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Chapter 1

Introduction

Since the first experimental realization of a Bose-Einstein condensate (BEC) in

1995[1], increasing interest has grown around these particular objects. The principal

reason is that BECs are macroscopic, therefore easily observable, but their behavior

is completely dominated by their wave nature. Thanks to this property a lot of

exciting research was carried out using BECs, spanning many different research

fields[2]. For example the observation of their superfluid behavior, the most striking

evidence being the formation of quantized vortices[3], has led to test various theories

developed in the context of superfluid Helium. BECs can be also used to simulate

interesting phenomena of condensed matter physics like Andersson localization[4,

5], the superfluid to Mott insulator transition[6] and many others. Recently the

achievement of single atom and single site resolution in such systems opens a new era

of observations in this direction[7]. BECs in optical lattice represents also appealing

candidates for quantum computation[8] thanks to their long coherence times, good

scalability, and the control of interactions between atoms via Feshbach resonances[9,

10, 11].

The subject of this thesis is the use of BECs for atom interferometry[12, 13].

The standard way atom interferometry is today performed is by interrogating free
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falling samples of atoms[14]. The employed samples are cold (but not condensed)

to have high coherence, and dilute, not to interact significantly with each other.

This technique represents nowadays an almost mature field of research in which the

achievable interferometric sensitivity is bounded by the atomic shot noise. Until

a few years ago the employment of BECs in such devices was strongly limited by

the effect of the interactions between the condensed atoms. This obstacle is today

removable exploiting interaction tuning techniques. The use of BECs would be ad-

vantageous for atom interferometry inasmuch they represents the matter analogue

of the optical laser providing the maximum coherence allowed by quantum me-

chanics. In this direction, enhanced phase coherence was demonstrated employing

almost non-interacting samples[15]. Moreover, non-linear dynamic can be exploited

in order to prepare entangled states of the system. The realization of entangled

samples can lead to sub-shot noise sensitivity of the interferometers[16]. At today

very nice proof-of-principle experiments have been realized in this direction[17, 18]

but a competitive device is still missing.

This thesis work is inserted in a long term project whose goal is the realization of

such a device. The basic operational idea of the project starts with the preparation

of a BEC in a double well potential. By the effect of strong interactions the atomic

system can be driven into an entangled state. Once the entangled state is prepared,

interactions can be ”switched off” and the interferometric sequence performed. The

two modes of the interferometer that we want to build will be represented by the two

ground states of two spatially separated potential wells created via optical potentials.

The measured phase will be sensitive to the energy difference between the wells. The

use of a trapped configuration would also allow for very long phase accumulations

as compared to a free-falling scheme.

This thesis begins with the description of the apparatus for the production of

tunable BECs to be used in the interferometer. We chose to work with 39K atoms
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because this atomic species presents many convenient Feshabch resonances at eas-

ily accessible magnetic field values. The cooling of this particular atomic species

presents many difficulties, both for the laser and evaporative cooling processes.

For this reason, this was the last alkaline atom to be condensed. Its condensa-

tion up to now was only possible by employing sympathetic cooling with another

species[19, 20]. In this thesis our solutions to the various cooling issues is reported.

In particular we realized sub-Doppler cooling for the first time for this species and

we achieved condensation via evaporation in an optical dipole trap taking advan-

tage of a Feshbach resonance. In the last part of this work, are presented original

calculations for the effects of thermal fluctuations on the coherence of a BEC in a

double well, discussing the interplay between thermal fluctuations and interactions

in this system. Estimations and feasibility studies regarding the double well trap to

be realized are also reported. This kind of calculations are part of the design process

in order to identify realistic operational parameters and optimized design strategies

for the realization of the double well interferometer.

In more details, Chapter 2 contains an introduction to the theory of atomic

cooling (laser cooling and evaporative cooling). In Chapter 3 are revised the basic

aspects of quantum interferometry. The details about the building and operation

of the experimental apparatus are given in Chapter 4. The achievement of sub-

Doppler cooling and the details of the laser cooling procedures are the subject of

Chapter 5. The optimization of the optical and magnetic trapping techniques, as

well as the achievement of condensation in single species operation are reported in

Chapter 6. In Chapter 7 are given the theoretical calculations about thermal effects

on the condensate coherence together with calculations regarding the realization of

the double well.
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Chapter 2

Theory

Here I give the basic theoretical background for the physical phenomena explored

in this thesis. Sec.2.1 of the chapter describes the cooling techniques used to cool

a thermal gas of atoms to the extremely low temperatures that are necessary to

achieve Bose-Einstein condensation (BEC). Sec.2.2 recalls the principal features of

this quantum state of matter. In Sec.2.3 is described the tool of Fano-Feshbach res-

onances, used to control the atomic interactions in the BEC. In Sec.2.4 is introduced

the theoretical framework for the description of a double well Mach-Zehnder atomic

interferometer.

2.1 Laser and evaporative cooling

The two basic techniques used to reach low temperatures in alkaline’s atomic gases

are laser cooling and evaporative cooling. Laser cooling allows to cool a gas from

room temperature down to a few µK. Evaporative cooling is instead used to reach

the few hundreds of nK that are necessary to reach the BEC transition.
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2.1.1 Laser cooling

In the description of laser cooling I am going to make use of the semi-classical

picture for the atomic interaction with the light field[21]. In doing this, I will treat

the internal degrees of freedom of the atom in a fully quantum mechanical way. The

external degrees of freedom (position and momentum), as well as the light field, will

instead be treated classically. To do so one has to be sure that the atomic position

and velocity are well defined during the interaction with light

∆x≪ λ (2.1)

k∆v ≪ Γ . (2.2)

Here ∆x is the spatial extension of the atomic wavepacket, which is given by the

De Broglie wavelength; λ is the wavelength of the laser light, and k=2π/λ is the

wavenumber. ∆v is the velocity spreading of the atomic wavepacket. Γ is the

scattering rate which is given by Γ=2π/τ , with τ the radiative lifetime of the excited

atomic level. By writing the Heisenberg indetermination principle for the conjugated

variables of the atomic motion and making use of the above equations the following

condition can be obtained:

ER =
~
2k2

2m
≪ ~Γ (2.3)

in which ~ = h/2π with h the Planck constant.

The quantity on the left-hand-side is the recoil energy that an atom gets from the

light field in an absorption event. This is also called the broadband condition[22].

It ensures that the interaction with the light field does not change significantly the

atomic energy. If 2.3 is verified the atomic conditions don’t change significantly

over many absorption re-emission cycles. For the cooling transition of 39K the ratio

~Γ/ER is about 350.

Under this condition it makes sense to consider the mean optical dipole force

F that the light exerts on an atom moving with velocity v at a given position x.
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Given the electric field E generated by a monochromatic laser beam of polarization

unit vector ǫ̂, field amplitude E, angular frequency ωL=2πc/λ and phase φ:

E = ǫ̂(x)
E(x)

2
e−i(ωLt−φ(x)) + c.c. . (2.4)

The mean force the light field exerts on an atom is:

F =
∑

i=x,y,z

di∇Ei . (2.5)

Here d is the averaged atomic dipole operator:

d = 〈D〉 = Tr(ρatD) , (2.6)

ρat is the steady-state atomic-density operator, given by the solution of the optical

Bloch equations (OBE)[23].

In the simple case of a two-level atom at rest, the expression for the force has

two contributions: the radiation pressure force and the dipole force

FRP =
~Γ

2

s

1 + s
∇φ , (2.7)

Fdip = −~δ

2

∇s
1 + s

. (2.8)

Here δ=ωL-ωA is the detuning from the atomic transition and s is the saturation

parameter

s =
Ω2/2

δ2 + Γ2/4
(2.9)

Ω=Ed0ǫ̂/~ is the Rabi frequency and d0 is the matrix element of the dipole operator

between the ground- and the excited-state electronic wavefunctions.

Let us discuss the effect of these two forces. For the case of a single plane wave

(φ(x) = kx and s=const) the dipole force is zero and the radiation pressure is:

FRP = ~k
Γ

2

s

1 + s
(2.10)

this force can be interpreted as the viscous force coming from scattering of photons

at a rate γ=Γ
2

s
1+s

. The absorbed photon changes the atomic momentum by ~k, and
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the spontaneously re-emitted photon takes off in a random direction, not changing,

on average, the atomic momentum. The acceleration that this force can cause on a

potassium atom for s≫1 is 2.4×105 m/s2, which is sufficient to stop an atom moving

at 250 m/s (typical velocity for an atom at room temperature) over a distance of

12 cm in a ms.

To have a non zero dipolar force, it is necessary to allow a spatial variation of

the beam amplitude, or, in other words, one needs to deal with several plane waves.

The dipolar force is originated by the redistribution of photons that an atom can

operate by absorbing a photon from one plane wave and emitting it by stimulated

emission in another one. The dipolar force can be derived from a potential

Udip =
~δ

2
ln(1 + s(x)) , (2.11)

it is thus conservative and it can be used for trapping. The dipole potential is

related to the light shift or AC Stark shift ∆AC by Udip = ~∆AC . In the limit of

low saturation (s ≪1) there is a simple relation between scattering rate and dipole

potential

γ =
Γ

~δ
Udip =

Γ

δ
∆AC . (2.12)

The modification to the force, caused by the fact that the atom is in movement

with velocity v, only consists in considering the laser frequency as seen by the

atom. The Doppler effect modifies the laser frequency according to: ω′
L = ωL-

kv, δ′=δ-kv. Let us consider the situation in which the atoms interact with two

counterpropagating plane waves. In this case, by Taylor expanding the radiation

pressure force for the two laser fields at small velocity, one gets:

F = −αv . (2.13)

In the case of low saturation, the contributions from the two plane waves can be

added independently and the value of the friction coefficient is:

α = −~k2s
2δΓ

δ2 + Γ2/4
. (2.14)
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If δ < 0, this force causes dissipation. The velocity range over which the Taylor

expansion remains valid (velocity capture range) is given by v< Γ/k, that is satisfied

if the semi-classical picture is applicable.

Spontaneous emission does not change the mean velocity, but can change the

averaged square velocity by causing fluctuations. Fluctuations are described by a

random walk in momentum space, expressed by

〈p2〉(t) = 2Dpt . (2.15)

By the fluctuation-dissipation theorem, the limit temperature reachable by laser

cooling is as follows

kBT =
Dp

α
. (2.16)

The calculation of the diffusion constant for a two-level system gives Dp = ~
2k2Γs.

This cooling scheme is called an ”optical molasses”[24] and is applicable also in 3D.

The temperature one gets for a two level atom is called Doppler temperature. It is

independent of the laser power and it is minimum for δ = −Γ/2, for which its value

is given by:

kBTD =
~Γ

2
. (2.17)

For the D2 transition used for cooling potassium TD ≃ 145 µK.

2.1.2 Sub-Doppler cooling

Cooling below the Doppler temperature is possible for multilevel atoms in presence

of a non homogeneous polarization of the light field[25]. To get some insight, we

can consider the electric field generated in a common experimental situation. Let us

take two counter-propagating laser fields of opposite circular polarization (σ− for the

beam propagating along z and σ+ for the one propagating in the opposite direction).

The resulting electric field is always linearly polarized with the polarization axis that

rotates in space around the z axis describing an helix with step λ. If an atom moves
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Figure 2.1: Polarization pattern produced by the laser configuration described in

the text, the resulting electric field has linear polarization, the polarization axis

describes an helix with step λ

along z it will therefore see the light polarization rotated by an angle kz.

The simpler transition exhibiting sub-Doppler cooling in this situation is a J =

1 → J ′ = 2 transition. If we take as the quantization axis z, and we analyze the

situation for an atom at rest at in a given position, for which the polarization of

the light is x̂, it is possible to calculate the light shifts and the populations of the

different ground state sub-levels. The result is, of course, symmetric for mF = +1

and mF = −1. If we repeat the analysis for an atom at rest in another position and

with a different polarization of the light, nothing will change. So the light shifts

and the populations in the ground state are independent of position for an atom at

rest. If we now consider an atom moving in such a laser configuration with velocity

v along the z axis, it is clear that the atom, in its rest frame, is in the presence of a

varying polarization. The question arises whether it is able to follow the variation
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during its motion or not.

We will work in a regime of velocity such that kv ≪ Γ in order to neglect the

Doppler effect on detuning. The simplest approach is to describe the system in a

rotating reference frame in which the laser polarization is constant. In this reference

frame, a non inertial term is added to the Hamiltonian

Vrot = kvJz . (2.18)

This term rises the energy of the mF = +1 state and lowers the energy of the

mF = −1, causing an imbalance in the populations of these two levels due to optical

pumping processes. To calculate such imbalance one has to solve the OBE of the

system. To have an estimation of the imbalance, we can consider the coherent

Raman process that couples the mF = 1 state to the mF = −1 through absorption

of a photon from the σ− beam and re-emission into the σ+ one (see Fig.2.2). We

F=2

F=1

d

W/Ö6W/Ö6

m =+1F

m =-1F

kv

kv
dR

Figure 2.2: Scheme of the Raman coupling described in the text.

consider this process because it is Doppler free; so it is likely to exhibit a velocity
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dependence even for kv ≪ Γ. We can restrict the analysis to the two levels coupled

by the Raman transition and describe the process on the Bloch sphere. The effective

Rabi frequency of the Raman coupling is

ΩR =
Ω2/6

δ
, (2.19)

the effective detuning of the Raman transition is

δR = 2kv . (2.20)

The situation is the one depicted in Fig.2.3. For v = 0 there is no evolution, and the

populations remain balanced. The introduction of a Raman detuning by the atomic

velocity gives rise to a Rabi oscillation around the combined axis. On average and

for small angles the population imbalance p will be

p ≈ δR
ΩR

=
2kvδ

Ω2
(2.21)

in favor of the mF=-1 state for positive δ. It is easy to see that, for increasing

Raman detuning, the imbalance reaches a maximum for kvc ≈ Ω2/δ; this defines

the velocity capture range of sub-Doppler cooling. The force generated by the

population imbalance is simply the radiation pressure force times p (the σ− beam is

pointing towards the velocity).

FSD ≈ ~k
Γ

2
sp ≈ ~k2δΓ

δ2 + Γ2/4
v (2.22)

which gives, for the friction coefficient at large detuning:

αSD ≈ −~k2
Γ

δ
. (2.23)

Remarkably this is independent of laser power. The pre-factor on the above estima-

tion and possible deviations from this behavior at small detuning will depend on the

particular level scheme that one is dealing with. It is easy to see that the population

imbalance of the extreme levels grows according to the degeneracy of the ground
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Figure 2.3: Bloch sphere representation of the effect of the Raman coupling. The

situation in which ΩR (and since δ) is positive is shown, in this case, on average

there are more atoms in the mF = −1 level. The initial situation is supposed to be

with the representative Bloch vector aligned with ΩR for simplicity.

state δR ∝ m, with m the magnetic quantum number. So an higher degeneracy

implies higher friction. For large detuning, δ ≫ Γ, using the same diffusion constant

in momentum space used for the Doppler case, one gets:

kBTSD =
Dp

αSD

≈ ~Ω2

δ
≈ kBTD

I

Is

Γ

δ
(2.24)

in which we made use of Ω = Γ
2

√
I
2Is

. I is the intensity of the light wave and Is is

the saturation intensity.

From the above expression one sees that, using this method it is possible to reach

very low temperatures. For δ ≫ Γ and I ≪ Is, the temperature can be much lower

than the Doppler temperature. The limit of the cooling method is reached when the

thermal velocity spread exceeds the velocity capture range of the process. At that

point the Doppler cooling becomes dominant and the temperature grows eventually
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reaching TD. For the limit temperature:

kBTlim ≈ 1

2
mv2c ≈ m

2~2k2
~
2Ω4

δ2
≈ k2BT

2
lim

ER

; (2.25)

this implies

kBTlim ≈ ER . (2.26)

In conclusion, this cooling method is limited only by the recoil energy, which for

potassium is 0.4 µK. The prefactor on the expression for the limit temperature was

calculated using Monte Carlo simulations and was found to be in the range of 10-40,

depending on the actual level scheme[26].

2.1.3 Evaporative cooling

In order to reach even lower temperatures, an evaporative cooling scheme is used by

which the higher energy atoms are selectively extracted from the trap. The atoms

with higher energy are populating the low density tails of the cloud. If they are

removed slowly, on a time scale which is longer than the time the cloud needs to reach

thermal equilibrium τeq, the evaporation determines cooling and the process can be

sustained up to the condensation point. Since only a few collisions are sufficient

to equilibrate the thermal distribution, we can approximate τeq ≃ τcoll = (nσv)−1,

in which σ is the cross section for elastic collisions between atoms, n is the atomic

density, and v the typical atomic velocity. This is indeed the same process that

happens everyday when a cup of coffee cools down.

In cold atoms this process is usually realized in magnetic or optical traps. In a

magnetic trap, the spatial variation of the magnetic field across the trap offers an

elegant way to evaporate the cloud. Using a radio frequency transition, the trapped

state can be coupled to an untrapped one. The frequency can be chosen in such a

way that only atoms with a given potential energy will be resonant. This scheme
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removes all atoms on a ”resonance surface” (three dimensional evaporation). The

radio frequency gets progressively reduced up to the condensation point.

In an optical trap instead, a focused laser beam, tuned on the red of the atomic

transition, is used for trapping by the dipole potential. The potential experienced

by the atoms is given by:

U(x) = α(ωL)I(x) = α(ωL)
I0

1− z2

z20

e
− 2r2

W2
0 (2.27)

where α(ωL) is the atomic polarizability at the laser frequency, I0 is the intensity

at the focal point, z and r are coordinates along and transverse to the laser beam

axis respectively, W0 is the beam waist, and z0 = πW 2
0 /λL is the Rayleigh range.

This potential yields a finite depth given by U0 = α(ωL)I0. Atoms with an energy

larger than U0 cannot be confined by the potential and they will leave the trap due

to gravity. Atoms are therefore lost on a preferential direction (one dimensional

evaporation). The evaporation in this case is performed by progressively reducing

the laser power and therefore the trap depth. Differently from the magnetic case,

for dipole traps, during evaporation the trap frequencies are also reduced. This can

be a problem since it causes the collision rate to decrease in typical situations.

The first quantity that characterizes the evaporation is the truncation param-

eter η = U0/(kBT ). A low η inhibits thermalization, while a high one results in

slow evaporation, that can in turn lead to losses. The evaporation rate, in fact,

is determined by the truncation parameter. Every time a collision takes place, the

probability to evaporate a new atom is given by the Boltzmann factor e−η. Therefore

for the evaporation rate:

Γev = Γele
−η (2.28)

with

Γel =
1

τcoll
= nσv (2.29)

the rate of elastic collisions. Two different time scales are driving the evaporation
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ramp, determining the optimum value of the truncation parameter. The first one

is the thermalization time τeq that is the inverse of the elastic collision rate. The

second time scale is determined by losses and heating in the system; these can

be of various nature: collisions with the background gas, two-body or three-body

collisions, technical noise on the trapping potential, etcetera. They all contribute to

an inelastic rate Γin. The evaporation is efficient when the evaporation rate is, on

the one hand, lower than the elastic collision rate (necessary condition for the gas

to be able to equilibrate), and on the other, higher than the inelastic collision rate

(condition this for the evaporation to be the dominant loss process). This means

that a lower η is favorable when we are in presence of strong inelastic rates. There

is anyway a limit. In fact it can be proven that, for a harmonic trap, an η < 3 leads

to a decreasing phase space density during the evaporation[27].

The efficiency of the evaporation process is measured by the χ parameter, which

is defined by:

χ =
log ρf/ρi
logNi/Nf

(2.30)

in which ρi(f ) is the initial (final) phase space density and Ni(f ) is the initial (final)

number of atoms.

2.2 Bose-Einstein condensation

Bose-Einstein condensation is a phase transition occurring when the thermal De

Broglie wavelength λDB of the particles

λDB =
h√

2πmkBT
(2.31)

becomes comparable with their inter-atomic distance[28, 29]. In this regime the

wave nature of atoms becomes dominant and quantum effects are important for the

macroscopic behavior of the system. In terms of the phase space density

ρ = nλ3DB (2.32)
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the phase transition takes place when ρ=2.612.

