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Introduction

The study of fermionic many-body systems is crucial in the understanding of many phenomena, as
fermions are the fundamental component of matter. The behaviour of electrons in solid state system
or nucleons in atomic nuclei are some examples. However, as the number of particle in the system
increases, an exact mathematical description is too complicated. Also numerical simulations become
not trivial. In order to understand the behaviour of these systems, Feynman proposed the use of
controllable quantum systems as quantum simulators [1]. The high degree of control and manipulation
obtained in the last decades on atomic samples makes ultracold quantum gases an ideal candidate
for this realization. In particular strongly interacting gases of ultracold fermionic atoms are perfect
platforms for the study the many-body phenomena like superfluidity. Moreover, interactions in this
systems can be tuned by using Feshbach resonances allwing to explore the BEC-BCS crossover. In
this way, it is possible to explore different regimes of superfluidity. Superfluids are described by an
order parameter, ψ(r, t) = |ψ(r, t)|eiφ(r,t), consisting in a macroscopic wave function of the system [2].
In particular |ψ(r, t)|2 is associated with the density of superfluid fraction, while the phase φ(r, t) is
directly connected to its velocity: v(r, t) = h̄

m∇φ(r, t). Superfluids are characterized by no dissipative
flow up to a critical velocity vc [3]. In the case of charged particles, this corresponds to the critical
current in superconductivity in solid state physics. [4]. Superfluidity can also be observed in normal
mesoscopic systems [5, 6]. The realization of these currents leads to application, like the SQUIDs
which is able to measure magnetic field with a high degree of precision [7]. The existence of persistent
currents is the hallmark of the superfluid state. For superconducting rings pierced by a magnetic field,
persistent currents arise as the new ground state of the system and both the Aharonov-Bohm effect
[8], and a quantization of the magnetic flux occur [9].

The high degree of control and manipulation available on ultracold quantum gases, allows for
the realization of superfluid system with arbitrary geometry. In particular, it is possible to excite
persistent currents in also a ring-shaped superfluid. In neutral atomic superfluids systems in a ring,
the continuity of the order parameter around the loop makes possible only quantized circulation states.
The stability and decay of supercurrents have been studied in superfluid Helium and in superfluid
bosonic rings [11, 12]. Only, recently, persistent currents have been observedalso in atomic superfluids
[48]. However the decay mechanism is not fully understood yet.

In our system, we create homogeneous fermionic superfluid in tunable rings, that allow to study
superfluid system with periodically boundary conditions. We control the phase of the system exciting
persistent currents via a phase imprinting method in all the BEC-BCS crossover. We detect the state
of the system by interferometric measurements. In the contest of this thesis, I study the instabilities
of persistent current in a ring superfluid in the presence of an obstacle, whose size is of the order
of the correlation length. In particular, we are able to choose the number, the dimension and the
intensity of the obstacles with a high degree of freedom, engineering defect in a controlled way in the
system, in opposition to solid state systems, in which the presence of impurity is not controllable.
Decay of persistent currents has been observed above a critical circulation. We observe the current to
decay through emission of quantized vortices. Furthermore, we exploit the possibility of tuning the
potential shape to study an even more exotic configuration, as the one of two counter propagating
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6 INTRODUCTION

persistent currents in superfluids obtained by tailoring two rings separated by a barrier on the atomic
sample. Under some condition, a vortex crystal ring at the interference between the two superfluids
arises from the merging of the two superfluids. This configuration evolves by a dynamical instability
related to the Kelvin-Helmholtz instability in classical fluids.
My work thesis is organized as following:

• In Chapter 1, I present some theoretical background of strongly correleted fermi superfluids
underling the study I performed during my thesis, with particular attention of the effects of
interactions. I will show how it is possible to manipulate interactions in atomic gases via Fesh-
bach resonances by changing the magnetic field and how this gives the possibility to explore the
BEC-BCS crossover. Next, the main features of superfluidity are described. Then, I will show
how the Landau criterion predicts that superfluidity can occurs only below a critical velocity and
I will show how the macroscopic wave function description of the system gives rise to quantized
vortices and to the quantization of persistent current in a ring-shaped superfluid. Finally I will
present the basis of a dynamical instability that occurs in classical fluid: the Kelvin-Helmholtz
instability.

• In Chapter 2, I provide a description of the experimental method used in our system to realize
persistent current in a ring-shaped superfluid. In particular, in the first part I describe the
techniques used to reach a condensed Fermi gas. Subsequently I describe the high resolution
system used both for imaging the sample and for the creation of arbitrary optical potential with
a Digital Micromirror Device, that allows for the creation of ring-shaped superfluid samples.
Next I present the phase imprinting methods implemented for excite persistent currents states
in the sample and the interferometer method used in order to detect the state of the system. I
then present some analysis on the additional effects from the phase imprinting technique as the
creation of quantized vortices. Finally, I will show the effects of the geometry of the system on
the persistent currents in the sample.

• In Chapter 3, I present the results about the instability of persistent currents in a ring against
the presence of an obstacle. In the first part I concentrate on the stability of persistent currents
against the presence an obstacle acts on the sample. In the BEC and BCS regimes, a decay
is observed only for high velocity states of the system, above a critical velocity. Moreover,
differences between the regimes are highlighted. The UFG gas demonstrate to be the most
stable one. Moreover, the decay observed in the BCS regime respect to the UFG one, can
underline the presence of dissipative effects linked to the fermionic nature of the system, like
pair breaking mechanism. Then, I give an explanation of the microscopic mechanism underling
the dissipative process in term of quantized vortices nucleation.

• In Chapter 4, I present the realization of the double ring geometry, characterizing the potential
used for this purpose. Next, I describe the techniques for the excitation of counter propagating
persistent currents in this system. This will be useful in the understanding of the merging of
two counter-flowing condensed system. Due to the phase coherence of the system, the merging
can creates soliton structures or a regular array of quantized vortices that are unstable in time.
Finally I will present some preliminary results of the an analogous of the Kelvin-Helmholtz
instability.



Chapter 1

Basics on fermionic systems

In this chapter I present the theoretical frame necessary for understanding the experimental work
showed in the next chapters. In the first section I resume the main properties of a non-interacting
Fermi gas. In the second section I present the physics of interacting fermionic system, starting from
the scattering theory and showing how is possible to manipulate interactions between atoms using
Feshbach resonances, that allow us to realize the BEC-BCS Crossover. In the last section I present
the theoretical description of the Kelvin-Helmholtz instability as it occurs in classical fluids.

1.1 The non-interacting Fermi gas
Particle with half integer spin are known as fermions. The request of the antisymmetrazation on the
wave function for this particle prevents the occupation of the same quantum state by more than one
particle. This is the Pauli exclusion principle.

For a fermionic system, in the Gran Canonical ensemble the average occupation number 〈ni〉 of a
single state i1 with energy Ei is:

〈ni〉 = 1

e
Ei−µ
kBT + 1

, (1.1)

where µ is the chemical potential, kB the Boltzamnn constant and T the temperature. At T = 0K
this distribution shows the typical step-like behaviour . In this case 〈ni〉 = 1 for each state with energy
below the chemical potential and zero otherwise. The chemical potential at T = 0 defines the Fermi
Energy EF = µ(T = 0K). Distribution 1.1 can take a maximum value of 〈ni〉 = 1. This is consistent
with the Pauli Exclusion principle, for which two fermions cannot occupy the same state.

1.1.1 Atomic Fermi Gases in harmonic traps
The effects of Fermionic nature of particles become important when to the average distance between
particle a ' 1/ 3

√
n, where n is the density of the sample, is comparable to the typical spread of

a wavefunctions describing single particles. For a temperature T this is given by the De Broglie
wavelength

λ = h√
2πmkBT

, (1.2)

1the states considered and their corresponding energy Ei are respectively eigenstates and eigenvalues of the one-
particle Hamiltonian
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8 CHAPTER 1. BASICS ON FERMIONIC SYSTEMS

where h and kB are the Planck and the Boltzmann constants. As temperature is lowered, this quantity
increase. In experiments on ultracold quantum gases low temperatures are achieved and therefore the
effects of the quantum statistics of the atoms will be important.

In experiments, ultracold atoms are usually confined in a region of space using detuned lasers.
These are used to create a trapping confinement, that is approximately described by an harmonic
potential V (x) = 1

2mω
2x2. w is the trap frequency and m the atomic mass. Using a semiclassical

approach is possible to obtain the density distribution of a Fermi gas. From Eq. 1.1 we can write
the expected occupation number of a cell of volume h3 in the phase-space around the point (r,p) of
position r and momentum p (Thomas-Fermi approximation) [13]:

f(r,p) = 1

e

p2
2m+V (r)−µ

kBT + 1
. (1.3)

Therefore, the density distribution is given by:

n(r) =
∫

d3p
(2πh)3 f(r,p)→T→0

1
6π2

(
2m
h̄2

) 3
2

(µ− V (r)) 3
2 , (1.4)

where we have considered the limit of zero temperature.
For harmonic traps, V (r) = 1

2mω
2
xx

2 + 1
2mω

2
yy

2 + 1
2mω

2
zz

2. In this case, by integrating over the
real space of Eq. 1.4 is possible to obtain the Fermi Energy

EF = h̄(ωxωyωz)
1
3 (6N) 1

3 , (1.5)

where N is the atom number for each spin state, and the Thomas-Fermi radius in each direction is
defined as:

RTFx,y,z =
√

2EF
mω2

x,y,z

. (1.6)

This quantity represent the typical dimension of the atomic sample.
Eq. 1.5 describes the Fermi energy of the system. However it is possible to define a local Fermi

Energy ε(r) = EF −V (r) = h̄
2m (6π2n

1
3 (r)), that reduces to EF at r = 0, where the harmonic potential

vanishes. Moreover, combination of Eq. 1.5 and Eq. 1.6 shows that the dimension of the sample
depend on the atom numbers RTF ∼ 6

√
N . This is an effect of the Pauli principle, that makes atoms

occupy all the states up to the Fermi Energy and therefore make the sample increase his dimensions
for incraesing N .

1.2 Interactions in atomic Fermi Gas
Interactions play a fundamental role in the emergence of superfluidity. In the non interacting case the
ground state of the system is the Fermi Sea, in which atoms occupy all the state with energy below
EF ; in this case no superfluidity appears. In attractive fermionic system the formation of cooper
pairs allows the creation of a superfluid. On the other hand, pairs of fermionic particles can bound
together to form a molecula, in this case the pairs are bosons and the system can form a Bose Einstein
condensate (BEC). In 6Li the intensity and the sign of the interaction can be controlled by tuning an
external magnetic field via a Feshbach resonance, allowing thus to study strongly interacting system.
However is important to notice that collisions between indistinguishable fermions are suppressed by
the request of antisymmetrization of the wave function: collisions are allowed only in mixture of two
different species of fermions.
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In the study of Feshbach resonances in bosonic systems, strongly interacting regimes was always
observed through strong losses in the atoms number [14]. The cause of this behaviour is the increase
of the losses in the sample due to the 3-body collision. In Fermionic gases with two difference species,
three-body interactions are suppressed by the Pauli principle, allowing to study strongly interacting
condensate.

1.2.1 Scattering theory
At the low temperatures achieved in experiments on ultracold quantum gases, the equilibrium state of
the system is a crystal. The gas condition is only a metastable state and during collisions atoms can
recombine and create a solid. The dominant channel for this process is the three-body recombination,
that can be suppressed by lowering the density of the system. In this case interactions are dominated
by two-body collisions so that, although in a metastable configuration, the gas will reach kinetic
equilibrium long before a solid is created. Therefore experiment on ultracold quantum gas usually
satisfy the diluteness condition n|as|3 � 1, where as is a parameter I will define in this section
representing the intensity of the interactions.

In the center-of-mass frame, it is possible to reduce the two-body collision to a one-particle problem.
The corresponding Schrodinger equation is: [15]

− h̄
2

m
∇2ψ(r) + V (r)ψ(r) = Eψ(r), (1.7)

where M = m/2 is the reduced mass and V (r) is the interaction potential. In the case of vanishing
interactions, the solutions of Eq. 1.7 are plane waves ∼ eikr with k =

√
Em
h̄2 . The presence of an

interaction potential with finite range and no bound states modifies the solution. Far away from the
scattering potential the wave function ψ(r) can be expressed by the sum of the incident plane wave
and a scattered wave consisting in the atom exiting the collision that is described by a spherical wave:

ψ(r) ∼ eikr + f(k′,k)e
ikr

r
. (1.8)

Here f(k′,k) indicate the scattering amplitude. We will consider only the case of elastic collision,
for which the incident and the outgoing wave numbers, respectively k and k′ have the same modulus
|k| = |k′| = k
Starting from this wave function, it is possible to write the differential cross-section in term of the
scattering amplitude by the relation:

dσ

dΩ = |f(k,k′)|2. (1.9)

In the case of low energy scattering it is convenient to write the wave function in spherical armonic:
the expression in Eq.1.8 gets [16]:

ψ(r) = 1
2ikr

+∞∑
l=0

+l∑
m=−l

Ul,m(r)
r

Yl,m(θ, φ). (1.10)

The scattering potential between two 6Li atoms is mostly given by the Van der Walls interaction,
scaling like ∼ C6

r6 , at long distances, while atoms feel a strong repulsion when the distance between
them becomes very short. The interactions between the low magnetic moments arising from the spin
in negligible. Therefore collisions are described by an isotropic potential. In this case only the terms
with m = 0 in the sum of Eq. 1.10 will be different form 0 and is possible to write Eq. 1.8 as:

ψ(r) ∼ 1
2ikr

∞∑
l=0

(2l + 1)Pl(cos(θ))[(−1)l+1e−ikr + e2iδl(k)eikr]. (1.11)
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It’s important to notice that a similar expression can be written for plane wave eikr that we have in
the vanish potential case. This expression differs from the Eq. 1.11 only for the absence of the factors
e2iδl(k). Therefore the scattering phenomena is completely described by the phase shifts δ(l). The
total scattering section can be written as:

σ(k) =
∞∑
l=0

4π
k2 (2l + 1) sin2(δl(k)). (1.12)

The way we deal with the interaction problem is very useful for the low energy scattering. A
physical way to see this is the following: starting from the Schrodinger Equation 1.7 and using the
wave function as is written in 1.10 neglecting the m 6= 0 terms, we can arrive to the expression:(

− h̄
2

m
∂2
r + h̄2 l(l + 1)

mr2 + V (r).− E
)
Ul,0(r)
r

= 0 (1.13)

Solving this equation is possible to obtain Ul,0(r) and therefore the phase factors from their asimptotyc
limit. We can see this expression like a Schodinger equation with a effective potential Veff = h̄2 l(l+1)

mr2 +
V (r), that depend on l. For l 6= 0, Veff is characterized by a centrifugal barrier. This term repress
the l 6= 0 scattering in the low energy case.
Is possible to show that in the case of Van der Walls interaction the scaling law for low k of the phase
shifts is given by:

δl(k) ∼ k2l+1 (1.14)

The low temperatures reached by ultracold experiment allow to take into account the low momenta
limit k ∼ 0. In this case the s-wave scattering (corresponding to the l = 0 case) becomes predominant
respect to all the other partial waves. In this limit, it is possible to define the scattering length

as = − lim
k→0

tan(δs)
k

. (1.15)

This factor completely describe the interactions. The sign identify the type of interaction (as is positive
in the repulsive case, negative for the attractive one), while the modulus indicates the strength of the
interactions. Finally, the total cross section can be express in term of as, in the low k case we can
write:

σ = 4π
k2 sin2(a2

sk
2) (1.16)

In the case of indistinguishable fermions the Eq. 1.8 must be correct for the antisymmetrization
requirement. Following the same calculation, it is possible to obtain an equation similar to Eq. 1.12,
in which only the term with odd l survives. As a result, the s-wave scattering is repress. On the
other hand,as just seen, a low temperature l 6= 0 scattering are negligible due to the presence of the
centrifugal term in Eq. 1.13. The result is that in ultracold fermionic gases indistinguishable particles
do not interact between each other. Collisions in ultracold fermionic systems are allowed in mixture of
different atomic species or between two difference magnetic states of the same specie. It is important
to notice that in case of indistinguishable bosons we need to keep only the even terms in Eq. 1.12. In
this case atoms can collide even at low temperature.

1.2.2 Feshbach resonances
The scattering length defined in Eq. 1.15 depends on the shape and on the depth of the interaction
potential. Let’s Imagine to increase the depth of the potential. For the low energy scattering, as
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Figure 1.1: Underling mechanism of a Feshbach Resonance. Cause that Hamiltonian present non diagonal
terms in the total magnetic moment, atoms colliding in a magnetic configuration, called open channel, are
coupled to a different state (the close channel). Due to the different magnetic moment of the two state is
possible to tune the relative energy using a magnetic field B. When a bound state of the close channel equal
the energy of the free particle in the open channel the scattering length diverges, even if the coupling is weak.

diverges when a new bound state enters in the potential, namely when the interacting potential has
a bound state with energy near 0 [17]. Before the formation of this bound state, as is negative,
while become positive when the new bound state is created. This feature play a crucial role in the
manipulation of atom interactions, in the Feshbach resonances and in the realization of the BEC-BCS
crossover.

In the previous section we analyzed the scattering problem by a general point of view. In the
case of atom-atom interaction, the scattering potential depends on the internal states of the atoms.
If the magnetic configuration of the colliding atoms is well defined, what we have see in the previous
section fully describe the interactions. However, in the alkali atoms the Hamiltonian presents non
diagonal term in the total magnetic moment. This provides a coupling between two-particle state
with different magnetic configurations. In relation to Fig 1.1, let’s consider two atoms colliding in
a magnetic configuration, that is called open channel, with an interaction potential represented by
the black curve. If this state is coupled with an other one with a different magnetic configuration
that support the presence of a bound state, a powerful physics arises. Due to the different magnetic
moment ∆µ in the two configurations, it is possible to tune the relative energy using a magnetic
field B as show in Fig. 1.1. When a bound state for the closed channel reach the energy of the free
particle in the open channel, the scattering length diverges, even if the coupling is weak. This is the
mechanism underling the Feshbach resonances. Around a Feshbach resonance, the relation between
as and B is given by [17]:

as = abg

(
1− ∆

B −B0

)
, (1.17)

where B0 is the centre of the resonance, namely the magnetic field at which the scattering length
diverges, ∆ represents the width of the resonance and abg is the background scattering length, namely
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Figure 1.2: Scattering length between the two lower hyperfine states |F,mf 〉 =
∣∣ 1

2 ,−
1
2

〉
and |F,mf 〉 =

∣∣ 1
2 ,

1
2

〉
of 6Li atoms. The scattering length diverges for B = 834 15G. In the region just below this magnetic field,
the scattering length is positive and therefore we have a repulsive system. for B above the resonance value,
the scattering length is negative and we have an attractive fermionic system. The big width of this particular
Feshbach resonance allow a fine tuning of the scattering length. The curve is obtain with the values from [18].

the value assumed by as far apart from the resonance. The importance of the Feshbach resonances
lies on the possibility to manipulate the intensity of the interactions as well the sign of as, allowing
the study of systems with on-demand interactions.

