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INTRODUCTION

With the macroscopic occupation of a single quantum state, Bose-Einstein

condensates (BECs) represent the matter wave analogue of optical lasers.

Like the invention of laser, also the discovery of BEC in 1995 [1] had a revolu-

tionary impact on the development of atomic optics research and of quantum

physics in general. For their properties of coherence and monochromaticity,

BECs do represent very powerful tools for the investigation of many quan-

tum problems related to different branches of physics [2]. As macroscopic

quantum objects, whose wavefunction can be directly observed in the exper-

iments, BECs widen the horizons of the quantum world.

The importance of BECs is enriched by the possibility to use optical lat-

tices to trap and manipulate them. Behaving as ideal periodic potentials for

atoms, that is without defects and lattice vibrations, optical lattices provide

an extraordinary tool to experimentally study fundamental problems related

to condensed matter physics, like, for instance, the Bloch theory for trans-

port of electrons in metals [3–5]. As a matter of fact, a non-interacting BEC

can be thought of as a unique macroscopic matter-wave whose dynamics in

an ideal periodic potential can be related to that of a single electron in an

ordinary crystal.

Moreover, the possibility to use Feshbach resonances [6, 7] to tune the in-

teraction between the particles forming the BEC, further enriches the proper-

ties of the condensed many-body system. Interacting BECs in optical lattices

do show very interesting phenomena: remarkably, when the lattice depth and
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interactions are relatively small a BEC behaves like a superfluid, as demon-

strated by several experiments like, for instance, the detection of quantized

vortices [8, 9] or the frictionless flow below a critical velocity [10]. Con-

versely, when the lattice depth and interactions become large, different dis-

sipation mechanisms may take place, eventually leading to a destruction of

the superfluid behaviour [11]. A remarkable example, is the superfluid to

Mott-insulator phase transition driven by pure quantum fluctuations, which

causes the loss of the BEC phase coherence and the localization of atoms in

correspondence of the lattice sites [12].

The physics of bosonic systems becomes even more fascinating when the

periodic lattice is perturbed by a disordered potential. The celebrated phe-

nomenon of Anderson localization [13], theoretically predicted in 1958 for

electrons in crystals, has been recently observed using non-interacting BECs

with laser speckles [14] and quasi-periodic optical lattices [15].

Finally, the complex interplay of disorder and interaction is expected to

give rise to a new localized quantum phase, the Bose glass [16, 17]. Such a

quantum phase, initially predicted by Giamarchi and Schulz in 1988, shares

with the Mott insulator the property of being insulating and with the super-

fluid the property of being compressible, and thus characterized by a gapless

excitation spectrum.

In this thesis we experimentally study fundamental problems related to

the physics of bosonic systems at very low temperatures, close to the absolute

zero, in the presence of both an ordered and a disordered optical lattice. We

focus our study on one-dimensional (1D) systems which, besides being more

accessible from a theoretical view point, exhibit very peculiar features such

as, for instance, strong quantum phase fluctuations. Such phase fluctuations

significantly affect the properties of a superfluid, leading to a new, quantum

source of dissipation, the phase slips, besides the known classical energetic

and dynamical instabilities. The first experimental evidence of quantum

phase slips in a 1D atomic superfluid sample is reported in this thesis.
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Thanks to the possibility offered by our experimental setup to indepen-

dently control disorder and interactions, we explore for the first time the

phase diagram describing the low-temperature properties of 1D disordered

bosonic systems. Measurements of coherence, transport and excitation spec-

tra highlight the features of a disordered insulator that extends from weak

to strong interactions sorrounding the superfluid phase. Such a finite-T dis-

ordered insulator strongly resembles the T = 0 Bose glass phase predicted

by theory. A comparison with theoretical analysis taking into account finite-

temperature and inhomogeneity effects, confirm the experimental results.

The presentation of the thesis is organized as follows. In the first chapter I

will introduce the main (experimental and theoretical) instruments related to

the physics of BECs in 1D optical potentials. In the first part of the chapter I

will focus on the experimental techniques employed to independently control

interactions and disorder in the system, i.e. Feshbach resonances and quasi-

periodic optical lattices, respectively. The importance and basic features of

1D systems will be described as well. The second part of the chapter, will

introduce the disordered Bose-Hubbard model describing the several quan-

tum phases that a 1D system can be subject to as the disorder and the

interactions are suitably changed.

Chapter two and three respectively focus on the characterization of the

superfluid phase (in a clean system) and of the Bose glass phase (in a disor-

dered system). As for the clean case, I will first briefly describe the subtle

relation between Bose-Einstein condensation and superfluidity. I will then

introduce the concept of quasi-BEC, which characterizes 1D systems, both

in terms of degeneracy temperature and of correlation length. By comparing

coherence measurements with theoretical models we will show a new criterion

to estimate the superfluid temperature for a 1D system in the lattice. The

last part of chapter two is dedicated to the description of several transport

measurements showing the different mechanisms of dissipation in a super-

fluid: the classical energetic and dynamical instability as well as the thermal

and quantum phase slips due to the strong phase fluctuations present in 1D.
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As for the disordered case, at the beginning of chapter three I will report

on coherence and transport measurements showing the insulating properties

of the system across the disorder-interaction plane. Theoretical studies, like

Density Matrix Renormalization Group (DMRG) calculations and Exact di-

agonalization (ED) of the Hamiltonian for small homogeneous systems, will

then show the different effects of finite temperature in the regimes of weak

and strong interaction. Finally, measurements of the excitation spectrum will

allow to probe the nature of the different insulating phases present in our

inhomogeneous system. Thanks also to a theoretical model of fermionized

bosons, such measurements will allow in particular to distinguish the gapless

Bose glass from the gapped Mott insulator.

This PhD thesis is the result of experimental investigations I carried out

in a research team at the European Laboratory for Non-linear Spectroscopy

(LENS) in Florence from 2010 to 2014. Some of the experimental results

have been compared to theory in a collaboration with Prof. T. Giamarchi

(Geneva, Switzerland), Dr. G. Roux (Orsay, France) and Dr. I. P. McCulloch

(Brisbane, Australia).

Many measurements reported and described in this thesis have been pub-

lished in the two following journal articles:

• Transport of a Bose Gas in 1D Disordered Lattices at the Fluid-Insulator

Transition. L. Tanzi, E. Lucioni, S. Chaudhuri, L. Gori, A. Kumar,

C. D’Errico, M. Inguscio, and G Modugno. Phys. Rev. Lett. 111,

115301 – Published 9 September 2013.

• Observation of a Disordered Bosonic Insulator from Weak to Strong

Interactions. C. D’Errico, E. Lucioni, L. Tanzi, L. Gori, G. Roux, I. P.

McCulloch, T. Giamarchi, M. Inguscio, and G. Modugno. Phys. Rev.

Lett. 113, 095301 – Published 25 August 2014.

Two other papers on the finite-T effects on disordered systems and on quan-

tum phase slips are close to be submitted for publication.
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CHAPTER 1

1D INTERACTING BEC IN QUASI-PERIODIC

OPTICAL LATTICES

Contents
1.1 BEC with tunable interaction and disorder in 1D 2

1.1.1 Feshbach resonances . . . . . . . . . . . . . . . . . 4

1.1.2 Quasi-periodic optical lattice . . . . . . . . . . . . 8

1.1.3 1D systems . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Disordered Bose-Hubbard model . . . . . . . . . 13

1.2.1 Clean system: SF-MI phase transition . . . . . . . 16

1.2.2 Disordered system: Anderson localization . . . . . 24

1.2.3 Bose glass from weak to strong interactions . . . . 27

In this first chapter I will introduce the main ingredients that are nec-

essary for the work described in this thesis, from both a theoretical and an

experimental side. In Sec. 1.1 in particular, I will describe at a phenomeno-

logical level how Bose-Einstein condensation occurs and how a BEC, together

with optical lattice potentials, is an excellent tool to experimentally manip-

ulate both the interaction and the disorder in a 1D system.

In Sec. 1.2 I will then analyze the Bose-Hubbard (BH) model [18] de-

scribing the T = 0 many-body physics of interacting bosons in a lattice.
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1.1 BEC with tunable interaction and disorder in 1D

This model is particularly powerful as it allows to take into account quan-

tum correlations between particles in the regime of strong interactions. The

effect of disorder, which is our main interest, can be introduced in the model

as well. I will thus report an overview of the quantum phases that a 1D

system can undergo when both interaction and disorder are changed.

1.1 BEC with tunable interaction and disor-

der in 1D

Bose-Einstein condensation is a quantum phenomenon that occurs as a

macroscopic number of identical bosons in thermal equilibrium occupy the

same quantum (ground) state. As a result, quantum effects become relevant

on a macroscopic scale. This condition, which was predicted in 1925 by A.

Einstein and S. N. Bose [19, 20], was experimentally achieved in 1995 in a

dilute gas of 87Rb atoms [1]. Later on, many other atomic samples, among

which 39K, have been brought to the condensation1.

In order to qualitatively understand how the phase transition to the Bose-

Einstein condensate occurs, let us consider (Fig. 1.1a) a gas of atoms in

thermal equilibrium with a thermal velocity v and a density n = d−1/3, d

being the mean distance between the particles. At room temperature TR, the

Figure 1.1: Phase transition to the BEC. (a) Classical distinguishable particles at room
temperature TR. (b) Spatial extension λDB of the wave functions associated to
the particles at T > Tc. (c) wave functions overlap (λDB ≈ d): a macroscopic
fraction of undistinguishable bosons start condensing at T = Tc. (d) Giant
wave of matter (pure BEC) at T = 0. Figure adapted from [21].

1The other samples that have been condensed are mainly of alkaline, alkaline earth,
and lanthanoid atoms: 23Na, 7Li, H, 85Rb, 4He∗, 41K, 133Cs, 52Cr 40Ca, 84Sr, 86Sr,
88Sr, 133Cs, 174Yb 164Dy and 168Er.
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1.1 BEC with tunable interaction and disorder in 1D

atoms of the dilute gas are point-like particles and can therefore be spatially

distinguished (classical phase). At lower temperatures (panel b), the wave-

like behaviour of matter must be taken into account and the spatial extension

of a particle can be suitably described in terms of its De Broglie wavelength:

λDB =
h√

2πmkBT
(1.1)

where m is the mass of the atoms, T is the gas temperature and h and kB

are respectively the Planck and Boltzmann constants. As the temperature of

the system decreases, the width λDB of the wave function associated to the

particles increases according to Eq. 1.12. For low enough temperatures (panel

c), when λDB ≈ d, the wave functions start overlapping and consequently

the particles are not distinguishable any longer.

Depending on the quantum nature of the particles, i.e. whether fermionic

(half-odd integer spin) or bosonic (integer spin), two different phenomena can

occur as the gas is cooled down below a critical temperature Tc. Fermions, in

agreement with the Pauli exclusion principle, occupy different energy levels

starting from the ground state and with increasing energy (degenerate Fermi

gas). Bosons, which conversely may occupy the same position and the same

single-particle state, form a macroscopic matter wave oscillating in phase as a

unique coherent object (BEC). Ideally, for T = 0 (panel d), all the particles

fall in the ground state and a pure Bose-Einstein condensate without any

thermal component is formed.

It is important to note that Bose-Einstein condensation is a pure quantum

phenomenon as it is driven only by quantum statistics which gives rise to a

sort of effective (T -dependent) potential, attractive in the case of bosons

(repulsive in the case of fermions). As a matter of fact this phase transition

does not rely on the interactions between particles that, instead, may reduce

the quantum effects and eventually lead to the destruction of the BEC, as

we shall see in the next chapter.

2Note that this is in agreement with the Heisenberg principle as the reduction in
the particle velocity uncertainty at low temperatures results in a increase in its position
uncertainty, that is in its De Broglie wavelength.
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1.1 BEC with tunable interaction and disorder in 1D

The qualitative description of the Bose-Einstein condensation just shown

can be made more quantitative in terms of the phase-space density nλ3DB,

which is a parameter that describes the degree of quantum-mechanical be-

haviour of the system. For a system of non interacting particles (ideal Bose

gas) the BEC phase transition can be analytically shown [22] to occur when

nλ3DB = 2.612 (1.2)

For a gas of 87Rb at room temperature and pressure of 1 Atm, nλ3DB ≈ 10−8,

i.e. eight orders of magnitude lower than the condition 1.2 for the phase

transition. In principle, such a condition could be satisfied both by increasing

the density n and by decreasing the temperature T , being λDB ∝ T−1/2

(see equation 1.1). Nevertheless, for normal densities, at sufficiently low

temperatures all the known interacting systems, with the exception of helium,

become solid. In order to avoid such an undesired transition to the solid

phase, very dilute samples3 have to be employed and, consequently, the atoms

have to be cooled down to very low temperatures, of the order of 100 nK.

1.1.1 Feshbach resonances

So far we have assumed to deal with an ideal BEC, thus neglecting the

interactions between the particles forming the condensate. In dilute cold

gases4 only binary collisions are relevant and the two-body interaction po-

tential v(x− x′) can be written in terms of a contact pseudo-potential as:

v(x− x′) = g δ(x− x′) with g =
4π~2

m
a (1.3)

where a is the scattering length. The scattering length, which is positive in

the case of repulsive interactions and negative in the case of attractive ones5,

3Note that the lower the pressure, the lower the probability of inelastic three-body
collisions and the higher the lifetime of the metastable Bose-condensed phase.

4The diluteness condition for a cold gas is d � a, that is the mean inter-particle
distance d has to be much greater than the scattering length a of the two body potential.

5In the following only positive a will be considered since for a < 0 a condensate
is stable only for a very small number of atoms. As a matter of fact, above a certain
critical number, the condensate collapses due to three-body inelastic collisions caused by
the attractive interaction.
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1.1 BEC with tunable interaction and disorder in 1D

is the only relevant parameter when describing the collisional properties of a

system at very low energies.

Let us now show how it is possible to tune the intensity of the scattering

length, and thus the intensity of the interactions, by means of Feshbach res-

onances. First studied in nuclear physics [23–25], Feshbach resonances later

on became important in atom physics [6, 7, 26] as they offer the possibility

to tune the interactions in a controlled way simply by changing a magnetic

field.

In order to describe the basic idea of Feshbach resonance, we consider (see

Fig. 1.2) two diatomic molecular potential curves, Vop(R) (ground state) and

Vcl(R) (excited state), corresponding to two spin configurations for atoms6.

For large internuclear distances R, the potential Vop(R) corresponds to the

Figure 1.2: Basic model for Feshbach resonances. The scattering resonance occurs when
two atoms colliding at energy Einc in the open channel Vop(R), resonantly
couple to a molecular bound state with energy Eb, supported by the closed
channel potential Vcl(R). The relative energy of the two levels is controlled
via magnetic field when the corresponding magnetic moments are different.
Figure adapted from [27].

energy of the two free atoms7 (dashed line), which is chosen here as energy

6In principle, a molecule has several potential curves corresponding to the different
hyperfine and Zeeman levels. For simplicity, we consider here only one excited state,
which is appropriate for an isolate resonance.

7Neglecting the Zeeman effect, the energy at R→∞ is exclusively determined by the
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1.1 BEC with tunable interaction and disorder in 1D

reference (Vop(∞) = 0). As the two atoms collide with a very small incident

energy Einc, the level Vop(R) - called open channel - is energetically accessible

for a collisional process. The other potential Vcl(R), which is not accessible

(closed channel), may however have a bound molecular state close to 0. If

now the two atoms have the possibility to make a (temporary) transition to

this bound molecular state, then their scattering cross section can extremely

increase. The (Feshbach) resonance may indeed take place as the energy level

of the closed channel can be tuned, with respect to the open one, by varying a

magnetic field. As a matter of fact, provided that the states corresponding to

the two channels have different magnetic moments, i.e. they have a different

response (Zeeman shift) to the applied magnetic field B, this one can be tuned

in such a way that the energy Eb of the bound molecular state approaches

Einc.

Near a Feshbach resonance, the magnetic field dependence on the scat-

tering length a is given by [28]

a(B) = abg

(
1− W

B −B0

)
(1.4)

where B0 is the resonance center, W the resonance width and abg the back-

ground scattering length, i.e. the scattering length far from the resonance. A

plot of the scattering length a as a function of the magnetic field B is re-

ported in Fig. 1.3. The figure shows the 39K resonance at B0 ' 402 G, that

is also used in our experiment8.

An important point of a Feshbach resonance is the zero-crossing magnetic

field Bzc = B0 −W , i.e. the value of B at which a vanishes. The behaviour

of the scattering length in proximity of Bzc, as derived by Eq. 1.4, is given

by

a(B) =
abg
W

(B −Bzc) for B → Bzc (1.5)

The parameter that is important in order to control the interaction around

sum of the hyperfine energies of the two free atoms.
8The resonance at B0 ' 402 G is accessible when the BEC is in the substate |F =

1,m = 1 >, where F and m respectively label the hyperfine and Zeeman levels of the 39K
ground state.
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1.1 BEC with tunable interaction and disorder in 1D

Figure 1.3: Magnetic field dependence of the scattering length a between the 39K Feshbach
resonance at B0 ' 402 G and the zero-crossing Bzc ' 350 G. Note that the
small ratio abg/W (≈ 0.5 a0/G) allows to change to zero the interactions of a
39K BEC with high degree of accuracy.

the value a = 0, is the ratio abg/W : the smaller this ratio, the better the

accuracy for tuning the interaction. For the resonance shown in figure, whose

width is W ' 52 G and abg ' −29 a0 (a0 being the Bohr radius), the sen-

sitivity around Bzc = 350 G is da/dB ' 0.56 a0/G. This means that with a

stability, for instance, of 1 G for the magnetic field, the interactions of the

BEC can be changed to zero with an uncertainty of about half a Bohr radius.

BEC of Potassium-39. All the experiments described in this thesis are

performed using a BEC of Potassium-39 with tunable interactions [29]. The

experimental setup employed to produce the BEC is largely described in

previous theses at the “BEC-2” laboratory at LENS [30–34]. In the following

I will recall only a few general properties of our sample.
39K has a natural negative scattering length [35, 36], corresponding to

an attractive interaction, which would make the BEC collapse [37–39]. Nev-

ertheless, by using the Feshbach resonance at 402 G, it is possible not only

to condense 39K, by tuning the scattering length to positive values, but also

to control the interaction energy at will as just described. 39K is thus an

excellent sample for the production of a BEC with tunable interaction.

At zero magnetic field the collisional properties of 39K do not favour direct
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1.1 BEC with tunable interaction and disorder in 1D

evaporative cooling [40, 41]. For this reason, as a first stage before using the

Feshbach resonance in the optical trap, we need to employ 87Rb to sympa-

thetically cool down 39K. In spite of the small heteronuclear scattering length

for the 39K - 87Rb collisions [42, 43], the sympathetic cooling for 39K has been

proven to work efficiently [41]. Recently, a new experiment in Florence [44]

showed that it is possible to condense 39K without employing other atomic

species, provided that an efficient sub-Doppler cooling is performed and a

deep optical trap is available.

1.1.2 Quasi-periodic optical lattice

Let us now introduce the second key ingredient that will allow us to

suitably describe the behaviour of real systems, i.e. the disorder. The pos-

sibility to manipulate the disorder in ultracold systems with laser light is

quite remarkable, especially as compared with the real systems in nature,

where conversely the disorder – which is intrinsically present9 – can not be

controlled.

Many techniques have been exploited to create disordered potentials; a

standard way is to employ the laser speckle technique [46–48]. The interfer-

ence between the partial waves (randomly shifted in phase) scattered from

the various facets of the rough surface of a diffuser, produces a random inten-

sity distribution of light (spackle pattern). The typical length-scale l of the

speckle grains depends on the numerical aperture NA of the optical system,

l ' λ/NA, with λ the laser wavelength (λ = 1064 nm in our case). Due

to the limited optical access of our setup (NA ∼ 0.1) the minimum speckle

size achievable in our case would be quite large (l ≈ 10µm), i.e of the same

order of magnitude of the BEC size (about 20µm). For this reason, in order

to produce the disorder, we employed a quasi-periodic optical lattice whose

“grain size” l is quite smaller as it is given by the lattice constant d ≈ 0.5µm.