For a normal gas at room temperature and atmospheric pressure the De Broglie

wavelength of the particles is smaller than the atomic radius, the phase space density

of the gas is around 10−7. From this point, it is possible to increase the phase space

density either by increasing the density or decreasing the temperature. However,

as can be seen from Fig.2.4, the BEC transition happens in a region of the phase

diagram in which the equilibrium state of matter is a solid1.

Figure 2.4: Phase diagram of a typical bosonic element. The BEC region is dashed

since the true equilibrium state of the system is the solid state.

This means that all BECs are metastable, the solid state being the true ground

state of the system. The first processes that leads to the sample’s solidification are

the ones in which three atoms collide, two of them form a molecule and the third

one ensures conservation of momentum. The binding energy of the molecule gets

converted into kinetic energy, leading to the loss of all three atoms from the trap

1the only element that makes exception in this sense is helium
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(three body loss). If the sample is dilute the probability to find three atoms, close

enough to determine a three body loss, can be negligible and the lifetime of the

BEC can be long. To be quantitative, three body losses in a gas are described by

the formula

ṅ = −K3n
3 (2.33)

The minimum value of K3 for 39K is 10−29 cm6/s. For a normal BEC at a density

of 1014 atoms/cm3, this equation predicts a 10 s lifetime for the condensate. Such

density is 5 orders of magnitude lower than the density of air at atmospheric pressure.

2.2.1 BEC of weakly interacting atoms in a harmonic trap

In experiments, we deal with interacting samples of atoms trapped by inhomoge-

neous external potentials. To describe the system in this situation the so-called

Gross-Pitaevskii equation[30] (GPE) is required. In second quantization, the many-

body Hamiltonian operator describing a system of N bosons in an external potential

Vext is given by

Ĥ =

∫
dxΨ̂†(x)

[
−~

2∇2

2m
+ Vext(x)

]
Ψ̂(x)+

1

2

∫ ∫
dxdx′Ψ̂†(x)Ψ̂†(x′)Vint(x,x

′)Ψ̂(x)Ψ̂(x′) . (2.34)

In the case of ultra-cold bosons, the interaction potential can be greatly simplified.

Every collision channel but the s-wave is in fact strongly inhibited due to the very

low collisional energy (see Sec. 2.3). When only s-wave scattering is present, the

details of the interaction potential are not important anymore, therefore it can be

substituted by a pseudo-potential with the same s-wave scattering amplitude

Vint(|x− x′|) → 4π~2a

m
δ(x− x′) . (2.35)

The parameter a is the s-wave scattering length which is an experimentally deter-

mined parameter.
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Even with this simplification, the solution of the Schrödinger equation for a sys-

tem of typically 105 atoms is a numerically impracticable task. To further simplify

the problem, we can make use of our knowledge of the ground state of the sys-

tem. The ground state is the condensate, which is characterized by a macroscopic

occupation of a single quantum state. In this case, the fluctuations on the wave

function amplitude can be neglected and the amplitude itself can be substituted by

a c-number (mean field approximation)[31]:

Ψ̂(x) = b̂0Ψ0(x) + δΨ̂(x) ≈
√
N0Ψ0(x) . (2.36)

Here b̂0 is the destruction operator of the ground state, Ψ0(x) is the condensate

wave-function, and δΨ̂(x) represent excitations of the system, which are neglected.

N0 is the number of atoms in the ground state. By substituting this ansatz for the

wave-function back into the Hamiltonian and writing the equation of motion, we get

the GPE

i~Ψ̇0(x, t) =

[
−~

2∇2

2m
+ Vext(x) +

4π~2a

m
|Ψ0(x, t)|2

]
Ψ0(x, t) . (2.37)

From the mathematical point of view the GPE is a single particle Schrödinger equa-

tion with a non-linear term accounting for interactions. The stationary solution to

this equation is calculated by replacing Ψ0(x, t) = e−iµt/~Ψ0(x)

µΨ0(x) =

[
−~

2∇2

2m
+ Vext +

4π~2a

m
|Ψ0(x)|2

]
Ψ0(x) (2.38)

the parameter µ is the chemical potential of the condensate.

This equation has two limit behaviors: for very low interaction strengths the

non linear term can be neglected and the GPE becomes simply the Schrödinger

equation for a particle in the external potential Vext. In this case the condensate

wavefunction is nothing but the ground state wavefunction of a single particle in the

external potential. If the potential is harmonic with angular frequencies ωx, ωy, ωz

Ψ0(x, y, z) =

(
mω

π~

)3/4

e−
m
2~

(ωxx2+ωyy2+ωzz2) (2.39)
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here ω is the geometric average of the three angular frequencies. The chemical

potential in this case is simply the harmonic oscillator ground state energy µ =

~(ωx+ωy+ωz)

2
.

The other limit case is the one in which repulsive interactions are dominating

over the kinetic term. In this case, which is the case for typical BECs, we can neglect

the kinetic term in the GPE applying the so-called Thomas-Fermi approximation. In

this case, the GPE becomes a simple algebraic equation for the condensate density,

whose solution gives an inverted parabola profile of the condensate

n(x, y, z) = |Ψ0(x, y, z)|2 =
m

4π~2a
(µ− Vext(x, y, z))θ(µ− Vext(x, y, z)) . (2.40)

The chemical potential is obtained by the condition that the integral of n gives the

total atom number and it is given by

µ =
~ω

2

(
15Na

lho

)2/5

, (2.41)

where lho is the harmonic oscillator length. For the same potential considered in

the non interacting case, the density at the center and the radii of the cloud can be

calculated

n0 =
m

4π~2a
µ (2.42)

Ri =

√
2µ

mω2
i

(2.43)

for i = x, y, z. The condition for the interaction energy to be larger than the kinetic

energy can be rephrased in µ ≫ ~ω/2[32]. This is true if Na ≫ lho. The oscillator

length lho for a typical trapping frequency of 100 Hz is 1.6 µm. For a condensate of

105 atoms, Na become 10 times larger than lho for a scattering length of only 3 a0,

where a0 is the Bohr radius. Since the typical values of the scattering length are of

the order of one hundred a0, the Thomas-Fermi approximation is typically very well

justified.
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2.3 Tuning the interactions

Interactions among neutral atoms are typically due, on the one hand, to Fermi

pressure at short distances which prevents the nuclei to come too close to each

other, and on the other, to Van Der Waals attraction at large distances, which fall

off with the interaction distance r as r−6. To treat collisions I will make use of

some well known results from scattering theory[33]. Before going into details, let

us consider the typical length scales in the system. The three relevant distances for

the collisional physics of the gas are: the inter-particle distance n−1/3, the range of

action of the interaction potential r0, and the De Broglie wavelength λDB. Since we

deal with dilute gases n−1/3 > r0, is typically valid. At high temperature, the De

Broglie wavelength is shorter than r0 . Decreasing the temperature, λDB becomes

of the same order, or larger, than r0. Finally, for even lower temperatures, it can

reach n−1/3 leading to condensation. In the intermediate regime, r0 < λDB < n−1/3,

the gas is still thermal but the wave nature of the particles influences the collisional

properties. A quantum-mechanical treatment of the collisions is therefore required.

To have an idea, if we consider an r0 of around 2-3 nm, the De Broglie wavelength

is larger than r0 for temperatures lower than 10 mK.

Let us consider the collision of two atoms having the same mass m. The full

Hamiltonian reads

H =
|p1|2
2m

+
|p2|2
2m

+ V (|r1 − r2|) . (2.44)

The interaction potential is supposed to have central symmetry, since we will always

deal with alkali atoms with one unpaired electron in the external s orbital. We can

introduce the center of mass and relative coordinates, in which the Hamiltonian is

re-written as

H =
|pCM |2
4m

+
|p|2
m

+ V (|r|) (2.45)
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the following notations are used

p1 + p2 = pCM = ~kCM ,
p1 − p2

2
= p = ~k, (2.46)

r1 + r2

2
= rCM , r1 − r2 = r . (2.47)

It is a known result of scattering theory that for the system wave-function after the

collision the following limit behavior is valid

Ψ(r1, r2) →r→∞ eikCM ·rCM

(
eik·r + fk(θ)

eik|r|

|r|

)
. (2.48)

where θ is the axial angle between r and k. This equation consists of two terms

in the relative reference frame: the first one describes the two waves passing away

from each other (transmission), while the second one describes a spherical wave

originated from the collision point (diffusion). The quantity f(θ) sets the strength

of the diffusion with respect to the transmission and it can only depend on the axial

angle because of the cylindrical symmetry of the problem.

The above expression needs to be symmetrized (bosons) or anti-symmetrized

(fermions) if we are dealing with identical particles. The only term that changes

when exchanging the two particles is f(θ). It is easy to realize that the two events

depicted in Fig.2.5 are indistinguishable for identical particles. The symmetrization,

Figure 2.5: The two collisional events in this picture are indistinguishable for iden-

tical particles. Their amplitude probability has therefore to be symmetrized.
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therefore, consists simply in the replacement

f(θ) → f(θ)± f(π − θ) (2.49)

with the plus sign for bosons and the minus sign for fermions. The total cross section

for the collision process can be found to be

σtot = 2π

∫ π
2

0

|f(θ)± f(π − θ)|2 sin(θ)dθ . (2.50)

Since the interaction potential is centrally symmetric we can describe the collision

in term of partial waves. The symmetrization causes the cancellation of the odd

waves for bosons and of the even ones for fermions

σtot =
8π

k2

∑

2l

(2l + 1) sin2(δl(k)) (bosons) (2.51)

σtot =
8π

k2

∑

2l+1

(2l + 1) sin2(δl(k)) (fermions) (2.52)

The parameters δl(k) are the partial wave’s phases and they carry information about

the interaction potential. The equation for the radial wave function uk,l is

u′′k,l(r) +

[
k2 +

l(l + 1)

r2
+ V (r)

]
uk,l(r) = 0 . (2.53)

This equation is the same as the one describing the 1D motion of a particle moving

in the effective potential Veff (r) =
l(l+1)
r2

+ V (r). The potential V (r) has a typical

range of action of a few nm, while for larger distances the repulsive centrifugal term

dominates.

If V (r) = 0, the shortest distance a particle with low energy can reach is rl =√
l(l+1)

k
, which is of the order of the De Broglie wavelength (λDB ≈ 1/k). At the

condensation point, the De Broglie wavelength can take typical values of about

1 µm; therefore, unless l = 0, the potential is unreachable by the particles. This

phenomenon can be visualized in terms of a centrifugal barrier given by the term

l(l+1)
r2

, whose height can be a few hundreds of µK. For temperatures lower than the
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centrifugal barrier’s height, the only partial wave contributing to the scattering is

the s-wave. Because of this and of the symmetrization rules, it follows that ultra-

cold fermions are practically non-interacting and that the cross section for bosons

is

σtot =
8π

k2
sin2(δ0(k)) . (2.54)

At this point we can define the s-wave scattering length to be

a = lim
k→0

−δ0(k)
k

, (2.55)

such that

lim
k→0

σtot = 8πa2 . (2.56)

The only parameter that we need to know, in order to characterize the collision at

low energy is thus a.

2.3.1 Square well potential

To get some insight on the scattering length, we can look at the simple case in which

the interaction potential is a square well. For this potential, the scattering problem

is easily solvable analytically.




V = −V0 0 < r < r0

V = 0 r0 < r < R

V = ∞ r > R

(2.57)

here I also inserted a finite system size R, which is supposed to be larger than any

other length scale of the problem.

Let us start by considering the continuum states for E > 0 and l = 0. The

equation for the radial wave function can be solved in the different zones, giving




u0 = A sin(k+r) 0 < r < r0

u0 = B sin(kr + δ0) r0 < r < R

u0 = 0 r > R

(2.58)
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Figure 2.6: Square well potential with the related notations

where k =
√
2mE/~, k0 =

√
2mV0/~, and k

2
+ = k20+k

2. By imposing the continuity

of the wavefunction in R, we get

sin(kR− δ0) →k→0 sin(k(R− a)) = 0 . (2.59)

The limit follows from the very definition of a. This implies the quantization of k

by

kn =
nπ

R− a
. (2.60)

If the interaction potential was not present, the previous expression with a = 0

would have given the energy of one particle in the box with size R. The presence

of the second particle changes the energy, increasing it for positive a (repulsion)

and decreasing it for negative a (attraction). Now we impose the continuity of the

logarithmic derivative of the wave-function at r0:

k cot(kr0 + δ0) = k+ cot(k+r0) . (2.61)
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Solving for k ≈ 0, the following equation can be found for the behavior of the phase

δ0 at non-zero energy[34]

tan(δ0)

k
≈ −a− 1

2
a2rek

2 . (2.62)

The parameter re is the effective radius that, in the case of a square well potential,

is approximately equal to r0. Since the second term has a fixed sign, when the

scattering length is found to be negative and small, a zero in the phase δ0 is pre-

dicted for low energy 2. This is the so-called Ramsauer-Townsend effect[35], which

represents a serious issue when evaporatively cooling some atomic species (85Rb and

39K are two examples). Indeed, when the typical energy of the cloud approaches the

Ramsauer-Townsend minimum, the system is no more able to thermalize and the

evaporation becomes inefficient or stops completely. Let us go back to the continuity

equation 2.61, for k = 0 it reads

1

r0 − a
= k0 cot(k0r0) . (2.63)

Solving it for a, we get

a = r0 −
tan(k0r0)

k0
. (2.64)

A plot of this formula is on Fig.2.7: a divergence in the scattering length is predicted

each time k0r0 =
π
2
+ nπ.

To get some more insight we can consider the same problem but now for a very

shallow bound state (E < 0). The solution to the radial wave equation, in this case,

is: 



u0 = A sin(k−r) 0 < r < r0

u0 = Be−kr r0 < r < R

u0 = 0 r > R .

2Actually, the expansion of the phase in series of k is no more appropriate at the position of

the zero. Nevertheless, more accurate calculations still predicts its presence. Its position cannot

be found just by the first two terms in the series.
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Figure 2.7: Scattering length in units of r0 as a function of the parameter k0r0. A

resonant behavior is apparent every time a new bound state is added to the potential.

The continuity of the logarithmic derivative of the wavefunction in r0 leads to

−k = k0 cot(k0r0) . (2.65)

In the limit of a very shallow bound state, k → 0, the condition of Eq.2.65 has

to connect to the one for E > 0, Eq.2.63. This is only possible if a diverges. This

means that, each time a new bound state is added to the potential, the scattering

length shows a divergence. When the bound state is about to show up, a is negative

and large. When instead it is just appeared, a is positive and large.

2.3.2 Fano-Feshbach resonances

The simple picture, given by the analysis of the square well potential, applies also

in practical situations, in which many molecular adiabatic potentials are present.

For real cases, however, an analytical solution is usually not found. A resonant
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behavior is found in the scattering length any time a new bound state is added

to the interatomic potential. In practice, a new bound state can be added to the

potential exploiting the presence of many different interatoimic potential curves due

to collision into different spin channels. For large distances, those curves connect to

the sum of the energies of the free colliding atoms. Such energies have a magnetic

component that can be changed by applying an external magnetic field. Doing so,

two of these potential curves can be shifted in energy with respect to each other (see

Fig.2.8). Due to residual interactions (spin orbit couplings, dipolar interactions,

etc.), the two potential curves are not completely independent. For this reason,

whenever a bound state of one of the potentials is close to the dissociation threshold

of the potential in which the collision takes place, the scattering length shows a

resonant behavior.

Figure 2.8: Sketch of the basic principle of a Feshbach resonance.

Those resonances are named Fano-Feshbach resonances and they are used in

experiments to have control over the inter-atomic interaction, simply applying a

uniform magnetic field on the atomic sample. Usually, the typical magnetic noise in
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the lab can be of the order of a few tens of mG and, therefore, tuning the interactions

on sharp resonances can be challenging. The resonances, in exceptional situations

(experimentally identified for 39K, 6Li, 7Li, Na, Cs), can be as wide as 10-100 G and

they can take place at easily accessible values of the magnetic field. To understand

what can lead to wide resonances, we can consider the coupling between the two

states involved in the process. The initial state is a continuum state, which has a

typical extension given by the De Broglie wavelength. We consider its coupling with

a bound state of a molecular potential, whose wavefunction is typically contained

within the range of action of the interaction potential. Since λDB ≫ r0 for the

typical temperatures of our samples, the overlap between the two wave-functions

(Frank-Condon factor) is typically very small. Anyway a significant tunneling of

the wave function outside the interaction range can be present for the case of very

loosely bound states. This can increase the coupling between the states and therefore

gives rise to wide resonances.

Close to the resonance, the scattering length as a function of the applied magnetic

field, is given by the formula

a = abg

(
1− ∆

B −B0

)
(2.66)

abg is the scattering length value far from the resonance, B0 is the resonance position

and ∆ is the resonance width, which is defined as the distance between the resonance

and the zero crossing of the scattering length. The ability to tune the scattering

length to zero, and therefore to create a non interacting BEC, is measured by the

quantity

da

dB

∣∣∣∣
a=0

=
abg
∆

. (2.67)

Therefore a small abg and a large ∆ are desirable to get a high degree of tunability

of the scattering length.
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Chapter 3

Quantum interferometry

3.1 Two-mode atom interferometry

In this section is introduced the problem of a BEC in a double well potential in

the two-mode approximation. It is also discussed its possible application in the

field of atomic interferometry. We consider to have prepared a BEC in a harmonic

trap and, by using some appropriate technique, we slice it in two halves by rising

a potential barrier in the middle of it. If the barrier is high enough, the single

particle Hamiltonian will have two low-energy levels which are close in energy and

are separated from the other excited levels. The ground state will have a symmetric

wave-function and the first excited level an anti-symmetric one.

The two-mode approximation consists in supposing that all other levels will have

a very low population with respect to the two low-lying ones. This is valid if all the

energy scales of the system (temperature, interaction energy, tunneling energy) are

much lower than the separation from the other excited levels, separation that one

which is of the order of the harmonic oscillator energy for the original trap. We note

that this condition is much more stringent than the BEC transition, since usually

at the transition kBTc ≫ ~ω. Given the two-mode approximation, the many-body
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Figure 3.1: Sketch of the double well potential with its two low-lying eigenstates.

Their energy difference is the single atom tunneling energy J .

wavefunction of the system can be described by using only the two low lying states

Ψ̂ = ψgag + ψeae (3.1)

here ag (ae) is the destruction operator for a particle in the ground (excited) state.

We can now introduce the destruction operators of an atom into the left or right

well localized wave-functions by

al,r =
1√
2
(ag ± ae), (3.2)

ψl,r =
1√
2
(ψg ± ψe) . (3.3)

By plugging this form for the wavefunction into the Hamiltonian (Eq.2.34) the two-

modes Hamiltonian is found

Ĥ =
Ec

4
(nl(nl − 1) + nr(nr − 1))− EJ

N
(a+l ar + a+r al) (3.4)

where nl,r = a+l,ral,r are the number of atoms in the two sites and

Ec =
8π~2a

m

∫
|ψl, r|4dr (3.5)

EJ = N

∫
ψ∗
l

(
~
2∇2

2m
− V (r)

)
ψrdr (3.6)
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are the charging energy, proportional to the two-body interaction energy and the

Josephson coupling energy, equal to N times the tunneling energy.

It is easy to see that the g, e basis is the natural one to diagonalize the tunneling

term, since it contains only single particle operators. In the l, r basis, the interaction

part is instead diagonal. An additional term is added to the Hamiltonian in the case

in which the two wells are shifted in energy by an amount ∆, giving

Ĥ =
Ec

4
(nl(nl − 1) + nr(nr − 1))− EJ

N
(a+l ar + a+r al) +

∆

2
(nl − nr) (3.7)

for the complete Hamiltonian.