Is important to notice that a divergence of the scattering length as doesn’t implies a infinity cross
section, but rather a maximization of this quantity to σ = 4π

k2

The lithium case

The blue curve in Fig. 1.2 shows the values of as as a function of the magnetic field B across the
Feshbach resonance between the two lower hyperfine states |F,mf 〉 =

∣∣ 1
2 ,−

1
2
〉
and |F,mf 〉 =

∣∣ 1
2 ,

1
2
〉

of 6Li atoms. The scattering length is approximatly descibed by Eq. 1.17 with the values present in
Table 1.1.

B0 ∆ abg
834.15G 300G −1405a0

Table 1.1: Values of Eq.1.17 for the two lower hyperfine states |F,mf 〉 =
∣∣ 1

2 ,−
1
2

〉
and |F,mf 〉 =

∣∣ 1
2 ,

1
2

〉
of 6Li

atoms.

This number are unusual respect to the Feshbach resonances of other alkali atoms. In particular
typical ∆ are one or two order of magnitude lower [19]. The result is the possibility of tune the
scattering length in a finer way and a more stable value of as against magnetic field fluctuations,
making 6Li a species with unique features for the study of strongly interacting Fermi gases in the
BEC-BCS crossover.
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1.2.3 The BEC-BCS crossover
The Feshbach resonance of Fig. 1.2 allows for the study of fermionic superfluidity in different inter-
action regimes. Superfluidity consists in the possibility of some fluids to flow without loss of kinetic
energy. In fermionic systems, superfluidity arise from the condensation of couple of fermions with
opposite spin. For negative interaction, fermions with opposite momentum can form Cooper pairs
and the system is described by the Bardeen-Cooper-Schrieffer (BCS) theory [20]. For magnetic field
B below the resonant value B0, atoms bounds together in weakly bound bosonic molecules; in this
case the superfluidity of the system can by understood within Bose-Einstein condensation theory. In
the intermediate region where the scattering length diverges, the system is in the so called ’unitary
regime’. Although different regimes show different properties, the passage from the BCS regime to
the BEC regime is not abrupt, but it is rather a smooth crossover that can be describe with the
same many-body wave function [21, 13]. Considering the characteristic energy in a Fermi system
EF , the BEC-BCS Crossover is parameterized by the factor kFas, where kF =

√
2mEF
h̄2 is the Fermi

wave-vector.

BEC regime

In the BEC regime, the superfluidity is given by the condensation of fermions in a molecular state.
In the vicinity of the Feshbach resonance, the binding energy is given by [17]

Eb = − h̄2

ma2
s

. (1.18)

In the kFas → 0 limit the chemical potential in a mean field approach is given by [19]:

µ = − h̄2

2ma2
s

+ πh̄2asn

m
. (1.19)

The first contribution to the chemical potential is given by the binding energy per particle. The second
term arise from the energy contribution of the collision. This last term has the typical form of the
chemical potential for attractive BEC µBEC = 4πh̄2asn

m [2]. This confirms the idea the in this case the
system in described like a Bose-Einstein condensate. Is possible to argue that n this case diatomic
molecules interactions are given by the collision of atoms forming them. The result is a repulsive
interaction between molecules. By the comparison between the expression2 µM = 4πh̄2asM nM

m and Eq.
1.19 one obtain asM = 2as . Experimental results on Ref. [22] show that a more correct value should
be asM ' 0.6as, consistently with a beyond mean-field calculation.

BCS regime

Condensation in bosonic systems arises from a macroscopic occupation of one energy state. Because
of the different statistic, in non-interacting fermionic system this is forbidden. However in case of
attractive interaction, two fermionic particle moving in a background of a filled Fermi sea can form a
bound state [23]; this is called Cooper pair. This bound states have a many-body origin, because the
presence of a filled Fermi sea is essential for its formation [24].

For atomic gases, in the kFas → 0 limit, the mean field calculation obtain:

µ = EF , (1.20)

∆ = 8
e2 e
−π/2kF |as|, (1.21)

2The M subscript indicates the molecular properties
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where ∆ is the, gap, namely the bound energy of the pairs. The chemical potential equals the
Fermi energy, while Eq. 1.21 can be rewritten in the classical BCS theory result. Because of the
exponential decay with −1/kF |as|, Cooper pairs are very fragile in this limit. For this reason, the
critical temperature is lowered moving toward the BCS regimes. In the experimental realization,
condensation of attractive 6Li pairs are therefore obtain for 1/kF |as| < 1

1.3 Superfluidity in fermionic systems
Superfluidity is mostly associated to condensed systems. By definition superfluids can carry current
without dissipations. This is a common feature showed by different system, like Bose-Einstein Con-
densates and superconductive systems, with the only difference that we have a flow of charges in the
second case. The underling theories describing the two systems are different. However this universal
behaviour, despite the different physical description, is understandable by the Landau criterion, which
reveals a strong connection between the superfluidity of a system and the properties of its excitation
spectrum, and is well highlighted by the study of superfluidity in the BEC-BCS crossover.

1.3.1 Landau’s Criterion for Superfluidity
In superfluids, flow without dissipation can occur up to a critical velocity vc [3]. Above vc the system
can decrease the kinetic energy in favour of the formation of excitations in the sample. Let’s consider
a fluid of mass m moving with an initial velocity vi and assume that an excitation with momentum
h̄k is created. Momentum conservation law requires that

mvi = mvf + h̄k, (1.22)

where vf is the fluid velocity after the creation of the excitation. Furthermore, the energy conservation
principle requires that

mv2
i

2 =
mv2

f

2 + ε(k), (1.23)

where ε(k) is the energy of the excitation. Combining this two equation we obtain

h̄k · vi = ε(k). (1.24)

This equation can be solve for each value of vi for which vi ≥ ε(k)/h̄k. The equal is valid in the case
of vi parallel to k. For different orientation vi must be bigger. Therefore the minimum velocity at
which is possible to create excitations is given by

vc = min
(
ε(k)
h̄k

)
(1.25)

For velocities below this critical value it’s impossible to create excitation by degrading the velocity
of the fluid and the system will exhibit a superfluid behaviour. In ultracold quantum gases, the
superfluidity of a Bose-Einstein Condensate was tested by the evidence of a critical velocity in the
early years after the discovery [25].

Critical Velocity in the BEC-BCS crossover

Eq. 1.25 show that the critical velocity strongly depends on the energy spectrum of the system, that
changes moving across the BEC-BCS crossover . In the BEC limit, excitations are describe by the
Bogoliubov theory of interacting bosonic gases [26]. In this regime the critical velocity correspond to
the speed of sound cs =

√
µM/mM =

√
4πh̄2aMnm

mM
. In term of the single fermionic atom’s properties
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Figure 1.3: Critical Velocity across the BEC-BCS crossover. In the BEC side the critical velocity is given by
the speed of sound, while in the BCS limit destruction of cooper pairs limit the maximum velocity for the
superflow. In both the regimes, critical velocity increase for stronger interactions, so we have a maximum
value around the resonance. Figure adapted from [19]

this takes the form cs = vf√
3π

√
kFas. [13] In the BCS limit the excitations related to the critical

velocity correspond to the breaking of Cooper pairs. In this case the critical velocity is approximately
given by vc ' ∆

h̄kF
. A fluid velocity above this vc will break fermionic pairs.

In both the BEC and BCS regimes, the critical velocity increases as the interactions become
stronger. Therefore a maximum value around the resonance is expected, as shown in Fig. 1.3 Mea-
surements of the critical velocity across the BEC-BCS crossover show this expected behaviour [27]
[28]. However, the measured critical velocity was always less than the expected value. The reason for
this is mostly given by experimental deviation from the ideal case [27], like the inhomogeneity of a
system in harmonic traps or the experimental procedures.

1.3.2 Vortices
The critical velocity plotted in Fig. 1.3, identifies sound waves and pair braking as the excitations
limiting the superfluid flow. However some excitations are not considered in this calculation. One
of this are quantized vortices. In many case formation of quantized vortices are the excitations
limiting maximum velocity of the superfluid flow. Superfluid systems like Bose-Einstein condensates
are described by an order parameter

ψ(r, t) = |ψ(r, t)|eiφ(r,t) (1.26)
that is the macroscopic wave function of the condensate. |ψ(r, t)|2 gives the density profile of the
condensed part of the system, while φ(r, t) represent its phase. This quantity play is connected to the
velocity field of the superfluid, that is:

v(r, t) = h̄

m
∇φ(r, t) (1.27)

wherem is the mass of one atoms. For fermionic superfluidsm→ 2m because in this case superfluidity
arise from condensation of pair of particle.
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Eq. 1.27 shows that the velocity field for a superfluid is irrotational ∇∧ v(r, t) = 0. Therefore for
simply connected region of space where |ψ(r, t)| 6= 0, using Stokes’ theorem is possible to show that
the circulation of v(r, t) = 0 around a close path is always zero. More interesting physics appears
when there exists a line of the sample where |ψ(r, t)| = 0. In this case we cannot use the Stokes’
theorem. From Eq. 1.27 is easy to understand that a line integral of the velocity field between to
points is related to the difference of the phase of the two points. When a closed line is considered the
change in phase of the wave function ∆φ must be a multiple of 2π, so that the circulation Γ can have
only the values [29]

Γ =
∮

v(r, t) · ds = 2πn h̄

2m = l
h

2m (1.28)

where l is a integer. This formula shows that Γ is quantized in units of h
2m . This condition of the

system is a quantum vortex and l is its charge.
In the simplest case in which the phase increases linearly around the vortex core, namely φ = lθ

where θ is the azimuthal angle, the velocity field takes the form:

v(r, t) = l
h̄

2m
1
r
θ̂ (1.29)

that shows a decrease of the velocity as the distance from the core of the vortex r increases. On the
other hand, the velocity diverges in the limit of r → 0. This non physical condition is resolved by a
corresponding decrease of the density for lower values of r. In particular the density is zero in the
core3. Therefore the presence of a vortex in marked as density depletion in the condensed density.

Feynman approach to the Critical Velocity

The critical velocities considered in Fig. 1.3 doesn’t take in account the possibility of vortices excitation
limiting the superflow maximum velocity. In 1955 Richard Feynman [30] obtained the corrisponding
critical velocity for a superfluid flowing through a channel into an infinite reservoir. For velocity
sufficiently high, the flow produces a series of vortex pairs from the corners at the end of the channel.
The critical velocity above which vortex pairs are created is given by:

vc = h̄

md
ln
(
d

ξ

)
(1.30)

where d is the width of the channel and ξ is the healing length.

1.3.3 Superfluidity and vortices: the ring geometry
A link between vortices and flow without dissipation is showed in the case of a superfluid trapped in
a ring-shaped trap like the one showed in Fig. 1.4. In this case the system can flow in a perpetual
motion in a toroidal trajectory. However the velocity v(r, t) of the system is limited to discrete values.
For the circulation Γ calculated integrating the velocity field along the orange dotted line in the figure,
one obtain the same result of Eq. 1.28. Considering the case of cylindrical symmetry, in analogy to
Eq. 1.29, the velocity field will be given by:

v(r, t) = w
h̄

2m
1
r
θ̂ (1.31)

where the charge of the vortex indicated by l in Eq. 1.29 is replace by w <, which I will refer to as the
circulation of the system. Therefore the velocity of a persisten current in a ring superfluid cannot take

3Note that this is consistent with the initial request of a line in which the density vanishes. In general cases, the
vanish density at the core of the vortex avoid the problem of th
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Figure 1.4: Superfluid flow in a ring. For superfluids confined in a ring-shaped potential the persistent flow
is limited not only by the critical velocity. In fact, in analogy with the vortex case, the velocity must be
quantized.

every values, but is quantized. Moreover, as in the vortex case, the velocity decrease as the distance
from the centre of the ring increase.

By this point of view, a persistent flow of a superfluid through a ring with winding number ω can
be seen as vortex of charge l in the centre of the ring.

1.4 Kelvin-Helmholtz Instability
The Kelvin-Helmholtz instability is an instability that occurs in the surface between two fluids flowing
with different parallel velocities. It was initially introduced to explain the generation of waves in the
sea by wind by H. v. Helmholtz [31] and Lord Kelvin [32]. However Kelvin-Helmholtz instabilities
are also observed in other context, like the Red Spot on Jupiter or, in same case, in the clouds in our
atmospheres.

Let’s consider the 2D case shown in Fig. 1.5, where two fluids with density ρ1 and ρ2 flow with
parallel velocity v1 and v2 along the x direction. This state in a stationary condition. However, if a
small perturbation of the system occurs,is possible to show that this tend to increase in time. Cause
small perturbations inevitably appear in real fluids, the configuration in Fig. 1.5 is not stable. For
the following consideration, we will consider incompressible fluids with zero viscosity. In this cases,
the dynamics of fluids is described by:

∂v
∂t

+ (v · ∇)v = −∇p
ρ
, (1.32)

and
∇ · v = 0, (1.33)

where v is the Eulerian velocity field, ρ is the density of the fluid and p the pressure. Eq. 1.32 is known
as Euler equation, while Eq. 1.33 is the continuity equation for incompressible fluids. The study of
instabilities from a small perturbation of a stationary flow are usually performed in the following way:
considering a stationary solution for the equation describing the fluid, with velocity v0 and pressure
p0, we look at the time evolution of a system with velocity field and pressure given by

v = v0 + v′ (1.34)

and
p = p0 + p′, (1.35)
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y
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z

Figure 1.5: Parallel flow of two immiscible fluids with density ρ1 and ρ2 and velocity v1 and v2.

where v0 and p0 describe the small perturbation of the system.
Substituting this in Eqs. 1.32 and 1.33, considering that v0 and p0 are solutions of these equations,

and neglecting terms over the first order we obtain for the perturbation v′ and p′ [33]:

∂v′

∂t
+ (v0 · ∇)v′ + (v′ · ∇)v = = −∇p

ρ
, (1.36)

and
∇ · v′ = 0, (1.37)

We consider now the the system in Fig. 1.5 presents a perturbation like in Fig. 1.6. In the case
of non viscous fluids, the velocity field is constant both in the upper and the lower parts and a jump
discontinuity in the velocity in present in the separation surface. We describe this perturbation with
the displacement of the separation surface along the y axes ζ(x, t) depending on the x coordinate and
on time. We can consider a perturbation for which all the quantity ζ, p′1,2 v′1,2 are periodical function
proportional to ei(kx−ωt). From Eqs. 1.36 and 1.37, considering that the velocities 0 v′1,2 are along
the x axes, using the relation

∂ζ

∂t
= v′y − v0

∂ζ

∂x
, (1.38)

it is possible to obtain a relation between the perturbed part of the pressure p′ and the displacement
ζ [33]:

p′1 = −ζ ρ1(kv1 − ω)2

k
(1.39)

p′2 = ζ
ρ2(kv2 − ω)2

k
(1.40)

Finally, considering that the pressure must be the same at the separation surface, from these last two
equation we obtain the dispersion relation between ω and k:

ω(k) = k
ρ1v1 + ρ2v2

ρ1 + ρ2
± ik

√
ρ1ρ2(v1 − v2)2

ρ1 + ρ2
, (1.41)

that is formed by a real and a imaginary part. This equation is important for understanding the
evolution of the perturbation. For simplify the calculation, we consider the case for which ρ1 = ρ2.
In this case the ratio c between ω and k is:

c = ω(k)
k

= cr ± ici, (1.42)
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Figure 1.6: Sinusoidal perturbation of the separation surface between the two fluids.

with
cr = v1 + v2

2 , ci = v1 − v2

2 . (1.43)

Therefore c is a complex quantity, with a realcr and an imaginaryci part We consider now that the
perturbation of the separation surface is described by

ζ(x, t) = ζ0e
i(kx−ωt) = eik(x−ct). (1.44)

From this equation we understand that cr is the velocity of the perturbation along the x axes and
it depends on the sum of the velocity v1 and v2. On the other hand, the imaginary part generates
an exponential increase (or decrease, depending on the sing in Eq. 1.42) of the intensity of the
perturbation, depending on the velocity difference between the two fluids. Therefore, the displacement
of the separation surface increase exponential for each initial perturbation of the system; in particular,
for each value of k. In particular, the instability increase exponentially ∼ eσt, with a rate

σ = kci = k
∆v
2 , (1.45)

where ∆v = v1 − v2. A linear increase of the exponential rate respect to k is obtained.
The result in Eq. 1.42, is obtained by considering a jump discontinuity in the velocity in the

presence of the separation surface. However, when the component of the system are viscous fluids,
this is not possible to occurs. A more realistic model can be studied taking into account the presence
of a shear layer between the two region with uniform velocity v1 and v2, in which the velocity changes
linearly. In particular, the velocity is this case is described by:

v =


v1 for y > δ
v1+v2

2 + v1−v2
2

y
δ for |y| ≤ δ

v2 for y < −δ

where δ is the dimension of the shear layer
In this case the dispersion relation takes the form [34]:

ω(k) = k
ρ1v1 + ρ2v2

ρ1 + ρ2
± iv1 − v2

4δ

√
e−4kδ − (2kδ − 1)2, (1.46)

The rate of the instability increase linearly for low value of k, as in the case of the discontinuity jump
in the velocity field. However for higher mode, σ tends to decrease, and the instability disappears for
k such that e−4kδ − (2kδ− 1)2 ≥ 0. This correspond to value of kδ ∼ 0.6. The suppresion happens to
a similar value when we consider a shear layer in which the velocity changes in a hyperbolic tangent
way.

The exponential increase of the perturbation gives rise to a self-similar swirling structure. The
Kelvin-Helmholtz instability underlies the formation of structures like the one showed in Fig. 1.7
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Figure 1.7: Sinusoidal perturbation of the separation surface between the two fluids.



