relative frequencies behaviour as a function

of the evolution time, sampled in correspondence of the times τi. An example
of data set recorded is shown in Fig. 2.3. The time window T in which the τi are
chosen, has to be enough wide in order to observe a non trivial dynamics, so it
can be the natural evolution time scale of the system, and the number of data
collected can be just sufficient to resolve such dynamics.

Data analysis

From the theoretical point of view, in the case of unitary evolution, one has
ρ(t) = U(τ)ρ0U(τ)† with U(t) = e−iHt, and H , again, is perfectly known. If the
system is, instead, subjected to a noisy evolution, as it is in most experimental
situation, one has ρ(t) = Φt (ρ0) , with Φt(ρ) being the so-called quantum map,
or quantum channel [43].
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The probability to register an outcome in the channelmF , after the evolution
time τ , and starting from an arbitrary state ρ, is given by the formula

pmF (τ, ρ) = Tr [ΠmF Φτ (ρ) ] (2.11)

Given the numbers of our BEC, we can postulate that the probabilities pmF (τ, ρ0)

associated to the initial unknown ρ0 are well approximated by the relative fre-
quencies with which the atoms are experimentally observed in themF channels,
i.e. pmF (τi, ρ0) ≈ fmF (τi). For any other ρ this condition will not hold. We can
then define an overall error between measurements and theoretical prediction

ε(ρ) =
∑
mF ,i

∥∥∥pmF (τi, ρ)− fmF (τi)
∥∥∥ (2.12)

with ‖·‖ being any mathematical norm.
Our estimation procedures consists in a least square minimization of Eq.

2.12 in order to find the positive matrix which better reproduce the experimen-
tal data. The minimization algorithm we have implemented is based on the
Subplex variant of the Nelder-Mead method [44]. In particular, to take into ac-
count also the experimental uncertainties, we minimize, with respect to ρ, the
following weighted mean squared error function

ε(ρ) =
1

5

∑
mF

√√√√(∑
i

ωmF ,i|fmF ,i − pmF ,i (ρ) |2
)
/
∑
j

ωmF ,i , (2.13)

where pmF ,i (ρ) ≡ pmF (τi, ρ) and analogously is for fmF ,i , while ωmF ,i ≡ 1/σ2
mf

(τi).
The density matrix ρE in correspondence of which ε(ρE) is minimal is our esti-
mation of ρ0. The constraints of Hermitianicity and positiveness of the output
density matrix are inserted in the minimization algorithm as a penalty function
which automatically excludes the non-physical results.

2.2.1 Link with standard estimation methods

We want to show how our strategy can be reconnected to a standard recon-
struction procedure. To simplify the description, we assume that the controlled
dynamics is unitary, thus the evolution of ρ0 reads ρ(t) = U(τ)ρ0U(τ)† . Replac-
ing this relation in Eq. 2.11, and making use of the cyclic invariance of the trace,
we can write

pmF (τ, ρ) = Tr[ΠmF (τ)ρ ], (2.14)

where ΠmF (τ) = U(τ)†ΠmFU(τ) is a projection operator rotated in time.
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Again, approximating pmF (τ, ρ0) ≈ fmF (τ), and gathering data in corre-
spondence of the evolution times {τi}, we get the set of equations

fmF (τi) = Tr [ΠmF (τi)ρ0] , (2.15)

which is formally equivalent to Eq. 2.4. With proper choice of the Hamiltonian
generating the time evolution, and the set of sampling times {τi} , it is possible
to derived a complete set of observable {ΠmF (τi)}which can be used, for exam-
ple, for a maximum-likelihood estimation of ρ0. Due to this equivalence, also
our method suffers the problem of exponential growth of the complexity with
the system size, however the efforts could be scaled back by the fact that the
attention is now focused on the engineering of a dynamical evolution, instead
of many measurement apparatus.

2.3 Experimental Results

To test the scheme proposed here, we have prepared, by applying known Hamil-
tonian evolutions, a set of states to be estimated. Since the preparation can be
affected by experimental errors, the real states can be different from the ex-
pected.

The central and indispensable assumption of the reconstruction procedure,
is the capability to accurately control the coherent dynamics of the atomic sys-
tem. For this purpose it is necessary to tune all the experimentally accessi-
ble parameters in the Hamiltonian H describing the atoms, which is given,
in presence of an uniform magnetic field and a radio-frequency driving, by
Eq. 1.14. Let us recall that the parameters we are able to control in H are:
the strength of Ω by changing the amplitude A of the radio-frequency signal
s(t) = A cos(ωRF t) applied to a chip wire, the radio-frequency ωRF , and the
magnetic field B by means of the current IB flowing in a couple of external
Helmholtz coils. The radio-frequency ωRF is directly selectable on the function
generator we use to produce s(t), while Ω and B has to be tuned following the
procedure detailed in section 1.4.3. Once that Ω, ωRF , and B are specified, then
H is uniquely identified. For consistency, in all the reconstruction performed
we decided to use the same values for these parameters, i.e. Ω = 2π 60 kHz ,
ωRF = 2π 4.323 MHz , and B = 6.1794 Gauss . Note that the values of B

and ωRF chosen involves resonant oscillation, but until it is possible to observe
a nontrivial dynamics, also a non vanishing detuning does not affect the recon-
struction procedure. In the following we will refer to the radio-frequency pulse
determined by the chosen parameters as “reconstruction pulse”.

The evolution of the atomic density matrix is described by the dynamical
equations 1.16, which includes the presence of pure dephasing on the non-
diagonal terms of H . In particular, integrating this set of differential equations
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over time with the initial condition ρ(t = 0) = ρ , using the above fixed set of
parameter {ωRF ,Ω,B} and an effective dephasing rate γ = 2π 200 Hz, we obtain
the quantum map ρ(t) = Φt(ρ) which can be substituted in Eq. 2.11 to simulate
the probabilities behaviour.

The tests was performed as follows. In each experimental cycle, by using
a carefully designed control evolution, we prepare the BEC in a desired target
state described by the density operator ρ0 (the next chapter will be devoted
to the arbitrary states preparation). This preparation is carried out by driving
the system dynamics with a properly engineered radio-frequency pulse, under
the same constraints of B and Ω used for the reconstruction pulse. The prepa-
ration evolution is immediately followed by the reconstruction pulse, which
drives the system dynamics for a time τi typically in the range 0µs ≤ τi ≤ T ,
where T ∼ 11µs is comparable with the system natural evolution timescale
(T ∼ π/Ω)1. In some cases, for a more detailed analysis of the states reconstruc-
tion performance, we used evolution time until T = 100µs. We repeated this
experimental sequence by changing τi from one realization to the next. The set
of data collected was then analysed with the least square minimization algo-
rithm implemented, obtaining the estimation ρE and the residual error ε(ρE)

between the measurements and reconstructed dynamics. Finally we use our
knowledge on the fiducial density matrix ρ0 to compute the Uhlmann fidelity
F(ρ0, ρE) [45], in order to a posteriori verify the goodness of the reconstruction.
Let us stress that no a priori knowledge of the initial state has been used for the
tomographic reconstruction. However, this information has been exploited to
calculate the Uhlmann fidelity.

We reconstructed several states, some of them obtained after a long prepa-
ration and thus markedly non-pure, some other having random density matrix
elements, always obtaining reconstruction fidelities F ≥ 0.95. In the follow-
ing sections we will show the results of two particular cases, and then we will
analyse the reconstruction performance as a function of the amount of collected
data.

Reconstruction of the pure state |F,mF 〉 = |2,+2〉

The first example we show is the reconstruction of the BEC state right after
the condensation, i.e. the pure state |F,mF 〉 = |2,+2〉. In the right part of
Fig. 2.2 we represent by a bar plot the density matrix ρ0 of this state. The
mean values (standard deviations) of the population distribution measured as
a function of τj are represented by points (error bars) in fig 2.3. We sampled the
dynamics in a time window approximately 11.5µs long, every five oscillations
of the radio-frequency field, i.e. τj = j 5/4.323 MHz ∼ 1.15µs. The estimated

1Note that, representing a state on a multi-dimensional Bloch sphere, given the experimental
parameters used here, the controlled evolution of the dynamics is almost equivalent to a rotation
about the “x” axis by an angle ΩT = 1.38π.
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density matrix ρE is represented in the left part of Fig. 2.2, and its fidelity with
ρ0 is F(ρ0, ρE) = 0.98, while the residual error between experimental data and
reconstructed dynamics is ε(ρE) = 8.5 × 10−3. In Fig. 2.3 we also shown the
simulated dynamics with initial condition ρE on the left part, ρ0 on the right,
both well reproducing the experimental data.

We note that in principle this state it can be reconstructed by only one mea-
surement at τ = 0, with fidelity F = 1. Thus it’s here clear that, since the
algorithm try to find a compromise reproducing the behaviour of the whole
data set, which is affected by the unavoidable experimental noise, then also the
initial point will suffer of this approximation.
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FIGURE 2.2: Pure state mF = +2: Pictorial representation of the reconstructed
density matrix ρE (a) and the theoretically expected one ρ0 (b), with the real
(blue) and the imaginary (red) components. The Uhlmann fidelity F(ρ0, ρE)
between ρ0 and ρE in is F = 0.98.

Reconstruction of a coherent superposition

The second example we show is the reconstruction of a coherent superposition,
obtained after a π/2 rotation from the pure state |F,mF 〉 = |2,+2〉. In particular
this state, whose correspondent density matrix ρ0 is represented in Fig. 2.4,
is demonstrated to maximize the fringe visibility of a multi-state interferometer
[46], and it is obtained by driving the dynamics with a resonant radio-frequency
signal for a time Ω τ = π/2.

The estimated density operator ρE is represented in Fig. 2.4, and its fidelity
with ρ0 is a satisfactory F = 0.97. Figure 2.5 shows the set of experimental
data used for the reconstruction, recorded with the same time rate of the pre-
vious example. In this case the residual error between reconstructed dynamics
(shown in the left part of Fig. 2.5) and experimental data is ε(ρE) = 58.4× 10−3.
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FIGURE 2.3: Time evolution of the atomic populations (points) starting from
the mF = +2 pure state as a function of the evolution time τ . Each point is
recorded at τj = 2π j/ωRF , and represents the mean values and standard devi-
ation calculated from five experimental realizations under the same conditions.
The superimposed line in panel (a) is the reconstructed evolution with the esti-
mated initial condition ρE minimizing the deviation ε(ρ) between experimental
and theoretical data. In this case ε(ρE) = 8.5 × 10−3. In panel (b) the same
data are superimposed to the theoretical evolution starting from the pure state
mF = +2. In both the cases the agreement is highly satisfactory.

Observing the superposition of the experimental data with the theoretical be-
haviour starting from ρ0 (right part of Fig. 2.5), we note a mismatch between
this ideal evolution and experimental outcomes higher than in the case of recon-
structed dynamics. Indeed, calculating the error function in correspondence of
ρ0 we get ε(ρ0) = 64× 10−3. In this case the algorithm is probably estimating a
state which is closer to the real state of the atoms than it is ρ0.