A quasi-periodic optical potential can be obtained by superimposing to

9Note that the disorder plays a key role in nature as it, for instance, affects the
transport properties of electrons in crystals [45].
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1.1 BEC with tunable interaction and disorder in 1D

an optical lattice with wavelength λ1 a weaker one with an incommensurate

wavelength λ2, i.e. such that the ratio β = λ1/λ2 is an irrational number

[49, 50]. Let us define the periodic potentials with wavelength λ1 and λ2 re-

spectively as the main lattice potential V1 and the secondary lattice potential

V2 (see Fig. 1.4 on the left); the quasi-periodic optical lattice, also known as

bichromatic lattice, is then characterized by the potential

V (x) = V1(x) + V2(x) = s1Er1 sin2(k1x) + s2Er2 sin2(k2x) (1.6)

where ki = 2π/λi (i = 1, 2) are the lattice wavenumbers and si are the lattice

heights in units of the recoil energies Er,i
10. A plot of Eq. 1.6 for s1 = 10 and

Figure 1.4: Quasi-periodic optical lattice (right) as a result of the superposition between
two perfect lattices (left), one with s1 = 10 and λ1 = 1064 nm (red) and the
other with s2 = 1 and λ2 = 862 nm (blue). The modulation (dashed line)
induced by the secondary lattice produces a sequence of wells D apart, whose
lattice sites with lower energy are at different potential heights.

s2 = 1 is shown in Fig. 1.4 (on the right) where the modulation induced by

the secondary lattice at the beating frequency c (k2− k1) is highlighted with

a dashed line.

Provided that s2 � s1 and β is an irrational number, the secondary lattice

induces a perturbation in the main one, resulting in an inhomogeneous and

non-periodic shift of the energy minima. In other words, the effect of the

10The recoil energy Er = ~2k2/2m is the kinetic energy with which an atom initially at
rest recoils when it absorbs a photon with momentum ~k. This energy can also be thought
of as the ground state energy E = ~2π2/2md2 of a particle confined within a 1D-box of
length d = λ/2, i.e. the lattice spacing.
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1.1 BEC with tunable interaction and disorder in 1D

secondary lattice is to produce a sequence of wells D = d/(β − 1) apart,

whose lattice sites at the bottom have different potential heights. This shift

of the energy minima is in a range of size s2β
2, thus proportional to the

secondary lattice height s2.

Moreover, it is possible to demonstrate [51] that the perturbation induced

by the secondary lattice does not change significantly the position of the

lattice sites, i.e. if s2 � s1 the position of the bichromatic lattice sites are

xj ' d · j, d being the period of the main lattice.

Finally we note that the disorder introduced by using a bichromatic lattice

is not a pure random disorder as it has a quasi-periodic structure, character-

ized by the frequencies ck1, ck2 and c(k2 − k1). However the quasi-periodic

potential breaks the translational invariance of a perfect lattice, and it can

be thus used to study the physics of disordered systems.

1.1.3 1D systems

In this thesis we aim to study the physics of interacting disordered bosons

focusing on the 1D case. The importance of 1D systems doesn’t rely only

on its theoretical simplicity. Besides being easier to be analytically and nu-

merically studied than systems with higher dimensionality, 1D systems are

also conceptually interesting for at least two reasons. First, they allow to

reach the regime of strong interactions11 where phase fluctuation effects be-

come relevant, as we shall see in the next chapter. Second, the progress in

material science in the last twenty years highlighted the existence of more

and more bulk materials exhibiting very anisotropic magnetic and electronic

properties that show a 1D structure inside. This is the case, for instance,

of some organic conductors [52–56] or spin [57, 58] and ladder compounds

[59, 60]. Moreover, with the enormous progress in chemical synthesis and

11In 3D, interactions mix the spatial degrees of freedom and the resulting interaction
energy is redistributed along all three directions. When one tries to increase the interac-
tion, the radial broadening of the atomic distribution lowers the density and, in turn, the
interaction energy itself. In 3D is thus impossible to achieve interaction energies larger
than the radial harmonic one.
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1.1 BEC with tunable interaction and disorder in 1D

nano-technologies many isolated 1D systems have been realized. Such sys-

tems, where electrons are confined to move along one channel, show plenty

of interesting quantum effects. Remarkable examples are quantum wires

[61, 62], Josephson junction arrays [63], edge states in quantum Hall systems

[64], nanotubes [65, 66] and superconductors [67–69].

Let us thus discuss how it is possible to realize 1D systems and what are

the conditions to be fulfilled. In the case of ultra-cold atoms, 1D systems (let

say along the z direction) can be realized by means of a harmonic confining

potential generated by two Gaussian beams along the orthogonal (x and y)

directions. The intensity of such a potential must be large enough to freeze

the orthogonal degrees of freedom, such that the dynamics of the system, and

thus the physics of interest, occurs only along z. The resulting wavefunction

can be thus factorized along z and r =
√
x2 + y2 as

Ψ(z, r) = φ(z) e−r
2/2a2

r (1.7)

where the second term is a Gaussian function with width ar =
√
mωr/~ due

to the radial harmonic confinement with frequency ωr. The energy of the

system can be written as the sum of the radial and axial terms as

E = Ez + ~ωr(nr + 1) (1.8)

where nr = nx + ny, with nx and ny integer numbers. The system is thus

characterized by radial quantized energy levels. If the temperature kBT and

the interaction energy U are much smaller than the energy separation ~ωr
between the radial energy levels, i.e. if

kBT, U � ~ωr, (1.9)

then only the radial ground state is populated (see Fig. 1.5a on top). As

for the axial wavefunction φ(z), its shape of course depends on the specific

potential along z but even in the simplest case there will be an axial confine-

ment due to the optical harmonic trap with frequency ωz � ωr. As a result,
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1.1 BEC with tunable interaction and disorder in 1D

Figure 1.5: (a) Schematics of a 1D system. Due to the strong transverse harmonic con-
finement (~ωr � kBT, U) the radial degrees of freedom are frozen and only
the ground state is occupied, contrary to what occurs along the axial (z) di-
rection. Occupied levels are represented in red, empty levels in gray. (b)
Collective excitation propagating along a 1D system of fermionized bosons.
The excitation corresponds to a density wave ρ(z) with length-scale larger
than the interparticle spacing.

depending on their temperature and interaction energy, the atoms will be

able to occupy several longitudinal energy levels but will still be in the radial

ground state, as shown in Fig. 1.5a.

Fermionized bosons. Interacting 1D fluids, no matter if the particles are

fermions or bosons, belong to a universality class of systems referred to as

“Luttinger liquids” [70]. Such universality derives from the absence of a

well-defined concept of statistics in 1D. As a consequence, under certain

conditions fermionic particles can be described in terms of a bosonic field, and

equivalently, bosonic systems can display fermion-like properties. The latter

phenomenon in particular, which is usually referred to as “fermionization”

of bosons, will be of particular relevance in chapter 3 when describing the

localization of strongly interacting particles in the presence of disorder. As

a general property, because of inter-particle interactions, if any atom tries

to move, it inevitably pushes its neighbour along the 1D axis, which in turn

pushes the other neighbour and so on. As a result, there will be a density

wave propagating along the 1D system: no individual motion is possible and

any individual excitation becomes a collective one, as illustrated in Fig. 1.5b.
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1.2 Disordered Bose-Hubbard model

These phenomena can be described in a more quantitative way introduc-

ing the Lieb-Liniger parameter characterizing the interaction strength of 1D

bosons in the continuum [71]:

γ =
m

~2n1D

g1D with g1D =
2~2

ma2r

a

(1 + Ca/ar)
(1.10)

and with C = 1.0326. γ is thus the ratio between the interaction en-

ergy g1Dn1D and the kinetic energy ~2n2
1D/m required to bring particles

at a distance n−11D. We note that far from a Feshbach resonance where

a � ar ≈ 1400 a0, g1D ∝ a as in the 3D case. We also note that γ ∝ n−11D,

meaning that contrarily to the 3D case, as the density n1D increases, inter-

actions decrease with respect to the kinetic energy.

In terms of γ we can now say that the system is in the fermionic limit

(Tonks-Girardeu gas [72]) if γ � 1 while it is in the bosonic limit if γ � 1.

From an experimental point of view, by varying the scattering length a we

can tune γ from about 0 up to values of the order of 10.

1.2 Disordered Bose-Hubbard model

After formally introducing the main features of the disordered Bose-

Hubbard (DBH) model, in this section I will describe the several regimes

of physical interest. Starting from the condition of null disorder, in Sub-

sec. 1.2.1 I will describe firstly the interaction-induced transition from a con-

ductive to an insulating phase (Mott insulator) taking also into account the

experimental case of an inhomogeneous trapped system. In Subsec. 1.2.2 I

will then consider the effect of disorder starting from the case of null inter-

action: above a disorder threshold value a transition to another insulating

phase will be shown to take place (Anderson localization). Finally, in Sub-

sec. 1.2.3, I will consider the delocalizing effect of weak interactions and the

theoretical expectation for the strongly-interacting Bose glass phase driven

by disorder.
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1.2 Disordered Bose-Hubbard model

The quantum state of a gas of identical interacting bosons in an optical

lattice potential Vlatt and in the presence of an external potential Vext, can

be described [73] by the second quantization Hamiltonian

Ĥ =

∫
d3x ψ̂†(x)

[
−~2∇2

2m
+ Vlatt(x) + Vext(x) +

g

2
ψ̂†(x)ψ̂(x)

]
ψ̂(x)

(1.11)

where ψ̂(x) is a boson field operator and the coefficient g is linearly related

to the scattering length a, according to Eq. 1.3. A Bloch wavefunction de-

scribing the quantum state of a particle in a lattice can be expressed as a

superposition of Wannier functions localized at the lattice sites. This kind of

description is particularly convenient when one wants to describe atom-atom

on-site interactions. Moreover, under the assumption that the energies in-

volved in the system are small enough not to induce inter-band excitations,

we can restrict ourselves to consider only the lowest energy band n = 0;

the boson field operators can then be written in terms of Wannier functions

(omitting the band index) as follows

ψ̂(x) =
∑
i

âiw(x− xi) (1.12)

âi being the annihilation operator of one boson at the i-th lattice site and

w(x−xi) being the Wannier function localized at the i-th site position xi. By

substituting this equation in 1.11 and considering only the tunneling between

neighbouring sites, one can obtain the disordered Bose-Hubbard Hamiltonian

ĤDBH = −J
∑
〈i,j〉

â†i âj + U
∑
i

n̂i(n̂i − 1)

2
+
∑
i

εi n̂i (1.13)

where âi and â†i are the boson annihilation and creation operators satisfying

the canonical commutation relation [âi, â
†
j] = δij, n̂ = â†i âi is the number

operator representing the number of particles at the i-th lattice site, and the

symbol 〈i, j〉 indicates that the sum has to be considered only between nearest

neighbouring sites. As for the quantities J , U and εi, they are particularly

important as they define the energy scales of the system:
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1.2 Disordered Bose-Hubbard model

• J = −
∫
d3xw∗(x− xi)

[
− ~2

2m
∇2 + Vlatt(x)

]
w(x− xj) is the tunneling

energy which is related to the overlap between the Wannier functions

localized at the i-th and j-th sites. As it represents the probability

for an atom to hop from one site to another it can be thought of as a

measure of the delocalization of the particles throughout the lattice.

• U = 4π ~2

m
a ·
∫
d3x |w(x)|4 is the on-site interaction energy, i.e. the en-

ergy related to the repulsive (a > 0) interaction between two atoms at

the same lattice site. Note that in the BH Hamiltonian U is multiplied,

for each lattice site, by the number of atom pairs n̂i(n̂i−1)/2, in agree-

ment with the fact that a site with ni = 0, 1 does not contribute to the

total interaction energy. Note also that interactions among atoms of

different sites are here neglected.

• εi =
∫
d3xVext(x)|w(x−xi)|2 ≈ Vext(xi) is the lattice site energy offset.

This energy contribution to the system may arise from two factors: the

first one is the external trap potential, which usually varies smoothly

across the lattice such that the energy εi within each lattice site can

be assumed constant; the second factor is the disorder, which can be

produced by means of the laser techniques previously discussed. In

the case of a quasi-periodic optical lattice, εi ∈ [−∆,∆] where 2∆ '
β2s2Er2 is the energy range of the disorder induced by the secondary

lattice of depth s2 [74].

We want to calculate now the integrals J and U and express them in terms

of the optical lattice depth which is the parameter that can be controlled in

the experiments. For the moment let us consider the more general case of a

3D optical lattice potential:

Vlatt =
∑
j

V0,j sin
2(kxj) j = x, y, z (1.14)

where V0,j is the lattice depth along the j-th direction, which is usually

expressed in terms of recoil energies Er as the dimensionless quantity

sj =
V0,j
Er

with Er =
~2k2

2m
. (1.15)
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1.2 Disordered Bose-Hubbard model

Under the assumption that around each minimum of the lattice potential

this one can be approximated by a harmonic potential well (sin2x ≈ x2),

the corresponding Wannier functions at each site i can be approximated as

follows

wi(x) =
3∏
j=1

ks 1
4
j√
π

 1
2

e−(k xj)
2√sj/2 (1.16)

i.e. Gaussian functions whose width aj = k−1s
−1/4
j decreases as the optical

lattice depth sj increases. With such an approximation for wi(x), it is possi-

ble to analytically calculate the above integrals for Jj (along each direction

j = x, y, z) and U :

Jj =
4√
π
Er s

3/4
j e−2

√
sj ; U =

√
8

π
Erk a

(
3∏
j=1

sj

)1/4

(1.17)

From equations 1.17 we observe that increasing the optical lattice depth sj

yields to an increase of the ratio U/Jj since it corresponds to:

• an exponential drop of the tunneling energy Jj as a consequence of the

higher barrier that the particles have to hop in order to tunnel from

one site to another.

• an increase in the interaction energy U as a consequence of the tighter

confinement of the particle density distribution within each lattice site.

To sum up, the quantum phase of the system depends on the interplay be-

tween the just described three energy scales: the tunneling energy Jj (related

to sj), the interaction energy U (related to sj and the scattering length a)

and the disorder parameter ∆ (related to s2).

1.2.1 Clean system: SF-MI phase transition

Let us start considering the ideal case of a translationally invariant 1D

system in which there is no trap potential and no disorder; as the site energy
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1.2 Disordered Bose-Hubbard model

Figure 1.6: Homogeneous Bose-Hubbard model (εi = const). The energy of the system
increases of the amount U , due to the repulsive interaction between two atoms
sharing the same site, and decreases of the amount J , due to a particle hop
from one site to another. Note that the higher the potential depth s1, the
larger the ratio U/J .

level εi is constant all over the lattice, we can neglect the last term in the

DBH Hamiltonian 1.13 which thus reduces to

ĤBH = −J
∑
〈i,j〉

â†i , âj + U
∑
i

n̂i(n̂i − 1)

2
(1.18)

The Bose-Hubbard model in the homogeneous case is illustrated in Fig. 1.6.

Depending on the ratio U/J between the two remaining energy terms the sys-

tem may show two quantum phases with different and well defined features,

i.e. the superfluid phase and the Mott insulator phase.

When U � J , that is the first term in Eq. 1.18 is the dominant one, each

atom is delocalized throughout the lattice and the system is said to be a

superfluid (SF). Let us define the Bloch lowest energy state of a single delo-

calized particle as the superposition
∑

i â
†
i |0〉 of the wavefunctions localized

on each lattice site; the ground state of the system of N identical bosons can

be then written as

|ΨSF 〉 = (
∑
i

â†i )
N |0〉 (1.19)

that is the product of the N single-particle delocalized states. The system is

thus described by one macroscopic wavefunction whose phase is consequently

constant and well defined on each lattice site. As a consequence, the density

distribution of the atoms after a free expansion12 from the lattice, shows

12After a free expansion (time-of-flight) of a few tenths of ms, the spatial density
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1.2 Disordered Bose-Hubbard model

sharp peaks 2~k apart resulting from the interference of the phase coherent

matter wave (see Fig. 1.7).

Figure 1.7: Interference pattern of the momentum density distribution after a free expan-
sion from an optical lattice. (a) If the lattice height is low enough such that
J � U , the Wannier functions localized at each site are phase locked to each
other due to the tunneling. (b) When the optical lattice is switched off, the
Wannier wavefunctions are free to expand. The narrower the initial (spatial)
density distribution, the broader the final (momentum) density distribution.
(c) The phase-locked expanded functions interfere each other giving rise to
sharp peaks 2~k apart, whose envelope is given by the single site density dis-
tribution.

In a SF, thus, while for each site the phase is perfectly defined, the number

of particles per site is not determined and exhibits Poissonian fluctuations.

This is in agreement with the Heisenberg uncertainty principle for which the

phase operator φ̂i and the number operator n̂i are conjugate variables that

obey to the commutation relation [φ̂i, n̂i] = i.

When U � J , that is the second term in Eq. 1.18 is the dominant one,

for the system is energetically convenient that the atoms remain still and

localized in correspondence of the energy minima: an atom jumping from a

site to a neighbour one would cause an energy cost for the system equal to

distribution |Ψ(x)|2 of a non-interacting BEC approaches the density distribution |Ψ(p)|2
in the momentum space. This is regardless of the shape of the trapping potential. In
the particular case of a BEC initially confined in an optical lattice with period d, the
matter wave shows interference peaks approximately 1/d apart which recall the interference
pattern of a diffraction grating. In that case, the lower the slits aperture, the larger the
number of peaks; correspondently here, the smaller the width of the confined Wannier
functions (i.e. the higher the lattice height), the larger the number of peaks.
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1.2 Disordered Bose-Hubbard model

U . This system is said to be a Mott insulator (MI). The strong repulsive

interaction forces the particles not to share the same sites, leading to a ho-

mogeneous and well defined distribution of the particles across the lattice.

For a given chemical potential µ, the particle number per site is thus well

determined and the ground state of the system is given by the product of the

single-site Fock states:

|ΨMI〉 =
∏
i

(â†i )
n|0〉, (1.20)

n ∈ N being the homogeneous site filling.

While the particle number per site is perfectly determined, there is no

phase correlation (no overlap) between the Wannier functions localized at

each site. As a result, no macroscopic phase coherence holds.

The SF to MI phase transition with ultracold atoms was first observed by

Greiner et al. [12] by increasing the lattice height s1 (and thus the ratio U/J).

The time-of-flight (TOF) fluorescence images of Fig. 1.8, show, for increasing

Figure 1.8: (top row) Single-site imaging of atom number fluctuations across the SF-MI
phase transition. The in-situ fluorescence images are taken for increasing 2D-
lattice heights from a region of 10 by 8 lattice sites within the n = 1 Mott shell
that forms in a deep lattice. Sites occupied with odd or even atom numbers
appear in the images respectively as full or empty sites. This is the case of
the SF regime (A and B), whereas in the MI regime, fillings other than 1
are highly suppressed (D). (bottom row) Corresponding fluorescence images
after free expansion of the cloud in the 2D optical lattice: the phase coherence
is progressively lost moving from A to D. Figure adapted from [75].

depths of a 2D optical lattice, the progressive loss of phase coherence in
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1.2 Disordered Bose-Hubbard model

the momentum density distribution (bottom row). Simultaneously, the high

resolution in-situ images (top row), show the progressive reduction of atom

number fluctuations across the 2D optical lattice.

The phase diagram of Fig. 1.9 shows the boundaries between the SF and

MI phases at T = 0, as a function of the ratios µ/U and J/U [16]. In the

Figure 1.9: Phase diagram of the SF to MI transition in a homogeneous system as a
function of the ratios µ/U and J/U . The MI lobes are characterized by a
constant filling n and thus a vanishing compressibility K (corresponding to a
discontinuous energy spectrum). In the SF phase the filling is defined only on
average and, due to its gapless spectrum, the system is compressible. Note
that the larger the average filling n̄, the larger the interaction energy (J/U)c
required to enter the corresponding MI domain. Red line: for a given J/U ,
decreasing the effective µ along the trap, MI domains alternate SF regions.
Figure adapted from [16].

MI phase (J/U � 1), for a given value of the chemical potential µ13, the

site filling n is well defined (integer number). In particular, as the chemical

potential µ increases, the site filling n discontinuously increases. In the SF

phase (J/U � 1), instead, for a given µ, the site filling is defined only on av-

erage (poissonian number fluctuations). Note that for larger µ, and thus for

larger site fillings n, the phase transition from MI to SF occurs at a smaller

critical value (J/U)c.

13The chemical potential µ, for a given temperature T < Tc, is a positive value de-
pending only on the average particle density. As we shall see, in a trap, the role of µ
will be played by an effective chemical potential µi taking into account the local system
inhomogeneities.
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1.2 Disordered Bose-Hubbard model

Excitation spectrum and compressibility. So far we have compared

the SF and MI phases referring only to the particle number fluctuations and

the phase coherence properties. There are other two important features that

characterize the two quantum phases, i.e. the excitation spectrum and the

compressibility.

As it happens in solid state physics, the conductivity properties of the

system are strictly related to its excitation spectrum: like the electrons in

the metals, the atoms in the SF phase are capable to move from one site

to another due to their gapless energy spectrum: when even a weak external

force is applied to the system, the atoms start moving as they can be excited

to states with energy very close to that of the original state by changing the

momentum of some atoms by a small amount.