Chapter 2

Excitation of persistent currents in
fermionic superfluids

In this chapter I describe how it is possible to excite finite circulation states in a ring-shaped fermionic
superfluid as the one shown in Fig. 1.4. In the first section I describe the protocol used for cooling
down the atoms and create a fermionic superfluid. Next I present how is possible, using a Digital
Micromirror Device (DMD), to create on demand optical potential, allowing for the realization of a
ring trap. Finally I describe the procedure used to excite persistent currents in this geometry, that
underlies the study of their instabilities presented in the following chapters. In particular, I will
present general results about this. More details about the study of persistent currents are present in
[35].

2.1 Create a degenerate 6Li gas
From their first implementations in cooling ions and atoms in the late ′70 of the last century, the
techniques based on use of lasers and magnetic field for atom cooling and trapping had a great
improvement. In this section I present how is possible to cool down to degeneracy a fermionic sample
of 6Li atoms. A detailed description of the apparatus used for this purpose is presented in [36].

At room temperature, lithium is at the solid state. Therefore, to obtain a sufficient high flux of
atom in a gaseous state, the starting point consists in a oven, where a lithium sample is heated at the
temperature of 420°C. The produced vapour reaches the rest of the experimental apparatus through
a nozzle, creating an high-velocity collimated atomic beam.

2.1.1 Laser Cooling
The effect of a electromagnetic field acting of an atom is described, in a semiclassical approach, by a
force [37]:

F = Fs + Fd, (2.1)

where the first term, Fs, is know as the scattering force, and the second is the dipole force Fd, which
is a non dissipative force.

For a near-resonant laser, Fd is negligible. Therefore, the effect of the laser on the atoms is
described by Fs, that is a dissipative force. In the approximated case in which we describe atoms as
a two-level system this has the form [37, 38]:

21
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oven

valve

Zeeman slower

science chamber

Figure 2.1: Experimental setup for laser cooling. A high temperature and collimated atomic beam flows from
the oven to the rest of the experimental apparatus through a nozzle. The high velocity of the atoms is reduces
by a Zeeman slower. Subsequently atom are trapped by a MOT in the science chamber.

Fs = h̄kΓ
2

I/Isat
1 + I/Isat + 4δ2/Γ2 (2.2)

where k is the wave vector of the electromagnetic field, Γ is the atomic transition width, I the laser
intensity and Isat is the saturation intensity, namely the intensity for which the laser has excite 1/4
of the atomic population into the excited state. δ = ω − ωl is the detuning between the transition
frequency ω and the laser frequency ωl. This force arises from the total momentum gained by the
atom after a series of absorption of photon from the laser beam (with a well defined momentum) and
spontaneous emissions (that change the momentum of the atom by a random directed amount). This
dissipative force can be used to cool down atoms.

In Appendix A it is reported the hyperfine structure of 6Li atoms. In the experiment, two sources
of laser are used, that are locked by subdoppler derivative spectroscopy to the D1 and the D2 fine
transitions, respectively. A fine tuning of their frequency for different purposes is allowed by the use of
Acusto-Optical Modulators (AOMs). For the cooling procedure, the D1 and D2 lasers are optimized
to work on the

∣∣2S1/2, F = 3/2
〉
→
∣∣2P3/2, F = 5/2

〉
and the

∣∣2S1/2, F = 3/2
〉
→
∣∣2P1/2, F = 1/2

〉
transitions respectively. However, during the cooling procedure, it is possible that after a spontaneous
emission atoms occupies the

∣∣2S1/2, F = 3/2
〉
state. This problem can be solved by repumping atoms

in one the excited states, from which atoms can return to the
∣∣2S1/2, F = 3/2

〉
state via spontaneous

emission. Thanks to the 228 MHz large separation between the two hyperfine levels of the ground
state is possible to use the two sources of laser D1 and D2 lasers both for cooling and repumping. Fig.
2.1 shows the schematic representation of the experimental apparatus needed for the laser cooling of
the atoms.

High-velocity atoms coming from the oven are initially slowed by the Zeeman slower [37]. Thanks
to the presence of a spatially dependent magnetic field is possible to slow atoms with velocity up to
800m/s to around 50m/s by the use of a counter-propagating laser beam. Due to the Doppler effect,
when the velocity of an atom is reduced, the Doppler shift of the laser frequency that this atom see
changes; therefore it is expected that the laser beam is not resonant for all the slowing procedure.
The role of the spatially dependent magnetic field is to keep the atom transition resonant to the laser
frequency ωl during the deceleration. This is allowed by the dependence of the atomic transition



2.1. CREATE A DEGENERATE 6LI GAS 23

Figure 2.2: Atomic sample trapped by the combination of the IPG, Mephisto and TEM0,1 laser beams in the
unitary regime.

frequency by the magnetic field, effect known as Zeeman effect.
The slowed atomic beam is then captured in a magneto optical trap (MOT). Here the combination

of a quadrupolar magnetic field produced by a pair of coils in a anti-Helmotz configuration and three
couples of counter-propagating laser beam (one for each direction) create an effective viscous and
harmonic force. The result is both a cooling and a trapping effect on the atoms. We trap ∼ 109

atoms in the MOT with a temperature of ∼ 500µK in 5-6 s. The lower limit of temperature reachable
in a MOT is given by the Doppler temperature TD estimated considering the energy exchange in a
process of absorption of one photon by an atom. In the lithium case TD ' 140µK. However, lower
temperature are usually achieved by performing laser cooling in other alkali atoms [39], thanks to
the Sisyphus cooling [37] [40]. In our sample this mechanism is repress by the unresolved hyperfine
splitting of the 2P3/2 level. However, a sub-Doppler cooling is realized by the implementation of grey
molasses working on the D1 transition [41]. With this process we are able to achieve a temperature
of ∼ 50µK.

2.1.2 Optical Dipole Trapping
The temperature reach with laser cooling techniques is not enough low to reach degeneracy in our
system. Lower temperatures are achievable by the implementation of evaporative cooling, a technique
based on use of dipole traps.

A far-off resonant laser beam exert a conservative force on an atom. In this case Fs is negligible
respect to the Fd. The potential energy associated to the conservative dipole force is

U(r) = h̄Γ2

8δ
I(r)
Is

. (2.3)

Therefore is possible to create a spatial dependent potential on the atomic sample by the use of out of
resonance light with non homogeneous intensity as we have in the case of laser sources. The relation
of U(r) and I(r) depends on the detuning δ, and in particular on its sign. In case of blue detuning
(δ > 0) the potential has the same sign of the intensity. As a consequence the positions r of maximum
of intensity correspond to maxima of the potential U(r). The atoms feel a repulsion from the laser
beam. Blue-detuned laser can be used to create obstacle in sample or repulsive traps for atoms. On
the other hand, a red-detuned laser (δ > 0) create a minimum of the potential in the position of the
maximum of the intensity. Using this kind of laser is possible to create attractive potential to trap
atoms in the high intensity region of a Gaussian beam. These two type of trapping are known as
optical dipole traps (ODT).

After the grey molasses stage described above, a high intensity infrared beam (IPG) is turned on
and the a second stage of gray molasses and a first evaporation are performed. Evaporative cooling
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consists in the progressive reduction of the intensity of the trapping laser; in this procedure the more
energetic atoms go out from the trap and, after a rethermalization of the system, the temperature
decreases. In order to optimize the evaporation process, at the same time at which the IPG in turned
on, we sweep the magnetic field to 832 G in the system, near to the Feshbach resonance between
the |F,mf 〉 =

∣∣ 1
2 ,−

1
2
〉
and |F,mf 〉 =

∣∣ 1
2 ,

1
2
〉
states (see Fig. 1.2). The strong interactions allow to

optimize the rethermalization process. For the realization of the evaporative cooling we lower the
power of the IPG with an exponential ramp. After this a second high power infrared laser beam
(Mephisto), crossed with the IPG by 14°, is turned on. At this point a second evaporation ramp is
performed, decreasing the intensities of both the IPG and the Mephisto. At the end of this process
we are able to obtain ∼ 105 atoms per spin state at a temperature of 30 nK trapped in a cigar-shaped
potential formed by the IPG and Mephisto.

Starting from this configuration, we use two laser blue detuned laser, obtain from the same Verdi
V8 laser at 532 nm to manipulate the shape of the sample. One consists in a TEM0,1 beam. This
beam is characterized by a waist in the vertical (z) direction of σz = 8.73µm and of σx−y = 400µm
in the x− y plane. The TEM0,1 beam is used to squeeze the sample in the z direction, as atoms are
trapped in the minimum of intensity. By tuning his intensity, it is possible to study systems with
different vertical dimensions. However, the system is a oblate 3D system. The trap frequency in the
z direction νz is adjusted for the different regimes in order to keeping hνz/EF ∼ 0.05. Fig. 2.2 shows
the atomic sample trapped using the combination of the IPG, Mephisto and TEM0,1 in the unitary
regime.

The second blue-detuned laser is used to create arbitrary optical potential with a digital micromir-
ror device (DMD), in order to manipulate the geometry of the system in the x− y plane, as it will be
further explained in the next section. When the atoms are loaded in the DMD potential, the Mephisto
and IPG are switched off, and the system in trapped by the combination of the TEM0,1 and the DMD
pattern. The result is a homogeneous system in the x− y plane.

2.2 High resolution imaging and arbitrary optical potentials
In order to detect the density distribution of the sample, we perform absorption imaging. A resonant
pulse is shone on the system and then it is collect on a camera. The presence of atoms is marked by
a shadow in the acquired light pattern, due to the absorption of photon by atoms. In our system is is
possible to imaging atoms by shining a pulse both in the vertical and in the horizontal direction.

The vertical imaging is the most sophisticate. His main constituent is a high-resolution microscope
objective. It is designed to feature the same focal point for both resonant light at 671 nm and blue-
detuned light at 532 nm. In this way it is possible to use it for both imaging the cloud and for shining
arbitrary optical potential with the DMD. For both the wavelength it is used for, the resolution of
the imaging system is below 1µm. With a lens of focus f = 1000 mm, the imaging light is focused on
an Andor IXon3 EMCCD camera, of 13µm x 13µm pixels. The total magnification for the vertical
imaging system is M = 21.8. More detailed information about the vertical imaging system and on
the high resolution objective are discussed in [42].

The horizontal imagining system is formed by a telescope providing a magnification of 6.87, and
the image are acquired by a an Andor Ultra camera, of 16µm x 16µm pixels. Another Stingray
camera with 0.5 magnification can be placed along the horizontal imaging setup in order to image the
cloud in the MOT.

Both the vertical and the horizontal camera are set on the Fast Kinetic Series (FKS) acquisition
mode, allowing to take a sequence of a few images with a short delay time on the order of 200µs. In
order to detect the density distribution of the system, both for the horizontal and the vertical imaging
we take three images. The first image is taken collecting the light shone on the atom sample, the
second is taken in absence of atom, while the last is obtain without shining any light and is used to
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Figure 2.3: Ring-shaped superfluid in the BEC regime. Thanks to the DMD it is possible to create an annular
potential for trapping the atoms.

remove the background from the other two. In the first and second images, we use pulses 4µs long
with an intensity I ' 3Is of resonant light.

This procedure is a destructive imaging. Therefore every images taken correspond to a different
realization of the sample starting from the atomic beam coming out from the oven. Therefore is
impossible to follow the dynamic of a single sample.

As I have already mentioned, the vertical imaging setup is used also for the realization of arbitrary
optical potential using a DMD. This object is composed by an array of 1024 x 768 squared micromirrors
with a side of 13.68µm. Using an external voltage, it is possible to control the tilt of each micromirror.
In particular, two tilt states are available, giving the opportunity to reflect the light on the atom when
the mirror is in one state, or to disperse the light when it is in the other configuration. Therefore, by
controlling the state of each mirror is possible to arbitrary shape the intensity profile of a laser beam
and of the corresponding optical potential on the atomic sample. The reflected light passes thought a
first telescope to be then focused on the atomic cloud by the microscope objective. This setup provide
a total demagnification of 55, so that 1 DMD pixel has a 0.25µm size on the atomic cloud.

Finally, the DMD can also create dynamic potentials. In particular it is possible to load on the
DMD a discrete series of images that will be shone on the sample at different time during the same
realization. This possibility is useful for the realization of persistent currents in the ring geometry as
we will see in the next sections. The timing between two different imaging is tunable. The maximum
frame rate allowed is 22 kHz, corresponding to a time between the images of 44µs.

Thanks to high-resolution vertical setup, we are able to both create arbitrary optical potential and
image the atomic sample with very high spatial resolution.

2.2.1 The ring-shape potential
Fig. 2.3 shows the ring-shaped fermionic superfluid obtained with a proper potential created by the
DMD in the BEC regime. In particular the sample in the figure has an inner radius of 9.94µm and
an external one of 20.22µm. This is the geometry mostly use for the work presented in this and the
next chapters. The system is trapped by the combination of the TEM0,1 in the vertical direction and
the DMD pattern, resulting a quasi-homogeneous density profile.
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The thermodynamic properties of ring superfluids are calculated as follow. Under the polytropic
approximation [43, 44], the density profile for a spin state over the BEC-BCS crossover is given by

n(r, z) =
(
µ

gγ

) 1
γ
(

1− z2

R2
z

− Vring(r)
) 1
γ

(2.4)

where Rz is the Thomas-Fermi radius in the z direction and Vring(r) is the potential create by
the DMD pattern. γ is the polytropic index, that takes the values γ = 1 in the BEC limit and
γ = 2/3 in the BCS and UFG regimes [44]. gγ is a prefactor depending on the interaction regime.
In particular gBEC = 4πh̄2aM/2m, with aM = 0.6as, for (kFas)−1 > 1, gUFG = ξ h̄

2

2m (6π2)3/2,
where ξ is the Bertsch parameter taking the value of 0.37 at the unitarity, for −1 < (kFas)−1 < 1,
gBCS = h̄2

2m (6π2)3/2 for (kFas)−1 < −1. Approximating the system as homogeneous in the x − y
plane, we consider Vring(r) = 0 for r ∈ (Rin, Rout) and Vring(r) = +∞ otherwise.

Integrating the density profile in Eq. 2.4 over the space, we obtain the total number of particle
for a spin state from which we compute the chemical potential: [45]
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where Γ is the Gamma function. The resulting Fermi energy is given by

EF = 2h̄
(

h̄ωzN
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in)

)1/2
(2.6)

2.3 Excitation of persistent currents
Persistent currents in a toroidal superfluid have been observed in both bosonic [46, 47] and fermionic
atomic condensed gases [48]. It is possible to create excitation of persistent flow in a ring-shape trap in
different ways, like transferring momentum with a two photon transition [46] or by stirring an obstacle
along the ring [48, 49]. In our system, we excite persistent current in a ring using a phase imprinting
method based on a spatial dependent optical potential [50].

2.3.1 The phase imprinting method
To realize persistent currents in our system we use the DMD to imprint a well defined phase on the
atomic sample. As we have already seen, a far off resonance laser frequency acting on an atom, create
a optical potential proportional to the intensity of the light (Eq. 2.3)

Due to the ring-shape geometry, it is convenient to study the problem in cylindrical coordinates
(r, θ, z). Assuming that the light comes from the z direction, is possible to describe our sample like a
2D system depending on r and θ.

If the optical potential in Eq. 2.3 acts for a time ∆t much smaller than the typical timescales
of the system, setted by h̄/µ, it is possible to neglect the atomic motion caused by this potential.
However the presence of U determinate an extra phase factor in the normal phase evolution of the
system’s wave function ψ(r, θ, t). Therefore, after a pulse of duration ∆t, the wavefunction is changed
to [50]:

ψ(r, θ, t0 + ∆t) = e−
i
h̄U(r,θ)∆tψ(r, θ, t0) (2.7)

Hence, in the limit of small ∆t, the potential will simply add the phase φ(r, θ) = −U(r, θ)∆t/h̄ to the
ground-state wave function ψ. Using a DMD, it is possible to realize an on demand potential U(r, θ)
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(a) (b)

Figure 2.4: (a)Light pattern with linearly increasing intensity along the azimuthal direction. (b)Light pattern
used for the excitation of persistent current in the ring. Here is shows how the light pattern realized by
the DMD is used both for create a ring trap and for imprint a phase pattern. Neglecting for the moment
the internal black disk, whose need is explain in the next section, light create a repulsive ring-shaped trap
consisting in a bright inner circular barrier and in a outer light background. In the middle, corresponding to
the region where atoms are present, intensity of the light increases linear by changing the angular coordinate,
implementing the procedure just described.

by creating a dependence of the intensity on the position.This allows for creating persistent current
in our sample, by the realization of a linearly angular dependent potential U(r, θ) = U0θ. In this case
the phase of the system after a phase imprinting pulse is given by

φ(r, θ) = −U0∆t
h̄

θ (2.8)

Considering Eq. 1.27 for the velocity field, for a phase pattern given by Eq. 2.8, the system
acquires a velocity described by:

v(r, θ) = −U0∆t
h̄

1
r
θ̂ (2.9)

Therefore the system starts to flow through the ring with a velocity in modulus constant along φ
and that decrease like 1/r. A current is created. As I explain in detail in the following section, in this
way is possible to excite currents in the system with a velocity field as in Eq. 1.31, with a circulation
w. I will also refer to w as the winding number of the system

Fig. 2.4a shows the considered light pattern with a linearly increasing intensity along the azimuthal
direction as it is created by the DMD. However, the actual patter used for the phase imprinting in
our system is showed in Fig. 2.4b. Here the light pattern realized by the DMD is used both for create
a ring trap and for imprint a phase pattern. Neglecting for the moment the internal black disk, the
need of which is explained in the next section, the light creates a repulsive ring-shaped trap consisting
in a bright inner circular barrier and in a outer light background. In the middle, corresponding to
the region where atoms are present, the intensity of the light increases linearly along the azimuthal
coordinate, implementing the procedure just described.

This method allows for the realization of persistent currents in a more controllable and reproducible
way respect to others. By changing the interval ∆t during which the light is shone on the sample, it
is possible to manipulate the velocity field. In particular for longer ∆t atoms gain a higher velocity.
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However the validity is limited to values of ∆t much less respect to the typical timescales of the
system, namely for ∆t� h̄/µ.

