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Introduction

Low-dimensional fermionic systems are of particular interest since they combine
intriguing fundamental aspects with a large technological impact. Their peculiar-
ities arise from the interplay between reduced dimensionality, many-body correla-
tions and quantum statistics. Remarkably, the physics that takes place in the two-
dimensional (2D) world is very different from that of three spatial dimensions (3D).
The role of thermal phase fluctuations in lower dimensions is enhanced: true long-
range order is strictly forbidden at finite temperature. Nevertheless, thermal fluc-
tuations in 2D are not too strong to completely suppress phase coherence, leading
to the existence of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition and of
quasi-long-range order at sufficiently low temperature. The BKT theory for 2D sys-
tems is universal and it describes therefore a wide variety of physical systems falling
in the same universality class, ranging from 2D magnets to liquid helium films [1].
Understanding the fundamental properties of 2D systems is of particular relevance
for the development of new quantum devices.

A notable class of essentially 2D materials are high-Tc superconductors, which
possess a layered crystalline structure in which electrons are essentially confined
in 2D. In the celebrated case of cuprate superconductors, that become supercon-
ducting at the highest critical temperatures observed so far, electrons move within
weakly coupled copper-oxide layers. High-Tc superconductors are very complicated
to model theoretically, posing a formidable challenge even for the most advanced
computational techniques due to strong correlations between particles: in fact, high-
Tc superconductivity still remains an open problem in contemporary physics. Since
these systems are formed by many layers stacked and coupled with one another,
one intriguing open question in condensed matter regards the role of layering on
the genesis of superconductivity. In particular, there are two main aspects requir-
ing investigation: the influence of the reduced layer dimensionality and the effect of
inter-layering couplings. Different theories to describe layering effects are currently
discussed, the most controversial being the so-called “Interlayer Tunneling Theory”
(ITL), proposed by P.W. Anderson [2]. Such a theory proposes that if electrons in
the cuprates cannot be described by the standard Fermi liquid theory, the hopping
of single particles between the different layers could be strongly inhibited, leaving
however the Josephson tunnelling of Cooper pairs unaffected. Anderson’s idea is
that this feature could lead to an increase of the critical temperature.

Quantum gases are ideal platforms to study strongly correlated systems and sim-
ulate layered electron materials, owing to their high degree of isolation from the en-
vironment and the well developed toolbox of atomic and optical physics. Layered
fermionic superfluids of ultracold atoms can represent an efficient quantum simula-
tor of layered materials where the system parameters including the interlayer tunnel
coupling can be fully controlled, together with temperature and interaction strength.
A key ingredient for realizing layered atomic superfluids is the development of tai-
lored optical potentials to enable the confinement of atoms in two-dimensional tun-
able geometries.

In order to confine the atomic motion in the axial direction, i.e. to freeze out
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one motional degree of freedom, spatially varying dipole potential are usually em-
ployed. The conceptually simplest configuration that provides the required confine-
ment consists of a single strongly elliptic laser beam, i.e. a light sheet, red-detuned
with respect to the dominant atomic transition, and shaped as a TEM00 Gaussian
mode. This scheme suffers however of a lack of flexibility, because confinement in
the axial and radial directions cannot be independently controlled. A more versatile
set-up consists of a blue-detuned laser beam prepared in a TEM01 Hermite-Gauss
mode, where the confinement in the radial direction is provided by additional po-
tentials, either created by additional dipole trapping beams or by a magnetic trap.
But these schemes allow only the realization of a single two-dimensional atomic
system. An alternative approach is to use a standing-wave trap created by the inter-
ference of two laser beams, namely a 1D optical lattice, which offers the possibility
to load simultaneously several parallel planes of atoms. Depending on the sign of
the light detuning, the atoms accumulate in the nodes or in the antinodes of the
standing-wave pattern of the optical lattice. In order to adjust the distance between
different planes, one can create a standing wave using two beams that cross at an
angle smaller than 180 degrees. Such lattice configuration also features an excep-
tional flexibility, due to the fact that tuning the crossing angle and the intensity of
the beams directly allows for tuning the coupling between different atomic planes
and permits to choose the number of populated planes from one to several. In this
way, one can continuously explore the crossover from a configuration where neigh-
boring layers are strongly coupled by quantum tunneling to the one where layers
can be considered as independent systems over the timescales of the experiment.

This thesis work has been carried out in the context of an experiment on quan-
tum gases of 6Li, that aims at investigating the behavior of quantum degenerate
fermions in two and three dimensions across the BEC-BCS crossover. Lithium is a
prominent species for the study of different fermionic many-body regimes, thanks to
the unprecedented controllability of the inter-atomic interactions enabled by a broad
Fano-Feshbach resonance. This feature provides the possibility of exploring the tran-
sition from a Bose-Einstein condensate (BEC) of tightly bound dimers to a Bardeen-
Cooper-Schrieffer (BCS) superfluid of Cooper pairs, also in two dimensions.

The main goal of this thesis is the realization of a suitable optical potential for
confining 6Li atoms in single or multilayer 2D geometries. This will allow, in the
near future, to study two-dimensional fermionic superfluids, and layering effects in
particular. It will be interesting to investigate the role of tunnelling on the superfluid
critical temperature, and the superfluid behavior while the system is tuned from a
set of several disconnected quasi-2D gases to a regime where the tunnelling restores
a three-dimensional geometry via coherent inter-layer Josephson coupling. For this
reason, our choice has been to implement a one-dimensional large-spacing optical
lattice. The lattice standing-wave pattern is created by crossing two interfering blue-
detuned elliptical laser beams at 532 nm under a small angle, using a novel optical
scheme that maximizes the passive phase stability of the interference pattern. The
atoms will be loaded in one or few intensity minima of the interference pattern,
associated with the minima of the optical potential. They will be trapped in-plane
by additional magnetic and optical potentials, possibly tailored to produce a flat-
bottom two-dimensional trap using a digital micro-mirror device (DMD).

My thesis includes both a computational part, related to the design of the optical
lattice potential and to the numerical simulation of the adiabatic loading procedure,
and an experimental part, related to the implementation and the characterization of
the optical lattice set-up. In more detail, my work has been focused in the following
main topics:
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• numerical simulation for the optimization of the lattice requirements and de-
sign;

• design, development and construction of an optical system for the realization
of the large-spacing optical lattice;

• characterization and optimization of the lattice positioning and amplitude sta-
bility.

The thesis is organized as follows:

Chapter 1 - I introduce the conditions characterizing a harmonically trapped quasi-
2D quantum system, that can be realized in quantum gas experiments. After
a brief overview of the thermodynamics quantities at zero and finite temper-
ature for three- and two-dimensional Fermi gases, I explain the procedure of
adiabatic compression of the fermionic atomic sample from 3D to a quasi-2D
harmonic confinement, with the support of numerical simulations. Subse-
quently, I shortly discuss how the atomic collisional properties are modified
from a 3D to a quasi-2D configuration, and I describe prospects for the explo-
ration of the BEC-BCS crossover in 2D via Fano-Feshbach resonances. Finally,
I briefly describe the experimental apparatus for the production of ultracold
lithium gases, that will host in the future the setup realized in this thesis work.

Chapter 2 - I introduce the main features of optical dipole potentials, and in partic-
ular of optical lattices, with emphasis on the desired properties of the lattice in
order to realize a satisfactory quasi-2D confinement. I then describe the exper-
imental optical set-up, focusing on some crucial elements such as lenses and
prisms, fundamental to optimize the passive phase stability of the lattice inter-
ference pattern. I also give same overview on future upgrades of the imaging
system.

Chapter 3 - I discuss the testing of the optical performance of the set-up, presenting
the alignment procedure and studying the optical aberrations of the system
with a wavefront sensor. I present a static characterization of the produced
optical lattice, carried out by imaging both the individual elliptical beams and
the interference pattern, allowing the extraction of the lattice spacing and the
beam waist to estimate the resulting trapping frequencies.

Chapter 4 - I present the experimental characterization of the dynamical stability of
the optical lattice, monitoring the interference pattern on different timescales
and performing amplitude and positioning noise measurements. In this frame-
work, I extract the expected noise-induced heating rates for both intensity and
fringe position fluctuations.
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Chapter 1

Two-dimensional fermionic
systems

Systems with reduced dimensionality exhibit very peculiar and rich behavior, con-
sequence of the interplay between statistics, dimensionality and strong interactions.
Paradigmatic examples are layered high-TC superconductors and graphene. Ul-
tracold gases are very suitable to study the physics of lower-dimensional systems
thanks to the unprecedented possibility of tailoring two-dimensional geometries
made by laser light. But which are the criteria for considering a system two di-
mensional? In this Chapter, I will discuss the conditions that need to be fulfilled
to attain an effectively two-dimensional ultracold Fermi gas trapped in a harmonic
potential. I will also discuss how the thermodynamics of the system is affected by
changing its dimensionality from 3D to 2D. Moreover, I will present simulations that
I have performed to characterize the loading of the gas in a quasi-2D geometry. This
will allow to obtain a criterion for realizing quasi-2D gases at finite temperature.
Towards the end of this Chapter I present a short overview of the basic scattering
theory to show how the reduced dimensionality affects the interactions properties
of ultracold atoms. In particular, I will point out the main aspects of the famous
BEC-BCS crossover both in the 3D and 2D cases. Finally, I briefly describe the ul-
tracold lithium experiment which is used to produce our Fermi degenerate atomic
samples.

1.1 Quantum statistics

One of the striking achievements of cold atom physics is the observation of quantum
degeneracy in atomic gases. Indeed, lowering the temperature T of an atomic cloud
of density n leads to an increase of the De Broglie wavelength

λdB =

√

2πh̄2

mkBT
(1.1)

of the individual atoms, where m is the atomic mass. When this wavelength becomes
comparable to the mean inter-particle spacing n1/3, the individual atom wave func-
tions start to overlap. The phase-space density ρ = nλ3

dB at this point is on the order
of unity, a condition that marks the onset of a quantum degeneracy. Two types of
degenerate behavior are possible depending on whether the wave function of the
many-particle state is symmetric or antisymmetric under permutation of the parti-
cles, i.e. bosonic or fermionic respectively. Furthermore, the behavior of fermionic or
bosonic gases at ultra-low temperature is totally different. For a Fermi gas, the atom
cloud becomes degenerate at the characteristic temperature TF and the fermions fill
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up all the available states starting from the lowest energy level up to the Fermi en-
ergy EF, as a consequence of the exclusion Pauli principle, for which two identical
fermions cannot occupy the same quantum state. On the other hand, in a Bose gas
below the critical temperature TC a macroscopic number of atoms occupy the ground
state of the system, producing a macroscopic quantum object called a Bose-Einstein
condensate (BEC). The distribution functions describing the two kinds of particle are
given by

f (ǫ) =
1

e
ǫ−µ
kBT ± 1

, (1.2)

where kB is the Boltzmann constant and µ is the chemical potential of the gas, fixed
by the atom number N. The sign + leads to the Fermi-Dirac statistics, whereas the
sign − leads to the Bose-Einstein one. These distributions give the mean occupation
number of a non-interacting system of particles in the quantum state with energy ǫ

in the limit kBT ≫ ∆ǫ [3], so that the sum over discrete energy states can be written
as an integral. The density of states g(ǫ) for free particles in a d-dimensional box-
confinement with energy ǫ is [4]

g(ǫ) = gs

(

L

2π

)d
Ωd

2
(

h̄2

2m

)d/2
(1.3)

where gs = 2s + 1 is the degree of degeneracy of the levels given by the spin s of the
particles, L is the dimension of the box and Ω is the unity of the solid state angle in
d-dimensions. Thus, the total number of atoms is given by integration,

N =
∫ ∞

0
f (ǫ)g(ǫ)dǫ. (1.4)

The energy of fermionic atoms, i.e. atoms with an uneven number of neutrons,
in the absence of interactions, exhibits an ideal Fermi gas behavior. The Fermi en-
ergy, defined as the chemical potential at zero temperature, EF = µ(T = 0), can be
obtained by fixing the atom number N

N =
∫ ∞

0
g(ǫ) f (ǫ)dǫ =

T=0

∫ ∞

0
g(ǫ)Θ(ǫ− EF)dǫ. (1.5)

From these, the Fermi temperature TF = EF/kB is given. The fugacity z = eµ/(kBT) is
generally used to parametrize the degree of quantum degeneracy of the gas: for T ≫
TF, z ≃ 0 and the Fermi-Dirac distribution approaches the Boltzmann distribution,
for T ≪ TF, z→ +∞ and f (ǫ) = Θ(ǫ− EF).

1.2 Fermions in harmonic traps

Experiments with atomic gases are generally performed in an optical potential which
can be well approximated by a harmonic potential at ultralow temperatures. We can
define our d-dimensional trapping potential as

V(xi, .., xd) =
1

2
m

d

∑
i=1

ω2
i x2

i (1.6)
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2D 3D

g(ǫ) ǫ
h̄2ω2

r

ǫ2

2h̄3ω̄3

EF (2N)1/2h̄ωr (6N)1/3h̄ω̄

N −( kBT
h̄ωr

)2Li2(Z) −( kBT
h̄ω̄ )3Li3(Z)

TABLE 1.1: Overview of some thermodynamic quantities for harmonically trapped Fermi
gases in 2D and 3D.

where m is the atomic mass and ωi is the trapping frequency. The density of states
in a d-dimensional harmonic trap is defined by

g(ǫ) =
ǫd−1

(d− 1)! ∏
d
i=1 h̄ωi

(1.7)

In the following, I will briefly summarize the principal thermodynamics quantities
comparing a 3D gas with a 2D one. The density of states energy ǫ, calculated from
(1.7), is respectively equals to

g3D(ǫ) =
ǫ2

2h̄3ω̄3
and g2D(ǫ) =

ǫ

h̄2ω2
r

(1.8)

where ω̄ = (ωxωyωz)1/3 is the geometric mean trap frequency for 3D and ωr =

(ωyωz)1/2. The Fermi energy in the harmonic trap is obtained by fixing the atom
number N and setting T = 0 and the opportune g(ǫ) in Eq. (1.5) leading to:

3D: EF = (6N)1/3h̄ω̄, 2D: EF =
√

2Nh̄ωr. (1.9)

For zero temperature, the density distribution is calculated using the local density
approximation (LDA), thanks to which the sample can be approximated by a uni-
form gas for every location r

3D: nF(r, T = 0) =
4

3π1/2

(

m

2πh̄2
(EF −V(r)

)3/2

(1.10)

2D: nF(r, T = 0) =
m

2πh̄2
(EF −V(r)) (1.11)

From eq. (1.10) it is possible to extract the Fermi radius Ri,F =
√

2kBTF/(mω2
i ), i.e.

the maximum cloud size given at V(ri,F) = EF substituting kBTF = EF

3D: Ri,F = (48N)1/6

√

h̄

mω̄

ω̄

ωi
, 2D: Ri,F = (8N)1/4

√

h̄

mωr

ωr

ωi
. (1.12)

In the calculation of the atoms number of a non-interacting Fermi gas at T > 0 the
impossibility to express explicitly the chemical potential µ might represent a prob-
lem. Nevertheless, using the Fermi-Dirac distribution f (ǫ) and the suitable density



8 Chapter 1. Two-dimensional fermionic systems

FIGURE 1.1: Thermodynamics quantities of a spin polarized (non-interacting) Fermi gas
confined in a 2D or 3D harmonic trap as a function of temperature. On the left, the chemical
potential; in the center, the mean energy per particle; on the right, the entropy per particle.

of states, several thermodynamics quantities X(N, T) can be readily obtained ana-
lytically by performing integrals of the form:

X(N, T) =
∫ ∞

0
Cǫη f (ǫ)dǫ = −C(kBT)1+ηΓ(1 + η)Li1+η(−z(N, T)) (1.13)

where Lin(x) are the poly-logarithmic functions of order n and Γ(n) is the Euler-
Gamma function. In order to compute the quantities X, the fugacity z(N, T) can be
calculated by inverting the following relation numerically, obtained from Eq. (1.5)
at finite temperature:

3D: N = − k3
BT3Li3(−z)

h̄3ω̄3
, 2D: N = − k2

BT2Li2(−z)

h̄2ω2
r

(1.14)

The chemical potential is then:

µ(N, T) = kBT log(z(N, T)) (1.15)

The total energy E in a 3D harmonic trap can be obtained numerically by

3D: E(N, T) = −3k4
BT4Li4(−z)

h̄3ω̄3
, 2D: E(N, T) = −2k3

BT3Li3(−z)

h̄2ω2
r

(1.16)

Using the previous results, the total entropy can be obtained as well [5] [6]:

S(N, T) =
E− µN

kBT
+

∫ ∞

0
g(ǫ) log(1 + ze

− ǫ
kBT )dǫ. (1.17)

Such a quantity can be also computed both for 2D and 3D trap potentials replacing
the relative total energy E, the total number of atoms N and density of states. In Fig.
1.1, such thermodynamics quantities are shown, calculated both in the 3D and 2D
harmonic potentials.

1.2.1 Quasi-2D confinement

Quasi-two-dimensional (quasi-2D) quantum gases are typically realized by confin-
ing the atomic cloud in an optical three-dimensional harmonic potential, in which
the confinement along the axial direction is much stronger than the radial one. Due
to the high anisotropy of the trap, at sufficiently low temperature, the quantum gas



1.2. Fermions in harmonic traps 9

FIGURE 1.2: Sketch of the quasi-two dimensional harmonic confinement. The spacing be-
tween energy levels of the harmonic oscillator in the axial direction h̄ωz has to be larger than
the Fermi energy and the kBT of the cloud. The radial harmonic oscillator levels, defined by
h̄ωr, have to be populated, whereas the only populated state along the axial dimensions has
to be the ground state.

can populate the trap levels in two dimensions only, and thermally excited parti-
cles cannot move along the third dimension. The general criterion that a fermionic
system must satisfy to be considered quasi-2D is given by

kBT, µ, EF ≪ h̄ωx (1.18)

where EF is the Fermi energy and µ is the chemical potential. This means that the
motion of the atoms in the axial direction is frozen out and the atoms occupy only the
lowest-energy harmonic oscillator state in the axial direction x with energy 1/2 h̄ωx.
The different energy scales are sketched in Fig. 1.2.

The maximum number of atoms to fulfill the 2D condition EF < h̄ωx is estimated
for a non-interacting Fermi gas by counting the number of states in a harmonic os-
cillator with energy lower than that of the first transverse excited state. The energy
spectrum of the lowest states that can be occupied is given by setting the number of
excitation in the x direction to 0, nx = 0, and it is written as

Egs 2D =
1

2
h̄ωx + h̄ωy

(

ny +
1

2

)

+ h̄ωz

(

nz +
1

2

)

. (1.19)

This energy level has to be always smaller than that of the first excited state in the x
direction, which is given by setting nx = 1 and ny, nz = 0

E f e 2D =
3

2
h̄ωx +

1

2
h̄ωy +

1

2
h̄ωz. (1.20)

Imposing E f e 2D > Egs 2D, we can then relate the frequencies to one another:

ωx > nyωy + nzωz. (1.21)

Introducing the trap aspect ratio λ = ωx/ωr in the limit in which ωy = ωz ≡ ωr

with nr = ny + nz, on the basis of Eq. (1.21) and including degeneracy, it is possible
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FIGURE 1.3: Temperature (on the left) and chemical potential (on the right) after an adiabatic
compression of a cloud of N = 2.5 · 104 6Li atoms at an initial T/TF=0.1, for different final
vertical frequencies of confinement. The loading is from a dipole 3D harmonic trap with
frequencies 21 Hz, 245 Hz, 215 Hz, to an highly anisotropic 2D one with in-plane frequencies
of 20 Hz and 20 Hz.

to count the critical number of atoms by [7]

Ncrit,2D =
λ−1

∑
nr=0

(nr + 1) =
λ2 + λ

2
. (1.22)

This result shows that the dimensionality of the trap does not depend on the absolute
values of the trapping frequencies but only on their ratio. For example, providing
an aspect ratio of 1:1:500 with trap frequencies of e.g. ωx = 2π · 10 kHz and ωr =
2π · 20 Hz, the maximum number that we can load into our optical potential to
fulfill the 2D condition is about Ncrit,2D

∼= 105 per spin state.