Conversely, in the MI phase where the atoms are not free to move, the

energy spectrum is discontinuous with a gap of the order of U . In a homo-

geneous system, as sketched in Fig. 1.6, removing an atom from a site and

adding it to a neighbouring one with the same filling, has an energy cost

equal to the on-site interaction energy U (see also the phase diagram 1.9 in

the limit J → 0). Fig. 1.10 shows an experimental energy spectrum [76] with

Figure 1.10: (a) Excitation spectrum for a MI, showing two peaks at the excitation ener-
gies U and 2U . (b) Schematic of the excitations: the former peak corresponds
to the hop of an atom to a site with the same filling (blue), the latter corre-
sponds to the hop of an atom to a site with different site filling (pink), as it
occurs at the boundary between two MI domains due to the inhomogeneity
of the confined sample. Figure adapted from [76].

two peaks at the excitation energies U and 2U . The former corresponding

to the characteristic energy gap, the latter being due to the inhomogeneity
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of the system.

As for the compressibility, it is a measure of the density change as a

response to an energy change; formally

K =
∂n

∂µ
. (1.21)

The MI lobes of the phase diagram 1.9 are characterized by a constant site

filling n and, consequently, a compressibility K = 0: a system in the MI phase

is thus incompressible. This fact is a direct consequence of the discontinuous

nature of the energy spectrum. The SF, whose energy spectrum is gapless,

is instead compressible: a small change in the energy of the system results

in a change in the average particle number per site.

In table 1.1 the features of the SF and MI phases are summarized.

Superfluid (J � U) Mott-insulator (U � J)
Long-range phase coherence No phase coherence

Poissonian number fluctuations No number fluctuations
Gapless excitation spectrum Gap in the excitation spectrum

Compressible Not compressible

Table 1.1: Properties of the superfluid and Mott-insulator phases.

Inhomogeneous case. Let us now take into account the experimental case

in which a local energy variation is always introduced by the presence of

an external potential, due at least to the confining force exerted by the fo-

cused beams that form the optical lattices. The term
∑

i εini in the DBH

Hamiltonian 1.13 must thus not be neglected any longer. Due to the energy

offsets εi, the system can be thought to be characterized by a local effec-

tive chemical potential µi = µ − εi slowly varying through the lattice; This

quantity is strictly related to the system density such that an increase of

µi causes an increase of the local filling. With reference to Fig. 1.11, for a

harmonic trapping potential, µi and thus the density are maximum for the

atoms at the center of the trap and progressively decrease moving towards
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Figure 1.11: Optical lattice potential in the presence of a harmonic trap. The local effective
chemical potential µi = µ− εi, and thus the density, decreases moving from
the lattice center to the edges.

the edges. According to the phase diagram of Fig. 1.9 (red dashed line), for

a given value J/U < (J/U)c, the atoms alternate different phases depending

on their position across the trap: moving from the center of the trap towards

Figure 1.12: (left) Spatial distribution of the alternating MI and SF phases for a system
confined in a 2D harmonic trap with J/U < (J/U)c. (right) Single-site
images of the MI shell structure (J → 0) for increasing atom number. Full
(empty) shells contain an even (odd) atom number per site. Figures adapted
from [75, 77].

the edges, MI shells alternate to SF shells, the formers being characterized

by a lower and lower filling (see Fig. 1.12 on the left). In the limit case of

J = 0, only MI phases hold and the density profile has a step-like structure,

also known as wedding cake or shell structure, with integer filling of all sites,
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highest fillings being at the center of the trap. Fig. 1.12 (on the right) shows

experimental images of the shell structure for increasing atom number [75].

1.2.2 Disordered system: Anderson localization

In this section we will take into account a non interacting system and

we will see how its transport properties are affected by the presence of dis-

order. In particular we are interested in the phenomenon, first studied by

P. A. Anderson more than 50 years ago [13], of localization of particles and

waves in disordered media. Anderson studied the transport of electrons in

crystals by using a single-particle tight-binding model with random on-site

energies (see Fig. 1.13a): he showed that the transport, i.e. the diffusion of

an initially localized wave-packet, is suppressed if the disorder amplitude ∆

exceeds a critical value of the order of the tunneling energy J14. From an-

other point of view (Fig. 1.13b), Anderson localization can be understood by

considering the quantum-wave nature of particles. In this wave picture, the

localization is determined by the destructive interference resulting from the

several multiple scattering paths, which again prevents any diffusion.

In the following we will see how the original idea of Anderson can be

developed to study the disorder-induced localization of a quantum wave-

function in a quasi-periodic optical lattice. It has been proven that this

system shows a transition from extended to localized states analogous to the

Anderson transition for a pure random disorder. The main difference is that

with a quasi-periodic lattice such a transition at finite ∆ occurs already in

1D [50, 80], whereas in the case of pure random disorder, 2D or 3D systems

are required [81].

Let us consider a non interacting system (U = 0) in a 1D quasi-periodic

optical lattice of the form 1.6. The DBH Hamiltonian 1.13 takes then the

14Due to the high electron-electron and electron-phonon interactions, the transition
between extended and localized states studied by Anderson for non-interacting electrons
has not been directly observed in crystals [45]. Nevertheless, owing to the importance and
the general validity [78] of his discovery, in 1977 Anderson was awarded the Nobel Prize
in Physics.
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Figure 1.13: Schematic of Anderson localization from the twofold particle-wave point of
view [79]. (a) Anderson localization in terms of tunneling of particles: in an
ordered lattice (top) particles can tunnel between neighboring sites, freely
propagating across the lattice with an extended wavefunction. If the regular-
ity of the lattice is broken (bottom) by randomly changing the depth of the
potential at each lattice site by an amount ∆ & J , the tunneling is suppressed
and particles localize with an exponential decaying wave-function. (b) An-
derson localization in terms of destructive interference of waves propagating
in a medium with large concentration of randomly distributed scatterers.

form (Aubry-André Hamiltonian [80])

ĤAA = −J
∑
〈i,j〉

â†i , âj +
∑
i

εi n̂i with εi = ∆ cos(2πβ i). (1.22)

where the second term contains the quasi-periodic shift of the on-site energies

due to the secondary lattice. J ≈ e−2
√
s1 and ∆ ' s2Er2 β

2/2 are thus

the two relevant energies which, as previously discussed, can be controlled

independently by changing the heights s1 and s2 of the main and secondary

lattice potentials, respectively.

As mentioned in Subsec. 1.1.2, when the ratio of the two lattice wave-

numbers β = λ1/λ2 is an irrational number, the system displays features of

a quasi-disorder system. If the disorder amplitude ∆ is large enough, for the

system is energetically convenient that the atoms are localized in correspon-

dence of the energy minima forming an Anderson insulator (AI): an atom

jumping from a site to a neighbour would result in an energy cost for the sys-

tem of the order of ∆ (see the second term of equation 1.22). In particular,
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if the inverse of the golden ratio is used, β = (
√

5− 1)/2, the model shows a

“metal-insulator” phase transition from extended to localized states exactly

at ∆/J = 2 [80]. However, due to the limited degree of “irrationality” of our

β, the experimental transition results broadened and shifted towards larger

values of ∆.

Momentum distribution and diffusion. From the analysis of the mo-

mentum density distribution ρ(k) we can get information on the eigenstates

of the system. The width of ρ(k) is inversely proportional to the spatial

extent of the condensate in the lattice. In Fig. 1.14a we show the theoretical

momentum distributions ρ(k) for increasing values of ∆/J [82]. Without

Figure 1.14: Broadening of momentum distribution and reduced diffusion for increasing
disorder strength [82]. (a) Momentum distributions ρ(k) for increasing ∆/J
(0, 1.1, 7.2 and 25, from top to bottom). The interference pattern of a regular
lattice observed at ∆ = 0 is at first modified by the appearance of peaks
at the beating between the two lattices, and then increasingly broadened.
Momentum is measured in units of k1 = π/d. (b) In-situ absorption images
of the BEC spatial distribution as a function of time and for increasing values
of ∆. In absence of disorder the BEC expands ballistically, while for large
disorder diffusion is completely suppressed.

disorder, the typical grating interference pattern can be observed, the three

peaks at k = 0,± 2k1 reflecting the periodicity of the primary lattice. The

tiny width of the peak at k = 0 indicates that the wavefunction is spread

over many lattice sites [83]. For weak disorder, the eigenstates of the Hamil-
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tonian in equation 1.22 are still extended, and additional momentum peaks

appear at momentum space distances ± 2(k2 − k1) from the main peaks,

corresponding to the beating of the two lattices. As ∆/J further increases,

ρ(k) broadens and its width eventually becomes comparable with that of the

Brillouin zone, ±k1 = ± π/d, indicating that the extension of the localized

states has decreased down to the order of the lattice spacing d.

As a comparison I also show in Fig. 1.14b an experimental observation [84]

of the reduced diffusion induced by disorder. The measurements have been

performed by suddenly switching off the main harmonic confinement and

letting the atoms expand along the one-dimensional bichromatic lattice. In

correspondence to the progressive broadening of the momentum distribution

with ∆, the figure shows the progressive reduction of diffusion of the BEC in

the quasi-periodic lattice: while in the regular lattice (∆ = 0) the expansion

along the lattice (vertical) direction is ballistic, increasing disorder the atoms

expand with a progressively reduced velocity to the extent that no diffusion

at all can be observed at large disorder.

1.2.3 Bose glass from weak to strong interactions

So far we have considered only the two limit cases of either null disorder

or null interaction. The former case showing the SF-MI transition, the latter

one showing the SF-AI transition. When both disorder and interaction are

simultaneously taken into account, another quantum phase, the Bose glass

(BG), is expected to appear [16, 17]. The characterization of the phase dia-

gram showing the behaviour of the BG phase across the disorder-interaction

plane (see Fig. 3.1) will be the subject of Chapter 3. Here I describe the

main theoretical features focusing in particular on the BG properties in the

two regimes of weak and strong interactions.

Weakly-interacting BG. Let us now see how introducing a weak repulsive

interaction affects a disordered system. While disorder alone tends to local-

ize non-interacting particles in the absolute lowest energy state, giving rise
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1.2 Disordered Bose-Hubbard model

to the just described phenomenon of Anderson localization (see Fig. 1.15a),

weak repulsive interactions can counteract this effect drastically changing

the features of the system [85]. In particular, a weak repulsion can “screen”

Figure 1.15: Schematic of the interaction-induced delocalization in a quasi-periodic opti-
cal lattice [85]. (a) AI (U = 0): for sufficiently large ∆ the wavefunctions are
exponentially localized and only the absolute lowest energy level is populated.
(b) Anderson glass: with a very weak interaction several lowest energy levels
are populated. (c) weakly-interacting BG: due to the repulsive interactions
several lowest energy levels become almost degenerate and the corresponding
wavefunctions are modified giving rise to locally coherent fragments, though
long-range phase coherence is not yet restored. (d) BEC: for large interac-
tion strengths the energy minima are degenerate and a coherent extended
wavefunction is formed.

the disorder [86] and bring the system back to a coherent, extended SF (d),

passing through an intermediate glassy phase (b,c). In the evolution from an

AI to a SF we can think of two different stages:

• A very weak interaction pushes the bosons out of the lowest localized

state, increasing the overall size of the system. The many-body states

are however very close to the single-particle ones, and there is no co-

herence between distant or even neighbour states. This regime is often

addressed as an Anderson (or Lifshitz) glass in literature [87–89].

• For larger interaction energies (of the order of a tenth of ∆), the energy

minima – where most of the atoms are localized and thus the effect of

the interaction is larger – start becoming degenerate and consequently

28



1.2 Disordered Bose-Hubbard model

the many-body wavefunctions may occupy a few neighbouring sites.

Here the system can locally be SF, but, globally, it is still an insu-

lator. This regime is often addressed as weakly interacting BG glass

[16, 90, 91] (or fragmented BEC [89]).

Strongly-interacting BG. Let us now describe the regime of strong in-

teraction in the presence of disorder. Here we will focus our description

on the transition that the system, with a given strong-interaction U , un-

dergoes when the disorder amplitude ∆ is gradually added. As discussed

in Subsec. 1.2.1, when the system is homogeneous (εi = 0), its properties

are totally determined by the competition between the tunneling energy J

and the interaction energy U (see Fig. 1.16a). In particular, in the limit of

Figure 1.16: Phase diagram for a strongly-interacting disordered system as a function of
the ratios µ/U and J/U [92]. Depending on the interplay between the energy
scales J , U and ∆, three quantum phases can be identified: a superfluid (SF),
a Mott-insulator (MI) or a Bose-glass (BG).

strong interactions (U � J), the system is characterized by MI domains,

each of them with an integer site filling n determined by the local effective

chemical potential. When a weak disorder ∆ < U is added to the system

(Fig. 1.16b), the MI lobes are expected [16] to shrink, their size being given by

µ/U = 1−∆/U , and progressively make room to another quantum phase15,

15Whether the strongly interacting BG is different or not from the BG at weak inter-
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1.2 Disordered Bose-Hubbard model

known as strongly-interacting BG phase. For larger disorders, when ∆ ≥ U

(Fig. 1.16c), the MI lobes should completely disappear and, for a sufficiently

small J , only the BG phase should hold.

Phenomenologically, the BG phase can be thought of as something in be-

tween a MI and a SF phase. Like a MI, the BG is insulating since it doesn’t

have long-range phase coherence. Like a SF, it has a gapless excitation spec-

trum (and consequently a finite compressibility), as I am going to show right

away. It is important to note that the coexistence of these two properties,

i.e. insulating and gapless excitation spectrum, is not in contradiction: de-

spite the zero energy gap, excitations only occur locally giving rise to regions

of local superfluidity with short-range phase coherence but, globally, the BG

remains insulating. We also stress here that such features are in general typ-

ical of glass. As a matter of fact the quantum phase we previously referred

to as Anderson glass or fragmented BEC in the weak-interaction regime is

not different from the BG phase just described, in the sense that both are

insulating and incompressible.

Gapless excitation spectrum. Let us now try to understand the gapless

nature of the excitation spectrum in the BG phase. This will automatically

explain why its compressibility, which has been defined in Eq. 1.21, is non

zero. With reference to Fig. 1.17a we first consider the limit case of a homoge-

neous MI (J → 0,∆ = 0): as explained in Subsec. 1.2.1, the lowest excitation

is ∆E = U corresponding to the energy cost of an atom jumping from one

site to a neighbouring one with same filling (see also Fig. 1.10). Introducing

disorder (Fig. 1.17b) yields random energy differences ∆i ∈ [−∆,∆] between

neighbouring sites. As a result, the energy cost due to an atom jumping from

one site to a neighbouring one is now position dependent as ∆Ei = U ±∆i.

This means that in the full BG regime, when ∆ ≥ U , an infinite-sized sys-

tem can be excited at arbitrarily small energies as the energy gap approaches

zero. We finally note that due to its finite size, a real system has an excita-

action is still an open question; see the discussion in Sec. 3.1.

30



1.2 Disordered Bose-Hubbard model

Figure 1.17: (a) In a homogeneous MI the energy cost for an atom jumping from one site
to a neighbouring one with same filling is ∆E = U . (b) If some disorder is
introduced the energy cost for such a process becomes ∆Ei = U ± ∆i, ∆i

being the disordered-induced energy difference between neighbouring sites.
Figure adapted from [92].

tion spectrum that, even though very small, has always a finite gap.
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CLEAN SYSTEM: THE SUPERFLUID PHASE
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In this chapter we will consider a clean system, that is a system in the ab-

sence of disorder, focusing on the properties of a 1D SF. After describing the

particular relationship between Bose-Einstein condensation and superfluidity

in the more general 3D case (Sec. 2.1), we will see how the properties of a

BEC, as well as of the SF, are affected by a reduced dimensionality (Sec. 2.2).

In this section we will also describe the experimental procedure to create a
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2.1 BEC versus Superfluidity

1D system and to investigate its coherence properties. In Sec. 2.3, we will

then investigate the effects of the finite temperature on our experimental

system by using theoretical methods. Such methods, in particular, will allow

us to estimate the temperature of a 1D SF. Finally, in Sec. 2.4, we will re-

port on several transport measurements showing the different mechanisms of

dissipation of a SF in 1D, where the effect of strong phase fluctuations play

a significant role.

2.1 BEC versus Superfluidity

One of the main reasons why much effort has been invested in the study of

Bose-Einstein condensation is that this phenomenon is closely related to those

of superfluidity and of superconductivity, the former being characterized by

a frictionless flow of matter, the latter by a frictionless flow of charge. In

this section we will focus on the phenomenon of superfluidity, attempting to

describe at a basic level its subtle relationship to Bose-Einstein condensation.

The first system where the two phenomena have been investigated exper-

imentally is liquid 4He. Due to the light mass of its atoms, liquid helium

exhibits strong quantum fluctuations which prevent it from becoming solid

even at T = 0. As a matter of fact, except at high pressures (above 25 atm),

helium is the only permanent liquid available in nature. As shown in Fig. 2.1,

below the temperature Tλ = 2.17 K liquid helium (usually referred as to He

I) becomes superfluid (He II). Remarkably, the experimental value of Tλ is

close to the critical temperature Tc = 3.1 K for Bose-Einstein condensation

predicted for an ideal Bose gas at the same density1. This fact suggests the

existence of a relationship between SF and BEC.

As a matter of fact, analogies between the two phenomena can be found

both theoretically and experimentally. According to Landau’s theory, if the

excitation spectrum of the system satisfies certain criteria (which we shall see

in Subsec. 2.4.1), the motion of the fluid does not cause any energy dissipation

1Note that due to the relatively high density, Tc for liquid helium is much higher than
that for alkali atoms (of the order of tenths of nK), in agreement with Eq. 1.2.
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2.1 BEC versus Superfluidity

Figure 2.1: Pressure-temperature phase diagram of 4He [93]. The λ line separates the
normal (HeI) from the superfluid (HeII) phase of liquid helium.

[94]. These Landau criteria of superfluidity are met not only by the excitation

spectrum of He II but also by the Bogoliubov excitation spectrum associated

to an interacting BEC.

On the experimental side, using ultracold atoms it was possible to observe

the remarkable transport properties of He II, like for instance the frictionless

flow below a critical velocity [10], the second sound [95], the irrotational flow

(and hence the reduced moment of inertia) [96] and the formation of vortices

with quantized circulation [8, 9].

Despite these similarities, superfluidity and Bose-Einstein condensation

are different phenomena. For instance, in an ideal Bose gas (thus in absence

of interactions), 100 % of the particles can condense into the state with the

lowest available energy, thus forming a BEC. However, as shown in Sub-

sec. 2.4.1, an ideal Bose gas does not become SF. Conversely, in He II only

about 7 % [97] of the atoms actually form a BEC, even though almost 100 %

of the atoms can flow without friction. Let’s consider the BEC wavefunction

Ψ =
√
n0e

−iφ; this is connected to the SF velocity vSF according to the well

known relation [93]

vSF (r) =
~
m
∇φ(r). (2.1)

The connection to the SF is thus only for the phase φ of the BEC wave-
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2.2 1D quasi-condensate

function and not for its amplitude
√
n0. As a matter of fact, the condensate

density n0 = |Ψ|2 cannot be identified with the superfluid density nSF . This

fact, which is evident even at T = 0, is a consequence of the quantum de-

pletion of the BEC, that is the fraction nQD of atoms that are not in the

single particle ground state at T = 0. Population of higher states occurs in

the presence of interactions. As we saw, in a strongly interacting system as

it is He II, this fraction can be even nQD ' 90 %.

In other words, the main difference between BEC and superfluidity is that

BEC is a property of the ground state, while superfluidity is a property of

the excited states. This is entirely analogous to superconductivity, where the

electrons condense into Cooper pairs (bosonic ground state), and where the

interaction between the Cooper pairs introduces a finite energy gap between

the ground state and excited states. In turn, this energy gap is responsible

for the system becoming a superconductor. Thus, in both systems, it is the

interaction between the particles that is responsible for the exotic behaviours,

rather than the way they arrange themselves in the ground state.

In summary, we saw that even though a BEC and a SF are closely related

one to the other, the presence of one phenomenon doesn’t necessarily imply

the presence of the other and vice versa. In the next section we will consider

the case of 1D systems where even if we can not formally define a real BEC,

the atomic sample indeed seems to behave as a SF. However, we already

anticipate here that due to strong quantum fluctuations, the behaviour of

1D systems is quite subtle and not only the properties of a real BEC but

actually also those of a SF are not completely preserved; as we shall discuss in

Subsec. 2.4.3 a 1D SF is in fact always affected by the dissipation mechanism

of phase slips.