For imprinting bigger velocity without increase to much ∆t is also possible realize ’multi gradients’
imprinting patterns, in which the intensity of the laser present n linear ramp moving through the
angular direction, where n is a natural number. In this work the gradient showed in Fig. 2.4 is
mostly used, but also gradient with n = 2 and n = 4 have been implemented in particular for excite
larger winding number. However use of larger n gradient pattern reduce the manipulation level of
the method: for example, for the n = 2 case, it is not possible to populate the state w = 1 with high
precision as in the single gradient case. Therefore we constrain the usage of multiple gradient only
for imprinting high circulation states. The excitation of high circulation is achieved also by the use of
multiple imprinting pulses,shining the same simple gradient pattern for more than one pulse. Multiple
pulses are separated by 10 ms in time, in order to let the system relax. By using a single pulse and a
simple gradient pattern for the imprinting procedure, we are able to imprint circulation up to w = 6.

In the realization of this method we are also limited by a minimum ∆t; due to technical limitation
of the DMD, we cannot imprint a time ∆t less than 50µs, corresponding to the minimum interval in
which the DMD can change the light pattern shined on the atoms.

2.3.2 Experimental procedure
The protocol used in the experiment to excite currents in a ring is showed in figure Fig. 2.5. The
first image of the DMD is shined on the atom in the cigar trap (Fig. 2.2). then we ramp down the
Mephisto and the IPG and atoms are loaded in two semicircle separated by a 2.4µm barrier (Fig.
2.5a). At this point the system is trapped in the vertical direction by the TEM0,1 and the light pattern
created by the DMD. The result is a quasi-homogeneous system in the x − y plane with arbitrary
geometry created by the DMD. The barrier in the sample create a line with no atom, cause his height
is well above the chemical potential. The presence of this barrier is planned to stop the possible flow
that can be crated by the loading from the cigar trap to this configuration. Now a circular barrier is
adiabatically ramped up(Fig. 2.5b-c), by shining with the DMD a sequence of fifteen images with an
increasing intensity of this barrier, separated by 0.1 ms. After 40 ms waiting, the barrier used to stop
the flow is ramped down (Fig. 2.5d) with a sequence of fifteen images, one every 5 ms. At the end the
final configuration is obtain and atoms are trapped in a ring and an inner circle(Fig. 2.5e), which is
used for determine the circulation state of the ring superfluid, as I will explain in the next section.

Every parameter is chosen in order to create a still gas at the end of this routine. Persistent
currents in the sample are created by the application of the phase imprinting method in the external
ring in this final configuration.

2.4 Persistent Currents
The previous section describes how it is possible to create currents in our system, allowing the creation
of a velocity field as in Eq. 2.9. The method used gives the possibility of tuning the velocity’s modulus
as we like. On the other hand persistent currents in a ring must be described by Eq. 1.31, that shows
a quantization of the velocity. Despite this two equations look non consistent, they are both true. The
discrepancy between them is solved as described in the following. Immediately after the imprinting-
pulse, the velocity field is described by equation 2.9, and no quantization is required. In a time on
the order of ∼ 1ms this density depletion is observed to disappear, and the system rearranges in a
velocity field in the form 1.31. Therefore at the end a persistent current with a defined circulation w
is created.

Energy argument lead to the following considerations. As pointed out in [47], free energy against
the total angular momentum per particle is characterized by local minima in proximity to values
of L/N = wh̄/2, corresponding to the quantized velocities 1.31. Other values of L are possible, in
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(a) (b) (c)

(d) (e)

Figure 2.5: Experimental protocol implemented for the excitation and observation of persistent currents. From
the cigar shaped trap squeezed in the vertical direction by the TEM0,1 laser, atom are first trapped in two
semicircle (a), after that IPG and Mephisto are ramped down. From this moment, the system is trapped by
the combination of the TEM0,1 and the light pattern created by the DMD. The result is a quasi-homogeneous
system in the x− y plane with arbitrary geometry created by the DMD. The presence of a barrier is designed
in order to stop possible flow arising from the loading of this configuration from the cigar trap. After 200 ms
we start to ramp up a circular barrier (b). This process is done in a sequence of fifteen different images from
the DMD separated by 0.1 ms and we obtain the configuration in (c). After 40 ms we start to ramp down the
linear stopping barrier (d). The final configuration (e) consist in an atomic sample trapped in an external
ring and an inner disk, used for the measurement of the circulation w in the ring. At this point the phase
imprinting protocol is performed in the external ring.

particular immediately after the phase imprinting procedure. In this case system tend to decay in to
one of the local minima. Therefore despite phase imprinting can create an arbitrary velocity, the final
results of the procedure is to excite the system in a state with a quantized circulation w. Increasing
the imprinting time ∆t the local minimal to which the system tends to evolve changes. Thus the
resulting circulation w is expected to show a step-like behaviour against the imprinting time. This is
actually what is observed in our system, at least for low w [45]. For higher circulations, the method
reduces his reproducibility and the step-like trend his lost due to technical limitations. The energy
corresponding to this local minima increase for bigger w. Therefore circulation of w > 0 are expected
to be metastable state.
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(a) w = 0 (b) w = 1 (c) w = 2

(d) w = 4 (e) w = 6 (f) w = 8

Figure 2.6: Detection of the circulation state w in the ring. To quantify the circulation state of the ring we
let it interfere with the inner circle performing a TOF free expansion measurement. The phase φ1 of the
inner disk is constant, while the phase φ2 of the external ring depends on the circulation φ2 = wθ. The
interference measurement allow to get information about the relative phase between the two system. When
no flow is excited in the external ring, we obtain a density modulation as is shown in (a) formed by concentric
circumferences. On the other hand, when a circulation in excite in the ring, the phase different between
the two condensates depends on the angular position θ and the interference pattern is formed by spirals. In
particular, the circulation state of the condensate in the ring can correspond to the number of the arms of
the observed spirals. The images are obtained with a TOF of 1.3 ms and are relative to the observation of
persistent currents in the BEC regime.

2.4.1 Detection of persistent currents
Early work on currents in bosonic ring superfluids use simply time-of-flight (TOF) techniques to detect
them [46]. In this methods, the trap apparatus is switched off abruptly and the atomic sample evolves
in free space for a time usually in the order of 1 - 10 ms. The presence of non-zero circulation is
observed by the presence of a hole in the density after the expaThe dimension of the hole measures
the winding number: it is bigger for higher circulation states. However, this method is not a good
way to study circulation number in our case, because it does not allow to distinguish very well state
with very high w. An other way to quantify the number of circulations in the system relies of the
possibility to detect the phase of the system, that is directly connected to the velocity field. This is
possible by performing interference measurements [51, 52, 53].

Interference between condensed systems is one of the most fascinating effects related to the phase
coherence of these systems, that arises from the possibility to describe them by a macroscopic wave
function in the form of Eq. 1.26. For the one particle case, the wave nature leads to interference
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effects; a famous example is the double slit experiment. An analogous in many-body systems consists
in the interference coming from two bosonic condensed system that overlap in a TOF free expansion
[54]. As an example, we consider the 1D problem of two bosonic condensed systems in harmonic traps
described by Gaussian wave function ψ1(r, t) and ψ2(r, t) centred in the points r = ±d/2, with global
phase φ1 and φ2. The density profile is given by:

n(r, t) = |ψ(r, t)|2 = |ψ1(r, t) + ψ2(r, t)|2 = |ψ1(r, t)|2 + |ψ2(r, t)|2 + 2 Re{ψ1(r, t)ψ∗2(r, t)} (2.10)

where ψ(r, t) = ψ1(r, t) + ψ2(r, t) is the total wave function of the system. The last term in this
equation is responsable to the emergence of an interference pattern due to the overlapping of the two
wave functions. Considering the free expansion of the two wave packets, in the limit of a long TOF t
is possible to show that [55]

Re{ψ1(r, t)ψ∗2(r, t)} ∝ cos
(
mrd

h̄t
+ φ1 − φ2

)
(2.11)

Therefore the density profile shows an interference pattern caractherizzed by a wavelength λ−1 =
2πmrdh̄t . Moreover, this density modulation depends on the initial difference between the two global
phases of the two systems φ = φ1 − φ2. This last consideration is exploited in our detection of
persistent currents. This is the reason why we prepare the system not only with an external ring
but with also the presence of an inner disk (see Fig. 2.5e). To quantify the circulation of our system
we realize a TOF expansion letting the two system overlapping. For each direction θ is possible to
consider the expansion like the 1D problem just explained. Therefore after a free expantion t the
density distribution has the same form of Eq. 2.10. In particular the interference term can be written
as:

cos
(

2π r
λ

+ φ1(θ)− φ2(θ)
)

(2.12)

We refer to ψ1 as to the internal disk, and ψ2 to the external ring. If no circulation is excite in
the system, both φ1 and φ2 do not depend on θ and the interference pattern is the same in all
the directions. Therefore a TOF measure will give rise to concentric circles in the imaged density,
corresponding to the series of peaks and minima of the interference along r.(see Fig. 2.6a).

When a circulation w is excited in the ring, while the phase φ1 is still constant, the phase φ2
increases linearly with the angular direction, namely φ2(θ) = wθ. So the interference term take the
form :

cos
(

2π r
λ

+ φ1 − wθ
)
. (2.13)

Therefore the peaks of interference pattern are shifted for different θ directions, in particular they
follow a trend like rpeak(θ) = nλ− (φ1−wθ/2π)λ, where n is an integer and indicate the order of the
peak. The results is thus a linear shift of the interference pattern along the θ direction and thus finite
circulations in the ring results as spirals in the TOF interferogram. Moreover the phase term is given
by φ = φ1 −wθ in this case. For a fixed radial position r, Eq. 2.13 shows a periodicity in the angular
dimension of 2π/w. Therefore the system will show spirals with as many arms as circulation w in
the ring. In this way is possible to determine the circulation state of the system by simply counting
the number of arms of the spirals in the TOF interference pattern. Fig. 2.6 shows the interference
pattern obtained for different circulations.

2.4.2 Persistent currents in the BEC-BCS crossover
In the study of persistent currents we mainly concentrate in the in three regimes of fermionic super-
fluidity, whose values of 1/kFas are reported in Tab. 2.1.
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B 1
kF a

BEC 702 G 3.6
UFG 834 G 0.0
BCS 862 G −0.4

Table 2.1: Values of 1/kF a and of the corresponding magnetic field B for the three regime of fermionic
superfluidity studied in the persistent currents topic.

The interference measurement proposed above is a good method for the determination of the
circulation state of the system. However, it has been observed that the interference pattern in fermionic
superfluids strongly depends on the value of 1/kFas [56]. In particular, increasing the magnetic field
B, the visibility of the interference drops down very quickly as soon as we reach the strongly interacting
regime |1/kFa| < 1, preventing the direct use of the interference method for the study of persistent
currents in the unitary and the BCS regimes, as in the strongly BEC regime.

The BEC regime we studied is characterized by 1/kFa > 1. As a consequence the interference
pattern is well visible in this condition. By contrast, in TOF measurements in the UFG and BCS
regimes no spirals is present in the interference pattern. In order to study of persistent currents in
this regimes, we first excite circulation states at the corresponding magnetic field. To obtain the
circulation state, we perform an adiabatic sweep of the magnetic field in 50 ms and after other 10 ms
of equilibration, we do a TOF measurement. The target magnetic field of the sweep is set to the one
of the BEC regime, for which the interference pattern is well visible.

This protocol allows to detect of presence of currents in the BEC-BCS crossover. In order to study
the persistence of the currents, the detection is performed with the following protocol. After the
excitation of current of the wanted circulation w, the system is let evolve for a variable holding time
t. After the evolution a TOF image is taken. As I have just explained, in the UFG and BCS regimes,
after the time t we sweep the magnetic field to the BEC regime, and the TOF imaging is realized after
other 60 ms. The holding time t is varied from few milliseconds to few seconds. Persistent currents
in the sample are observed up to w = 8 in the BEC and UFG and up to w = 6 in the BCS regimes.
For this value of circulation, no decay of w is observed for holding time below or of the order of the
typical lifetime of the sample in the different regimes. Due to the low temperature reached in this
experiment, collision between atom and interaction with the laser that create the trap can easily excite
atom out of the condensate. As the condensed atom number decrease, the visibility of the interference
pattern become worst. Therefore the persistent of currents are detectable as long as the contrast of
interference fringes is sizeable.
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Figure 2.7: Time evolution of the average winding number w for a system initially prepared in w = 1. The
circulation is stable up to 3 s. For longer holding time a small dacay of the current is observed. For longer
time circulation starts to decay. However this timescale correspond to the typical lifetime of the sample in the
UFG regime.

2.4.3 Long time behaviour
As we already pointed out, quantized persistent currents in a ring are metastable states, corresponding
to local minima of the free energy. The absolute minima correspond to the state with w = 0, thus to
a state in which the system is still. It is therefore interesting to study the timescale for the decay of
this metastable states, in other word, to pick out how long persistent are these currents. For study
this, we analysed the time dependence of the winding number in the unitary regime for a starting
circulation of w = 1 for long holding time.

Fig. 2.7 shows the time evolution of the winding number of the system, obtained from the average
of 20 repetition for each value of the holding time t, error bars are the standard deviation of the mean.
The circulation is stable up to 3 s. For longer holding time a small decay of the current is observed.
However, this time are on the order of the system lifetime in this regime, therefore this supercurrent
is persistent up to the life of the sample. For larger holding time the condensed atom number is very
low.
As is shown in Fig. 2.8 the interference pattern for holding time larger than 3 s is not well defined and
his low visibility make the circulation state difficult to determinate in this case. However, in mostly
of the case the circulation state is observed to survive also up to 5 s. Finally, Fig.2.8h shows the TOF
image of a particular repetition for a holding time t = 6 s for which the interference pattern reveals
that the circulation is still present in our sample. This long time behaviour can be important for
future investigation or technological implementations
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(a) 0.05 s (b) 0.5 s (c) 1.0 s (d) 2.0 s

(e) 3.0 s (f) 4.0 s (g) 5.0 s (h) 6.0 s

Figure 2.8: Time evolution of the interference pattern in the 1 circulation case in the unitary case. Imaging
is performed after a sweep to the BEC regime. Subcaptions indicate the holding time between the phase
imprinting procedure and the starting of the sweep. Spirals are well defined up to 2−3 s. Data of 4 s and
5 s are not really reliable for the low contrast of the interference pattern. However, some images reveal the
persistence of circulation up to this time.

2.5 Additional effects of the phase imprinting
The phase imprinting method allows to excite persistent currents with a high degree of reproducibility
and tunability. However, the practical implementation in our system has some further effects due to
technical imitations with respect to the ideal case method described above. The most important are
the creation of a density depletion and the nucleation a vortices immediately after the imprinting
procedure.

2.5.1 Density depletion
If an image is taken a few microseconds after the phase imprinting procedure, a depletion and an
accumulation of the density appear close to the gradient discontinuity. The origin of them rely on
the actual intensity profile of the DMD for imprinting procedure. As we already explained, a linear
increase of the intensity profile moving in the angular direction θ, is required. Therefore the light
go from I = 0 at θ = 0 to his max value Imax for θ = 2π; around the position θ = 0 = 2π a jump
discontinuity of the intensity is required. Obviously this is impossible to achieve experimentally, due
the finite resolution of the system. As a result, the maximum of the intensity is connected to the
minimum through a gradient with opposite sign respect to the one properly used for the imprinting
procedure. As a consequence the imprinted phase will induce to the atoms in this region a velocity in
the opposite direction respect to the desired rotation. To avoid this problem the presence of a barrier
in proximity of the antigradient has been proposed [50]. However the high resolution of our system
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(a) 1 gradients (b) 4 gradients

Figure 2.9: Density profile of the sample observed immediately after the phase imprinting procedure. Due
to the finite resolution of the imaging system, the imprinting pattern present an antigradient profile between
the maximum and the minimum intensity. The atom in this region are excite with high velocity. As a result,
a density depletion and a corresponding accumulation are observed after the imprinting procedure. The non
homogeneity of the system disappear in a few ms. In this images are show the effect of the imprinting pattern
with n = 1 (a) and n = 4 (b) gradients for the BEC regime.

allows to reduce the problem concentrating this antigradient in a small region of ∆φ ∼ 0.2rad and
we succeed in creating persistent currents without the use of a barrier. However, the antigradient
is much sharper with respect to the imprinting gradientand creates a depletion and a corresponding
accumulation of density. As it is expected for longer imprinting time , a deeper depletion (and a
larger accumulation) is observed. Fig. 2.9 shows this effect for an imprinting time of 100 µs in the
BEC superfluid for different number of gradient used in the imprinting procedure. For larger gradient
number, the system is more perturbed, and therefore we expect the realization to be more similar to
the theoretical protocol for low gradient number. The density perturbation disappears in few ms [45].

2.5.2 Vortices nucleation from phase imprinting
A more problematic additional effect generated by phase imprinting is the creation of vortices in the
ring. The decay of the density depletion generated by the antigradient is followed by the formation
of density waves in the sample. This density excitations are able to create vortices close to the inner
radius of the ring, Despite they do not affect the persistence of the currents, their presence can be
a problem during the investigation of the vortices formation in case of supercurrents decay or in the
realization of the quantum Kelvin-Helmholtz instability that are presented in the next chapters.

In Fig. 2.10 it is shown the number of vortices arising from the imprinting procedure for different
∆t. Data are taken 20 ms after the first pulse, for an imprinting pattern with one gradient. Data
relative to the cases in which one pulse (green curve) and two pulses separated in time by 10 ms (blue
curve) are performed. Data are obtain from 20 repetition of the measure. Point are obtained from
the average value of the observed number of vortices, the error is the standard deviation of the mean.
The number of this ’spurious vortices’ is observed to increase for longer imprinting time. Moreover
this number in the two pulses case is approximately double respect to the single pulse case. Anyway,
the imprinting procedure creates vortices even for low values of ∆t. The creation of vortices from
the imprinting procedure has been confirmed by numerical simulations. However,in this case, vortices
formation is observed only for imprinting time able to excite circulation states w > 4.
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Figure 2.10: Number of vortices in the ring after an imprinting time ∆t. The green and blue curve represent
respectively the cases in which one and two imprinting pulse are performed. In both the single gradient
pattern is used. An increase of the number of vortices for longer imprinting time is observed. Anyway,
Spurious vortices are present even for low values of ∆t. Images are taken 20 ms after the first pulse.

Figure 2.11: Exponential decay of the number of vortices in the sample arising from the imprinting procedure.
The legend indicates the imprinting time corresponding to different colours. An exponantial fit ∼ e−t/τdecay

is performed, the resulting τd is around ∼ 100 ms for the three cases. After 300 ms the average number of
spurious vortices are below 1 for all the cases.