Let us focus on the case with no interaction (Ec = 0). In this case, if one prepares

the BEC on the left side and if ∆ = 0, the system will undergo Rabi oscillations

between the left and right well due to the tunneling term. The magnitude of the

tunneling can be tuned by acting on the height of the barrier, so it is possible to

stop the Rabi oscillations at any time. If we stop the oscillation, at a time for which

the probability for the BEC to be on each of the two sides is 50 %, we realize a π/2

pulse or a 50-50 beam splitter for atoms. Let us now focus on the effect of the last

term in the Hamiltonian. In the case in which both Ec and EJ are zero, the ∆ term

cannot change the populations on the two sides, since it is diagonal. Its only effect

is to give a differential phase φ, which is increasing with time (φ = ∆t
~
), to the two

parts of the wavefunction. An atomic interferometer is realized by a Mach-Zehnder

scheme, composed by: a π/2 pulse, a phase accumulation, a second π/2 pulse and

finally by the detection of the number of atoms on the two sides of the double-well.

At the end of the sequence, the difference between the number of atoms on the two

sides is given by

〈nl − nr〉 = n =
N

2
sin(φ) (3.8)

in which N is the total number of atoms and it is supposed to be constant.

The measurement of the parameter φ is the goal of the interferometric measurement.

Let us now estimate the sensitivity of the measurement. Given that one measures φ
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m times independently, by applying error propagation formula, the following equa-

tion is found for the variance of φ:

∆φ2 =
∆n2

m
∣∣∣dndφ
∣∣∣
2 . (3.9)

Since we never used the interaction term, the atoms during the sequence are inde-

pendent and the fluctuation on their relative number is supposed to be Poissonian

∆n2 = N
4
sin2(φ). The result for the phase resolution is

∆φ =
1√
mN

, (3.10)

which implies that, doing the experiment with N atoms, it is effectively as repeating

N times the same measurement. This resolution is the best one achievable in non

interacting interferometers and it is called the standard quantum limit (SQL)[36].

In the following section we will see how the picture changes by adding interactions.

3.1.1 Bloch sphere representation

By using the creation and destruction operators of the double well, it is possible to

define three operators, given by

Jx =
a+l ar + a+r al

2
(3.11)

Jy =
a+l ar − a+r al

2i
(3.12)

Jz =
a+l al − a+r ar

2
. (3.13)

From the commutation rules for the creation and destruction operators, one gets

that these new operators follow the angular momentum algebra. The total angular

momentum J2 is found to be equal to N/2(N/2 + 1). This means that the total

momentum is conserved and the whole dynamics can be thought to happen on a

sphere with fixed radius (the Bloch sphere). Apart from terms proportional to N ,
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the Hamiltonian, written using the angular momentum operators, is

H =
Ec

2
J2
z − 2

EJ

N
Jx +∆Jz . (3.14)

From this we see that the π/2 pulse can be represented by a rotation of π/2 around

the x axis and the phase accumulation is nothing but a rotation around the z axis

by an angle φ. To describe the evolution on the Bloch sphere, one just needs to

calculate the mean value 〈Ji〉 of the three momenta and their spread 〈J2
i 〉− 〈Ji〉2 on

the initial state. The state will be described as a disk centered on the mean value

and with radius given by the spread. If the state is prepared without interactions

in the ground state of Jx, the fluctuations will be equally shared between Jz and Jy

(see Fig.3.2). This kind of initial state will lead to a phase resolution given by the

SQL.

Let us now try to figure out the action of the non-linear term in J2
z on the initial

state. In the upper hemisphere, the effect of J2
z is in the same direction as the one of

Jz, while in the lower hemisphere the effects are opposite. Moreover, points further

away from the equator are influenced the most. The initial circle, representing the

coherent state, is therefore stretched, resulting in larger spread along the equator

than along the rotation axis. This number squeezing in the initial state leads to

higher sensitivity in the phase measurement,

∆φ =
ξ√
mN

(3.15)

where ξ < 1 is the squeezing parameter. The enhanced sensitivity, caused by squeez-

ing, can be visualized in Fig.3.3.

The interferometric sequence, as I describe it, assumes that the non-linear term

is negligible during the sequence. Its effect would be an interaction induced deco-

herence. The interferometric sequence needs therefore to be realized fast enough

not to be influenced by the non-linearity. Usually the measured phase results from

a coupling with a very weak external field, such that a long phase accumulation is
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Figure 3.2: Representation of the interferometric sequence on the Bloch sphere: the

initial state (a) is represented by a disk centered around the mean value of the

momentum operators and with radius given by its spread. The first π/2 pulse (b)

rotates the disk around its axis, it is followed by a phase accumulation (c) and the

second π/2 pulse (d). The final measurement is sensitive to the projection of the

disk on the z axis.
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Figure 3.3: Representation of the interferometric sequence for a squeezed state on

the Bloch sphere: the initial state (a) is represented by an ellipse centered around

the mean value of the momentum operators and with axis given by its spreads.

The first π/2 pulse (b) rotates the ellipse around its axis, it is followed by a phase

accumulation (c) and the second π/2 pulse (d). The final measurement is sensitive

to the projection of the ellipse on the z axis. The final resolution is enhanced due

to the lower uncertainty on Jz
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desirable. The use of a system with tunable interactions is therefore necessary, on

the one hand, to exploit the interactions to create a squeezed state and, on the other,

to reduce the interactions to zero during the interferometric sequence, allowing for

long phase accumulation.

3.1.2 Entanglement and Fisher information

The resource exploited in order to beat the SQL in the example of the last section is

actually entanglement. The system cannot be described any longer as an ensemble

of independent particles but will be in an entangled state because of the introduction

of an interaction term in the Hamiltonian. However, not all entangled states are

actually able to lead to sub-shot noise sensitivity, but only a part of them[37].

Entanglement is a necessary condition but not sufficient. In order to distinguish

useful entanglement, the tools of estimation theory are exploited. The interesting

quantity we have to introduce is the Fisher information. Let us start by defining

a parameter φ we want to measure and the generator of the translations of that

parameter Ĝ by

i
dψ

dφ
= Ĝψ . (3.16)

The measurement itself is performed by collapsing the wavefunction ψ onto the

eigenstates of the measured quantity |n〉. The probability to measure n, given the

true value of φ, is, therefore:

P (n|φ) = |〈n|ψ(φ)〉|2 . (3.17)

Under this assumptions we can write the Fisher information F as:

F =

∫
P (n|φ)

(
d log(P (n|φ))

dφ

)2

dn . (3.18)

The relevance of the Fisher information is related to the Cramer-Rao lower bound

(CRLB)[38, 39], which sets the limit sensitivity in the measurement of φ after m
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independent measurements to

∆φ =
1√
mF

. (3.19)

In the case of independent particles, it can be proven that the Fisher information is

additive

|ψ〉 = ⊗N
i=1|ψ〉i (3.20)

F (|ψ〉) =
N∑

i=1

F (|ψ〉i) . (3.21)

In connection to the uncertainty principle, an upper bound for the Fisher information

is given by:

F ≤ 4∆2Ĝ . (3.22)

By using these properties of the Fischer information, we can derive the SQL and the

ultimate limit to the sensitivity or Heisenberg limit (HL). If we deal with independent

particles, the Fisher will have the following upper bound:

F (|ψ〉) =
N∑

i=1

F (|ψ〉i) ≤ NFmax ≤ N∆2
maxĜ . (3.23)

The maximum uncertainty of an operator can be realized by using an equal super-

position of its eigenstates with maximum and minimum eigenvalues

|ψ〉 = ⊗N
i=1

|mini〉+ |maxi〉√
2

. (3.24)

The value of ∆2
maxĜ in the single particle case is going to be a constant. The

sensitivity limit therefore reads

∆φ ∝ 1√
mN

(3.25)

which is the SQL. If instead we relax the independent particles assumption, we can

only rely on the upper limit for the Fisher information. Proceeding as before, we

end up searching the state with the maximum uncertainty of the Ĝ operator, this
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time in a many-body Hilbert space. If the operator is a single particle one, the

maximum (minimum) eigenvalue is given by all particles being in the higher (lower)

single particle eigenstate. The superposition of this two states is called NooN-state

or, sometimes, a Schrödinger cat

|ψ〉 = |min1,min2, ...,minN〉+ |max1,max2, ...,maxN〉√
2

. (3.26)

The uncertainty ∆2
maxĜ in this case is N2 times larger than in the single particle

case, leading to the HL

∆φ ∝ 1√
mN

. (3.27)

In principle a NooN-state can be experimentally realized by driving the system

into the ground state in presence of strong attractive interactions in a double well

|ψ〉 = |N, 0〉+ |0, N〉√
2

.1 (3.28)

The BEC is anyway not stable in such a situation2. A more feasible strategy is to

use strong repulsive interactions to drive the system in a twin-Fock state

|ψ〉 =
∣∣∣∣
N

2
,
N

2

〉
. (3.29)

Thia state is characterized by an exactly half filling of both wells. The uncertainty

for it is larger than the one given by the NooN state, nevertheless the scaling with

N of the uncertainty of the phase measurement can be proven to be the same.

Such highly entangled states have anyway drawbacks, since they are more subject

to any form of loss or decoherence than the normal product states. As an example

we can imagine to have prepared a NooN state and, by some process (as three body

losses or collisions with the background gas), one atom is lost from the double well.

1here, differently from the previous analysis, the mean occupation of the wells (the value of

nl, nr) is indicated to describe the state instead of the single particle state.
2a more effective strategy to create a noon state that does not involve attractive interactions

can be realized by the creation of a phase cat and subsequent application of a π/2 pulse[40].
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It is in principle possible to get informations about the state of the system by using

a suitable detector to trace the lost atom back to its original position in one of the

two wells. The system therefore is forced to collapse in only that one well, losing its

coherence.
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Chapter 4

Experimental apparatus

In this chapter I describe the realized experimental apparatus, which comprises of a

great part of my PhD work. The design of the apparatus had to take into account the

crucial aspects of laser and evaporative cooling of potassium as well as the required

conditions to perform high-precision interferometry. The main components of the

apparatus are presented in Fig.4.1. The system is composed of three main vacuum

chambers. In the first one, the atoms are collected from the background gas into

a two-dimensional magneto-optical (2D-MOT) trap, producing an atomic beam.

The atomic beam is directed to the second chamber where a three-dimensional

magneto-optical trap (3D-MOT) is hosted. In the 3D-MOT, the sample is cooled

to sub-Doppler temperatures. Once the atoms are prepared, they get transferred to

a magnetic trap. Such magnetic trap is moved by mean of a motorized translation

stage up to the third chamber (science chamber). In the science chamber the atoms

gets trapped into a dipole trap and evaporative cooling performed employing a

Feshbach resonance to increase the elastic collisional rate.
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Figure 4.1: Simplified sketch of the main parts of the apparatus. The atoms from

the 2D-MOT are collected into the 3D-MOT. Moving colis are used to transfer the

atoms from the 3D-MOT chamber to the science chamber. The last vacuum pipe is

not parallel to the magnetic coil motion, for this reason the last part of the atomic

transfer has to be purely magnetic from the moving coils to the Feshbach coils. The

distance between the coil’s centers is about 10 cm. This allows for an extra optical

access through the rear window.

4.1 Experimental design

A very long lifetime of the atomic sample is desired for high resolution interferometry,

in order to achieve long phase accumulation. A very large optical access is also

necessary, because of the particular implementation of a light-made double-well

interferometer and of all-optical evaporation of the atomic sample. A large optical

access will enable us to use many trapping beams as well as to implement high

spatial resolution imaging.

In order to satisfy these conditions, we decided to use a scheme with three

vacuum chambers (see Fig.4.2). In the passage from each chamber to the next one,

a differential pumping stage reduces the pressure an thus it increases the lifetime of

the atomic sample. The first cell hosts a two-dimensional MOT. A relatively high
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Figure 4.2: Overview of the vacuum system. The three chambers are indicated

as 2D-MOT, 3D-MOT and science chamber. The position of the potassium solid

sample and of the potassium dispensers is indicated. To make the sublimation pump

visible, the vacuum pipe containing it was omitted from the drawing.

pressure of potassium vapor, of around 10−8 mbar, ensures a fast loading rate and

thus a large atomic flux towards the second cell. In the second cell, large laser beams

are used in order to trap a large number of atoms; here the pressure drops to around

10−9 mbar. The atoms are then transferred to the last chamber, using trapping coils

mounted on a moving cart. The last chamber allows a very large optical access, due

to its shape and to the absence of MOT beams for the cooling. The last differential

pumping stage also allows to achieve pressures as low as 10−11 mbar.

4.2 Choice of the building materials

Since the interferometer will be performed with magnetic atoms, particular care was

taken in order to reduce any magnetic field fluctuation or instability, in particular

very close to the science chamber. For this purpose the main body of the optical
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table, that holds the vacuum system, is a custom TMC realization made of the 304

low magnetic stainless steel alloy. The 316L alloy, characterized by an even lower

magneticity, is used for the topmost and lowermost planes of the table.

The MOT chambers are realized in Ti-6Al-4V, for its low magneticity (four

times lower than for steel) and high resistivity. High resistance materials allows for

fast variation of the magnetic fields thanks to the rapid fall off of Eddie currents.

Components that are close to the atoms, like vacuum chambers, pipes, valves and

bellows through which the sample is passing during the transport, are realized in

low magneticity stainless steel compounds like the SS304 or the SS316 compounds.

For the vacuum connections towards the pumps the SS321 alloy is employed instead.

The science cell itself is realized in glass and it is placed with its center 15cm away

from the first metallic element (its own vacuum valve), realized in 316L stainless

steel. The Feshbach coils, used to tune the interactions, are held by a fully plastic

mount and kept in physical contact with the cooling water.

4.3 Vacuum pumps

In this section, I will justify the choices made for what concerns the pumping of

the vacuum assembly and I will give indications of the achieved vacuum levels in

the apparatus with their limitations. Finally, I will be report the measurements

of the achieved atomic sample lifetime in the various vacuum sections, yielding

the final confirmation of the achievement of low pressures. The sample lifetime is

proportional to the inverse of the background pressure. A simple calculation based

on the background collisions cross section yields a lifetime of the sample between

2 and 8 s (depending on the chemical composition of the background gas) for a

pressure of 10−9 mbar.

The achievement of sufficiently low pressure values required a baking procedure
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that eliminates condensed water laying onto the internal surfaces of the system and

most of the hydrogen accumulated in the steel during its fusion process. We baked

all the steel components separately in an oven for approximately one day at 400◦ C

to eliminate most of the hydrogen. After the system was assembled we baked the

2D-MOT and 3D-MOT parts at 120◦ C for five days. The chosen temperature was

limited by the sealing glue used for the vacuum windows. The science chamber

section was added later on and separately baked. Since there was no glue on this

section, the baking temperature was chosen to be 200◦ C; again the procedure lasted

for five days.

In Fig.4.2, the position of the various pumps is depicted. The pumps used in the

first two cells are Varian Diode Vaclon ionic pumps with different pumping speeds.

These pumps are particularly indicated for pumping of active gases such as N2, O2,

CO2, H2. Especially Hydrogen is supposed to be abundantly outgassed from the steel

composing the vacuum chambers due to its fabrication process. For the pumping of

the science chamber we chose, instead, a StarCell ion pump in combination with a

Titanium sublimation pump (TSP). The StarCell achieves slightly lower pumping

speeds for active gases than the Diode model but can pump much better noble gases

as He and Ar or Methane. The pumping of active gases is provided by the Titanium

sublimation pump in this case.

The current reading on the pumps provides an indication of the pressure in

the first two vacuum chambers. The reading performed this way is limited by

leakage currents of about 10 µA. This represents a limit pressure reading of about

10−7-10−8 mbar. Both the pumps reports current readings comparable to their

leakage currents. Close to the StarCell a Varian UHV-24p nude Bayard-Alpert type

ionization gauge tube was placed. Its pressure reading is 7×10−12 mbar which is

represents the lower detectable value. However, those readings are performed close

to the pumps, the real pressure in the vacuum chambers has to be inferred from the
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conductances and the outgassing rates.

The 2D-MOT section of the vacuum is pumped by a 20 l/s Varian Diode Vaclon

ion pump. The effective pumping speed at the chamber decreases to 6.8 l/s due

to the conductance of the connections (all the values are calculated for air). By

calculating the outgassing of the various surfaces, we estimate an achievable pres-

sure of 1.5×10−9 mbar. The conductance to the 3D-MOT chamber is negligible

(0.03 l/s). During normal operation, the outgassing rate is deliberately increased by

releasing potassium in the chamber, either by passing current through dispensers or

by heating a solid sample. We measured the absorption of a laser beam tuned to

the D2 resonance to estimate the partial pressure of potassium in the chamber. We

estimated a partial pressure of 10−8 mbar, under the assumption that the atomic

velocity distribution is in thermal equilibrium at room temperature.

For the 3D-MOT we used a 55 l/s Varian Diode Vaclon ion pump. The effective

pumping speed at the chamber is estimated to be 17 l/s. The leading contribution

to the outgassing comes from the sealing glue used for the windows. The nominal

value for the outgasing of such a glue is 1.3×10−9 mbar×l/(s×cm2). Such outgassing

rate would limit the attainable pressure to 7×10−10 mbar, if we consider an exposed

surface given by the total length of the sealings times an estimated 1 mm thickness.

This pressure is compatible with the observed lifetime of the atomic cloud of 3-4 s.

For the science chamber we used a combined pumping system composed by a

55 l/s StarCell Vaclon ion pump and a three filaments TSP. The TSP was positioned

in order to deposit Titanium on an area as large as possible. Its pumping speed is,

in fact, directly proportional to the deposition area. We estimated a total pumping

speed of 450 l/s by considering the nominal pumping speed for H2 and the total area

seen by the filaments. Such pumping is performed on a vast area, the conductance

towards the final chamber is anyway dominated by the last section of glass pipe.

Considering only this conductance, the estimated pumping speed at the final position
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of the atoms is only 5 l/s. The same considerations holds for the StarCell. If we

assume the outgassing rate of spectrosil, the special glass the science chamber is

composed of, to be similar to the one of ordinary glass (10−12 mbar×l/(s×cm2)), we

get an achievable pressure of 10−11 mbar. Therefore, our pumping strategy consisted,

first of all, in achieving high pumping speed at the conjunction of the glass pipe to

the main body of the vacuum system. This way we could have a high differential

vacuum with respect to the rest of the apparatus. For the pressure to be good in

the glass chamber we than had to rely on the low outgassing rate of the materials

employed. The measured lifetime of the atomic cloud in the science chamber, for

atoms held in a quadrupole magnetic trap, was 80 s, confirming the validity of the

approach.

4.4 Cooling laser system

The conditions the laser system needs to satisfy are dictated from the experience

of previous experiments on laser cooling of potassium. First of all K, like all other

alkaline metals, has an hyperfine structure. The main consequence of it the hyperfine

structure is the presence of two sublevels in the 2S1/2 ground state, labeled by the

value of the total angular momentum F = 1, 2[41] . The F = 2 → F ′ = 3 transition

of the D2 line from 2S1/2 to
2P3/2 shows the largest dipole moment, and therefore is

the most suitable for cooling.

Out of resonance transitions are stronger in potassium than in other alkalis due to

the narrow hyperfine structure of the excited level, single frequency cooling results,

therefore, in a very fast accumulation of the atoms in the uncoupled ground state. To

prevent it, one needs to implement a repumping laser tuned to the F = 1 → F ′ = 2

transition.