2.2 1D quasi-condensate

In Sec. 1.1 we have seen that in 3D, decreasing the temperature below the

critical value Tc, the size of the system wavefunction λT ∝ T−1/2 increases

becoming comparable with the inter-particle mean distance d, i.e. λT & d,
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2.2 1D quasi-condensate

and a macroscopic fraction of the ideal Bose gas condenses in the lowest

energy state. Correspondingly, the chemical potential µ, which is negative

above the critical temperature, vanishes at Tc and remains essentially zero

below. Conversely, in 1D (and also in 2D in a box) µ vanishes only at zero

temperature, thus the critical temperature for Bose-Einstein condensation is

Tc = 0 and no BEC can be formed at finite T [98]. In table 2.1 we report

the conditions for the condensation critical temperature Tc in D dimensions,

for both a box and a harmonic potential. Those results can be understood

D box harmonic
1 Tc = 0 Tc = 0
2 Tc = 0 Tc > 0
3 Tc > 0 Tc > 0

Table 2.1: Conditions for BEC critical temperature Tc in a box and in a harmonic potential
as a function of the system dimension D.

considering the D-dependence of the density of states, which in the case, for

example, of a box is g(E) ∝ E
D
2
−1. In a 3D gas, thus, g(E) increases with E.

Therefore, at sufficiently low T it becomes impossible to thermally occupy

other than the lowest energy state. Conversely, in 1D (and 2D) the density

of states does not increase with E and the phenomenon of BEC is absent.

2.2.1 Degeneracy temperature and correlation length

Even though in 1D it’s not possible to define a critical temperature Tc

below which there is a real BEC, it is always possible to define a degener-

acy temperature TD below which the quantum nature of particles cannot be

neglected and the system is said to be a quasi-condensate. The degeneracy

temperature

TD =
~2

mkB
n2
1D (2.2)

satisfies the condition, analogous to that of Eq. 1.2 for the 3D case, that

the 1D phase space density parameter n1DλT is of the order of unity. Here

n1D = N/L is the 1D density, L being the length of the system2.

2Note that in the presence of a lattice, its spacing is d = L/N = n−1
1D.
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2.2 1D quasi-condensate

Let us now analyze the features of a quasi-condensate in terms of the

coherence properties of the system. Be ρ(x) = 〈Ψ̂(x′)†Ψ̂(x′′) 〉 the correlation

function between two wavefunctions separated by a distance x = x′ − x′′;

according to [99] the condition for Bose-Einstein condensation is

lim
|x|→∞

ρ(x) = n0 (2.3)

that is the correlation function is finite even at infinite distances, n0 being

the density of atoms in the ground state. This is the case of a 3D BEC which

is a macroscopic coherent object whose phase φ(x) is well defined throughout

the system. In 1D this is not true any longer, as the strong phase fluctuations

destroy the long range order of the system. As a matter of fact, the mean

square fluctuations of the phase for 1D systems are expected [98] to diverge

linearly at large distances x = x′ − x′′, that is

〈∆φ(x)2〉 = 〈[φ(x′)− φ(x′′)]2〉 =
mkBT

n1D~2
|x|. (2.4)

As a consequence the correlation function in 1D decays exponentially, i.e.

ρ(x) ' n1D e
− 〈∆φ(x)2〉

2 = n1D e
− |x|

2ξ (2.5)

with correlation length

ξ =
n1D~2

mkB

1

T
. (2.6)

The T -dependent length ξ represents thus the distance over which the sys-

tem is coherent. As we shall see in the next section, this very important

parameter is directly related to the momentum distribution width which is

experimentally observable. According to the condition 2.3, in 1D there is no

condensation as the correlation function approaches zero at large distances.

Nevertheless, if the correlation length ξ is sufficiently large with respect to the

system size L, then the phase coherence is preserved throughout the system,

which thus behaves as a real condensate. We can then define the quasi-

condensate as that system that exhibits intermediate properties between a

real condensate and a normal system, in which ρ(x) drops towards zero over

a microscopic distance. In particular, by using the definitions 2.2 and 2.6 for
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2.2 1D quasi-condensate

the correlation length and the degeneracy temperature, the conditions to be

fulfilled for having a quasi-condensate are:

T

TD
=
L/N

ξ
< 1. (2.7)

As we shall see in Sec. 2.3 this is the case of our experimental 1D system,

where the correlation length is larger than the lattice spacing (which is ex-

actly L/N for a filling n = 1) and the temperature is smaller than TD. The

Figure 2.2: Phase diagram for 1D systems. For ξ > L the system behaves as a pure
BEC. Below TD where ξ > L/N the coherence properties are still preserved
(quasi-BEC), while for shorter ξ the phase coherence is lost (normal phase).

conditions for the different regimes are summarized in the diagram of Fig. 2.2.

2.2.2 Momentum distribution and coherence

We now report on the investigation of the correlation properties of our

experimental system. To directly determine the correlation function ρ(x)

we would need to have explicit knowledge of the in-trap density distribution

which is usually not possible in the experiment (unless a setup with a high

resolution, single-site imaging is provided). Nevertheless, the spatially aver-

aged correlation function g(x) =
∫
ρ(x′, x + x′)dx′ can be easily related to

the momentum distribution ρ(p) = |Ψ̂(p)|2 which, conversely, is accessible in

the experiment. Using the Wiener-Khinchin theorem Ψ̂(p) ∝ F [Ψ̂(x)] we get

g(x) = F−1[ρ(p)] (2.8)

that is the correlation function is nothing else than the inverse Fourier trans-

form of the momentum distribution ρ(p). In the experiment, ρ(p) is obtained

performing time of flight (TOF) absorption imaging, that is by releasing
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the atomic cloud from the trapping confinement and letting it free to ex-

pand before acquiring the image. If the expansion time is sufficiently large

(tTOF � 1/ωi ∀i) and the interactions can be neglected3, the image repro-

duces the in-trap momentum distribution,

nTOF (x) ≈ ρ(p). (2.9)

Since the correlation function ρ(x) decays exponentially on the length scale

ξ, its Fourier transform ρ(p) is a Lorentian function

ρ(p) ∝ 1

p2 + Γ2
(2.10)

whose HWHM width Γ is inversely proportional to ξ:

Γ =
0.63~
ξ

. (2.11)

The TOF image of Fig. 2.3 shows a typical momentum distribution of the

Figure 2.3: TOF image (left) of the momentum distribution ρ(p) for a SF atomic sample
in a lattice aligned along the ẑ direction. The image is integrated along the
horizontal direction (right) and fit with 3 Lorentian functions. The width Γ of
the central peak gives information on the coherence properties of the system.
Note the matter-wave interference fringes along ẑ and the absence of phase
coherence due to the potential tubes along the horizontal direction.

3Due to the strong radial confinement of 1D tubes, the fast expansion along the radial
direction makes the system dilute after less than 1 ms, thus making negligible the effect
of interaction along the axial direction. Moreover, in our case, the interaction is tuned to
zero via the Feshbach resonance during the expansion.
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sample and its intensity profile along the lattice direction ẑ obtained inte-

grating along the horizontal direction. A Lorentian fit with Eq. 2.10 provides

the width Γ from which we determine the correlation length ξ of the system.

We note that the factor 0.63 in Eq. 2.11 takes into account the effect of

the trap: the central region with larger density gives rise to a larger effective

correlation length, i.e. ξ/0.63 [100]. As we shall see in Subsec. 2.3.1, also the

effect of the optical lattice must be taken into account; when calculating the

correlation length of Eq. 2.6, at least in a first approximation, one should

replace the mass m with the reduced mass m∗ for the atoms in the periodic

potential.

2.2.3 Experimental procedure

In this subsection we describe the procedure used in our experiment to

create a 1D system and to investigate its coherence properties. This will

be useful to understand the various sources of loss of phase coherence in

a SF sample, like for example an increase of temperature (next section) or

an increase of interaction that can enhance dissipation mechanisms (Sub-

sec. 2.4.2). This technique will result also very useful in the next chapter

when the effect of disorder will be introduced to characterize the phase di-

agram of the momentum distribution as a function of both interaction and

disorder. For simplicity, we describe already here also the experimental pro-

cedure used to tune disorder in the system.

Array of 1D potential tubes. As a starting point we consider a 3D inter-

acting BEC of 39K atoms prepared in an optical trap with mean frequency

ω ' 2π×80 Hz, at a scattering length a = 210 a0. In Fig. 2.4 we then re-

port the temporal sequence employed to load the atoms in an array of 1D

potential tubes at different interaction and disorder values. The 3D BEC is

adiabatically transferred from the optical trap into the 1D potential tubes by

ramping up a 2D strong optical lattice along the horizontal directions with

a 400 ms s-shaped ramp. With a lattice depth sr = 30 the radial trapping
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Figure 2.4: Optical lattice potentials (a) resulting from the loading temporal sequence
(b). A 400 ms s-shaped ramp of a 2D strong optical lattice (red) with s = 30
forms an array of 1D potential tubes. The main (purple) and secondary (blue)
lattices are subsequently raised up at different heights depending on the desired
value of J and ∆ respectively, while the scattering length (black) is linearly
changed in the last 100 ms to get the desired value of U .

frequency of each tube ωr ' 2π×50 kHz is larger than all other energy scales

and the tunneling between neighboring tubes is suppressed on the time scale

texp ∼ 100 ms of the experiments (i.e. h/Jr ∼ 1s � texp). We can thus

study the physics along the potential tubes, which can be effectively thought

of as 1D systems (see Subsec. 1.1.3). Typically, out of a BEC sample of

Ntot ≈ 30 000 atoms we get approximately 500 tubes with an average num-

ber of atoms N̄ ≈ 60 each4.

Inside the potential tubes. At later stages also the main and secondary

lattices are adiabatically raised up, as shown in the figure. The depth s1 of

the main lattice, whose lattice spacing is d = λ1/2 = 532 nm, can be tuned

according to the first of equations 1.17 in order to have the desired value of

4The atom number per tube can be determined by integrating the Thomas-Fermi
profile of the interacting sample along the tubes. In the tube (i,j) the resulting number

of atoms is Ni,j = N0,0[1 − 2πN0,0

5Ntot
(i2 + j2)]3/2 where Ntot is the total atom number,

N0,0 = 5Ntotd
2/2πRxRy is the atom number in the central tube, Rx,y are the Thomas-

Fermi radii in the horizontal directions, which depend on the atomic scattering length a set
by the Feshbach field, and d = λ/2 is the spacing of the tubes. For typical Ntot = 3× 104

and a = 210 a0, we estimate an upper limit of N0,0 = 96, and an average N̄ ≈ 60.
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the tunneling energy J . Analogously, the depth s2 of the secondary lattice

(lattice spacing d = λ2/2 = 428 nm) can be tuned in order to have the de-

sired value of disorder (∆ ∝ s2). Finally, in the last 100 ms when the radial

confinement is sufficiently strong to freeze the number of occupied tubes, the

scattering length a is also tuned according to the second of equations 1.17 to

have the desired value of the interaction energy U .

Momentum distribution detection. For a given set of parameters J , U

and ∆, we can detect the coherence properties of the system by using the

TOF imaging technique previously described. All the trapping potentials

are thus suddenly switched off and the atoms let free to expand for 16 ms,

after which the density distribution in coordinate space approaches the one in

momentum space. As described in Subsec. 1.2.1 (Fig. 1.7), if before switching

off the optical lattices the Wannier wavefunctions localized in each lattice

site are phase-locked to each other, i.e. the system is a SF, then the Wannier

functions interfere one with each other giving rise to sharp peaks in the

density distribution along the direction of the free expansion. In particular,

the distance between the peaks corresponds to the size of the Brillouin zone in

the momentum distribution, that is 2~π/d = 2~k1, with d = λ1/2 being the

spacing of the optical lattice generated by the laser beam with wavelength λ1.

The image of momentum distribution of Fig. 2.3, taken at small interaction

U ' J (and in absence of disorder, ∆ = 0), shows the typical interference

pattern of a coherent SF. Three horizontal stripes arising from the matter-

wave interference along the tubes direction ẑ can be easily distinguished. By

contrast, the broad distribution along the other direction is a clear evidence

of the absence of phase coherence between the wavefunctions belonging to

different potential tubes.

As described in Subsec. 1.2.1, when the on-site interaction energy U is

much larger than the tunneling energy J , the system enters the MI phase and

the phase coherence is completely lost. Fig. 2.5 shows an absorption image

of the momentum distribution in the MI regime taken at a large interaction
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value, U = 32 J .

Figure 2.5: Absorption image of momentum distribution taken with interaction energy
U = 32 J and representative of a MI sample. Note that the phase coherence
is lost also along the ẑ direction.

The large width Γ of the momentum distribution is a clear evidence of

the loss of phase coherence of the sample; the correlation function decays

according to Eq. 2.5 on a length scale ξ shorter than the lattice spacing d.

As we shall see in Subsec. 2.4.2 this loss of phase coherence can be related

to a complex mechanism of dissipation of the system, i.e. the interaction-

enhanced phase fluctuations. We finally point out that, given a SF sample,

a broadening of the momentum distribution analogous to that of Fig. 2.5,

can be obtained also by increasing the temperature. As a matter of fact, the

correlation length ξ can provide information also on the temperature of the

sample and this will be the subject of the next section.

2.3 Comparison with theory: finite-T effects

In this section we make use of theoretical methods, like density-matrix

renormalization group (DMRG) and exact diagonalization (ED), to investi-

gate the effects of the finite temperature on our experimental system. This

study has been performed in a collaboration with a theoretical group led by

Prof. T. Giamarchi. The former method, in particular, will provide us infor-

mation on the coherence properties of our inhomogeneous system at T = 0.
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From a comparison with the theory we will thus get an insight on the loss of

coherence induced by temperature in the experimental SF. The latter method

will then allow us to estimate the temperature of the 1D SF.

We first study the inhomogeneous system described by the Bose-Hubbard

Hamiltonian 1.13 using DMRG calculations at T = 0 [90, 101, 102]. Such

calculations give access to the single-particle correlation function gi,j between

the wavefunctions at sites i and j. Taking into account the trapping geom-

etry and averaging over the distribution of tubes, the T = 0 momentum

distribution for our inhomogeneous system can be obtained as

ρ(p) = |W (p)|2
∑
lm

eip(l−m)glm, (2.12)

which is analogous to Eq. 2.8, W (p) being the Fourier transform of the Wan-

nier function computed numerically.

To account for the finite temperature effects we thus compare the exper-

imental ρ(p) to that of the T = 0 theory. By looking at Fig. 2.6, we can

immediately notice that the theoretical momentum distribution obtained by

Eq. 2.12 (blue curve) is considerably narrower than the experimental one

(black curve). In order to quantify the thermal broadening we phenomeno-

logically introduce, in addition to the intrinsic (T = 0) correlation length ξ0,

a thermal correlation length ξT so that

1

ξ
=

1

ξ0
+

1

ξT
(2.13)

and the exponential decay of the correlation function gl,m results multiplied

by a factor e−|i−j|/ξT [103]. According to Eq. 2.8 this corresponds to convolve

the theoretical Lorentian ρ(p) of width Γ0 with another Lorentzian distribu-

tion of width 1/ξT . The convolution (red curve) of width Γ = Γ0 + 1/ξT is

performed keeping ξT as a free fitting parameter in such a way that the theo-

retical and experimental distributions match best. For the sake of simplicity,

one can assume the same ξT for all distances and all tubes.

As a first consideration we notice that there is a good agreement between

theory and experiment. We then observe that the thermal correlation length,
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2.3 Comparison with theory: finite-T effects

Figure 2.6: Comparison between the experimental momentum distribution ρ(k) (black)
and the one obtained with DMRG calculations for our inhomogeneous system
at T = 0 (blue). The momentum p is here expressed in terms of the wavevec-
tor k = p/~. The thermal correlation length ξT , which phenomenologically
accounts for thermal effects, is obtained from the convolved momentum dis-
tribution (red) of width Γ = Γ0 + 1/ξT that best fit to the experimental one.
For U = 2 J , from a DMRG calculated ξ0 = 13.2 d and a measured ξ = 1.25 d
we get a thermal correlation length ξT ' 1.4 d.

which gives a measure of the thermal effect on the system phase coherence,

is rather short (ξT ≈ d), showing thus a relevant impact of temperature on

the SF. Despite this thermal broadening, the correlation length fulfils the

condition 2.7 for the existence of a quasi-BEC. We finally point out that this

phenomenological approach, which for the SF regime has already recognized

being valid [103], can be actually used also in the presence of disorder, as we

shall see in the next chapter. There we will see that for a strongly interacting

BG, ξT is instead large.

2.3.1 Superfluid temperature

In this subsection we show a method to estimate the temperature of the

1D SF in the lattice. Eq. 2.6 provides a relation between the temperature

and the correlation length ξ in the continuum, i.e. in the homogeneous case

in the absence of the lattice. According to Ref. [100], the temperature in a
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2.3 Comparison with theory: finite-T effects

trapped system can be calculated as

T =
~2n

0.63 kBmd
Γ (2.14)

the factor 0.63 taking into account the larger effective correlation length in

the trap. This equation provides an overestimation of the temperature since

the width Γ takes into account, besides the thermal broadening 1/ξT , also

the intrinsic broadening Γ0, which however can be subtracted according to

Eq. 2.13 whenever the intrinsic correlation length ξ0 is given (by DMRG

calculations).

An extensive numerical study in the presence of the lattice is though

a very difficult task. As a first, rough approximation, one can take into

account the effect of the lattice by simply replacing the mass m with the

zero-momentum reduced mass:

m∗ =
~2

2Jd2
. (2.15)

The approximation becomes worse and worse as the lattice depth increases

and one cannot even neglect any more the momentum-dependence of m∗ as in

2.15. To get a more rigorous connection between the system temperature and

the measurable correlation length we have therefore performed an exact di-

agonalization of the Bose-Hubbard Hamiltonian 1.18 for small homogeneous

systems with length up to L = 12 d. For a given interaction (and disorder)

value we are able to calculate the temperature behaviour of the correlation

functions gi,j and, by an exponential fit of their tails, of the correspondent

correlation length ξ(T ). An estimation of the experimental temperature in

the SF regime, can be thus achieved from a comparison between ξ(T ) and

the thermal correlation length ξT measured as discussed in the previous sub-

section. As shown in Fig. 2.7, in the SF regime (∆ = 0, U = 2 J) we find

a clear increase of ξ(T )−1 for increasing T. At low temperatures, finite-size

effects prevent us from obtaining quantitative results for ξ(T ), as it increases

becoming comparable with the size of the system L. Nevertheless, we are

able to determine the correct scaling of the inverse correlation length for
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2.3 Comparison with theory: finite-T effects

Figure 2.7: Inverse correlation length 1/ξ(T ), calculated by exact diagonalization for a
small homogeneous system with L = 12 d in the SF regime (∆ = 0, U = 2 J)
and for various site fillings n ≤ 1. The dashed line is a fit of the high-T
numerical data with Eq. 2.16. Inset: density dependence of 1/ξ(T ).

higher temperatures. As a matter of fact, in the range kBT = (2 − 100) J ,

which is also the range of experimental interest, the numerical results are

very well fit by the following relation

ξ(T ) =
d

arcsinh( kBT
αJ
√
n
)

(2.16)

with α = 2.50(5) being a fitting parameter. In such range of temperatures the

plot shows that the intrinsic (T = 0) inverse correlation length is negligible

(ξ(0)−1 � ξ(T )−1) and in Eq. 2.13 we can thus identify ξ(T ) with ξT . From

the thermal correlation length ξT = 1.38(13) d obtained by the fit of the

measurement performed at U = 2 J (and ∆ = 0) shown in Fig. 2.6, we

obtain this way the experimental temperature for the SF5,

kBT = 3.1(4)(3)J. (2.17)

Since the tunneling energy set by a lattice depth s = 9 is J = h×110 Hz, this

corresponds to T = 16 nK. The experimental temperature is smaller than the

5the first uncertainty source is the statistical error on ξT and n, and the second one is
the systematic error on the calibration of NT (' 50 %).
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degeneracy temperature

kBTD =
3

16
N~ω∗z ' 8J, (2.18)

confirming thus the quantum nature of the system (quasi-BEC). Here the

relation 2.2 given for the degeneracy temperature of an uniform gas has

been replaced with that for a trapped gas [104], ω∗z = ωz
√

m
m∗

being the axial

trapping frequency rescaled for the reduced mass m∗ ' 4m due to the optical

lattice.

The results for ξ(T )−1 shown in Fig. 2.7 refer to the case U = 2 J , but

other calculations in the SF regime, suggest little or no dependence on U .

To our knowledge, this behaviour of ξ(T ) was not found in previous studies

of bosonic systems. A similar result, ξ(T ) ' d/arcsinh(kBT/J), was however

found for spinless fermions in a lattice [105], which represents the U = ∞
limit for a bosonic system.

For vanishing T , Eq.2.16 tends instead to the usual linear scaling in T−1 of

the Luttinger liquid theory, ξ(T ) ' dJ/kBT [103], which in turn is essentially

Eq. 2.14. We note that the finite size of our simulations does not allow to

study this low-T range, but the data in Fig.2.7 suggest that it is reached only

for kBT � J .