However, as shown in Fig. 2.11 the number of vortices in the ring is observed to exponentially
decreases in time. Here the experimental data of the number of vortices in the external ring as a
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function of the holding time t for different imprinting time are plotted: 250µs (the green circles in
the plot), 500µs (the light blue circles) and 650µs (the dark blue circles). In all the three case the
number of spurious vortices is observed to decay exponentially with a decay constant τd on the order
of 100 ms. Is important to notice that after 300 ms the average number of spurious vortices are below
1 in all the cases.
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Figure 2.12: Evolution of the winding number in the BEC superfluid for different initial circulation 〈w0〉. The
maximum stable circulation is observed to be 〈w0〉 = 8. Higher values of initial circulation decays to this
values. The light blue curve show the behaviour of an state in the initial circulation of 〈w0 = 10〉. An sigmoid
fit is performed. The circulation of the system is observed to decay in tens os ms. The green and the dark
blue lines correspond to 〈w = 8〉 and 〈w = 4〉 respectively. Each point is obtain from the average of ∼ 15
experimental realization and the error bars are the standard deviation of the mean.

2.6 Tuning the Ring Geometry
The realization of the ring-trap and phase imprinting by the a light pattern created by a DMD gives
us the possibility to tune some parameters of the system. In particular we can choose with an high
degree of freedom the values of the inner and the outer radii of the ring, and consequently its width.
In this section, I present the geometry effects on the stability of persistent currents. In particular I
show how different parameters affect the maximum winding number excitable in the ring in the BEC-
BCS crossover. In the last part I show how it is possible to excite persistent current in a thin-ring
configuration, that could be important in future investigations, in particular for the study of physics
in low dimensions.

2.6.1 Maximum winding number for different geometries
In the previous section it is shown that we can excite persistent currents in the ring up to w = 8 for
the UFG and BEC regimes, w = 6 for the BCS regime. However, it is also possible to imprint higher
circulation states, but in this case the flow is not persistent and a decay in a timescale of ten of ms is
observed. Fig. 2.12 shows the average winding number evolution in time for different initial circulation
states w0 in the BEC regime. While states with circulation w ≤ 8 are observed to survive up to a
timescale comparable to the sample lifetime, for larger w0 the circulation decays to the maximum
persistent value. Data are obtained from the average of ∼ 15 experimental realizations, error bars
are the standerd deviation of the mean. The light blue curve in this figure shows the evolution in the
w0 = 10 case. A sigmoidal fit is performed and a decay constant τdecay ' 40 ms is obtain.

This results are relative to the geometry explored in the previous section, consisting in a inner
radius of Rin ' 10µm and an external radius of Rout ' 20µm, the width of the ring is therefore
∆R ' 10µm. In order to understand how the geometrical parameters can affect the stability of the
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Figure 2.13: Measured average circulation 500 ms after the imprinting versus the imprinting time ∆t. The
results are relative to a pattern with 4 gradients. Different colours correspond to different inner radius of the
ring Rin. For each geometries a saturation of w is observed.

currents in the ring, and in particular the maximum persistent circulation in the system, we study the
persistence of the currents in different configurations. This study is important for future experiment,
setting persistent currents properties in different geometrical configurations. In order to determine the
maximum persistent circulation in a given geometry, we measure the winding number of the system
500 ms after the phase imprinting procedure in the BEC regime. We perform the same experimental
procedure describe in the previous section. During the evolution time, states with winding number
above the maximum persistent circulation are expected to decay. Considering the typical timescale
pointed out by the analysis in Fig. 2.12, we detect the final winding number by the observation of the
interference pattern 500 ms after the phase imprinting procedure.

The results show that the maximum persistent circulation do not depends on the outer radius of
the system and only weakly on its width. On the other hand it strongly depends on the inner radius is.
Fig. 2.13 shows the number of circulation in the system for different imprinting time ∆t in the BEC
regime, the phase imprinting protocol is performed using a four-gradient intensity pattern. Different
colours correspond to different inner radius of the system. For each dimension of the inner disk, the
measured winding number saturates for large values of the imprinting time. This is caused both by
technical limitation of the phase imprinting (for long ∆t the condition of small imprinting time is not
satisfied) and, principally, for the decay of higher imprinted circulation. In fact during the evolution
time circulation above the maximum persistent currents decays and we observe always the same final
w state.

From Fig. 2.13 it is evident that bigger inner radii allows the creation of persistent currents with
larger circulation in the system. This effect can be understood considering the velocity dependence on
the radial coordinate r. The presence of a maximum winding number is related to the critical velocity
of the system, whatever is the excitation causing the velocity dissipation. Higher circulation states
correspond to higher velocities of the atoms flowing in the ring. Due to the velocity scaling as 1/r, for
a given circulation, the velocity field has a maximum of the modulus in correspondence of the inner
edge of the ring. Therefore critical velocity of the system must be compared with the velocity field
nearby the inner ring. Increasing the inner radius Rin, a given circulation w corresponds to a lower
velocity and thus the critical velocity is reached for larger circulation w states. With this measure we
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(a) Circulation after 500 ms versus imprinting time for
different inner radius in the UFG regime

(b) Circulation after 300 ms versus imprinting time for
different inner radius in the BCS regime

Figure 2.14: Observed circulation versus the imprinting time ∆t in the UFG (a) and BCS (b) regimes, 500 ms
and 300 ms after the imprinting respectively. The results are relative to a pattern with 4 gradients. Different
colours correspond to different inner radii Rin. Also in these regimes we observe a saturation of w, and an
increasing of the maximum persistent circulation as the radius of the system is increased.

underlined the possibility to excite persistent currents in the system with winding number w > 8 by
increasing the inner radius of the system.

2.6.2 Geometry effect over the BEC-BCS crossover
The previous results are relative to the BEC case. However, excitation of circulation state above the
maximum persistent one are possible and they are observed to decay in a similar way to the BEC case
shown in Fig. 2.12. The possibility to observe this high circulation states suggests that the sweep
of the magnetic field implemented in order to obtain a visible interference pattern do not affects the
maximum persistent circulation in the BCS and in the UFG. In particular, for the UFG case, it is
possible to argue that, since the maximum observed persistent circulation w = 8 in the same of the
BEC regime, it is possible that during the sweeping of the magnetic field an higher circulation in the
UFG regime is mapped in a w = 8 in the BEC. However, the experimental observation of w > 8 state
in the UFG performing the same sweep of the magnetic field implies that this is not the case. Also in
UFG and BCS regimes, we measure the circulation for different imprinting time after a long holding
time for a four-gradient imprinting pattern changing the radius of the system. The results are shown
Fig. 2.14. Also in this case we observe a saturation behaviour and an increasing maximum persistent
circulation as the inner radius becomes bigger.

2.6.3 Persistent current in a thin ring
As we already mentioned, the maximum persistent circulation state depends mainly on the inner radius
of the system. However an effect is observed also changing the width of the system. In particular
the maximum persistent w remains constant until the ring is squeezed to sufficiently low width. In
this last part of the chapter I will show that is possible to excite persistent current even in a thin
superfluid ring by phase imprinting.

Fig. 2.15a shows the thinnest ring we are able to produce with the DMD pattern. In this con-
figuration the system is not homogeneous in the redial direction, but rather can be described by a
Gaussian with a full width at half maximum of 2.7µm. Performing the same sample preparation and
imprinting protocol as in the larger ring case, we observe that is possible to create circulation state
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(a) Image of the thinnest ring we
can realize from the DMD pattern

(b) w = 1 (c) w = 2

Figure 2.15: (a) In situ images of the thinnest ring we are able to create with the DMD pattern. In the radial
direction the system is described by a Gaussian with FWHM = 2.7 ms. This value is on the order of the
typical size of the pairs in the strongly interacting regime. (b)-(c) Interference pattern obtain by circulation
states with w = 1 and w = 2 for this geometry.

with w = 1 and w = 2 even in this extreme geometry. Moreover this circulation are observed to be
persistent in time. Fig. 2.15b-c show the interference pattern obtained for this two circulation states
in this geometry.

The typical size ξ0 of the pairs in the strongly interacting regime is on the order of the width
in this geometry. In particular ε0 ∼ 1/kF ' 0.3µm in the unitary regime. In the BCS regime
ξ0 ∼ 1/kF e−π/2kF as ' 0.6µm for kFas = −0.4.

In this case, the system is in a quasi bidimensional configuration (note that the dimension of the
z direction is still present). The observation of persistent current in such geometry is important for
future investigation on one dimensional out-of-equilibrium dynamics [57, 58]



42CHAPTER 2. EXCITATION OF PERSISTENT CURRENTS IN FERMIONIC SUPERFLUIDS



Chapter 3

Supercurrents instability against an
obstacle

In the previous chapter we described the protocol used in our system to create on demand circulation
states. Observing the persistence of the currents through the ring, we also observe the superfluidity of
the system across the BEC-BCS crossover. However, as we point out in the first chapter, superfluidity
in a system can occur for velocity of the fluid below the critical velocity vc, that depends on the
excitation spectrum of the system. In particular, it is not obvious that the dissipative mechanism
reducing the flow of the system for v > vc is the same for different type of superfluidity: as we saw
in the first chapter, without considering vortices formation, in the BEC-BCS crossover the maximum
superfluid velocity is limited by sound wave excitations in the BEC side and breaking of Cooper
pairs in the BCS regime. The investigation of the type of excitation limiting the flow is particular
interesting. In order to understand the decay process, we test the persistence in the case in which an
obstacle in inserted in the ring. Decay of persistent currents has been already observed in bosonic
superfluids in a ring trap. With our system we are able to study the decay mechanism in different type
of condensed system. Despite the universality of the superfluidity in the three regimes, differences can
emerge in the decay process, from the value for the critical velocity to the dissipative excitations.

In this chapter I present the results obtained from the study of the supercurrent behaviour across
the BEC-BCS crossover in the presence of the obstacle. In the first section, I will describe the
experimental protocol used for this experiment, and I will present the effect of the obstacle on the
time evolution of the circulation w in the BEC-BCS crossover. In the second section I will focus on the
observed excitations causing the dissipation in the system. In the last section, I will discuss further
consideration about the decay mechanism.

3.1 Current dynamics in the presence of an obstacle
To probe the stability of the currents in the presence of an obstacle, the experimental protocol is
slightly enriched respect to the one described in the previous chapter, in order to use the DMD also
for the realization of the obstacle. In particular, we perform the same protocol described in section
2.3 (see Fig. 2.5), using a stopping barrier to prevent a flow from the loading from the cigar and
obtain a configuration with a ring and an inner disk as is shown in Fig. 2.5e. Starting from this
configuration we excite circulation state on the system using the phase imprinting method to obtain
the desired w in the system. At this point we adiabatically ramp up an obstacle with a series of 26
DMD images, separated by 0.5 ms in time, for a total duration of the ramp of 13 ms. By considering
that the light from the DMD create a repulsive potential, the obstacle is obtained by illuminating a
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(a) (b)

Figure 3.1: (a) Typical light pattern created with the DMD in order to add an obstacle to the system.
Considering the repulsive potential created by this light, the obstacle is realize by illuminating a small region
in the ring. (b) Insitu images of the atomic sample with the obstacle on. The image is taken in the BEC
regime. This figure is obtain from a single absorption imaging.

small region in the ring; in particular the obstacle is placed in the medium radial position between the
inner and the external radii. At this point we let the system evolve, with the obstacle on. The holding
time considered in the following is counted starting from the last image of the ramp, namely when
the obstacle is completely ramped up. When measurements are performed on the BEC regime, after
the chosen holding time, we directly perform a TOF images in order to detect the circulation from
the spiral interference pattern obtained from the overlapping between the external ring and the inner
disk. However, as we pointed out in the previous chapter, the same protocol is not applicable directly
in the UFG and BCS regimes, because no interference pattern is visible in this cases. Moreover,
also the sweep of the magnetic field in 50 ms performed in the study of the persistent currents is not
directly applicable. In fact, the presence of the obstacle during the slow magnetic field sweep can
affect the experimental results. In particular if the system with a circulation w in the BCS or UFG
regimes do not present dissipation even in the presence of the obstacle, it can occur that during the
changing of the magnetic field, a circulation decrease occurs, if the same w is not stable in the BEC
regime when the obstacle in on. This effect is amplified considering the fact that the absolute height
of the obstacle in the UFG and BCS regime is bigger respect to the BEC case. To solve this problem
an additional step is implement in the DMD routine: after the desired holding time, we remove the
obstacle from the system by adiabatically ramping it down. Also in this case, a series of 26 images,
one every 0.5 ms, is used. At the end of this process the obstacle is not present and the current in
the system is persistent1. At this point the sweep of the magnetic field to the BEC side is performed
and the circulation is obtain from the interference pattern. Considering that the maximum persistent
circulation takes the minimum value, w = 6 in the BCS regime and it is the same in the UFG and
BEC (w=8), there is no possibility that the sweep affects the results of the measure. The waiting
time between the end of the ramp used to remove the obstacle and the beginning of the magnetic
field sweep is not relevant, because in this configuration the currents are persistent. This time is set
to 30 ms.

Fig. 3.1a shows the pattern shone by the DMD on the atomic sample during the holding time
when the obstacle is on. This images is observed by comparing imaging the DMD display on a ’service’

1This is true considering an initial circulation w0 below or equal to the maximum persistent circulation observed in
the previous chapter. In fact, if decay occurs during the holding time with the obstacle on, the final circulation after
the obstacle is removed can be only below the initial one, and therefore persistent.
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B 1/kFas µ/h̄ V0/µ V0/EF
BEC 702 G 3.6 1.0 kHz 0.8 0.1
UFG 834 G 0.0 8.9 kHz 0.4 0.2
BCS 862 G −0.4 10.0 kHz 0.26 0.2

Table 3.1: Intensity of the obstacle respect the chemical potential and the Fermi energy for the three cases of
1/kF as studied.

camera in the projection setup [42]. Thanks to the high resolution of the system, we are able to create
a circular obstacle with dimensions comparable with the characteristic length of the superfluid by the
use of the DMD. This is important when we want to compare the observed critical velocity with the
Landau criterium prediction: in particular it is predicted the the measured critical velocity approaches
the Landau critical velocity in the case of vanishing perturbation in the system [59]. The light pattern
creating the obstacle has a Gaussian shape, with an approximately round profile of full width at half
maximum (FWHM) of 1.6µm. This dimension must be compared to the healing length ξ of the
system, namely the typical length scale in which the density of the system relaxes to the perturbation
given from an external potential. The healing length consists also in the minimum length scale for
the change in the phase and density of the system. For a BEC superfluid, ξ = 1/

√
8πnas. At the

unitarity, ξ ∼ 1/kF , and increase moving towards the BCS regime following ξ ∼ 1/kF e−π/2kF as .
Typical healing length in the three regimes are on the order of 0.1 − 1µm. Therefore the external
perturbation inserted in the ring is comparable to this scale. The intensity of the obstacle is chosen
in order to be comparable to the chemical potential of the system in BEC superfluid and increased
while moving to the strongly interacting regime to observe the instability despite the higher chemical
potential. In fact this quantity depends on kFas. In particular µ increases as we move to bigger
magnetic field. In particular the chemical potential in the three regimes is 1.0, 8.9 and 10.0 kHz in
terms of h̄, respectively in the BEC, UFG and BCS regime. Therefore the intensity is increased in
the experiment passing from the BEC to the BCS. Table 3.1 are showed the values of the chemical
potential, and the peak intensity of the obstacle V0 respect to the chemical potential and to the Fermi
energy.

In order to calibrate V0 we realize the following procedure in the BEC regime. By imaging, we
measure the atom number in a small region around an obstacle shone by the DMD light for different
values of the intensity. As this intensity is increased, the atom number is expected to decrease.
However the curve af the atom number versus the intensity of the light is expected to shows a kick
for V0 = µ. In this way is possible to calibrate the intensity of the obstacle in term of µ [60]. However
the calibration obtained from this protocol is not particularly precise, due to the small size of the
obstacle.

3.1.1 Current decay

In the previous part of this section it is presented the experimental protocol implemented to study how
the system, excited in a persistent circulation state, evolve in the presence of an obstacle across the
ring. The first effect observed is that, in some cases, the circulation state decays and then stabilizes
to a lower value of w; therefore a dissipation occurs. In particular we track the value of the circulation
for different holding time t for which the obstacle is kept on the system; in the following a detailed
discussion of our observation in the three superfluid regimes investigated is observed. In the last part
of this section the results for all the three regimes are discussed.
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Figure 3.2: Time evolution of the circulation in the BEC regime for different initial circulation w0. An
exponential decay of the circulation is observed for w0 > 5. The blue plot corresponds to an initial circulation
slightly above 5 and a small decay is observed in this case too.

BEC regime

In the BEC regime we test the persistence of the currents by adding an obstacle of intensity V0/µ = 0.8.
Considering the maximum persistent circulation of wmax = 8 in this regime, we investigate the current
stability for circulation states with w0 ≤ 8.

Fig. 3.2 shows the results relative to the BEC regime. We check the circulation states of the
system versus the holding time with the obstacle acting on the system for different initial circulation.
For low circulation states no dissipation is observed, and therefore they are not reported in the plot,
while for higher w0 the winding number is observed to decrease in time. In particular, the system is
stable despite the presence of the obstacle up to initial circulation states of w0 = 5, while for w0 > 5
an exponential decay is observed. Each point is obtained from the average of the circulation of at
least 20 repetition, error bars are the standard deviation of the mean. For w0 ≥ 6 an exponential fit
is performed:

〈w〉(t) = 〈w0〉e−
t
τ + 〈wf 〉. (3.1)

Therefore from these results two quantities are obtained: the decay time τ , namely the typical
timescale in which the system decays to lower circulation states, and the final circulation 〈wf 〉. In fact,
after a first decay, the circulation of the system stabilizes to a final value that shows to be persistent
despite the presence of the obstacle. It is important to notice that this final value is not the same for
all the initial circulation state. Typical timescales of the decay are on the order of τ ∼ 10 ms.

