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Introduction

In the last years Bose-Einstein condensates (BECs) in optical lattices

have been the subject of intense experimental and theoretical research. The

enormous interest shown in such area of physics relies on the fact that BECs

widen the horizons of the quantum world as they are observable macroscopic

objects that behave according to the laws of quantum mechanics.

Moreover, Bose-Einstein condensates are extremely versatile tools as they

can be manipulated by means of off-resonant laser light. The possibility to

trap ultracold quantum gases in ideal periodic potentials, that is without

defects and lattice vibrations, allowed to experimentally study fundamental

problems related to condensed matter physics, like, for instance, the quantum

theory of transport of electrons in metals.

Besides allowing to control with accuracy the optical lattice parameters,

such for instance its depth and spacing, the laser light offers the possibility

to introduce and control disorder in the system. The versatility of ultracold

Bose gases is further highlighted by the fact that the interactions between

the atoms that constitute a BEC can be controlled as well.

This thesis work deals with the experimental investigation of the be-

haviour of a 39K BEC in an optical lattice when both a controlled disorder,

by means of a quasi-periodic optical lattice, and a controlled interaction, by

means of Feshbach resonance, are applied to the system. This study was

carried out at the European Laboratory for Nonlinear Spectroscopy of the

University of Florence. In addition, part of the thesis work has consisted

iv



in the design and realization of an original portable spectrum analyzer, to

help in the daily practice of running a complex laser cooling experiment.

This part of the work was done during a six months stage at the Niels Bohr

Institute of Physics in Copenhagen. The thesis is organized as follows:

In the first chapter we introduce, from a theoretical point of view, the

main features of Bose-Einstein condensates, focusing in particular on the

possibility to tune their interactions. Moreover, we give a basic physical

description of periodic and disordered optical potentials.

In the second chapter we introduce the disordered Bose-Hubbard model

describing the behaviour of a gas of interacting particles in a disordered

optical lattice. We present an overview of the possible quantum phases of

the system and in particular we describe how, depending on the interplay be-

tween disorder and interaction, the zero-temperature system undergoes phase

transitions, driven by quantum fluctuations, from conductive to insulating

regimes and vice-versa.

In the third chapter, after briefly introducing the main theoretical features

at the base of the homebuilt laser portable spectrum analyzer we describe in

a detailed way how it has been designed, mounted and tested.

In the last chapter we present first a description of the experimental

setup that has been implemented in order to investigate the quantum phases

theoretically described in chapter 2. We then describe the measurements,

performed at different levels of disorder and interaction strength, of the mo-

mentum distribution of the atomic sample. Such measurements provide a

first evidence of the phase diagram of the disordered bosons both in the

regime of weak and strong interactions.
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CHAPTER 1

Bose-Einstein condensates in optical lattices

Contents
1.1 Bose-Einstein condensation . . . . . . . . . . . . 2

1.1.1 BEC of an ideal trapped gas . . . . . . . . . . . . 5

1.1.2 BEC of an interacting trapped gas . . . . . . . . . 7

1.1.3 Tuning the interaction: Feshbach resonances . . . 9

1.2 Optical potentials . . . . . . . . . . . . . . . . . . 13

1.2.1 Optical lattices . . . . . . . . . . . . . . . . . . . . 15

1.2.2 Disordered optical potentials . . . . . . . . . . . . 21

In this first chapter we will introduce the two main ingredients that have

been employed in the experiments described in this thesis, that is Bose-

Einstein condensates and optical potentials. In section 1.1 we will report a

brief theoretical introduction on the physics of the BECs, particularly focus-

ing on the possibility to tune their interactions, while in section 1.2 we will

describe how both periodic and disordered potentials can be implemented

by means of laser light and how the behaviour of a BEC is affected by such

optical potentials.
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1.1 Bose-Einstein condensation

1.1 Bose-Einstein condensation

Bose-Einstein condensation is a pure quantum phenomenon that occurs

as a macroscopic number of identical bosons in thermal equilibrium occupy

the same quantum (ground) state. As a result, quantum effects become rel-

evant on a macroscopic scale. This condition, which was predicted in 1925

by A. Einstein and S. N. Bose [1][2], was experimentally achieved in 1995 in

a dilute gas of 87Rb atoms [3]. Later on, many other atomic samples, among

which 39K, have been brought to the condensation1.