We finally point out that outside the SF regime, the study of ξ(T ) with the

ED method just described is a very difficult task because in general there will

be a coexistence of different phases, each one showing a different dependence

on T . Moreover, even in the presence of a single phase one might expect

a non-trivial dependence of the correlation length on all the parameters in

the problem, i.e. ξ = ξ(T, n, U,∆). Conversely, in the SF regime of small

interactions, there is no dependence of ξ neither on ∆ nor on U and the

dependence on n is simply a scaling factor.

49



2.4 Measurements of dissipative mechanisms in a Superfluid

2.4 Measurements of dissipative mechanisms

in a Superfluid

A SF is a system that by definition has the property to not dissipate en-

ergy. Nevertheless this strictly occurs only under certain conditions, which

become more and more stringent in systems at lower dimensionality. After

considering the Landau’s criterion for superfluidity, experimentally focusing

on the key role played by interaction (Subsec. 2.4.1), we will see how the

strong fluctuations present in 1D systems can introduce important dissipa-

tion mechanisms. In particular, we will see that besides the known Landau

velocity, there is another critical velocity vc above which the system becomes

(dynamically) unstable and the SF properties get lost (Subsec. 2.4.2). The

dependence of the dynamical instability on the interaction will be considered

as well: transport measurements will show how vc decreases increasing U and

approaches zero at the MI transition. Finally, in Subsec. 2.4.3, we will see

that even at lower velocities and at zero temperature, 1D systems are actually

always subject to small excitations, the phase slips, whose generation rate

increases with velocity, having the dynamical instability as manifestation of

their proliferation.

2.4.1 Landau instability

According to the Landau’s criterion of superfluidity [93], a system can

flow without friction if its velocity v is smaller than a finite critical (Landau)

velocity given by6

vL = min
p

ε(p)

p
(2.19)

where ε(p) is the dispersion law of the system. Conversely, for v > vL it is

energetically convenient for the SF to create elementary excitations. This

dissipative phenomenon is referred to as energetic (Landau) instability.

6The lowest velocity vL at which a moving body can excite any of the states with
energy ε(p) is a direct consequence of the energy and momentum conservation laws.
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2.4 Measurements of dissipative mechanisms in a Superfluid

Figure 2.8: Excitation spectrum ε(p) of a weakly interacting BEC (a) and of He II (b).
Both systems are SF as they exhibit a finite critical velocity satisfying Eq. 2.19.
From the phonon-like part of the spectrum for the BEC we get vL = vs. Note
that, despite He II is a strongly interacting system, it exhibits a smaller critical
velocity (vL < vs) due to the rotonic structure of its spectrum. Figure adapted
from [106].

Let’s now recall the Bogoliubov dispersion law (see Fig. 2.8a) for the

elementary excitations of a weakly interacting BEC, i.e.

ε(p) =

√
gn

m
p2 +

( p2
2m

)2
(2.20)

where g is the interaction coupling parameter 1.3 and n is the density. For

small momenta p� vsm the dispersion law takes the phonon-like form ε(p) =

vsp with

vs =

√
gn

m
(2.21)

being the sound velocity. In the opposite limit p � mvs the dispersion

law approaches the free particle law ε(p) ≈ p2/2m + gn. We can easily see

(Fig. 2.8a) that a weakly interacting BEC fulfils the Landau criterion 2.19

since there exists a non zero critical velocity, which in particular coincides

with the sound velocity vs ∝
√
g. As also discussed in Sec. 2.1, interactions

play thus a crucial role for obtaining a non vanishing Landau velocity and

thus a SF. As a matter of fact the Landau velocity decreases with decreasing

interaction g and vanishes in the limit g = 0 of an ideal BEC (min ε(p)
p

= 0 for

ε(p) = p2/2m). Strongly interacting fluids such as liquid 4He also fulfil the
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2.4 Measurements of dissipative mechanisms in a Superfluid

Figure 2.9: (left) Kick sequence. The center of the trap potential is shifted by the amount
z0. After the system evolution in the trap for a time t, all the optical poten-
tials are switched off and the atoms freely expand for a time tTOF = 16 ms.
(right) Momentum distributions immediately after the kick (t = 0) and after
an evolution time t ' 1 ms. The displacement of the quasi momentum p0 at
this given time is also shown.

Landau’s criterion of superfluidity even though in this case the Landau veloc-

ity is smaller than vs due to the complex phonon-roton excitation spectrum

(Fig. 2.8b).

We experimentally investigated the Landau instability, and in particular

the role of interaction for the existence of a SF, by performing transport

measurements, that is studying the dynamics of a trapped 1D system after

that an impulse has been imparted to it. The technique we employed, which

mutatis mutandis will be useful also for other measurements (with and with-

out disorder) presented in this thesis, is described in a general way in the

following.

Transport measurement procedures. After creating a trapped quasi-

condensate according to the loading procedure described in Subsec. 2.2.3,

we observe the response of the system to an impulse (“kick”) imparted by

abruptly switching off the magnetic field gradient partially compensating

for gravity. As shown in Fig. 2.9, the switching off of the field gradient

induces a shift z0 (a few µm) of the trapping potential, so that the atoms,
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2.4 Measurements of dissipative mechanisms in a Superfluid

which are no longer in the potential minimum, start oscillating. We let

the atoms evolve for a variable time t, after which all the optical potentials

(trap and lattice) are switched off and TOF absorption images are recorded.

As described in Subsec. 2.2.2, a TOF image approximately reproduces the

in trap momentum distribution, i.e. nTOF (z) ≈ ρ(p)7. Fig. 2.9 also shows

two examples of momentum distribution, one at t = 0, which we take as a

reference (p(0) = 0), and one at the evolution time t ' 1 ms, whose peak is

displaced by the amount p0.

Let us now analyse the dynamics of the atomic cloud in the trap and

in the presence of the lattice. This can be modelled with the system of

semi-classical motion equations:{
ṗ = −kez − βż
ṗ = m∗(p)z̈

(2.22)

The first equation is that of a standard damped harmonic oscillator where

the elastic constant ke and the viscous friction coefficient β are respectively

related to the axial trapping frequency ωz =
√
ke/m and the damping rate

G = β/2m, the latter being the parameter of interest as it is a measure of

the dissipation in the system. The second equation takes into account the

effect of the lattice through the effective mass which is in general a function

of p8, i.e.

m∗(p) =
~2

2Jd2
1

cos(pd/~)
. (2.23)

In absence of any dissipation mechanism the atoms would oscillate with a

frequency ω∗ = ω
√

m
m∗

. For a finite damping rate G, the position p0(t)

7The atoms position xTOF (t) after the time of flight is actually related to the in-trap
momentum p(t) as zTOF (t) = z(t) + tTOF p(t)/m + t2TOF g/2 where z(t) and p(t) are the
in-trap position and momentum after the evolution time t. Therefore, the position in TOF
at time t, with respect to that at time 0, is zTOF (t)−zTOF (0) = z(t)+tTOF p(t)/m, having
chosen z(0) = 0 and p(0) as initial conditions. For tTOF large enough, we can neglect the
small contribution of the in-situ position (z(t) ∼ µm), so that [zTOF (t)− zTOF (0)] ∝ p(t)
and we can safely identify the measured nTOF (z) with ρ(p).

8The dependence on p comes from the fact that m∗ =
[ δ2ε(p)
δp2

]−1
, with the dispersion

law of the atoms in the lattice being ε(p) = ε0 − 2J cos(pd/~). We note that for a small
lattice m∗ can be assumed to be independent of p as it is in the free particle limit (s→ 0)
where ε(p) = p2/2m yields m∗ = m.
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2.4 Measurements of dissipative mechanisms in a Superfluid

Figure 2.10: Damped oscillations in 1D systems for two interaction values, a = 93.7 a0
(top) and a = 6.4 a0 (bottom). The data (black points) are fit with Eq. 2.24
(red curve). At small interactions, where the sound velocity vs is smaller, the
oscillation is significantly more damped.

of the momentum distribution peak, can be approximated with a damped

oscillation function

p0(t) = pmaxe
−G∗tsin(ω′t) (2.24)

with amplitude pmax = m∗ω∗2z0/ω
′ and frequency ω′ =

√
ω∗2 −G∗2, with

G∗ = Gm/m∗ being the lattice renormalized damping rate.

Transport measurements in absence of the lattice. To investigate the

behaviour of our 1D quasi-BEC and the possible relation of its excitations

to the Landau instability, we performed preliminary transport measurements

in absence of the lattice [107]. In this case the equations of motion 2.22 can

be solved analytically and the equation 2.24 for a damped oscillation is an

exact solution. Fig. 2.10 shows, for two values of scattering length a, the mo-

mentum peak p0(t) obtained as previously described for different evolution

times t in the trap. As expected, an oscillation in coordinate space reflects

in an oscillation in momentum space and the data are well fit by equation

2.24. For large interaction (a ≈ 100 a0), the oscillation is almost purely peri-
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2.4 Measurements of dissipative mechanisms in a Superfluid

Figure 2.11: Damping rate G (a) and sound velocity (b) as a function of the scattering
length a. The dashed line shows the BEC velocity vBEC = (1.64±0.16) mm/s,
obtained from the average of the oscillation amplitudes. G is small for large
a values where vBEC < vs. For small a values (a . 20 a0) where vBEC > vs,
G increases as the Landau instability sets in.

odic, while for small interaction (a . 10 a0) it becomes significantly damped.

Fig. 2.11a shows the damping rate G obtained from the fit as a function of

a. Correspondingly to the quite sudden decrease of G, the sound velocity

vs (which increases with the interaction according to 2.21) becomes larger

than the quasi-BEC velocity vBEC (Fig. 2.11b). This fact indicates that the

dissipation mechanism observed in our system for small interaction can be

presumably related with the Landau instability9.

Further measurements performed in higher dimensionality (not shown

here) seem to confirm this result. They show that as the dimensionality D

is increased, the damping rate G stops being significant at increasing values

of a. This is a consequence of the interaction strength being smaller in 2D,

and even smaller in 3D, for a given value of a.

9A more systematic study, for example as a function of the quasi-BEC velocity, would
be useful to confirm this preliminary investigation. We cannot exclude a priori that the
source of dissipation could be related to the presence of an impurity in the system, due
for example to some imperfections in the optical lattices forming the 1D potential tubes
or to the presence of some Rb atoms left in the sample even after the condensation of K.
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2.4.2 Dynamical Instability

So far we have seen that in the absence of a lattice the system becomes

energetically unstable when it moves faster than the sound velocity vs. In

the presence of a lattice, the system can be subject to another dissipation

mechanism, the so called dynamical instability : a rapid growth of excitations

breaks the phase coherence of the system as soon as its center of mass velocity

v exceeds the critical velocity vc = ~
md

π
2
. According to Eq. 2.1, such condition

corresponds to the phase difference between adjacent sites becoming larger

than π/210. A naive interpretation of this mechanism is the following: when

v > π/2, the tunnelling is not fast enough to lock the phases of adjacent

sites, which start to run independently, and the system loses its long range

coherence. As a matter of fact, entering this unstable regime we aspect to

observe the following phenomena related to the coherence (a) and transport

properties (b) of the system [108]:

a) The phases of adjacent sites become completely uncorrelated and the

long range coherence of the SF state is rapidly lost. The lattice sites

are still occupied by coherent states, but their phases start evolving

independently. As a consequence, the interference peaks in the TOF

expansion disappear.

b) Because of this effective dephasing among the lattice sites, the atomic

current ceases to be driven by a coherent tunnelling process. The

center-of-mass stops oscillating and the atomic sample stays blocked on

a side of the harmonic potential. Tunnelling processes are still present,

but their average effect on the center-of-mass motion is null: the system

is thus an insulator.

Another simple interpretation of the dynamical instability can be given

in terms of the effective mass m∗, which as already said takes into account

the effect of the lattice. When v > vc the effective mass turns out to be

10For the sake of simplicity, from now on we will express the critical velocity and the
correspondent critical momentum pc in terms of phase differences, i.e. vc = pc = π/2.
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Figure 2.12: (a) Mean field phase diagram separating the SF (stable) regime from the
dinamically unstable one, for different dimensionalities D [11]. The critical
momentum at U = 0 is pc = π/2 and decreases as U increases approaching
zero at the SF to MI transition (U = Uc). (b) Effects of quantum fluctu-
ations on the phase diagram. Increasing the ratio U/nJ the sharp classical
transitions become broad crossovers (shaded regions) with a current decay in-
termediate between those in the stable and unstable regimes. Note that the
strong broadening in 1D anticipates the SF to insulator transition to smaller
critical momenta pc.

m∗ < 0 and correspondingly the BEC behaves as if it is subject to a negative

scattering length [109]. Such attractive interaction brings the BEC to a

sudden collapse [37–39].

So far we have assumed that interactions were small: the condition

vc = π/2 for the dynamical instability and the consequent transition from a

SF to an insulator is in fact strictly valid in the limit U = 0. As described

in Subsec. 1.2.1, as the interactions become large enough (U & J) approach-

ing a critical value Uc, the system undergoes the SF-MI transition, even for

vanishing velocities. We thus expect that the critical velocity decreases as

the interactions increase, approaching zero at U = Uc. Fig. 2.12a reports a

mean-field-based phase diagram showing the critical momentum pc as a func-

tion of U for different dimensionalities D [11, 110]. We point out that this

result, which is obtained from a classical analysis, nicely works only when

quantum effects can be neglected, thus only in 3D and/or at small interac-

tions (U . nJ). Quantum fluctuations of the phase are in fact determined

57



2.4 Measurements of dissipative mechanisms in a Superfluid

Figure 2.13: (a) Time evolution of the quasi momentum p0 for U = 1.26 J and n = 3.6.
The fit to the experimental data at short (red line) and long times (orange
line) provide Gin = 2π × 135(10) Hz and Gfin = 2π × 600(50) Hz for the
initial and final damping rates, respectively. The purple line is the expected
oscillation in the absence of damping. (b) The dots show the difference
between the fit to the initial damped motion pth and the experimental data
p0. A piecewise fit (blue line) determines the critical momentum pc. (Inset)
Broadening of ρ(p) during the time evolution: t = 0, t = 0.8 ms and t = 3.5
ms from top to bottom.

by the ratio U/nJ : as shown in Fig. 2.12b, increasing the interactions their

effect becomes relevant and the sharp mean-field phase transitions become

now crossovers, wider and wider as the dimensionality D is decreased. As

a consequence, in our 1D system we expect to observe a SF to insulator

transition as a function of U at lower critical momenta pc with respect to

that predicted by the classical mean field theory. This is what we are going

to see right away. In the next subsection, in particular, we will relate this

anticipated dynamical instability to the phase slips induced by the quantum

(and thermal) fluctuations.

Transport measurements with a deep lattice [111]. We repeat the

transport measurements previously described, in the presence now of the op-

tical lattice. The lattice depth in recoil energies is s = 8. A typical time

evolution of the quasi momentum p0 at interaction energy U = 1.26 J and

density n = 3.6 is shown in Fig. 2.13a. We observe interesting features in the

dissipation of the system: after a weak damping at low momenta, there is a
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rather sharp change of the system behaviour with a strong damping at large

momenta, which corresponds to the occurrence of the dynamical instability.

We fit the evolution of the quasi momentum p0 with the damped oscilla-

tion function resulting from the solution of the equation system 2.22, leaving

the damping rate G as a free fitting parameter. We identify two different

regimes in the system dynamics. From the fit at short times (red curve),

we find damping rates ranging as Gin = 2π × (20 − 300) Hz, depending on

the interaction energy. At longer times, as p0 increases towards the center

of the Brillouin zone (p = h/2λ1), a sudden increase of the damping stops

the growth of p0. The following decay of p0 towards zero momentum is fit

(orange curve) with a damping rate Gfin ∼ 1 kHz. As expected, this change

of behaviour is accompanied by an increase of the width of the momentum

distribution ρ(p). The inset of Fig. 2.13b shows the progressive broadening

of ρ(p) during the evolution (red and brown) with respect to the initial one

(orange). In order to estimate the critical momentum pc that separates the

initial regime of weaker dissipation from the strongly unstable one, we plot

the difference between the (red) fit of the initial oscillation and the exper-

imental data (Fig. 2.13b): the interception of the two linear fits (piecewise

fit) identifies the “breaking” time corresponding to pc.

We performed similar dynamical measurements for different interaction

energies U . A plot of pc versus U is reported in Fig. 2.14. As expected by

theory (Fig. 2.12a), the measured pc features a clear decrease for increasing

U , eventually approaching zero at the SF to MI transition. We note that

even deep into the insulating regime, pc doesn’t vanish completely but stops

at a finite value11. Such a finite value is probably due to that low density

part of the system (outer potential tubes) that doesn’t reach the localization

condition n = 1 and keeps moving. From a piecewise fit of the data we

get a critical value Uc = 5.9(2)(4) J that is comparable with the theoretical

one, Uc = 2 × 2.67 J (for the calculated [114] mean filling n = 2). The

uncertainties here are statistical and systematic, respectively.

11In the measurements reported in Ref. [112], the finite value of pc was of the order of
the inverse size of the system.
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Figure 2.14: Critical momentum pc as a function of the interaction energy U . A piecewise
linear fit determines the critical value Uc for the SF-MI transition. The arrow
marks the theoretical value for n = 2. Note that the pc values are down-
shifted with respect to those predicted for the non dissipative 3D systems.

To conclude, we stress that also in one dimension the onset of the Mott

regime can be detected from a vanishing of the critical momentum pc, as

previously done in 3D systems [112]. In 1D the transport is however clearly

dissipative (finite Gin) also for p < pc, due to the presence of phase slips.

2.4.3 Phase slips

As already said, at p = π/2 a SF becomes dynamically unstable and

undergoes a classical localization transition. For p < π/2 the system is

instead stable provided that phase fluctuations are small. In 1D quantum

and thermal fluctuations of the phase are strongly enhanced though. Such

phase fluctuations generate phase slips which are responsible for the decay

of the superfluid (as well as the superconducting) flow of the system also at

small velocities (smaller than vL and vc). The reduction of the SF flow, in

turns, causes the broadening of the mean field transition previously discussed

and shown in Fig. 2.12.

With reference to Fig. 2.15 we now describe the phase slip process. At the

phenomenological level a 1D superfuid can be described by a complex order
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Figure 2.15: Phase slip process. (left) Landau free energy potential F [Ψ]: if thermal and
quantum fluctuations are strong enough to overcome the energy barrier δF
the system decays from the metastable state (a) to the metastable state (c).
(right) Spatial variation of the amplitude of the order parameter Ψ(x) (left
axis, blue line) and phase φ (right axis, red line) before (a), during (b) and
after (c) the phase slippage. After the whole process the phase gradient and
thus the SF velocity v(x) ∝ ∇φ(x) is reduced. Figure adapted from [113].

parameter Ψ(x) = |Ψ(x)|e−iφ . In this picture, a superfuid state corresponds

to a local minimum of the Ginzburg-Landau free energy potential F , with F

a functional of |Ψ(x)| [115]. This state does not correspond to the absolute

energy minimum, as the absolute minimum is characterized by no flow. Such

a state is thus metastable and can decay towards another metastable state

with lower energy (and lower velocity) if thermal and quantum fluctuations

in the order parameter are strong enough to overcome the Ginzburg-Landau

free energy barrier δF between the two metastable states. More in detail,

such fluctuations cause deviations of both the modulus |Ψ(x)| and the phase

|φ(x)| of this order parameter from their equilibrium values. A non-trivial

fluctuation corresponds to temporal suppression of |Ψ(x)| down to zero in

some point (e.g., x = 0) inside the lattice. As soon as the modulus of the

order parameter |Ψ(0)| vanishes, the phase φ(0) can jump by the value 2π.

After this process the modulus |Ψ(0)| gets restored and the phase gradient

results reduced. In the whole process the SF velocity thus reduces, according

to Eq. 2.1.

Let’s discuss now the specific role played by thermal and quantum fluctu-

ations in the phase slip process. As shown in Fig. 2.16, three different mech-

anisms may activate a phase slip, depending on the regime of temperature.
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2.4 Measurements of dissipative mechanisms in a Superfluid

Figure 2.16: Sketch of the phase slips activating mechanisms as a function of temperature.
Above the Josephson plasma temperature Ej/kB , phase slips are classically
activated by thermal fluctuations. Below the crossover temperature T ∗ ∼
Ej/kB × v/vc, phase slips are activated by pure quantum tunneling. For
intermediate T both mechanisms occur. Note that T ∗ depends on v and via
Ej also on γ.

When the temperature is higher than the free-energy barrier, T � δF/kB,

the order parameter may overcome δF via thermal fluctuations, causing ther-

mal activated phase slips (TAPS) with a nucleation rate determined by the

Arrhenius law as ΓT ∝ e−δF/kBT [116, 117]. When T < δF/kB, the proba-

bility of TAPS is small, and quantum phase slips occur mainly via quantum

tunneling through the free-energy barrier [118]. Following standard quantum

mechanical arguments one can find a characteristic temperature T ∗, below

which the QPS nucleation rate is temperature-independent, ΓQ ∝ e−δF/~ω0 ,

with ω0 an effective attempt frequency [119, 120]. In an intermediate range

of temperatures, T & T ∗, QPS can be thermally assisted (TAQPS) [121],

and the rate acquires a power-law dependence on temperature12.