UFG regime

To point out the behaviour of persistent currents in the crossover we perform the same measurement
in the unitary and BCS regimes, considering an obstacle intensity V0/EF = 0.2 in order to induce the
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Figure 3.3: Time evolution of the circulation in the BCS regime for an initial circulation state w0 > 5 in
presence of an obstacle of height V0/µ = 0.2.

circulation to decay and to observe the excitations responsable of the velocity dissipation. In fact this
regimes are expected to be more robust respect to the BEC, because of their highr chemical potential.
the results obtained for the unitary regime show that no decay occurs in this case for any circulation.
For all the value of the initial circulation w0 ≤ 8, w is contant in time and no dissipation is observed.

BCS regime

Finally we perform the measurement in the BCS regime. In this case the obstacle height assuring
a V0/EF = 0.2 correspond to V=/µ = 0.26. The investigation of the effect of the obstacle on the
circulation state is limited for the maximum persistent circulation at state with w0 ≤ 6. Fig. 3.3
shows the time evolution of the circulation in this regime. Dissipation is observed to happen only for
w0 = 6.

General results

The general results of the persistent current decay in the BEC-BCS crossover are shown in 3.4. In
particular here it is plotted the value of the final winding number, 〈wf 〉, versus the average initial
circulation state of the system 〈w0〉. By comparing the results for different regimes we observe that
the UFG superfluid is the most stable one. In this case no dissipation is observed and we are not able
to estimate the critical circulation in the presence of the obstacle.

On the other hand, we observe a dissipation effect in both BEC and BCS regimes. The critical
circulation is wc = 5 in both the case. In Table 3.2 are resumed the corresponding velocities at
the inner radius and they are compared to the calculated speed of sound. Despite the same critical
circulation, due to the different speed of sound cs, the BCS has a lower critical velocity respect to
the sound velocity. In the next section we will explore the dissipative mechanism that induce the
circulation decay.
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Fig. 3.4 shows final circulation state 〈wf 〉 versus 〈w0〉 for the three regimes studied. The grey
line corresponds to a 〈wf 〉 = 〈w0〉. Therefore, when a point is on this line, it indicates that no decay
occurs. Currents with w0 ≥ 6 in the BCS and BEC regime are far apart from this line, signature
that they undergo to dissipation. Moreover it is important to underline that the final circulation for
w0 > 5 in the BEC regime is not constant. In particular, it decreases for larger value of 〈w0〉. This
can appears counterintuitive. In fact, one can argue that the final circulation of the system must be
the one with a velocity next to the inner radius equal to the critical velocity. As a consequence the
same 〈wf 〉 is expected for 〈w0〉 > 5, in contrast with our results. An interpretation of the observed
decreasing 〈wf 〉 is given by numerical simulation , as we will see in the following section.

Figure 3.4: Final circulation state wf versus w0 for the three regime studied when the obstacle acts on the
system. The line indicate the wf = w0 case. The grey circles are results obtained from numerical simulation,
that are introduced in the following section.

B 1/kFa wc vc cs vc/cs
BEC 702 G 5.53 5 2.3 mm/s 5.4 mm/s 0.46
BCS 862 G −0.42 5 2.3 mm/s 14.4 mm/s 0.18
UFG 834 G 0.0 > 8 > 3.7 mm/s 14.1 mm/s > 0.26

Table 3.2: Critical velocity in the presence of an obstacle for the different regimes. wc is the critical observed
circulation in the system, and vc the corresponding velocity in proximity of the inner ring. cs is the speed of
sound.

From the confront between the UFG and BCS regimes, we observe an interesting behaviour.
Despite that in the BCS the obstacle height is lower with respect to the chemical potential, a dissipation
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is observe for lower value of 〈w0〉. This effect demonstrate the presence of dissipative effects linked to
the fermionic nature of the system, like pair breaking mechanism.
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3.2 Vortices nucleation from supercurrent decay

The presence of dissipation in two different regime gives us the possibility to study the type of ex-
citations that make the circulation unstable, namely the excitation related to the critical velocity of
Eq. 1.25 in different type of superfluidity. As it is shown in the first chapter, under certain condition,
the excitation limiting the maximum superfluid velocity are sound waves in the BEC case, while pair
braking in the BCS. Therefore different excitations can be dominant in different regimes. However in
our case the decay process is induced by emission of quantized vortices in both the cases. The process
in which a flow in a channel is dissipated by vortices emission in know as phase-sip.

(a) Nv = 2 (b) Nv = 3

(c) Nv = 4 (d) Nv = 8

Figure 3.5: Images of vortices observed in the ring as a consequence of the circulation decay. The imaging
protocol is described in the main. Vortices appear like holes in the density profile. The images are relative
to the measure in the BEC regime with an initial circulation of 〈w0〉 = 7 and 8. Subcaptions indicate the
number of vortices in the image.
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3.2.1 Vortices detection
In order to detect vortices created as a consequence of the circulation decay, we prepare the sample
without the inner disk. keeping only the external ring. In this way during the expansion, no inter-
ference pattern is formed and this make the vortices more visible. Starting from the sample in the
configuration in Fig. 2.5a, we load the atoms in in a ring, without putting the inner disk. Then the
stopping barrier is removed and we use the phase imprinting protocol to excite the desired circulation
state; doing this, we use the same ∆t for the excitation of the same circulation in the case with the
inner disk, in which we can estimate the value of w.

In order to reproduce the procedure described in the previous section for the study of the circulation
decay, we adiabatically ramp up the obstacle in 13 ms and then we wait a variable holding time t. In
contrast with the protocol described in the previous section, we ramp down the obstacle in all the
regimes. In fact its presence can be confused as a vortex due to the density depletion induced and it
can affect the vortex dynamic during the TOF. In order to detect the presence of vortices we perform
an imaging of the superfluid density after a TOF; vortices appear in the sample as holes in the density.
However, the detection of vortices from a simple TOF expansion is complicated, as during the TOF
the atomic density gets substantially reduced, reducing the contrast of vortices. To maximize the
vortices visibility we perform a more complicated trap release: in particular we abruptly switch off
the TEM0,1, used for provide the vertical confinement on the sample, and, starting at the same time,
we turn off the x−y optical potential created by the DMD light pattern with a linear ramp 1 ms long.
We then let the gas expand in the free space for other 0.5 ms before imaging the density. In this way
we are able to detect vortices with higher contrast.

However, as it is shown in Fig. 2.10, vortices are created also during the imprinting. In order
to be sure that they are no present in the sample during the current decay, we wait 300 ms before
performing the measure. To be sure that this does not affect the results, we verified that the time
evolution of the circulation in the system does not change whether we ramp up the obstacle 300 ms
or 30 ms after the imprinting procedure.

This process is directly applied in the weakly interacting BEC regime. In this case the condensed
fraction of the system is about 85 % and the hole in the density corresponding to the presence of a
vortex is clearly visible. As in the case of the interference pattern, in the BCS regime, the visibility
of the vortices is reduced. The mainly reason is that in this case, quasiparticle excitation, namely
unbounded particle, occupy the empty region in the vortex core. Therefore, we are not able to detect
vortices directly in the BCS regime. Moreover, the procedure applied in the study of the circulation
decay is not applicable in this case. In fact, in that case, we perform an adiabatic sweep of the magnetic
field, relying on the persistence of the currents we want to observe. On the contrary, vortices dynamics
happens in a faster timescale: they tend to exit from the ring in tens of ms and their number is not
constant. Therefore, to detect vortices in the BCS regime, we perform a rapid sweep of the magnetic
field in the BEC regime [61]. In particular, after the ramping down of the obstacle is completed, we
linearly sweep the magnetic field to 702 G in around 5.5 ms. During the last 1.5 ms of this ramp, the
same TOF imaging protocol for the vortices detection in the BEC is used.

3.2.2 Vortices emission
Fig. 3.6 shows the results about the number of vortices observed in the ring at different holding
time t in the BEC regime. In order to quantify the vortices emission we track their average number
〈Nv〉 as a function of the holding time of the obstacle t. The number of observed vortices in the ring
quickly increases in the first 5 − 10 ms and reach a saturation value. This suggests that the obstacle
acting on the superfluid excites vortex nucleation, but that after few milliseconds this formation is
stopped. Furthermore, after ∼ 50 ms, Nv starts to decrease, suggesting that vortices, after a certain
time inside the superfluid, go away from the ring. The measurements are performed for value of
initial circulation w0 for which decay of circulation in presence of the obstacle is observed, with the
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same circulation of Fig. 3.2. Each point is obtained by averaging the number of observed vortices of
twenty repetitions, error bars correspond to the standard deviation of the mean. In order to extract
quantitative information a fit is performed with the function:

〈Nv(t)〉 =
{
Ne(1− e

t
τ1 ) +Ns for t < t0

(Ne +Ns)(e
t−t0
τ2 ) for t ≥ t0

The first part of this formula (t < t0) describes the exponential increase of the number of vortices
observed for low value of the holding time t. From the fit we can evaluate the value of Ne and τ1.
The first represent the value to which the number of vortices tend to saturate; we can interpret this
as the value of the total vortex emitted in the decay process. τ1 simply represent the typical timescale
of the process. Ns is the number of spurious vortices producted in the imprinting procedure, that are
still present also after 300 ms after the imprinting procedure. In all cases Ns < 1

In order to understand the dissipative mechanism responsable of the circulation decay in the BCS
regime, we detect the presence of vortices also in this case. The results are shown in Fig. 3.7. We
realize the measure only for the w0 ∼ 6 case, the only one where we observe the current decay. The
results show a similar trend to the one observed in the BEC case, consisting in an increase of the
number of vortices in the ring and a subsequent decay. This observation demonstrates that the flow
of a fermionic superfluid in a ring moving against the presence of an obstacle can be decrease by the
formation of vortices also in the BCS regime.

Dissipative process via emission of vortices have been already observe in superfluid Helium [62, 63]
and in simply-connected condensed gases [64], as well as in toroidal Bose-Einstein condensates [11].
Phase-slip as a possible process of dissipation in toroidal Bose-Einstein condensed has been studied in
theoretical work [65]. In this type of process, vortices and antivortices enter in the sample reducing
the velocity of the system and provoking the phase jump necessary to reduce the circulation. The
Feynman’s approach to the critical velocity (Eq. 1.30) takes into account this phenomena, and in some
cases it reveals a good way to estimate the critical velocity [12], although this formula set only the
order of magnitude for vc [11]. However, this formula is obtained by simple energetic considerations.
Vortex nucleation in the system must instead be driven by dynamical excitation on the surface of the
system. As a consequence the critical velocity can increase with respect to the Feynman approach,
in order to consider the energetic threshold given by the formation of the surface mode [66]. An
estimation for this critical velocity in non-homogeneous gases in harmonic trap is derived in [67]and
an application to toroidal Bose-Einstein condensate is obtained in [68], where the expression for the
critical velocity is the same, but, due to the 1/r decay of the velocity field, the critical velocity will
be reached in the inner part of the system for lower circulation states. Therefore despite phase slip
can occur both with antivortices entering in the system from the external radius or vortices the inner,
this last process limits the critical velocity to lower value.
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Figure 3.6: Number of vortices Nv in the sample as a function of the holding time t in which the obstacle
is on in the BEC regime. The data are relative to the measure for which a decay is observed. After a fast
increase, of the vortices number stabilize to a maximum value. Successively, a decay process is observed. The
lines represent fits of the data.

Figure 3.7: Number of vortices Nv in the sample versus the holding time t in which the obstacle is on in the
BCS regime for an initial circulation w0 = 6. As in the BEC case, the plot shows a fast increase of the number
of vortices followed by an exponential decay
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Figure 3.8: Circulation in the ring in the presence of a vortex. Calculating the circulation over the blue path,
in the inner part of the ring respect to the vortex position, we circulation reduced by one respect to the one
calculated over the red line. This can explain how the generation of vortices can reduce the circulation of the
system

3.3 Dissipative mechanism
To understand how the generation of vortices can reduce the circulation of the system we consider
the situation showed in Fig. 3.8. In this plot, the superfluid is trapped inside a ring, as in our case
and a vortex of charge l = 1, represented by the black circle in the upper part of the ring, is present
inside the system. Let’ consider the circulation of the velocity in two side of the superfluid: one in
the inner part of the ring respect to the vortex position (the blue curve in the plot c1+c2), the other
in the outer part of the sample (the red curve c3+c4). Considering w and l positive for anticlockwise
flow, the circulation of the velocity field calculated for the green curve c5 around the vortex itself is:

Γc5 =
∮

c5
vds = h

2m (3.2)

corresponding to the circulation of a vortex with charge one. Similarly, we can also calculate the
difference between the two circulation discussed above. In particular, considering the curve c1 and c3
as the same, this difference is

Γc3+c4 − Γc1+c2 = Γc4 − Γc2 =
∮

c4
vds−

∮
c2

vds (3.3)

The combination of the last two integral is equivalent to the integral over the curve c5. Therefore we
obtain that

Γc3+c4 = Γc1+c2 + h

2m (3.4)

Therefore, if the circulation calculated in the inner part of the system it has a value corresponding to
a winding number wi, in the outer part of the ring we have a winding number we = wi + 1. Note that
this result is intuitively understandable considering that the velocity field has opposite directions, on
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(a) (b)

Figure 3.9: (a) Value of total emitted vortices Ne fas a function of the circulation reduction during the decay.
The number of vortices is observed to be almost the same of the number of lost circulation. (b) Decay rate Γ
of the circulation decay. The grey circles are results obtained from numerical simulation.

the opposite sides of the vortex. In the following I explain how this behaviour can be used in order
to understand the lowering of circulation via vortices emission. We consider an initial situation of the
superfluid in an unstable circulation state win. Due to the presence of an obstacle, the circulation
decay and a vortex is emitted. We can consider that the vortex is formed from the inner surface of the
system. When the vortex is not completely inside the ring, the circulation of the velocity is winh/2m
everywhere. However, as soon as the vortex enters in the superfluid we can apply the consideration of
the circulation states just described. In particular the circulation calculated for a curve passing from
the inner part of the vortex will give a winding number of w = win− 1, while for a curve passing from
the outer part we obtain w = win. During its evolution the vortex exit from the ring through the
outer surface. At this point every circulation is calculated in the inner part respect to the vortex and
the system is in a state with winding number w = win−1. In this way it is possible to understand how
a vortex that enters in the ring from the inner surface, crosses all the ring and finally exits from the
outer surface is actually able to reduce the circulation state of the system. The same effect is obtained
in the case of an antivortex (with charge l = −1, namely a vortex with the same velocity field of the
l = 1 case but flowing in the clockwise direction) coming from the external surface that exits from the
inner surface after having crossed radially all the system. However, as we already mention, surface
instability necessary for the creation of vortices from the inner radius occurs for lower circulation
state, as the velocity in this region is higher.

Fig. 3.9a shows the number of total emitted vorticesNe obtained from the fit of data in Fig. 3.6 and
3.7 versus the number of lost circulation during the decay process for the same initial circulation state
w0. We observe that the total number of vortices is always lower than w0−wf . However they are quiet
similar. The results obtained corroborate the idea of the decay process described above. In particular
each vortex emitted correspond to approximately the decrease of one circulation. Furthermore, the
timescale τ relative to the decay of circulation is usually bigger respect to the corresponding timescale
for the vortices nucleation τ1. The slight discrepancy can be explain in different ways. First, we need
to consider the experimental protocol used to detect vortices. In fact the 13 ms employed for ramping
down the obstacle, are enough to perturb the vortex dynamics. Moreover the timescale needed to
reach the saturation of the number of vortices is of the same order of the decay timescale τ2 in which
vortices can escape from the ring. Therefore it is possible that some vortex is already gone away from
the system in the time necessary to reach the saturation, inducing a lower estimation of the total
emitted vortices by Ne. Finally is not obvious that the system behaves in the same way with and
without the inner disk and this could affect the number of emitted vortices, because of the differences
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in the boundary conditions on the inner ring radius. In Fig. 3.9b it is shown the obtained decay rate
for the different initial circulation states versus the number of emitted vortices. An increase of this
quantity in observed for larger number of emitted vortices and the timescale in the BEC and BCS
regimes look consistent.

In order to understand more deeply the dissipative process and describe the microscopic mechanism
of vortex emission, Gross-Pitaevskii simulation has been realized by Kljedja Xhani. In particular a
system with the same geometry has been studied, using the experimental parameters. Also in this
case a circulation state is created in the system by phase imprinting, employing the same imprinting
potential of the experiment. To compare directly the data obtained from numerical simulation to the
experimental ones, the same interferometric technique is realized in order to detect the circulation
state.

The small dimension of the obstacle makes the calibration of V0/µ not extremely precise. Therefore,
numerical simulation are performed for different value of V0 ∼ µ. To find the V0 that best fits the
experimental data.

In the simulation, the decay is observed to occur for initial circulation w0 ≥ 6, comparable with
the critical value for the experimental BEC wc = 5. In the case of w0 = 7 and w0 = 8, the circulation
is observed to decay by the emission vortices from the inner part of the ring, proving our consideration
about the decay mechanism process. It is important to notice that the simulations confirms that the
number of emitted vortices is well described by 〈Ne〉 = 〈wf −w0〉. Furthermore, also in simulation it
is observed that higher circulation states decay to lower 〈wf 〉. Probably this is caused by the presence
of a bigger number of vortices in the system.

The numerical results provide a way to understand the mechanism leading to the formation of
the vortices. For w > wc the density profile reveals the presence of low-density channel between the
obstacle and the inner radius of the ring. In the same part of the system, the velocity is observe to
increases. At the same time, the velocity field in this region is observed to overcome the local speed
of sound2. When this happens, a vortex is formed in the low density channel from the inner part of
the ring, and the phase slip occurs, reducing the circulation of the system. After the creation of the
vortex the velocity in the region is reduced in line with the reduction of the gradient of the phase of
the system related with the phase slip. However the velocity can increase again when the vortex is
gone away from the region of the obstacle. In this case, if the velocity overcome again the speed of
sound, a new vortex nucleation can occur. Also in the case of w0 = wc an increase of the velocity and
a decrease of the density is observed. However, in this case the resulting velocity is not high enough
to exceed the local speed of sound and the phase slip process does not occur.

As we pointed out above, the vortex creation in the superfluid must be driven by the creation of
surface mode on the inner or the outer part of the ring. In this case the presence of the obstacle
create a region between itself and the inner ring of the obstacle where the velocity field exceeds the
local speed of sound, allowing the creation of wave in the system and exciting the inner surface in
proximity of the obstacle position.