1.2.2 Adiabatic compression from 3D to quasi-2D

Cold atoms are typically produced in 3D harmonic traps. In the procedure of com-
pression of the atomic sample from the 3D dipole trap to a quasi 2D-confinement,
and assuming the process adiabatic, it is possible to give an upper limit value for the
temperature and the chemical potential of the sample at its final stage.

I performed some numerical simulations to characterize the loading of the gas
in a quasi-2D geometry. This will allow to obtain a criterion for realizing quasi-
2D gases at finite temperature. We consider a gas of fermions of mass m = mLi
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confined in a quasi-2D harmonic potential as defined previously. We set g2D(ǫ) =
ǫ/(h̄ωr)2 for the in-plane density of state and µj = µ0 − h̄ωx j for the chemical po-
tential, where j is the integer labeling the jth state of the axial harmonic oscilla-
tor. The average occupation number for jth state is given by the Fermi-distribution

f j(ǫ) = 1/(eβ(ǫ−µj) + 1) with β = 1/(kBT). Using the poly-logarithm function Lin,
we can compute Nj, Ej and Sj which are respectively the atom number, the total
energy and the entropy in jth state. We want to estimate the temperature of the
2D gases trapped in potentials with different axial frequency. To do this, we com-
pute the temperature evolution for an adiabatic compression by evaluating, for each
value of a final compression frequency ωx, the temperature and the chemical poten-
tial of the cloud assuming the conservation of total entropy and of the number of
atoms during the transfer. The sum of the entropies and atom number on each level
of the harmonic oscillator in the axial confinement is fitted to give the total energy
S0 and atom number N0 in the dipole trap with the chemical potential µ0 and the
temperature T as free parameters:

{

S0 = ∑j S2D
j (µj, T)

N0 = ∑j N2D
j (µj, T).

(1.23)

By inserting parameters easily achievable in the laboratory, i.e. number of atoms
N = 2.5 · 104 and T/TF=0.1, the adiabatic transfer from a dipole trap with trapping
frequency of ωz ∼ 2π·20 Hz, ωx = ωy ∼ 2π·200 Hz, is shown in Fig. 1.3, for
different values of the frequency ωx in the quasi 2D-potential. Such a values of
temperature and chemical potential, allow to calculate the numbers of atoms in each
level of the harmonic oscillator Fig. 1.4. The 2D condition is reached for the critical
frequency ωC at which the population for j=1 approaches to zero. This criteria is
more general than that in Eq. (1.22), because it is defined also for finite temperatures.

From Fig. 1.4 is clear that the 2D condition is reached for frequencies above
8 kHz. Furthermore, looking to the temperature trend above 8 kHz in Fig. 1.3,
we can notice that a compression of the gas above these frequency values produce
an heating of the cloud, evidenced by the fact that starting from 20 nK, the final
temperature is about 40% higher.

Eventually, we are interested to know which is the number of atoms that can be
loaded for a certain critical frequency ωC, or viceversa. This is shown in Fig. 1.4.
We observe that at a fixed trap frequency, the number of atoms adiabatically loaded,
depends drastically on the temperature of the sample. For example, just going from
T/TF = 0.1 to T/TF = 0.2, the critical atom number is halved. Reasonably, the
upper limit for the critical number of atom loaded in the trap is given by the zero
temperature limit (blue curves), that is calculated by Eq. (1.22).

1.3 Ultracold interactions

In the previous Section, I have discussed the conditions to realize the 2D regime.
Looking now at the interactions between fermions, the reduced dimensionality af-
fects the scattering properties of the system and the interactions differ from those in
a three dimensional system.

Scattering in three-dimensions The length scale on which interactions between
neutral atoms take place is given by the short-ranged van der Waals potential, which
scales as r−6 and has a finite range known as the van der Waals radius rvdW . Taking
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FIGURE 1.4: (Top) The population of non-interacting fermions at T/TF=0.1 in the j-th state
of the harmonic oscillator is computed for different trapping frequency along the direction
of tight confinement. The 2D condition is reached for ω > ωC, where the population for
j = 1 approaches zero. (Bottom) The maximum number of atoms N0 is calculated for a
given critical trap frequency ωC. In these plots, the adiabatic compression of a cloud has
been computed for N = 2.5 · 104 6Li atoms for initial T/TF=0.1 (green) and T/TF=0.2 (red).
These are compared with the T = 0 criterion (blue). All curves are calculated considering
an adiabatic transfer from a dipole trap with frequencies (21 Hz, 245 Hz, 215 Hz) to a highly
anisotropic 2D trap with in-plane frequencies of 20 Hz and 20 Hz.
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into account that the temperature at which quantum degeneracy is achieved is be-
tween 100 nK÷ 50 µK, λdB is about 1 µm. The range of interaction is given by the van
der Waals radius rvdW,Li = 0.2 nm and thus satisfy the inequality λdB, n1/3 ≪ rvdW

meaning that particles interact via two-body collisions. We consider a 3D quantum
gas characterized by a two-body interacting potential V(r) that is radially symmet-
ric short range and decreases as 1/ri, i > 1. In the long distance term, the wave
function, ψ(r), that satisfies the Schrödinger equation

[

− h̄2

2m
∇2 + V(r)

]

ψ(r) = Eψ(r), (1.24)

where r is the relative coordinate and m is the reduced mass of the particle, can be
written as a sum of an incoming plane-waves plus an outgoing spherical wave with
a k momentum along the axis of its initial motion

ψk(r) ∝ eikz + f (k, θ)
eikr

r
. (1.25)

The scattering amplitude f (k, θ) doesn’t depend by φ for symmetry reasons. Since
the relative distance between two particles |r|, given by n1/3, is larger than rvdW ,
the long range limit reflects the condition in ultracold gases quite well. All the rele-
vant information are contained in the scattering amplitude which can be calculated
expanding the wave-function ψ(r) into the spherical-waves basis with angular mo-
mentum l. This expansion, inserted in the Schrödinger equation, leads to a radial
equation that depends on l and that can be related to the centrifugal barrier inhibit-
ing the scattering for l > 0 in the regime of small scattering energies. The centrifugal
barrier for 6Li is on the order of 7 mK and thus collisions for lower temperature could
only occur due to isotropic s-wave scattering. The only effect of an elastic collision
is a phase shift of δl for each spherical wave. In the ultracold regime the particles be-
come indistinguishable and to determine the scattering amplitude we need to take
into account that we cannot distinguish between two scattering properties, whose
the only difference is the permutation of the particles position. Thus, the differential
cross-section is given by

dσindist

dΩ
= | f (k, θ)± f (k, π − θ)|2, (1.26)

and the total cross-section is obtained by integrating it over the full solid angle

σtot(k) =
4π

k2

∞

∑
l=0

(2l + 1)[1± (−1)l ] sin2(δl(k)). (1.27)

The total cross-section is different from zero only for odd l, whereas it is even for
fermions. A Fermi gas interacting via s-wave scattering can hence only be realized
with at least two different kinds of fermions which are then distinguishable and can
interact, otherwise σ(k) = 0. For distinguishable particles at l = 0 and k → 0,
σ(k) = 4πa2. The universal parameter for scattering at low temperature is

a = − lim
k→0

tan δ0(k)

k
. (1.28)

At ultra-low temperatures, the thermal wavelength of De Broglie, associated
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with the relative momentum k, by far exceeds the van der Waals range of the in-
teratomic potential. As such, similarly to a light wave imprinting on a scatterer
much smaller than its wavelength, the resulting collision process is predominantly
isotropic, i.e. s-wave. As a consequence, owing the anti-symmetry against particle
permutation of the scattering wave function set by the Pauli principal for two identi-
cal fermions, ultracold collision are suppressed in spin-polarized fermionic samples.
Moreover in the ultracold regime the scattering properties are fully encoded in the
s-wave scattering amplitude, which in turn can be expanded as

f (k) = − 1

ik + 1
a − R∗k2

(1.29)

The ultracold collisions are therefore characterized by two only parameters which
are the scattering length a and the the effective range potential R∗. While a sensi-
tively depends on the presence of weakly bound (or virtual) molecular states near
the energy threshold of the colliding atoms, R* is essentially set by high-energy, mi-
croscopic properties of van der Waals interatomic potential [8]. In particular, when
the molecular state lays above the scattering threshold, a is negative, corresponding
to a net atom-atom attraction. On the other hand, the net interaction is repulsive if
the molecular state lays below the scattering threshold an thus a is positive.

The scattering processes are universal and can be described as a contact interac-
tion [9] with a pseudo-potential

V(r) = gδ(r) (1.30)

where δr is the delta function and g = 4πh̄2a/m is the so-called interaction strength.
The mean interaction energy in a sample with homogeneous density n = N/V is
given by

Eint(a) = gn =
4πh̄2n

m
a (1.31)

where the sign of the scattering length a leads to a different kind of the mean-field
interaction, i.e. attractive if a is positive, repulsive if a is negative.

Scattering in two-dimensions The reduced dimensionality affects the scattering
properties of the system and the interactions differ from those in a three dimensional
system. Due to the changed dimensionality, the scattering between two identical
particles is described by [10]

ψk(r) ∝ eikr −
√

i

8π
f (k)

eikr

√
kr

(1.32)

and for a pure 2D system at low energy one thus obtain for the scattering amplitude

f (k) =
4π

2 ln 1
ka2D

+ iπ
(1.33)

where a2D is the 2D scattering length. This formula shows that the 2D scattering
amplitude, in contrast with the 3D one, exhibits always a logarithmic dependence.

Collisional properties in quasi-two dimensions Nevertheless, in the quasi 2D-
regime the range of interaction, characterized by rvdW,Li ∼ 0.2 nm, is much smaller
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than the length scale of the axial confinement given by lx =
√

h̄/mωx and on about
410 nm for unbound atoms and 290 nm for molecules, for an axial frequency of about
10 kHz. Being the range of interaction rvdW,Li ≪ lx, the relative motion of the particle
is not influenced by the axial confinement and the scattering process can be derived
3D scattering amplitude. The scattering amplitude of this so-called quasi-2D system
has been calculated in and in the low energy limit E≪ h̄ωx is given by

f (k) =
4π√

2π lx
a + ln( α

π(klx)2 ) + iπ
(1.34)

with α ≈ 0.915 . From this formula we observe that the maximum scattering am-
plitude depends on the energy of the system k and on the ratio between lx and a, in
spite of the divergence of a in the 3D case. In this regime, i.e. when the scattering
energy is negligible as compared to the strength of the tight confinement, the 3D
scattering length can be defined in terms of the approximated binding energy

a2D = lx

√

π

A
e−
√

π
2

lx
a (1.35)

where A ≈0.905 In analogy to the 3D case, the 2D interaction strength is then [11]

g2D =

√
8πh̄2(a/lx)

m
=

h̄2

m
g̃2D (1.36)

with the dimensionless 2D coupling constant g̃2D =
√

8π(a/lx).

1.4 Feshbach resonances

Tuning the scattering length allow to resonantly control of the scattering properties
of atoms pair. This is precisely what happens at a magnetic Feshbach resonance,
where the open scattering channel is brought via the Zeeman effect to energy de-
generacy with a bound molecular state supported by another closed channel with
a different magnetic moment. Since the two interaction potentials depend on the
hyperfine states of our interacting participating particles, their magnetic momenta
differ and, thus, the difference in their continuum energy is given by ∆E = µ∆B.
Close to the resonance center B0 the scattering length deviates from its background
value abg, exhibiting a sharp dependence on the external magnetic field B given by

a(B) = abg

(

1− ∆

B− B0

)

(1.37)

where ∆ is the resonance width. In particular, the value and the sign of a(B) directly
determine both the scattering cross-section of the atom pair and the strength of the
inter-particle interaction, i.e. attractive if a(B) > 0, repulsive otherwise.

Feshbach resonances are a gift of nature offered to the experimentalist in the
field of the ultracold atoms, because through the simple application of an external
magnetic field on can make the strength of two-body interaction either attractive
or repulsive, arbitrarily large or small. Changing the interactions has allowed to
explore different regime of interactions between fermions, and brought to the first
observation of a "fermionic condensate". Even if the fermions, also at low tempera-
ture, have not coherent wave-functions due to the Pauli exclusion-principle, pairing
between fermions in different regime of interactions can lead to forms of matter, that
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FIGURE 1.5: Two-channel model of a Feshbach resonance. (a) Interaction potential as a
function of the interatomic distance between two particles. (b) Scattering length as a function
of the magnetic field B. (c) Energy of a bound molecular state as a function of the magnetic
field B.

"is not a BEC neither a superconductor but something that may link between this
two behaviors1".

1.5 BEC-BCS crossover

The BEC-BCS crossover, which connects bosonic and fermionic superfluidity, in three
dimensions, has been subject to intense studies. In contrast, its 2D counterpart is not
well understood yet. The experiments that will be performed in our apparatus after
the quasi 2D-confinement regime will be achieved, should contribute to understand-
ing these many-body phenomena. In this Section I will discuss BEC-BCS crossover
in 3D, giving an very brief overview on the changing expected in 2D.

Three-dimensions In these regime is possible to achieve the so-called fermionic
superfluidity. The strength of interaction is quantified by the dimensionless interac-
tion parameter 1/kFa which relate the inter-particle spacing∼ 1/kF to the scattering
length a. By tuning the scattering length we are able to access three different regimes
as shown in Fig. 1.6.

BEC regime For 1/(kFa) → +∞ we reach the so-called BEC regime in which there
formation of molecules. Tuning the interaction close to the Feshbach resonance
on the repulsive side with a > 0 leads to the formation of weakly bound
molecules by three-body recombination where the excess momentum is car-
ried away by a third particle. To this molecular bound state, if a >> R∗ is
possible to associate an universal binding energy

EB =
h̄2

ma2
. (1.38)

When the temperature of the gas is smaller than EB, two fermions with differ-
ent spin can occupy this bound state and create a composite bosonic molecule.
The trap depth is increased by a factor two for molecules because two times

1Debbie Jin
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FIGURE 1.6: Phase diagram of the crossover region. The pair creation temperature T∗ is
given by the dashed line, whereas the superfluid transition temperature TC is given by the
solid line. The picture is taken from [12].

larger polarizability which suppresses the loss of molecules in contrast of the
loss of atoms.

BCS regime : For 1/(kFa)→ −∞ we reach the weakly attractive interaction regime
known as BCS-regime, where correlation in momentum space takes place and
the so-called Cooper pairs can be formed. Since in the BEC limit pairing is only
a two body phenomenon, Cooper pairs are called many-body pairs because
the filled Fermi sea up to the Fermi surfaces necessary to the formation process
and the pairing is generated by the collective interaction around the Fermi sur-
face.The ground state of a balanced attractive, non interacting two-component
Fermi gas at zero temperature with energy E0 = N(3/5)EF is unstable against
attractive interactions and that pairing momentum space reduces the energy
of the system following [13]

EBCS = E0 −
1

2
ρ(EF)∆

2
GAP (1.39)

where EBCS describes the energy of the attractively interacting BCS state, ρ(EF)
corresponds to the density of the states at the Fermi level and ∆GAP is related to
an energy gap in the excitation spectrum at the Fermi surface. The minimiza-
tion of the energy of the system is thus given by the formation of the so-called
Cooper pairs [14], which consist of two particle of opposite momentum and
spin. The zero temperature paring gap depends exponentially on the absolute
value of the scattering length a [15]

∆GAP ∼
(

2

e

)7/3

EFe
− π

2kF |a| (1.40)
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and it is related to break a pair. The temperature TC for which the Cooper pair
become superfluid in a finite temperature system is given by kBTC = eγ

π ∆GAP,
where eγ = 1.78 [15]. In the limit of weakly attractive interaction, this temper-
ature coincide with with the critical temperature to create Cooper pairs T∗. the
transition temperature TC is very low compared to the transition temperature
at the BEC side making the transition from a weakly interacting Fermi gas to
the superfluid phase rather hard to realized.

Unitary regime : The precedent two limiting cases are continuously connected by
the Unitary regime characterized by 1/(kFa) → 0. When the range of inter-
action between particle diverges, the character of the interaction is no more
relevant, because the scattering amplitude does not depend on the scattering
length a anymore.This regime is generally called universal. All the thermody-
namic properties of the system can be described on the natural energy scale EF

and for this reason the physical properties of this kind of strongly interacting
degenerate gas can be found in different systems ranging from atomic nuclei to
neutron star. The parameter that discriminates between these systems is their
density, which goes from approximately 1012 atoms/cm3 in ultracold atomic
samples until 1038 atoms/cm3 in neutron stars. Despite the divergence of the
scattering length the crossover from one side to another is smooth and the adi-
abatic switches of the magnetic field value may allow to explore the different
regimes during the same experimental cycle.

Two-dimensions As discussed above, the reduced dimensionality affects the scat-
tering properties of the system leading, for a 2D Fermi gas, to the existence of a
confinement induced two-body bound state EB,2D for every magnetic field, which
can be related to a 2D scattering length a 2D by the equation

EB,2D =
h̄2

ma2
2D

. (1.41)

This quantity depends on the trap geometry and it is connected to the 3D scattering
length a via the transcendental equation [11]

lx

a
=

∫ ∞

0

du√
4πu3

(

1− exp(−EB,2Du/h̄ωx)
√

1
2u (1− exp(−2u))

)

. (1.42)

For weak attractive interaction and |a| < lx, the molecular binding energy can be
well approximated by [11]

EB,2D = 0.905(h̄ωx/π)exp(−
√

2πlx/|a|). (1.43)

Close to the 3D Feshbach resonance for diverging a, this equation no longer holds
and it can be replaced by the universal constant EB(a = ∞) = 0.244h̄ωx. For a repul-
sive three dimensional scattering length a > 0 the two dimensional molecular state
EB,2D approaches the three dimensional one EB. Then the size of the molecule given
by a2D = /

√
mEB becomes smaller than the characteristic length of the confinement

lx and so the binding energy is not longer affected by the confinement. In 2D, the
BEC and BCS limit are reached for ln(kFa2D) > −1 and ln(kFa2D) respectively. Sim-
ilar to the 3D case, a 2D Fermi gas on the BEC side of the crossover consists of deeply
bound bosonic molecules. However, there is no Bose- Einstein condensation but a
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BKT transition into a superfluid state for T> 0 in the homogeneous case, similar
as in the 2D Bose gas. Although for ln(kFa2D) > 0, the two-body bound state still
exists, it is only loosely bound, and can be broken up when µ and kBT become on
the order of its binding energy. Thus, the system becomes fermionic for sufficiently
large ln(kFa2D), in analogy to the 3D case. In the fermionic limit with weak attrac-
tive interaction, the system can be described by loosely bound Cooper pairs in the
framework of BCS theory as in the 3D case. Similar to the 3D case, Cooper pairing
occurs for sufficiently low temperatures.