2.3.1 Reconstruction error convergence

In the above examples we estimated the unknown density matrices ρ0 by feed-
ing the reconstruction algorithm with set of data obtained from ns = 10 mea-
surements (see Fig. 2.3 and 2.5), uniformly covering a time window T = 11.5µs

long. Each measurement record consists of 5 relative populations, so, consider-
ing the normalization constraints, we effectively have 4 × ns = 40 data points
available. The unknown parameters to estimate are d2 − 1 = 24, so one might
think that the reconstruction would still be possible using less data, however
we stress that the set of measurement operators used is not informationally
complete, so it is not possible to argue the minimal ns on the bases of only the
dimension of the space of parameter to estimate. We then decided to directly
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FIGURE 2.4: Coherent superposition obtained by a π/2 rotation of the pure state
mF = +2: a) reconstructed density matrix ρE . b) theoretically expected density
matrix ρ0. We represent in blue (red) the real (imaginary) components. The
Uhlmann fidelity F(ρ0, ρE) is F = 0.97.
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FIGURE 2.5: Time evolution of the atomic populations (points) starting from the
coherent superposition obtained by a π/2 rotation of the pure state mF = +2,
as a function of the evolution time τ . Each point is obtained with the same
prescription of the previous data set (see Fig. 2.3). We superimposed to the ex-
perimental data the reconstructed evolution with the estimated initial condition
ρE (a), and the theoretical evolution starting from the expected state ρ0. The re-
construction error is ε(ρE) = 64 × 10−3. Also here note the good agreement in
both the cases.

asses the reconstruction convergence evaluating the fidelity behaviour with re-
spect to ns.
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For our analysis, we concentrate on the estimation of the coherent superpo-
sition in the latter example, collecting a total of 88 samples in a time windows
100µs long, with the same sampling rate τj = j 5/4.323 MHz adopted before.
We then reconstructed ρ0 by using a variable number of sequential measure-
ments, starting from nS = 2 to nS = 88 . In each case we evaluated the fidelity
F(ρ0, ρE), and the results are shown in Fig. 2.6.
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FIGURE 2.6: FidelityF(ρ0, ρE) between the reconstructed ρE and expected den-
sity matrix ρ0 as a function of the number of samples collected ns.

From the plot is clear that the fidelity behaviour can be broken down in
three regime: For nS ≤ 6 the reconstruction outcomes are erratic, due to the fact
that 4nS ≤ 24. For 7 ≤ ns . 55 with the increasing number of data F also
increases, probably because the set of measurements involved is not complete,
but the volume of the space outside their support becomes smaller and smaller.
Finally, for nS & 55 the noise in the measurements record start to dominate,
making the initial prediction more difficult.

To verify the goodness of the reconstruction we a posteriori calculate the fi-
delity F exploiting our knowledge of ρ0. However this information is not avail-
able when the state to estimate is really unknown. The only output informations
given by our algorithm are the estimated ρE , and the error ε(ρE) which express
the accuracy of the reconstruction of the dynamics. To quantify our degree of
believe on the estimation based on this last information, we evaluate the link
between F and ε(ρE). In particular, from the same data set made of 88 records
of the previous analysis, we randomly selected groups of ns non-consecutive
measurement, with ns ranging from 2 to 30. For each ns we repeated 100 times
the random extraction, using each group of measurements obtained to perform
the reconstruction. In left side of Fig. 2.7 we show the fidelity between the re-
constructed ρE and the expected ρ0 as a function of ε(ρE), obtained from each
of the 100 sub-group of measurements, selecting some particular ns.
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FIGURE 2.7: Left panel: Fidelity F(ρ0, ρE) calculated by sampling the popula-
tions evolution nS times, at random times in the time windows 0 ÷ 88µs, as
a function of the reconstruction error ε(ρE). For each nS we perform 100 ran-
dom extraction of the sampling time, and report the calculated fidelities in the
graph. Right panel: For each group of 100 fidelities we report the mean val-
ues as a function of the of the related reconstruction errors mean values. The
number of nS collected ranges from 2 to 30.

We can observe two features: i) A nearly linear dependence of the fidelity
on the error. ii) A reduction of the spread of the results in proximity of the
maximum fidelity. These two factors clearly show that the uncertainty on the
estimated density matrix decreases with the discrepancy between the experi-
mental data and theoretical prediction. This behaviour is even clearer if we plot
the mean fidelity Fav(ρ0, ρE) with respect to the mean error εav(ρE) calculated
for each ns subset (left side of Fig. 2.7).

2.4 Conclusions and outlook

In conclusion, we have experimentally demonstrated a tomographic reconstruc-
tion procedure that relies on data collected during the evolution of an unknown
quantum state. The crucial ingredient of our proposal is the ability to carefully
control the system dynamics according to a precisely tuned Hamiltonian, but
no constraints are given on the set of measurement to perform, unlike most of
the common schemes which require to implement informationally complete set
of operators. The advantages of this protocol are the use of quite conventional
experimental resources (a Stern-Gerlach discrimination followed by an absorp-
tion imaging process), and the simplicity of the post-processing procedure. Fur-
thermore, we have shown how the reconstruction quality behave as a function
of the amount of collected data, and how the accuracy of the reproduction of
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the population dynamics is a signature of an high fidelity between the expected
and the estimated states.

Finally, this technique can be also exploited to get further information on the
system evolution, e.g. estimate the amount of dephasing noise in the system
dynamics resulting from its coupling to the external environment. Indeed the
proposed scheme realizes quantum state tomography but could readily be mod-
ified to perform quantum process tomography by assuming complete knowl-
edge of the input states, hence providing a very feasible and useful tool for
several quantum technological applications.
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Chapter 3

Optimal preparation of quantum
states

In this chapter I report on experimental results in which the internal states of
a 87Rb BEC are coherently manipulated in order to produce arbitrary superpo-
sitions. The manipulation is provided by a suitable designed radio-frequency
signal produced by an optimization algorithm called CRAB. Once the manipu-
lation time T and all the relevant experimental constraints are fixed, we are able
to prepare, with low error, states which are not encountered during standard
Rabi oscillations in the same time T, under the same constraints. We analyse
the time limit of our scheme, showing that the error in the states preparation
it is proportional to T, until it saturates to a minimum close to 0. This makes
our protocol a useful tool to arbitrary initialize an atomic system for further
manipulation, before unwanted noise sources destroy the atomic coherences.

Some of the results shown in this chapter were published in [47].

3.1 Arbitrary state preparation and optimal control

The ability to create and manipulate coherent superpositions of internal sub-
states is important in most quantum technological applications. For example,
in the field of precision gravity measurement using atom interferometry. To
measure the phase shifts induced on a BEC when it falls in the Earth gravita-
tional field, the effects of the residual magnetic couplings has to be minimized.
One solution is to populate the non-magnetic sub-levels |F,mF = 0〉, perturbed
only by the quadratic Zeeman effect [48]. The higher will be the transfer in this
states, the greater will be the S/N ratio of the interferometer. One more example
is the coherent splitting operation in a Ramsey interferometer [27]. As seen in
section 1.4.3, a typical experimental sequence starts with the preparation of the
atoms in a given superposition by a splitting pulse, then each mF component
accumulates a phase according to the formula ∆φ ∝ mF∆T B, where ∆T is the
accumulation time and B the magnetic field, finally the phases are mapped in
a population distribution by a second recombination pulse. These pulses needs
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to be properly engineered to maximize the sensitivity to the phase changes dur-
ing the accumulation time, maintaining a relative robustness to the unwanted
experimental parameters fluctuations. Finally, any quantum information pro-
cess require a proper initialization of the input state. In the hyperfine doublet
F = 1, 2, usually some particular Zeeman sub-levels are labelled to represent
states of a qubit, which are processed by a set of quantum gates [29]. The accu-
racy of the gate manipulation, greatly depends by the ability to carefully pre-
pare the gate input, i.e. the sub-levels superposition, with high fidelity.

All the previous examples require to fulfil some fidelity criteria, which often
means, for quantum systems like BECs, that dephasing effects has to be min-
imized. In practice, the natural environment of the BEC has properties which
continuously fluctuates in time, and some of these fluctuations are noise sources
coupled to the quantum system. Typical sources of noise are magnetic field fluc-
tuations, electromagnetic disturbances, stray light, or atomic density variations.
The dephasing resulting from these fluctuations can be homogeneous, when the
coherences are lost internally and equally for all the atoms, or it can be inhomo-
geneous, when the atoms dephase one with respect to each other while keeping
the internal coherences [49]. Various technics were developed to avoid both
this deleterious phenomena. In the case of the homogeneous dephasing the so-
lutions ranges from passive decoupling of the BEC from the environment, to
the active control of wavefuntion evolution [50] (and citation inside), while for
the inhomogeneous dephasing the spin echo technic is widely used since a long
time in several applications [51–53].

In all these contexts, the quantum optimal control strategies can be exploited
to transform an atomic system with high fidelity from an experimentally readily
prepared initial condition to a desired state which satisfy our demands and
that can be further manipulated [54–56]. Moreover they may specifically take
account of both single atoms initial condition and environment fluctuations, in
order to have a manipulation less sensible to such variations. In the same way,
by speeding up the state preparation it is possible to perform coherent tasks
before inhomogeneous dephasing processes unavoidably occur [57], and often
optimal control allows one to reach the ultimate bound imposed by quantum
mechanics, the so-called quantum speed limit (QSL) [58–61]. Optimal control
techniques have been successfully implemented in several physical systems,
ranging from cold atoms [62] to molecules [63], and recently they have been
developed and successfully applied to many-body quantum systems [64–69].
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3.2 Optimal control mathematical framework

Let us describe the initial state of a system by the density matrix ρ(t)|t=0 = ρ0,
and its time evolution by the dynamical equation

i
d

dt
ρ(t) = H [t, ρ(t),Γ(t)] , (3.1)

where H is a general evolution super-operator. We explicit the dependency of
H by a vector of arbitrary dimension Γ(t) called control field which contains the
experimental parameter that can be tuned in time (we omit the vector notation
to avoid heavy equations).

Given a particular control field Γ(t), we let the system evolve for a time T

to the state described by ρ(T), and, according to our needs, we define a success
score of Γ by means of a cost functional J (ρ,Γ). Generally J may contain many
terms that reflect different aspects of the evolution (although the form of some
fundamental terms depends by the optimization algorithm in use), so it can be
written as

J (ρ,Γ) =
∑
i

fi(ρ,Γ). (3.2)

In the simplest case, we can score Γ only by the mismatch between the tar-
get density matrix ρtrg and ρ(T ), for example by using a trace distance, i.e.

f1(ρ(T ), ρtrg) = Tr
[
(ρ(T ), ρtrg)

2
]
. If we have also experimental or evolution’s

constraints, we can properly include them in J . For example, if the parameters
are limited in amplitude or power, we introduce a term like f2 =

∫ T
0 ‖Γ(t)‖2dt,

or if we want to avoid part of the Hilbert space during the evolution, we can
add a term like f3 =

∫ T
0 ‖PSρ(t)PS‖dt, where PS is a projection operator in the

subspace we want to avoid.
Whatever are our goals and constraints, the optimization problem lies in

finding the time development of the experimental parameters Γ(t) which mini-
mizes the cost function J (ρ,Γ). It doesn’t exist a general analytical solution for
this problem, so different approaches has been developed for particular cases
[70]. In most of the situation one has to opt for a numerical algorithm, which
can be implemented with a complexity closely related to the particular system
of interest. For our optimization we used one of this numerical approaches,
called "Chopped RAndom Bases", or CRAB [64].

CRAB

As many optimization algorithms CRAB is an iterative optimizer. Exploiting
the whole knowledge of the system that we have, we initially fix the start-
ing behaviour of the experimental parameters forming the control field, writ-
ing it as Γ0(t), then the algorithm searches for the best correction of the form
Γ(t) = Γ0(t) · g(t) which minimizes the cost function J (ρ,Γ). It repeats this
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search a variable number of times, until J decreases below a certain threshold.
In the particular case of CRAB the correction function g(t) is expanded using a
finite, or "chopped", base {ĝl(t,Ωl)}l=0...N whose elements depends by the set
of parameter {Ωl}l=0...N . Note that in principle every base is equally appropri-
ate, for example one can simply use ĝl(t,Ωl) = eiΩlt. The randomicity enters
in basis by the parameters Ωl, which are updated at each run of the algorithm
Ωl → Ωk

l = Ωl(1 + rkl ), where rkl are random numbers. Note that this randomly
chosen basis element may not be orthogonal. Moreover, also the interval of ran-
domicity of rkl , as much as the initial choice of the parameter Ωk

l , often derives
from the knowledge of the system properties.