In order to give an estimation of the depumping rate, we can consider the effect
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Figure 4.3: Scheme of the relevant atomic levels of 39K. The assumed zero detuning

transitions for the cooling and repumping lights are also indicated.

of a laser tuned in resonance with the cooling transition. We will take a random

polarization, since this is the typical situation for the resultant field seen by the

atoms in a MOT, and we will consider the atoms to be initially in F=2. In such a

situation, for low saturation, after an absorption-reemission cycle the atoms will end

up in F=1 with a probability equal to 1.5(4)×10−3 for 39K (41K). For comparison,

in the same conditions for 87Rb, such probability would be 1×10−5. These numbers

means that, if one considers a typical scattering rate given by Γ/2, almost all the

atoms will be found in the F=1 state after only 35 µs. In typical operating condi-
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tions, power broadening and out of resonance operation increase the depumping rate

even more. For this reason the role of the repumping beam becomes comparable to

the one of the cooling laser. Therefore, during the typical operation of the MOT,

the repumping and cooling lasers have the same power. High intensity and large

beams are both desirable to increase the velocity capture range of the MOTs and

the maximum trapped atom number. These requirements points to large power in

both the repumper and cooling laser. We decided, therefore, to employ 4 master

oscillator power amplifiers (MOPA).

The laser system for both the MOTs is derived from a single master laser, a Top-

tica DL Pro 780. This laser is very stable but provides only 50 mW at our working

wavelength. The laser is thus amplified by 4 MOPAs. Each of these amplifiers is

able to provide up to 2 W of laser power with an injection lower than 50 mW. The

spectral characteristics of the injected light are retained after amplification but the

spatial mode of the laser beam deteriorates. Spatial mode filtering is thus needed

and it is performed by injection of the laser beams into optical fibers.

The different light frequencies used in the experiment are obtained from the

master laser’s one by the use of a number of acousto-optical modulators (AOMs).

The hyperfine splitting that separates the cooling from the repumping transition is

only 462 MHz. The distance between the two lines can, therefore, be covered by a

double-pass AOM, so that the same laser source can be used for both.

The whole laser system is presented in Fig.4.4. The depicted 200 MHz AOMs

are operated in double pass to achieve frequency control in a bandwidth of around

±50 MHz per AOM without changing the beam alignment. The 80 MHz modulators

are instead used to control the laser power. Acting on the RF power sent to the

modulator itself the efficiency of the AOM, and therefore the output power, can be

controlled. This technique gives us the possibility to decrease the laser power in a

few µs down to 10−3 of its initial value. The complete switching off of the light is
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Figure 4.4: Laser setup for the cooling beams. The light from the DL-Pro mas-

ter laser is used to perform spectroscopy using the modulation transfer technique

(MTS). The obtained error signal is used to stabilize the master laser frequency. The

red (blue) line indicate a laser frequency which is close to the cooling (repumping)

transition of the D2 line of 39K. All the MOPA amplifiers and AOMs are indicated.

The yellow lines represents spatial mode cleaning by injection into optical fibers.

achieved by far slower (of the order of hundreds of µs) mechanical shutters placed

in front of the fibers.

4.4.1 Laser locking

In order to lock a laser on an atomic transition, an error signal has to be generated

and fed to a PID controller acting in some way on the laser frequency. The actuator

we use is a piezo-electric material in contact with the grating that provides the

56



second mirror of the external cavity of the laser. The error signal generation can

result from a wide variety of spectroscopic techniques. The technique we use is

the modulation transfer spectroscopy[42, 43]. This is a pump-probe technique that

is known to give very flat baselines and stable locking point. Here I give a simple

description of the generation of the error signal in a two-level system and discuss the

possible complications of an intrinsically multilevel system like for K. For convention

I will call the detected laser beam ”probe” and the other one ”pump”, even if the

powers of the two beams are roughly equal.

The pump beam is passed in an electro-optical modulator (EOM) before entering

the vapor cell with the atoms. The EOM consists in an optical element whose index

of refraction n = n0+δn(V ) depends on the applied voltage V on it. By modulating

such voltage at a given frequency ωm, the output electric field E will be:

E = E0 sin(ωct+ δ sin(ωmt)) = E0

( ∞∑

n=0

Jn(δ) sin(ωc + nωm)t

+
∞∑

n=1

(−1)nJn(δ) sin(ωc − nωm)t

)
. (4.1)

δ = klδn, with l the optical path length, is the modulation depth and Jn is the

Bessel function of order n. Usually δ < 1, such that the field can be described as

a strong carrier at ωc with two weak sidebands at ωc ± ωm. Such modulated pump

beam is aligned collinearly with an unmodulated probe beam propagating in the

opposite direction through the vapor cell. Due to nonlinear response of the vapor, a

modulation appears on the probe beam. We can describe the process as four-wave

mixing. The carrier and one of the sidebands of the pump combine with the probe’s

carrier to generate a probe sideband through the χ(3) third order susceptibility. On a

fast photodiode, the beat note between the probe carrier and its sidebands at ωm can

be monitored. The amplitude of the beat note is zero exactly on resonance and shows

a nice dispersive behavior, both in the in-phase and in-quadrature components of the

electric field. The process is usually efficient on closed transitions, it is Doppler free
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and almost independent of the linear absorption term. The signal offset is therefore

very stable against fluctuations in power, polarization or temperature.

In our experiment, the EOM has a modulation frequency of 21 MHz and we

measured the sidebands strength to be 30 % of the carrier. Since the excited state

hyperfine splitting is of the order of the modulation frequency, we expect the multi-

level nature of the transition to complicate the picture a little. We observe, in fact, a

complicated behavior of the signal with the polarization of the two beams; moreover,

the zero-crossing of the dispersive signal is offset from the absorption resonance by

about 30 MHz and the lineshape is clearly asymmetric as can be seen from Fig.4.5.

The locking point is very stable and the signal has a very flat baseline. The behavior

with polarization tends to favor the real transitions when the two polarizations are

circular and opposite, while the cross-overs are favored when the polarizations are

the same.

4.4.2 Master-oscillator-power-amplifier

We have built 4 home-made master oscillator power amplifiers (MOPA), in order

to provide the laser power needed for the experiment. Each MOPA consists of an

Eagleyard Photonics GaAs tapered amplifier (TA) held on a custom mount. Each

mount includes input and output collimators as well as a Peltier element and a

negative temperature coefficient resistor (NTC) to stabilize the temperature. The

power output is usually set to about 1.2 W for the terminal MOPAs (C and D in

Fig.4.4) and to 700 mW for the intermediate ones (A and B). The output beam

from the chip is strongly astigmatic. In order to shape the beam mode we first

placed the output collimator in order to collimate the beam in the direction of

stronger divergence. Then we employed a cylindrical lens to collimate the other

direction. The beam is then sent to a fiber for mode cleaning. The optimization

of the coupling into the fibers was highly non trivial since the mode shape and its
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Figure 4.5: Spectroscopy signal as acquired from the measurement of the probe

power with a fast photodiode while a voltage ramp was applied on the laser piezo.

The DC signal (red) shows the broad Doppler resonance and some sub-Doppler

features due to the pump and probe interplay. The features are assigned to the var-

ious K transitions, only the lower state is reported since the excited state structure

is completely unresolved, CO stands for crossover. The crossover is characterized

by an increased absorption due to optical pumping processes. The black and blue

curves are demodulated signals after passing through a lock-in amplifier for different

polarization. For opposite circular polarization (blue), the real transition signal is

enhanced, while when the polarizations are circular but equal (black), the crossover

is enhanced. For both the measurements the lock-in phase delay was optimized to

get the maximum signal on the F=2 transition on which we perform the locking.
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collimation changes with the power and the beams are absolutely non-Gaussian (see

Fig.4.7). After a tedious optimization we could get up to a 50 % transmission on

Figure 4.6: MOPA beam profile as seen after collimation. The spontaneous emission

has a different divergence, as can be seen from the horizontal tails of the beam. The

main beam presents interference fringes. Since these are different for the various

MOPAs, an independent optimization for each beam is necessary. The beam waist

in the image is about 500 µm.

such fibers. Due to an additional passage into an AOM for the terminal MOPAs,

this sets the total available power for each of the MOTs to 400 mW.

4.4.3 High-power optical fibers

Since the employed power is rather high and polarization maintaining is required, we

decided to implement high power NKT PM-15 photonic crystal fibers. The guiding

core of such fibers is made of properly arranged holes into the glass mantle, such

that the maximum laser power is in a non-absorbing region. Moreover, the coupling

efficiency into the fibers for the MOPA is only 50 %. Therefore, half of the power

will be dissipated in the cladding. In order not to damage the fibers, we employed

the SMA-905 coupler at the fiber entrance. This coupler is specialy designed for
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high power operation and devotes the initial section of the fiber to the removal of

cladding modes.

Anyway, we experimentally verified that the polarization maintainance of such

fibers is much more efficient for longer wavelengths. For operation with a 1064 nm

high power (30 W) laser the power fluctuations were around 1 % and the operation

was very stable on long time scales. For the cooling lasers at 767 nm and with only

1 W, instead, the fluctuations were as large as 10 % and periodic readjustment was

required.

4.5 Magnetic field coils

Different coils are used in the experiment, each of them had to be designed consider-

ing the operational requirements as well as the experimental constraints. The design

of the coils was carried out by simulating the magnetic field produced by them using

the RADIA package for Wolfram Mathematica[44]. The first coil arrangement is the

one used for the 2D-MOT. For two-dimensional cooling and trapping, one needs to

create a homogeneous field along the axis of the 2D-MOT (z axis) with zero field

along the axis. Such a field configuration can be realized using 4 rectangular coils

with the long side parallel to z, with the coil’s axes (x, y) orthogonal with respect

to each other and to the z axis. The current has to be opposite for coils facing each

other for magneto-optical trapping. If the magnetic field lines are pointing inside

the cell for one pair of coils, they have to point outside the cell for the other one.

In this way the magnetic field gradient generated by one pair sums with the one

generated by the other one along the coil’s axes x and y; while it subtracts to zero

along the 2D-MOT axis z.

The remaining coils are all made of circular pairs. If the current circulates in op-

posite directions in the two coils, they provide a given magnetic field gradient along
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Figure 4.7: Design of the magnetic field coils. On the left the 2D-MOT rectan-

gular coils, the atomic beam passes thought the center. On the right the rest of

the magnetic field coils are presented in real scale between each other (only their

distance was modified for convenience). The largest pair are the Transport coils,

that moves the atoms towards the right of the picture from the 3D-MOT coils to

the Feshbach/Gradient coils.

their axis, and half of that in the radial direction. If the current, instead, circulates

in the same direction, they provide a constant magnetic field at the center. The

3D-MOT coils provide the magnetic field gradient for the 3D-MOT. The Transport

coils are used for transferring the atoms from the 3D-MOT chamber to the science

chamber. The Gradient and the Feshbach coils are mounted in a concentric way and

they provide the needed magnetic fields in the science chamber. The names Gradi-

ent and Feshbach are only a convention. They are chosen since the Gradient is the

one that generates the highest gradient when used in Anti-Helmholtz configuration,

while the Feshbach is the one that creates the most homogeneous field at the center

when used in Helmholtz configuration. A relay system allows to change the direction

of the current in one of the coils of both pairs. This way we are able to use both

the Gradient and the Feshbach in Helmholtz or Anti-Helmholtz1 configuration. For

1the terms Helmholtz and Ant-Helmholtz are improperly used here just for easiness of expla-

nation. The geometrical configuration of the Feshbach coils is close to the Helmoltz one, while the

62



example, the Feshbach coils have a larger radius and are, therefore, able to capture

atoms from further away than the Gradient. Is thus useful to employ the Fesbach

coils in Anti-Helmoltz configuration to transfer atoms from the Transport coil to the

science chamber.

The building of the magnetic coils was home-made with exception of the 2D-

MOT coils, that were realized by a local company (LEF). We used a 3.35×1.42 mm

isolated copper wire held together by a special epoxy glue: Duralco NM25. This

glue was chosen for its low magneticity and its good thermal conductivity. The

distance from the atoms is the most critical parameter, since the gradient produced

in the center of a pair of coils with opposite current and distance d decays as d4

for distances larger than the coil radius. This is especially true for the Transport

coils since they have to be far, in order to enclose other pairs, and they cannot be

too heavy due to the recommended limit on the momentum torque on the moving

cart. In order to reduce the distance between those coils we employed a building

technique aimed at the reduction of the axial dimensions of the coils and at increase

their homogeneity.

In normal spiral winding techniques, the winding of n vertical layers results in

coils as high as n+1 layers. Since typically we have 2-6 vertical layers, removing

the extra layer makes an appreciable difference. Our solution to do it was to wind

each layer independently and to assemble them afterwards. The winding has to be

reversed from one layer to the next and the electrical connections have to be to the

inner conductor and to the outer one alternately. Such assembly results in a series

of the various layers with the current circulating always in the same direction. The

coils used for magnetic trapping required active water cooling. Their coil mount had

therefore to be realized in order to provide a good thermal conduction from the coil

to the water. The main parameters of all the coils can be found on Tab.4.1.

Gradient coil is close to the Anti-Helmholtz.
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Internal size Nrad Nax Distance γ/I B(0)/I

mm mm G/(cm A) G/A

2D-MOT 37x132 4 7 61 1.6 -

3D-MOT 56 φ 30 4 61 4.6 -

Transport 55 φ 27 6 107 2.7 -

Gradient 54 φ 15 6 49 4.6 11.2

Feshbach 111 φ 17 6 49 2.4 13.1

Table 4.1: Main characteristics of the used coils. For the 2D-MOT the coils are of

rectangular shape and there are 4 of them, all the others are circular and come in

pairs. Nrad is the number of windings in the radial direction and Nax the number

of layers along the coil axis. The distance is indicated between the closer surfaces of

the conjugated pairs. γ is the axial magnetic field gradient generated when current

is run with opposite sign in the coils. B(0) is instead the central field obtained by

passing current with the same sign in both the coils.

The 2D-MOT coils have an elongated rectangular shape. In order to cancel

the magnetic gradient along the 2D-MOT axis we chose to use 2 pairs of coils, as

explained before. we were actually able to trap atoms in an elongated 3D-MOT in

the 2D-MOT chamber by using only one pair of coils. By adding the second pair,

trapping of atoms was no more observed. The peculiarity of the 3D-MOT magnetic

field is the very fast switching off (on the order of 100 µs) due to the high resistivity

of the 3D-MOT chamber. Both the 2D-MOT and 3D-MOT coils are mounted on

aluminum mounts. The 3D-MOT coils mount is also cut along a radius to prevent

the formation of Eddie currents. The Transport coils are mounted on an aluminum

structure attached to the moving cart, such structure is cut along a radius of the

coils. Water is run inside the Transport coil’s mount to keep the coils cold and the

thermal conduction is enhanced by the application of epoxy glue between the coils
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Figure 4.8: View of the Gradient (smaller) and Feshbach (larger) coils inside the

plastic mount. Once the cap is closed, water is inserted through a hole in the cap

and fills the empty spaces. The coils are supported 1.5 mm away from the mount

internal surfaces to enable water to pass below and above the coils.

and the mount. The Gradient and Feshbach coils (Fig.4.11) are concentric and kept

inside the same plastic mount. Water is continuously run inside the mount and the

coils are in physical contact with the cooling water.

4.6 Potassium samples

The potassium vapor can be released into the apparatus by either four current-

driven dispensers, located in the rear of the 2D-MOT chamber, or by heating a solid

sample.

During the first two years of operation of the apparatus we used only the dis-

pensers, due to their stability and convenience of operation. Since each dispenser

contains only 3.7 mg of potassium their use is limited. The lifetime of a dispenser, at

our operational current, was about one year. The result is that, at the moment, two

dispensers are completely used up. In order to preserve the other two, we decided
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Figure 4.9: Close up on the region of the apparatus where the potassium samples

are located. Four current driven dispensers K/NF/17/FT10+10 from SAES getters

are located inside the cube at the terminal part of the 2D-MOT chamber. Current

is run into the dispensers via a vacuum feed-through. The solid sample was heated

up to 200◦ C in order for the oxide layer to melt and potassium to be released. In

normal operation only the rear window is heated to 40◦ C in order not to deposit

potassium on it. A vacuum valve allows to isolate the solid sample zone in order to

replace it or to insert other elements.

to exploit the solid sample source. Such sample consists of 5 g of natural abundance

potassium. In order to break the oxide layer, that formed on the surface of the

metal, and to deposit potassium all around the 2D-MOT cell, we heated up the

whole vacuum chamber at 80◦ C and the solid sample at about 200◦ C for a week.

After that we could recover the same flux obtained using the dispensers. Heating

was no more necessary, since potassium was deposited on all surfaces of the cell.

After the potassium release, we noticed that the rear window of the vacuum

chamber was covered by a metallic layer. We decided, therefore, to keep the window

hotter than the rest of the chamber. This is the only heated surface during the

standard operation of the apparatus. Its temperature is kept at 40 ◦C. We have

worked for around one year using this method and we did not notice any change
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in the normal operating parameters. No further heating of the solid sample was

necessary. We noticed anyway that the pressure reading on the vacuum pumps

was increased with respect to the dispensers operation. Even though the reading is

not reliable due to leakage currents, this indicates that the dispensers are cleaner

sources. This is probably due to the directionality of their emission, resulting in a

higher fraction of the emitted gas to be captured by the 2D-MOT with respect to

the solid sample operation.

4.7 2D-MOT

The four beams used for the 2D-MOT are derived from a single optical fiber. The

spectrum of the light coming out of the fiber is monitored with a Fabry-Perot cavity.

This spectrum consists mainly of the two repumper and cooling lights, separated by

∆G, the ground state hyperfine splitting. additional sidebands are present at ωR+∆G

and ωC-∆G, with ωG, R the repumping (cooling) frequency, which are generated by

nonlinear effects inside the gain medium of the MOPA amplifier. These sidebands

are anyway far detuned (about 400 MHz) with respect to the atomic transitions,

such that their effect can normally be neglected.

The initial beam has a waist of 0.7 mm. For the radial trapping we applied

a ×12.5 standard telescope followed by a ×5 cylindrical telescope on two beams,

resulting in 9 mm and 44 mm for the vertical and horizontal beam waists respectively.

The two beams are circularly polarized and retroreflected after passing through

the vacuum chamber. The retroreflection results from total internal reflection on

two right triangular base optical prisms. This way the ellipticity of the beams

is conserved after reflection. Careful machining is required for the retroreflecting

prisms. The right angle edge has to be sharp and the angle between the reflecting

surfaces very close to 90◦ to avoid the formation of a dark region at the middle of
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Figure 4.10: Scheme of the 2D-MOT. The main 2D-MOT beams have an elongated

shape and are retroreflected via total internal reflection on 2 prisms. Only one

cooling direction is shown in the drawing, the other one would be through the plane

of the image. The push beam comes from the left side and the retarding beam is

inserted from below the chamber, reflects on a 45◦ mirror inside the vacuum and

propagates towards the left side. On this beam a shadow is created due to the hole

at the center of the mirror through which the atoms are passing.

the beam.

The two dimensional MOT is operated in the 2D+ configuration[45] employing

two additional laser beams along the atomic beam direction. The ”push” beam,

propagating in the direction of the atomic propagation and the ”retarding” beam,

propagating in the opposite direction. These beams have a waist of 5 mm, resulting

from the application of a ×7.5 telescope on the initial beam. The retarding beam is

inserted into the vacuum chamber from below and it is retroreflected by a mirror at

45◦ inside the vacuum chamber. The metal substrate of the mirror was gold coated

for high reflectivity. Furthermore, an extra MgF2 coating was realized on top of the

gold one to avoid deposition of potassium. The mirror has a 1.5 mm diameter hole at
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its center through which the atomic beam is ejected. For this reason, the retarding

beam carries the shadow of the hole at its center. For atoms outside the shadow, the

resulting radiation pressure is balanced in all directions. Once the atoms are cooled

down radially and therefore, spend most of their time at the center, the radiation

pressure imbalance pushes them towards the 3D-MOT chamber. This configuration

implies a longitudinal pre-cooling in addition to the radial one. The resulting atomic

beams are slower and can be trapped more efficiently by the 3D-MOT.