1.6 Our experiment

This master thesis project has been carried out in the context of an ultracold atom ex-
periment, aiming to study the behavior of quantum degenerate fermionic atoms in
two and three dimensions across the BCS-BEC crossover. In this last Section, I will
give a very brief overview of the experimental procedure for producing the cold
fermionic gases. The atomic samples used for this study is chosen as 6Li that is the
only stable fermionic isotope of the alkali metals apart from 40K. Lithium is one of
the simpler atoms of the periodic table. First, as an alkali, it has only one valance
electron and thus exhibits a simple, hydrogen-like electronic spectrum, making it
suitable for laser cooling. Second, it is by far the lightest element and it is relevant
in the realization of optical lattices because light atoms can tunnel very efficiently
(see Subsection 2.3.2) since the recoil energy in a lattices scales as ER ∝ 1/md2 where
d is the lattice constant. Another advantage that has made 6Li so widely used in
ultracold atoms experiments is its extremely broad Feshbach resonances among the
two lowest hyperfine levels at 832 Gauss that allow a unique control of the interac-
tion between particles, permitting to explore extensively the physics at the BEC-BCS
crossover and to realize toy-models of condensed matter systems.
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FIGURE 1.7: Hyperfine structure of 6Li at zero magnetic field and scheme of the D1 and D2
transitions. In orange the transitions used for the grey molasses cooling [16].

In order to implement laser cooling and trapping for the realization of a quan-
tum degenerate atomic samples, the optical spectrum of lithium (see Fig. ??) offers a
prominent spectroscopic feature called D-line that corresponds to the transition be-
tween the ground state 2S and the excited state 2P. For 6Li the total electronic spin
is S = 1

2 and the nuclear angular moment is I = 1 and this leads to total angular
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FIGURE 1.8: View of the overall UHV apparatus where ultracold lithium gases are produced.
Atoms are initially held in the oven and then enter though a nozzle in the main UHV system.
Deceleration by Zeeman slower allows atoms to be captured inside the science chamber,
where magneto-optical trapping and evaporative cooling in a crossed optical dipole trap are
performed.

momentum of the atoms F = S + L + I to just have integer values, justifying the
fermionic character of the isotope. The two fine structure lines D1 and D2, where
the splitting is given by the spin-orbit interaction ∝ L · S. Considering also the cou-
pling with the nuclear spin ∝ J · I, where J = L + S one find the hyperfine structure.
During the experiment we introduce the Feshbach magnetic field, therefore we have
to consider the Zeeman shift of the energy levels due to the interaction between this
field and the total spin of the atoms. The typical used magnetic field B ≥ 500 Gauss
is high enough to completely decouple I and J inducing a shift with respect to the
hyperfine line of ∆E ≃ µBgJmJ B/h̄, where gJ is the Landè factor and mJ is magnetic
quantum number associated to the total electronic momentum.

The experimental sequence to produce a degenerate gas of 6Li is the following.
A sample of 6Li is heated in an oven to about 400° to generate a collimated beam
of atoms. The hot atoms are then slowed by a counter-propagating laser beam in a
Zeeman slower while propagating to the science chamber where they are captured
by a magneto-optical trap (MOT). In the MOT they are cooled down operating on
the D2 optical transitions 2S1/2 → 2P3/2. The advantage respect the D1 line is that
D2 transition has a lower saturation intensity, i.e. 2.56 mW/cm2 respect to those of
D1 transition , requiring quite low laser power. Moreover, from a theoretical point
of view, the only closed transition in this system is the F = 3/2 → F′ = 5/2 that
is contained in the hyperfine structure of the D2 line. We typically collect about 109

atoms at about 500 µK. The temperature in this phase is limited by the absence of
efficient sub-Doppler cooling due the unresolved hyperfine splitting of the excited
states. In our experiment it been developed an efficient sub-Doppler scheme based
on gray molasses which exploits D1 transitions 2S1/2 → 2P1/2 as described in details
in [16]. This mechanism relies the presence of dark states which are populated by
choosing the opportune relative ratio and relative frequency between cooling and
repumper lights. In this way we can cool the lithium sample to about 40 µK in about
10 ms. The fraction of cooled atoms is about 75% of the initial number. These are
the ideal conditions to transfer the atoms in a conservative potential, i.e. an optical
dipole trap (ODT), where we perform the evaporative cooling to quantum degener-
ate regimes. A detailed description of the fundamental parts of the apparatus (see



1.6. Our experiment 21

Fig. 1.8), can be found in the master thesis [17] [18] [19] and in the PhD thesis [20].
All cooling stages from the magneto-optical trap (MOT) to the evaporative cool-

ing, and all of the physical experiments are performed in the same science cham-
ber. It is a custom octagonal stainless-steal cell from Kimball Physics and its sev-
eral windows allow a large optical access among several directions to perform high-
resolution imaging of the atomic cloud and to imprint many optical potentials. On
the vertical axis it is equipped with two large re-entrant view-ports with silica win-
dows, made by Ukaea, with a 60 mm diameter and a thickness of 6 mm with a rel-
ative distance in vacuum of 25.4 mm. The diameter of the circumference inscribed
into the octagon is of 177.3 mm and then the distance between the center of the
chamber, i.e. the position of the atoms, and the window is about 9 cm; at this dimen-
sion has to be added the weight of the window that is about 1 cm. The size of the
window in the horizontal plane is about 6 cm for the diameter.
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Chapter 2

An optical lattice for quasi-2D
confinement of lithium atoms

Laser light is a powerful tool that can be used to change the internal state of an atom
but also to manipulate its external degrees of freedom, i.e. its velocity and its posi-
tion. Radiative forces, associated with the absorptive and the dispersive properties
of the interaction between light and atoms, permit cooling and trapping, respec-
tively. Optical potentials are based on the conservative and almost purely disper-
sive interaction between atoms and light detuned from the frequency of the atomic
transitions. They became a fundamental ingredient in the field of ultracold gases
as they allow to confine atoms in tailored and tunable geometries. This tunability
can be exploited to simulate a great variety of physical systems, ranging from ho-
mogeneous 3D, low dimensional systems and double or multi-well configurations,
enabling single-atom addressability and arbitrary imprinting of potentials. In par-
ticular, optical lattices created by interference between laser beams are used to form
potentials for atoms in which the atoms motion can be frozen along one, two or all
the dimensions, adding up multiple tightly confining potentials. In this Chapter,
after first introducing the essential properties of optical dipole potentials (see Sec-
tion 2.1) and optical lattices (see Section 2.2), I will discuss the requirements for the
quasi-2D confinement of lithium atoms. I will then present the optical lattice scheme
that was designed in the context of this thesis (see Section 2.4) and I will outline its
experimental implementation (see Section 2.5).

2.1 Optical dipole trapping

Optical dipole trapping of atoms relies on the dipole interaction between the spa-
tially inhomogeneous electric field of the laser radiation, far-detuned from the rele-
vant atomic transitions, and the induced atomic dipole moment. Optical potentials
offer very small heating rates, a great choice of trap geometries and the possibility
for trapping atoms independent of their specific substate. On the other hand, the
dipole force is the weakest mechanism to confine atoms and it leads to trap depths
that are typically below 1 mK, therefore much smaller than those based on radiation
pressure or magnetic-dipole interaction. For this reason, atoms loaded in optical
dipole traps need to be pre-cooled since the temperature has to be lower than the
trap depth to avoid losses. Such traps, considered for the first time in the ’60s in
connection with plasmas as well as neutral atoms, are nowadays employed not only
in ultracold atomic physics but are also used routinely in biophysics, where they are
known as optical tweezers.

To discuss which are the principal features to take into account for realizing a
dipole trap with laser beams, I am going to follow the review article by Grimm et
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al. [21]. Qualitatively, when an atom, considered as a simple oscillator, is placed
in an electromagnetic field, like that of a laser beam, the electric field E(r, t) =
ê E(r) exp(−iωt)+ c.c. induces an atomic dipole moment p(r, t) = α(ω)E(r, t) which
starts to oscillate at the field frequency ω with a complex frequency-dependent po-
larizability α(ω). The two main quantities of interest for dipole traps are the time-
averaged interaction energy of the induced dipole with the generating electric field,
and the photon scattering rate

Udip(r) = −
1

2
〈p(r, t)E(r, t)〉 = − 1

2ǫ0c
ℜe{α(ω)}I(r) (2.1)

Γsc(r) =
Pabs

h̄ω
=

1

h̄ǫ0c
ℑm{α(ω)}I(r), (2.2)

where Pabs = 〈ṗ(r, t)E(r, t)〉 is the power absorbed by atoms from a stream of pho-
tons with energy h̄ω, then re-emitted as dipole radiation, and I(r) = 2/(ǫ0c)|E(r)|2
is the position-dependent intensity. The dipole potential, being related to the real
part of the polarizability, depends on the part of the dipole that oscillates in phase
with the external field. On the other hand, the photon scattering rate is related to the
imaginary part of the polarizability and it thus describes the dissipative component,
which is related to out-of-phase dipole oscillation.

In order to calculate the polarizability, while a purely classical model gives some-
time reasonable results, generally, and also for lithium, a semi-classical approach is
necessary. Here, the atom is approximated by a two-level quantum system with an
energy separation of h̄ωA interacting with a classical radiation field. In this view,
the atomic polarizability can be calculated using the spontaneous decay rate of the
excited state Γ = (ω3

A/3πǫ0h̄c3)|〈e| p̂ |g〉|2, where 〈e| p̂ |g〉 is the transition dipole
matrix element for the electric dipole operator p̂ = −er̂. The dipole potential and
the photon scattering rate are then given by

Udip(r) = −
3πc2

2ω3
A

(

Γ

ωA −ω
+

Γ

ωA + ω

)

I(r) (2.3)

Γsc(r) =
3πc2

2h̄2w3
A

(

ω

ωA

)3(
Γ

ωA −ω
+

Γ

ωA + ω

)2

I(r). (2.4)

At too high intensities, the excited state becomes strongly populated and the above
result is no longer valid. For dipole trapping, however, we are essentially interested
in the far-detuned regime with very low saturation and scattering rates.

If the laser detuning ∆ = ω − ωA fulfills |∆| ≪ ωA we can use the so-called
Rotating Wave Approximation (RWA) by neglecting the counter rotating term ωA + ω

as

Udip(r) = −
3πc2

2ω3
A

Γ

∆
I(r) (2.5)

Γsc(r) =
3πc2

2h̄2ω3
A

(

Γ

∆

)2

I(r) (2.6)

These expressions help to emphasize the two essential properties of dipole trapping.
Firstly, the dipole potential and the scattering rate depend both on the intensity and
the detuning of the laser, as I/∆ and I/∆2, respectively. In this way, the choice of
large detunings and high intensities permits the creation of almost fully conserva-
tive potentials, limiting the scattering rate as much as possible for a given potential
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depth. Secondly, the attractive or repulsive character of the potential experienced by
the atoms depends on the sign of the detuning. Below the atomic resonance, where
∆ < 0, the potential is negative, and the dipole interaction attracts atoms into the
light field realizing a red-detuned trap, whose potential minimum corresponds to
positions in which the intensity is maximum. Above the resonance, instead, where
∆ > 0, the dipole interaction repels the atoms out of the beam giving rise to a blue-
detuned trap, in which the potential minimum corresponds to the minimum of the
intensity.

The same results can be obtained starting from a complete quantum mechanical
treatment within the so-called dressed-state approach [22] [23], where also the electro-
magnetic field is quantized and the effects of the far-detuned laser light on the atomic
levels are treated as second order perturbations of the electric field. In presence of a
radiation the atomic spectrum is modified by the presence of the field, which induces
an energy shift of the levels known as ac Stark shift. For low saturation, like those
of interest for optical trapping, it is possible to interpret the light-shifted ground state
∆E = (3πc2/2ω3

0) (Γ/∆)I, as the relevant potential for the motion of the atoms, be-
cause the atoms reside most of the time in the ground state. In this view, the ground
state level is lowered for red-detuned and raised for blue-detuned light.

However, in real multi-level atoms, the electronic levels have a complex sub-
structure and we need to take into account contributions coming from every pos-
sible transition. For alkali atoms, first-order relativistic corrections, like the spin-
orbit coupling, split the ns → np transition into the D1 (nS1/2 → nP1/2) and D2
(nS1/2 → nP3/2) line. Assuming that the detuning is large enough to allow to ne-
glect the hyperfine splitting of the excited state, the total dipole potential is given by
[21]

Udip(r) =
1− PgFmF

3
Udip, D1(r) +

2 + PgFmF

3
Udip, D2(r) (2.7)

where P describes the polarization of the light (±1 → circular, 0 → linear), gF is the
Landè g-factor, mF is the magnetic quantum number of the hyperfine ground state.
Udip, D1(r) and Udip, D2(r) depend on the respective detunings from the D1 and D2
transitions and their linewidths.

Polarizability of lithium atoms in a green laser beam

In this master thesis I will consider lithium atoms and a green trapping laser at λ =
532 nm, blue-detuned with respect to the main transitions of lithium. To realize an
optical dipole trap with blue-detuned laserm, in order to anticonfine lithium atoms,
we have to consider that: i) D1 = 670.992 nm and D2 = 670.977 nm are very close
each other and thus we have to use both; ii), the detuning is not much smaller than
D1 and D2 lines and so we cannot use RWA neglecting (ωA + ω)−1 with respect to
(ωA−ω)−1; iii), the linewidth for the D1 and D2 lines is the same Γ = 2π 5.87 MHz;
iv), we consider linearly polarized light. With these assumptions, from Eq. (2.7), we
obtain

Udip(r) = −αdip(ω)I(r) (2.8)

where the real part of the polarizability is given in units 1 of 2ǫ0c and it is written as

αdip(ω) =
πc2Γ

2

[

1

w3
D1

(

1

ωD1 −ω
+

1

ωD1 + ω

)

+
2

w3
D2

(

1

ωD2 −ω
+

1

ωD2 + ω

)]

.

(2.9)

1According with Eq. (2.1) the relation is given by αdip(ω) = (2ǫ0c)−1Re(α(ω)).
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The value for ω ≃ 3.5 THz, i.e. λ = 532 nm, is αdip ≃ −8.518× 10−37 Jm2/W.

2.1.1 Gaussian laser beam traps

The spatial intensity distribution of a circular laser beam with power P propagating
along the z-axis can be approximated by an ideal Gaussian profile [24] described by

I(r) = I0(z) exp

[

−2
r2

w2(z)

]

(2.10)

with I0(z) = 2P
πw2(z)

and r2 = x2 + y2 where r denotes the radial coordinates. The

waist of the beam w(z) is defined as the width over which the intensity of the Gaus-
sian beam decreases by a factor 1/e2 of its peak value and it depends on the axial
coordinate z as

w(z) = w0

√

1 +

(

z

zR

)2

(2.11)

where the minimum radius w0 is called the beam waist and zR = πw2
0/λ denotes the

Rayleigh range, i.e. the length below which the beam can be considered collimated:
in particular at this distance the beam waist is w(zR) =

√
2w0. At r = 0 and z = 0,

i.e. in the point in which the beam is focused, the intensity of the beam is given by
I0 = 2P/πw2

0 and from this it is possible to derive the trap depth U0 = −αdip(ω)I0.
If the thermal energy of an atomic ensemble kBT ≪ U0, i.e. the sample size in

the radial direction is small compared to w0 and in the axial direction it is small
compared to zR, it is possible to use a harmonic approximation to extract the trap
frequencies. This can be considered a reasonable assumption since the atoms are
confined principally in the centre of the trap. The dipole potential in the harmonic
approximation is

Udip(r) ≃ U0

(

1− 2
r2

w2
0

− z2

z2
R

)

(2.12)

and from the comparison to a harmonic potential Uharm(r) =
1
2 m(ω2

r r2 + ω2
z z2), one

can define the radial and axial trap frequencies

ωr =

√

4U0

mw2
0

, ωz =

√

2U0

mz2
R

(2.13)

where we can observe that the axial confinement is typically much weaker than the
radial one, because zR is usually much larger than w0, and therefore the trapping po-
tential generated by a single focused beam is very anisotropic. As U0 is proportional
to P/w2

0 and zR to w2
0, the dependence of the trap frequencies both on the power and

on the beam waist is given by ωr ∝
√

P/w2
0 and ωz ∝

√
P/w3

0.
In the master thesis, in order to realize trapping potential with highly anisotropic

trap frequencies (see Section 2.3 and 3.2.2), I will deal with elliptical Gaussian beams.
All the considerations done for a circular beam can be easily extended for this more
general case. The distribution intensity of such a laser beam can be written as

Iell(r) = I0 ell(z) exp

[

−2

(

x2

w2
x(z)

+
y2

w2
y(z)

)]

(2.14)
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FIGURE 2.1: Spatial intensity profile of a highly elliptic focused Gaussian beam. As an ex-
ample, the profile calculated for w0x = 70 µm and w0y = 1200 µm is shown.

with I0 ell(z) = 2P
πwx(z)wy(z)

, and new waists in the radial directions x and y, each of

them characterized by its own beam waist w0i and Rayleigh range zRi

wi(z) = w0i

√

1 +

(

z

zRi

)2

, i = x, y (2.15)

Within the harmonic approximation of the dipole trap, close to the focus, we have

Udip(r) ≃ U0ell

(

1− 2
x2

w2
0x

− 2
y2

w2
0y

− z2

z2
Rell

)

(2.16)

where U0 ell is calculated in the same way as for a circular beam, but taking into
account that the effective beam waist w0 ell is defined as the geometric mean of the
beam waists in the radial directions, w0 ell =

√
w0xw0y, and the effective Rayleigh

range is given by zR ell =

√

2z2
Rxz2

Ry

z2
Rx+z2

Ry
, where zRx and zRy are the Rayleigh ranges along

the z-direction associated with w0x and w0y, respectively. Using the same procedure
as above, the trap frequencies for a single elliptic beam are the following:

ωx =

√

4U0 ell

mw2
0x

, ωy =

√

4U0 ell

mw2
0y

, ωz =

√

2U0 ell

mz2
R ell

. (2.17)
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2.2 Optical lattices

One of the most successful among optical potentials is the optical lattice, which ex-
ploits optical dipole force and light interference to create a very tight confinement,
effectively changing the dimensionality of the space in which atoms can move. This
offers the possibility to realize a great variety of trapping geometries, such as highly
anisotropic or multi-well potentials. The lower the dimensionality that one wants
to achieve, the higher is the number of laser beams that one has to use: in an opti-
cal lattice, the atomic motion can be indeed frozen along one, two, or three spatial
dimensions. More generally, optical lattices can be used to emulate the crystalline
structure of solids with ultracold atoms, enhancing the role of interactions and al-
lowing to explore the strong correlation phenomena typical of condensed matter
systems.

To realize a two-dimensional confinement, two laser beams interfering with equal
polarization are necessary. In general, the intensity of two superimposed monochro-
matic plane waves with equal frequency and complex amplitude E1(r) = E0 exp i(k1r1 +
δ1) and E2(r) = E0 exp i(k2r2 + δ2) is given by [25]

Ilatt(r) = I1(r) + I2(r) + 2
√

I1(r)I2(r) cos ∆θ(r), (2.18)

where ∆θ(r) = kr + δ is the difference between the argument of the two waves2,
and I1(r) = |E1(r)|2 and I2(r) = |E2(r)|2 are the intensity profiles. If the intensity
distribution of the two beams is the same, i.e. I(r), then we obtain

Ilatt(r) = 4 I(r) cos2
(∆θ(r)

2

)

. (2.19)

The most common way of creating an optical lattice is to retro-reflect a Gaussian
laser beam off a mirror over itself, generating a standing wave by the interference
between the two counter-propagating waves. This produces a 1D periodic potential
of the form

Ulatt(r) = 4Udip(r) cos 2

(

∆θ(r)

2

)

, (2.20)

where Udip(r) is the dipole potential of the single beam and ∆θ(r) is the phase dif-
ference, which vanishes at the location of the retro-reflecting mirror. ∆θ(r) is given
by a more complicated expression than that for a plane wave3, but in the waist of
the beam the only important term is that of a plane wave. Therefore, considering a
beam propagating in the z-direction and the focus position, we can write

Ulatt(r) = 4Udip(r) cos 2(kLz) (2.21)

where kLz = ∆θ(r)/2 and kL = π/d is the lattice wave vector, which determines the
spacing d.