Besides the temperature, the nucleation rate Γ depends also on the ve-

locity and in particular on the ratio v/vc (or equivalently p/pc) [121, 122]. In

the following we will investigate the transport properties of the system in two

regimes of velocities; this study will highlight the different contribution given

by thermal and quantum processes in the phase slips, eventually allowing a

12The analytical expression of δF , ω0 and T ∗ depend on the specific properties of the
superfluid, including the type of obstacles that the superfluid experiences, e.g. disorder,
periodic potentials or isolated defects.
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2.4 Measurements of dissipative mechanisms in a Superfluid

characterization of the crossover between the QPS and the TAQPS regimes.

Transport at relatively large momenta [111]. Let us first analyse better

the transport measurements previously described for the critical momentum

pc as a function of U . From the fit of the time evolution of the quasi mo-

mentum p0 at momenta smaller than pc, i.e. before the system breaks, we

can determine the oscillation damping rate Gin (see Fig. 2.13), a quantity

that is strictly related to the nucleation rate Γ. In this regime of relatively

large, time-dependent momenta p, no theoretical models estimating Γ in

terms of the damping rate are available though13. We then try to heuris-

tically compare the experimental observations to the existing models valid

for large velocities, for which the quantum and thermal nucleation rates are

respectively [122]{
ΓQ ∝ e−7.1

√
nJ
U

(π/2−p)5/2
(p→ π/2)

ΓT ∝ e
− 4nJ

3kBT
(π/2−p)3 (2.25)

As a first thing we note that both the nucleation rates exponentially increase

while approaching pc = π/2, where the system becomes dynamical unstable.

We then note that the theoretical crossover temperature14 for our experimen-

tal parameters is in the range kBT
∗ = (1.5− 3.5) J , hence of the same order

as the estimated experimental temperature, T ' 3 J . This suggests a possi-

ble coexistence of quantum and thermal phase slips. To understand whether

there is a more significant contribution of one or the other mechanism, we

phenomenologically employed the models 2.25 to estimate the critical mo-

mentum pc to enter the strongly dissipative regime at different U , i.e. pc(U),

imposing an arbitrary cut-off for ΓQ and ΓT (corresponding to our constant

Gfin/2π ≈ 1 kHz in the experiment). In the calculations we used the param-

eters as in the experiment, T = 3 J , and we introduced an arbitrary constant

to phenomenologically adapt the phase-slip nucleation rate ΓQ (and ΓT ) to

13As we shall see later on, in the opposite limit p→ 0, Gin is related to Γ by Gin ∝ Γ/p.
14The crossover temperature (in units of kB) is of the order of the plasma Josephson

energy, which in the tight binding model is given by Ej '
√
nJU .
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2.4 Measurements of dissipative mechanisms in a Superfluid

Figure 2.17: Critical momentum pc as a function of the interaction energy U . The exper-
imental data (dots) are compared with the phenomenological models for the
phase-slip nucleation rates in the quantum (blue line) and thermal (orange
line) regimes.

the damping rate. Such constant has been chosen to reproduce the observed

pc at U = 4.5 J . The experimental data and the two phenomenological pre-

dictions of pc(U) obtained with the two models are shown in Fig. 2.17. While

the quantum phase-slip rate can capture the observed evolution of pc(U), the

thermal rate has only a weak dependence on U at constant temperature, thus

suggesting a more relevant role of the quantum mechanism.

Transport at relative small velocities [123]. We now report on trans-

port measurements that provide the first experimental evidence of quantum

phase slips in 1D atomic superfluids. Here we explore the regime of rela-

tive low velocities and of intermediate interactions, far from the SF-insulator

transition where the phase slip rates tend to diverge exponentially. In such

a regime of small v, the theory [121] predicts that the QPS and the TAQPS

nucleation rates scale respectively as{
ΓQ ∼ vα(γ) (v → 0)
ΓTQ ∼ vT β(γ)

(2.26)

where α(γ) and β(γ) are parameters that decrease as the interaction γ of

Eq. 1.10 increases [121] and that depend on the specific properties of the
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SF15. Moreover, the theory shows that the crossover from TAPS to QPS

occurs at the temperature (see Fig. 2.16):

T ∗ ' Ej/kB × v/vc, (2.27)

where Ej = ~vs/
√

2d is the Josephson plasma energy [124], which increases

with the interaction γ via the sound velocity vs. In the following we summa-

rize the main steps of the work:

a) By using the technique described in Subsec. 2.4.1, we measure the

damping rate G of the SF oscillating in a harmonic potential in the

presence of a weak16 optical lattice (s = 1), for a wide range of veloci-

ties (below vc and vs) and interactions.

b) We relate the measured damping rate G to the theoretical phase slip

nucleation rates 2.26 using the simple relation17 [122]

G ∝ Γ/v (2.28)

c) We observe a change of behaviour in G with increasing interaction and

velocity that is consistent with the crossover from the TAQPS to the

QPS regime.

In order to study the dynamics of the system at different velocities, we sud-

denly shift the center of the harmonic trap by a tunable amount. Like in

the other experiments, the kick to the system is imparted by switching off

15Depending on the type of obstacles that the SF experiences, the α parameter changes:
in terms of the Luttinger parameter K, α is simply: 2K−3 in the case of disorder, 2K−2
in the case of a periodic potential and 2K − 1 in the case of a defect. K is related to the
Lieb-Liniger parameter γ according to the relation K−1 =

√
γ/π

√
1−√γ/2π.

16Working with a small lattice depth s has the advantage to increase the critical velocity
vc, which is proportional to the tunneling rate J between adjacent sites [108]. Therefore
this choice, on one side allows to satisfy the stability condition v < vc. On the other side,
it doesn’t allow a quantitative comparison with equations 2.26, which are derived in the
tight-binding regime (s > 5).

17In our case of underdamped regime (G � ωz), relation 2.28 can be simply derived
as follows: the peak acceleration is dv/dt = −Gv, which in terms of phase slips can be
written as δv/δt, where δt−1 = Γ and δv = −h/mL is the velocity variation following an
individual phase slip of 2π in a chain of length L.
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the magnetic field gradient compensating the gravity; the momentum dis-

tribution ρ(p) is then recorded via TOF imaging. By fitting ρ(p) with a

Lorentzian function, we get the quasi momentum p0 and the distribution

half-width-half-maximum δp, which is related to the mean temperature via

T = ~n
0.63m∗kBd

δp (see Eq. 2.14). Fig. 2.18 shows a typical time evolution

Figure 2.18: Damped oscillations in an optical lattice with depth s = 1. The time evo-
lutions of the quasi momentum p0 (top) and of the momentum width δp
(bottom) are shown for two different velocities at the interaction γ ' 1.2.
At small velocity, v = 1.4(4) mm/s (blue), the damping is almost null and δp
remains quite constant. At larger velocity, v = 2.2(4) mm/s (red), both the
damping and δp increase significantly. The continuous and dashed lines are
fits to determine the damping rate G and the time constant τ respectively.

of p0 and δp at a given interaction energy (γ ' 1.2) and at two differ-

ent trap shifts, corresponding to two different velocities. We fit the time

evolution of p0 according to Eq. 2.24 for an oscillator with a friction term:

p0(t) = m∗vmax exp(−Gt) sin(
√
ω∗2 −G2t), where vmax is the maximum of

the oscillation (occurring at a quarter of a period, t = π/2
√
ω∗2 −G2) in

absence of damping (G = 0). The growth of δp is fit with the exponential

function δp(t) = δp(0) + p∞[1 − exp(−t/τ)], p∞ being the relative satu-

ration value. We find that the damping rate G is directly related to the

constant time τ , as 2τ ' 1/G. This relation can be interpreted consid-

ering that the mechanical energy dissipated in the oscillation is converted

into momentum spread. We differentiate each measurement according to
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its (maximum) velocity v = vmax exp(−πG/2
√
ω∗2 −G2), that is the first

maximum of the damped oscillation. As shown in Fig. 2.18, at small ve-

locity (v = 1.4(4) mm/s) the oscillation persists with very small damping

(G = 28(9) Hz) and δp remains substantially constant during the 25 ms of

the measurement. At larger velocity (v = 2.2(4) mm/s) we observe a much

stronger damping (G = 84(6) Hz), indicating a dependence of the phase-slip

rate on the velocity. We note that at this interaction energy the velocity is

lower than the critical velocity vc = 5.4(6) mm/s and than the sound veloc-

ity vs = 3.5(2) mm/s, suggesting thus that other dissipation mechanisms are

negligible.

We repeated this type of measurement in a wide range of velocities and

interaction strengths, and also for different temperatures in the accessible

experimental range (from 20 to 40 nK). A summary of the behaviour of G

with velocity and interaction for T = 37(7) nK is shown in Fig. 2.19a. Here

Figure 2.19: (a) Damping rate G as a function of the velocity v normalized to the critical
velocity vc, for three interaction energies: γ ' 0.13 (blue circles), γ ' 0.19
(red triangles) and γ ' 0.64 (orange squares). Each data set is fit with a piece-
wise function (dashed lines) for extracting the QPS-TAPS crossover velocity
v∗. (Inset) G versus T at small velocities (v < v∗) for a given interaction
energy (γ ' 0.64). (b) Velocity-temperature diagram for the QPS-TAPS
crossover. The crossover velocities v∗ (dots) are linearly fit (dashed line) to
determine the crossover temperature T ∗.

v is expressed in units of vc and each data set corresponds to a different γ18.

18The critical velocity for the dynamical instability, measured as described in Sub-
sec. 2.4.2, decreases with increasing γ (as expected) from 7.1(3) to 5.4(6) mm/s.
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At weak interaction (blue), G is essentially independent of v. At stronger

interactions (red, orange), we observe instead a clear crossover from a regime

of constant G to a regime where G grows with the velocity as a power law.

By fitting each set of measurements with a piece-wise power law function, we

extract the minimum velocity v∗ required to enter the power-law regime. The

crossover velocity v∗ apparently decreases for increasing interaction. Other

data at a different temperature (not reported) show a similar behaviour. In

the v-independent regime of G we observe a clear dependence of G on the

temperature (inset), while interaction effects result to be dominant in the

v-dependent regime.

According to equations 2.26 for the nucleation rates ΓQ and ΓTQ and to

their relation with G (Γ ∝ vG), all these observations are consistent with

crossing the TAQPS-QPS transition by tuning velocity and interaction. Our

measurements are actually performed with T approximately constant, while

T ∗ is tuned according to Eq. 2.27 by changing v and Ej
19. For T ∗ < T ,

i.e. at small velocity and small interaction, the system is apparently in the

TAQPS regime of no dependence on v and of power-law dependence on T .

For T ∗ > T , i.e. at large velocity and large interaction, the system enters the

QPS regime of power-law dependence20 of G on the velocity.

Let us now show a more quantitative study to characterize the TAQPS-

QPS crossover described by Eq. 2.27. In Fig. 2.19b we plot the extracted

crossover velocity normalized to the critical one, v∗/vc, versus the tempera-

ture normalized to the Josephson energy, kBT/Ej. In our accessible range of

parameters the data show a clear linear scaling as in Eq. 2.27. From a linear

fit we get

kBT
∗ = 4.8(4)Ejv/vc − 0.41(10)Ej. (2.29)

19In our range of interaction strengths γ = 0.13−1.2, the Josephson plasma temperature
Ej/kB increases with γ ranging from 20 to 35 nK, thus is of the same order of magnitude
of the experimental T .

20We note that the exponents of the power-law behaviour we measure for v > v∗ are
of the order of unity, therefore quite different from the exponent 2K − 1 predicted by the
theory [122], which ranges from 4.5 to 13 for our interaction parameters. This disagreement
might be due to the fact that the theoretical results have been obtained for a strong lattice
in the tight binding regime and for very small momenta, p < hk/6.
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The observed linear behaviour, together with the measured prefactor of order

unity, are a clear confirmation that what we observe is indeed a TAQPS-QPS

crossover driven by velocity and interaction.

We finally note that these results give a further confirmation that the

large damping rate observed in the experiment performed at relatively large v

described before is actually due to quantum phase slips. There, the Josephson

plasma energy and the temperatures are respectively Ej/kB ' 20 nK and

T ' 20 nK [125]; according to 2.29, this implies that T < T∗ at v ' vc,

suggesting that the main contribution to the dissipation is due to quantum

(rather than thermal) phase slips.

In conclusion we can state that the dynamical instability occurring in 1D

systems with strong phase fluctuations can be thought of as a particular case

of the phase slip dissipative mechanism. As a matter of fact, the quantum

phase slip nucleation rate diverges in the limit of large velocities, v → vc,

resulting in an instability of the system.
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In the first chapter (Sec. 1.2) we described the different quantum phases

that an interacting bosonic system in the presence of disorder can be subject

to. In this chapter we will characterize from an experimental point of view the

phase diagram describing such a system as a function of the disorder strength

∆ and the interaction energy U . In Sec. 3.1, after showing a few ∆ − U

theoretical phase diagrams at T = 0, we will report the experimental one

obtained by coherence and transport measurements. Theoretical methods,
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as DMRG and ED already employed in Chapter 2, will allow to investigate

the effects of the finite temperature and inhomogeneity of our system on

the experimental diagram (Sec. 3.2). Finally, in Sec. 3.3, we will present

measurements of the excitation spectrum of the system. Such measurements

will allow to determine the features of the strongly-correlated BG phase, and

in particular, to distinguish it from the MI present in the lattice at strong

interactions. Further spectral measurements extending from weak to strong

interactions, will finally show the different nature of the BG phase in the two

regimes.

3.1 ∆ -U phase diagram

Let us start considering the phase diagram for “dirty” interacting bosons

in the conceptually easier case of random disorder, that is in absence of the

lattice and consequently of the MI phase. Fig. 3.1 shows the T = 0 phase

diagram as a function of the interaction energy U and the random disorder

strength D. Such a diagram shows that the SF is surrounded by the BG

both in the regime of strong (BG I) and weak interactions (BG II). Whether

these two phases are the same phase or not is still an open question [127].

Of course for BG I, the correlation length ξ is short, of the order of the mean

particles separation, contrary to the weakly-interacting case. But what it is

actually interesting to note here is the specular behaviour of the transition

lines in those two regimes. This behaviour can be understood considering

the fermionic nature of bosons in the limit of infinite interactions (right hand

side of the transition blue point). As already described in Subsec. 1.1.3, in

such a limit the strong repulsion between bosonic particles acts as the Pauli

exclusion principle for fermions, so that here one can assume to deal with

non interacting fermions. If we now move from right (blue point) to left

(towards the center of the transition curve) the interaction for fermions in-

creases in the opposite way, that is decreasing U . In this frame of symmetry

between bosons and fermions, we can easily understand the effect of disorder:

as weakly interacting bosons get localized by disorder (see Subsec. 1.2.2), in
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Figure 3.1: Disorder-interaction phase diagram of a 1D Bose gas at T = 0 in the case
of random disorder D [126]. The BG insulating phase(s) show a symmetric
reentrant shape around the SF phase. In the presence of disorder at strong
enough interactions the fermonized Bose gas Anderson-localizes at the univer-
sal critical value of K = 3/2 (solid blue line). The blue dashed line shows
the analogous metal-insulator transition for weakly-interacting bosons. The
red dotted line marks the possible border between the two (possibly distinct)
insulating phases, BG I and BG II.

the same way disorder induces Anderson localization for weakly interacting

fermions. Moreover, as the effect of disorder can be screened by increasing U

for the weakly interacting localized bosons (Subsec. 1.2.3), in the same way

for the weakly interacting localized fermions the coherence of the system can

be restored by decreasing U.

Quasi-periodic disorder. Let us now consider the case of the quasi-

disorder potential introduced by a bichromatic lattice. For this case, which

is also the case of our experiment, we refer to all the arguments described

in Sec. 1.2 for the disorder Bose-Hubbard model, whose Hamiltonian is here

reported:

HDBH = − J
∑
i

(b†ibi+1 + h.c.) + ∆
∑
i

cos(2πβi)ni

+ U
∑
i

ni(ni − 1)/2 + α
∑
i

(i− i0)2ni/2 (3.1)

The tunneling energy J , the interaction energy U and the disorder strength
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∆ are the three main energy scales characterizing the system properties. α

is the energy offset between neighboring sites of the harmonic trap potential.

In Fig. 3.2 I show the T = 0 phase diagram of 1D bosons in the quasi-

periodic lattice as a function of the ratios ∆/J and U/J , obtained by numer-

ically solving the Bose-Hubbard problem in the particular cases of occupancy

n = 0.5 and n = 1 [74]; As we can see, due to the presence of the lattice

Figure 3.2: ∆−U phase diagram of a 1D Bose gas at T = 0 in the case of a quasi-periodic
disorder for two different fillings n [74]. (a) n = 0.5: the non-interacting
bosons (fermions) get Anderson-localized at ∆ = 2 J , the SF-BG transition
showing a reentrant shape analogous to that of the continuum case. (b) n = 1:
the dashed line indicates the disorder strength ∆ = U above which for U � J
the MI energy gap vanishes. An inhomogeneous system (different fillings n) is
expected to qualitatively behave as a mixture of the two cases.

the scenario now results clearly more complex. Besides the SF and the BG

phases, in general here there is also the MI phase1. Nevertheless, since an

integer occupancy n is required for the MI phase to form, in the case n = 0.5

only the SF and BG phases exist. In this case the SF-BG transition has a

reentrant shape that doesn’t differ too much with respect to the continuum

case previously described, except for the fact that for entering the Anderson

insulating phase a minimum disorder strength (∆ = 2 J) is required (see Sub-

1Due to its importance, we recall that the BG can be actually thought of as an inter-
mediate phase between a MI and a SF phase. Like a MI, it is insulating and like a SF, it
has a gapless excitation spectrum and consequently a finite compressibility.
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sec. 1.2.2), both in the limit of non-interacting bosons and non-interacting

fermions.

As for the n = 1 case, a MI phase instead forms for strong interactions

(see Subsec. 1.2.1). Adding disorder, such a gapped phase persists up to the

value ∆ = U (dashed line) where the excitation spectrum becomes gapless

and the system first becomes a SF and then a BG.

We finally stress that in the experiments, due to the trap confinement, the

number of atoms per site n in general varies along the optical lattice, meaning

that we expect a phase diagram that is a combination of the two pictures

of Fig. 3.2. In particular we aspect that in the regime of strong interaction

(U � J), the presence of disorder has a twofold effect [16]. On the one hand,

it induces a disordered MI in regions with commensurate filling (integer n).

On the other hand, in regions with incommensurate filling (non integer n)

arguments similar to those used for the strongly correlated 1D system in

the continuum can be applied, that is the fermionized bosons localize in the

disorder resulting in the BG phase.

3.1.1 Coherence measurements

Let us now see how we can employ our experimental system to build

a phase diagram [125], which the theoretical ones just shown have to be

compared to. As usual, the experimental setup we employ is a set of quasi-1D

systems of 39K atoms in a quasi-periodic optical lattice, which are described

by the disordered Bose-Hubbard Hamiltonian 3.1. Here, the tunneling energy

J/h ' 110 Hz is set by the depth (s = 9) of the primary lattice, while

the interaction energy U and the disorder strength ∆ can be independently

controlled respectively changing the Feshbach magnetic field and the depth

of the secondary lattice. Depending on the U and ∆ values, the mean site

fillings range from n = 2 to n = 8. As for the system temperature, with

the technique reported in Subsec. 2.3.1 in the SF regime we get kBT ' 3 J ,

which as already said, is below the degeneracy temperature kBTD ' 8 J .

As described in Subsec. 2.2.2, the coherence properties of our system can
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be investigated by measurements of the momentum distribution ρ(p), which

are obtained by standard time of flight images according to the experimental

procedure reported in Subsec. 2.2.3. From the fitted root-mean-square width

Γ of ρ(p), which can be viewed as a measure of the inverse of the correlation

length (Eq. 2.11), we can build a two dimensional diagram; Fig.3.3 shows

the behaviour of Γ as a function of ∆/J and U/J , obtained by interpolating

94 sets of measurements. The plot is representative of the phase changes

Figure 3.3: Measured rms width Γ of the momentum distribution ρ(p) in the ∆−U plane.
The diagram is built with 94 data points (crosses), with a standard deviation
between 2% and 5%. The blue zone corresponds to a narrow momentum
distribution (SF phase), whereas the green, yellow and red zones correspond to
progressively broader momentum distributions (insulating phases). According
to T = 0 DMRG calculations MI domains exist only at the right of the dashed
line (i.e. U > 2∆ for large U), where they coexist with SF or BG domains.

occurring in the system. At small disorder and interaction values where the

system is SF, ρ(p) is narrow as in Fig. 2.3 (blue zone). At larger disorder

and interaction values, ρ(p) progressively broadens (green, yellow and red

zones) meaning that the system is becoming more and more incoherent (see

Fig. 2.5). In particular, along the ∆ = 0 line, there is the progressive forma-
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tion of MI, which in our inhomogeneous system coexists with a SF fraction2.