4.8 3D-MOT

As in the 2D-MOT case, the 3D-MOT beams are derived from a single bichromatic

beam containing both cooling and repumper. We use six independent beams for the

3D-MOT. From the initial 0.7 mm waist we apply ×25 telescopes and we circularly

polarize every beam. The resulting waist is 17.5 mm. We experience power losses

of around 10 % due to the 2” mirrors at 45◦ used for steering the beams (18mm

effective radius) and to the 4 cm diameter vacuum windows. In compense, we

achieve a rather homogeneous illumination of the collection region. The atomic

cloud spans the full region covered by the beams because of light-assisted collisions.

These collisions are responsible for repulsive forces inside the cloud that limit the

achievable density. Once the density reaches the limit value, further collection of

atoms causes the MOT size to grow, eventually reaching the beam size. Because

of this effect the total number of atoms collected critically depends on the MOT

beams allignement.

4.9 Science chamber

In the science chamber we perform optical trapping using two dipole trap beams. We

also employ a single probe beam resonant with the atomic transition for absorption
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Cooling beams

Atomic beam

Figure 4.11: Scheme of the 3D-MOT. Atoms are coming from the 2D-MOT (up in

the drawing) and trapped by the MOT beams, here the beams are not retroreflected,

differently from the 2D-MOT case. The horizontal plane is shown in the drawing,

an extra couple of beams are used for cooling in the vertical direction (through the

plane of the image).

imaging. The beam propagates orthogonally to the largest side of the cell in order

to allow for large numerical aperture of the imaging lens. The beam is used for

imaging and also for optical pumping and has a waist of 7 mm with 1 mW total

power.

At the moment, we use an aspheric lens with 40 mm focal length and 1” diameter

to collect the imaging light. Such a lens has a nominal numerical aperture NA of 0.3,

the design limit is 0.7. The design of a higher resolution imaging system is being

carried out. The first lens is part of a ×2.5 telescope. For this reason the pixel

size is supposed to be the limiting resolution factor. The pixel size of our camera

is 6.45 µm, therefore the effective pixel size is 2.6 µm. A typical imaging procedure

consists of a 300 µs repumping pulse that changes the atomic internal state to the

F=2 hyperfine state. Subsequently (100 µs later) the imaging pulse with only the
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cooling light is switched of for another 100 µs and the light is collected by the ccd

camera.

Figure 4.12: Picture of the science chamber inside the coil mounts. The beam paths

of the dipole trap lasers and the imaging beam are indicated. the dipole trap beam

crosses the cell at 45◦ with respect to the cell frontal side. Collection lens for the

imaging and radio frequency antennas are also visible on the rear.

4.10 Magnetic transport

We use a moving cart to transport the atoms from the 3D-MOT chamber to the

science chamber. the atoms are trapped in the quadrupole field generated by the

transport coils. The coils are mounted on the moving platform (Aerotech pro115-

600 linear stage). The moving platform can reach velocities up to 350 mm/s. The

acceleration ramp is optimized minimizing the heating of the atomic cloud. The

time-velocity ramp of the transport sequence comprises of a linear acceleration ramp,

a constant velocity travel, and a linear deceleration ramp. The acceleration during
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Figure 4.13: 3D model of the moving platform holding the transport coils

the ramps is 800 mm/s2 and the constant speed section is traveled at 260 mm/s.

The total traveled distance is 540 mm, in a total time of 2.4 s. This time adds to the

time that is needed for the magnetic field ramps used in the transfer of the atoms

from the 3D-MOT coils to the Transport coils (200 ms) and from the Transport

to the Feshbach coils (500 ms). The magnetic transfer times were optimized by

minimizing the heating of the cloud.

4.11 Radio-frequency antennas

During atomic preparation, radio frequency radiations can be used in order to ma-

nipulate the atomic spin state. For this purpose two radio frequency (RF) antennas

were built. For low frequency operation, up to 50 MHz, a low inductance single

loop antenna was assembled. A 50 Ω resistor in series with the antenna provides

the impedence match to the output impedence of the generator. The low frequency

antenna can drive transitions between atomic states belonging to the same hyperfine

level (F=1 or 2) but with different mF projection. For higher frequency operation
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we assembled a single loop antenna with, in series, a 50 Ω resistor and a variable

capacitor. The capacity was tuned in order to minimize power reflection in a fre-

quency range of 400-500 MHz. This antenna can be used in order to change the

F quantum number from 1 to 2 or vice-versa. Typical RF power used on these

antennas is 1-3 W.

4.12 Trapping lasers

Two laser beams, the main dipole trap beam and the dimple beam (Fig.4.12), are

used for optical trapping. The main dipole trap beam is derived from a IPG-

photonics YLR-100-LP-AC ytterbium fiber laser. This laser can provide up to 100 W

of laser power at a central wavelength λ=1064 nm, with an emission linewidth of

2 nm. We typically operate this laser at around 30 W output power due to strong

photo-association losses caused by the wide emission (see Sec. 6.4.1). The laser is

coupled into an AOM for power control, sent to a system of lenses and focused onto

the atoms. The optics used for the beam preparation are made in fused-silica for

its low absorption coefficient. On the last focusing lens we arrive with a 10 mm

waist. The last lens has a focal length of 300 mm,. The beam waist at the focus

was measured to be 25 µm, substantially larger than the 10 µm Gaussian beam

estimation. This is due to deterioration of the beam quality after the AOM and by

spherical aberrations on the focusing lens. The use of a small waist is necessary in

order to achieve three dimensional trapping with a single beam and to enhance the

atomic collisional rate during the accumulation of the atoms in the trap. The use

of a crossed dipole trap is not straight-forward for this laser because of the large

spectrum. The laser’s spectrum largely exceeds the hyperfine splitting of the ground

state. For this reason, Raman transitions, in which a photon is absorbed from one

beam and emitted into the other, are allowed and can lead to heating of the sample.
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Figure 4.14: Simplified optical scheme used for the trapping beams. The main dipole

beam is horizontal, but is not in fact orthogonal to the science chamber side as it

may seem from the picture. In reality it crosses the cell at an angle of 45◦. The

dimple beam comes from below.

The dimple beam is generated from a Nufern ytterbium fiber amplifier seeded by

an Innolight Mephisto S S200 NE. The amplifier can provide up to 10 W laser power.

The optimized operation of the dimple trap requires only 200 mW. This beam, as

the previous one, is sent to an AOM for power control, optically manipulated and

focused onto the atoms. The laser waist at the atoms position is about 70 µm. Due

to its low trap depth, the dimple laser does not influences the atomic distribution

before the last stages of evaporation. Its purpose is mainly to increase the trapping

frequency, and consequently the collision rate, once the main dipole trap depth is

too weak to sustain the evaporative cooling. The laser is however switched on at

the beginning of the evaporation sequence and its power is kept constant.
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Chapter 5

Sub-Doppler laser cooling

In this chapter, I describe the main experimental procedures related to laser cooling.

In the first section, I give an overview of sub-Doppler cooling on atoms with narrow

hyperfine structure, related to the recent achievement of sub-Doppler cooling on the

potassium bosonic isotopes[46]. Thereafter I describe the various operation of the

2D and 3D-MOT and the preparation of the atomic cloud.

5.1 Laser cooling, the special case of potassium

Sub-Doppler laser cooling of potassium was never achieved before because of its

small hyperfine splitting and the lack of a closed cooling transition. Let us discuss

the main problems of cooling in presence of a narrow hyperfine splitting and a

high density of the cloud. While in principle, the lowest achievable sub-Doppler

temperatures are independent of the laser detuning δ [47], the experiments with

large density samples are performed at large detunings, δ ≫ Γ. This requirement

arises from the need of keeping the scattering rate of photons by individual atoms

low, in such a way that spontaneously emitted photons may not disturb the cooling

process [48].
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Figure 5.1: Net effect of the multiple scattering. Two atoms are scattering off

photons at a rate Γ/2 s
s+1

during the cooling process. In an opically thick sample

their average distance is short such that those photons one emits might be reabsorbed

by the other one determining heating and an effective repulsive force between the

two.

The way spontaneously emitted photons linders the cooling is via rescattering of

them by other atoms. The optical thickness of the cloud

d = σnl =
3λ2

2π

I/Is
1 + I/Is + 4δ2/Γ2

nl, (5.1)

where σ is the scattering cross section and l is the average linear size of the cloud, rep-

resents the probability of absorption of a photon inside the cloud. When d becomes

of the order of 1, or larger, the fluorescence photons emitted at the center of the cloud

as a result of the cooling process itself, are likely to be reabsorbed on their way out.

This causes many issues when working with dense samples (n > 109 atoms/cm3).

First of all, rescattering generates an effective repulsive force which limits the achiev-

able density (see Fig.5.1). Moreover the reabsorbed photons effectively increase the

diffusion coefficient in momentum space Dp, causing the equilibrium temperature to

increase. In principle, by increasing the detuning δ, the thickness d can be reduced

and the cooling becomes more efficient. However, most atomic systems cannot be

modeled as simple two-level ones since they feature a hyperfine structure like the
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one in Fig. 5.2 that is relevant for instance to Na, K and Rb. In this case, it is

commonly thought that δ must also be smaller than the main hyperfine splitting ∆,

since otherwise the presence of the other excited states would turn the sub-Doppler

mechanism into a heating one. A problem therefore arises when trying to cool a

dense sample in presence of a narrow hyperfine structure, since the increase of δ

needed to reduce rescattering is limited by the hyperfine splitting. As a matter of

fact, in the case of the bosonic K isotopes, where ∆ ≈ 2 − 3Γ, a clear sub-Doppler

cooling has not been experimentally observed so far.

To understand better the issues of cooling in presence of a narrow hyperfine

structure, I performed detailed calculations. In Fig.5.2 a calculation of the cooling

force for various detunings is reported. The picture indicates the presence of different

detuning zones with different behavior of the cooling force. The interesting ones are

the ones for which the cooling force is opposite to the atomic velocity. This is true

in the full velocity range only in the ”green” zones (zone I). These are located either

very close to resonance, where heating from photon reabsorption might be large,

or for δ ≫ ∆, where however the velocity capture range of the process becomes

very low due to the large detuning. The conclusion one might draw is that efficient

cooling for high density in potassium is not achievable.

5.1.1 Cooling forces for a narrow hyperfine structure

The calculations of the cooling forces are performed by solving the optical Bloch

equations (OBE) of the multilevel atomic system. I have considered a 1D geometry

and a σ+ − σ− polarization configuration of the laser fields. The Bloch equations

are solved using an adapted version of the code of ref. [49, 50]. This code solves the

steady state equation for the density matrix

0 =
i

~
[H + kvJz, ρat] + γρat (5.2)
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Figure 5.2: Working regions for sub-Doppler cooling of bosonic potassium. a) Level

scheme including the relevant hyperfine splitting ∆ and the cooling laser detuning

δ. b) Calculated cooling forces vs the atomic velocity in the various regions of (a).

Doppler cooling only takes place in regions I and IV, while sub-Doppler cooling is

active only in regions I and II. Zones in between the F’=2 and F’=0 levels are not

reported.
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in which ρat is the internal atomic state density matrix (the code is written in the

semiclassical approximation), γ represents coupling of the levels by spontaneous

emission, while H represents the dipolar coupling of the various levels induced by

the laser fields. The inertial rotation term experienced by the atoms in the rotating

frame (see Sec.2.1.2) is also added. Once the density matrix as a function of the

atomic velocity is found, the cooling force is calculated by

F = ∇Tr (Hρat) . (5.3)

From the results of the calculations, 4 different cooling zones can be distinguished

by the sign of the force as a function of the atomic velocity. My criterion to dis-

tinguish the zones was the following: to determine the sign of the force in the low

velocity region I calculated it for v =
√

2ER

m
, while for the high velocity region I

took the sign at a velocity v =
√

kBT
m

, with T=1 mK. This temperature was chosen

to be of the order of the measured temperature in our MOT at the beginning of the

cooling. Changing this choice for the velocity at which to perform the check can

influence the exact position of some of the zones but not the qualitative description.

Once we have the two signs we can assign zone I to the - - combination1, zone II to

the - + one, zone III to + + and zone IV to + - (see Fig.5.2 for typical examples of

the force behavior in the different zones).

To investigate whether these considerations about the cooling zones are peculiar

of potassium or if they are more general, I calculated the zones positions for different

values of the parameter ∆/Γ. In Fig.5.3 are reported the calculated positions of the

various working zones of the cooling process for the hyperfine structure of 39K by

artificially changing Γ. We see that for Γ > ∆, the zones merge and disappear.

The cooling can ,in this case, be performed for any detuning. This is in agreement

1a - means that the force is opposite to the atomic velocity, determining friction, a + instead

determines acceleration of the cloud to higher velocities. The sign in the low velocity regime is

given first
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with experiments performed on Sr[51], in which sub-Doppler cooling is performed

for Γ > ∆ . As one can notice from the graph, the lines become horizontal for large

hyperfine splitting ∆, effectively predicting the presence of the zones even in the

case of large hyperfine structures. In a typical MOT operation, however, the kind

of orientational cooling one has in the pure σ+ − σ− configuration of the cooling

beams polarizations coexists with Sysiphus cooling. The latter cooling mechanism

dominates at large detuning[25]. The relevance of such cooling zones is therefore

restricted to the case Γ . ∆.

Figure 5.3: Behavior of the cooling zones by changing Γ artificially. Black horizontal

lines indicates the position of the atomic levels. In zone I (green) Doppler and sub-

Doppler forces can be exploited. Zone II (purple) allows sub-Doppler cooling only

after pre-cooling. In zone III (Blue) the force cannot determine any cooling. Finally

in zone IV (orange) Doppler cooling can be performed while sub-Doppler cannot.

We see that the zones disappear as soon as ∆ < Γ. The zones show also a nontrivial

power dependence. The graph was calculated for I = Is.
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Let us try to understand the physical origin of the cooling zones. The zones

are a manifestation of the fact that, when a laser is tuned in between two atomic

levels, its detuning will be positive for one transition and negative for the other.

What happens if the detuning from one of the two levels is much smaller than the

detuning from the other is clear, but for intermediate values the situation can be

more complicated. Let us consider the situation of only two levels contributing to

the force and let us try to estimate the flipping point for the Doppler force. Recalling

eq.2.14, and assuming that the total force will be given simply by the sum of the

two forces originated by the coupling with the two levels, we have:

α1 − α2 = ~k2Ω2Γ

(
− δ

(δ2 + Γ2/4)2
+ A

∆− δ

((∆− δ)2 + Γ2/4)2

)
= 0 (5.4)

for the detuning that determines the flipping point of the Doppler part of the force,

and thus the separation between zone I and zone II. By ∆, I have indicated the

energy difference between the two levels and the parameter A is the ratio of the

Clebsh-Gordan factors for the two transitions contributing to the cooling. The

solution of this equation for large detuning δ ≫ Γ is

δ = − ∆

1 + 3
√
A

(5.5)

Giving δ = −0.64∆ for the F’=3 and F’=2 excited levels of the D2 line of potassium.

The full simulation prediction is −0.6∆. For the sub-Doppler part of the force, we

can repeat the same argument but using eq.2.23 in order to calculate the flipping

point and thus the border between zone II and zone IV.

α1 − α2 = ~k2Γ

(
− δ

(δ2 + Γ2/4)
+ B

∆− δ

((∆− δ)2 + Γ2/4)

)
= 0 (5.6)

The parameter B is calculated as follows:

B =
CG2CG

R
1

CGR
2 CG1

(5.7)
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In which CG stands for Clebsh-Gordan coefficient of the two levels (1 is the red

detuned one and 2 the blue detuned one) the superscript R indicate the Raman

coupling described in chapter 2. The solution to eq. 5.6 for large detuning is:

δ = − ∆

1 + B
(5.8)

giving δ = −0.9∆ for the same transition considered before. Again in good agree-

ment with the value provided by the full simulation, namely−0.84∆. The systematic

shift towards the blue of both boundaries with respect to the simple estimation can

be ascribed to the presence of the other levels strengthening the contribution of the

blue detuned part of the forces.

5.1.2 Sub-Doppler laser cooling of potassium

In most experiments the cooling is performed in zone I. In the potassium case, in

order to decrease rescattering effects by increasing detuning we are forced to work

in zone II. The very high initial temperature of the cloud (on the order of a mK)

disfavors direct cooling in this zone because of the heating of the hotter atoms that

can be determined by the behavior of the force for large velocity. In this case a pre-

cooling can allow to keep all the atoms inside the velocity region in which the force

is opposite to velocity and achieve efficient cooling. This is the first ingredient of our

cooling strategy and it consists of the application of a linear ramp on the cooling

parameters. From an initial condition of low detuning (zone I) and high power,

to favor Doppler pre-cooling, we go to a final optimized condition for sub-Doppler

cooling, with δ in zone II and low intensity (details are given in Sec.5.4.3).

The second ingredient is the application of a dark molasses scheme, in which the

low repumping beam intensity causes the atoms to occupy preferentially the F=1

ground state, with only a small fraction of them in the F=2. The F=1 is a dark state

for the cooling light and therefore atoms in this state cannot absorb the rescattered
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cooling photons. This expedient allows to suppress heating from multiple scattering

events. In Fig.5.4, the effect of the repumping beam intensity is shown. For large

density the repumping intensity has to be kept very low (on the order of 0.01×Is)

in order to achieve low temperatures. For low density, instead, the repumping

power is not important. In potassium, thanks to the narrow hyperfine structure an

effective depumping rate of the cooling transition is present. The realization of a

dark molasses is therefore easier than in other systems. In atomic systems with large

hyperfine splitting, the implementation of a dedicated depumping beam is necessary

to operate the dark molasse[48].
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Figure 5.4: Effect of the repumping/cooling power ratio on the achieved temper-

ature for 39K. For the red dots the density was 8×108 atoms/cm3, while for the

black squares it was 4×1010 atoms/cm3. In the last case, extra heating caused by

rescattered photons can be reduced allowing atoms to stay in the dark F=1 state

We applied this technique to the two bosonic potassium isotopes with similar

results, the achieved temperatures are shown in Fig.5.5. The best achieved temper-
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atures are the lowest reported values up to now for laser cooling of these two atoms,

and are around 25(50) µK for 39K (41K). The agreement with the theory is satis-

factory even though the experiment is performed in a 3D-MOT while the theory is

carried out in 1D. In conclusion, by the application of a dark molasses scheme and

an adiabatic ramping of the cooling parameters, we were able to demonstrate sub-

Doppler cooling of potassium. The cooling is efficient even very close to resonance

and at high densities thanks to the lossy nature of the cooling transition employed.
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Figure 5.5: Measured temperatures for 39K (red triangles) and 41K (black squares),

by using the dark molasses plus ramping technique described in the text. Calculated

temperatures (lines) vs the cooling laser detuning. The dashed line is the prediction

of Doppler theory.
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5.2 Imaging techniques

Before discussing the MOT operation and the operational parameters I describe

our imaging techniques which we used to determine the atomic sample parameters.

Different imaging techniques are used in order to measure the physical parameters

of the atomic samples. In the 3D-MOT chamber usually fluorescence imaging is

employed, while in the science chamber the main applied technique is absorption

imaging.

5.2.1 Fluorescence imaging

In the 3D-MOT chamber, the imaging is performed by switching on the MOT beams

at full power, for a very short time τ , and collecting the light emitted by the atoms

with a lens placed outside the chamber. The image of the sample is thus reproduced

onto a CCD camera with a magnification of 0.31. The magnification was measured

comparing the position of the cloud in free fall with Newton law and assuming

g=9.81 m/s2.

The total power emitted by the atoms driven by a laser field, detuned from the

resonance by δ and with intensity I, is given by

P = N
Γ

2

I/Is
1 + I/Is

1

1 + 4δ2/Γ2
eff

~ω (5.9)

where Γeff = Γ
√
1 + I/Is is the power broadened line-width. The saturation in-

tensity has to be determined experimentally since neither the cooling light nor the

atoms are polarized. We estimated it to be about 4 times larger than the nominal

value. Nevertheless, due to the the very high intensity employed (on the order of

30Is), we can always consider the transition fully saturated (I/Is ≫ 1). Due to the

high density of the sample, sometimes out-of-resonance imaging has been utilized

to get reliable measurements.
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The light is emitted randomly in all directions and only a fraction Ω
4π

is collected

by the imaging lens. The solid angle Ω is estimated to be 4×10−3 srad. In order

to avoid exposure of the CCD to the room light, we have placed an interferometric

filter in front of it. We have calibrated the power response of the CCD and the filter

by shining a laser beam of known power. The signal on a single CCD pixel camera

is found to be

S = αGP
Ω

4π
τ (5.10)

the prefactor α=8.4×1015 counts
Ws

is the result of the calibration. G is the gain of the

camera, which can be set by the operator. The number of atoms is then found by

inverting the previous expressions and integrating the signal over the whole CCD.