In the case of a retro-reflected lattice, kL is directly associated with the wave vec-
tor of the laser k = 2π/λ, resulting in a periodicity of d = λ/2. For example, for
λ = 532 nm the lattice spacing would be just 266 nm. On the other hand, cross-
ing two independent beams with parallel polarization at an angle between 0 and
π/2 gives the possibility of creating lattices with larger spacing. If the two beams

2Namely, k = k1 − k2, r = r1 − r2 and δ = δ1 − δ2.
3The position-dependent phase of the electric field of a Gaussian beam is given by θ(r) = kr +

kr2/2R(r)− ζ(r) (see [24]), whereas that of a plane wave is simply θ(r) = kr. In both cases, a phase
constant δ can be added from a reference point.
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FIGURE 2.2: Definition of the potential radii in the x − z plane. Left panel: Two beams
propagating in the x− z plane cross each other at an angle of ±φ, with respect to the z-axis.
Right panel: The dimensions of the interference region are given by the intersection of the
ellipses describing the foci of the two beam with the axes. Gravity is oriented the along
x-axis.

propagate respectively at an angle of ±φ from the z-axis in the x − z plane, in the
z = 0 plane the lattice wave vector equals kL = π sin φ/λ, and the lattice spacing is
therefore given by:

d =
λ

2 sin φ
. (2.22)

By changing the angle between the two beams, it is possible to adjust the lattice
spacing. Large spacings correspond to small crossing angles, whereas large angles
produce denser interference patterns. If the two beams have the same intensity pro-
file, tuning the mutual angle between them does not change the total trap depth, but
it only influences the trapping frequencies and their dependence on the beam waists
and powers. To investigate the dependence of trapping frequencies on the beam pa-
rameters, we can describe the geometry of the trap created by the beam propagating

at +φ as an ellipse in the x − z plane, x2

a2 + z2

b2 = 1, where a = w0x and b = zR, as
shown in Fig. 2.2. When this ellipse is rotated into the used coordinate system at an
angle φ, the potential radii are given by

w̃0x(φ) =

√

√

√

√

1
cos2(φ)

w2
0x

+ sin2(φ)
2z2

R

(2.23)

w̃0z(φ) =

√

√

√

√

1
sin2(φ)

w2
0x

+ cos2(φ)
2z2

R

, (2.24)

and for φ = 0, the potential radii reduce to the waist and the Rayleigh range w̃0x =
w0x and w̃0z = zR. w̃0x and w̃0z give the dimensions of the intersection region be-
tween the two beams. In their definitions, the factor of 2 next to zR takes into account
that the confinement in the axial direction is weaker than the radial one. Considering
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that the two beams intersect each other in their own foci, and with the same assump-
tions made before, we can then write the lattice trapping potential in the harmonic
approximation as

Ulatt(r) ≃ 4U0 cos 2(kLx)

(

1− 2
x2

w̃2
0x(φ)

− 2
y2

w2
0y

− z2

w̃2
0z(φ)

)

. (2.25)

The x-dependence of the trap depth reflects the effect of the interference between the
two waves, which lead to the lattice modulation. The relevant trapping frequencies
in this case are given by:

ωx lattice(φ) =

√

8π2U0 ell

md2(φ)
, ωy(φ) =

√

16U0 ell

mw2
0y

, ωz(φ) =

√

16U0 ell

mw̃2
0z(φ)

.

(2.26)

2.3 Desired lattice properties

The main goal of this thesis is the realization of a suitable optical potential for the
confinement of ultracold fermionic atoms of lithium in two dimensions. The re-
alization of this kind of potential will provide an essential step for the future in-
vestigation of 2D fermionic systems. In our ultracold lithium experiment, we load
fermionic atoms from a magneto-optical trap into an optical dipole trap in which
atoms are evaporatively cooled to quantum degeneracy. In order to transfer a large
number of atoms in a 2D geometry, we will first transfer the sample from the three-
dimensional dipole trap into a strongly-anisotropic single-beam trap. From such
intermediate trap, the atoms will then be loaded into a large-spacing optical lattice.
During this thesis, I have designed and built the optical lattice set-up which will be
integrated into the experiment in the near future for this purpose. In the following
Section, I present the main considerations which have determined the design of the
realized trapping potential. The requirements are two-fold. First, the trapping fre-
quencies ωx, ωy, ωz need to be chosen to guarantee that the system is effectively 2D
for the typical gas temperature and atom number in the experiment. This require-
ment guides the choice of the lattice beam waists, the angle 2φ between the lattice
beams and their power P0. Second, the tunneling properties in the lattice potential
should be conveniently flexible, giving the possibility of coupling different gases
trapped in different minima of the lattice potential while maintaing their quasi-2D
character. The tunnelling in the lattice also depends on the lattice beam intensities
and on the lattice spacing d. In order to correctly design the lattice set-up for achiev-
ing the desired properties, I have initially modelled the potential using a computer
program to calculate all the relevant quantities and their dependence on the lattice
beam parameters.

2.3.1 Trapping frequencies

Conditions for creating a quasi-2D system

As already explained in Chapter 1, to realize a quasi-2D system we need to con-
fine the atoms in a harmonic trap that is much more tightly confining along the x-
direction than along the other two, y and z. In particular, to achieve a quasi-2D Fermi
gas, the thermal and the Fermi energy have to satisfy the criterion kBT, ǫF ≪ h̄ωx,
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FIGURE 2.3: Trend of the relevant quantities for quasi-2D confinement as a function of the
vertical waist size of the single lattice beams at 532 nm(which shall be equal for the two
beams). All quantities have been obtained after imposing that the in-plane frequencies νy

and νz are equal. (A) In the upper panel, the relation written down in Eq. (2.30) is shown
between the beam waist along the y-direction (horizontal), w0y, and the beam waist in the
x-direction (vertical), w0x, for a single beam propagating at an angle of 3◦ with respect to the
yz-plane. In the lower panel, the single-beam potential strength U0 is plotted as a function of
w0x. (B) In the upper panel, the in-plane trap frequencies νy and νz are plotted as a function
of w0x. In the lower panel, the axial trap frequency νx is plotted as a function of w0x. In both
panels, P0 is taken equal to 1 W. In both panels, the colored curves correspond to different
beam crossing angles φ: 2.70◦ (orange), 3.05◦ (blue) and 3.43◦ (green).

where ωx is the axial trapping frequency. The gas is then confined to only the low-
est transverse harmonic oscillator state in the axial direction. The critical number
of atoms Ncrit below which the quasi-2D condition is satisfied is discussed in detail
in Section 1.2.2, and Ncrit ≈ 2.5× 104 with ωx ≃ 2π 7.5 kHz and ωy,z ≃ 2π 30 Hz.
Therefore, to ensure the quasi-2D trapping of large atomic samples Ncrit > 104 with
weak in-plane confinement, axial frequencies of at least several kHz are necessary.

Conditions for creating a circularly symmetric sample

To obtain a circular, horizontally isotropic sample in the quasi-2D regime, the in-
plane frequencies must be approximately equal. For a blue-detuned lattice potential,
the potential is anti-confining and the in-plane frequencies are therefore imaginary.
As discussed at the end of this Chapter, additional potentials are thus needed to con-
fine the atoms in plane. However, having equal in-plane imaginary frequencies from
the lattice potential is still the most convenient starting point to create approximately
circular samples. For a lattice created by the interference of two beams propagating
at angles ±φ from the z-axis in the x − z plane, the condition ωy = ωz imposes a
precise relation between the dimensions of the beam waists. Using Eq. (2.26), we
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find that the in-plane frequencies are related as follows

ωy = ωz
w0y

w̃0z(φ)
, (2.27)

and imposing that the two frequencies are equal, we have:

1

w2
0y

=
sin φ2

w2
0x

+
cos φ2

z2
R

. (2.28)

From this, we can finally write:

1

w2
0y

=
sin φ2

w2
0x

+ cos φ2 λ2

4π2

(

1

w4
0x

+
1

w4
0y

)

. (2.29)

The explicit relation between the beam waists w0y and w0x to ensure that ωy = ωz is
therefore

w0y = ±

√

√

√

√

w4
0x

2(Aw2
0x + B)

±
√

w8
0x

4(Aw2
0x + B)2

− Bw4
0x

(Aw2
0x + B)

, (2.30)

where A = sin φ2 and B = cos φ2 λ2

4π2 . The trend of the relevant trap parameters
has been calculated when this relation is fulfilled. In Fig. 2.3, the trap depth and
frequencies are plotted for blue-detuned lattice beams at 532 nm.

2.3.2 Tunneling properties

Single-layer configuration

For the study of a single two-dimensional system, it is mandatory to load a single
minimum of the lattice potential. The efficiency of the atom transfer from the dipole
trap into a single node of the lattice, i.e. an highly anisotropic trap, depends on the
overlap and the position matching between the minimum of the optical dipole trap
and that of the deepest minimum of the optical lattice. The main requirement for
obtaining an efficient loading into a single lattice minimum is therefore to have a
large number of atoms contained within the volume of a single pancake when the
lattice is turned on. To this purpose, a large-spacing optical lattice represents the
optimal choice, as it offers the optimal trade-off between tight axial confinement
and large single-minimum width, rendering the loading process more practical and
efficient.

To aid the loading of a single lattice plane, it is convenient to prepare a molecu-
lar BEC in the dipole trap, since its density is much higher than that of a degenerate
Fermi gas. Another way to prepare a single two-dimensional trap would be to trans-
fer atoms from a full dipole trap into a stack of pancakes, and subsequently empty all
of them except the central one by a spatially-selective removal. This can be achieved
for instance by driving internal state transitions [26] [27]. However, this procedure
may lead to an important atom loss, that is detrimental for exploring large systems.
A very clever way to load many atoms in the quasi-2D regime is to realize a dy-
namically tunable confinement using a so-called "optical accordion". This consists
a large-spacing optical lattice where the angle between the two interfering lattice
beams can be dynamically increased, making the confinement stronger only after
the loading process of a single minimum has been completed (see Section 2.5.2).
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Multi-layer configuration

The realization of a large-spacing optical lattice allows to realize a multi-layer gas
of atoms, where several planes are populated and whose coupling can be varied by
tuning the power of the lattice beams. Depending on the height of the potential bar-
riers between the planes, the atomic wave function will be more or less delocalized
over different potential wells. To create isolated quasi-2D atomic samples, the poten-
tial depth in each lattice minimum must be sufficiently high to separate the samples
from one another, suppressing the tunneling of atoms between them. The tunneling
is influenced by two lattice parameters: the intensity of the lattice beams I0, and the
spacing of the lattice d. The tunneling rate can be roughly estimated starting from
the barrier parameters, considering single-particle eigenstates in an infinite periodic
potential, as described in [28]. The potential has a tunable amplitude 4U0, where
U0 = −αdip(ω)I0 is the potential height for a single beam with intensity I0, defined
in Subsection 2.1.1. The lattice depth is typically given in units of the lattice recoil
energy

ER =
h̄2k2

L

2m
=

h2

8md2
=

h2

2mλ2
sin2 φ, (2.31)

which is the kinetic energy of an atom with mass m and momentum kL = π/d,
where d is the spacing of the lattice. The tunneling energy J > 0 is the kinetic energy
gain due to the tunneling from one potential well to the neighbouring one. In the
limit U0 >> ER, the tunneling energy is obtained from the 1D Mathieu equation [28]
and is given by

J ≈ 4√
π

ER

(

4U0

ER

)3/4

exp

[

−2

(

4U0

ER

)1/2]

. (2.32)

The light mass of 6Li atoms yields an particularly large recoil energy, e.g. ER/kB ≃
16 nK with d ≃ 5 µm. This allows lithium atoms to tunnel very efficiently, so that
atomic clouds trapped in different lattice minima can be coupled by inter-layer tun-
nelling. By estimating the tunneling energy as a function of the lattice spacing for
a fixed beam power P0 = 1 W, i.e. for a fixed depth of the potential 4U0 = 1.5 µK,
and fixed wavelength λ = 532 nm, we can choose the lattice spacing to give a low
tunneling rate, negligible over the typical timescale of the experiment on the order of
few seconds. Then, by fixing now the lattice spacing, we can determine how the tun-
neling rate changes from very low to considerable values by decreasing the power of
the lattice beams, varying consequently the coupling between different sites of the
lattice. For a large-spacing optical lattice, with d ≈ 5 µm, this crossover is achieved at
a relative low laser power below 1 W. Conversely, lattices realized by retro-reflected
beams are limited by the larger wave vector of the laser: as shown in Fig. 2.4 for
λ = 532 nm, low tunneling rates are obtained only at very high laser power. Thus,
the realization of a large-spacing lattice provides the possibility to control the cou-
pling between different lattice planes only by the adjustment of the laser power. In
this way, it is possible to explore the crossover from the 3D to the 2D regime, and to
study the role played by layering on fermionic superfluids, mimicking the geometry
of high-Tc layered superconductors.

Based on all considerations discussed above, we will present in the next Sections
the implementation of a large-spacing optical lattice with blue-detuned laser beams
(see Section 2.1).
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FIGURE 2.4: (Left) The tunneling rate J/h is plotted as a function of d for a lattice with a
potential depth of approximately 1.5 µK, corresponding to a laser power of 1 W at a wave-
length of 532 nm, and beam waists of about 60 µm and 1600 µm. (Right) The tunneling rate
J/h is plotted as a function of the laser power for a large lattice spacing of 5 µm (up) and of
266 nm (down).

2.4 Optical lattice scheme

In the context of this thesis, we have chosen to produce a large-spacing optical lattice
with blue-detuned laser beams (see Section 2.1).The particular scheme that was de-
vised for creating the lattice interference pattern will be discussed here below. The
scheme is based on two coherent laser beams with a fixed phase relation that initially
run parallel to the optical axis, with a displacement of D from one another. These
beams pass through a focalizing lens where they are refracted and intersect under
an angle of 2φ at the focal point where they interfere to form the lattice (see Fig. 2.5).
The pattern of interference is given by the formula in Eq. (2.21), whereas the lattice
constant by Eq. (2.22). To relate the angle φ to the displacement D, and thus to the
focal length f of the objective, which are the experimental parameters that can be
chosen, one has to take into account that the thin lens approximation breaks down
for high numerical aperture lenses. These are usually designed to fulfill the Abbe
sine condition for imaging both on and off the optical axis with minimal optical
aberrations [29] [30]. For incident beams parallel to the optical axis it reads

sin φ =
D

2 f
(2.33)

and using this it is possible to rewrite the lattice constant as

d =
λ f

D
. (2.34)

So, the lattice spacing can be tuned to the desired value, for a given wavelength, by
choosing an appropriate ratio of the lens focal length and the beam displacement. In
spite of this, there is a lower bound that is determined by the maximum aperture of
the objective. First, I have chosen a lens with a long focal length f = 15 cm, and then
I have chosen a distance between the beams that produce a lattice spacing of about
5 µm. For this, the ideal distance between the beams would be D = 1.53 cm. The best
optical elements that were available (see below) could produce a beam separation of
either 14.14 mm or 17.96 mm, leading to a lattice spacing of 5.64µm and 4.44µm as
shown in table 2.1.
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FIGURE 2.5: Sketch of the optical scheme for producing the lattice interference pattern. Two
identical parallel beam are generated by a lateral displacement prism and propagate through
a lens, that makes them interfere in their respective foci.

FIGURE 2.6: Lattice spacing in the focus of a f = 150 mm lens, i.e. the atom cloud position,
as a function of the distance D between the parallel propagating beams (top axis) as well as
of the semi-angle φ between them (bottom axis).

f [mm] D [mm] d [µm] φ[◦]

desired 150 15.96 5.00 3.05
displacement prism 1 (used) 17.96 4.44 3.43
displacement prism 2 14.14 5.64 2.70

TABLE 2.1: For a focal length f = 150 mm, and for different values of the displacement
between the two beams D, the expected values of the lattice spacing d are given, associated
with the angles φ.



36 Chapter 2. An optical lattice for quasi-2D confinement of lithium atoms

FIGURE 2.7: Sketch of some proposed configurations of prism ensambles for creating two
parallel beams. "Adjustable" solutions allow for varying the distance between the outcoming
beams by changing the point of entrance on the input surface. The plate beam-splitter is the
most compact solution, but it depends on the refraction index of the glass and on the width
of the plate. In this solution, the distance between the two outcoming beams varies chang-
ing the angle of incidence of the incoming. Our final choice has been the non-adjustable
ensemble of prisms composed by right-angle and rhombic prisms (upper right sketch).

2.4.1 Lateral displacement prism

Our first challenge concerned the choice of the best optical element to separate a
single laser beam into two parallel propagating beams with a stable phase relation.
The beams have to be coherent and they have to propagate in the vertical plane with
the same polarization. One can imagine two solutions: to realize an interferome-
ter with active stabilization of the phase (see e.g. [31]) or with passive stabilization.
Furthermore, the device could produce tunable (see e.g. [32]) or not tunable beam
displacement (see e.g. [33] [26] [27] ). Some of the different conceptual schemes that
we have considered are shown in Fig. 2.7. In this thesis work, we have chosen to im-
plement a passively stable scheme by using a lateral-displacement polarizing beam
separator (PBS). After the separation, the beams traverse the same optical elements,
minimizing therefore the disturbances of the relative phase between the beams.

Our lateral displacement PBS is composed by a right-angle prism that is optically
contacted with a rhombic prism, and was manufactured by Lambda Research. The
rhombic prism is used to displace a beam laterally without changing its direction.
The contacting surface is coated to produce a polarizing beam separator: it transmits
part of the incoming beam and gives rise to two parallel and displaced outgoing
beams. Both prisms are manufactured from BK7A, and their most relevant speci-
fications are shown in table 2.2. I have verified that the angular deviation for one
of the prism ensembles is less then 3 arcmin: over a distance of l = 3.10 m, the dis-
placement between the two beams remains within ∆ = 0.10 mm from the declared
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displacement prism 1 displacement prism 2
(used)

dimension A 12.7 mm 10.00 mm
dimension C 12.7 mm 10.00 mm
length B 17.96 mm 14.14 mm
surface flatness λ/8 @633nm λ/8 @633nm
surface quality 20/10 20/10
parallelism < 3 arc-min < 3 arc-min
beam deviation < 3 arc-min < 3 arc-min
Bevel 0.3mm@45deg 0.3mm@45deg
CAl >85% of circular dimension >85% of circular dimension

TABLE 2.2: Specification of the lateral displacement PBSs.

value; this leads to a deviation angle of θerr = arctan (∆/l) = 0.1 arcmin. More-
over to test the surface flatness, I have performed wavefront analysis measurements
using a wavefront sensor (see Section 3.1.2). The surfaces at the interface between
the right-angle and the rhombic prism are optically contacted and the PBS coating
is specified up to very large light intensities, reflecting the s-wave component of the
light with a Rs > 99.5% and transmitting the p-wave component with a Tp > 95% at
532 nm and 45◦. The input and output surfaces of the prisms have an antireflection
coating with R < 0.25% at 532 nm and 0◦. The ratio between Tp/Ts > 200 : 1. This is
verified measuring the power of the lower beam reflected and transmitted by the 2"
PBS (it transmits s-polarization and reflects p-polarization) with a power-meter: the
ratio between the power reflected and transmitted is found to be larger than 50:1.