In order to qualitatively understand how the phase transition to the Bose-

Einstein condesate occurs, let’s consider (figure 1.1a) a gas of atoms in ther-

mal equilibrium with a thermal velocity v and a density n = d−1/3, d being

the mean distance between the particles. At room temperature TR, the atoms

Figure 1.1: Phase transition to the BEC. (a) Classical distinguishable particles d apart
at room temperature TR. (b) Spatial extension λDB of the wave functions
associated to the particles at T < Tc. (c) wave functions overlap (λDB ≈ d): a
macroscopic fraction of undistinguishable bosons start condensing at T = Tc.
(d) Giant wave of matter (pure BEC) at T = 0. Figure adapted from [4].

of the dilute gas are point-like particles and can therefore be spatially dis-

tinguished (classical phase). At lower temperatures (figure b), the wave-like

behaviour of matter must be taken into account and the spatial extension of

a particle can be suitably described in terms of its De Broglie wavelength:

λDB =
h√

2πmkBT
(1.1)

1The other samples that have been condensed are 23Na, 7Li, H, 85Rb, 4He∗, 41K,
133Cs, 174Yb and 52Cr.
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1.1 Bose-Einstein condensation

where m is the mass of the atoms, T is the gas temperature and h and kB

are respectively the Planck and Boltzmann constants. As the temperature of

the system decreases, the width λDB of the wave function associated to the

particles increases according to 1.12. For low enough temperatures (figure c),

when λDB ≈ d, the wave functions start overlapping and consequently the

particles are not distinguishable any longer.

Depending on the quantum nature of the particles, i.e. whether fermionic

(half-odd integer spin) or bosonic (integer spin), two different phenomena can

occur as the gas is cooled down below a critical temperature Tc. Fermions, in

agreement with the Pauli exclusion principle, occupy different energy levels

starting from the ground state and with increasing energy (degenerate Fermi

gas). Bosons, which conversely may occupy the same position and the same

single-particle state, form a macroscopic matter wave oscillating in phase as a

unique coherent object (BEC). Ideally, for T = 0 (figure d), all the particles

fall in the ground state and a pure Bose-Einstein condensate without any

thermal component is formed.

It is important to note that Bose-Einstein condensation is a pure quantum

phenomenon as it is driven only by quantum statistics which gives rise to a

sort of effective potential3, attractive in the case of bosons (while repulsive

in the case of fermions). As a matter of fact this phase transition does not

depend on the interactions between particles that, instead, may reduce the

quantum effects and eventually lead to the destruction of the BEC.

The qualitative description of the Bose-Einstein condensation just shown

can be made more quantitative in terms of the phase-space density nλ3
DB,

which is a parameter that describes the degree of quantum-mechanical be-

haviour of the system. For a system of non interacting particles (ideal Bose

gas) the BEC phase transition can be analytically shown [5] to occur when

nλ3
DB = 2.612 (1.2)

2Note that this is in agreement with the Heisenberg principle as the reduction in
the particle velocity uncertainty at low temperatures results in a increase in its position
uncertainty, that is in its De Broglie wavelength.

3It’s not a real potential since it depends on temperature.
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1.1 Bose-Einstein condensation

For a gas of 87Rb at room temperature and pressure of 1 Atm, nλ3
DB ≈ 10−8,

that is eight orders of magnitude lower than the condition 1.2 for the phase

transition4. In principle, such a condition could be satisfied both by increas-

ing the density n and by decreasing the temperature T , being λDB ∝ T−1/2

(see equation 1.1). Nevertheless, for normal densities, at sufficiently low tem-

peratures all the known interacting systems, with the exception of helium,

become solid (see the P-T phase diagram of figure 1.2, on the left). In order

Figure 1.2: (left) P-T phase diagram showing the bounderies between the gaseous, liquid
and solid phases. The dashed line corresponds to the BEC phase transition for
an ideal gas. Figure taken from [6]. (right) De Broglie wavelength λDB (blue
line) as a function of the temperature T and mean inter-particle distance d '
200 nm (red line) corresponding to a density n ≈ 1014 cm−3. The intersection
of the two lines corresponds to a critical temperature Tc . 1µK.

to avoid such an undesired transition to the solid phase, very dilute sam-

ples5 have to be employed and, consequently, the atoms have to be cooled

down to very low temperatures. In figure 1.2 (on the right) a plot of the

De Broglie wavelength λDB (blue line) as a function of the temperature T is

shown together with the mean inter-particle distance d ' 200 nm (red line)

corresponding to a typical obtainable experimental density (n ' 1014 cm−3).

4The experimental steps to cool down the atoms and therefore to increase the phase
space density up to the order of unity are described in section 4.1.

5Note that the lower the pressure, the lower the probability of inelastic three-body
collisions and the higher the lifetime of the metastable Bose-condensed phase.
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1.1 Bose-Einstein condensation

For such a dilute gas the critical temperature Tc - corresponding to the in-

tersection of the two lines - is of the order of 1µK or even less.