In the end, the cost function is remapped asJ (ρ, {akl }), and the optimization
problem in the search of the set of coefficients

{
akl
}

that minimizes J , given the
random bases

{
ĝl(t,Ω

k
l )
}

. The optimization of the coefficients can be performed
by using any desired method (in particular we use the subplex, a variant of the
Nelder–Mead direct search method), and after a given number of iteration we
keep the best result has our solution.

3.3 Model Hamiltonian

In order to apply the optimal control theory to our system, we need to identify
the set of parameter that can be tuned during the evolution, i.e. the entries of
the control field Γ(t).

For a direct experimental application of the optimization protocol, we re-
strict our attention to the ground-state hyperfine level F = 2, which is de-
scribed, in presence of an uniform magnetic field B and a radio-frequency driv-
ing potential V = Ω/2 cos(ωRF t), by the Hamiltonian H in Eq. 1.14. This
Hamiltonian determines the dynamics of the atoms by the Eq. 1.16, which
is a set of differential equations unequivocally identified by the parameters
Γ = {B, ωRF ,Ω}. We can thus implement the optimization protocol by control-
ling this three quantities, or a subset, obviously taking into account our ability
to manipulate them individually. In particular:

• The magnetic field B is produced by external coils. We can carefully con-
trol its value in the range B = 0.2 ÷ 15 Gauss along the three principal
directions, but the time scale of the control is of the order of hundreds of
µs if we want to avoid inductive reactions by the coils.

• The RF driving potential is the near field radiated by a U-shaped wire
on the chip which we call “antenna” (see section 1.2.1). The signal ap-
plied to the antenna is produced by a function generator which has ar-
bitrary waveform production capability at a maximum sampling rate of
250 MSa/s (Agilent 33522B). It follows that:
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– The Rabi frequency Ω depends on the amplitude of the signal applied
to the chip’s antenna (see section 1.4.3), and on the alignment be-
tween the quantization axis (imposed by the external magnetic field),
and the RF field polarization on the atoms. Its maximum value in the
actual experimental setup is Ω ∼ 100 kHz. Since the impedance of the
antenna on the chip has a low reactive part in the frequency range of
interest, we are able to control Ω in a sub-µs time-scale.

– The radio-frequency νRF = ωRF /2π can be modulated arbitrarily in
a range of several hundreds of kHz around the working frequency,
without the radiation efficiency of the antenna is substantially af-
fected.

Moreover, we note that B and ωRF enters in H by the diagonal elements
δmF (B, ωRF ) = ωmF (B)−mF ωRF , ~ωmF (B) being the energy of themF (F = 2)
magnetic sub-level (for a compact notation we omit subscript related to the
hyperfine level). Thus, if we neglect the residual splitting coming from the
quadratic Zeeman effect, from variations of the magnetic field ∆B we can ob-
tain the same effects of opposite sign variations of the radio-frequency −∆νRF ,
i.e. ∆δn = 0⇔ µBgF ∆B/~ = −2π ∆νRF .
Taking account of all this factors, we choose to modulate in time only the radio-
frequency νRF → νRF (t) , even if other results not shown here demonstrates
that we are perfectly able to control simultaneously νRF and Ω but the improve-
ments in terms of preparation accuracy are not experimentally relevant. The
depth of modulation is set to ∆νRF = 1.3 MHz around the central frequency ν0

arbitrarily set to ν0 = 4.323 MHz. For every optimization we will use one con-
stant value of magnetic field and Rabi frequency of the radio-frequency driving,
in particular we set Ω = 2π 60 kHz, and B = 6.1794 Gauss. Note that the
values of ν0 and B are chosen in order to have resonant coupling between sub-
level energy splitting and the radio-frequency driving (except for the residual
quadratic detunings δ±2 = −2π 11.0 kHz , δ±1 = −2π 2.7 kHz , δ0 = 0 ).

3.3.1 Radio-frequency modulation and cost function

To correctly describe the system dynamics in presence of the time modulation
of the angular-frequency ωRF (t) = 2π νRF (t), the Hamiltonian in Eq. 1.14 has
to be modified, replacing ωRF with the time derivative of the field phase f(t) =

∂t (t ωRF (t)) (see Appendix A for details).
Within the CRAB picture, we decided to expand f(t) in the standard Fourier
basis. So we define

Γ(t) = f(t) = f0 Re [g(t)]

g(t) = 1 + α
n∑

l=−n
al exp(i 2π νl t)

, (3.3)
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where νl = l/T, T the time duration of the modulation, i.e. the optimal pulse
length, n being the number of harmonics set to 7, {al}l=−7...7 a complex vector
normalized to one, and α set the amplitude of the frequency modulation. In
order to have ∆ωRF = 2π 1.3 MHz we set α = 0.15. Finally f0 ≡ 2π ν0 =

2π 4.323 MHz.
As mentioned in the previous paragraph, the cost function can contain many

terms, depending on the features of the evolution in which we are interested. In
our case, for a straightforward experimental proof of the optimal pulses output,
we have decided to prepare states with defined occupation probabilities. The
choice is motivated by the fact that we probe the atoms using a Stern-Gerlach
discrimination followed by an absorption imaging sequence, so we can directly
measure the population distribution between the Zeeman sub-states of a coher-
ent superposition. This population distribution reflect the probability of occu-
pying the sub-states, but won’t tell us anything about relative phases. In other
words, when a single particle state is described by a density matrix ρ we can
directly measure the diagonal elements ρnn, but not the coherences ρnm . What
follows is a cost function of this form

J =
1

2

∑
n

|ρ(T)nn − [ρtrg]nn| , (3.4)

where [ρtrg]nn are the target relative populations we want to achieve, ρ(T)nn
the relative populations at the end of the pulse manipulation, and the sum runs
over the non-zero populated target sub–levels. We recall that the initial state of
the atomic system is given by all the atoms occupying the mF = +2 sub-level,
i.e. ρ1,1(t = 0) = 1 (see section 1.3).

3.4 State preparation results

To test the applicability of the optimal control algorithm CRAB to our atomic
system, we decided to produce and experimentally implement on our BEC sev-
eral control pulses to create arbitrary internal state super-positions which are
either impossible to be achieved when the evolution is driven by constant pa-
rameters Hamiltonians, or, eventually, they are encountered only after long evo-
lution time.

3.4.1 Population distribution preparation

We initially focus on the preparation of a series of target states ρtrg characterized
by having a defined population distribution among the mF sub-levels, so as to
directly verify the algorithm output in the experiment, as discussed in section
3.3.1. These states are labelled as A, . . . , I in Tab. 3.1, where we list them
together with their target populations. They cover a wide portion of the Hilbert
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TABLE 3.1: Test states prepared, labelled as A, . . . ,I. For each state, in the up-
per line are reported the target relative populations ρnn, in the lower line the
mean values with errors of the experimentally measured populations. For all
the states, the preparation pulse length is set to 100 µs. Last two columns are the
theoretical (εT ) and experimental (εE) error functions in the state preparation.

State ρ11 ρ22 ρ33 ρ44 ρ55 JTh JE

A
1/2 0 0 0 1/2

0.04 0.07(1)
0.54(1) 0.01(1) 0.02(1) 0.03(1) 0.40(1)

B
1/2 0 0 1/2 0

0.06 0.02(1)
0.47(1) 0.01(1) 0.01(1) 0.50(1) 0.01(1)

C
0 1/2 0 1/2 0

0.02 0.04(1)
0.01(1) 0.53(1) 0.02(1) 0.43(1) 0.01(1)

D
1/2 1/2 0 0 0

0.01 0.02(1)
0.50(2) 0.47(2) 0.03(1) 0(0) 0(0)

E
0 1/3 1/3 1/3 0

0.04 0.03(1)
0.01(1) 0.32(1) 0.34(2) 0.32(2) 0.01(1)

F
1/5 1/5 1/5 1/5 1/5

0.03 0.03(1)
0.19(1) 0.2(1) 0.2(1) 0.22(1) 0.19(2)

G
0 1 0 0 0

0.03 0.04(1)
0.03(1) 0.92(1) 0.04(1) 0.01(1) 0(0)

H
0 0 0 1 0

0.02 0.03(1)
0.01(1) 0.01(1) 0.03(2) 0.93(2) 0.02(1)

I
0 0 1 0 0

0.07 0.07(1)
0.02(1) 0.01(1) 0.86(1) 0.09(1) 0.02(1)

space, i.e. they have varying distances from the initial ρ0. A measure of the
distance between ρtrg and ρ0 is given by the Bures (or quantum) angle [45],
defined as

LQF (ρ0, ρtrg) = arcos

(√
F(ρ0, ρtrg)

)
, (3.5)

where F(ρ0, ρtrg) = Tr

√
ρ

1/2
0 ρT ρ

1/2
0 is the Uhlmann fidelity. The Bures angle

correspond to a geodesic arch in the Hilbert space between the initial and the
final states, and for the super-positions associated to the populations in Tab. 3.1
it ranges from LQF = π/2 (orthogonal super-position), to LQF = 0.18π.

We initially set the evolution time T = 100µs for all the states A,. . .,I. Gen-
erally, to choose an evolution time one as to consider a series of inherent limi-
tations which impose some bounds on the feasible range of choice, and affect
the ability to control a system dynamics. In our case, for example, a constraint
is given by the fixed structure of the Hamiltonian, which restrict the number
of admissible path in the Hilbert space. This problem is also connected to the
Quantum Speed Limit, or QSL, arising from the fact that the physical available
resources are finite (in our case the Rabi frequency strength and the range of
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radio-frequency modulation, as explained in section 3.3), therefore is impossi-
ble to evolve at an arbitrary high speed in the Hilbert space. Finally, one has
to face with the unavoidable decoherence sources, and with the instabilities of
the experimental parameter, limiting the maximum exploitable evolution time.
In practice, all these limits imply to find trade-off condition between the final
experimental error in the state preparation, and the minimal evolution time to
get in close proximity of the target state. Our initial choice has been taken con-
sidering the typical dephasing rates affecting our experiment (between 100 Hz

and 250 Hz), and the maximum Rabi frequencies attainable with our supply.
Once that all the constraints are included in the theoretical model, for every

admissible population distribution, the algorithm produces an optimized radio-
frequency modulation ωRF (t) by minimizing the cost function J given by Eq.
3.4. We define the value of J resulting from the optimization theoretical state
preparation error, and we write it as JTh. In Tab. 3.1 we report the values of
JTh resulting from the optimization when we include in the model an effective
dephasing rate γ = 2π 200 Hz.

Each theoretical pulse is finally translated in the frequency modulated volt-
age signal to apply at the chip antenna for the manipulation of the atoms. By
means of the procedure detailed in section 1.4.3, the signal amplitude was set
to produce the prefixed Rabi coupling Ω = 2π 60 kHz.

The experimental tests were performed as in the following. We start with the
BEC in the initial pure state |mF = +2〉, magnetically trapped by the chip. By
turning off the trap we let the atoms free-fall and expand in the homogeneous
field created with the external Helmholtz coils, set, in the limit of the experi-
mental uncertainty, to the chosen value B = 6.1794 Gauss (see section 1.4.3).
After 700µs of free expansion we apply the manipulation signal to the chip,
and, after further 5 ms, we turn on the inhomogeneous magnetic field for the
Stern-Gerlach deflection for a total time of 10 ms, after that we record the five
clouds profiles with the absorption imaging sequence, obtaining the relative
populations pmF (T) in each mF sub-level. As already done for the theoretical
preparation, we can define an experimental state preparation error JE , substituting
pmF (T) to ρ(T)nn in Eq. 3.4. For every state we repeat ten times the prepara-
tion procedure under the same experimental condition, and the JE and pop-
ulation distributions reported in Tab. 3.1 are the corresponding mean values
and standard deviations of the results. Note the excellent agreement between
experimental data and theoretical predictions.