2.5 Optical lattice setup

Based on the design scheme described in the previous Section, the one-dimensional
lattice set-up has been implemented experimentally. This Section will focus on the
description of the lattice setup which was designed and built in the course of this
master thesis. Since the scheme presented above is able to tightly confine the atoms
only along one direction (x), an supplementary optical potential is necessary to con-
fine the atoms in the y− z plane, in order to prevent them to escape. Possible choices
for the additional potentials for the radial confinement will be suggested briefly in
Section 2.5.1.

The optical system required to obtain the beam waist dimensions corresponding
to the desired trap frequencies have been computed by implementing the ABCD
matrix method [24]. This method allows to calculate the propagation of Gaussian
beams through various optical structures. To produce the desired waists, we have
chosen to implement a spherical telescope that suitably resizes the beam before it is
split and a cylindrical lens, that is used together with the last f = 150 mm focalizing
lens to collimate the beams along the horizontal direction (see Fig. 2.8).

To generate the lattice beams, we use a diode-pumped solid-state laser (Verdi
V-8 Coherent Laser Division) with a total available power output of 8 W. The laser
wavelength of 532 nm is blue-detuned with respect to the D1 and D2 lithium transi-
tions (see Section 1.6). The laser output passes through an acousto-optic modulator
(AOM), which operates at 80 MHz and is used to regulate and actively stabilize the
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FIGURE 2.8: Computed beam profiles, showing the propagation of the waist sizes along the
two driections x andy, requiring that trap frequencies in the plane are approximately equal
while the axial confinement frequency is as high as 10 kHz with a power of 1 W per lattice
beam.

power of the beam used for generating the lattice. After the AOM, the beam is cou-
pled into a high-power polarization-maintaining optical fiber (NKT Photonics). The
laser beam travels in the fiber to the optical bank where I have constructed the set-
up for the lattice. The entire lattice set-up was built on a transportable bread-board
already, which was cut to fit into the tight setup on the main optical table where the
lithium experiment is placed.

The beam exiting the fiber is collimated by a fiber collimator (Shaefter+Kirchhoff
60FC-4-A7.5-01), and it passes firstly through a waveplate λ/2 and a 1/2" polar-
izing beam splitter (PBS) to adjust and clean its polarization. The power reflected
by the PBS is sent to a photodiode (PD) (Thorlabs DET36A/M) to monitor possible
undesired variations in the beam polarization. The transmitted beam propagates
into a telescope composed by two lenses, in order to reduce the waist dimensions
of the beam by about 3/4. The telescope consists of two 1" plano-convex lenses L1
and L2: the first (Thorlabs LA4924-YAG) has a focal of f1 = 175.0 mm, whereas the
second (Thorlabs LA1433-YAG) has a focal of f2 = 150.0 mm. The choice of the
telescope magnification factor is based on the ratio between the real dimensions of
the waist at the output of the collimator and the waist necessary to have the desired
trap frequency at the atoms position. On this path the 1" mirrors M1, M2 and M3
with a HR coating at λ = 532 nm are placed in a 30 mm cage system, on right-angle
kinematic mirror mounts (Thorlabs KCB1C/M), to be rigidly muonted with the two
lenses, which are inserted in the cage system too, using standard cage plates (Thor-
labs CP02/M). The mirror M2 has a high reflectivity for 532 nm but a tiny transmit-
ted fraction is used for monitoring purposes, focused by a plano-convex lens of focal
f = 50 mm on a photodiode (PD) (Thorlabs PDA 36A-EC) used for the stabilization
procedure of the intensity laser noise. In the cage system between the mirrors M2
and M3, a pinhole can be placed if required to filter the beam profile in the focus
of the telescope (for the moment that was not necessary). After the M3 mirror the
beam passes through a second λ/2 waveplate (Lambda WP0-12.7CQ-0-2-532) used
to change the orientation of the polarization of the beam, and which controls the rel-
ative power of the two parallel beams. It is then reflected by the mirror M4 mounted
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FIGURE 2.9: Sketch of the optical lattice set-up. All the elements are introduced and dis-
cussed in the text.
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FIGURE 2.10: A photo of the optical lattice set-up after it has been assembled.
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on a low drift mirror-mount (Polaris-K2S1) to the lateral polarizing displacement
prism (LDP) (Lambda Research Optics, see Section 2.4.1), which splits the single
incoming beam into two coherent parallel beams with orthogonal polarization: it re-
flects the s-wave polarization and transmits the p-wave one4. The distance between
the two parallel beams is imposed by the dimensions of the prism. In order to have
an interference when the beams intersect one another, after the LDP and on the path
of the lower one, a λ/2 waveplate is placed to rotate the polarization of the p-wave
prism output to the s-wave. The mirrors M5 and M6 are with the long axis verti-
cally oriented in order to reflect both parallel beams at the same time. A high-power
1" polarizing beam splitter (PBS) (Thorlabs PBS25-532-HP) is necessary to clean the
beams polarization after the LDP: it reflects s-wave and transmits p-wave polariza-
tion. Later on, the beams are reflected by the elliptical mirror M8 and enter into a
plano-concave cylindrical lens (Optosigma CLB-2040-40NM) with a focal fy = −40
mm and dimensions of 20× 40 mm, which squeezes the light in the vertical direction
producing two light blades, i.e two very anisotropic elliptic beams. (see Fig. 2.8) This
lens is in telescope configuration with a 2" achromatic doublet (Optosigma DLB-50-
150PM) with f0 = 150.7 mm, which has a damage threshold of 35 W/mm. Between
the cylindrical and the achromatic doublet, a dichroic mirror is placed, used in re-
flection for the green lattice and in transmission to transfer the light for the imaging
that will be implemented once the set-up is added to the experimental apparatus.
The cylindrical lens is glued on a cage plate and inserted in a support by which it
can be precisely rotated. With a micrometer screw, it is possible to change the dis-
tance between the cylindrical lens and the achromatic doublet. We are able to control
the rotational and translational degrees of freedom of the cylindrical lens, whereas
the integrated tilting of the two beams is committed to the dichromatic mirror. To
adjust the length of the telescope, the achromatic doublet is placed on a translational
stage with standard micrometer (Thorlabs MT1/M). Furthermore, it is mounted in a
Newport support (9852) to allow possible adjustments of the position of the intersec-
tion between the two beams. The support is sufficiently thin to be fixed in the small
available space, though respecting the telescope configuration and the necessity to
have the dichroic placed before the last lens, in order to let the light go through for
the imaging.

2.5.1 Vertical set-up and imaging objective

We want to underline that the calculated in-plane frequencies are anti-confining (and
therefore imaginary) because the green laser beam is blue-detuned with respect to
the atomic transitions. To have an in-plane confinement, we have to compensate
ωy,z with additional fields ωadd that can be given by a magnetic field curvature or
by red-detuned laser beams. The real radial frequencies will be given by ωR y,z =
√

ω2
y,z + ω2

add. Using red-detuned beams, we can easily obtain ωy,z ∼20÷30 Hz. An

example of in-plane confinement with red-detuned beams can be found in the Ref.
[34]. On the other hand, to realize uniform 2D gases we can use a homogenous blue-
detuned potential tailored with a Digital Micromirror Device (DMD). In this case
the compensation in the plane will be provided by a magnetic field curvature from
the Feshbach coils, yielding a symmetric harmonic confinement with a frequency of
about 8 Hz.

4The nomenclature s-wave and p-wave is referred to the incident surface of the prism face orthog-
onal to the beam direction.
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FIGURE 2.11: Photo of the lateral displacement PBS in the built lattice set-up. The incoming
beam with a power of about 90 mW is splitted in two parallel beams with halved power,
displaced from one another by 17.96 mm. In the photo, the parallelism of the split beams
and the decrease of the light intensity are visible.

FIGURE 2.12: Photo of the focalization of the two beams after the achromatic doublet on
a distance of 150 mm in the built lattice set-up. The point in which the beams intersect
reciprocally is where the lattice interference pattern is formed.
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FIGURE 2.13: Vertical imaging set-up (on the left) and horizontal set-up for lateral imaging
(on the right).

The scheme for the imaging of the quasi-2D atomic cloud in given in Fig. 2.13.
It includes both horizontal and vertical imaging directions. To image the in-plane
gas, a raw estimation of the resolution of the custom objective (Special Optics) that
will be added to the setup can be done. By considering the diffraction limit of the
objective, the dimension of the smallest observable spot is given by the Rayleigh
formula of optical resolution [29]

R ≃ 0.61λ

NA
(2.35)

where R is the radius of the Airy disc [29], λ is the wavelength of the imaging light
and NA is the objective numerical aperture. The objective has a maximum a numer-
ical aperture of NA = 0.45. The theoretical resolution at the imaging wavelength of
λD2 = 671 nm is then about R ≃ 1.36 · λD2 ≃ 910 nm. On the other hand, for the
green beam with λ = 532 nm coming from the DMD, the objective yields a resolu-
tion of R ≃ 1.36 · λ = 724 nm. In practice, one should consider also the finite size
of the imaging beam and the imperfections of the optical elements in the path, and
therefore testing the real achievable resolution is mandatory and will be done in the
near future.

2.5.2 Towards an "optical accordion"

Between the 2" PBS and the mirror M7 there we have left some room to insert a sup-
plementary optical device, in order to realize a so-called "optical-accordion". This
is an experimental method to create optical lattices with real-time control of their
periodicity. It provides a powerful tool for controlling ultracold atoms in optical lat-
tices, where generally, small spacing is essential for quantum tunneling and large
spacing enables convenient loading, single-site manipulation and spatially resolved
detection. For our purposes, large-spacing lattice allows the loading into a single
node and small spacing compresses the gas along the vertical direction making the
quasi-2D confinement stronger.

This technique has been demonstrated optically in Ref. [30] and it was recently
implemented on ultracold 87Rb atoms in the experiment described in [32] by Ville
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FIGURE 2.14: Sketch of the optical design allowing to change the angle between the two
interfering beams.

et al. The article explains how the main challenge for realizing an accordion lattice
is to avoid the displacements of the beams in the focal plane changing their angle.
Indeed, a large displacement of the two beams decreases their overlap and leads
to a lower lattice depth, and hence to a reduction of the trap frequency or even to
atoms losses. The main limitations can be given by spherical aberrations or surface
irregularities, and by the mechanical instability of the system. These limitations,
important already for a static lattice, are much more severe for a dynamical tuning
of the lattice spacing, and thus the realization of a stable static optical lattice with
low aberrations is an optimal starting point for the further implementation into the
system of an optical accordion. This will be implemented only if the loading in a
single node will result too difficult.

Our idea for an accordion implementation is different from that proposed in [30]
and used in [32], because our set-up is based on the idea of realizing a lattice with
sufficient passive phase stability. By placing two pieces of glass with the same angle
but opposite orientation from the optical axis, with care in the choice of the refrac-
tion index and the width of the substrate, the refracted beam will propagate with a
certain displacement with respect to the incoming beam, as shown in Fig. 2.14. A
motorized mount could be implemented to rotate these optical elements with conti-
nuity, achieving the dynamical adjustment of the lattice constant.
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Chapter 3

Characterization of the
crossed-beam 1D optical lattice

Realizing an optical lattice with precise and stable fringe positioning is a challeng-
ing task, as the interference pattern is very sensitive to individual beam pointing
and to the relative phase between the two beams, requiring a careful alignment of
the optical setup (see Section 3.1.1). After the realization of the optical lattice set-up,
its optical performance has been tested (see Section 3.1) and the properties of the
interference pattern have been measured (see Section 3.2). Moreover, optical aberra-
tions caused by optical elements in the beam path may affect the smoothness of the
potential. With a Shack-Hartmann wavefront sensor it has been possible to measure
the aberrations of the overall system and test the transmission performance of the
optical elements with respect the manufacturer specifications (see Section 3.1.2). To
present the characterization of the realized optical lattice, after explaining the imag-
ing method (see Section 3.2.1), I will first discuss the characterization of the single
beam parameters (see Section 3.2.2) and then the measured lattice fringe spacing
and contrast (see Section 3.2.3). From this measurements, I will give estimates of the
expected trapping parameters (see Section 3.2.4).

3.1 Testing the optical lattice set-up

Before presenting the analysis of the lattice properties, we will discuss the procedure
for the alignment of the optical setup and the characterization of optical aberrations.

3.1.1 Alignment procedure

For the alignment of the lattice set-up, all the optical elements are first adjusted at
the same height in order to let the beams propagate parallel to the optical axis. The
height of the optical axis has been chosen to create the lattice pattern at the correct
height once the optical breadboard will be integrated into the main experimental ap-
paratus, i.e. at the height of the atomic cloud over the mounting surface. Later on,
small adjustments of the absolute and relative positions of the lattice beams are per-
formed while imaging the magnified interference pattern via an imaging telescope
(see Section 3.2.1).

In order to first collimate the beam propagating out of the fiber outcoupler, its
waist is measured at different distances using a compact CMOS camera (Thorlabs
DCC1545M), and the outcoupler lens position is adjusted to minimize the waist vari-
ation over a long distance (see Fig. 3.1). Subsequently, the telescope comprised of L1
and L2 is adjusted to re-collimate the beam while reducing its waist to w ≃ 425 µm,
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FIGURE 3.1: Measured beam waists along the horizontal y-direction and the vertical x-
direction, during the construction of the set-up. On the left, the measured beam waists
after the fiber outcoupler are shown over a distance of 2.5 m. The data are fitted using the
Eq. (2.11). On the right, the beam waists measured after the lens L2 are shown over a distance
of 1 m, after re-collimation by the telescope composed by L1 and L2.

corresponding to 3/4 of the original value (see Fig. 3.1). After this the beam propa-
gates through the displacement prism where it is split in the two parallel beams (see
Fig. 2.9). After traversing all elements, it reaches the last achromatic doublet lens.

To assure that the two beams have the same distance from the centre of the lens,
such that they cross on the optical axis at the position of their respective foci, one
can place a mirror in the intersection point of the two beams and align the beams
so that each of them is reflected off the mirror and overlaps with their incoming
counterpart. The mirror must be previously aligned to be orthogonal to the surface
of the mounting breadboard. In order to carry out the alignment procedure, the
beams are first set to propagate at constant height before inserting the cylindrical
lens. The cylindrical lens is then placed, paying attention that its orientation matches
that of the displacement prism: one must optimize the vertical alignment of the two
outcoming elliptic beams and their shape, i.e. the orientation of each single ellipse.

Before placing the doublet lens, the retro-reflecting mirror is added and adjusted
to reflect the two parallel elliptic beams over themselves, assuring therefore that its
surface is oriented perpendicular to the optical axis. At this stage, the achromatic
doublet lens is added in telescope configuration with the cylindrical lens at about
11 cm. The beams reflected off the additional mirror are aligned, through vertical
translation and tilt of the doublet lens, to overlap with the incoming beams over a
distance of more than 30 cm, by checking their spots on different surfaces, e.g. M6
and M7. The retro-reflecting mirror position along the optical axis can be precisely
set by checking that the reflected beams propagate at the same mutual distance than
that of the incoming ones. Finally, the collimation of the beams in the horizontal
direction after the doublet lens is checked and adjusted by precisely varying the
position of the cylindrical lens.

3.1.2 Study of the aberrations with a wavefront-sensor

The wavefront of a laser beam is nothing else that the the surface of points in space
which have equal phase. Often, to aid in the interpretation of optical test results, the
wavefront is expressed in polynomial form. The decomposition in Zernike polyno-
mials allow for a quantitative representation of each kind of aberrations of an optical
system, since each Zernike coefficient is directly related to a particular type of aber-
ration observed in optical tests [35]. The coefficients of the Zernike polynomials are
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FIGURE 3.2: Outline of the working principle of a Shack-Hartmann wavefront sensor.

determined by a least square fit of the measured wavefront, and the Zernike modes
are normalized to have unit variance.. An optical system is considered to have ac-
ceptable aberrations if the Zernike coefficients are sufficiently small for the mean
root square of the errors to be less then λ/4. This means that in our set-up the RMS
value should to be less than 133 nm.

To measure the wavefront aberrations of the lattice optical system, I used a Shack-
Hartmann wavefront sensor (Thorlabs WFS150-5C) [36]. This device is composed by
a microlens array and a CCD sensor, as shown in Fig. 3.2. The working principle of
this device is is the following. Each microlens of the lenslet array collects the light
incident on its aperture and generates a single spot on the detector plane, that is
located at a distance of one focal length behind the lenslet. Each spot is centered be-
hind the corresponding lenslet only if the incident wavefront is planar and parallel
to the plane of the lenslet. Depending on the distortion of the wavefront incident on
the sensor, the spot position will be shifted along x and y directions away from the z
axis of its associated microlens.

Typical measurements of the aberrations of a single laser beam propagating through
the set-up, acquired with the wavefront sensor placed after the achromatic doublet,
are shown in Fig. 3.4. The interest of this test is to assess the quality of the optical el-
ements discussed in the previous Chapter, and in particular that the cylindrical lens
does not excessively deform the wavefront of the laser. This is crucial to quantify
undesired deformations of the potential with respect to its ideal shape, which lead
to detrimental effects during and after the loading of atoms into the trap. I placed the
WFS in different position along the path of the laser beam after the achromatic dou-
blet. The alignment of the sensor is very critical, and the WFS is thus mounted on a
support that can be horizontally and vertically tilted to set the surface of the sensor
in perpendicular orientation to the direction of propagation of the laser beam. The
wavefront analysis can be verified in real-time thanks to WFS software, checking
that the spot-field and the beam view are centered into the viewfinder, and that the
elliptic beam wavefront has a semi-cylindrical shape1, as expected. The irregulari-
ties in the measured wavefront for a beam passing about 0.6 cm below the optical
axis of the achromatic doublet increase with the distance from the doublet itself, as
shown in Table 3.1. They are included between (200÷ 400) nm. Examples of wave-
front analysis are given in figure 3.4. We have to take into account that the atoms
will be placed at about 15 cm from the lens, i.e. the distance over which the lattice
beams are focalized and intersect. The vertical size of the beam in the focus is about
60 µm, which is unfortunately too small for allowing a direct reconstruction of the
wavefront surface using the WFS. However, the trend of the wavefront errors mea-
sured at varying distance from the achromatic doublet suggests that the wavefront

1Also the projection in the x− y plane can help the alignment procedure.
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FIGURE 3.3: Pyramidal table of Zernicke polynomial coefficients.

Position [cm] Peak To Valley [µm]

40 0.201
70 0.209

100 0.277
140 0.397

TABLE 3.1: Peak-to-valley magnitude of the maximum deviation for the observed wave-
fronts at different positions after the doublet lens.

error in the focus should be well below 200 nm.
We can also look in detail at which type of aberrations dominate the wavefront

error, computing the Zernicke coefficients of the wavefront. This was done both
for a beam centered on the doublet lens and for a beam that crosses the lens below
its center by about 0.6 cm (see Fig. 3.5). The coefficients with significant values are
astigmatism 0/90◦ and defocus. Both are expected in our system due to the different
curvatures of the beam profile in the two directions and to the fact that we are not
probing the beam in the focal plane of the lens doublet. All other Zernicke coeffi-
cients are insignifcant, and we conclude therefore that the off-axis performance of
the lens is sufficiently good.
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FIGURE 3.4: Images of the single beam off centred of 0.6 mm by the center of the lens taken
at different distances from the achromatic doublet. Comparison between the spot view de-
tected by the sensor and the reconstructed beam view and wavefront. The bottom row of
images show the projection of the wavefront on the x-z plane (see coordinate definition in
figure 3.5, on the right).
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FIGURE 3.5: On the left, the value of some relevant Zernike coefficients are plotted, i.e. de-
focus, astigmatism and coma, as a function of the distance from the achromatic doublet,
for incoming beams centered and off-centered by 0.6 mm from the optical axis of the achro-
matic doublet. On the right, the image shows the definition of the coordinate system for the
wavefront sensor and is taken from [36].
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3.2 Characterization of the optical lattice pattern

To evaluate all parameters that are relevant for the confinement of the atoms in the
optical lattice trap, the intensity distribution of the lattice beams in the intersection
point has been characterized. The lattice pattern created by focusing independent
beams through a lens has the advantage that it can be directly detected by imaging
it on a sensor, unlike retro-reflected lattices in which a direct detection of the inter-
ference fringes is not possible. From the measurement of the intensity distribution
in the crossing point, we obtain:

• the waists of each single elliptical beam w0x,w0y;

• the potential radius w̃x, given by the envelope size in the intersection of the
beams;

• the lattice spacing d of the pattern interference.