For increasing ∆ along the non-interacting line, an Anderson insulator (AI)

forms above the critical value ∆ = 2 J predicted by the Aubry-André model

[49, 84]. For finite U and ∆ we observe a reentrant insulating regime ex-

tending from small U and ∆ > 2 J to large U which surrounds a SF regime

at moderate disorder and interaction. This shape recalls the behaviour of

the BG previously described in the theoretical phase diagram of Fig. 3.1 ob-

tained in the particular case of homogeneous systems at T = 0 with random

disorder. Of course, the presence of MI domains due to the lattice (together

with the system inhomogeneity and finite temperature) makes things more

complex here. Nevertheless, it is interesting to note that the phase crossover

at strong interactions has an opposite (negative) slope with respect to the

dashed line delimiting the region of MI domains (obtained using DMRG

calculations, as we shall see in Sec. 3.2). This suggest that the insulating

behaviour resulting from the experimental diagram is likely due to the pres-

ence of another type of insulator, the BG. Such indication will be confirmed

in Sec. 3.3 when probing the nature of the insulating phases with excitation

spectrum measurements.

3.1.2 Transport measurements

In order to confirm the insulating nature of the observed incoherent

regimes, we have performed transport measurements. These are performed in

the following way: we first apply a sudden shift to the harmonic confinement,

corresponding to a force F = mg/3, g being the gravity acceleration; we then

detect with TOF images the quasimomentum p0 transferred to the system in

a time interval of 0.9 ms, just before the system becomes dynamically unsta-

ble (see Sec. 2.4.2). The transferred quasimomentum p0 can be thought of as

the effective mobility of the system. The procedure is basically the same as

2the unavoidable trapping confinement makes the system inhomogeneous and limits
its size. As a consequence, in the experimental system there is coexistence of different
phases and the theoretical sharp quantum phase transitions occurring in the case of the
thermodynamic limit are actually replaced by broad crossovers.
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in the transport measurements described in Fig. 2.9 but instead of measuring

the full time evolution of p0, here the time interval is kept constant. Even

though such simplified method doesn’t allow to precisely measure the transi-

tion between an insulator and a conductor, it is still effective to qualitatively

show the insulating behaviour of the system throughout the ∆− U plane.

In Fig. 3.4 I report the transferred quasimomentum p0 as a function of

U for three different values of ∆. In the case of no disorder and small U

Figure 3.4: Effective mobility p0 after a given evolution time t = 0.9 ms in the tilted
potential as a function of U , for three different values of disorder strengths:
∆ = 0 (black triangles), ∆ = 6.2 J (red squares) and ∆ = 8.8 J (orange
circles). Those measurements are preformed at kBT = 3.1(4) J . The grey
squares show a second measure at ∆ = 6.2 J but at higher temperature, kBT =
4.5(7) J . The lines are a guide to the eye. The error bars are the standard
deviation of typically 5 measurements.

the system is conductive; increasing U the mobility decreases more and more

while crossing the SF-MI transition. For finite ∆ and U = 0 the system

is an AI, featuring a reduced mobility (which is however not zero, because

of the finiteness of F ); we then observe an initial increase of the mobility

with U , followed by a drop at larger U . These observations indicate that in

the presence of disorder both incoherent regimes at small and large U are

actually insulating regimes, and not simply incoherent excited phases. They

also confirm that a moderate U ∼ ∆ tends to bring the weakly interacting

insulator back into a fluid regime with a mobility close to that of a SF. A

78



3.1 ∆ -U phase diagram

larger U drives instead the system into an insulating phase which is even less

conductive than the clean MI regime.

A second measurement performed at a higher temperature, also shown

in Fig. 3.4, indicates that the mobility for intermediate disorder strength is

essentially T -independent in the range kBT = (3.1− 4.5) J .

Metal-insulator transition at weak interaction [111]. We now study

the metal-insulator transition at weak interaction by applying the more pre-

cise transport measurement technique already used in the clean case to deter-

mine the SF-MI transition (see Subsec. 2.4.2). Using the same experimental

scheme used for the clean lattice, we now add disorder and study the dynam-

ics (that is the time evolution of the transferred quasimomentum p0) in the

quasi-periodic lattice. In particular, here we focus on the weak interaction

regime U < 3 J , where the critical momentum pc for the non-disordered lat-

tice can be measured with high accuracy. Note that a measure of the metal-

insulator transition at strong interaction with this technique is prevented by

the interaction-enhanced phase fluctuations which make the measure of pc a

difficult task in such regime.

Fig. 3.5a shows the time evolution of the quasimomentum p0 for a given

interaction energy U and for different disorder strengths ∆: increasing ∆ the

dynamics becomes clearly more and more damped. The experimental data

are analyzed in the same way as for the clean case (see Fig. 2.13). We thus

distinguish two dynamical regimes: we extrapolate the damping rate Gin

of the initial, stable regime and the critical momentum pc for entering the

regime of instability. A small disorder ∆ results in a moderate increase of

Gin and in an anticipated instability with respect to the clean case; at large

disorder, Gin drastically increases and the system immediately “breaks”3.

3We note that both the increase of Gin and the reduction of pc with increasing ∆, can
be justified according to the following heuristic picture: in the presence of disorder, the
hopping amplitude J reduces, resulting in an effective tunneling energy Jeff (∆) < J , thus
inducing an increase of the phase-slips nucleation rates 2.25 which exponentially depend
on J . In fact, a related phase-slip model [128] developed for disordered superconductors
suggests nucleation rates scaling exponentially with ∆.
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3.1 ∆ -U phase diagram

Figure 3.5: (a) Time evolution of the quasimomentum p0 at a given interaction energy
(U = 1.26 J) for three disorder strengths: ∆ = 0 (dots), ∆ = 3.6 J (triangles)
and ∆ = 10 J (squares). The lines are fits to the initial oscillation with the
solution of the motion equations 2.22. The fitted damping rates are Gin/2π =
130(10) Hz, Gin/2π = 250(30) Hz and Gin/2π = 1.1(6) kHz, respectively. (b)
Critical momentum pc (full circles) and initial rms momentum width δp (open
circles) as a function of ∆ at the same given U = 1.26 J . A peacewise linear
fit (continuous line) determines the critical disorder strength ∆c (blue arrow)
to enter the BG phase. The dashed line is a sigmoidal fit of δp.

Fig. 3.5b shows the behaviour of the critical momentum pc as a function of

the disorder strength ∆ at the same given U : pc features a clear decreasing

trend for increasing ∆. Above a critical disorder strength ∆c (of the order of

the total interaction energy per atom nU), pc stops decreasing and remains

constant at a small value close to zero, as observed for the MI. By fitting

pc(∆) with a piecewise linear function we thus determine the critical value

∆c to enter the (weakly interacting) BG phase.

In order to determine the SF-BG transition (at weak interaction) we

repeated the measurements for different values of U , that is we measured

∆c as a function of U . A summary of these measurements is reported in

the ∆ − U plane of Fig. 3.6 together with the coherence measurements of

Fig. 3.3 as a comparison. As expected, ∆c increases with the interaction

energy in agreement with the screening argument described in Subsec. 1.2.3:

an increase of interaction delocalizes the system making its effective mobility

less affected by disorder.

As for the comparison with the coherence diagram, remarkably the line

of the metal-insulator transition has the same slope as the coherence dia-
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3.2 Comparison with theory

Figure 3.6: Comparison between the metal-insulator transition obtained by transport mea-
surements and the ∆−U coherence diagram of Fig. 3.3 in the regime of weak
interaction. The x-axis of the diagram has been rescaled by the mean site
filling n at the interaction U . The red line is a fit to the experimental data
(dots) with the function ∆c = 2J +AJ(nU/J)α, which accounts for the criti-
cal disorder value ∆ ' 2J required to localize the non-interacting system [90].
The values of the fit are α = 0.86(22) and A = 1.3(4). The large uncertainty
on the data is due to an error of 20 % on the calibration of ∆.

gram. As a matter of fact transport and coherence properties are strongly

related one to the other. Nevertheless, while transport measurements allow

determining a quite sharp transition, the measurements of coherence provide

a broad crossover.

3.2 Comparison with theory

As already mentioned, the challenge of the experimental investigation of

the phase diagram and of its comparison with the ideal theoretical case lies

in the inhomogeneity and in the finite temperature of the system. In order

to achieve the closest experiment-theory comparison we perform a study

of the inhomogeneous systems described by Hamiltonian 3.1 using DMRG

calculations, as already done in Subsec. 2.3 for the limited case of the SF.

In the next section we will then use a phenomenological approach to extend

the results to the finite T case. DMRG calculations at T = 0 give access

to the density profiles of the system and to all the single-particle correlation
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3.2 Comparison with theory

functions gij = 〈b†ibj〉 in the ground-state.

Let us first consider the effect of the system inhomogeneity. In Fig. 3.7

we report the calculated density profiles in tubes with N = (20, 55, 96) atoms

in the case of large interaction. In the absence of disorder, the profiles show

Figure 3.7: Density profiles obtained from DMRG calculations at a given strong inter-
action, U = 26 J . (a) Clean case (∆ = 0): typical wedding cake structure
alternating SF and MI phases. (b) disordered case with ∆ = 6.5 J : the SF
component (non-integer n) is replaced by the BG. Blue, red and black curves
refer respectively to tubes with N = 20, 55, 96 atoms.

the typical wedding cake structure, where the commensurate Mott domains

(integer n) are separated by incommensurate SF regions (non-integer n).

Adding disorder, the Mott regions progressively shrink and the smooth den-

sity profiles of the incommensurate regions are turned into strongly irregular

ones, as expected in the case of a BG. We note that the dashed line in Fig. 3.3

delimits the region of MI domains, which are here defined by the condition

that in the density profiles there are at least three consecutive sites with an

integer filling.

From the DMRG calculated correlation functions gij we can then obtain

the T = 0 momentum distributions ρ(p) for our inhomogeneous system,

using Eq. 2.12 as already described in Sec. 2.3. Fig. 3.8 shows the full ∆−U
diagram, obtained by interpolation of the rms widths Γ of ρ(p), together with

few distributions ρ(p) at representative points.
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3.2 Comparison with theory

Figure 3.8: Theoretical rms width Γ of ρ(p) at T = 0, calculated for individual tubes, and
then averaged over the distribution of tubes. The diagram is built with 94
data points at the same positions of the experimental data in Fig. 3.3. For few
representative points, ρ(p) is also shown at the side of the diagram.

3.2.1 Finite temperature effects

To account for finite temperature effects, we again extend to the whole

phase diagram the procedure described in Sec. 2.3 for the SF. We thus com-

pare the experimental ρ(p) to those of the T = 0 theory. By looking at

Fig. 3.9, we can immediately notice that for small U (panels a and b) the

theoretical ρ(p) (blue curve) is considerably narrower than the experimental

one (black curve), while for large U (panels c and d) the thermal broadening

is much less relevant. Once again, the thermal broadening is quantified by

the inverse thermal correlation length 1/ξT of Eq. 2.13, here reported:

1

ξ
=

1

ξ0
+

1

ξT
. (3.2)

Basically, in Eq. 3.2 1/ξ0 is the width of the T = 0 (blue) distribution given

by DMRG calculations, while 1/ξ is the width of the (red) theoretical dis-

tribution (see Fig. 3.9a). More precisely, ξT is determined as a free fitting

parameter of the theoretical distribution (resulting from the convolution of

the T = 0 distribution with another Lorentzian distribution of width 1/ξT )

that best matches with the experimental one. We obtain a good agreement

between theory and experiment in all the representative points of Fig. 3.9

with the only exception of the large-U , low-∆ regime (panel c), where the

(red) tails of the theoretical distribution result larger. Such good agreement
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Figure 3.9: Comparison between the experimental momentum distribution ρ(k) (black,
continuous) and the one obtained with DMRG calculations for our inhomoge-
neous system at T = 0 (blue, dash-dotted), for four points in the ∆−U plane.
The momentum p is here expressed in terms of the wavevector k = p/~. The
thermal correlation length ξT , which phenomenologically accounts for thermal
effects, is obtained from the convolved momentum distribution (red) of width
Γ = Γ0 + 1/ξT that best matches with the experimental one.

Figure 3.10: ∆ − U diagram for the rms width Γ of ρ(p) obtained starting from DMRG
calculations at T = 0 and phenomenologically taking into account thermal
effects. The diagram is built with the same data points as in Fig. 3.3.

appears even clearer by comparing the whole ∆− U theoretical diagram for

the width Γ of ρ(p) (see Fig. 3.10) with the experimental one of Fig. 3.3.
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3.2 Comparison with theory

As a matter of fact, this phenomenological approach well reproduces the ex-

perimental ρ(p) in all regimes, except for the one just mentioned where the

coexisting incommensurate SF/BG and commensurate MI phases have dif-

ferent ξT . As it will be clearer in the next section, the use here of a single ξT

parameter to fit ρ(p) leads to an overestimation of the rms width Γ.

In Fig. 3.11 we report the fitted ξT across the whole ∆−U diagram. For

Figure 3.11: ∆ − U diagram of the thermal correlation length ξT resulting from the fit
in the experiment-theory comparison. Thermal effects are significantly more
relevant for small U .

U < 10 J it is rather short (ξT ≈ d), showing a relevant thermal broadening

for the SF and (weakly-interacting) BG phases. ξT is also quite constant,

indicating that the shape of the diagram is the same as the one at T = 0.

In the large-U regime, ξT does increase considerably, indicating that the

strongly-correlated phases are only weakly affected by the finite T . Addi-

tional measurements and finite-T simulations shown later on will confirm

these indications.

3.2.2 Quantum to normal phase crossover temperature

In Subsec. 2.3.1 we employed the ED method to relate the SF temperature

of the system to the measured momentum distribution ρ(p). We now apply

the same method to get more information on the finite temperature effects
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in our system. Besides confirming the results obtained with the phenomeno-

logical approach, such a method will allow us to determine the crossover

temperature above which the system in the strong-interaction regime loses

its quantum properties. By diagonalizing the Hamiltonian 3.1 for small ho-

mogeneous systems with length up to L = 12 d we obtain, for a given U and

∆ value, the temperature dependence of the correlation length ξ(T ) of the

system.

As a first case we consider the regime of weak interaction. Fig. 3.12 shows

the correlation length ξ(T ) at a given interaction (U = 2.3 J) for three dif-

ferent disorder strengths. This study confirms the previous results of large

Figure 3.12: Inverse correlation length vs T calculated by exact-diagonalization for a
weakly-interacting system (U = 2.3 J) with n = 0.46 and for three disor-
der values (∆ = 0, 6 J , 16J). Note that thermal effects are relevant already
at small T values.

thermal effects for small U . As a matter of fact, the inverse correlation

length starts to increase already for very small temperatures, implying a

non-negligible impact of thermal fluctuations on the T = 0 quantum phases

and thus justifying the experimental observation of a rather short ξT for weak

interactions. Nevertheless, it is interesting to point out that according to the

transport measurements previously described (see Fig. 3.4), the loss of co-

herence due to the increase of temperature is not accompanied by a change
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of the system mobility4.

Differently from the case of small U , for large interactions (U > 10 J) the

calculated correlation length ξ(T ) is almost T -independent at low tempera-

tures while a relevant broadening sets in only above a crossover temperature

T0 (Fig. 3.13). T0 is here determined as the maximum of the first derivative

Figure 3.13: Inverse correlation length vs T calculated by ED for a strongly-interacting
system (U = 44 J) with ∆ = 10 J for both the commensurate case of MI
(n = 1) and the incommensurate case of BG (n = 0.46); the arrows mark
the crossover temperatures T0 below which the inverse ξ(T ) is quite con-
stant and thus the quantum properties of the system are not affected by the
temperature.

of 1/ξ(T ). This effect can be clearly seen not only for the MI phase, occur-

ring when the thermal energy kBT becomes comparable with the energy gap

U [131], but also for the gapless BG.

Fig. 3.14 shows the calculated crossover temperature T0 as a function of

∆ for one representative interaction strength and for both the cases of com-

mensurate and incommensurate density. For the commensurate density at

∆ = 0, we get kBT0 = 0.23(6)U , in agreement with the predicted “melting”

temperature for the MI, kBT0 ' 0.2U [131]. As ∆ increases T0 decreases,

4The fact that the insulating behaviour persists also at finite T could in principle be
related to the many-body localization phenomenon [129, 130].
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3.2 Comparison with theory

Figure 3.14: Crossover temperature T0 vs disorder strength ∆, calculated by exact diago-
nalization for a strongly interacting system (U = 44 J), for both the commen-
surate case of MI (n = 1) and the incommensurate case of BG (n = 0.46).
In the latter case T0 shows a linear increase with ∆ meaning that at large
enough disorder the quantum properties of the BG are preserved even at
finite T .

consistently with a reduction of the gap due to the disorder. As for the BG,

the crossover temperature instead shows a linear increase, kBT0 ∝ ∆5.

For large ∆, the simulations indicate that T0 is comparable with the

temperature 2.17 measured experimentally in the SF regime (kBT ' 3 J),

supporting the result obtained in the previous section of a large observed

ξT at strong interactions. Moreover, in the next section we will see that for

∆ ≈ 10 J , where according to the plot Fig. 3.14 we have T0 ≈ T , we can

observe the excitation spectrum predicted by theory for the BG.

We finally note that the crossover temperatures in the incommensurate

and commensurate cases are different for small disorder and large interac-

tion; this fact clarifies why the fit of the momentum distribution with only

one ξT is not working properly in this regime, as we already mentioned in

Subsec. 3.2.1 referring to Fig. 3.9c. In particular, while the SF component

5This result, already observed in numerical simulations at small disorder strength
[132], can be intuitively justified with the following reasoning: the energy of the lowest
levels that the fermionized bosons can occupy increases with the height of the disordered
potential; so the higher the disorder strength ∆, the larger the effective Fermi energy for
the existence of the quantum phase, that is the BG.
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broadens increasing T , in the same way as it does for small U , the weakly-

disordered MI component for T < T0 does not. As a consequence, the use of

a single ξT leads to an overall overestimation of the derived Γ in Fig. 3.10.

Entropy measurements. In order to experimentally confirm the results

obtained by ED, a measurement of the momentum distribution width Γ as

a function of T would be necessary. Unfortunately, as described in Sub-

sec. 2.3.1, measurements of T are not straightforward outside the SF regime.

It is however possible to measure the entropy of the system6. In Fig. 3.15 we

Figure 3.15: Measured rms width Γ of ρ(p) for U = 23.4 J and ∆ = 6.6 J as a function
of the entropy per particle. The corresponding SF temperature ranges from
3.1(1) J to 4.7(2) J . Note the plateau at small S before Γ starts increasing.
The line is a guide to the eye.

report the measured rms width Γ of ρ(p) as a function of the entropy S in

the regime of strong interaction and finite disorder, where the BG and the

disordered MI phases coexist. The measurement clearly shows the existence

6The procedure for measuring the entropy of the 1D system is the following: we
measure the initial entropy in the 3D trap; we measure again the entropy after having
transferred the system into the 1D tubes and back into the 3D trap; we assume the mean
value of the initial and final entropies as an indication of the entropy in the 1D tubes.
In the BEC regime of T/Tc < 1, where Tc is the critical temperature for condensation in
3D, we use the relation S=4NT kBζ(4)/ζ(3)(T/Tc)

3, where ζ is the Riemann Zeta function
[133]. The reduced temperature T/Tc is estimated from the measured condensed fraction
by taking into account the finite interaction energy. In the thermal regime, T > Tc, we
use the relation S = NT kB [4− log(NT (~ω/kBT )3)].
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of a plateau at low entropy, before a broadening sets in, which nicely recalls

the theoretical behaviour of the inverse ξ(T ) in Fig. 3.13. This experimental

result thus further strengthen the theoretical predictions that for sufficiently

large U and ∆ the T = 0 quantum phases can persist in the finite-T experi-

ment.

3.3 Excitation spectrum

In Sec. 3.1 we traced the ∆ − U diagram showing the crossover from

the conductive to the insulating phases. In order to probe the nature of

the insulating phases it is however necessary to investigate the excitation

properties of the system. We recall in fact (see Subsec. 1.2.3) that while

both the MI and the BG are insulators, they are characterized by a different

excitation spectrum, gapped in the former case, gapless in the latter one.

In Fig. 3.16 we report a sketch representative of the predicted excitation

spectrum for a bosonic system in a disordered lattice at strong interaction.