3.4.2 Coherence preparation

To show that we are also able to produce the coherence terms between the
mF sub-states, and not only defined population distributions, we prepared the
higher and lower energies eigenstates of the Hamiltonian H̃ which results from
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applying to the atoms a resonant radio-frequency driving under the same con-
straints for the magnetic field and Rabi frequency used in the preparation phase,
i.e. B = 6.1794 Gauss, Ω = 2π 60 kHz, and ωRF = 2π 4.323 MHz. We recall that,
as shown in section 1.4.3, in presence of such driving the atoms coherently oscil-
lates between all the sub-levels, unless the initial state from were the oscillations
would start is an eigenstate of H̃ . Unlike previously done, for this preparations
we used a manipulation time T = 20µs . The cost function to use in this case
has to take account of the coherences, so we used the infidelity function given
by

J = 1− F (ρ(T ), ρtrg), (3.6)

and, using as additional constraint in the optimization algorithm, we forced the
final value of the optimal pulse radio-frequency to be ωRF (T ) = 2π 4.323 MHz.

Also in this case we followed the same experimental sequence outlined
above, and, to check if the preparation was successfully, we observed the ab-
sence of any oscillations by driving the atoms with the resonant radio-frequency
field immediately after the optimal pulse manipulation. In Fig. 3.1 we show the
five relative population behaviour during the preparation, and during the sub-
sequent presence of the resonant driving.
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FIGURE 3.1: Preparation of the lower (right side) and higher (right side) eigen-
states of the Hamiltonian H̃ describing a resonant radio-frequency coupling at
Ω = 2π 60 kHz, and ωRF = 2π 4.323 MHz (B = 6.1794 Gauss). The grey area
shows the population behaviour of the five sub-levels during the preparation
phase, which follows (white area) the radio-frequency driving corresponding to
H̃ . We report both theory (lines) and experimental measurements (dots). Each
set of five measured populations represents the mean values and standard de-
viation calculated from the outcome of seven different realizations under the
same experimental conditions.

Of course the absence of evolution can happen only if the relative phases of
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all sub-levels are correctly realized, proving the full capability of our optimal
preparation scheme.

3.4.3 State tomography

We shown above the results about the preparation of states having a defined
population distribution among the mF sub-levels, and those about the prepara-
tion of two eigenstate of the Hamiltonian related to a resonant constant radio-
frequency driving. In the first case, we used the simple cost function form given
in Eq. 3.4. Note that the coherence terms are not involved in this equation, so
they can assume any allowed value at the end of an optimized preparation.
Nonetheless their correct evolution respect to the theoretical prediction is cru-
cial to obtain the expected results. For this reason, given the satisfactory match
between measured and expected population distribution, we can be confident
that also the final coherences are close to what the theory provides. However,
we can quantitatively assess their preparation by using the state reconstruction
scheme described in chapter 2.

We focus on the state labelled as A in Tab. 3.1, having a 50% population
distribution between the mF = ±2 sub-levels.
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FIGURE 3.2: Representation of the reconstructed density matrix ρexp (a) and
theoretically expected one ρ(T ) (b), related to the state A. We show in blue (red)
the real (imaginary) components. The Uhlmann fidelity between ρ(T ) and ρexp
in is F = 0.93.

For the reconstruction we used a tomography pulse having the same am-
plitude of the preparation pulse (Ω = 2π 60 kHz ), resonant with the sub-levels
splitting (ωRF = 2π 4.323 MHz ), and directly following the preparation phase,
without any intermediate delay. By measuring the population evolution in a
time window 10.4µs long, each τ = 10π /ωRF ' 1.15µs, we obtain an estimate
of the experimental density matrix ρexp, shown in the left side of Fig. 3.2. We
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evaluate the overlap between ρexp and ρ(T) (right side of Fig. 3.2) calculating
the Uhlmann fidelity, which turn out to be a satisfactory F = 0.93.

In figure 3.3 we also show the theoretical (lines) and experimental (dots)
dynamical evolution of the atomic populations in the two sub–levels mF = ±2

together with the calculated values of J during the application of the 100µs

long preparation pulse. Also in this case, the almost perfect correspondence
between theory and experiment shows that the relative phases of the sub–levels
are well under control at any time during the evolution.
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FIGURE 3.3: Theoretical (lines) and experimental (dots) dynamical evolution of
the population of the sub–levels mF = +2 (red) and mF = −2 (blue), and of
the calculated cost function J (black) during the application of the 100 µs long
optimal pulse which produces the state A. To better reproduce the experimental
points, the theoretical evolution includes a dephasing rate of 200 Hz and a mag-
netic field mismatch with respect to the theoretical value 6.1794 Gauss, caused
by long term drifts. In the data reported in Table 3.1 the output of the prepa-
ration pulse is recorded right after the magnetic field calibration, making those
results less affected by such fluctuations.

Finally, we note that the Hamiltonian H̃ of which we produced the eigen-
states is identified by the same experimental parameter describing the tomog-
raphy manipulation, so the data recorded in the time window 10µs long after
the states production (see Fig. 3.1) can be used to reconstruct the output density
matrices. The estimated and expect results are shown in Fig. 3.4, and in both
the cases we satisfactorily obtained fidelities F > 0.99.

3.4.4 Speed limit

We faithfully achieved the population distribution A,. . ., I using optimal pulses
of duration T = 100µs. Then a natural question arise: how much we can
shorten T maintaining low errors in the state preparation? As explained above,
the answer depend both on the finite amount of the resources used to drive the
system, which imply a limit in the reaction time (the Quantum Speed Limit),
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FIGURE 3.4: Pictorial representation of the reconstructed density matrix ρexp
(left side) and theoretical expected one ρ(T ) (right side), associated to the
lower (a,b) and higher (c,d) energy eigenstate of the constant frequency radio-
frequency driven Hamiltonian H̃ . The real (imaginary) part of the matrices is
represented in blue (red). The Uhlmann fidelity is F = 0.99 for both the recon-
structions.

and on the allowed paths in the Hilbert space, which depend on the specific
Hamiltonian form. Especially this last factor makes difficult to derive a general
theoretical bound, so it is necessary a direct analysis of the behaviour of the
experimental and theoretical preparation errors as a function of T.

We again concentrate on the state A, fixing different pulse lengths and min-
imizing the cost function under the same constraint of constant magnetic field
and Rabi frequency mentioned above. In Fig. 3.5 we show the results of the
optimization. It can be noted that the theoretical noiseless errors JTh saturate
to a minimum when T & 80µs, while for shorter time it can be observed a
linear trend of increasing errors with decreasing pulse length. The experimen-
tal results JE are perfectly matched to the noiseless expected values at short
pulse times while deviate for longer pulses, mainly because of the increasing
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effect of the dephasing rate γ on the evolution, and because of the uncertain-
ties in the experimental parameters. For example the same γ is not constant
from an experimental cycle to the next. It originates from the collisions with
the background-gas atoms, and from a residual density dependent energy shift
in the BEC. Since our BEC has atom-number fluctuations of the order of 15%,
then γ carries in the effects of this fluctuations, leading to an unstable result of
the pulse output. Another source of output instability are the low frequency
fluctuations of the magnetic field, which do not average out in the time scale
of tenth of µs of our pulses, so they do not simply contribute to increase the
dephasing rate. We estimates that in our set-up the shot to shot fluctuation on a
1-hour time-scale are of the order of ∆B = 5 mGauss. If we include in the sim-
ulation all this effects to correct the noiseless theoretical predictions, we obtain
an area of uncertainty (shown as a shaded region in Fig. 3.5) which include all
the experimental observation.
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FIGURE 3.5: ErrorJ in the preparation of stateA as a function of pulse length T ,
obtained theoretically (red dots), in the absence of dephasing noise, and exper-
imentally (blue dots). The effect of dephasing noise in the range 2π [0, 200] Hz,
and of long term magnetic field fluctuations in the range of ∆B = 5 mGauss,
is also considered (blue shaded region). Inset: Bures length lQF calculated for
every optimal pulse as a function of T .

In terms of Bures angle (see Eq. 3.5) the geodesic arch between the initial
state of the BEC (|mF = +2〉) and the state A is LQF = π/4. This is the arch
that the system would follow in the case of a direct resonant coupling between
the sub-levels |mF = +2〉 and |mF = −2〉, a coupling that of course does not
exist. The lack of couplings between all the sub-levels imply the underestima-
tion of the Quantum Speed Limit bound, which imposes that LQF (ρo, ρtrg) ≤
`QF (ρ0, ρT ), where `QF is the length of the path covered during the optimal
evolution, and it can be calculated using the formula
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`QF (ρ0, ρT ) =
1

~

∫ T

0
dt

√
〈H(t)2〉 − 〈H(t)〉2. (3.7)

In the inset of Fig. 3.5 we show for each pulse the calculated values of `QF .
They range from `QF = 49π in the case of pulse length T = 100µs, to `QF =

2.48π when T = 10µs, well above the QSL limit bound for the reason given
above.

3.5 Conclusions and outlook

In conclusion, in this experiment we have applied an optimal control tool to
prepare a family of different internal states super-positions of a Rubidium Bose-
Einstein condensate produced in an atom chip-based micro-trap. We theoreti-
cally and experimentally find that these states can be prepared with a very small
error in the final population distribution with respect to the desired states, and
we show, by a tomographic reconstruction, that the whole density matrices are
obtained according to the theoretical prediction with fidelities above F ≥ 0.9.
We have observed the behaviour of the state preparation error J by varying the
(control) pulses length, showing the limit of a fast manipulation of the atomic
state. In this respect a deeper analysis of the results may put in a different light
the meaning of the quantum speed limit for this complex dynamics.

All these results might pave the way for new schemes towards, among oth-
ers, better control of quantum dynamics, preparation of squeezed states, time-
inversion of the system dynamics, realization of quantum gates, and more pow-
erful quantum information protocols.
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Chapter 4

Quantum Zeno dynamics

In the previous chapters we always considered internal states superpositions
involving the full hyperfine manifold F = 2, demonstrating how it is possi-
ble to fully characterize them, and how to achieve an arbitrary manipulation.
However, for some particular applications, it is often necessary to confine the
dynamics in a determined number of sub-levels. In quantum information pro-
cessing, for example, couples of quantum states are used to represent qubits.
By properly engineered interactions it is possible to connect only the selected
states, isolating the dynamics between them, but to tasks of increasing com-
plexity correspond equally complicated setups, which place limits to the actual
feasibility of some manipulations.

Thus, in order to be able to perform complex quantum logical operations,
the ability to dynamically tailor the sub-spaces interested by the coherent evo-
lution is of fundamental importance. It turns out that this task is actually pos-
sible, by exploiting the back action of quantum measurements and strong per-
turbations to disconnect different groups of sub-states, binding the evolution
in smaller portions of the full space. This phenomenon is known as “quantum
Zeno dynamics”.

In this chapter I report on the first experimental realization of Zeno dynam-
ics inside a two-level subregion of the hyperfine level F = 2, showing in par-
ticular, how different perturbations of the system lead to the same confining ef-
fect. The first section is devoted to a theoretical introduction which starts from
the first formulation of a quantum Zeno “paradox”, to arrive at the nowadays
accepted quantum Zeno dynamics. Then I will discuss how it is possible to
experimentally implement the necessary manipulations tools in our apparatus,
and finally I will present and analyse the experimental results.

The content of this chapter is an extended version of ref. [71].
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4.1 From quantum Zeno effect to quantum Zeno dynam-
ics

“A flying arrow never reaches the target” is one of the controversial arguments
against plurality and motion devised by the Greek philosopher Zeno of Elea1.
Regardless of the reasons for which it has been formulated, this paradox has
inspired for over two millennia philosophers until it has been solved by math-
ematicians with modern calculus. Quantum physicists reinvented it, not as a
logical paradox, but as a real physical effect, the quantum Zeno effect (QZE).