The most relevant parameters of the potential that can then be calculated are the
trapping frequencies, defined in Eq. 2.26, and the trap depth of the central lattice
fringe T0 = 4U0/kB, where U0 is the trap depth associated with the intensity of a
single lattice beam.

3.2.1 Imaging method

The lattice intensity distribution in the crossing point is imaged on a CMOS camera
(Thorlabs DCC1545M [37]), with a pixel size of 5.2 µm. The camera is placed at a
distance from the doublet lens equal to its focal length of about 15 cm. A translational
stage with a micrometric actuator allows to explore a range of ± 1.25 cm with high
precision and allows to find the exact position of the beam intersection. This simple
setting has been used to measure the waists of the single beams and the Gaussian
envelope of the interference pattern in the crossing position. On the other hand, in
order to resolve the interference pattern, a ×10 telescope has been placed after the
achromatic doublet, composed by two spherical lenses with focal lengths of f =
50 mm and f = 500 mm. The real coefficient of magnification of this telescope is
calibrated using the ratio between the waist of the single beams measured in the real
focus and in the magnified one. The calibrated magnification is then used to extract
the actual lattice spacing from the interference pattern.

In the focus of the achromatic doublet, I recorded images for different camera
positions around the focus, for each single beam and for their interference pattern.
After summing over all rows or columns of the image, I performed fits of the inten-
sity distribution to extract the beam and/or interference pattern parameters. For the
single elliptic beams the fitting functions in the x- and y-directions are given by

I(x) = bx + ax e
−2(x−x0)

2

w2
0x , I(x) = by + ay e

−2(y−y0)
2

w2
0y , (3.1)

where bx (by) is the background intensity, x0 (y0) is the coordinate of beam center
position, and w0 x (w0 x) is the waist along the x (y) direction. For the interference
pattern, which is always integrated along the y-direction before fitting, the following
function is instead used:

I(x) = b + ax e
−2(x−x0)

2

w̃2
x cos2

(

πx

d
+ Φ

)

(3.2)
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FIGURE 3.6: On the left, position of the beams near the focus after after the achromatic dou-
blet. On the right, measured beam waists along the horizontal y-direction and the vertical
x-direction.

where b is the background intensity, x0 is the center position of the interference Gaus-
sian envelope, w̃x is the potential radii, d is the lattice spacing, and Φ is the lattice
phase in radiant units2.

3.2.2 Single-beam analysis

From the analysis of the single elliptic beam intensity, using the fitting function in
Eq. (3.1), the position of the beam in the vertical direction x0 for both beams can
be extracted, obtaining the position of their intersection, as shown in figure 3.6. The
focalization of each beam in a region around the expected Rayleigh range zR,x is then
checked around the crossing point by extracting the beam waists as a function of the
position. The waists measured at different positions are shown in Fig. 3.6, and the
values extracted from the fitting functions are

w0x = (57.9± 0.2)µm and w0y = (1694± 6)µm. (3.3)

The two beams have therefore the required amount of ellipticity, as explained in
the context of the desired lattice properties in order to obtain adequate trapping
frequencies in the vertical x-direction (see Section 2.3).

3.2.3 Lattice pattern properties

To detect the lattice pattern, images are recorded at the location of the beam intersec-
tion magnified by a ×10 telescope, as mentioned earlier. The intersection position
was chosen as the location where the Gaussian envelope amplitude was maximum.
In order to optimize the interference fringe contrast, I followed the following strat-
egy. I first optimized the fringe contrast by placing the camera in a location where
the beams are not fully overlapped,and balancing the relative intensity between the
two beams at the output of the lateral displacement prism. This can be done by
acting on the half-waveplate placed just before the lateral displacement prism. The
balancing has also been checked by measuring the two beam powers with a power
meter at the output of the cleaning PBS after the lateral displacement prism. More-
over, I verified that the the beam polarizations before the achromatic doublet lens
were identical. such that interference is maximized. This feature is characterized by
a gradual decreasing or increasing the intensity of the lower between the two beams.

2The phase of the lattice pattern, and in particular its stability over time, will be discussed in Chap-
ter 4.
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FIGURE 3.7: Sequence of images of the interference pattern moving the camera along the
path of the two beams. In this example the superposition between them is maximized.
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FIGURE 3.8: Sequence of images of the interference pattern obtained by varying the balance
between the polarization of the beams, i.e. for different choice of the phase-contrast between
the fringes.
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νx [kHz] νy [i Hz] νz [i Hz] T [µK] TF [nK] RF, x [nm]

7.5± 0.2 8.8± 0.7 15.5± 0.3 1.60± 0.01 79± 4 314± 15

TABLE 3.2: Lattice properties for the measured value of the beam waist w0x = (1694± 6)µm
and w0y = (57.9± 0.2)µ and P0 = 1 W. For the calculation of TF and RF, x, a typical number

of atoms N = 104 is considered.

If the superposition between the beams is maximum, along the path of the beam af-
ter the telescope the shape of the two beams along their trajectory is like that shown
in Fig. 3.7, i.e. the heigth of the two peaks is the same and in the focus the phase
contrast is maximum. Then, in the focus I checked that after these steps, the phase
contrast between the fringes was maximum. This corresponds to the the absence
of a Gaussian background on the bottom of the interference pattern. Changing the
balancing of the relative power between the two beams at the entrance of the lateral
displacement prism produces, in the focus, the sequence of images given in figure
3.8.

A typical image at the center of the optical potential is given in figure 3.9 with
its relative integration along the vertical direction. Additionally to the horizontal
fringes of the interference pattern we can see inhomogeneities along the fringes. In
fact, despite we had care to take the measurements with CMOS without the addi-
tional glass window, there are some internal reflection between the filters outside the
camera. Measuring the single beam waists in the magnified focus for both beams,
we get a mean value of wM

0x = (770± 3) µm. Dividing it by the measured waist w0x

given above, we get the magnification coefficient

M =
wM

0x

w0x
= 13.3± 0.1. (3.4)

With this value, we can obtain the real lattice spacing multiplying the value extracted
from the fit with (pixelsize/M). Thus, I get

d = (4.26± 0.02)µm (3.5)

Pleasantly, this value agrees with the theoretical value of 4.44 µm showed in table
2.1. It was that expected from the Abbe sine condition for beams with λ = 532
nm, crossing a lens of focal length f = 150 mm at a mutual distance of 17.96 mm.
Figure ?? shows a comparison in the central region of the interference between the
theoretically expected pattern, calculated by setting the measured values of the beam
waists (see Section 3.2.2), and the measured profile: the two patterns show very good
agreement. Using the function of fit in Eq. 3.2, moreover, I get a value of the potential
radius

w̃x = (56.8± 0.3)µm. (3.6)

3.2.4 Expected trapping frequency

The measured waists, with a power P0 = 1 W for the beams, lead to the expected
trapping frequencies given in Table 3.2.

These frequencies are close to the desired properties for the trapping potential,
discussed in the Section 2.3. An axial frequency of 7.5 kHz provides, for the readily
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FIGURE 3.9: On the top, an example of the data extracted from the images taken in the
magnified focus. In blue, the data, in red, the fit function 3.2, in green, the Gaussian envelope
are shown. The interference contrast is maximized and the width of the potential radius
is minimum, meaning that the two beams intersect precisely in their respective foci. The
potential radius is consistent with the value of the beam waist. On the bottom, an image of
the 1D lattice pattern taken at the center of the Gaussian envelope.

FIGURE 3.10: Comparison between the lattice patterns taken through the center of the Gaus-
sian envelope. (Left) Calculated (once measured the beam waists in Section 3.2.2). (Right)
Measured.
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FIGURE 3.11: Relative population of a cloud of N = 2.5 · 104 6Li atoms in the first three levels
of an harmonic potential of quasi-2D potential with a frequency of ωx = 2π · 7.5 kHz.The
adiabatic compression of the cloud, has been computed for an initial T/TF=0.1 and a dipole
trap with frequencies 21 Hz, 245 Hz, 215 Hz.
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FIGURE 3.12: Summary of the expected trapping frequencies for the measured waists in
Section 3.2.2 as a function of the displacement with P = 1 W (a)-(b) and power (d)-( f ) of
the beams. In (c) the resulting potential depth as a function of the power of the laser.
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available laser power of 1 W, a total trap depth larger than 1 µK and a Fermi tem-
perature of about 80 nK with N = 104, that satisfy the condition for the quasi-2D
confinement1.18, showing ǫF < 0.2h̄ωx. On the other hand, the radial frequencies,
despite their asymmetry, are on a scale that can be reasonably compensated with
additional laser beam (preferably, slightly elliptic too). More precisely, we can look
at the simulations developed in the framework of the adiabatic lattice transfer in
Section 1.2.2. We can observe from the plot in Fig. 1.4 (number of occupation of the
harmonic oscillator levels as a function of the axial frequency of the trap), that for a
frequency of 7.5 kHz the first exited state is empty and so the degree of freedom of
the atoms is freezed at the ground states. The atoms cannot access to other energy
levels in the x-direction. Moreover, starting from that simulation, we can obtain in-
formation on how, for ωx = 2π · 7.5 kHz and an initial temperature T/TF = 0.1,
the 2D condition depends on the number of atoms loaded in the trap. The result of
this simulation is shown in Fig. 3.11. In particular, fixing the radial frequencies, we
observe that the lower the initial number of atoms, the more easily the condition of
quasi-2D confinement is achieved. The critical atom number is around 2 · 104.

Finally, in Fig. 3.12 are plotted some relations discussed before in the Section
2.3, calculated for the measured waists reported in Section 3.2.2. In particular they
summarize the trapping frequencies fixing the power P = 1 W and changing the dis-
placement D between the beams (a)-(b), and vice versa fixing D and changing the
beam power (d)-( f ). In particular, the graphics (a) and (b) show, for example, the
possibility to change the frequency by creating an optical accordion (as suggested in
2.5.2). In (d)-( f ) are calculated the frequencies for the two values of displacement al-
lowed by our prisms: for the bigger one, that is mounted in the set-up, (blue curves)
and for the smaller one (red dashed-curves). Changing the power by 1 W is possible
to adjust the trapping frequencies in the axial direction (e) decreasing their value
from a maximum of 7.5 kHz. The frequency range spanned can indicatively allow
to study different tunneling rate between the layers (see Fig.2.4). In (c) is shown the
potential depth as a function of the power of the laser: changing the power of the
laser modifies both potential depth and trap frequencies.
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Chapter 4

Experimental characterization of
lattice stability

A main technical challenge for the realization of an optical lattice trap regards the
stability of the interference pattern. To guarantee reproducibility, one needs to pre-
pare the system under the same conditions. Any change in the relative phase of the
lattice beams will lead to a global movement of the potential that may disturb the
atoms in the lattice. On long timescales, slow drifts in the phase of the lattice may
limit the reproducibility of subsequent experimental runs. On the other hand, on
short-timescales phase stability is desired to avoid heating of the atoms in the lattice
change as well as to ensure that the shape of the optical potential does not during
one single experimental run.

The attainment of long lifetimes of the trapped samples imposes stringent re-
quirements not only on the phase stability of the lattice but also on the intensity and
pointing stability of the laser. If the frequency of these fluctuations coincides with
the trap frequency, this leads to heating of the trapped sample.To estimate the effect
of such noise-induced heating, it is necessary to characterize the noise spectrum of
the laser.

This chapter is divided in three sections dedicated respectively to phase measure-
ment stability on different timescales (see Section 4.1), noise spectrum characteriza-
tion for both intensity and fringes fluctuations (see Section 4.2) and laser-induced
heating rates (see Section 4.3). In the Section 4.1, after discussing how to stabilize
the laser polarization (see Subsection 4.1.1), I discuss phase measurements (see Sub-
section 4.1.2) looking at the correlation between phase lattice and beam position (see
Subsection 4.1.2). Moreover I take into account temperature influence on long-term
time measurements (see Subsection 4.1.4) and mechanical vibrations on short-term
(see Subsection 4.1.5). In Section 4.3, I present the noise detection set-up (see Subsec-
tion 4.2.1) and the procedure for an intensity stabilization (see Subsection 4.2.2). The
characterization of the noise spectra is functional to calculate the typical timescale
related to heating rates. This topic is presented in Subsections 4.3.1 and 4.3.2.

4.1 Phase stability

The phase stability of the interference pattern can be affected by temperature changes
and air drafts or mechanical vibrations. To study how the interference pattern changes
in time I monitored its stability using a CMOS camera (Thorlabs DCC1545M) with
a pixel size of 5.2 µm. To observe the interference pattern and its movements with
high resolution, I set up a x10 telescope to magnify the fringes on the camera (for
details see chapter 3). All the measurements are taken on air-floated table, with the
room illumination switched off. The Thorlabs software allows to set a measurement
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number of interval rate time [s] time scale
images n ∆t [s]

100 1 1 image/1 s 100 1 min 40 s ∼minutes
10 1 image/10 s 1000 17 min
60 1 image/1 minute 6000 1 h 40 min ∼hours
100 1 image/100 s 10000 2 h 45 min

120 300 1 image/5 minutes 36000 10 h ∼daytime

TABLE 4.1: Settings chosen to measure the stability of the interference pattern along different
time-scale.

by fixing the number of images n and the time delay ∆t between one another. The
chosen settings are showed in Table 4.1.

The strategy to test the stability of the set-up is to monitor the interference pattern
at the beam crossing as a function of time over different timescales, ranging from
several seconds to several hours and its reaction to different disturbances. On long
timescales, it is possible to characterize the effects of the temperature on the phase
stability (see Subsection 4.1.4). Slow drifts can limit the reproducibility of a given
potential in subsequent experimental runs. On the other hand, on short-timescale
air movements and optical elements vibrations are relevant (see Subsection 4.1.5).
Fast fluctuations can modify the shape of the optical potential during one single
experimental run and heat the atoms in the traps leading to their loss1.

The relevant parameters of the lattice are extracted from the images with 1D fits
to the intensity distribution which was integrated along one axis over the central re-
gion of the image that is chosen with the same size for all the images.The fit function
is given by:

I(y) = b + ay e

−2(y−y0)
2

s2
0y cos2 (kLy + πφ) (4.1)

where b is the background intensity, y0 is the position of the beam pointing into the
frame of the image cut out, s0y is the potential radii, kL is the the wave vector of the
lattice and φ is the lattice phase in unit of π. The phase change of one corresponds
to a movement by one lattice constant of the interference pattern. The change of the
fitted phase over time quantifies the drift of the interference pattern.

4.1.1 Alignment of polarization in the optical fiber

In order to avoid intensity fluctuations of the laser due to temperature variations,
the polarization of the light is aligned with one of the birefringent axes of the op-
tical fiber. Refractive indexes of the optical fiber depend on the temperature and,
as a consequence, the polarization of the output beam changes. In this way, also
little changes in temperature can lead to a substantial variation of the intensity dis-
tribution outcoming from the PBS placed after the collimator. An example is shown
in Fig. 4.1. For a temperature variation of about 1 °C, if the polarization is well-
aligned and stable, the intensity fluctuates on about ±3%, otherwise, it is about
±60%. To stabilize the polarization of the light we have used a Polarization Analyzer
(Shaefter-Kirchhoff SK010PA-VIS 450-800 nm) that maps the states of polarization of

1This aspect will be studied in the Section 4.2.
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FIGURE 4.1: Relative fluctuations of the laser intensity during long-term measurements and
ambient temperature: examples of measurements taken before (up) and after (down) the
alignment procedure for the laser polarization into the optical fiber.

Wavelength λ [nm] 532
Mean Ellipticity η [°]: 24.007

∆η [°]: 0.076
Azimuth Φ [°]: -72.579
Mean Extinction PER [dB]: 7.025
Min. Extinction PER [dB]: 6.995
Min. Extinction Ratio V [dB]: 1:5

TABLE 4.2: Properties of the laser polarization, once matched with the fiber, at the output of
the collimator in the lattice set-up.

monochromatic light on the Poincarè sphere [38]. This allows to search the condi-
tion for which the polarization change due to a given perturbation is minimazed. To
obtain this condition we have to optimize the polarization of the beam-input in the
fiber. The result of this procedure is shown in in table 4.2 and corresponds to have an
elliptic polarization at the output of the collimator in the lattice set-up. Accordingly,
in front of the collimator is placed a λ/4 waveplate, which changes the polarization
from elliptical to linear in order to maximize the available power in the realization
of the optical lattice.

4.1.2 Measurement of the lattice phase

The phase extracted from the fits using Eq. (4.1) are compared with their mean
values and the phase deviation is plotted as a function of the time, as shown in
Fig. 4.2. The measurements shown in this figure are taken in the best experimental
conditions achieved: illumination and air conditioned switched off, set-up covered
with a lid and laser polarization stabilized. The measurements taken without these
precautions, show increasing distructive effect of fluctuations in the phase stability
of the pattern interference. In these conditions, shot-to-shot fluctuations are taken
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FIGURE 4.2: Short and long-term phase stability measurements in the best achieved experi-
mental condition: laser stabilized in polarization, suspended table, covered set-up, absence
of air draft in the room.

with steps of one, ten, sixty and one-hundred seconds, and an average of (0.01÷
0.02) π is detected. Shot-to-shot variations increase if the lattice set-up is perturbed
mechanically(see for details Subsection 4.1.5) or by the increasing of the time delay,
as for example, in the measurement of eight hours long shown in Fig. 4.6, where
shot-to-shot fluctuations are taken on five minutes intervals is at most 0.04 π.

On minutes timescale (100 and 1000 seconds), collections of data on entire mea-
surements show fast fluctuations around zero with an RMS value associated of about
0.02 π. This means that, on average, the lattice position fluctuates in a range of about
0.6 µm. The peak to valley value is of 0.096 π. It corresponds to a pattern figure dis-
placement of 0.4 µm, that is about 9% of the fitted lattice spacing d = π/kL. From
the measurement with repetition rate of 1 s-1, the period over which there are fluc-
tuations is about 5 seconds. On longer time of measure, which is associated with a
lower resolution, the oscillations around zero seem to range on larger intervals. The
inferior limit can be visualized in the measurement of five seconds where images are
taken every 100 µs.

On hours timescale (6000 and 10000 seconds) RMS is around 0.03 π and the peak
to valley value is approximately of π/10. It corresponds to a displacement of the
lattice of 0.6 µm and is about 10% of the lattice spacing. Slow drifts over π/10 are
evident on typical time scale of about 2000 s. Over the 6000 s long measurement,
this drift follows the trend of the temperature monitored in the room, where there is
a variation of 0.35◦C in the "room" temperature and of 1.0◦C in the "air" temperature
(see subsection 4.1.4). In fact, the temperature is monitored by two probes, one sen-
sible at air movements ("air"), and another, closed inside a box and protected by air
flows, measures the actual temperature of the lab ("room").