The size of the cloud is found by fitting the CCD image with a 2D gaussian function.

For the CCD camera we use a Stingray F-145B/C from Allied Vision Technology.

5.2.2 Absorption imaging

Imaging in the glass cell is performed by shining a laser on the atoms and by record-

ing the image of the absorbed beam Iout(r) onto the CCD. A subsequent image is

taken without atoms, the intensity in this case is indicated as Iin(r). We infer the

cloud density from the ratio of the two images via the Beer-Lambert law for the

absorption. For this imaging system we always work with I/Is ≪1. In this case,

the column density of the atomic cloud can be obtained as

n2D(r) =
ln(Iin(r)/Iout(r))

σ
(5.11)

where σ is the scattering cross section for the imaging light, which can be expressed

as

σ =
3λ2

2π

1

1 + 4δ2

Γ2

. (5.12)

The atomic parameters are then extracted from the images by fitting the density

distribution with the theoretical profile.
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5.3 2D-MOT flux characterization

The 2D-MOT flux was measured by recording the fluorescence signal of the atomic

beam. The velocity distribution of the atoms was also measured by switching off

the 2D-MOT and measuring the time of flight delay of the fluorescence signal [52].

The results are reported in Fig.2.6. The 2D-MOT can provide a total integrated

Figure 5.6: 2D-MOT atomic beam axial velocity distribution as measured from

time of flight delay of the fluorescence signal. Acting on the push beam power the

average velocity of the beam can be changed. The integrated flux can be as large

as 2×1010 atoms/s. The average velocity of the beam can be as low as 25 m/s.

High flux and low velocity are desirable in order to maximize the capture rate of

the atomic beam by the 3D-MOT.

flux up to 2×1010 atoms/s with a low average velocity of around 25 m/s. The low

velocity is desired in order to be able to capture the atoms into the 3D-MOT.
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δC/Γ δR/Γ Imain/Is IR/IC Ipush/Is I+/Is γ(G/cm)

2D-MOT -5.7 ±0 35 0.8 13 5 13

Table 5.1: Experimental parameters used for the 2D-MOT operation. δC is the

detuning of the cooling light from the cooling transition F = 2 → F ′ = 3. δR is the

detuning of the repumping light from the repumping transition F = 1 → F ′ = 2.

Imain is the intensity of the main beams for the transverse cooling; IC (IR) is the

cooling (repumping) beam’s intensity; Ipush is the intensity of the push beam; I+ is

the intensity of the additional retarding beam; γ is the magnetic field gradient.

5.4 3D-MOT operation and further cooling pro-

cedures

The 3D-MOT operation is broken down into its main components, each of them has

its purpose and it is optimized for a specific goal. The whole sequence was optimized

extensively during the second year of my PhD (see also[53]). The first building

block is the loading from the 2D-MOT atomic beam. In this part, we are mostly

concerned about atom number and loading time. The second part (compressed

MOT) maximizes the density of the sample. Finally, the molasses sequence, is

optimized to achieve the lowest temperature of the atomic sample.

5.4.1 3D-MOT loading from the atomic beam

In Fig.5.7 a typical instance of the 3D-MOT loading is depicted. The relevant

experimental parameters for the loading are listed in Tab.6.2. The maximum

achieved number of atoms is close to 3×1010. The initial loading rate compared

to the measured total 2D-MOT flux gives a capture efficiency of about 65 %. The

curve shows a clear saturation after about 2-3 s. Since the measured lifetime of the
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δC/Γ δR/Γ Itot/Is IR/IC γ(G/cm)

Loading -3 -3.3 35 0.8 11

Table 5.2: Experimental parameters used during the 3D-MOT loading. Itot is the

total intensity of the 3D-MOT beams.

Figure 5.7: Picture of the atomic cloud as seen by naked eye from above the 3D-

MOT cell (right). Loading curve of the 3D-MOT trap (left). The achieved maximum

number of atoms is about 3×1010 atoms after 6 s. In the normal operation, we limit

the loading time to 5 s. The initial slope corresponds to about 1.3×1010 atoms/s. If

we compare to the total flux provided from the 2D-MOT beam, the capture efficiency

can be calculated to be 65 %.

cloud in this cell is only 4 s, we ascribe this saturation to background collisional

losses. Immediately after the loading, we have measured the atomic density and the

temperature to be 1.8×1010 atoms/cm3 and 2 mK respectively. The achieved phase

space density is, therefore, 4.6×10−9. The loading of the 3D-MOT, together with

the evaporation, is one of the most time consuming parts of the experiment. In order

to increase the repetition rate, a very high loading rate is therefore desirable. The

MOT loading is optimized to provide high atom number in the lowest possible time.

The phase space density ρ is however too low to load efficiently in the magnetic
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trap. We have therefore to compress the MOT and to perform sub-Doppler cooling

in a molasses scheme. In tab 6.2 the main experimental parameters are reported.

5.4.2 Compressed-MOT

During the Compressed-MOT (C-MOT) the cloud gets compressed by the effect of

the cooling light. To achieve the maximum compression we have to decrease the

repumper power and increase the laser detuning. Although this procedure might

seem counterintuitive, it is determined by the fact that the density in the MOT is

limited by light assisted collisions (see Fig.5.1) which prevents the atoms to get too

close. To increase the density, we have thus to decrease the photon scattering rate.

This is done in a first sudden change of the MOT parameters (the new parameters

are kept constant for 5 ms) followed by an adiabatic linear ramp (10 ms duration), to

the final values. The compressed state is a non equilibrium one, if kept for too long,

δC/Γ δR/Γ Itot/Is IR/IC γ(G/cm)

initial values (kept for 5 ms) -3.7 ±0 35 0.5 15

adiabatic ramp (10 ms long) -3.7 to -6.2 ±0 35 0.5 to 0.02 15

Table 5.3: experimental parameters used during the C-MOT.

it leads to atom losses from the cloud. For the chosen time the losses were about

25 %. The number of atoms at this point is 1.8×1010, the density has increased to

1.7×1011 atoms/cm3 and the temperature is 2 mK. the phase space density ρ is thus

4.2×10−8.

5.4.3 Molasses and sub-Doppler cooling

The molasses sequence is the most critical and the most important part of the cloud

preparation. First of all, a fine tuning of the stray magnetic fields to zero is necessary

90



in order to achieve low temperatures. We have indeed verified that a field of about

1 G prevents us to reach sub-Doppler temperatures. Another subtle point is the

power balance of the beams which has to be optimized for this phase, since the

nulled magnetic field does not provide any longer the trapping force. The cooling

is done by adiabatically increasing the detuning from zone I to zone II of the sub-

Doppler force and, at the same time, ramping down the intensity. The ramp is 10ms

long. The results are given in Fig.5.8, in which is also reported a comparison to the

case without the ramp.

δC/Γ δR/Γ Itot/Is IR/IC γ(G/cm)

initial values -0.7 -2.7 18 0.01 0

adiabatic ramp (10 ms long) -0.7 to -2.5 -2.7 18 to 1 0.01 0

Table 5.4: experimental parameters used during the molasses cooling.

In the two cases, the achieved temperature is similar but substantial atom losses

are observed if the ramp is not performed. The atom lost with the ramping strategy

were only 10 %. Without the ramp, the cloud shows a bimodal distribution in

velocity space (fig.5.9). The reported efficiency in fig.5.8 refers to the central peak

of the velocity distribution. We interprete this bimodal structure to be originated

from the nature of the cooling force in region II, the hotter tails have been effectively

accelerated by the cooling force. The expansion of the hot part is not consistent with

an expansion from v = 0, since the force, and therefore the cloud, is not equilibrated.

The final number of atoms is thus 1.65×1010, the density is also lower than in

the C-MOT due to the free expansion of the cloud. By performing a measurement

of the diffusion of the cloud in the molasses beams we have found that the cloud

reaches the diffusing regime in about 3 ms. Before entering the diffusive regime,

the cloud expands almost ballistically. We can estimate its size after the initial free
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Figure 5.8: Reached temperature and atom number efficiency of the molasses se-

quence as a function of the final detuning. Black squares are without ramp and red

triangles are with ramp. The blue dashed line is the Doppler theory.

expansion by the law

σ2(t) = σ2
0 +

kBT

3m
t2 (5.13)

with σ0=1.9 mm and T=2 mK2 Eq.5.13 gives σ=2.21 mm. After the initial ballistic

expansion, the cloud expands in a viscous media (the molasses) in a diffusive way.

We have measured the diffusion constant to be D=0.35 cm2/s. The final size σ can

then be calculated from

σ2(t) = σ2
0 + 2Dt , (5.14)

giving σ=2.32 mm. This increase in the size corresponds to an overall density drop

2in the formula the temperature is divided by three to take into account that T is decreasing

during the expansion. We assume a linear dependence of the temperature on time and a final

temperature negligible with respect to the initial one. The result then comes from integration of

dσ

dt
= 2kBT (t)t

m
. To verify that the final temperature was low I measured the reached temperature

after 3 ms to be 70 µK.
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Figure 5.9: Typical instance of the velocity distribution of the atomic cloud with

(black) and without (red) the ramping strategy.

of a factor 1.8, consistent with the measured density after the molasses. We notice

that the size increases mostly during the initial part of the cooling ramp. The

length of the sequence, therefore, does not influences the final size so much. The

final density is 8×1010 atoms/cm3 and ρ is 1.5×10−5 for the optimized temperature

of 25 µK.
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Chapter 6

Bose-Einstein condensation of 39K

In this chapter I describe the implementation of the remaining steps necessary for the

realization of the BEC. I start by revising the possible routes to BEC for 39K. The

main problem is the negative background scattering length (as for 85Rb), that leads

to the Ramsauer-Townsend minimum in the collisional cross section (see Sec.2.3.1).

A clever way to overcome this problem was the implementation of sympathetic

cooling with 87Rb. This technique relies on the good scattering properties of 87Rb

and on thermalization with 39K. A big problem of this technique is, however, the

very high degree of complexity of the experimental apparatus, because of the two

species operation. In addition, the need of having a much larger number of Rb

atoms than the number of K atoms, limits the attainable condensed atom number.

Finally, the, usually, long preparation time (on the order of a minute) of the BEC

makes this not the best choice if high repetition rate is required.

Another condensation strategy consists in the employment of Feshbach reso-

nances in order to change the scattering properties of the gas, allowing for singles

species operation. Interaction tuning cannot be performed in a magnetic trap due to

the spatial variation of the magnetic field. The gas needs therefore to be transferred

to an optical dipole trap. The achievement of efficient evaporative cooling by means
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of a Feshabch resonance was already demonstrated and exploited for the realization

of K BECs[54, 55]. It was, however, employed in combination with sympathetic

cooling and never as a stand-alone technique.

We chose to follow this last strategy. To transfer the atoms to the science cham-

ber, we need, initially, to trap them into a magnetic trap. The atoms will then be

found in a magnetic trap in the science chamber and RF evaporation can be per-

formed. The atoms are afterwards transferred into a dipole trap in which Feshbach

assisted evaporative cooling down to qiuantum degeneracy will be realized. A fun-

damental choice is the one regarding which Feshbach resonance to exploit and which

magnetic energy level is the most convenient to work with. In Fig.6.1 is depicted

the magnetic field dependence of the atomic energy and of the scattering length.

We tried two different strategies: the first one required an initial preparation of

the atomic sample into the F=2, mF=+2 magnetic sublevel in order to exploit its

large magnetic dipole moment for magnetic trapping and possibly RF evaporation.

Once in the dipole trap, the atoms were transferred to the F=1, mF=+1 absolute

ground state and evaporative cooling performed around 400 G. The second strategy

consisted in keeping the atoms from the beginning into the F=1, mF=-1 magnetic

sub-level and perform evaporative cooling in the dipole trap around 40 G. I will

briefly describe the details of the two strategies as well as the main results obtained

with them.

The advantage of the first strategy consists of exploiting the F=2, mF=+2 state

magnetic moment in order to achieve higher density and collision rate with a fixed

magnetic gradient (which is limited by the maximum current provided by the coil’s

power supply). This, in principle, leads to the possibility of RF evaporative cooling

in the magnetic trap. This evaporative cooling reached its limit for temperatures

around 100 µK due to the Ramsauer-Townsend effect (see the next section). This

choice presents many hinders. First of all, our atomic cloud after molasses cooling
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Figure 6.1: Magnetic field dependence of the energy of the various ground state

magnetic sublevels of 39K (upper panel). The blue lines corresponds to trappable

states at low field. The states are labeled by the value of F and mF at low field. For

fields higher than 50 G a partial Paschen-Back picture would be more appropriate

(J is still a good quantum number while F is no more). On the lower panel, the

dependence of the s-wave scattering length versus magnetic field is depicted for the

three magnetic sublevels with F=1: mF=1 (yellow-green), mF=0 (purple), mF=-1

(blue).
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mainly consists of atoms in the F=1 state because of the dark molasses scheme,

which is part of our sub-Doppler cooling procedure[46]. In order to prepare the atoms

in F=2, mF=+2 state, optical pumping is therefore needed. We performed optical

pumping on the atomic sample after molasses cooling. However, we experienced

a substantial heating of the sample (about a factor two in temperature) and only

partial (70 %) atomic orientation. Once the atoms are in the dipole trap, they

must be transferred to F=1, mF=+1 via a radio frequency transition. This was

possible even though, due to the high temperature of the gas, the efficiency was not

high. We could not get more than 50 % of the atoms in the desired state. The

untransferred atoms were acting as a thermal load on the main cloud, leading to

inefficient evaporative cooling. The last problem was that, due to the duration of

the sequence and to the employment of a high magnetic field Feshbach resonance,

a substantial heating of the magnetic field coils was present, causing drifts in the

magnetic field at the position of the atoms. We obtained a BEC wth around 104

atoms in the condensate using this strategy. The evaporative cooling time was 30 s

(10 s for the RF evaporation plus 20 s for optical evaporation) and thermal effects

on the coils affected the experimental stability.

In order to increase the atom number and improve the experimental stability

we decided to work from the beginning with atoms in the F=1, mF=-1 state. This

state cannot be easily optically pumped. Approximately 33 % of the initial atoms

in the MOT will populate this state. The rest of the atoms will populate high field

seeking states and will, therefore, be ejected from the magnetic trap. The lower

magnetic moment diminishes the achievable density. Therefore RF evaporation is

inefficient in this case. The advantages are that the state is magnetically trappable

at low field and that it has a very convenient low field Feshbach resonance centered

at 34 G and 50 G wide. Neither optical pumping nor RF transfer is therefore needed

and the heating of the coils can be minimized. This technique allowed for a larger
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number of condensed atoms and a higher repition rate of the experiment. The final

condensed atom number by this strategy was around 105 and the evaporative cooling

was performed in about 10 s.

6.1 RF evaporation and Ramsauer-Townsend min-

imum
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Figure 6.2: Calculation of the scattering cross section as a function of the collision

energy in the center-of-mass frame for two atoms colliding in the F = 2,mF = +2

state[56]. The reported value is an ”effective” scattering length a =
√
σ/(8π). The

data shown the Ramsauer-Townsend effect which reduces the collisional cross-section

to almost zero at an energy of 400 µK.

In this section the results of the RF evaporation for the F=2, mF=+2 state

are presented. The RF evaporation ramp was divided in steps. In each step the

frequency was reduced by a factor two with respect to the initial value and the du-
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Figure 6.3: Results of the RF evaporative cooling for atoms in the F = 2,mF = +2.

The evaporation stops around 100 µK.

ration of each step was optimized by maximizing the achieved phase space density.

The resulting ramp was linear and lasted 20 s, during which the atoms were held

in a quardupole trap with a magnetic field gradient of 276 G/cm along the vertical

direction. In Fig.6.2 is reported a numerical calculation[56] that shows the scat-

tering cross section for two atoms in the F=2, mF=+2 state as a function of their

collisional energy in the center-of-mass frame. The calculation shows the presence of

the Ramsauer-Townsend minimum around 400 µK. For this reason, we expect that,

for similar temperatures, the thermalization will be inhibited and the RF evapo-

ration will stop. This is shown clearly by the results of the evaporative cooling in

Fig.??. For temperatures of the sample around 100 µK, the evaporation efficiency

goes to zero, meaning that, reducing the RF frequency, more atoms are lost without
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increasing the phase space density. In order to continue the evaporative cooling, the

atoms are transferred to the optical trap. In the following sections, the details of

the experimental sequence for atoms in F=1, mF=-1 are described for which RF

evaporation was not performed.
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Figure 6.4: Phase space density versus number of atoms for the RF evaporation.

The efficiency goes to zero at the end of the evaporation.

6.2 Magnetic trap loading

Once the sample has been cooled in the molasses, we switch on abruptly a quadrupole

trap in which we load the atoms. Only the low field seeking atoms get trapped in

this way. Since the majority of the atoms populates the F=1 hyperfine state, the

trapping efficiency will be about 1/3. The magnetic field gradient γ at the switching

on has to be chosen in order to maximize the phase space density of the cloud. If

the gradient is too high, the cloud will receive too much potential energy and heat

up. If, on the contrary, the gradient is too low, the cloud will lose density. Since our
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cloud is big (high potential energy) and cold, the optimum value of the magnetic

gradient is going to be small and the magnetic energy may be comparable to the

gravitational energy. In the following, I will calculate the optimal gradient in the

presence of gravity. In the initial situation we have a cloud with temperature T ,

with a given size σ. Its density will be, therefore:

ni(x, y, z) =
N

(2π)3/2σ3
e−

x2+y2+z2

2σ2 . (6.1)

The gain in potential energy due to the switching on of the magnetic trap will be

given by

U = 〈µB

2
B〉 = µBγ

2

∫ √
x2 + y2

4
+ z2ni(x, y, z)d

3x . (6.2)

This integral gives the result

U = 17.34
µBγNσ

2(2π)3/2
(6.3)

The total energy of the cloud at this point will be E = U+Ki. Here Ki is the initial

kinetic energy given by Ki =
3
2
NkBT . After a certain time the cloud will come to

an equilibrium in the trap. Since the trap has a potential, which depends linearly

on the distance to the center, the virial theorem gives, for the final kinetic energy,

Kf = E
3
. From the final kinetic energy we can find the final temperature Tf as

Tf =
2Kf

3kBN
=
T

3
+

17.34µBγσ

9kB(2π)3/2
. (6.4)

The final central density nf (0) in the magnetic trap can be estimated by the equation

N = 2πnf (0)

∫
e
−µBγ/2

√
r2/4+z2+mgz

kBTf rdrdz (6.5)

the result of the calculation is:

nf (0) =
N

32π

(
µBγ

2kBTf

)3
((

2mg

µBγ

)2

− 1

)2

, (6.6)

which makes sense only if γ > γmin, with γmin=11.4 G/cm being the minimum

required gradient in order to hold the cloud against gravity. We can now calculate
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the final phase space density as

ρf = nf (0)λ(Tf )
3
dB =

µ3
Bγ

3h3
((

2mg
µBγ

)2
− 1

)2

N

512
√
2π5/2m3/2

(
kBT
3

+ 0.122γµBσ
)9/2 . (6.7)

By comparing this formula with

ρi = ni(0)λ(T )
3
dB =

Nh3

(2π)3σ3m3/2(kBT )3/2
, (6.8)

we can calculate their ratio α to be

α =
ρf
ρi

= 0.02

(µBγσ)
3

((
2mg
µBγ

)2
− 1

)2

(kBT )
3/2

(
kBT
3

+ 0.122γµBσ
)9/2 . (6.9)

The maximum value of α is obtained for γ ≫ γmin and it is αmax=3.26. This

means that, if the switching on is done properly, ρ can increase (of course this

calculation does not consider atom losses). This is caused by the change in shape

of the trapping potential, from parabolic in the MOT to linear in the quadrupole.