In its original formulation, the QZE was based on the less intuitive and most
debated postulate of the quantum mechanics, i.e. the von Neumann projection
postulate [72]. It states, in contrast to classical mechanics, that any physical
measurement will perturb a quantum state leaving it in an eigenstate of the
hermitian operator representing the quantity to be measured, or, as usually ex-
pressed, it is impossible to probe a quantum system without disturbing it. Von
Neumann already noted that a given quantum state can be guided into any
other state by tailoring a specific sequence of measurements. Conversely, in
the case of frequently enough identical observation, the back action of the mea-
surement process leads to freezing out the dynamics: a prominent example of
measurement-induced disturbance that later gave the name to the QZE [73].

The QZE was first qualitatively proven in a system of trapped 9Be+ ions
[74], in which Rabi-driven oscillations between two hyperfine levels were sig-
nificantly slowed down by pulsed optical pumping to a third level. A quantita-
tive assessment of the phenomenon by means of a similar scheme, but using a
87Rb BEC, was given in ref. [75]. In open systems, the Zeno effect as well as an
acceleration due to an anti-Zeno effect [76, 77] were first demonstrated in ref.
[78], were cold neutral sodium atoms were trapped in an accelerated optical
lattice. For a large acceleration the atoms can tunnel in unbound states but by
repeatedly measuring the surviving population the depletion rate of the trap
can be considerably enhanced or slowed down, depending by the observation
frequency. Both the Zeno and anti-Zeno effects can also influence thermaliza-
tion [79].

A general approach for the control of quantum behaviour by coupling to
the continuum was presented in ref. [77]. Beside the evidence of the QZE in
more and more physical systems, today this is a well-established effect used as
a practical tool, for example in quantum information processing [80, 81], or, in
connection to other research fields, for fundamental physics investigation, like
the theory of large deviations [82], or of disordered systems [83].

However, QZE is only a particular case of a much more complex phenomenol-
ogy, which does not necessarily imply the slowdown of the dynamics, and for

1https://en.wikipedia.org/wiki/Zeno’s_paradoxes

https://en.wikipedia.org/wiki/Zeno's_paradoxes
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which projective measurements are not mandatory ingredients. Indeed, the cur-
rent point of view, widely accepted, identify in the dephasing between differ-
ent regions of the Hilbert space of a principal quantum system, induced by
strong interactions with a secondary one, the origin of a new coherent dynam-
ics which can eventually develop independently in these regions. This result-
ing phenomenon, known as quantum Zeno dynamics (QZD), has been clearly
highlighted in ref. [84].

In the next sections I will briefly introduce the working principle of the QZD
starting from its first manifestation, i.e. the QZE. Then I will show how the
QZD arises from three different perturbations of a quantum system. The main
argumentation will follow the description given in ref. [85].

4.1.1 Quantum Zeno effect

The QZE consists in the suppression of the decay probability of an unstable
quantum system when frequently observed. However, most of the experimen-
tal realizations have focused on the inhibition of the transition rate in externally
driven two level systems.

By applying to an ensemble of N atoms for a time τ a driving field almost
resonant with the levels |0〉 and |1〉, and neglecting any dephasing or depletion
of the atomic population, we observe coherent Rabi oscillations described by

N0(t) = N

(
ΩR

Ω

)2

cos2 (Ω t/2) ,

N1(t) = N −N0(t) ,

(4.1)

where Ni(τ) is the population of the |i〉 level, and Ω =
√

Ω2
R + δ2 the gen-

eralized Rabi frequency. An example of such system, represented in Fig. 4.1,
consists in a 87Rb BEC subjected to a two photon driving which couples the hy-
perfine levels |1, 0〉 ↔ |2, 0〉. In right side of Fig. 4.1 we show an example of
Rabi oscillations starting from N0(t = 0) = N .

We recall from section 1.4.2, that the relative populations ni(τ) ≡ Ni(τ)/N

closely approximate the probabilities pi(τ) to detect a single atom in the i-level
after an evolution time τ . In particular p0(t) is defined as survival, or nondecay
probability. In the resonant case (δ = 0), after half oscillation period τπ = π/ΩR,
the whole population is transferred in the state |1〉, and the survival probability
is 0.

Suppose that we are able, during the resonant oscillations, to perfectly and
instantaneously measure the number of atoms N0(δτ). The related observable
can be represented by the projector operator P = |0〉 〈0|, which will project the
state of the atoms on the level |0〉. As a consequence of the projective mea-
surement the atomic population on level |1〉 will be lost, and the remaining
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FIGURE 4.1: Left side: Pictorial scheme representing the experimental realiza-
tion of the quantum Zeno effect. A laser induced Raman transition, δ detuned
from the resonance, couples the sub-levels |0〉 ≡ |1, 0〉 and |1〉 ≡ |2, 0〉, while
a laser resonant with the transition |F = 2〉 → |F ′ = 3〉 (red arrows in the
picture) deplete the population of the former, and, if strong enough, results
equivalent to a projective measurement. Right side: typical Rabi oscillations
of the population n0 on the level |0〉, as a function of the Raman pulse length.
The dashed line represent a fit of the data with the model equations 4.1, which
yields Ω ' 2π 5 kHz, and δ ' 0.

population, i.e.
N0(δτ) = Ncos (ΩRδτ/2) , (4.2)

will start afresh to oscillates as it would have been t = 0. If we repeat the
measurement process of the N0 population m times during the normal Rabi
oscillation, at constant times δτ , at the time T = mδτ the surviving population
in |0〉will be given by

N0(mδτ) = N cos (ΩRδτ/2) · . . . · cos (ΩRδτ/2)︸ ︷︷ ︸
m times

= N (cos (ΩRδτ/2))m .

(4.3)

When the evolution time δτ between the measurements is such that δτ ΩR � 1,
the cosine in Eq. 4.3 can be approximated by cos (ΩRδτ/2) ≈ (1 − (ΩRδτ/2)2).
Substituting δτ = T/m, and assuming the equivalence between the survival
probability p(m)

0 (T ) and the surviving relative population n(m)
0 (T ) = N0(T )/N ,

we obtain

p
(m)
0 (T ) ≈

(
1− (ΩRT/2m)2

)m m large∼ e−Ω2
RT

2/2m . (4.4)
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We, therefore, define the “Zeno time” τ2
z ≡ 2/Ω2

R, which set the natural time
scale of the system evolution.

From the last similarity in the above equation it is clear that whenever the
condition T 2/mτ2

z � 1 is satisfied, then the survival probability is maximized,
p

(m)
0 (T ) → 1, i.e. the oscillations freeze and the atoms never leave the level |0〉.

The condition T 2/mτ2
z � 1 can hold in different cases, for example when T is

constant and the number of measurement m increases, or when m is constant
but T decreases (both the situations imply a decreasing δτ ). As an example, in
Fig. 4.2 we show the surviving relative population in the |1, 0〉 sub-level, after
m = 100 measurements performed during Rabi oscillations between this level
and the |2, 0〉, as a function of the evolution time δτ .
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FIGURE 4.2: Typical exponential decay of the survival probability of the atoms
on the |0〉 sub-level as a function of the time interval δτ between the resonant
light pulses. In particular, while the Raman coupling is on (Ω ' 2π 5 kHz, δ ' 0),
we pulse 100 times the resonant light, and then we measure the population
surviving on |0〉 level. The dashed line represent the theoretical behaviour of
the survival probability, as modelled in Ref. [83].

For each δτ the system is driven at a Rabi frequency of ΩR ' 2π 5 kHz, and
the measurements on the atoms in |1, 0〉 are achieved indirectly, by means of
1µs long pulses of resonant light with the transition |F = 2〉 → |F ′ = 3〉. These
pulses scatters out from the condensate the atoms on the level |2, 0〉, accomplish-
ing their effective measurement. The unscattered atoms undergo a negative-
measurement process, given that their wave function is still projected on the
unperturbed sub-state |1, 0〉, even if we did not extracted any physical quantity
from them.
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Other experimental realizations demonstrated also the continuous QZE, i.e.
a suppression of the dynamics in presence of a continuous strong coupling,
mimicking the limit of infinite number of measurement, m→∞ [75].

The measurements considered here, probing the atoms on one level, are rep-
resented by 1-dimensional projections. In this case any evolution could only re-
sult in blocking the dynamics, but let us now linger on this point. What would
happen if the levels involved in the dynamics are more than two? And what
if the measurements affect more than one sub-level simultaneously? Moreover,
the projective measurements correspond to ideal, instantaneous observations of
the system state, and we can use them only as convenient, and rough, approxi-
mation of a more complex process which often involves more elementary steps,
which can still be described in terms of (usually dissipative) dynamical evolu-
tions. This facts could raise doubts about the real link between the QZE and the
“measurement process” in a wide sense, as we will see in the next section.

4.1.2 Quantum Zeno dynamics

It turns out that the QZE is only the 1-dimensional manifestation of a richer
phenomenon, the dynamical quantum Zeno effect, which hinges on measure-
ments not able to distinguish between states belonging to a wider space, giv-
ing the same results when performed on them. Rather than slowed down,
the dynamics results confined by this “incomplete” measurements in the multi-
dimensional subspace of indistinguishability, leading to the QZD. Moreover, as
mentioned above, the QZD does not necessarily require the use of projections
to be established, but rather of strong perturbative couplings which can be part
of a measurement process.

We will consider in the following three different coupling protocols leading,
in some limit, to the QZD. The first protocol consists in the extension of the
projective measurements to the multi-dimensional case. Then we will treat the
cases of frequently enough unitary kicks, and of a continuous strong coupling.

QZD induced by projective measurements

An ideal, instantaneous (thus non-physical), measurement which gives the same
results for different quantum states may be represented by a projection on a
multi-dimensional Hilbert space.

Consider a system described by the Hamiltonian H , which support is the d
dimensional Hilbert space H. We adopt the density matrix formalism, thus the
unitary evolution, starting from ρ0, is given by

ρ(t) = U(t)ρ0U
†(t) , (4.5)

where U(t) = exp {−iHt} (hereafter we use the convention ~ = 1). Suppose we
are able to measure the presence of the system in a subspace HP ⊆ H through
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the projection operator P (HP = PH). This means that for each density matrix ρ
representing a state inHP , the measurement of P gives the same positive result,
i.e. PρP = ρ, or Tr[Pρ] = 1. Let also choose the initial state represented by ρ0

belonging toHP .
We want to study the effect of repeated measurement of P during the dy-

namical evolution of ρ(t) in H. Following the same discussion of previous sec-
tion, after letting evolve the system for a time δτ , we perform the measurement
of P . The state at the time of the measurement is represented by

ρ(δτ) = P
(
U(δτ)ρ0U

†(δτ)
)
P , (4.6)

and the probability to remain inHP is given by

p(δτ) = Tr
[
P U(δτ)ρ0U

†(δτ)
]
. (4.7)

The projected state in Eq. 4.6 continues to evolve for δτ and then we measure
it again, and the same procedure is identically repeated on the resulting state,
obtaining, after m repetitions, the final result

ρ(mδτ) = PU(δτ) · . . . PU(δτ)︸ ︷︷ ︸
m times

ρ0 U
†(δτ)P · . . . U †(δτ)P︸ ︷︷ ︸

m times

. (4.8)

We can recast Eq. 4.8 by making use of the projection property P 2 = P (and
thus PU PUP = PUP PUP ), and of the fact that ρ0 belong toHP (Pρ0P = ρ0).
Then, introducing T = mδτ , we obtain

ρ(T ) = Vm(T )ρ0V†m(T ) , (4.9)

where we have defined the operator

Vm(T ) ≡ [PU(T/m)P ]m , (4.10)

which accounts all the m evolutions and measurements. The probability to
found the system inHP is finally given by

p(T ) = Tr
[
Vm(T )ρ0V†m(T )

]
. (4.11)

Also in this case the limit of large m set the quantum Zeno regime, but this time
one must pay a particular attention in draw conclusions. In Ref. [73] the authors
proven that, under very general conditions, the limit Vm(T )

m→∞−−−−→ V(T ) exists
for all T , and V(T )V†(T ) = P . We refer to their work for a formal and complete
demonstration, while here we follow Ref. [85] in performing a naive expansion
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of the evolution operator for small time,

U(T/m) ≈ (1− iHT/m) , (4.12)

which inserted in Vm(T ) yields

Vm(T ) ≈ [P (1− iH T/m)P ]m

= P [(1− iPHP T/m)]m

m→∞−−−−→ Pe−iPHPt ,

(4.13)

The limit dynamics is then described by the unitary evolution

UZ(t)ρ0U
†
Z(t) ≡ Pe−iPHPt ρ0 e

iPHPtP , (4.14)

where UZ(t) satisfies the relation UZ(t)U †Z(t) = P . This imply that the system
never abandon the projected space HP . Indeed, the probability for the system
to be measured in this space at the time T , after an infinite number of projective
measurement onHP , is

p(T ) = Tr
[
UZ(T )ρ0U

†
Z(T )

]
= Tr [Pρ0] = 1 , (4.15)

and we can safely refer to HP as the “Zeno sub-space”, and to HZ ≡ PHP as
the “Zeno Hamiltonian”.