For the measurement with 10000 s duration, variations are always evident on the
same timescale of 2000 s even if temperature fluctuations are more contained. Thus,
environmental parameters lead to cycles of stabilization of the air conditioning over
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FIGURE 4.3: Correlation between fluctuations of the phase and of the beam pointing position
in short and long-term measurement in the best achieved experimental condition. The mea-
surements correspond to those showed in figure 4.2. On the top of each graphic, in orange,
is shown the corresponding value of the correlator as defined in (4.2).

a timescale of about half an hour.
To test the stability of the lattice on timescale of a typical daytime, in normal

conditions of work (with people inside the laboratory and the experiment running),
I set the CCD Camera to take an image each five minutes of the interference pattern
for more than eight hours as shown in Fig. 4.6. Data show fluctuations with a RMS of
0.12 π. This corresponds to an RMS in the lattice displacement of 0.5 µm. The peak
to valley touches a value of π/2 that corresponds to a displacement of the pattern of
2.3 µm. It means that at least the lattice pattern can be moved of half lattice constant,
but on average its fluctuations keep only to 10% of the lattice displacement in the
entire daytime.

The optical table on which the experiment is mounted, is surrounded by a closed
box. The temperature inside the box is less influenced by air drafts and by air condi-
tioning cycles, with respect to the table were the lattice set-up has been tested. Thus,
we expected that the fluctuations in the phase of the lattice can be reduced of, at least
some percents. However, during an experimental run long typically few hours, will
be always possible, if necessary, a manual active stabilization of the phase, optimiz-
ing the trajectory of both beams with respect to the optical axis.

The reproducibility of our experiment is guaranteed on hours timescale against
fluctuations of 10% and for this reason we will able to load the majority of the atoms
in the same pancake in every experimental cycle. On the other hand, on longest
timescale where not-zero temperature variations, ranging on about 1°C, are present,
the fluctuations can lead to a considerable displacement of the lattice of half lattice
spacing with a possible consequent partial loss of atoms. From this, we learn con-
stant temperature below is fundamental to prevent phase shifts of the optical lattice.



62 Chapter 4. Experimental characterization of lattice stability

●●
●

●● ●
●● ●●● ●●●●● ●●● ●●

●
●

● ● ●●●● ●●● ●●● ●●●
● ● ●●● ●●● ●● ● ●●●●● ●●● ●●● ●●● ●

●
●● ●

● ●
●●● ●●● ● ●● ● ●●● ●● ●●

●●
●● ●●●● ●

●● ●●●●●
ρ= -0.63

n= 103Δt= 5 min

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

y0-〈y0 〉 [μm]

ϕ-〈ϕ
〉

FIGURE 4.4: On the left, spread in plane of the correlation between phase and beam pointing
position for longer-term measurement. On the right, sketch of phase and beam pointing
position fluctuations.

4.1.3 Correlation between phase lattice and beam position

In the previous section it has been shown how the lattice pattern can displaces spa-
tially in time. A further reason of displacement of the lattice pattern are fluctuations
in the beam position, that take into account variations in the pointing of the laser
that affect the pattern on the whole. The beam position values are extracted from
the center of the Gaussian function that fits the intensity distribution of the lattice
pattern.

Fluctuations of the beam pointing position with respect to its mean value over
entire runs of measurements over minutes have an RMS value that range in (0.009÷
0.120) µm and a peak to valley value around (0.4÷ 0.7) µm. Over a timescale of a
couple of hours, RMS is of about 0.250 µm touching peaks of 1 µm, and for longer
times, in particular in the eight hours measurement this value increases, touching
0.531 µm in the RMS value up to 2.6 µm in the peak to valley value.

A sizable correlation is evident comparing the extracted values for the phase with
the respective extracted values of the pointing position of the beam as shown in Fig.
4.3. This means that phase shift of the lattice is higher the more displacement of
pointing of the beam displaces itself from its mean value. This correlation between
the phase and the beam position quantifies this feature and it is given by

ρ =
∑

n
i=1(φi − 〈φ〉)(y0 i − 〈y0〉)

√

∑
n
i=1(φi − 〈φ〉)

√

∑
n
i=1(y0 i − 〈y0〉)

∈ [−1, 1]. (4.2)

If ρ = 0 the two quantities are independent each other, whereas if ρ = ±1 they
are fully correlated. The value of the correlators is around |ρ| = 0.6 for all measure-
ments except one (that 1000 s long). Fig.4.3 shows distinctly how the points in the
phase-pointing space spread increasing the observation time, including larger cou-
ples of values. This effect is at most evident in the eight hours measurement as is
shown in Fig. 4.4.

The presence of the strong correlations between this two parameters suggests
the existence of a common reason of drift. It can be understood taking into account
two parameters, i.e. temperature and mechanical vibrations. On long time mea-
surements, it can be clearly noticed from the measurements, as those shown in the
following section 4.1.4 (see figure 4.6), that the phase and the temperature have the
same trends. The position of the beam shows the same feature. Thus, the phase
lattice and the beam position show correlation because both of them are sensible to
changes in temperature. On the other hand, it is also evident that the correlation
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FIGURE 4.5: Consequences of perturbation effects on phase and beam pointing stability in
a measurement taken in not optimal environmental condition. Impulses of air conditoning
cycle induce fast fluctuations over periods of 500 s that destroy the phase stability (see also
figure 4.7).

increases with the size of perturbation that affects the beams. For examples, mea-
surement runs taken without floated table and without cover, exhibit, for the same
time intervals, much correlation with respect to those shown here. This can explain
also why in short time measurements, where temperature effects are not relevant,
the correlation is the same as for long ones.

A significative proof of how perturbation effects can increase the correlation be-
tween these two quantities is shown in figure 4.5 where ρ touches a value of even
about -1. This graphic shows the results of the fitted parameters for a run measure-
ment taken in not optimal environmental conditions where impulses of air drafts
destroy the phase stability of the lattice.

4.1.4 Temperature influence on long-term phase stability

As previous mentioned, long timescale measurements are affected by changes in
temperature. To confirm this effect is helpful to compare the trend of values ex-
tracted by the fit parameters respect to the variations of temperature during the
measurements timescale.

The data of temperature are registered on the on-line database Lens Temperature
Advanced Observer (TAO) that collects information about each room of the institute.
The sensibility and the resolution of this tool allows only a qualitative correlation
between the temperature trend and the extracted parameters during the runs. In
particular, the rate of the measurements is about one point over two seconds with a
sensibility of about 0.05 °C. For this reason, considering that the changes in temper-
ature are however small, at most on about 1.00°C, this analysis is relevant only for
measurements lasting hours.

I have yet mentioned in Subsection 4.1.2 that variations of the lattice phase value
along hours timescale can be influenced by temperature changes. However, the most
striking prove of the correlation between phase shift and temperature is given by the
measurement over an entire typical daytime as shown in Fig. 4.6. In this measure-
ment are observed fluctuations of the phase with an RMS of 0.12 π during a RMS
fluctuation in temperature of 0.13 °C, for the room, and 0.22 °C, for the air. At the
same time, the RMS value for the beam pointing position is of about 0.53 µm. In
spite of this, are evident slow drift in the phase value of some hours that seems to
follow the trend of the temperature. This is confirmed by both temperature measure-
ments. Peak to valley variation has a value of π/2 in correspondence to a maximum
deviation of 1.20 °C in the air and in 0.60° in the room temperature.
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FIGURE 4.6: Comparison between the of the phase (up) and of the pointing beam position
(down) with "room" (green) and "air" (light blue) temperature on a measurements of about
eight hours long.

Looking now at the fitted values of the beam position, they also follow exactly
the temperature trend over a deviation of 2.6 µm. The correlation with temperature
for both phase and beam position, can explain the graphic in Fig. 4.4. Indeed, tem-
perature variations could induce elongations and compressions in the mounts of the
optical elements leading to a tilt of the beams with respect to the optical axis. This
can changes their projection on the focal plane where is placed the CCD, and it can
leads to both, phase shift and displacement of beam position. Unlike this, occasion-
ally, the temperature and phase trends depart reciprocally and can be thought that
there are other effects that affect the phase on hours measurements.

As explained in the subsection 4.1.1, the intensity of the laser that propagates in
the optical fiber is sensible only at changes in temperature. Relative deviations of
the laser intensity can be a good indication of the temperature variations. In Fig.
4.7, the relative intensity of the beam is compared to the phase variation of the lat-
tice. During these measurements air flows was present. They show that the phase
variations oscillate over a period of about 500 s following exactly the intensity beam
variations. From this could be reasonable suppose that these oscillations are due
to suddenly changes in air temperature over a period of about 500 s. This effect, is
added to a slow drift over about π/2 in 8000 s, destroys the phase stability of the lat-
tice. Indeed, the peak to valley variation reaches a value of π/2 that corresponds to
a displacement of the pattern of 2.6 µm. It means that at least the lattice pattern can
displace itself of half lattice constant; on average its fluctuations keep only to 10% of
the lattice displacement. Thus, in order to maximize the temperature stabilization
preventing this sudden variations, we have decided to put the entire lattice set-up
in closed boxed.

Eventually, Fig. 4.8 shows the relative fluctuations in the lattice spacing and in
the potential radius. These quantities can be extracted from the Eq. (4.1) too. The
relative fluctuations in the lattice spacing are of the order of one on ten-thousand.
Fluctuations in the potential radii are of some percent. This quantity can affect the
frequency of the trap. Thus, these fluctuations are not a limitant factor during sub-
sequent runs of measurements.
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FIGURE 4.7: Measurement taken in not optimal environmental condition. Phase fluctuations
follow intensity impulses that are due to bounce in air conditioning.
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FIGURE 4.8: Relative deviation from the mean of the lattice spacing value (on the left) and
relative deviation from the mean of the potential radii value (on the right) along an eight
hours measurement.
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FIGURE 4.9: Example of a measurement of the short-term stability of the lattice phase in
presence of disturbance on optical elements.

4.1.5 Mechanical vibrations effects on short-term phase stability

To test the reaction of the interference pattern to different mechanical vibrations I
simulated air drafts with a paper, talked aloud, turned on music, knocked against
the mounts of each optical element and leaned on the optical table. From these tests,
I learned that the interference pattern is generally sensitive to such disturbances.

Because such kind of perturbations are relevant on short timescale, to quantify
the influence of these effects on the lattice stability I monitored the interference pat-
tern taking 100 images at one Hz rate. In presences of such disturbances the root
mean square of the lattice fluctuations reaches at worst π/2, but generally the RMS
fluctuations are well below π/10. In Fig. 4.9, is shown an example.

In particular, disturbances that affect the propagation of the beams after the split-
ting can influence the position of beams intersection and thus change the phase of
the lattice. On the contrary, any optical element placed before the splitting of the
beam, have a weak influence on the fringes since any disturbance influences both
in the same way. These effect are whetever small, because the configuration of this
set-up is optimized to minimize effects of relative shift between the path runned by
the beams. In fact, in path after the splitting, both beams go through the same optical
elements.

I confirmed that the element in transmission after the lateral prism displacement
are quite insensitive to perturbation effects. In this framework has been decided to
mount where was possible steal pillars instead brass ones, and to use stable mirror
mounts. In fact, some optical elements mounts, as the cage system and the Polaris
mounts, have been chosen in order to give more stability to the system.

Surely, the most relevant source of disturbance for the phase lattice are air flows.
For this reason we have decided to put a cover over the set-up, placing it over pillars
fixed on the optical table. In future, we will provide to close the set-up into a box. To
overcame to these noise mechanisms we have decided also to use the floated table.
Figure 4.10 shows the benefits coming from these choices.

4.2 Noise characterization

To study in detail the fluctuations on short timescales, it is important to character-
ize the noise spectrum of the lattice potential coming from both the intensity laser
noise and from fluctuations of the fringe position2. Intensity and fringe position fluc-
tuations of an optical potential are of interest because they both can cause heating

2As shown in section 4.1 on short timescale the distinction between phase and beam pointing fluc-
tuations becomes very tiny, and therefore, for acquisition time of 1 s with a resolution of 5 µs, I refer to
a mean effect that take in account both and determine fluctuations in the position of the fringes



4.2. Noise characterization 67

FIGURE 4.10: Comparison of the short-term phase stability with and without both cover
over the lattice set-up and suspended table.

of the atoms, which will contribute also to increase the loss rate of the atoms from
the trap. In general, the limitations caused by heating for optical lattices are much
higher since heating scale strongly with the trap frequency. In order to qualitatively
compare our results to possible heating sources, I will determine the heating rate in
the optical trap derived from the measurements of the intensity power noise spectra
and of the fringes position fluctuations.

Technical noise leads to fluctuations of the laser intensity I(t) around a mean
value I0. The fractional fluctuations ǫ(t) is given by

ǫ(t) =
I(t)− I0

I0
. (4.3)

Since the fluctuations are stochastic by definition the mean value of ǫ(t) is zero. The
quantity that gives information about the mean of the fractional fluctuations is the
root mean square (RMS)

∆ǫ = lim
T→∞

√

1

T

∫ T

0
ǫ(t)2dt (4.4)

Using the Weiner-Khinchin theorem, the correlation function of the fractional fluc-
tuations in the time domain, defined as

〈ǫ(t)ǫ(t + τ)〉 = lim
T→∞

1

T

∫ T

0
ǫ(t)ǫ(t + τ)dt (4.5)

can be related to their power density spectrum

Sǫ(ν) = lim
T→∞

|FT{ǫ(t)}|2
T

(4.6)

by the relation

FT{〈ǫ(t)ǫ(t + τ)〉} = Sǫ(ν)

2
. (4.7)

From this relation and taking the spectrum for real-valued functions3, the one-sided
power spectrum of the fractional intensity noise is given as

Sǫ(ν) = 4
∫ ∞

0
cos (2πντ) 〈ǫ(t)ǫ(t + τ)〉 dτ. (4.8)

3The measurements cannot distinguish between positive and negative frequencies
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From the one-side spectrum one can directly infer the so called relative-intensity
noise (RIN) of the laser that is simple given by

RINν = 10 · log10 Sǫ(ν) (4.9)

measured in units [dB/Hz] that is a well used characterization of the laser noise
provided in data sheets. The definition of one-sided power is also defined so that

∫ ∞

0
Sǫ(ν)dν = 〈ǫ(t)2〉 = ∆ǫ2 (4.10)

where ∆ǫ is the RMSI fractional intensity fluctuations. To specify the intensity noise
of the laser in a specific range of frequencies from ν1 to ν2, can be calculated an RMSI

value from the power spectrum as

∆ǫ|ν1,ν2 =

√

∫ ν2

ν1
Sǫ(ν)dν. (4.11)

Such RMSI value corresponds to the RMSI fluctuations which one would measure
with a detector with a bandwidth in a specific range, and can be used in order to
compare the measured power spectrum with the specification of the laser. It is useful
also to give the RMSI of the fluctuations in a region of interest, as for example for
the range around the predicted trapping frequency.

The same formalism can be developed for the fractional fluctuations of the center
position of a single lattice fringe x0(t) around a value x0, defined as

ǫx(t) = x0(t)− x0 (4.12)

where now ǫx(t) it is the fluctuation in the location of a fringe in [µm]. Here, one-
sided power spectrum of the fringe position fluctuations Sx(ν) in units of [µm2/Hz]
is given by

Sx(ν) = 4
∫ ∞

0
cos (2πντ) 〈ǫx(t)ǫx(t + τ)〉 dτ (4.13)

and the mean-square variation in the fringe center position is given by

∫ ∞

0
Sx(ν)dν = 〈ǫx(t)

2〉 = ∆ǫ2
x. (4.14)

The fluctuations in a specific range of frequencies from ν1 to ν2, can be specified by
an RMSx value calculated from the noise spectrum 4.14 as

∆ǫx|ν1,ν2 =

√

∫ ν2

ν1
Sx(ν)dν (4.15)

and is useful also to give the RMS of the fringes position fluctuations in a region of
interest, i.e. around the predicted trapping frequency.

4.2.1 Noise detection set-up

Experimentally, RMS fluctuations from both intensity and fringes position fluctu-
ations are taken imprinting the laser light on a fast Si-photodiode (Thorlabs PDA
100A-EC) with switchable gain up to a bandwidth of 2.4 MHz (see the manual [39]),
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FIGURE 4.11: Set-up for the detection of the fringe position fluctuations. In order to have
sufficient power on the photodiode, the laser noise signal is detected after the telescope that
magnifies the interference pattern. To detect the signal from a single fringe is sufficient put
a slit on the photodiode aperture of high smaller lattice spacing. On the right, the signal at
the output of the photodiode aligned to detect the signal from the half of the central fringe
is shown. Knocking on the table with a screwdriver allows to sample the full amplitude of
the most intense fringe of the lattice.

placed after the X10 telescope that magnifies the spacing of the lattice. The pho-
todiode used in our set-up has an active area of 100 mm2 and a photo sensitivity
of about 0.62 A/W at the peak wavelength of 960 nm. The signal is then read out
using Rohde&Shwarz RTE 1104-Oscilloscope with a sample rate of up to 1 GHz (5
GSa/s). Thus, I performed two different kind of measurements, one to detect the in-
tensity noise spectrum, and then another to register the noise arising from the fringe
position fluctuations.

Intensity noise To record the intensity noise spectrum, I blocked one of the two
beams and monitored the power of the laser with all the surface of the sensor. The
intensity I of the laser, i.e. its power in unit of surface, is proportional to induced
current il given by the responsivity of the photodiode operating in linear regime
η1(λ) measured in [A/W]. The gain of the photodiode determine the bandwidth
and the efficiency η2(BW), measured in [V/A] through which converting current
in voltage Vl . The detected power on the resistor R of the oscilloscope is then P =
i2
l R = V2

l /R.Therefore the fractional laser intensity is translated in the measured
fractional voltage fluctuation recorded by an oscilloscope. In order to obtain the
one-side power spectrum, the y-t signals are recorded in AC and DC coupling with
a sampling rate of fs = 200 kSa/s and an acquisition time of tmax = 1 s. Using AC
coupling it increased the dynamic range to observe fluctuations. The AC coupling
signal corresponds to the fluctuations ∆I(t) = I(t) − I0, whereas the mean of the
DC coupled signal corresponds to I0 obtaining the fractional fluctuation ǫ(t) given
in (4.3). Because we deal with a discrete time-sampling, one has to use the discrete
Fourier transformation (DFFT). The step size of the DFFT is ∆ f = t−1

max. To obtain the
correct power spectrum I calculated it as:

Sǫ(ν) =
DFFT(VAC) · DFFT∗(VAC)

tmaxV2
0

(4.16)

where V0 is the mean signal taken in DC coupling, and VAC, the AC one. To get any
meaningful results, one has to be sure to be not limited by other noise sources,such
as dark currents in the photodiode and photon shot-noise. The minimum variation
of light that can be detected is the energy of a single photon. Because the photon flux
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varies with a poissonian distribution around a mean value and the detected power
also fluctuates which leads to the so-called shot-noise and limits the detectable RIN
to

RINSNL = 10 · log10

(

hνη1η2

tmaxV0

)

(4.17)

where ν is the laser frequency for λ = 532 nm, η1 = 0.35 A/W is the responsivity of
the photodiode at 532 nm, η2 = 4.75 · 104 V/A [39] is the gain of the photodiode at
high impedance, tmax = 1 s.