By maximizing α with respect to γ we find the result of Fig.6.5.

For large values of T/σ the optimized value of γ follows a linear dependence

given by γ(G/cm)=0.812 T(µK)/σ(mm), that can be found in the limit γ ≫ γmin.

When the optimum value of γ becomes of the order of γmin, there is a deviation

from the simple linear dependence. The value of α obtained for the optimized value

of γ also decreases when we get closer to γmin as is shown in fig.6.6.

In our case, the size of the cloud is 2.35 mm and the temperature 25 µK, the

calculation gives, for the optimized value of γ, 30 G/cm and, for the phase space

density increase, α=1.1. We notice that, obtaining an even lower temperature in

the molasses, ρ will decrease once we load the cloud into the magnetic trap. In

other words, the gain in phase space density derived from further cooling is lost in

the loading of the magnetic trap. The maximum achievable phase space density

after loading (considering a cloud cooled down to T=0 before loading) scales like
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Figure 6.5: Optimized value of γ with respect to T/σ in order to maximize the

phase space density of the cloud in the quadrupole. Calculation with (blue solid)

and without (red dashed) gravity.

σ−9/2. The size of the cloud σ is mainly limited by light-assisted collisions in the

C-MOT. This represents the limiting factor of the system up to this point. In order

to decrease the cloud size, a dark-MOT scheme has to be implemented. The number

of atoms loaded into the magnetic trap is 3.8×109, the temperature is measured to

be 55 µK, the density is 1.8×1011 atoms/cm3 and ρ is 10−5.

6.3 Transfer efficiency

Once the cloud is trapped into the magnetic trap, we ramp up the magnetic field

gradient adiabatically to the maximum value of 164 G/cm. The size of the cloud

decreases by a factor 1.8 and its temperature increases by a factor 3.1. The coils

are then moved towards the glass cell with the motorized translation stage. We do
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Figure 6.6: value of α obtained for the optimized value of γ as a function of T/σ

not experience any heating due to the transport apart from the adiabatic heating,

probably because we transfer a relatively hot cloud. The state F=1, mF=-1 that

the atoms occupy during the transport, has an intrinsic finite trap depth of about

1.5 mK due to the nonlinear magnetic moment of this state. Any increase in the

temperature, therefore, causes losses of the higher energy atoms and, possibly, an

effective evaporative cooling. This has a considerable effect only if the truncation

parameter is 10 or lower i.e. if the temperature is 150 µK or higher.

We tried to characterize the performances of our transport scheme in terms of

the fraction of the initial atom number that effectively reaches the glass cell. The

first loss mechanism is due to collisions with the background gas. To estimate it we

measured the lifetime τ(x) of the sample at every point during the transport to the

glass cell. To do so, we moved the cloud to the desired position, we kept it there

for a variable time, and finally we moved it back to the MOT chamber, in which we

measured the remaining number of atoms in the trap.
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δC/Γ δR/Γ Itot/Is IR/IC γ(G/cm)

MOT loading -3 -3.3 35 0.8 11

C-MOT -3.7 ±0 35 0.5 15

compression ramp -3.7 to -6.2 ±0 35 0.5 to 0.02 15

Molasses -0.7 -2.7 18 0.01 0

cooling ramp -0.7 to -2.5 -2.7 18 to 1 0.01 0

Quadrupole loading / / 0 / 30

Table 6.1: Experimental parameters used throughout the preparation of the cloud.

N T n ρ

µK atoms/cm3

Loading 3×1010 2000 1.8×1010 4.6×10−9

C-MOT 1.8×1010 2000 1.7×1011 4.2×10−8

Molasses 1.65×1010 25 8.1×1010 1.5×10−5

Quadrupole 3.8×109 55 1.8×1011 1×10−5

Table 6.2: Final resume table for the cloud preparation up to this point. N is the

atom number, n is the peak density and ρ is the phase space density.

The lifetime in the MOT chamber is only 4 s. The lifetime in the science chamber,

instead, can reach 80 s. The lifetime in the intermediate region remains of the order

of a few seconds up to the science chamber’s pumping region. The results of the

lifetime measurement are presented in Fig.6.7. It is interesting to notice that the

lifetime increases significantly at about 200 mm from the 3D-MOT chamber and

then lowers again. In this position, a vacuum valve determines a larger distance

of the atomic sample from the apparatus walls. The increase in lifetime cannot

be explained just by a lower background pressure, since the lifetime decreases in

both directions towards the vacuum pumps, while is reasonable that the pressure
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Figure 6.7: Measured value of the lifetime τ as a function of the trap position

x (black squares). On the top a cut view of the inside of the vacuum system is

presented.

would decrease closer to the pumps. We do not have a clear explanation for this

observation. The preparation of the cloud in the MOT chamber takes about 400 ms,

in order for the compression ramp to be adiabatic. The losses during preparation

are about 13 %. By interpolating the measured lifetime and estimating the losses

during the movement of the cloud as

∆N

N
=

∫ tf

0

dt

τ(x(t))
, (6.10)

we get an overall additional loss of 32 % . Where x(t) is the time trajectory of the
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moving cart. In total, the loss due to lifetime amounts to 41 % of the initial atom

number. The number of atoms measured in the last chamber is, however, only 21 %

of the initial atom number. An additional loss of about 50 % can be explained by

the cloud passing, somewhere during the transport, very close to an obstacle (one

of the vacuum system’s walls). Given the magnetic gradient in the trap and the

temperature of the cloud, such a loss would be consistent with an obstacle at a

distance of 1.5 mm from the center of the trap. Since the atoms lost by such an

occurrence are the most energetic ones, the atomic loss can determine cooling after

thermalization of the cloud.

6.4 Dipole trap loading from magnetic trap

Once in the final cell, the cloud gets compressed even more to the maximum gradient

of about 276 G/cm. The measured cloud parameters at this point are N=8×108,

T=250 µK, n=4×1011 atoms/cm3, ρ=2.3×10−6. Due to the high temperature, some

evaporative cooling due to the compression and the finite depth of the state can be

responsible for additional losses (truncation parameter η=6).

For the main dipole trap laser, we used a multimode 100 W IPG laser, while the

dimple trap was obtained from a single mode beam derived from a 10 W Nufern

fiber amplifier (see Sec. 4.12). The main dipole trap laser (horizontal) has a waist

W0=25 µm and its power is P=30 W. Its depth is therefore 1.4 mK. The vertical

dimple laser has a waist of 70 µm and its power is 200 mW, giving additional

3.5 µK. The truncation parameter is only determined by the main dipole trap along

the horizontal direction, since the losses are mainly along gravity. Collisions are

crucial for the loading of the dipole trap. We decided to employ a very deep trap, in

order for the mean energy of the atoms to increase once they fall inside the dipole.

This, in turn, increases the collision rate and keeps the atomic energy higher than
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Figure 6.8: Absorption image of the cloud in presence of both magnetic and optical

trapping. The absorption signal increases at the position of the dipole trap due to

atomic accumulation into it. The imaging is performed on the plane orthogonal to

the dipole trap beam.

the Ramsauer-Tawnsend minimum. We ramp up the dipole trap lasers to full power

in 1 s and we wait in the combined magnetic and dipole trap for additional 2 s, to

give the time to the cloud to thermalize and accumulate in the deep dipole trap. We

then switch off the quadrupole trap abruptly and collect the remaining atoms in the

dipole trap. We do not perform neither RF evaporative cooling in the quadrupole

nor adiabatic decompression of the trap, since the collision rate is too low in the

magnetic trap to determine an efficient evaporation. We estimate a collision rate at

the center of about 38 Hz but, due to the Ramsauer-Townsend minimum, the rate is

energy-dependent and reaches almost to zero in the tails of the thermal distribution.

Evaporative cooling requires redistribution of atoms at different energies in order

to be efficient and is, therefore, affected by the lack of collisions at higher energies.

The cloud parameters, just after switching off the magnetic field, are: N=1.4×107,

T=220 µK, n=5.1×1013 atoms/cm3 and ρ=1.4×10−4. We ascribe the increase in

phase space density to the dimple effect and to plain evaporation of the hot part of
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the cloud at the release of the magnetic trap.

6.4.1 Light induced losses

when we use high intensity in the trapping beams, we experience severe loss rates

for atoms in the dipole trap. Due to the main dipole trap laser’s large spectrum,

these losses are likely to come from photo-association processes involving two atoms

and two photons. The two free atoms are associated into a molecular state via a

Raman transition. In this process, the binding energy of the molecule gets converted

into kinetic energy and the molecule itself is lost from the trap. In Fig.6.9 I report

the measured lifetime of the atomic sample in the dipole trap, as a function of the

trapping beam power.

The photo-association process involves 2 photons and two atoms. The time

constant τ is therefore proportional to (nP 2)−1. Since the trapping frequencies

are proportional to
√
P and n0 ∝ 1

ω3 , the dependence of τ on P is expected to

be τ ∝ P−3.5, in agreement with the results of the fit. As we see from the data,

the lifetime increases very rapidly by decreasing the power. Therefore this kind of

losses will be negligible after the first part of the evaporative cooling. These losses

are important, however, during the loading of the dipole trap from the magnetic

trap. At this stage, the incoming rate of atoms into the dipole trap (see Fig.6.8 for

an image of the density distribution) is small due to the low collision rate in the

magnetic trap. Once the atoms are in the dipole, they are rapidly lost due to the

short lifetime. This is the main limitation to the number of atoms captured in the

dipole trap. To overcome this limitation a single mode high power laser beam needs

to be implemented.
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Figure 6.9: Measured value of the lifetime τ as a function of the laser power (black

squares). The red line is a fit to the function τ=a+ bP c, the best fitting value of c

is -3.7±0.2

6.4.2 Feshbach resonances and field calibration

An accurate knowledge of the magnetic field at the position of the atomic sample is

required. This is necessary to know the exact positions of the Feshbach resonances

and therefore to have a good estimation of the scattering length. The absolute value

of the resonances and their characteristics are taken from[57] (see Fig.6.10). We

calibrated the magnetic field by inducing RF transitions between the F=1, mF=-1

and the F=1, mF=0 hyperfine states and comparing the resonance frequencies to

the Breit-Rabi formula. The measurements were done at magnetic fields for which

the BEC in the mF=0 state is unstable, so that the signal was actually atom losses
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Figure 6.10: Value of the scattering length versus magnetic field for collisions be-

tween two atoms in the F=1, mF=-1 state. Two Feshbach resonances are visible.

Evaporative cooling in the dipole trap is performed close to the low field one around

45 G.

from the initial cloud. The objective of the calibration was to obtain the conversion

factor to go from the applied current to the magnetic coils, to the generated magnetic

field at the position of the atoms. This factor is found to be (12.62±0.03) G/A. The

calibration is consistent with zero field at zero current within 100 mG.

6.5 All-optical evaporation of the atomic sample

Once the atoms are trapped in a purely optical potential, the scattering length is

suddenly changed to 75 a0 and the power in the main dipole trap beam is slowly

reduced in order to perform evaporative cooling. The optimization of the evapora-

tion ramp is performed by splitting the ramp in linear pieces. Each piece reduces

the power by a factor 2 and the duration of each of them is optimized in order to
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Figure 6.11: Sample parameters versus time during the evaporation ramp.

maximize the evaporation efficiency at each step. The resulting ramp, as well as

the behavior of the main experimental parameters, is presented in Fig.6.11. The

evaporation rate at the beginning is faster in order to avoid the photo-association

losses, It slows down at intermediate times, and it speeds up again at the end thanks

to the trapping frequency increase caused by the dimple. The effect of the dimple

is apparent in the sudden increase of the density in the last two stages of the ramp.

In the initial and final stages, the efficiency is reduced due to losses caused by

photo-association processes and by three-body processes, respectively.

Finally, Fig.6.12 gives the achieved phase space density versus the number of

atoms. The evaporative cooling efficiency is directly related to the slope of the graph.

We clearly see the effect of the initial and final losses on the initial and final efficiency.

The efficiency of the evaporation as a whole is 2. In the intermediate section, the
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Figure 6.12: Phase space density versus number of atoms during the evaporation.

maximum achieved efficiency is around 3.4. At the end of the evaporative cooling we

get a pure BEC of 1.5×105 atoms. This atom number is of the same order as what

is realized by sympathetic cooling methods for 39K. The whole sequence requires

20 s however, in comparison to the 60 s required in the other case.

6.6 A tunable Bose-Einstein condensate

We measured the condensate parameters by fitting absorption images like the ones in

Fig.6.13. In case of images like the one on the lower left, we employed a bimodal fit by

the sum of a Bose-enhanced thermal distribution plus a Thomas-Fermi distribution.

n(x, y) =
Nth

2πζ(3)σxσy
g2

(
e
− (x−x0)

2

2σ2
x

− (y−y0)
2

2σ2
y

)
+

+
5N0

2πRxRy

(
1−

(
x

Rx

)2

−
(
y

Ry

)2
)3/2

θ

(
1−

(
x

Rx

)2

−
(
y

Ry

)2
)

(6.11)
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Figure 6.13: Absorption images and the corresponding atomic density profiles of

the thermal cloud (upper left), the bimodal cloud (lower left) and of the pure BEC

(right).

in which ζ is the Riemann zeta function, g2(x) =
∑∞

1
xi

i2
, and θ is the Heaviside theta

function. In cases like the one on the top left (purely thermal), or the one on the right

(purely condense), the fit was was done by comparing the data with only one of the

two functions. From the fit we infer the values of the atomic parameters: Nth (N0)

is the number of thermal (condensed) atoms, σx,y are the e−1/2 sizes of the thermal

cloud, and Rx,y are the Thomas-Fermi radii of the condensate. If the image is taken

after a long time-of-flight t, such that the thermal size is much larger than the in-

trap size, the measurement of the σs provides access to the system temperature by

σ2/t2 = kBT/m. In Fig.6.14 is reported a measurement of the condensed fraction

(N0/Nth) of the sample versus temperature. Absorption images are acquired at

various evaporation stages. From a single picture we get the condensed fraction as
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well as the temperature.
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Figure 6.14: Condensed fraction as a function of temperature. The temperature

is measured by the fit of the thermal part after time-of-flight. The solid line is

the theoretical curve for a critical temperature of 750 nK. For this measurement

the number of atoms in the pure condensate was 5×104. The lowest measured

temperature was around 300 nK, further evaporation resulted in too low signal on

the thermal fraction to get a reliable temperature measuremet.

The critical temperature is extracted from the temperature at which N0 > 0. A

fitting function of the form (1− (T/Tc)
3) is also reported on the graph for compari-

son. The fitting function dependence on T is actually (1− αT 2), since the data are

taken in different evaporation stages. Because of this, the trapping frequencies are

not constant. The evaporation is performed by reducing the power in only one of the

trapping beams. This changes two of the three trapping frequencies, proportionally

to P 1/2. The critical temperature kBTc = 0.94~ωN1/3 is linear in the average trap-

ping frequency ω. Therefore the critical temperature is proportional to the trapping

beam power to the power 1/3 (Tc ∝ P 1/3). The trap depth U0 is proportional to

the power. Since the evaporation is performed with a fixed truncation parameter
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η, this means that P ∝ T . This, finally, implies that Tc ∝ T 1/3 during the ramp.

From this considerations follows the choice of the fitting function. The measured

Tc is an indication of the critical temperature at the evaporation stage at which the

transition takes place. Due to the progressive reduction of the trapping frequency,

the critical temperature decreases, further evaporating the sample1.

A first test of the interaction tuning on our system was the measurement of theK3

coefficient for three-body losses (See Sec.2.2), across the two Feshbach resonances

of Fig.6.10. The results are presented in Fig.6.15. To get the K3 coefficient we

measured the time evolution of the number of atoms in the trap for different magnetic

fields. We compared the measurements with the law[58]:

N(t) =
N0

(1 + AN
4/5
0 K3t/a6/5)4/5

, (6.12)

which is valid for an interacting condensate. A is given by A = 7 × 10−4
(
ωm
~

)12/5
.

In absence of Efimov physics[59, 60] the K3 coefficient scales, close to the Feshabch

resonance, as a4, while it reaches a background value far from resonance. I also

report atom losses caused by a special Feshbach resonance of a mixed channel nature.

These are the red data in Fig.6.15. Recently, experimental evidences for a universal

behavior of Efimov-physics have been reported by many groups[60]. 39K represents

an exception in this respect. We are performing more refined measurements of K3

to investigate the possible violation of universal behavior for the Efimov three-body

physics in potassium.

1in principle, also the progressive loss of atoms from the trap can modify the critical tempera-

ture, the dependence is anyway much weaker and the losses are not substantial
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Figure 6.15: Measured K3 coefficient for three-body losses across two Feshbach

resonances in the F=1, mF=-1 atomic state (black squares). Measured atomic

losses in correspondence of a mixed resonance (red dots). The resonance is mixed

in the sense that the entrance collisional channel is s-wave, while the output one is

p-wave. The solid line is the expected behavior like K3 ∝ a4 of the K3 coefficient

in absence of Efimov effects close to resonance. Far from resonance, K3 reaches

a background value of about 10−28 cm6/s. is worth noticing that the scattering

length does not go lower than 10 a0 in between the resonances, therefore the true

background value is probably not reached.
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Chapter 7

Towards quantum interferometry

In this chapter I summarize the design of a few key components of the future

interferometer based on entangled BECs. Beside the design of an ultra stable double-

well interferometer based on optical potentials, I have also performed a numerical

study of the coherence of a weakly interacting BEC in a double-well at finite temper-

ature. Finite temperature effects can be exploited in order to perform thermometry

in situations in which standard time-of-flight techniques are not reliable.

7.1 Thermal effects on the coherence of a BEC in

a double well

In this section I calculate the effect of the finite temperature on the BEC in the

double well. The coherence loss due to the finite temperature can give measurement

of the temperature of the sample even at very low temperatures, for which standard

time-of-flight is inefficient [61]. Moreover, in Ref.[18], the finite temperature was

the main limit to the obtainable squeezing. Is therefore interesting to investigate its

effect in details.
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7.1.1 Theoretical modeling

In the two mode approximation, the double well Bose-Hubbard Hamiltonian (BH)

is (see Sec.3.1):

HBH =
Ec

2
J2
z − 2Ej

N
Jx . (7.1)

By using Ej as the energy scale and defining γ = Ec/Ej, the Hamiltonian becomes:

HBH =
γ

2
J2
z − 2

N
Jx . (7.2)

we can write this on the base of the eigenstates of Jz, indicated as |j,m〉

HBH
m,m′ =

γ

2
m2δm,m′ − 1

N

(√
(j −m′ + 1)(j +m+ 1)δm′,m+1+

√
(j +m′ + 1)(j −m+ 1)δm′,m−1

)
.

(7.3)

Numerically diagonalizing this Hamiltonian we get its eigenvalues Ei and eigenstates

|i〉. With them we can compute thermal averages of any observable A as:

〈A〉 =
∑

i〈i|A|i〉e−
Ei
T

∑
i e

−Ei
T

(7.4)

in which the parameter T is equal to kBT/Ej. In the classical analogue of the above

model we consider two separated BECs in the two wells with number of atoms nl,

nr and phases φl, φr. The form of the classical Hamiltonian is:

HBH,class =
γ

2

n2

4
−
√
1− n2

N2
cosφ (7.5)

in which n is the difference in the number of atoms in the two wells n = nl − nr

and φ = φl − φr is the phase difference for the two BECs in the two wells. The

classical form of the Hamiltoninan can be obtained from the quantum one, recalling

the definition of the angular momentum operators (see Sec.3.1.1), and applying the

substitution aj =
√
nje

−iφj for j = l, r . The classical Hamiltonian can be used to

compute classical thermal averages as

〈A〉 =
∫ N

−N

∫ π

−π
Ae

−HBH,class

T dndφ
∫ N

−N

∫ π

−π
e

−HBH,class

T dndφ
(7.6)
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I will compare the results of the Bose-Hubbard Hamiltonian with the ones given by

the quantum phase model (QP)[62, 63], whose Hamiltonian is:

HQP = −γ
2

d2

dφ2
− cosφ . (7.7)

This Hamiltonian can be obtained in many ways from the Bose-Hubbard one. We

can start by linearizing the classical Hamiltonian HBH,class for n/N, φ/(2π) ≪ 1,

obtaining the classical version of the quantum phase

HQP,class =
γ

8
n2 − cosφ ≃ γ

8
n2 +

φ2

2
− 1 . (7.8)

This can be used, like HBH,class7.6, to get classical results. This Hamiltonian can

be approximated by the one of an harmonic oscillator in the variables n and φ.