The figure shows two excitation peaks: one centered at the energy hν ∼ U

Figure 3.16: Sketch of the absorption energy spectrum of a strongly interacting system in
a inhomogeneous disordered lattice. The peak at hν ∼ U with width ∼ 2∆
is due to the disordered MI (in trap regions with integer n). The peak at
hν ∼ ∆, which makes gapless the low-frequency spectrum, is instead due to
the BG (in trap regions with no-integer n). Figure adapted from [134].

with width ∼ 2∆ and the other one centered at hν ∼ ∆. Such a spectrum is

due to the fact that, within an inhomogeneous trapped system, the regions

with commensurate filling (integer n) form a MI with an energy gap of the

order of U , while the regions with incommensurate filling (no-integer n) form
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a BG that fills the low-energy gap. The effect of disorder is thus twofold,

on the one side it causes a broadening of the MI peaks, on the other side,

more interestingly, it causes Anderson localization for the non interacting

fermionized bosons [17].

After describing the experimental procedure, in the following we will thus

first consider the just mentioned case of strong interaction to experimentally

show such a reach feature of the energy spectrum, able in particular to high-

light (and distinguish) the presence of the BG phase coexisting with the MI in

our inhomogeneous system (Subsec. 3.3.1). Other measurements performed

from weak to strong interactions (Subsec. 3.3.2) will then characterize the

spectral properties of the BG across the ∆ − U diagram, corroborating the

analysis and the informations obtained by the coherence and transport mea-

surements.

Experimental procedure. In order to investigate the excitation spectrum

of the system we employ a lattice modulation spectroscopy technique [92,

135]. This corresponds to measure the energy E(ν) absorbed by the system

when the amplitude V0 of the main lattice (and therefore the tunneling energy

J) is modulated with a sinusoid of variable frequency ν. The experimental

sequence is the following: after the standard loading procedure of the 1D

quasicondensate in the quasi-periodic lattice (see Subsec. 2.2.3), the main

lattice is modulated in amplitude for a given time t7. The depth of the main

lattice thus becomes

V (t) = V0(1 + A sin(2πνt)) (3.3)

where A is the modulation amplitude, which is kept constant8, and ν is

the modulation frequency, which is tuned to scan the excitation spectrum.

After the excitation, the lattice potentials are exponentially ramped down

7We choose a modulation time t = 200 ms as long as possible, as allowed by the system
background heating, in order to have the maximum sensitivity at low frequencies.

8We choose a modulation amplitude small enough (A ∼ 0.1) to guarantee that the
system response E(ν) to the perturbation (modulation) is linear.
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in 300 ms, allowing the system to rethermalize via atom-atom collisions.

The amount of energy E(ν) absorbed by the atoms as a function of ν is

obtained by recording TOF absorption images and looking at the increase of

the system temperature (with respect to the unperturbed case, i.e. ν = 0).

The temperature increase can be estimated in two different ways, either in

terms of a reduction of the BEC fraction (as we did at large U) or in terms

of an increase of the width σ of the thermal cloud (as we did at small U).

3.3.1 Signature of the Bose glass

Let us now consider a few experimental excitation spectra [125] in the

regime of large interaction. This regime is of particular interest for two

reasons: first, the reach spectral features expected by the theory, as just

discussed. Second, probably more important, the negligible effect of the

finite temperature of the experimental system, as described in Sec. 3.2. In

this large U regime, we expect in fact that our observations directly reflect

the properties of the T = 0 quantum phases.

Let us first consider the clean case (∆ = 0). Fig 3.17 shows the standard

Figure 3.17: Excitation spectrum at U = 26 J and ∆ = 0. At low frequencies the system is
not responding; a first excitation peak appears at the Mott-gap, hν = U , and
a second one at about 2U , due to the presence of MI domains with different
filling n. Error bars represent the standard deviation of 5 measurements.
(inset) DMRG density profile calculated for N = 55: MI domains with n = 1
and n = 2 are separated by incommensurate SF components characterized
by a smooth (monotonic) change of density.
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MI response [136, 137] of a strongly interacting system (U = 26 J): at low

frequencies, hν < U , essentially no absorption is observable. A first excita-

tion peak appears at the Mott-gap, hν = U . This absorption peak is due

to particle-hole excitations in the MI plateaus, that form in the inhomoge-

neous trapped system. For our typical densities we estimate MI domains

with single site filling n = 1 − 3, depending on the trap zone. A second

peak, centered at hν = 2U , is due to particles hopping from a lattice site

with filling n to another site with filling n + 1 and is thus a consequence of

the system inhomogeneity (see Fig. 1.10 in Subsec. 1.2.1). The MI domains

are connected by intermediate SF regions with incommensurate filling (see

wedding structure in Subsec. 1.2.1), which do not respond to the excitation

in the regime of U � J .

When a finite disorder ∆ is introduced, the system response to the ex-

ternal perturbation drastically changes. Fig. 3.18 shows the excitation spec-

Figure 3.18: Excitation spectra at U = 26 J and SF temperature kBT ' 3 J , for two
disorder strengths. (a) ∆ = 6.5 J : with respect to the clean case of Fig. 3.17,
the two Mott peaks are broadened and a new peak centered at 1.5 ∆ fills
the Mott gap. (b) ∆ = 9.5 J : the low-frequency peak shifts towards higher
energies and the Mott peaks are further broadened. The lines are a fit with
multiple Gaussians. (insets) DMRG density profiles calculated for N =
55. The shaded areas represent the trap regions with incommensurate n
responsible for the formation of the BG, characterized by a strong change of
density in real space and by the “∆ peak” in frequency space.

tra at the same large U and SF temperature9 as before for two different

9The experimental temperature kBT ' 3 J , which is measured in the SF regime as
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disorder strengths ∆. As for the commensurate MI peaks, they broaden

approximately by the amount ∆, as already observed in previous experi-

ments [92], since the energy required to create particle-hole excitations is

now site-dependent, and ∆ quantifies the spreading of the on-site energies

(see Fig. 1.17 in Subsec. 1.2.3). More interestingly, an additional peak fills

now the Mott gap, at hν ∼ ∆. This observation strongly recalls the gen-

eral picture discussed in Ref. [134] and summarized in Fig. 3.16, predicting

a strongly-interacting BG phase characterized by a similar spectral response

and coexisting with a disordered MI. As already discussed, within our in-

homogeneous system the incommensurate trap regions (shaded areas of the

figure) behave as a weakly-interacting Fermi gas, which in the presence of

disorder undergoes Anderson localization, showing such a peculiar response

at the characteristic disorder value ∆ [17].

We finally note that due to the finite resolution10 of our experiment at

low frequencies we are not able to highlight the gapless nature of the system,

nevertheless the presence of the extra “∆-peak” peak strongly indicates that

what we are dealing with is actually the BG phase. Such indication is then

confirmed by the following comparison with a theoretical model.

Comparison with a model of fermionised bosons. In Fig. 3.19, the

experimental data of Fig. 3.18 related to the “∆-peak” are compared to the

excitation spectrum evaluated, on the line of Ref. [134], with a model of

fermionized bosons. The calculations are performed in the hard-core limit

U →∞, where bosons can be mapped onto non-interacting fermions. In the

regime of linear response, it is possible to derive the energy absorption rate

(EAR) [138]. For the incommensurate component, which provides the BG

described in Subsec. 2.3.1, is of the same order of the crossover temperature T0 below which
the quantum properties of the strongly-interacting BG are preserved (see Subsec. 3.2.2).

10The finite resolution at low frequency, which is due to the inhomogeneity of our
system, is given by the width (∼ 0.5 kHz) of the “∆-peak”.
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Figure 3.19: Comparison between the experimental data (dots) of the low frequency peak
in Fig. 3.18 with a model of fermionized bosons (red curve), for the two
disorder strengths: (a) ∆ = 6.5 J and (b) ∆ = 9.5 J . Both the theoretical
and the experimental peak responses have been normalized to unity; the
Gaussian background due to the first Mott peak has been subtracted from
the experimental data. The red curve is calculated at the nominal ∆ while
the grey region shows the effect of the 20 % uncertainty on ∆.

response, the EAR is given by

Ė(ν) = (δJ2π2ν)
∑
a,b

Ka,b[fFD(εa)− fFD(εb)]δ(~ω + εa − εb). (3.4)

Here Ka,b = |
∑

i(φ
∗
a(i + 1)φb(i) + φ∗a(i)φb(i + 1)|2 is calculated over pairs

(a, b) of single-particle eigenstates of the quasi-periodic lattice, fFD(ε) is the

Fermi-Dirac distribution at finite T , and the bar represents the averaging

over different realizations of the potential. Each spectrum is calculated eval-

uating Eq. 3.4 at different frequencies ν on a 200-sites lattice confined in

a harmonic potential with axial frequency ωz = 150 Hz, as in the experi-

ment. Calculations are performed at the experimental finite temperature

kBT = 3 J . In the experiment the interaction energy U is not infinite, as

assumed in the theoretical model; as a consequence the single site filling n

is often larger than unity (in some zones of the harmonic potential we have

n = 2 − 3). In the calculations, this is taken into account employing an

extended-fermionization approach [139], i.e. neglecting the coupling between

layers with different fillings (n ≤ 1, 1 < n ≤ 2, 2 < n ≤ 3), and calculat-

ing their response independently. The larger kinetic energy of the fermionic

excited bands is properly taken into account in the numerics. In fact, this

approach is known to work rather well already at relatively small interac-
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tions U , provided that the Mott-gap is open. Both the excitation spectra

are the average of the spectra calculated for individual tubes over the whole

distribution of tubes in the experiment.

As shown in Fig. 3.19, the calculated absorption peak well reproduces

the experimental observation, confirming the qualitative picture presented

in Fig. 3.16. The systematic shift of the experimental data towards lower

frequencies might be a consequence of the U = ∞ approximation employed

in the theoretical model. Anyway, the appearance of the “∆-peak” experi-

mentally probes the presence of a strongly-correlated BG coexisting with the

disordered MI. Moreover, the theoretical DMRG analysis of the density dis-

tributions in the insets of Figs. 3.17 and 3.18, shows the spatial arrangement

of the commensurate and incommensurate components in the typical tube

(N = 55 atoms). Such analysis confirms that the smooth, monotonic density

change of the incommensurate SF is turned by the disorder into a strongly

varying one, as expected for a BG.

3.3.2 Excitations from weak to strong interactions

Let us now analyze the spectral properties of the system across the phase

diagram. We will thus observe the behaviour of the excitation spectrum

moving from weak to strong interaction at a given finite disorder. Let us

first consider the case of weak interaction (U < 3 J). We recall that in

such a regime, thermal effects are quite relevant (small ξT in Fig. 3.11) and

thus what we are dealing with is actually a finite-temperature system whose

quantum properties are not necessarily preserved. We also recall that here

the energy absorbed by the atoms is measured in terms of an increase of the

width of the thermal cloud11.

Fig. 3.20 shows the excitation spectra at ∆ = 6.5 J and for increasing

(small) interactions. For vanishing U we observe a weak excitation peak cen-

tered at ∆ which is consistent with the presence of an Anderson insulator

11In the regime of weak interaction, once the sample has been transferred back into the
3D trap decompressing the optical lattices, the BEC fraction results to be almost null.
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Figure 3.20: BG-SF crossover at ∆ = 6.5 J . The absorbed energy is measured as the rela-
tive increase of the momentum distribution width δp. (a) AI case (U = 0.6 J):
the weak response centered at ∆ (arrow) is consistent with a bosonic model
(purple line). (b) A weak interaction (U = 1.9 J) broadens and enhances
the response, consistently with a partially delocalized BG. (c) A bit stronger
interaction (U = 3.0 J) further increases the low-frequency response, which
becomes identical to that of a clean SF (not shown).

(AI). As a matter of fact the experimental excitation spectrum is well repro-

duced by a non-interacting bosonic model, built replacing fFD(εa)− fFD(εb)

with the Bose-Einstein distribution fBE(εa) in the fermionic model previously

employed. As we increase U , the system response progressively enhances and

broadens, ending up with an excitation spectrum that is undistinguishable

from that of a clean SF. This behaviour is thus consistent with the system

crossing the BG-SF transition according to the argument discussed in caption

of Fig. 1.15.

As for the regime of large U , Fig. 3.21 shows the excitation spectra at the

same disorder strength as before and for interactions increasing in the range

U = (20−60) J12. As described in the previous subsection, here the absorbed

energy is measured in terms of a reduction of the BEC fraction and the peak

centered at ∆ is the signature of the strongly-correlated BG. The interesting

thing is that such “∆-peak” can be observed only in a limited region of U

values13. As a matter of fact, when U is comparable with ∆, the MI and

12For an intermediate range of interactions (3 ≤ U < 20 J), no significative difference
from the SF spectrum of Fig. 3.20c can be appreciated.

13As for the constraints for ∆, we note that for very large disorder strengths (∆ >
20 J), the spectrum features a broad peak centered at ∆ that is only weakly affected
by interaction (in all our accessible range of U), indicating that the system behaviour is
dominated by disorder
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Figure 3.21: Excitation spectra in the strongly-interacting regime for increasing U . The
spectra, measured as the relative reduction of the BEC fraction, are shown
at the same given disorder strength ∆ = 6.5 J as in Fig. 3.20 and for three
interaction energies. The tunneling energy corresponds to a frequency J/h =
90 Hz. (a) U = 20J : next to the broad SF spectrum the MI peak is only
weakly enhanced at frequencies around U , while no spectral enhancement
can be appreciated around ∆. (b) U = 26 J : a BG peak centered at about
1.5 ∆ appears, clearly separated from the two MI peaks. (c) U = 58 J : the
amplitude of the BG peak decreases, and most of the response is in the MI
peak.

BG peaks overlap, the former being larger and covering the latter. When,

conversely, U is much larger than ∆, the fraction of the incommensurate

density that can form a BG becomes negligible and again only the MI peaks

are detectable.

Let us finally compare the effect of increasing interaction in the two oppo-

site regimes. In the low-U bosonic case, a small repulsive interaction favors

the coupling of single-particle states, gradually restoring the superfluidity.

As a matter of fact, the low-frequency response of the system at weak inter-

actions enhances increasing U , indicating the possibility of long-distance ex-

citations. Conversely, in the large-U fermionic case, excitations occur only on

small length scales: increasing U the low-frequency SF response progressively

reduces in favour of that of the (disordered) MI and the strongly-correlated

BG.

In conclusion, the measurements of the excitation spectra, together with

those of coherence (Fig. 3.3) and transport (Fig. 3.4), confirm the opposite

(bosonic and fermionic) nature of the two regimes, as opposite is the role

played by interactions: while weak interactions compete with disorder and

screen the disorder-induced localization, restoring coherence between par-
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ticles, conversely, strong interactions act as the Pauli exclusion principle,

fermonizing the bosonic sample and favoring (Anderson) localization in the

disordered system.
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CONCLUSIONS AND PERSPECTIVES

In this thesis I have described how BECs in optical lattices can be em-

ployed to study key aspects of the physics of 1D superfluids and disordered

systems. My work in particular focuses on two foundamental subjects: the

phase slips excitations in 1D superfluids; the phase diagram of disordered, in-

teracting 1D bosonic systems, with the associated problem of the Bose glass

phase.

The experimental setup we employ, a 39K BEC with a 3D optical lattice,

on the one side offers the possibility to strongly confine the sample to study

the 1D physics, on the other side, by means of Feshbach resonances and of

a quasi-periodic optical lattice, offers the possibility to independently tune

interactions and disorder.

In a first part of experiments we have employed a clean optical potential

to investigate the coherence and transport properties of a 1D superfluid as

well as its mechanisms of dissipation. More precisely, by comparing a static

measurement of coherence with DMRG and ED models we established a new

criterion to estimate the temperature of the 1D superfluid in the lattice. In

particular we found that the estimated experimental temperature is lower

than the 1D degeneracy temperature, confirming thus the quantum nature

of our quasi-BEC.

As for the dissipation mechanisms of the superfluid, we studied the dy-

namics of the 1D quasi-BEC performing different transport measurements in

101



the optical potential. Preliminary measurements in absence of the lattice,

showed in particular that for small interaction values, where the sound veloc-

ity vs is smaller than the quasi-BEC velocity, the damping rate of the SF is

quite large, as a presumable consequence of the energetic Landau instability.

Other transport measurements performed with a deep lattice (s = 8)

and for increasing interactions showed that the system becomes dynamically

unstable (abruptly strongly dissipative) above another critical velocity vc,

which decreases for increasing U and approaches zero at the SF-MI transition.

Moreover, as a consequence of the strong quantum fluctuations present in

1D (especially at large U/nJ values), the dynamics of the quasi-BEC results

dissipative even at velocities smaller then vc, as manifested by the presence

of a significant damping rate before the dynamical instability sets in. At the

origin of such dissipation process there are the quantum (and thermal) phase

slips.

In order to discriminate the phase slips activated by quantum tunnel-

ing from those that are thermally assisted, we performed further transport

measurements with a small lattice depth (s = 1). Such measurements in

particular showed a regime of weak phase-slip dissipation at small velocity

and interaction and a second regime of stronger, velocity-dependent dissi-

pation for larger velocity and interaction. This change of behaviour, which

is consistent with the predicted crossover from thermally-assisted to purely

quantum phase slips, provides the first experimental evidence of quantum

phase slips in an atomic superfluid.

In a second part of experiments we employed a quasi-periodic lattice to

introduce a controllable disorder in the system. By performing coherence

and transport measurements we characterized, as a function of disorder and

interaction, the phase diagram describing the insulating properties of a 1D

quasi-condensate. Such a diagram shows, in agreement with theoretical pre-

dictions for the Bose glass, an insulating reentrant regime which extends from

weak to strong interactions sorrounding the SF. While coherence measure-
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ments provide a broad crossover (as a consequence of the system inhomo-

geneity), momentum-dependent transport measurements allow to determine

the metal-insulator transition with higher accuracy, at least in the regime of

small-U .

By means of a close comparison between the experiment and a DMRG-

based theory across the ∆−U diagram, we highlighted the different effects of

temperature in the regimes of weak and strong interaction. While in the for-

mer regime such effects are not negligible, they are significantly less relevant

in the latter one. Here, the scaling of the correlation length with temper-

ature, obtained by ED on small-sized systems, shows a weak dependence

below a crossover temperature, indicating that the strongly-correlated quan-

tum phases predicted by the T = 0 theory seem to persist at the temperatures

of our experiment.

In order to probe the nature of the insulating phases in the ∆ − U dia-

gram, we performed measurements of the excitation spectrum. In particular,

in the regime of strong interactions, the measurements highlighted the pres-

ence of the BG coexisting with the MI in our inhomogeneous system, as

demonstrated by the presence of an excitation peak (at the characteristic

energy ∆) within the MI gap. Such a signature of the BG phase is then

confirmed by a comparison with a model of fermionized bosons, according

to which strongly interacting bosons behave as non interacting fermions and

Anderson-localize in the presence of disorder.

Finally, further excitation measurements performed from weak to strong

interactions, corroborate the measurements of coherence and transport in

showing the opposite role played by interactions in the two regimes: while

at small U interactions compete with disorder to restore the SF phase of the

bosonic system, at large U they instead cooperate with disorder favoring the

localization of the fermionized particles.

We now briefly discuss possible future developments of the work reported

in this thesis. With regard to the dissipation mechanisms of the SF, further
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studies with other types of obstacles to the superflow, such as individual

defects [140] or disorder [111, 140], might allow an assessment of other general

models for quantum phase slips [121, 141]. As for the finite-T problem, an

open question is whether the persisting presence of an insulating behaviour of

the system in the weak-U regime, despite its relevant thermal effects, might

be somehow related to the proposed many-body localization phenomenon

[129, 130].

More in general, the coherence, transport and spectroscopic techniques

we employed for studying the physics of 1D bosons could be also applied to

systems with a different type of disorder or with higher dimensionality. As

for the spectroscopic technique, for example, measurements of the excitation

spectrum with speckle potentials or with holographic potentials created by

spatial light modulators [142], would allow to highlight the spectral features

of the strongly-interacting BG without the interference of the Mott physics

due to the lattice. For its analogies to condensed matter systems, another line

of interesting research would be the physics of disorder induced by impurities.

Such a physics could be investigated by employing for example quantum

atomic mixtures [143, 144].
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[52] A. Schwartz, M. Dressel, G. Grüner, V. Vescoli, L. Degiorgi, and T. Gia-

marchi, On-chain electrodynamics of metallic (TMTSF)2X salts: Obser-

vation of Tomonaga-Luttinger liquid response, Phys. Rev. B, 58, 1261

(1998).

[53] J. Hager, R. Matzdorf, J. He, R. Jin, D. Mandrus, M. A. Cazalilla, and

E. W. Plummert, Non-Fermi-liquid behavior in quasi-one-dimensional

Li0.9Mo6O17, Phys. Rev. Lett. 95, 186402 (2005).

[54] F. Wang, J. V. Alvarez, J. W. Allen, S.-K. Mo, J. He, R. Jin, D. Man-
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