2Note that the velocity field bigger than the critical velocity is obtain by two factors: first, the increase of the velocity
induce by the obstacle in the low-density channel, second the reduction of the sound velocity due to the lowering of the
density



Chapter 4

Currents instability in a two-ring
geometry

The high degree of manipulation om the potential acting on the atomic sample offer by the DMD,
allows to explore more complex geometries. A natural improvement, respect to the potential studied
in the previous chapter, is the realization of a superfluid trapped in double concentric rings separated
by a barrier in order to study dynamical instabilities of the currents in this configuration. In this
chapter I will present the characterization of this geometry. In the first section, I will describe the
potential used for this study and the protocol used for imprinting persistent current in the two rings.
In the second section I will present what happen to the system when the barrier between the two ring
is removed. This process allows the formation of a crystal of vortices in the separation surface. This
state of the system represents the configuration in which a dynamical instability is observed. This
study is realize in order to explore the dynamical instability of the vortices array, that cis related to
the Kelvin-Helmholtz instabilities in classical fluids. In the last part of this chapter I will show some
preliminary observation and results of this instability. All the results showed in this chapter are obtain
in the BEC regime.

4.1 Double Ring Potential
To realize the double ring potential with the DMD we use the light pattern showed in Fig.4.1a. A
bright circular region creates a barrier between the two superfluids rings, that will be confined in
the two black regions, as the potential created with the DMD is repulsive. An inner bright disk
provide a repulsive region with no atoms in the centre of the sample. The most internal radius is
Rin = 9.95µm, while the most external one is Rout = 44.77µm. The barrier designed in order to
be in the middle of these two radius. Fig. 4.1b shows the cut along the x direction in the centre
of the intensity profile. As we can see the intensity of the circular barrier between the two rings is
less intense respect to the inner and the outer confinement potentials. However, once projected onto
the atomic cloud, the barrier height this is well above the chemical potential of the BEC, creating a
region with zero density. Therefore this intensity is sufficiently high to separate the two condensed
rings. The parameter of the DMD necessary to create this barrier has been chosen in order to be the
minimum allowing the existence of persistent currents in the two rings independent from the other
ring. In order to characterize the circular barrier, I start from the images in Fig. 4.2a, showing the
same intensity profile of 4.1a. The system is analyzed in polar coordinates. In particular 4.1b shows
the intensity profile in polar coordinates r and θ, where r = 0 correspond to the red point in the
Fig. 4.1a. Then, selecting a radial region around the barrier, I perform a Gaussian fit of the intensity

57
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(a) (b)

Figure 4.1: (a) Light pattern created with the DMD for the realization of the double ring superfluid.(b) Linear
cut of the potential along the centre along the x direction.

profile:
V0e
− 1

2 ( r−Rb
σ )2

. (4.1)

The results for the fit for different angular position. The results show some fluctuations are shown
in Fig. 4.2c.The barrier parameter show a dependance on θ. Therefore data obtained for different
angular position are averaged. The resulting value for the circular barrier are:

V0

h̄
= 3.8±0.3 kHz, (4.2)

σ = 1.15±0.05µm, (4.3)

and
Rb = 27.4±0.2µm, (4.4)

where the error is the standard deviation. Rb is the radial position of the centre of the circular barrier,
which is confirmed to be approximately in the middle between Rin and Rout. The above results are
relative to the potential used for study of superfluids in a double ring configuration in the BEC regime.
In the UFG and BCS regimes, due to the larger chemical potential, the intensity is increased by a
factor of 2 and 2.75 respectively.

The characterization of the double ring configuration is important in order to realize more com-
plicated systems with the possibility of excite circulation states in both the rings independently. This
configuration is the fundamental starting geometry for different possible experimental observation like
the dynamical instability [69] analogous to the Kelvin-Helmholtz instability in classical fluid that is
introduced in the last section of this chapter, or the study of the Josephson effect. On this line, in the
next part of the section, I will describe the experimental protocol used the realization of a superfluid
trapped in a double ring geometry and the excitation of persistent currents in this case.

4.1.1 Double-ring condensate preparation
The experimental protocol used for creation of the in the double ring geometry is similar to the one
used for the single ring superfluid. However modify the experimental sequence to prepare the double
ring. In particular, the first image that is shone on the atoms directly in the cigar trap load the
sample in a homogeneous disk, as is shown in Fig. 4.3a. Respect to the preparation for the single
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(a) (b)

(c)

Figure 4.2: (a) Intensity pattern used for realize the double ring trap. the red spot indicates the centre of
the profile. (b) Unwrapped intensity around the red spot in (a) used for the characterization of the circular
barrier.(c) Results from the fit for different values of the angular coordinate θ. The fluctuation on the position
are on the order of the resolution.(∼ 0.25µm).

ring configuration, we do not employ the stopping barrier in order to stop the flow, and this result
was obtained. In fact, in the double ring configuration However, in the double ring configuration we
observe that the gas was not still if a stopping barrier was added in the experimental protocol. On
the contrary we observe that even with the presence of the stopping barrier the system in the double
ring configuration was not exactly still. In order to solve this problem we start we initially realize
a half-stopping barrier, cutting the sample only for a radius of the disk, not in the full diameter as
in the single ring case. In the previous configuration the single ring is fully disconnected in two half
rings, whose phase can evolve independently. When the barrier is removed and the ring is connected,
the accumulated phase difference can generate a current in the ring. In the half-stopping barrier
case, the ring is not fully disconnected and therefore we expect a more stable situation, as confirmed
experimentally. However the system circulation states at the end of the process was still observed. In
order to create a still gas we try to reduce the intensity of this barrier. In particular, we start to see a
more stable gas when the intensity of the stopping barrier is reduce to low value, such that the atomic
sample is not full disconnected, namely the density in the region of the stopping barrier was not zero.
We finally obtain a completely still system by completely remove the stopping barrier. A possible
explanation for this is that, when stopping barrier on, the evolution of the phase on the side of the
barrier is independent, and, as before, can lead to a circulation state when the barrier is removed.
When no barrier is present, this phenomenon do not occurs. In order to understand why the gas was
stable in the single ring case also with the presence of the stopping barrier we need to underline that
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(a) (b) (c)

(d) (e)

Figure 4.3: Experimental protocol implemented for the excitation of persistent current in the double.ring
geometry. From the cigar shaped trap squeezed in the vertical direction by the TEM0,1 laser, atom are first
trapped in a homogeneous disk (a). From this configuration we start to cave hole in its centre, by shining a
small repulsive disk and successively increasing his radius (4.3b) up to the final configuration in 4.3c Then the
circular barrier is ramped up with a sequence of 15. In the final configuration the system is in a double-ring
configuration as in 4.3e.

the experimental procedure for the double ring realization need more time with the stopping barrier
on (if it is present) and therefore the possible phase evolution is larger.

From the initial configuration of a disk in Fig. 4.3a, we start to cave hole in its centre, by shining a
small repulsive disk and successively increasing his radius (4.3b) up to the final configuration in 4.3c,
with a radius of the hole of 9.95µm, the same of Rin. This procedure is adiabatically realized with
a sequence of 57 different DMD images from, separated in time by 0.5 ms, in order to not excite the
system. Then, after 10 ms of equilibration in this geometry, the circular barrier is ramped up with
a sequence of 15 images separated by 2 ms. In the final configuration the system is in a double-ring
configuration as in 4.3e. In this system, we usually load ∼ 104 pairs. At this point, persistent currents
in the sample are created by using the phase imprinting method.
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4.1.2 Excitation and detection of persistent current in a double-ring ge-
ometry

Like in the single ring case, also in this configuration we excite persistent currents in the two rings
using a proper DMD light pattern. The high resolution of the vertical imaging system allows to create
independent intensity profile for each ring. In particular we can choose to realize intensity profile
with different gradient of the intensity, or different number of gradients in the two rings. Furthermore
it is possible to shine the sample in the two ring for different imprinting time. By combining all
this possible arbitrary independent parameter, we can excite the system in a state with with on
demand circulations wi for the inner ring and wo for the outer one. However, for the first study
connected to the double ring geometry ,The realization of the Kelvin-Helmholtz instability in one
component superfluids, we are interest only in the excitation of state like wi = −wo, with opposite
circulation in the two rings. More complicated combination of the circulation can be useful for future
investigation, like the observation of Josephson effect in the two ring superfluid configuration with
different circulation states.

In order to detect the state of the circulation state system, we perform interferometric measures
between the two rings. In this case the inner circle is not present, but from the interference pattern
between the two rings we can obtain information on the relative circulation wo−wi as it is explained
in the following. Starting from Eq. 2.12 for the interference pattern between the ring and the inner
disk, we can rewrite this formula considering the interference between the inner ring, with phase φi(θ),
and the outer ring, whose phase is φo(θ). The interference term takes the form:

cos
(

2π r
λ

+ φi(θ)− φo(θ)
)
. (4.5)

However, in this case both φo(θ) and φi(θ) depend on the angular coordinate θ. In particular, con-
sidering a state with circulations wi and wo, is possible to write the phases as φi(θ) = wiθ and
φo(θ) = woθ. Therefore the interference term is:

cos
(

2π r
λ

+ (wi − wo)θ
)
. (4.6)

As a result, the same consideration done for Eq. 2.13 can be applied also in this case, considering
(wi − wo) instead of w. Therefore the interference pattern of the double ting will also shown spirals,
and the number of arms correspond to the value of |(wi − wo)|. In order to identify the sign of
(wi −wo) we note that the spirals are clockwise for (wi −wo) < 0 and anticlockwise if (wi −wo) > 0.
Therefore from the interference between the two ring is possible to extract the relative circulation
between them. Despite all the possible configurations for imprinting in the two rings are potentially
implementable, in the following we will always consider the case in which we imprinting each ring for
the same imprinting time ∆t, with the same number of gradient, but with opposite direction of the
gradient in the intensity pattern, creating circulation state with opposite sign.

In the last part of this section, I will present the characterization of the relative circulation
∆w = wi − wo versus the imprinting time for different configuration of the imprinting pattern and
the corresponding observed number of vortices generated by the imprinting procedure. This char-
acterization is interesting for the study of the persistence of currents in the double ring geometry.
Furthermore, the calibration of the relative circulation is useful for the determination of the initial
condition of the Kelvin-Helmholtz instability I will introduce in the last section of this chapter. For
this purpose, also the number of imprinting vortices in the sample has a crucial role.

Fig. 4.4 shows the evolution of the number of vortices 〈Nv〉 generated by the imprinting procedure
for different imprinting time ∆t. The result in this case are relative to an phase imprinting realized
using one gradient in the DMD pattern. However two imprinting pulses are performed. The number
of imprinted vortices is observed to exponentially decay in time. Fig. (b) and Fig. (c) show the
number of vortices in the inner and the outer ring only. The lines in the figures are exponential fit.
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(a) Total vortices (b) Vortices in the inner ring

(c) Vortices in the outer ring (d) Decay time pf the exponential decay

Figure 4.4: Exponential decay of the imprinting vortices in the double ring configuration. The results are
relative to an imprinting protocol with a single gradient imprinting pattern. The imprinting is performed two
times. (a) shows the number of total vortices varing the holding time t after the imprinting. (b) and (c) show
respectevly the evolution of number of vortices in the inner and the outer ring. In (d) is plotted the decay
time obtained from the fitting for different imprinting time ∆t.

As we can see, the imprinting vortices in the inner ring are initially more than those in the outer
ring. Furthermore, the number of vortices in the inner ring, show a slower decay down to a higher
final value. A possible explanation of this effect is that the presence of the external ring reduces the
possibility for the vortices to escape from the inner ring, since it influences the boundary conditions
of the inner ring. However is important to underline that the observed high number of vortices in this
case is due both to the long imprinting time used, in particular high number of vortices are generated
for ∆t = 900 ms, and to the implementation of the double pulse. In general, the use of a multiple
gradient pattern is preferable respect to the use a multiple pulse imprinting protocol considering the
lower spurious vortices generated. As a consequence, in order to excite persistent current, in the
system, we usually use a single pulse with, in case, a multiple gradient pattern. In particular we use
the single and four gradient pattern.

In order to acquire control on the generation of persistent currents in the double ring configuration,
we realize a calibration for both 1 and 4 gradients imprinting patterns. The results are shown in Fig.
4.5 Some interesting features arise from these plots. The number of circulation and spurious vortices
are measured 300 ms after the imprinting procedure. From the number of imprinted circulation in the
one gradient case (Fig. 4.5(a))we observe a linear increase up to a saturation at around∆w = 12. This
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(a) 1 gradient, Relative ciruclation calibration (b) 4 gradient, Relative ciruclation calibration

(c) 1 gradient, Spurious vortices calibration (d) 4 gradient, Spurious vortices calibration

(e) 1 gradient, Spurious vortices over number of spirals (f) 4 gradient, Spurious vortices over number of spirals

Figure 4.5: Characterization of the imprinting procedure in terms of the relative circulation and the number of
spurious vortices versus the imprinting time ∆t. the plot on the left are relative to the single gradient case, the
ones on the right to the 4 gradient case. The upper and middle panels report the number of relative circulation
and number of spurious vortices from the imprinting measured 300 ms after the imprinting procedure. The
lower panels represent the number of measured vortices divided by the number of corresponding circulations.
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is comparable with the limitation of the imprinting procedure observe for the single ring geometry.
In that case, in fact, the imprinting using only one gradient and one pulse in the BEC was able to
excite a maximum of w = 6 (this limitation arises from the too long imprinting time, that make the
condition of short ∆t fall ). Considering that now we are exciting two ring with opposite circulation,
the results are in agreement. We consider now Fig. 4.5(b), representing the number of circulation
versus the imprinting time for the 4 gradient case. Here a interesting trend is observed: ∆w increases
linearly with ∆t up to ∆t = 350µs, corresponding to a relative circulation ∆w = 16 (circulation ±
8 in each ring). For ∆t > 350µs, the dependence is still linear, but with a different slope. Finally,
for high values of the imprinting time, a saturation is observed. The explanation of this behaviour
is understandable in therm of the maximum persistent circulation in the rings. The change of slop
in the linearly increase of the relative circulation occurs for the imprinting time corresponding to the
excitation of wi = 8. This correspond to the critical persistent circulation in the single ring geometry.
In this case the inner radius of the internal ring is the same of the single ring geometry. Thus the
same maximum persistent circulation is expected1. However, this argument is valid only for the
inner ring, cause the external one has a bigger inner radius and thus can support higher circulations.
Therefore the change of the slope arise from the fact that, for ∆t > 350µs, increasing the imprinting
time we increase the circulation only in the external ring. Finally, the saturation occurs when also
for the external ring the maximum persistent circulation is reached, which correspond to a relative
circulation of ∆w = 20. Considering that here wi = 8, we expect a circulation of wo = 12. This value
is consistent with the saturation value observe in Fig. 2.13, considering that the external ring has a
radius of ' 30µm. However, it is possible that limitation from the imprinting procedure arises also
in this case. In order to realize state with ∆w > 12 we need necesarly use the 4 gradient imprinting
pattern. However, the state with ∆w > 16 are formed by a state with unbalance circulation in the
rings wi = 8 and wo = −(∆w − 8).

We consider now Figs 4.5(c-d). They show the number of vortices coming from the imprinting
procedure that survive after 300 ms. For low values of the imprinting time, the number of spurious
vortices is almost constant, only a slightly linear increase in observable. However, this minimum
number of vortices is higher in the 4 gradient case. In (c) an abrupt increase of vortices is observed
in proximity of the saturation of the relative circulation. A similar behaviour is observed in (d). In
particular here it is observed both when we have the saturation of the circulation in the inner ring
(a small step increase is observed at ∆t = 350µs) and when the saturation occur in the outer ring.
A possible explanation is that, in the 4 gradient case, some vortices can arise from the decay of high
circulation state to the maximum persistent circulation.

Finally we consider the two lower plots (e-f). These represent the ratio between the number of
imprinting vortices and the number of excite circulation state as a function of the imprinting time. This
plot is important in order to confront which is effectively the better way to excite persistent currents
in the two rings. By comparing the two plots we observe that in order to excite up to ∆w = 10,
the simple gradient is convenient. This is understandable considering that for the 4 gradient case wa
have always at least 3 spurious vortices. Due to the abrupt increase of vortices in the one gradient
case, in proximity of the saturation, for ∆w > 10 the 4 gradient pattern reveals more convenient.
In the realization of the desired circulation state, we have considered the results obtained from this
calibration, in order to use the more convenient pattern for each situation. Anyway, the number of
spurious vortices in the sample after 300 ms is always at least the 20 % of the relative circulation.

It is important to notice that measurements are performed 300 ms after the imprinting procedure
make both the imprinting vortices decrease in time and the possisble not persistent circulation to
stabilize to the maximum persistent circulation. This effects are important in the experimental real-
ization with high control on the preparation of the system, because in this case is not desiderable to
work with spurious random vortices and circulation state that decay in time

1As we have argue in the previous chapter, that the maximum winding circulation depend on the inner radius of the
ring
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(a) tp = 0.1 ms (b) tp = 0.5 ms

(c) tp = 0.8 ms (d) tp = 0.9 ms

Figure 4.6: Merging of the two-ring condensates after removing the circular barrier separating them. A ramp
of 15 images with different barrier heigh is performed. Subcaptions indicates the time between the picture
tp. For a fast removal of the barrier we observe the formation of a spiral soliton [70], for slow ramping down,
an array of vortices is formed. Images are obtained by a single absorption imaging with a 1.5 ms TOF in the
BEC side. The relative circulation before the rampdown of the circular barrier is ∆w = 10 for each images.

4.2 Merging two rotating condensed rings
In the previous section we described the procedure for the excitation of circulation in the two ring
configuration. Moreover currents are observed to persist also in this configuration, and we show
the method used for obtaining the relative circulation of the two rings ∆w = wi − w0. In order to
observed interesting physical effects we remove the circular barrier separating the two rings. This
procedure allows the study of dynamical instabilities arising from a system initially prepared with two
counterflowing persistent currents.

Starting from the configuration in Fig.4.3e, after the excitation of the desired circulation state
with the phase imprinting procedure, we wait 300 ms in order to let the number of spurious vortices
decreases. Then, the circular barrier separating the two condensates is lowered down with a series of
15 images with a decreasing intensity of the barrier. The final state that we obtain depend on the
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Figure 4.7: (a) Model of double-ring as two linear channels with opposite flow and periodic boundary condi-
tions. (b) Ohase dependence on the angular coordinate θ for the superfluid in the inner ring (φi), in the outer
ring (φo) and the difference in phase between the two superfluid for wi = −wo = 2

Figure 4.8: Schematic representation of the spiralic soliton formation. Blu arrows indicates the velocity of the
soliton. Due to the different ∆φ for different angular position , this velocity depends on θ. When the jump
discontinuity is present, the velocity of the soliton changes its sign and the line breaks in a spiralic soliton.
The observed number of arms correspond to ∆w.

duration of the barrier removal. Fig. 4.6 shows the final state for different value of the tp. When the
barrier is removed in a fast way, a spiral soliton structure appears (a). However, slowing down the
time necessary to remove the circular barrier, an array of vortices is formed. This results are obtain
for the gas in the BEC side. The images are relative for a relative circulation of ∆w = 10.