We now proceed further beyond, picturing a situation in which we are able
to ascertain the presence of the system in more than one sub-space, for example
by means of a family of independent projections {Pn} that eventually resolve
the entire space, i.e.

PnH = Hn, PnPm = δn,m,
∑
n

Pn = 1 . (4.16)

The above discussion can be straightforwardly generalized to this case. It is suf-
ficient that, performing the measurements, at each step we project the evolved
density matrix simultaneously on eachHn, i.e. ρ→

∑
n PnρPn ≡ P̂ [ρ].

We stress that, while this projections keeps unaltered the system description
in each sub-space, they instantaneously destroy the coherences between differ-
ent sub-spaces.

Replacing PUP → P̂ [U ] in Eq. 4.10, and reiterating the approximations
which led us to the final result, we recover a Zeno-like evolution described by
the super-operator

ÛZ(t)ρ0 =
∑
n

Pn e
−iHZt ρ0 e

iHZt Pn ≡
∑
n

U
(n)
Z (t)ρ0U

(n)†
Z (t) , (4.17)
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where the Zeno Hamiltonian is now given by

HZ = P̂ [H] =
∑
n

PnHPn . (4.18)

The operators U (n)
Z (t) defined above are unitary and drive a dynamics which

take place independently in each subspace, i.e. U (n)
Z (t)U

(m)†
Z (t) = δnmPn. As a

consequence, the initial probability pn(0) ≡ Tr [ρ0Pn] to observe the system in
the n−th sub-space at t = 0, is conserved along the evolution described by Eq.
4.17. Indeed, at the time t, we have

pn(t) = Tr[ρ(t)Pn] = Tr
[
U

(n)
Z (t)ρ0U

(n)†
Z (t)

]
= Tr [ρ0Pn] = pn(0) .

(4.19)

In the light of this result, we are now able to grasp the real nature of the
QZD. Beside the fact that in a small evolution time the system is unable to
abandon a sub-space, a key point is that each measurement destroys the co-
herences building up between different regions, which guide the common dy-
namics in the whole Hilbert space. Therefore, when the measurements are fre-
quent enough, the internal dynamics is preserved, while the common one never
happen. In the limit of infinite measurements, practically the internal popula-
tion of each sub-space remains confined in it, and evolves locally, while nothing
happen between the sub-spaces. The conclusion is that the QZD is not a mere
consequence of a projection, but rather of the loss of the coherences between
different sub-spaces. Whenever we are able to reproduce such situation, we
will observe a Zeno behaviour.

QZD induced by unitary kicks

A “unitary kick” is an instantaneous unitary transformation Ukick, which effect
is to abruptly add different global phases to different portion of the Hilbert
space. The result of such repeated kicks is an overall dephasing between the
sub-spaces created, which lead to a Zeno dynamics. Here we give only the final
results, while a complete analysis can be found in ref. [86].

Given its unitary nature, a kick can be spectrally decomposed in a series of
projections Pn , i.e.

Ukick =
∑
n

e−iλnPn , (4.20)

where the coefficients λn are the eigenvalues of each Hn = PnH (λn 6= λm
for n 6= m), and correspond to global phases added to each sub-space as a
consequence of a kick. The action of repeated kicks performed at time intervals
T/m during the evolution driven by U , is described by the product
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Um(T ) = [UkickU(T/m)]m , (4.21)

which is analogous to the operator in Eq. 4.10.
The limiting dynamics for large m is dominated by the large contribution of

the Ukiks , and is given by

Um(T ) ∼ exp

(
−i
∑
n

(mλnPn + PnHPnt)

)
, (4.22)

which has all the features of a Zeno dynamics, taking place in the subspaces
identified by the spectral decomposition of the kicks. Indeed, as in the previ-
ous case of projective measurements (see Eq. 4.18), the Hamiltonian describ-
ing the evolution is projected on a series of sub-spaces, which this time are the
eigenspaces of the unitary kick, i.e. the spaces containing those states such that
Ukick |ψ〉 ∝ |ψ〉.

QZD induced by strong continuous coupling

Given that the Zeno dynamics is set by the independent, rapid control of the
global phase between sub-spaces of the principal one, where the unperturbed
dynamics take place, we may adopt, instead of pulsed perturbation, a continu-
ous coupling that allows to achieve the same result when it dominates on the
unperturbed Hamiltonian, i.e. a strong continuous coupling.

Let thus consider an additional coupling term Hc. The total Hamiltonian
and the unitary evolution read

HK = H +KHc , UK(t) = e−iHKT (4.23)

where K is a coupling constant. Of course Hc has to admit a spectral decom-
position. Let Pn be the eigenspace related to the eigenvalue ηn, we can then
write

Hc =
∑
n

ηnPn . (4.24)

As in the limit of infinite number of projections, or kicks, here in the limit of
infinite strong coupling the dynamics is dominated byHc, and it can be demon-
strated that the limiting evolution operator is

UK(t) ∼ exp

(
−i
∑
n

KtηnPn + PnHPnt

)
. (4.25)

We are now familiar enough with the above structure, given that we already
seen it in Eq.4.14, 4.17, and 4.22. Indeed, also here we recognize the block
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Hamiltonian
∑

n PnHPn, describing the Zeno dynamics in the eigenspaces of
Hc.

4.2 Experimental realization of QZD

In the light of the theoretical results discussed above, we have realized QZD in
the F = 2 manifold of 87Rb atoms by means of combinations of pulsed mea-
surements and strong continuous couplings. In particular, we dynamically dis-
connected two different regions of the Hilbert space, inhibiting the transfer of a
physical state between them. One of this two regions is the sub-space spanned
by the levels having positive magnetic projections mF = +1,+2, the other by
the levels with negative projectionsmF = −1,−2, see Fig. 4.3. ThemF = 0 level
is “cancelled”, or made unavailable for the dynamical evolution, by means of
a Strong Raman coupling with the sub-level |1, 0〉, used only as auxiliary level.
The atoms coherently transferred in this state by the Raman coupling can un-
dergo a strongly decoherent process of excitation and spontaneous emission
produced by a short pulse of repumping light (Dissipative light), which is reso-
nant with the D2 transition F = 1→ F ′ = 2.

The unperturbed dynamics we break consists in the radio-frequency in-
duced evolution described in section 1.4.1. We recall that, in presence of a reso-
nant radio-frequency signal, the atomic population oscillates between the mag-
netic sub-levels, and the time scale of this oscillation is set by the Rabi frequency
Ω in the Hamiltonian 1.14. The time scale imposed by Ω set a limit which we
have to overcome to establish the QZD, as we will see in the following section.

4.2.1 Raman coupling and repumper

We coherently couple the levels |2, 0〉 ≡ |1〉 and |1, 0〉 ≡ |0〉 through a two pho-
ton Raman transition, as shown in Fig. 4.4.

The pump and Stokes beams are obtained from the same laser light, a Top-
tica DLX, approximately red-detuned ∆/2π ∼ 20 GHz from the D2 line. The
Stokes beam is directly obtained from the DLX.To obtain the probe beam we
extract part of the DLX light, and we modulate it at νhfs ∼ 6.834 GHZ with an
EOM. This beam is then passed through an optical cavity to select the higher
side-band. The power of both beams are controlled by two AOMs before they
inject two fibers. The fiber outputs are combined to have mutual orthogonal
polarizations, perpendicular to the external magnetic field in correspondence
of the atomic sample, in order to drive σ+, σ− transitions. In resonance condi-
tion (~ νhfs = EF=2,mF =0−EF=1,mF =0), and when ΩS ,ΩP � ∆, the twomF = 0

levels can be treated as an effectively two level system with coupling described
by he Hamiltonian

HR = ΩR (|1〉 〈0|+ |0〉 〈1|) , (4.26)
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FIGURE 4.3: Left side: Representation of the effect of strong perturbation on the
|2, 0〉 sub-level. The F = 2 manifold is projected on two decoupled regions: the
positive magnetic component wing, and the negative one. In particular we will
study the dynamics in the protected two-level subspace {|2,+1〉 , |2,+2〉} ≡
{|↓〉 , |↑〉}. An applied radio-frequency field at 2.171 MHz couples neighbouring
mF states (thin, red arrows), a laser-induced Raman transition couples the |2, 0〉
and |1, 0〉 states (thick, green arrow). An additional Dissipative light (repump-
ing light) connects the F = 1 states to an external level (thick, orange arrow) and
induces spontaneous decay. Right side: Time sequences of the four experimen-
tal protocols achieved by combining the Raman coupling and the Dissipative
light: (a) projective measurements, (b) continuous projective measurements, (c)
unitary kicks and (d) continuous strong coupling.

where the effective Rabi frequency ΩR is given by

ΩR =
ΩPΩS

2∆
. (4.27)

Controlling the beam powers we are able to tune the resulting Rabi fre-
quency up to several hundreds of kHz (we performed experiments at a max-
imum frequency of ΩR = 2π 400kHz). At these frequencies the differential AC
Stark shift induced between the levels of the F = 2 manifold is of the order of
∼ 10 kHz, which is comparable or below the bandwidth of our manipulation
pulses. We then neglect any effect arising from the light shift.

The beams are focused on the atomic sample with a waist in the focus of
D ∼ 70µm, and are directed parallel to the axial radii of the BEC, to ensure an
homogeneous distribution of power across the cloud (we recall that the radial
dimension of the expanded BEC is d ∼ 7µm at the moment of the manipula-
tion). The drawback of this arrangement is the enhancement of the superradi-
ance effect, which produces the partial break-up of the condensate into clouds
of different momentum. For our investigation we managed to keep track of its
effect and considering only that part of the condensate cloud that remained at
rest, and the dynamics produced by the superradiance. In Fig. 4.5 we show an
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FIGURE 4.4: Detailed representation of the Raman and Dissipative Laser setup.
The Stokes and pump beam are ∆ = 20 GHz red detuned from the excited
level 52P3/2, and have mutual linear polarization, orthogonal to the bias mag-
netic field on the BEC. This polarizations configuration lead to couple the
mF = 0 levels by σ+ and σ− transitions. On the right side we is shown
an example of Rabi oscillations between these levels. Each data point repre-
sents the average and standard deviation of three different realizations. With
dashed line is represented a fit of a damped theoretical models on the data
(n0 ∼ cos(ΩRt)exp(−γt)), yields a Rabi frequency ΩR = 2π 234 kHz and a de-
phasing rate γ = 20 kHz . The Dissipative (repumping) light resonantly couples
the hyperfine level F = 1, with the F ′ = 2 in the 52P3/2, depleting the former in
a minimum time of 0.6µs.

example of the typical superradiance induced loss of population of a conden-
sate in the pure state mF = 2 as function of the Raman beams pulse length, at
beams power of 1 mW.