Fringe position noise To take the noise spectrum given by fringe position fluctu-
ations on the photodiode aperture, we used a slit of 20 µm, that is about half of the
lattice spacing. In this way, was possible to detect the light coming from a small por-
tion of the laser beam, i.e. a single fringe. This allows to register the fluctuations of
the interference pattern as variations in the laser power, as shown in figure 4.11. . If
the interference pattern fluctuates in the vertical direction during the measurement,
the power detected by the photodiode fluctuates too. The fluctuations of the power
of the laser can be related at the fringes position fluctuations in the following way.
We aligned the photodiode with respect the direction of propagation of the beam in
order to register the AC signal from the half maximum of the central fringe of the
pattern (see figure 4.11). This allows a linear response in the detection of the signal.
At this point, we define an adimensional stochastic variable for the voltage detected

ǫv(t) =
V(t)−V0

∆V
, (4.18)

similar to that defined for intensity fluctuations in (4.3), but where V(t)− V0 is the
voltage read by the photodiode in AC coupling, whereas ∆V is the peak to valley of
the signal coming from a single fringe taken in DC coupling. The power spectrum
associated with this voltage fluctuations is given by

Sv(ν) = 4
∫ ∞

0
cos (2πντ) 〈ǫv(t)ǫv(t + τ)〉 dτ. (4.19)

that is related to the RMS fractional voltage fluctuations ∆ǫv as

∫ ∞

0
Sv(ν)dν = 〈ǫv(t)

2〉 = ∆ǫ2
v (4.20)

Thus the RMS position fluctuations can be related to the RMS fractional voltage
fluctuations, i.e. to spectrum taken by the photodiode, by

∆ǫx =
d

2

√

∫ ∞

0
Sv(ν)dν (4.21)

where d is the lattice spacing. In this way, we express the RMSx in µm of the fringe
position fluctuations proportional to the RMSI of the intensity noise fluctuations, i.e.
calculable from the power spectrum of the fractional fluctuations Sv(ν). Moreover,
dividing ∆ǫx by π is possible to translate position into phase fluctuations in π units.
Given a sampling rate of fs = 200 kSa/s and a acquisition time of tmax = 1 s, the
step size of the DFFT is given by ∆ f = t−1

max = 1 Hz. To obtain the correct power
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FIGURE 4.12: Comparison between relative noise intensity (RIN) measurements of the
Verdi-V8 laser intensity noise (orange) and fringes position fluctuations (light green). The
blue-dotted line shows the shot-noise limited RIN measurements and the blue data are the
background noise from the photodiode (PDA100A-EC). Sampling rate is 200 kSa/s and the
acquisition time is 1 s.

spectrum I calculated it as:

Sv(ν) =
DFFT(Vh f AC) · DFFT∗(Vh f AC)

tmax∆V2
(4.22)

where ∆V is the mean signal taken in DC coupling, and Vh f AC, the AC one at the
half high of the fringe.

Figure 4.12 shows the trend of intensity and of fringe position fluctuations, with
respect the background noise of the photodiode and the shot-noise limit. Shot-noise
limit calculated by (4.17) corresponds to a shot noise of −156 dB/Hz and a photo-
diode background noise on the same order which is sufficiently low to measure the
expected laser noise. From this comparison seems that the fringes position noise at
low frequencies is given by intensity noise. At high frequency peaks at 16.0 kHz,
18.4 kHz , 32.0 kHz, 36.7 kHz, 56.0 kHz, 89.0 kHz are present in both spectra, and
most likely they are due to technical intensity laser noise. The RMSI of ∆ǫ = 9 · 10−4

over a range of 10 kHz and however within the manufacturer’s specification that
estimates an RMSI < 0.02. On the other hand RMSx is of ∆ǫx = 7.3 · 10−3 µm. To
lower the intensity noise at low frequencies, and in particular below 10 kHz, in order
to avoid heating effects at trapping frequencies, we have stabilized the signal with a
PID controller.

4.2.2 Stabilization of the laser intensity

Laser stabilization means actively controlling the emitted intensity. In order to stabi-
lize the laser intensity, the actual value of the intensity has to be measured and from
this an error signal is obtained, corresponding to the difference between the actual
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FIGURE 4.13: Feedback loop implemented to stabilize laser intensity noise in the lattice set-
up.

and desired value. If the error signal is zero the measured value coincides with the
desired one.The larger the slope of this change, the smaller are the deviations can be
detected. To stabilize it, the so-called servo control loop is used, whose mathematical
modeling is based on the idea of the feedback. It means that the output of a system is
influenced by the monitored output of the system itself. The electronic devices that
implement this mechanism are called PID controller and consist of a proportional
part (P), an integral part (I) and a differential part (D). Stabilization using feedback
leads to corrections that are stable and durable so that temperature drifts, hysteresis
and non linear effects do not effect the output of the system.

The set-up for the stabilization of the laser intensity in the lattice set-up is shown
in figure 4.13. The signal from the lattice set-up is collected by the losses of the mirror
M2 and detected by a photodiode PDA 36A-EC [40] with switchable gain set on 40
dB corresponding to a bandwidth of 150 kHz. This is the portion of the signal taken
to stabilize the laser. A portion of signal goes to the Rodhe&Swarhz oscilloscope and
another part, y(s) goes to the input of the PID controller. With the oscilloscope, set
in DC mode at 1 MΩ (high impedence), we registered the values obtained, setting
different values in the input of the AOM. From this collection of couple of voltages
I get the calibration curve between the value that I have to set in the PID controller
and the value read on oscilloscope and taken by the photodiode.

The reference signal r(s) is given by the analog output that ranges in 10 V, and
the error signal e(s) = r(s)− y(s) elaborated by the PID controller produces at the
output a signal u(s) = H(s)e(s), where H(s) is the transfer function of the controller.
It goes to a variable attenuator that reduce the amplification below 4 dB and receive
in input a frequency of about 180 MHz from the digital generator of frequency (DDS)
in order to produce an RF signal in input for the AOM. The system on the whole be-
tween the output and the input of the PID control have a transfer function G(s), that
response with a new signal y(s) = G(s)u(s). To monitor the signal u(s) produced by
the PID control a part of the output signal goes to the spectrum analyzer.The limit
in lowering of the noise is imposed by the so called "servo bump" that is found at
the frequency at which the noise of the stabilized signal is increased. It comes from
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FIGURE 4.14: Phase of the loop implemented to stabilize laser intensity noise in the lattice
set-up.

FIGURE 4.15: Noise spectrum with the power stabilization switched on. The blue and red
spectra show fringes position fluctuations noise for to different chosen gain of the P value
on the PID control.

the fact that disturbances at frequencies close to the bandwidth of the system need
longer time until they are damped causing the noise spectrum to be increased in the
range where the phase is close to 180° (see figure 4.14) and the gain is the larger
one. On the other hand, on a oscilloscope, it can be seen as the frequency at which
the system starts to oscillate if the gain is increased. Fig. 4.15 shows that the servo
loop reduces the noise below 60 kHz. Our procedure has been developed to reduce
intensity noise at very low frequencies, especially below 10 kHz in order to avoid
heating effects at trapping frequencies. In order to do this, we had to increase the
proportional (P) during the optimization of the controller increasing the noise of the
signal after the servo bump and reducing at the same time the noise at low frequen-
cies. Fig. 4.15 show fringes position fluctuations for different chosen gain of the P
value on the PID control.

In figure 4.17 is shown the comparison between the intensity noise of Verdi-V8
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FIGURE 4.16: Comparison after the power stabilization between relative noise intensity
(RIN) measurements of the Verdi-V8 laser intensity noise (purple)(PDA36A-EC) and fringes
position fluctuations (dark green)(PDA100A-EC). The blue-dotted line shows the shot-noise
limited RIN measurements and the blue data are the background noise from the photodiode
(PDA100A-EC). Sampling rate is 200 kSa/s and the acquisition time is 1 s.

free running power stabilized

frequency range: (0÷ 10) kHz (0÷ 100) kHz (0÷ 10) kHz (0÷ 100) kHz

∆ǫ 7 · 10−4 9 · 10−4 2 · 10−4 6 · 10−4

∆ǫx [µm] 7.3 · 10−3 7.7 · 10−3 7.2 · 10−3 7.4 · 10−3

TABLE 4.3: Summary of RMS fluctuations.

laser with and without stabilization. The gain of the PID controller has been opti-
mized in order to reduce the noise at low and acoustic frequencies below 10 kHz.
Below 2 kHz the noise is reduced at most of about 35 dB/Hz. Instead of this, spikes
are present due to internal resonances of the measurement circuit. The half width
of maximum of these peaks is less than 10 Hz. The stabilization does not affect in
a relevant way the noise spectrum of fringes position fluctuations The noise reduc-
tion is only few dB/Hz as shown in figure 4.18. Figure 4.16 shows the comparison
between signals after the intensity stabilization of the laser. It is interesting to notice
how below 2 kHz the phase noise is still about 35 dB/Hz above the level of the inten-
sity noise, whereas for higher frequencies the two spectra coincide. This is a proof
that fringes noise below 2 kHz is not a consequence of the laser intensity noise, as
seemed before the stabilization (see figure 4.12) but rather that the cause of fluctu-
ations is the same. The integrated power spectrum for the intensity noise yields an
RMS of ∆ǫ = 6 · 10−4 over a range of 10 kHz. For fluctuations in the fringes position
the RMS is of ∆ǫx = 7.2 · 10−3 µm. In table 4.3 are summarized the RMS fluctuations
for both spectra before and after the stabilization.
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FIGURE 4.17: Relative noise intensity (RIN) measurements of the Verdi-V8 laser intensity
noise with power stabilization turned on (purple)/off (orange). Sampling rate is 200 kSa/s
and the acquisition time is 1 s.

FIGURE 4.18: Relative noise intensity (RIN) measurements of fringes position fluctuations
with power stabilization turned on (dark green)/off (light green). Frequency rate is of 1 Hz
and record length is of 200000 samples.
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4.3 Laser-noise-induced heating

Laser intensity fluctuations and fringes position fluctuations may play an important
role in determining the minimum heating rates that can be obtained in both red and
blue detuned optical traps. In the framework of a simple one dimensional harmonic-
oscillator model it’s possible to give an explicit expressions for the expected heating
rates. I will follow the theory derived in the articles by Savard et al. [41] and [42].

4.3.1 Heating rate caused by intensity noise

To determine the heating rate due to laser intensity fluctuations, we take the model
Hamiltonian for a trapped atom of mass M to be

H =
p2

2M
+

1

2
Mω2

tr[1 + ǫ(t)]x2 (4.23)

where ω2
tr = k0/M is the mean-square trap oscillation frequency, k0 is proportional

to the time averaged laser intensity I0 and ǫ(t) are fractional fluctuations of the laser
intensity as defined in 4.3 and are exhibited in the spring constant of the oscillator.
Here we consider the harmonic oscillator modelizes the trapping frequencies given
by the single focalized gaussian beam. The heating rate is determined using first
order time-dependent perturbation theory to calculate the average transition rates
between quantum states of the trap. The time-dependent perturbation is given by

H′(t) =
1

2
ǫ(t)Mω2

xx2 (4.24)

and because the perturbation is quadratic in its spatial coordinate, the perturbation
does not change the parity of the states and thus in a harmonic oscillator this tran-
sition can only occur in steps of ±2ωx. We assume that the averaging time T is
quite small compared to the timescale over which the atom population varies, but
large with respect to the correlation time of the fluctuations[41]. The transition rate
Rn±2←n can then be calculated as [41]

Rn±2←n =
πω2

x

16
Sǫ(2ωx)(n + 1± 1)(n± 1) (4.25)

with Sǫ(ω) = Sǫ(ν)/(2π) where Sǫ(ν) is the one-sided power spectrum defined
in Eq. (4.19) and ω = 2πν is the angular frequency. Since the overlap of adjacent
states with same parity increases for larger trap levels n, the transition rates are not
symmetric and the average energy increases over time. This leads to the fact that the
heating depends on temperature. In fact, for larger T higher trap levels are occupied
and hence the transition rates increases with a consequent heating of the sample.
Then, from the transition rate in Eq. (4.25) it is easy to calculate the time derivative
of the mean energy 〈E〉 = 〈E(t)〉 = ∑n P(n, t)(n + 1/2)h̄ωtr, assuming that initially
the trapped atoms occupy the state |n〉 with probability P(n, t) at time t [41] that is
just

〈Ė〉 = Γǫ 〈E〉 (4.26)

where the rate constant is given by

Γe =
1

Te
= π2ν2

trSe(2νtr) (4.27)
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where νtr is the trap frequency in Hertz and Te is the energy e-folding time in seconds
(time to increase 〈E〉 by a factor e). Eq. (4.26) shows that the average energy increases
exponentially.

Figure 4.19 shows how the energy e-folding time Te calculated from the (4.27)
varies with the choice of the trap frequency for a laser with the power shown in fig-
ure 4.17. The trap frequencies around 8.0 kHz and near 9.1 kHz show a a deep res-
onance, and, therefore, they should be avoid These points correspond to prominent
peaks in the power spectrum at the double of their frequency. At higher frequencies,
also near 18 kHz, 28 kHz and 44 kHz, time Te goes abruptly to zero. Just below 8
kHz, Te ≈ 1000s and it increases exponentially for lower frequencies until reaching
20000 s for 2 kHz. In the vertical direction of the optical lattice we will have typical
trap frequency of about (5÷ 10) kHz. In the plane we will have trapping frequencies
on the order of 10 Hz. However, putting these numbers4 into the energy e-folding
time Te

Te =
1

π2ν2
trSe(2νtr)

(4.28)

derived from equation (4.27), we obtain Te lattice ≈ 1000 s and a Te plane ≈ 104 s. Thus,
for these frequency, laser noise will not limit one in conducting experiments in the
optical lattice: heating times are much longer with respect to the typical timescale
of a single experimental run. Moreover, should be sufficent tuning the power of the
laser in order to decrease a little the frequencies trap to avoid the resonance at 8 kHz.
On the other hand, the spikes, are likely due to spurious noise sources entering in the
measurement circuit that will be changed and shortened when the set-up will be put
on the experiment. Eventually, the heating coming from the e-folding time energy,
leads to quite long atoms storage times in the quasi 2D harmonic-trap respect to the
typical experimental timescale.

4.3.2 Heating rate caused by fringe position fluctuations

In a optical lattice, fringe position fluctuations must be stringently controlled. In this
case, the effective Hamiltonian is given by

H =
p2

2M
+

1

2
Mω2

tr[x− ǫx(t)]
2 (4.29)

where this harmonic oscillator modelizes the trapping frequencies given by the po-
tential corresponding to a single fringe of the interference pattern and ǫx(t) is the
fluctuation in the position of the trap center.Analogous to the methods used to ob-
tain (4.27), calculations based on (4.29), yield to an energy-doubling time Tx that
can be defined as the time needed to increase the energy by the average energy at
t = 0,

〈

Ė
〉

/ 〈E(0)〉 = 1/Tx. Then using 〈E(0)〉 = Mω2
tr

〈

x2
〉

where
〈

x2
〉

is the
mean-square position of an atom in a trap at t=05, one obtains:

〈

Ė
〉

/ 〈E(0)〉 = 1

Tx
= π2ν2

tr

Sx(νtr)

〈x2〉 (4.30)

where here Sx(ν) is the one-sided power spectrum of the position fluctuations of the
trap center as defined in (4.13) and measured as explained in section 4.2.1. The mean

4As typical lattice trap frequency we choose 7 kHz.
5To notice that

〈

x2
〉

defined here and 〈ǫx(t)2〉 defined in (4.14) are to different quantities. The first
refers to the spread of the atomic wave function in the harmonic potential, whereas the second one to
the fluctuations of the trap.
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FIGURE 4.19: Up: the calculated energy e-folding time Te plotted as a function of the trap
frequency νtr = ωtr/2π with (purple) and without (orange) power stabilization; down: the
calculated mean energy doubling time Tx plotted versus trap frequency νtr, with (dark green)
and without (light green) power stabilization. For both set of measurements Verdi-V8 was
running at 1 W.
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energy e-folding time Te: (1300± 300) s
energy doubling time Tx: (125± 40) s

TABLE 4.4: Summary of the typical heating-time for a frequency of 7.5 kHz after power
stabilization.

square position
〈

x2
〉

is the harmonic oscillator ground-state length l =
√

h̄/(mωtr)
in a harmonic potential of frequency ωtr. The energy-doubling time Tx is thus calcu-
lated as

Tx =
h̄

2Mπ2ν3
trSx(νtr)

. (4.31)

Figure 4.19 shows that the energy doubling time, between frequencies of 6 kHz and
10 kHz, ranges from about 300 s to 50 s. These timescale are eventually longer with
respect to the timescale of a single experimental run, i.e. about 10 ms. In particu-
lar, for the trapping frequency expected, the heating rate corresponds to region in
the noise spectrum quite flat and Tx is about 100 s. Thus, in the end, our lattice
potential will provides a confinement with reasonably low heating rate at the trap-
ping frequency of 7.5 kHz. In table 4.4 I summarize the typical heating time after
the stabilization caused by intensity noise and fringes position fluctuations for the
predicted trapping frequency.
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Conclusions

My thesis work has been focused on the realization of a one-dimensional large-
spacing optical lattice for confining 6Li atoms in single or multilayer quasi-2D ge-
ometries. I have designed and built the optical set-up for creating the lattice poten-
tial, choosing the optical elements and the parameters for trapping the atoms. At
the same time, I have carried out numerical simulations to characterize the load-
ing of cold fermionic 3D samples into the quasi-2D geometry at finite temperatures,
assuming an adiabatic procedure. From these simulations, I have obtained the tem-
perature of the cloud in the quasi-2D potential after the adiabatic loading. I have
also extracted the required confining frequency and atom number to achieve the
quasi-2D condition with a Fermi gas at finite temperature.

Guided by the results of these simulations, I have chosen the desired lattice trap-
ping parameters. I have subsequently modelled the optical lattice potential in order
to calculate the beam parameters required to obtain the desired trapping frequencies
and depth of the lattice. At this point, I could design an optical system to produce
the calculated values of the beam waists and the required crossing angle between the
two interfering beams. Besides determining the suitable lenses for shaping the beam
intensity profiles, the most important aspect of the optical setup has been the choice
of the scheme to produce two interfering beams with optimal relative phase stabil-
ity. For this goal, a lateral displacement prism has been implemented to separate the
two lattice beams, while keeping their optical path as identical as possible.

The realized optical lattice has a spacing of d ≃ 4.3 µm. The measured beam
waists lead to an axial trapping frequency of ωx = 2π (7.5 ± 0.2) kHz and radial
ones of ωy = i2π (8.8± 0.7) Hz and ωz = i2π (15.5± 0.3) Hz at a beam power of
1 W. Such axial frequency satisfies the quasi-2D confinement condition for 6Li atoms,
numerically calculated for typical experimental parameters. The maximum number
of atoms is close to 2.5 · 105, for an initial temperature of T/TF = 0.1 before the
loading. The lattice spacing is very close to the design value. Tuning the intensity
of the beams to lower power, this lattice will allow to explore different tunnelling
regimes, with tunneling rates varying from 10 Hz to 10−3 Hz. This feature will
permit to study the coupling between different atomic layers. Moreover, if desired,
such spacing is suitable for the direct loading of the atoms in a single minimum of
the optical lattice.

I have also investigated the dynamical stability of the lattice interference pattern,
revealing a RMS phase fluctuation of 0.015π and 0.12π over 100 seconds and 8 hours
of continuous measurement in a typical laboratory environment, respectively. These
correspond to 1.5% and 12% of the lattice spacing, respectively. On the other hand,
the characterization of the lattice noise spectrum has allowed to evaluate the typical
laser noise-induced heating rates. For the expected trapping frequency of 7.5 kHz,
we estimate an intensity-induced energy e-folding time Te = (1300± 300) s and a
fringe position-induced energy doubling time Tx = (125± 40) s. These values are
much larger than typical experimental time scales, and are therefore satisfactory.
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In the near future, we plan to integrate this lattice set-up into the main experi-
mental apparatus. This will allow to address the study of the intriguing phenomenol-
ogy of strongly-correlated atomic Fermi gases in two dimensions.
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