4.2.1 Fast barrier removal
In order to understand the formation of the regular structure showed in Fig.4.6 we consider the phase
pattern of the system. As we already mentioned, in my study I consider situation in which we imprint
for the same imprinting time and with the same number of gradient in the two rings, but opposite
directions. As a result the two rings are excited, at least in the low imprinting time case, in opposite
circulation states wi = w and wo = −w. Therefore the corresponding velocity in proximity of the
separation surface (at the same radial position) satisfies vi = −vo. We can model our double-ring
configuration as the two straight channel of Fig. 4.7a), where the velocity is constant along the
channel. Fig. 4.7b shows the phase dependence on the angular position θ for the superfluids in the
inner and in the outer rings for the ∆w = 4 case. The phase difference is also plotted. This last
quantity is fundamental for understanding the mechanism underlying the formation of system like in
Fig. 4.6. It is important to notice that the phase difference shows a series of jump discontinuities,
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Figure 4.9: Schematic representation of the vortices array formation. Blu arrows indicates the velocity of the
soliton. Due to the different ∆φ for different angular position , this velocity depends on θ. When the jump
discontinuity is present, the the velocity of the soliton changes his sign and the line breaks in a spiralic soliton.
The observed number of arms correspond to ∆w.

that are equal in number to the relative circulation ∆w = wi − wo.
When the barrier removal is fast, a spiral soliton structure is observed [70]. Considering a 1D

system, solitons in BEC are solution of the Gross-Pitaevskii equation [2, 55] consisting in a region
of the condensate where a density depletion is present. At the two side of the depletion a change of
phase ∆φ is observed. This modulation of the density moves in the sample preserving its shape in
time. The soliton moves in the sample with a velocity opposite to the change of phase ∆φ with a
velocity of vsol ∼ cos(∆φ/2) [71].

When the circular barrier is removed in a fast way, a soliton arises from the corresponding density
depletion. However, due to the different phase jump depending on θ the velocity will be different.
In particular, in correspondence of the jump discontinuity of the phase difference, the soliton move
in opposite direction at the two side of the discontinuity and it must break. As a results, a spiral
soliton structure is formed, and the number of arms corresponds to the relative circulation ∆w. A
schematic explanation of the spiral soliton generation is showed in Fig. 4.8. The formation and the
time evolution of this soliton structure will be subject of future investigations.

4.2.2 Slow barrier removal
When tp is long enough, the final state is formed by an array of vortices equally spaced along the
angular direction [69]. As for the previous case, the cause is the changing phase difference between the
two ring along the θ coordinate. Considering that the velocity field is proportional to the gradient of
the phase, this will lead to a velocity across the separation that depend on the angular position. The
velocity field is schematically shown by the red arrows in Fig.4.9. It is important to notice that when
the difference of the phase between the two superfluids has a jump discontinuity, the velocity field
changes the sign. When this behaviour is added to the flow in the external and the internal ring, is
possible to understand that the fluid flows around this points of the interface. This points immediately
evolve in quantized vortices with the same charge. The number of vortices created Nv is the same of
the number of discontinuity of the difference of phase between the two rings. As a consequence we are
able to create an array of vortices in number Nv = ∆w. Due to the linear dependence of the phase in
both the ring on θ, the position of vortices is equally spaced.

A possible explanation for the fact that different final configuration are obtained for different tp is
the following: considering the fast removing , the region before occupied by the circular barrier gives
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rise to a density depletion. When the ramping down of the circular barrier is completed, this density
depletion form the soliton structure. On the other hand, when we gradually reduce the intensity of
the circular barrier, a flow between the two rings can occurs before the barrier is completely removed,
with the velocity field given by the difference in phase as I have just explained. In this case the vortices
are formed. The final configuration consists in a single ring and a crystal of vortices equally spaced.
The experimental results about this configuration for different value of ∆w, and consequentially for
different number of vortices are shown in Fig. ??. As it is possible to see, spurious vortices coming
from the imprinting procedure are often present. This images, like the images of the next section,
are obtained with the TOF imaging procedure described in the previous chapter for the detection of
vortices arising from the decay of persistent current in the single ring.

(a) ∆w = 2 (b) ∆w = 6

(c) ∆w = 8 (d) ∆w = 12

Figure 4.10: Crystal of vortices arising from the merging of the two rings. Subcaptions indicate the value of
∆w before the removal of the circular barrier
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4.3 Kelvin-Helmholtz instability in a one component super-
fluid

In the previous section, I presented the procedure used in our experiment to realize an array of vortices
equally spaced in a ring. However, this configuration is not stable. In particular the array of vortices
is observed to break itself after tens of ms. The motion of the vortices can be related to a well
known instability that occurs in classical fluids: the Kelvin-Helmholtz instability. In the last section
of Chapter 1 I present the basics of this instability. As it is shown, this instability occurs in the
separation surface between two classical fluids. The Kelvin-Helmholtz instability occur both in the
case of a jump discontinuity between in the surface of separation between the two fluids with different
velocity and in the case that two fluids with different velocities are separated by a shear layer with
a continuos change in the velocity field. In this last case a quenching of the instability for high k
is predicted. It is important to notice that the mathematical description of the KHI the instability
occurs also for fluids with zero viscosity. Therefore we can expect that it will take place also in the
inviscid flow of superfluids.

As a demostration, effects of the KHI have been observed in the superfluid phase of 3He [72, 73].
In the last years the Kelvin Helmholtz instability has been studied also in Bose Einstein condensates.
Experiment and numerical studied on this instability have been performed considering two merged
heterogeneous Bose Einstein condensates [74, 75, 76]. In this case, the separation surface is well
defined and the instability is observable by detecting the surface displacement like in the case of
classical fluids. Furthermore, as we point out in the first chapter, the evolution of the instability leads
to the formation of vorticous structures like in Fig. 1.7. In the case of two components BECs, this
dynamics creates quantized vortices in the sample.

It is important to notice that KHI takes place when the density of the two fluids are equal. In
particular it can happen also in one component fluids. Numerical calculation for the KHI in a one
component superfluid ha been performed in [69, 77]. In the case of one component superfluids, as we
have already saw, when the two counter-flowing superfluids merge, an array of equally spaced vortices
appears in the separation surface. Therefore the evolution of this instability is detectable by tracking
the position of this vortices. In particular, the vortices in the initial configuration track the position
of some equally spaced point of the virtual separation surface. This argument can appear misleading.
In fact, in two component counter-flowing fluids, KHI is responsable to the generation of vorticous
regular structure like in Fig. 1.7. In the single component case the regular array of vortices is not
the results of the KHI, but rather the starting point of the instability. The vortices only track the
position of the initial separation surface. Their formation is only obtained from the phase difference
between the two condensate ring, a purely quantum property, and therefore is not related to the
KHI. The dynamical instability as it is observed in our system is described in the following. We
consider the starting point (t = 0) as the moment in which the circular barrier separating the two
condensate is completely removed, at which we have the array of vortices configuration. Then we
let the system evolve. As soon as a perturbation acts on the separation surface, namely when the
position of a vortex is perturbed respect to the ideal position in the radial direction, this will increase
exponentially, following the dispersion relations discussed in the first Chapter. As a result, we expect
to observe a radial displacement of the vortices position. However, in analogy to what is observed
for the classical fluids the vorticous structure already mentioned that appears in two component
fluid, in this case, consists in a displacement of the vortices position in the azimuthal direction. The
combination of the radial and angular displacement of the vortices position leads to the formation of
clusters of vortices, al least in the first evolution of the system. The images of the system following
this evolution are shown in Fig. 4.13.

From both the dispersion relation in Eq. 1.46 and Eq. 1.41, we expected modes with high values of
k to exponentially increases with a lower time constant. Furthermore, not all the mode are revealable
in our system. In particular, considering the periodically boundary condition, that actually are present
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in our ring geometry, the possible k are limited to value of k = n/RB , with n is an integer number
and Rb is the radial position of the circular barrier. Furthermore, considering that our surface in
the initial configuration is formed by a regular array of vortices, we are limited by a maximum k
in our observations, that are based on the position of the vortices. An estimation of the maximum
observable k is k = Nv/2Rb. The wavelength of this mode is double the distance (along a circumference
of radius Rb) between vortices and correspond to a opposite displacement in the radial direction for
adjacent vortices. Further, considering the background velocity in the rings, adjacent vortices are
also displaced in opposite azimuthal direction. As a result, we expected that, in the first part of the
dynamic, the instability evolves from the crystal of vortices, to a sequence of cluster formed by two
vortices. Subsequentially the modes with lower k become important, and the system is expected to
evolve into a configuration with cluster formed by a bigger number of vortices. This effects is visible
in Fig. 4.13, at least for short evolution time t.

4.3.1 Analysis on the Kelvin-Helmholtz instability
In this last part of the section I present a first approach to the a possible analysis for the study of
the dynamical instability of the vortices array, consisting in the analysis of the Fourier transform of
the density. The procedure is explained in the following. For different each holding time after the
complete removing of the circular barrier we acquire 30 images. For each of that the study the system
in polar coordinates (Fig. 4.11) The resulting density profile in Fig. 4.11b is then integrated along
the radial direction to obtain the integrated density profile along the azimuthal direction is obtained.
The Fourier transform of the obtained quantity is then performed for each image, and then averaged
over the 30 repetition is performed. Fig. 4.11 shows the trend of the average Fourier transform versus
time, with kθ obtained from the wave vector along the circumference kθ = k/Rb.

Considering the initial condition, the Fourier spectra at t = 0 ms are expected to have a maximum
value for kθ = Nv. In this case the system is prepared in a state with an array of 16 vortices. During
the evoltion the crystal of vortices breaks down. When clusters of vortices are formed we expect that
the Fourier trasform will present a maximum for lower value of kθ, signaling the existence of a new
order in the system . As a consequence, the obteined data shows a shift of the maximum of the Fourier
trasform to lower value of the kθ.

Further detailed analysis of the data, in order to exctract quantitative information from the data,
are on going.
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(a) (b)

Figure 4.11: (a) Images of the array of vortices at t = 0 ms. (b) Unwrapped density around the red spot in
(a) used for the analysis.

Figure 4.12: Time evolution of the Fourier transform. This result is relative to the case of 16 vortices in the
initial array
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(a) ∆w = 6, t = 0 ms (b) ∆w = 6, t = 90 ms (c) ∆w = 6, t = 120 ms

(d) ∆w = 8, t = 0 ms (e) ∆w = 8, t = 36 ms (f) ∆w = 8, t = 54 ms

(g) ∆w = 12, t = 0 ms (h) ∆w = 12, t = 33 ms (i) ∆w = 12, t = 51 ms

Figure 4.13: Dynamical evolution of the array of vortices for different values of relative circulation ∆w before
the removal of the circular barrier



Conclusions

In this thesis, I study the instabilities of persistent currents in fermionic superfluids in ring-shaped
traps. In the first part of my work I study the behaviour of supercurrents in the presence of an
obstacle across the BEC-BCS crossover. Via interferometric measurements we track evolution of the
circulation state of the system. From our observations, the Unitary regime shows to be the more
stable one. In particular no decay occurs in this case. On contrary the BEC and BCS regimes shows
the evidence of a critical circulation wc above which a circulation decay is observed. Furthermore, the
decay induced by the presence of an obstacle allows for the investigation on the type of excitations
that arise from the dissipative process. In particular, we observe that the decay of circulation is driven
by the nucleation of vortices in the system. We characterized the vortices emission in time and we
observe that the number of total emitted vortices is comparable with the number of circulation lost
in the decay process. Numerical simulation helped us in understanding the microscopic mechanism
underling the vortices nucleation. A direct extension of this study is to probe persistent currents
in the ring increasing the number of obstacles acting on the superfluid. Both regular and disordered
configurations of the obstacles are allowed thanks to the DMD. The first case is particularly interesting
considering the results obtained in numerical simulations: when the obstacles are placed in a regular
array along the azimuthal direction, a decay process is observed only below a critical obstacle number,
that depends on the initial circulation state, above which the system is stable. On this line, future
investigation will probe the effect of a disordered configuration of obstacles on the decay process.

Successively, I put the bases for the study the effects of dynamical instability in counter flowing
superfluids, by realizing a double ring potential using the DMD. A characterization of the system
trapped in the double ring geometry has been performed, in order to understand how geometry effects
and limitations arising from the phase imprinting can influence the maximum relative circulation in
our system. We then study the merging of two condensed ring-shaped system exciting in opposite
circulation state, removing the barrier used to create the two superfluid rings. In this case the effects
of the macroscopic wave functions description of the system leads to the evolution of the counter
flowing rings with formation of regular structures. In particular, when the barrier is removed in a fast
way, we observe the creation of a spiralic soliton in the system. On the other hand, when the barrier is
removed in a slower way, a regular structure of vortices is emerges in the system. Moreover, the regular
array of vortices is not a stable state of the system. The evolution of their position is describable
in term of a dynamical instability that occurs in classical fluids, the Kelvin Helmholtz instability.
The detailed characterization of the system is useful in view of the realization of this dynamical
instability. In the last part of the work, I present a preliminary analysis of this dynamics. However,
more detailed analysis will be performed. The results discussed are limited to the BEC superfluid.
Future investigation on the BCS and UFG regimes on the Kelvin-Helmholtz instabilities will possibly
lead to observation of different behaviour in vortices dynamics, providing a way to obtain different
physical properties of different type of superfluids. The characterization of the double ring geometry
lead to the possibility of exploring the Josephson effects in this superfluid excited in circulation states.
Via tunneling process, an exchange of circulation between the two superfluid is expected [78].

The platform used in this work opens for the study and the simulation of superfluidity. In particular
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disorder effect or dynamical instabilities can be studied in a controllable way.



Appendix A

Atomic Structure of 6Li

F=1/2

F=3/2

F=1/2

F=3/2

F=1/2

F=3/2

F=5/2

Figure A.1: Fine (left) and hyperfine (right) structure for the lowest energy levels of 6Li atoms in absence
of magnetic field. The spin-orbit coupling split the first excited state in two levels with angular momentum
J = 1/2 and J = 3/2. The transition from the groun state to these are named D1 and D2 respectively. The
hyperfine term creates a further splitting of the level with different total angular moemntum F .

The internal energy structure of atoms is extremely important for cooling technics and laser ma-
nipulation of atoms. Like others alkali atoms, Lithium has one valence electron and an internal closed
shell. In this appendix are presented the atomic properties of the fermionic isotope, 6Li. The ground
state of the system is the 2s1 configuration for the valence electron, characterized by an orbital angolar
momentum L = 0 and a spin S = 1/2. Optical radiation usually has not enough energy for excite
internal electron so that in our case interesting electronic excited state are determined by the state
of the unique valence electron. Therefore the first excited state will be given by the valence electron
in the 2p1 state, with L = 1. The difference in energy in this two state arises when the coulombian
interaction between the intern nucleus and the external electron is considered, taking in account the
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screening effect of the electron in the close shell. This is the gross structure of the atom.
However the possibility cool down atoms to degeneration and to manipulate them requires a more

detailed description of the energy levels of an atom. One first correction consists in the Spin-Orbit
Coupling Hfs ∼ L · S, that determinates the fine structure of the atom. This term represent the
interaction between the electronic spin and the magnetic field created by the spin himself and is
diagonal in the basis of the augenstates of the total angular momentum J = L+S. Since L = 0 in the
ground state, this term only split the excited state in two levels with J = 1/2 and J = 3/2 named i
nthe spectroscopy notation ad 2P1/2 and 2P3/2. For the 6Li case this separation is ∆Efs = 10.05MHz
[79]. The fine structure of fermionic lithium is showed in the left part of Fig. A.1. transitions from the
Ground state 2S1/2 to the two excited states 2P1/2 and 2P3/2 usally named as D1 and D2 respectively.
In our case this two transition are both around 671nm.

The subsequent correction arises from the interaction between the total electronic angolar momen-
tum J and the angolar momentum of the nucleus I given by Hhfs ∼ J · I. This term is diagonal in
the base of the total angular momentum gives rise to the hyperfine structure, in which energy states
are split in level with different total angular momentum F = J + I. The zero-field hyperfine structure
of fermionic lithium is showed in Fig. A.1. In this case I = 1; therefore the ground state splits in two
levels with F = 1/2 and F = 3/2.

A.1 Effect of a magnetic field

Figure A.2: Zeeman structure of fermionic lithium for the 2S1/2 ground states. A linearly increasing splitting
is observed for low magnetic field. When the Zeeman shift is much bigger than the hyperfine term, the fine
structure split in level with different mJ . A further separation of states with different mI is provided by by
the hyperfine term. Image taken from [79].

The presence of a magnetic field B adds an additional term in the Hamiltonian HZ = −µ ·B know
as Zeeman effect. µ is the magnetid dipole moment of the atom.

In case of low magnetic field, is possible to consider this term as a perturbation to the hyperfine
structure. Is possible to show that the energy shift due to the Zeeman effect is given by ∆E = 〈HZ〉 =
µBBgFmF ; here mF is the projection of the total angular momenta along the magnetic field. µB is
the Bohr magneton and gF is the Landé factor for the hyperfine structure. Therefore hyperfine states
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are splitted in levels with different mF . In this particular regime, the energy splitting increase linearly
with the magnetic field B.

In the opposite case for which the energy of the Zeeman effect is big respect to the hyperfine term,
HZ acts directly on the fine structure. As a result state splits in levels with different projection of the
total electronic angular momenta along the magnetic field mJ . Then a further splitting is given by
the hyperfine term. Good quantum number for describing the system in this case are |J,mJ , I,mI〉

Fig.A.2 show the Zeeman structure of fermionic lithium for the 2S1/2 ground states. A linearly
increasing splitting is observed for magnetic field up to 20G. For high values of B levels are gathered in
two groups. The lower-energy one is formed by states with mJ = −1/2, the other one by mJ = +1/2
states.
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