The measurement system we employ for this experiment consists in a short
pulse of repumping light (see section 1.2.2). By illuminating the BEC with this
light the atoms in the F = 1 hyperfine level will be excited to the F ′ = 2, and
spontaneously decaying they will emit one photon each. This is already enough
to accomplish a measurement process, even if we do not effectively count the
emitted photons by using a macroscopic detector.

At the maximum power available in our system (PD = 7 mW) the Dissipa-
tive beam takes about 0.6µs to completely excite all the atoms, which at this
point have acquired enough recoil to be ejected from the BEC. In left side of Fig.
4.6 we show the population loss in the case of PD = 2 mW, when the dissipative
loss rate is 2π 450kHz.

Ideally, the repumping light should not notably disturb the F = 2 atoms,
as they are out of resonance by about 7 GHz. However, in the experiment we
observed notable losses, as shown in right side of Fig. 4.6. These are explained
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FIGURE 4.5: Effect of the collective "superradiant" scattering produced by the
Raman light on the atomic cloud. With increasing Raman pulse length τ , two
side clouds, having momentum p = ±~k parallel to the beams direction, starts
to appear. Coherent oscillations between these populations is also evident. In
the experiment we usually isolate the unscattered atoms for our analysis, and
by performing control measurements we separate the superradiant effect from
the depletion of the Zeno protected sub-space due to a non perfect confinement.
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FIGURE 4.6: Left side: Decay of the F = 1 population produced by 2 mW of Dis-
sipative light as a function of the irradiation time τ . An exponential fit (dashed
smooth line) yields a loss rate of γ = 2π 450 kHz. Right side: total number of
atoms in the F = 2 manifold as a function of the irradiation time τ with the Dis-
sipative light. The dashed line connect the mean values of the collected data.
Note that the decay stops in correspondence of the complete population loss of
the F = 1 level.
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as follows: The F = 1 atoms absorb photons and experience heating. Via col-
lisions this energy is transferred to the F = 2 atoms. Accordingly, we observe
an initial decay of F = 2 atoms until all the F = 1 atoms have left the trapping
region. In our analysis we have corrected the data taken for this loss of atoms,
that is not related to QZD but rather due to a limitation of our experimental
setup.

4.2.2 Measurement protocols

We combine the Rabi coupling and the Dissipative light in order to implement
the perturbations leading to the QZD. In particular we realized four different
protocols (see Fig. 4.3).

Projective measurements

In the first protocol we perform a series of discrete state-selective measurements
by periodic application of the Raman and Dissipative lights.

As we mentioned above, a projection operator acting on a quantum state
is an ideal description of an instantaneous measurement process, but it has no
direct physical meaning. A real measurement, which can be only approximated
by a projection, is more described by a sequence of steps, which finally lead
the quantum system to entangle with an external apparatus, or field, charac-
terized by some set of states having an appropriate distribution. The quantum
system-apparatus interaction induces changes in this distribution, which can be
classically read. At the same time, tracing out the apparatus states we are left
with an incoherent superposition representing the state of the system after the
measurement. A similar description is well represented, for example, by atoms
undergoing an absorption process: an atomic cloud absorbs photons from a
light field then spontaneously reemitting them.

In our case we perform a state selective measurement in two steps: we co-
herently transfer the atoms from the level |2, 0〉 to the |1, 0〉 by means of a Raman
π-pulse 0.8µs long, and this is immediately followed by a pulse of Dissipative
light 0.6µs long, absorbed by the atoms in the F = 1 level. The final result
is thus a good approximation of a projective (destructive) measurements on the
single level |2, 0〉, and an incomplete (non-destructive) projection on the remain-
ing space, which is left unperturbed by the sequence. In other words, a state |ψ〉
undergoing this measurement process is left in the state

|ψ〉 → P⊥|2,0〉 |ψ〉 , (4.28)
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where P⊥|2,0〉 is the projection on the space orthogonal to |2, 0〉, represented, on
the F = 2 manifold, by the matrix

P⊥|2,0〉 =


1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

 . (4.29)

The Hamiltonian guiding the unperturbed dynamics of our atoms is given by
Eq. 1.14, thus the Zeno Hamiltonian HZ = P⊥|2,0〉HF=2P

⊥
|2,0〉 reads

HZ = ~


δ2,+2(B, ωRF ) Ω 0 0 0

Ω δ2,+1(B, ωRF ) 0 0 0

0 0 0 0 0

0 0 0 δ2,−1(B, ωRF ) Ω

0 0 0 Ω δ2,−2(B, ωRF )

 .

(4.30)
We finally spend some words on the limit of infinitely frequent measure-

ments. For our scheme we used a repetition rate of δτ = 2.2µs, while the Rabi
frequency was set to Ω = 2π 15 kHz. We are thus in the (finite) limit δτ � 2π/Ω.
As we will show in the results section, indeed the Zeno dynamics is visible.
However the evolution described by Eq. 4.14 is unitary only when m → ∞,
otherwise the projections introduce an irreversibility in the dynamics. We thus
expect to observe a decay in the Zeno dynamics which scales as γ ∼ δτΩ.

Continuous projective measurements

The second protocol implemented consists in a continuous, projective measure-
ment, achieved by applying both the Raman beams and the Dissipative Light
continuously. The intensities are chosen such as to obtain a Raman-induced
coupling of ΩR = 2π 250 kHz and a dissipative loss rate of 2π 450 kHz, i.e. slightly
above the Raman coupling rate. This was done to avoid blocking the Raman
transition by a Dissipative Light-induced QZE, while still implementing an ef-
fective measurement scheme. Likewise the sequential projections scheme, also
in this case the dynamics is described by the projected Hamiltonian in Eq. 4.30.

The continuous coupling should represent the closer approximation to the
limit m→∞, however we still have to consider the time-scale coming from the
Raman coupling.

Unitary kicks

In the third experiment we apply a sequence of unitary kicks. A unitary kick
consists in a Raman π-pulses having a duration of 0.7µs, and coupling, as
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usual, the sub-states |2, 0〉 and |1, 0〉. The dynamical evolution, guided at Ω =

2π 15 kHz, is perturbed by a kick every 2.2µs.
As shown in section 4.1.2, the Zeno dynamics take place in the sub-spaces

Hn = PnH which spectrally decompose the kicks, and arises from the large os-
cillating phases between them, resulting in an effective decoherence. In our case
these eigenspaces are 1-dimensional, and correspond to the two superpositions
H± = |2, 0〉 ± |1, 0〉 (note that both share the state |2, 0〉). Given that the relative
phases of this two superposition changes so abruptly as to decouple them, the
same happens respect to the phase of the unperturbed orthogonal space H⊥±,
identified by the projection P⊥|2,0〉 defined above. Consequently, the evolution in
H⊥± is independent by these in the two H±, and the Zeno Hamiltonian describ-
ing the internal dynamics is again given by Eq. 4.30.

Strong continuous coupling

In the fourth protocol, we kept the Raman beams on continuously, achieving the
strong continuous coupling regime. The Raman beams are tuned to a coupling
strength of ΩR = 2π 136 kHz, to be compared with the radio-frequency Rabi
coupling Ω = 2π 15 kHz. Also in this case we cannot fulfil the theoretical limit
ΩR →∞, even if the finite limit ΩR � Ω allows to observe the QZD.

As in the case of unitary kicks, the continuous coupling causes the large
oscillation of the phases of the 1-dimensional subspaces H± = |2, 0〉 ± |1, 0〉
respect to the remaining Hilbert space. Therefore the same conclusions holds,
i.e. we will observe a decoupled dynamics in spaceH⊥±, described by the usual
Hamiltonian in Eq. 4.30.

4.3 Results

We tested our four protocols during the BEC dynamical evolution observing in
each case the QZD.

The tests was performed as follows. We start, after the evaporation of the
atomic cloud in the chip magnetic trap, with a BEC containing∼ 90×103 atoms
in the pure state |2,+2〉. We switch off all the trapping fields letting the BEC
fall free, and, simultaneously, a homogeneous magnetic field of 3.1 Gauss, cor-
responding to an energy splitting of the Zeeman states of about 2.2 MHz, is set
along the y direction. We perform the experiments after 0.7 ms of free expan-
sion, when the cloud is dilute enough to observe a single particle dynamics, and
the bias fields are stable to the predetermined values. Each experiment consists
in applying to the chip antenna, for a time τ , a radio-frequency signal driving
resonant oscillations at the Rabi frequency Ω = 15 kHz, and, simultaneously, in
performing the sequence of light pulses corresponding to one of our protocols.
After the manipulation we record the number of atoms in each of the mF states
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of both the hyperfine levels, by means of the Stern–Gerlach method and absorp-
tion imaging sequence (see section 1.4.2). For each τ we perform 3 experimental
cycles under the same parameters condition, extracting mean values and stan-
dard deviations of the relative populations.
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FIGURE 4.7: Resonant Rabi oscillations in the F = 2 manifold, induced by a
radio-frequency signal, as a function of signal length τ . The mean values and
standard deviations of the experimentally measured populations are shown as
dots and error bars, while the dashed line represent a theoretical evolution at a
Rabi frequency of Ω = 2π 15 kHz. Note that each level is populated during the
evolution.

By alternating measurement of the populations evolution undergoing the
Zeno dynamics, with control measurements in which the radio-frequency driv-
ing is switched off, we are able to distinguish the fraction of atoms lost from the
protected two-level sub-space as a consequence of imperfections of the Zeno
confinement, from the loss caused by residual scattering of the Raman and Dis-
sipative Light beams, and by the superradiant scattering, as well. Analysing the
collected data we can then correct them to take into account these additional
losses.

Finally, a comparison of the results obtained with the four different proto-
cols is given in the panels of Fig. 4.8. As expected, given that we start with the
total population in the |2,+2〉 state, the evolution is almost perfectly confined
between this level and the |2,+1〉. This confirms that the dynamics is guided
by a projected Zeno Hamiltonian describing an effective two-level system (see.
Eq. 4.30). Therefore, hereafter we will refer to these two protected states as
|2,+2〉 ≡ |↑〉, and |2,+1〉 ≡ |↓〉.

For the chosen parameters, we observe a similar population dynamics for
each of the four protocols. This is in close agreement with the prediction that
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FIGURE 4.8: Population evolution in presence of the constant radio-frequency
driving pulse plus the perturbations produced by our four measurement proto-
cols, as a function of the driving pulse length τ . The colour scheme is the same
as in Fig. 4.7. The labels stand for: a) Pulsed projective measurements. b) Con-
tinuous projective measurements. c) Unitary kicks. d) Continuous strong cou-
pling. Note how the populations oscillate between the |↓〉 (red) and |↑〉 (blue)
states.

frequent projective measurements, strong continuous coupling or fast unitary
kicks should all asymptotically lead to the same projected Hamiltonian. Note
that even with the finite measurement rates and coupling strengths used here
the degree of confinement can be strong, leading to only a small fraction leaking
in the neighbour projected sub-space via the forbidden mF = 0 level.

The equivalence of the protocols is even more evident by superimposing the
results on each other, as done in Fig. 4.8. No substantial difference between the
populations behaviour can be appreciated, within the noise coming from the
experimental parameter fluctuations.
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FIGURE 4.9: Superposition of the average data of the only |↓〉 and |↑〉 levels,
reported in the previous figure. Each colour correspond to a different protocol.
Note the substantially equivalent behaviour.

4.3.1 Subspace protection

We now turn to quantify the coherence in the dynamically created two-dimensional
space, and strength of the Zeno confinement, by adopting an effective two-state
model to describe the measured oscillations obtained with our four protocols.