Quantizing such an Hamiltonian one gets to HQP . The exact quantization rule can

be found by calculating the following commutator

[Jz, Jy] = −iJx (7.9)
[
n

2
,
N

2
sinφ

]
= −iN

2
cosφ , (7.10)

where, in the second line, I made use of n/N ≪ 1. Taking the first order in φ of

the above expression, one gets to the conclusion that, under these approximations,

n/2 and φ can be regarded as conjugated quantities ([n/2, φ] = −i). The proper

quantization of the classical Hamiltonian in the phase space consists, therefore, in

n/2 → −i d
dφ
. The quantum phase Hamiltonian HQP can be discretized on the phase

space and diagonalized to provide thermal averages of the form 7.4.

The observable I want to compute is the coherence factor α . This represents the

averaged contrast of the interference fringes obtained by releasing the BEC from the

trap and letting it interfere after time-of-flight (the average is intended over many

experimental realizations)[64]. The many-body wavefunction of the system, in the

coordinate basis, is (see Sec. 3.1)

Ψ̂(x) = ψl(x)al + ψr(x)ar = ψ

(
x− d

2

)
al + ψ

(
x+

d

2

)
ar , (7.11)
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where d is the distance between the wells. The last equality follows from the fact that

the two wells are perfectly symmetric. In momentum space the above expression

looks like

Ψ̂(p) = ψ(p)ale
−i pd

2 + ψ(p)are
i pd

2 . (7.12)

From this expression we can compute the density in momentum space n(p). This

quantity is experimentally accessible by a measurement of the spatial distribution

of the atomic cloud after time-of-flight

n(p) =
〈
Ψ̂+(p)Ψ̂(p)

〉
= |ψ(p)|2 〈N + 2 cos (pd)Jx − 2 sin (pd)Jy〉 . (7.13)

We can always work with 〈Jy〉=0, by redefinition of the condensate phase origin.

The above expression describes an interference pattern given by 2 cos (pd) 〈Jx〉. The

contrast of such pattern is α =
〈
2Jx
N

〉
. By employing the same conversion rules used

to find the Hamiltonians of the different models and their classical analogues, the

following expressions for α are found:

αBH =

〈
2Jx
N

〉
(7.14)

αBH,class =

〈√
1− n2

N2
cosφ

〉
(7.15)

αQP = αQP,class = 〈cosφ〉 (7.16)

7.1.2 Parameter regions

Three parameters regions are distinguished. The first one is the Rabi regime, or

non-interacting regime, obtained when Ec ≪ Ej/N
2 or equivalently γ ≪ 1

N2 . In the

second regime, called Josephson regime 1 ≫ γ ≫ 1
N2 . Finally, in the Fock, or highly

interacting regime γ ≫ 1. The QP model is supposed to be in agreement with the

BH model in the Josephson and Fock regimes. Deviations are expected, instead,

in the Rabi regime. The Rabi regime can be reached experimentally by employing
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Feshbach resonances to suppress interactions. It is therefore very interesting for our

purposes of realizing an interferometer with non-interacting atoms.

7.1.3 Classical results

One can easily compute the classical formulas for the thermal average of the coher-

ence parameter α. Explicitly, for the QP model

αQP,class =

∫
e

cosφ
T cosφdφ
∫
e

cosφ
T dφ

, (7.17)

while, for the BH model,

αBH,class =

∫ √
1− n2

N2 e
− γn2

8T

∫
cosφe

√

1− n2

N2 cosφ

T dndφ

∫
e−

γn2

8T

∫
e

√

1− n2

N2 cosφ

T dndφ

. (7.18)

It is easy to see that, in the limit γ ≫ 8T/N2, equation 7.18 reduces to 7.17,

since the term e−
γn2

8T becomes proportional to the Dirac delta δ(n). Interestingly,

the limit of validity of the QP model depends on T . For certain parameters, the

system can obey the QP model for low T , but can show deviations for higher T 1.

The numerical calculation of the two equations gives the result of picture 7.1. We

can see that the QP result represents an upper bound to the coherence of the system

as calculated from the BH model. We can have some insight by considering small

fluctuations of the parameters n and φ around zero

α =

〈√
1− n2

N2
cosφ

〉
≈ 1− δn2

2N2
− δφ2

2
. (7.19)

The QP model neglects the thermal fluctuations on the atom number, but account

properly for the ones in the phase. We can conclude that, in the regime in which

quantum fluctuations are not dominant (low interactions), the increase of the inter-

action strength can counterbalance thermal fluctuations and increase coherence.

1strictly speaking, in any situation the system will show deviations from 7.17 for large enough T .

Anyway, in practical experimental conditions, the two-mode approximation will be inappropriate

to describe the system when T becomes too large
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Figure 7.1: Numerical calculation of the classical coherence factor. The black line is

the non interacting result. Red dashed curve is the classical QP model result. The

rest of the curves are classical BH results for various γs: purple curve is γ = 3/N2,

blue is γ = 10/N2, green is γ = 30/N2 and orange γ = 100/N2. Even though this

values of γ are in the Josephsson regime at T=0, the QP shows deviations from the

BH result at non zero temperature.

7.1.4 Quantum results

I numerically diagonalized the BH Hamiltonian for N=100 and compute the coher-

ence factor α by the formula 7.4. I did the same for the QP model, by discretizing

the phase space on a 1000 points grid. The time consumption was similar for the

two models and of the order of a minute on a standard laptop. The results showed

agreement with the correspondent classical results for small interactions. For high

interactions, the coherence is lost due to the suppression of number fluctuations

(Fig. 7.2). In the high interactions regime, the QP model shows nice agreement

with the BH model. We see from Fig.7.2 that, for high interactions, the effect of
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Figure 7.2: Numerical calculation of the quantum coherence factor. The black

dashed line is the classical result (in the regime of γs considered here QP and BH

classical results agrees). Solid curves refers to the quantum BH result, while dashed

ones to the quantum QP. The green curves are calculated for γ = 1/3, the blue

curves for γ = 1 and the red ones for γ = 3.

quantum fluctuations reduces the coherence of the system. By combining the classi-

cal result of the previous section (which turn out to be valid for low interactions) to

the quantum results, we see that, at non zero T , the effect of interactions initially

increases the coherence factor, for low values of γ, while it decreases it for higher

values. This leads to the appearance of a ”coherence maximum”, that is shown in

Fig. 7.3.

The reported calculations reveals the interplay of thermal and quantum fluctu-

ations in determining the coherence of a BEC in a double well. In [61] the authors

uses the QP model to determine the temperature of the system by measuring the

phase fluctuations in the Josephson regime. Corrections to the QP model might be

125



Figure 7.3: Coherence factor as a function of γ, in log scale, calculated using the four

models described in the text for T=0.01 (up left) T=0.1 (up right) T=1 (low left) and

T=3 (low right). Classical QP result (orange), QP numerical result (red), classical

BH (green) and BH numerical result (blue). We see that, for low temperatures

the two quantum models agrees with each other as do the two classical models.

Quantum fluctuations reduces the quantum coherence with respect to the classical

result when approaching the Fock regime. Already for T=0.1, corrections to the

QP model are significant in the Rabi regime. For higher temperatures a coherence

maximum developes.
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important to determine the exact temperature. As it is shown in Fig. 7.3, those cor-

rections are, in fact, important in the low interaction part of the Josephson regime

and for kBT ≈ Ej. This is exactly the temperature regime in which thermometry

can be performed. The appearance of the coherence maximum has an analogy to

the phase diagram of bosons on a lattice in the presence of disorder and interac-

tions. In that case the presence of disorder can easily destroy the coherence of the

non-interacting BEC by causing Anderson localization. Adding moderate interac-

tion the system is brought back into the BEC phase, gaining coherence. Increasing

further the interaction strength, the system ends up in the Mott insulator incoherent

regime. Temperature in the double well can play the role of disorder in the lattice.

7.2 Optical double well design

The design and feasibility check of the double-well trap was carried out during the

first year of my PhD. The main requirements, to be able to perform high precision,

entanglement-assisted, measurements, concerns the stability of the trap. The use

of an optical lattice was already successful in the demonstration of entanglement

in a double well in[18]. An optical lattice scheme is very robust against intensity

fluctuations of the lattice beams, since this kind of fluctuations are common-mode

for the double well. The use of an extra laser, as in [18], for the selection of two

sites among the others, introduces an extra instability due to pointing instability

and can determine noise on the double well potential.

Our idea is to improve on such scheme by the use of a superlattice configuration.

Two lasers, one with a wavelength twice the other, will create such superlattice,

which can be visualized as a lattice of equally spaced double wells (see Fig.7.4).

The parameters of the wells can be tuned acting on the individual lasers power and

on their frequency difference. By crossing the bichromatic beams at a small angle,
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Figure 7.4: Optical potential originating from the superlattice configuration de-

scribed in the text. In each primary site a double well interferometer can be realized.

The spacing between the wells depends on the angle under which the lattice lasers

are crossing.

the distance between the wells can be magnified, allowing for single-site resolved

imaging. Such a simple idea presents many technical difficulties. My analysis was a

first step towards their identification.

The first parameter to choose is the laser wavelength to use. Differently from

the recent realizations of superlattices[65, 66], one of the main concern is about the

lifetime of the sample to be large. For this reason, the two employed wavelength

have both to be far off-resonance from the atomic transition. An option is to use

a Yb laser at 1064 nm and double it to 532 nm: the first laser is red-detuned and

the second one blue-detuned with respect to the D2 line of potassium. The atomic

polarizability and the scattering rate are similar for the two wavelengths. An even

better option would be a CO2 laser around 10µm and its frequency doubled at 5µm
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region. The need for special optics for the vacuum windows and the easier operation

and reliability of the Yb lasers, brought the choice on the first option. A Coherent

Mephisto laser with a custom doubling stage is being prepared in the laboratory at

this moment.

The second choice was on the angle between the beams, for this influences the

tunneling rate and the trapping frequencies, effectively acting on the time scale

of the experiment. If the beams cross with an angle θ, the spacing between the

wells is magnified by a factor a = 1/ sin(θ/2). The trapping frequency on the

shallower direction is reduced by a factor a−2. This implies that, if we want to

significantly magnify the separation, we will have to work with a very low trapping

frequency. Such low trapping frequency will set a limit on the time variation of the

trap parameters, in order not to excite radial modes. For this reason we decided to

use an extra trapping beam, aligned along the lattice direction, in order to increase

the radial trapping frequencies. The extra trapping beam contributes to the energy

along the lattice only via a constant term plus its longitudinal trapping. This is

anyway small compared to the radial trapping of the lattice beams. Given this, its

intensity noise will be reasonably common mode.

An angle of around 0.1 rad (5◦) will result in double wells with a separation of

5 µm, spaced by 10 µm. Such large spacing also brings down the power requirement

for the realization of negligible tunneling rates. The extra trapping laser for the

radial trapping can be, in principle, of a different wavelength with respect to the

lattice lasers. If for such a laser a wavelength of 1064 nm is used, and we want

to achieve reasonable trapping frequencies (50-100 Hz), the scattering rate of such

a beam will be around 10 mHz. This will constitute the main decoherence source

induced by the trapping beams.

We require that, during the time of the interferometric sequence τ , not even one

atom undergoes an out of resonance transition. This will, in fact, spoil the phase co-
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herence of an entangled sample. We can rephrase the condition in Nτ ≪1/(10 mHz)

2. For a 1 s interferometer, this condition sets the maximum atom number in each

interferometer to around 100. If we have a BEC with 105 atoms, the best strat-

egy consists of splitting it into 103 double wells, each containing 100 atoms. This

way, the entanglement will be preserved in most of the double wells in each exper-

imental realization. Algorithms to reject the eventual incoherent outcomes of the

interferometer will be useful to sort them out. Otherwise, the optimal squeezing

level can be chosen for which, given the experimentally determined level of decoher-

ence, the final sensitivity is maximized. I did not consider these possibilities since

they are very sensitive to the final experimental situation. The number of realizable

double wells is anyway limited by the trapping beams power. The operation of such

a high number of interferometers in parallel would also allow for noise cancellation

and for large statistics with a single experimental realization. The main problem

will be the dishomogeneity of the double well parameters along the lattice due to

the beam profile.

In order to increase the sustainable atom number in each interferometer, a CO2

laser for the radial trapping beam can be implemented, substantially reducing its

decoherence contribution to around 1 mHz. This would allow for 1000 atoms given

the same time τ=1 s . Such an upgrade would anyway require an analogue one, for

the vacuum lifetime to reach 103 s. Background collisional losses, as one-body pro-

cesses, are, in fact, no different from out of resonance scattering, for what concerns

the coherence of the sample.

The beam waist for the lattice lasers has to be as large as possible, given the

available power, in order to increase homogeneity of the lattice itself. A waist of

2This condition is the one that we need to fulfill to preserve the coherence of a maximally

entangled state, that would give a phase resolution at the Heisemberg limit. The use of different

squeezed states relaxes such a request allowing for more atoms in each interferometer or longer

phase accumulation times.
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around 0.5 mm is feasible given the actual setup, which provides 3 W at 532 nm

and 10 W at 1064 nm. The limit being the green laser power. Such a waist sets

to around 50 the number of interferometers that can be operated in parallel with

similar double well parameters.

Another important source of decoherence comes from three-body losses. The rate

of such losses depends on the density. The same requirement of not even one event

during the experiment translates into Nτ ≪ 1/(N2A). A is a parameter containing

information about the K3 coefficient for the losses and the trapping frequencies. Its

value is given by

A =
8K3m

3ν3√
27~3

, (7.20)

in which ν = ω/(2π) is the average trapping frequency. Substituting the minimum

K3=1.3×10−41 m6/s, realized on the zero crossing of the Feshbach resonance, the

coherence requirement reads ν ≪6.2×104/(Nτ 1/3) Hz. Which limits the average

trapping frequency to 600(60) Hz for N=100(1000) and τ=1s.

It seems feasible, therefore, to implement, in the existing setup, an interferometer

that operates at the Heisemberg limit for 100 atoms in each of the double wells.

Higher atom numbers can be used depending on the achieved squeezing level. En-

vironmental noise, coming from spurious magnetic fields or beams vibrations, will

be seen as phase noise and, therefore, have to be minimized. The possibility to per-

form differential measurements, however, can allow us to reduce those effects and

recognize the common mode noise from the fundamental one.

7.3 Detection issues and possible strategies

Efficient detection of the atoms remains the most complicated point to address. I will

only briefly discuss the main problems and I will give some simple ideas on how we

are counting to solve them. Anyway this is still work in progress. The fundamental
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problem originates from the fact that photon counting is exploited to count the

atoms themselves. The shot noise in the photon’s detection can dominate over the

atomic noise if squeezing is employed[67]. The photon’s noise is shot noise limited

and thus can be reduced if every atom scatters many photons. Let us consider

a certain number of atoms N , that we want to detect with an error of ±1 atom

(Heisemberg limit). If each atom scatters a certain number of photons Np, which

are detected with an efficiency β, the total signal from the cloud on the camera

will be proportional to βNNp, with shot noise fluctuations given by:
√
βNNp. If

those fluctuations are lower than the signal of a single atom, βNp, the requirement

is fulfilled. This implies βNp > N . The number of detected photons, therefore,

has to be higher than the number of atoms. A reasonable collection efficiency for

fluorescence imaging can range around 10 %, by considering the collection angle,

the ccd camera quantum efficiency, and reflections on the optical elements. the

efficiency can be as high as 80 % in absorption. This means that, if we want to be

Heisemberg limited for a cloud of 1000 atoms, each of them has to scatter at least

10000 photons in fluorescence or 1250 in absorption. In standard flourescence or

absorption imaging such a high number of scattered photons is not sustainable, due

to recoil heating of the cloud.

Recently developed fluorescence techniques for the detection of single atoms in

optical lattices[7] can provide such high number of scattered photons. The technique

employed are based on the fact that atoms are stored in an extremely confining op-

tical lattice (trap depth of thousands of recoil energies) and continuously cooled

by laser cooling during the signal acquisition. The acquired signal is nothing but

the scattered cooling light. In such techniques usually single site resolution is also

achieved, which is however not necessary in our case. The main problem this ap-

proach presents is the occurrence of atomic recombinations whenever two atoms are

found to occupy the same lattice site. In order to avoid such occurrence our idea
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is to load a very diluted atomic sample, into the imaging lattice, once the interfer-

ometric sequence is performed. Dilution can be realized by increasing interaction

energy and decreasing or even releasing radial trapping before loading. A dipole

trap with wavelength around 750 nm can be used to create the imaging lattice3. If

a cloud, containing 1000 atoms, is made into an average size of 10 µm, the average

number of atoms per site would be 5×10−2. Such a scheme was never attempted for

potassium and requires a substantial complication of the experimental apparatus.

Anyway it seems, in principle, feasible. In the case in which also single site resolu-

tion for the imaging lattice is available, the estimation for the number of scattered

photons required relaxes. The only requirement is that the signal from each atom

has to be substantially larger than the background noise on the ccd camera. The

probability of atom losses has be lower than 1/N in both cases. This is probably

the main limiting factor. For example, if the imaging time is 1 s, as in[7], the

lifetime of the sample needs to be N times larger than the imaging time, for not

even 1 atom to be lost during detection. The detection time will be determined by

the achievable scattering rate of the imaging photons and by the background noise

level. Due to the peculiarity of laser cooling in potassium, the performances of laser

cooling in a sample of atoms trapped in an optical lattice are hardly predictable and

experimental tests needs to be carried out in this direction.

3This is just one possible choice. Its advantages are the small lattice spacing and the large

polarizability, which reduces the required power to realize large trap depths. The problem is,

anyway, the large heating determined by out-of-resonance scattering. This can increase the atomic

temperature if the heating rate becomes comparable to the one given by the cooling beams. The

cooling parameters are hard to predict at the moment given the peculiarity of laser cooling for

potassium.
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Chapter 8

Conclusions

In conclusion, in this thesis I described the first steps towards quantum interferometry

with tunable BECs. They consisted in the realization of an apparatus for the pro-

duction of tunable BECs of 39K in single species operation, with all the related

development of the laser and evaporative cooling processes that this requires, and in

the first numerical simulations and design of a few key ingredients of the future de-

vice. In particular, during the realization of the experiment, we demonstrated for the

first time sub-Doppler laser cooling in this system which is one of the key ingredients

for the production of the BEC and opens the way for many interesting applications

with tunable 39K. For example, interferometry with thermal samples, as well as the

imaging technique described in the last section, both requires efficient sub-Doppler

cooling to be operated. The obtainment of condensation of 39K in single species

operation reduces the experimental effort necessary to operate with tunable BECs

and allows for more stable and reliable systems to be realized. Note that, the new

apparatus will allow for many different applications besides interferometry, ranging

from Efimov physics to Anderson localization. The various simulations reported in

the last part of this thesis, regarding finite temperature effects and the design of

an ultra stable experimental setup can now be exploited for the experimental real-
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ization of an atom interferometer based on tunable BECs in double well potentials

that will be able to operate below the shot-noise limit, possibly approaching the

Heisemberg limit.
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