We describe the dynamics in terms of the density matrix ρ, by the equations

ρ̇αα = iΩ(ραβ − ρ∗αβ)

ρ̇ββ = −iΩ(ραβ − ρ∗αβ)− 2 Γloss ρββ

ρ̇αβ = iΩ(ραα − ρ∗ββ)− (Γloss + 2 γdeph)ραβ ,

(4.31)

in which, besides the coupling Ω, we introduce the phenomenological loss
rate Γloss to account for losses from the state |↓〉 through the Zeno barrier, and
the dephasing rate γdeph describing a decoherence process between |↑〉 and |↓〉.
These two terms have different physical origin. The rate Γloss arises from the
imperfect protection of the Zeno subspace due to our finite coupling strength
and measurements rate. The dephasing rate γdeph is originated by the residual
density dependent energy shifts, by off-resonant scattering of photons from the
Raman beams, and, to a lesser extent, by collisions with background gas.

This model is valid only for short evolution times. Indeed, as the popula-
tion can escape from |↓〉 through the Zeno barrier, it can come back as well in
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the protected space. This process is unavoidable, given the finite size of our
Hilbert space and the limited coupling strength. However, we should observe
the revival of population into the Zeno (partially) protected subspace for longer
times, above 200µs. Therefore, we apply our two-level model only for times
up to 100µs, where the population revival is still not affecting the observed
dynamics.

Given that we demonstrated the equivalence between the four protocols, we
focus now to the analysis of only the strong continuous coupling confinement.
In particular we measure the population evolution in correspondence of Raman
couplings ΩR chosen in the range from 100 kHz to 225 kHz, then, by leaving Γloss

and γdeph as free parameter, we fit the theoretical dynamics given by Eq. 4.31,
to the experimental data. The results of the fit are shown in Fig. 4.10.

The dephasing rate γdeph reported in the upper panel does not shown any
particular trend. On the contrary, the lower panel shows how in the range of
power spanned, the lifetime 2π Γ−1

loss increases 100-fold with ΩR, at an exponen-
tial rate of about 0.05 kHz−1. We stress that a complete suppression of a leakage
of atoms out of the two-level subspace is only expected at infinite ΩR, where
the projected Hamiltonian of Eq. 4.30 would be exactly realized.

4.3.2 Coherence check

To extract further information about the evolution of the coherences during the
Zeno dynamics, we perform Ramsey interferometry within the two-level sub-
space {|↑〉 , |↓〉}, confined by the constant strong coupling. The splitting and
recombining radio-frequency pulses have a π/2 area, i.e., in the case of perfect
Zeno confinement, starting from the state |↑〉 the first pulse would produces
the state superposition |ψ〉 = (|↑〉 − i |↓〉)/

√
2. The interferometric fringes are

measured by varying the delay TB between the two pulses, and in Fig. 4.11 we
report the population distribution achieved after the second as a function of τ .

The clear oscillations are unambiguous indicators of the evolution of a co-
herence in the projected sub-space. Rather than being damped by dephasing,
the long term evolution of the fringes appears relatively unstable, mostly be-
cause of the experimental parameters fluctuation from one realization to the
next. Nonetheless, it is possible to observe fringe contrast close to unity even
for long delays.

We finally compare the experimental data describing the fringes with the
theoretical evolution obtained by simulating the Ramsey schemes with Eq. 4.31,
in which the set the parameters Γloss and γdeph to the values extracted by the fit
shown in Fig. 4.10 in correspondence of the ΩR used, i.e. Ω = 2π 140 kHz. In
particular, we used Γloss ∈ 2π {0.03, 0.33} kHz , and γdeph ∈ 2π {0.09, 0.69} kHz .
As it can be noted the agreement is highly satisfactory, and supports even more
our simple two level description.
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FIGURE 4.10: Dephasing rates (upper panel) and lifetimes (lower panel) of
the atomic population in the subspace {|↓〉 , |↑〉}, decoupled by the continu-
ous strong coupling protocol, as a function of the Raman frequency ΩR. The
radio-frequency Rabi coupling is constant at Ω = 2π 15 kHz. The data (points)
are well fitted (red lines) by a constant dephasing rate and by an exponentially
increasing lifetime, respectively. The error bars indicate the uncertainty in the
parameter estimation, and are determined by correcting the fraction of atoms
survived in the protected subspace with the maximum and minimum estima-
tion of the unwanted depletion due to the superradiant scattering, and to the
non resonant Dissipative light effect (see section 4.2.1). The dephasing rates dis-
play only a weak dependence on the Raman coupling strength. The lifetimes
are observed to increase hundredfold.

4.4 Conclusions and outlook

We have experimentally demonstrated the equivalence of different perturbation
protocols in creating a coherent Zeno dynamics in disjoint Hilbert sub-spaces.
In particular we have shown how to tailor a two-level region, and in which
limit of the resources employed the dynamics is localized, and the leaking of
probability to neighbouring Hilbert subspaces is suppressed.

Finally, the schemes implemented realizes a dynamical superselection rule,
which imposes that if two initial states are separated in different regions of the
Hilbert space, the separation will persist at all times.

The reader familiar with the basics principle of quantum processing, will
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FIGURE 4.11: Ramsey fringes measured between the |↓〉 and |↑〉 populations as a
function of the free evolution time between the splitting and recombining pulse
TB (see section 1.4.3 for detail about Ramsey scheme). The data cover three
time windows 0.5µs long. Together with the experimental data we also show
the two-level model prediction (shaded areas), described by the equations 4.31,
using the parameter deduced from the fit shown in Fig. 4.10. The Raman beams
induces a coupling strength of Ω = 2π 140 kHz. The long term fluctuations of the
experimental parameter such as magnetic field and Raman coupling strength,
produces large populations fluctuation at longer evolution time, but full fringe
contrast is still observed.

recognize in our protocols a possible tool to dynamically store the information
encoded in a qubit in a controllable “register”. Indeed QZD can be dynamically
exploited to preserve quantum coherence against any leakage to the environ-
ment.
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Conclusions and outlook

In this thesis I show how it is possible to coherently manipulate a 87Rb BEC real-
izing two tasks which usually require many resources, i.e. the reconstruction of
an unknown internal state and the preparation of an arbitrary superposition for
further manipulations. These tasks, beyond their wide applicability in several
quantum technology applications, are necessary ingredients for any quantum
information processing algorithm.

I also report the results of the first experimental realization of Quantum
Zeno Dynamics (QZD), which opens the way to a number of possible appli-
cations in the context of quantum information. Indeed QZD provides both the
possibility to tailor the Hilbert space of interest in region storing some quantum
information, and a possible noise-protection scheme which can be used to pre-
serve quantum coherence against any leakage to the environment. A possible
improvement of the reported results would be the implementation of all fields
necessary to establishment of QZD in a single integrated device, allowing more
compact applications.

In the future, all these results may be used in combination, to provide a
quantum information unit which can be easily written and read out. In par-
ticular, QZD and optimal control could offer the possibility to realize a con-
trollable quantum gate, where the qubits live in the Zeno sub-spaces created
by the strong coupling between the mF = 0 states, and a suitably engineered
optimal pulse achieves the gate operation [87]. Thanks both to the possibility
to design manipulation pulses robust against fluctuations and inhomogeneous
dephasing, and to the strength of QZD, even with finite resources, it should be
possible to achieve fault-tolerant quantum computation.

Finally, analysing the interplay between different control protocols and back-
action of measurements could lead to major achievements in the understanding
of quantum control and its limitations, providing new solutions for quantum
technologies.
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Appendix A

RWA Hamiltonian

In this appendix I will recover the Hamiltonians in Eq. 1.15 and 1.14, which
describes the ground hyperfine levels of 87Rb in presence of a uniform magnetic
bias field and a radio-frequency coupling having a time modulated frequency,
and the resulting dynamical equation, Eq. 1.16.

The Hamiltonian in Eq. 1.11 includes the hyperfine interaction and the cou-
pling between an external magnetic field B0 and a time varying field B(t) =

B(t)ξ̂ with the total magnetic momentum of the Rb atoms µ = µS + µI =

µB(gSS + gII), where S is the electronic spin, and I the nuclear spin (the an-
gular magnetic moment is L = 0 in the ground state). We assume a monochro-
matic, frequency modulated, field B(t) = BRF cos(ωRF (t) t). For weak fields,
the Hamiltonian represented on the basis of the F 2 and Fz eigenstates |F,mF 〉
(see section 1.1.1), reads

H =
∑
F,mF

EF,mF
(B0) |F,mF 〉 〈F,mF |+

~
2

∑
F,mF ,mF ′

ΩF,mF ,mF ′ |F,mF 〉 〈F,mF ′ | cos(ωRF(t) t) ,
(A.1)

where the couplings ΩF,mF ,mF ′ are given by Eq. 1.13. When ξ̂ is linearly po-
larized and orthogonal to B0, the dot product ξ̂ · S can be expressed in terms
of raising and lowering spin operators S+ and S−. In this case the non van-
ishing ΩF,mF ,mF ′ are those such that mF = mF ′ ± 1, and can be expressed
as cF,mF ,m

′
F

Ω, where Ω is the Rabi frequency of the driving. The coefficients
cF,mF ,m

′
F

are easily calculated by expanding the |F,mF 〉 states in the basis of
electron and nuclear magnetic spin |S, Sz, I, Iz〉.

When the energy splitting ∆E ∼ µBgFB0 between themF sub-levels is such
that |∆E − ωRF (t)| � ωRF (t), we neglect the out of resonance components of
the cos(ωRF (t) t) in Eq. A.1. The second term in the LHS of this equation is then
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given by

HRF ≡
~Ω

2

∑
mF ,mF ′>mF

c2,mF ,mF ′

(
|2,mF 〉 〈2,mF ′ | e−i ωRF t + h.c.

)
+

~Ω

2

∑
mF ,mF ′>mF

c1,mF ,mF ′

(
|1,mF 〉 〈1,mF ′ | ei ωRF t + h.c.

)
.

(A.2)

The sign difference in the exponential above is due to the different slope of the
energy level dependence by the magnetic field in the two hyperfine manifolds.

The time dependence in Eq. A.2 is removed by means of a unitary transfor-
mation in the reference frame rotating with the laser radiation, defined by

U(t) =
∑
mF

eimF ωRF (t) t |2,mF 〉 〈2,mF |+
∑
mF

e−imF ωRF (t) t |1,mF 〉 〈1,mF | ,

(A.3)
which, substituted in the Liouville’s equation, yields to

U †(t)HRFU(t) =
~Ω

2

∑
F,mF

mF ′>mF

cF,mF ,mF ′ (|F,mF 〉 〈F,mF ′ |+ h.c.) , (A.4)

and to the additional diagonal terms

∂t

(
U †(t)

)
U(t) = i ∂t (ωRF (t)t)

(∑
mF

mF |2,mF 〉 〈2,mF | −
∑
mF

mF |1,mF 〉 〈1,mF |

)
.

(A.5)
Thus, the usual diagonal elements δF,mF

(B,ωRF )/~EF,mF
(B)−EF,0(B)−~mF ωRF

introduced in section 1.4.1, in the case of a frequency modulated field has to be
modified by the substitution

ωRF → ∂t(ωRF (t) t) . (A.6)
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Appendix B

87Rb relevant numbers

Fundamental Physical Constants

Planck’s constant ~ 6.58211899(16)× 10−16eV s

Bohr magneton µB ~ 1.399624604(35)MHz/G

87Rb data

Mass m 1.443160648(72)× 10−25kg

Nuclear spin I 3/2

87Rb D2 line data

Wavelength (vacuum) λ 780.241209686(13)nm

Frequency ω0 2π 3842304844685(62)THz

Natural line width Γ 2π 6.0666(18)MHz

Lifetime τ 26.2348(77)ns

Recoil Velocity vr 5.8845 mm/s

Saturation Intensity
|F = 2,±2〉 → |F ′ = 3,±3〉 Isat 1.669(2)mW/cm2

Hyperfine structure constant Ahfs ~ 3.417341305452145(45)GHz

Electron spin g-factor gs 2.0023193043622(15)

Nuclear spin g-factor gI ?0.0009951414(10)
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