1.1.1 BEC of an ideal trapped gas

In the experiments the BEC is always produced in a confining external

potential, either magnetic or optical (see subsection 1.2). In this subsec-

tion we will thus briefly discuss the main features of a system of N non

interacting identical bosons subject to a 3D anisotropic harmonic potential

Vext =
∑

i=x,y,z
1
2
mω2

i x
2
i (ωi being the frequency trap along the i direction)

which well approximates the experimental confining potentials. In particular

here we will limit ourselves to report the physical quantities of interest –

such as the number of condensed atoms N0(T ) and the condensate density

distribution n(x) – referring the reader to [7] for their derivation.

As for the condensate fraction, it depends on the temperature T as follows

N0(T )

N
=

(
1− T

Tc

)3

(1.3)

where the critical temperature Tc is given by Tc ' ~ωho

kB
N1/3, ωho = (Πiωi)

1/3

being the geometric average of the trapping frequencies. It is interesting to

note that the result 1.3 differs from the known case of a bosonic gas in a

box for the exponent equal to 3 instead of 3/2. A plot of eq. 1.3 is shown

in figure 1.3 where the condensate fraction for a Bose gas in the box is also

reported as a comparison. As mentioned in the previous subsection, at the

critical temperature Tc, a finite number of particles starts condensing; as the

temperature decreases, this number increases to the extent that at T = 0 all

the N bosons occupy the harmonic ground state.

In the fully condensed state at T = 0, the wave function of the N-particle

system is given by the product of the ground state wave functions (normalized

5



1.1 Bose-Einstein condensation

Figure 1.3: Condensate fraction as a function of the temperature for a gas of non interact-
ing bosons in a 3D harmonic potential (dashed line) and in a box (continuos
line). Below the critical temperature Tc a finite number of particles occupies
the ground state (BEC phase transition). Figure adapted from [8].

to 1) of the single-particle harmonic oscillator6

φ0(x) = (
√
π aho)

−3/2 e−1/2
P

i(xi/aho)2 with aho =
√

~/mωho (1.4)

aho being the harmonic oscillator length, i.e. the width of the gaussian func-

tion φ0. An important consequence of the macroscopic quantum behaviour of

the BEC is that the quantum probability distribution |φ0|2 is strictly related

to the BEC density distribution7 as

n0(x) = N0 |φ0(x)|2 (1.5)

which is a quantity that is measurable in the experiments.

As compared with the BEC confined in a box, which shows a phase tran-

sition only in momentum space8, the condensation for a gas confined in a

6Note that since we are assuming that the N identical particles are not interacting,
i.e. indipendent, the energy of the whole system is simply given by the sum of the energy
of the single particles - which for the harmonic oscillator is εn =

∑
i(ni + 1/2)~ωi - and

the total wave function, by the product of their wave functions φ0(x).
7Note that the density distribution 1.5 satisfies the normalization condition for which

the total number of condensed atoms is N0 =
∫
dx|n0|2.

8A BEC in a box is delocalized all over the volume, meaning that in coordinate space
it can’t be distinguished by the non condensed component.
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1.1 Bose-Einstein condensation

harmonical trap occurs with a narrowing of the density distribution both in

momentum and coordinate space.

According to the Ginzburg-Landau theory [5], the density distribution 1.5

of the ground state can be thought of as an order parameter that describes

the degree of symmetry of the system. Such an order parameter, which is

zero for T > Tc (disordered phase), becomes non-zero for T < Tc (ordered

BEC phase) as a result of a spontaneous symmetry breaking9. From a math-

ematical point of view, the BEC phase transition is classified as a continuous

phase transition since the order parameter n0(x) – whose dependance on T

is contained in N0 – varies in a continuous way around Tc (see figure 1.3).

1.1.2 BEC of an interacting trapped gas

So far the interactions between particles have been neglected and only

the problem of the ideal Bose gas – for which the thermodynamic behaviour

around Tc is completely governed by quantum statistics – has been consid-

ered. In order to correctly describe the behaviour of real systems, interactions

have to be taken into account and the theory of many-body systems has to

be employed. In this subsection the wave equation describing the behaviour

of an interacting BEC – the so-called Gross-Pitaevskii equation [9][10][11] –

will be shown reporting the conditions under which this can be derived from

the many-body theory.

In dilute cold gases10 only binary collisions are relevant and the two-body

interaction potential v(x− x′) can be written in terms of a contact pseudo-

potential as:

v(x− x′) = g δ(x− x′) with g =
4π~2

m
a (1.6)

where a is the scattering length. The scattering length, which is positive in

9The symmetry breaking is spontaneous as it occurs without the action of any external
force but only by changing the temperature.

10The diluteness condition for a cold gas is d� a, that is the mean inte-particle distance
d has to be much greater than the range a of the two body potential.
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1.1 Bose-Einstein condensation

the case of repulsive interactions and negative in the case of attractive ones11,

is the only relevant parameter when describing the collisional properties of a

system at very low energies (refer to subsection 1.1.3 for details).

At very low temperatures (T ≈ 0), when a macroscopic number of atoms

is condensed in the ground state (i.e. N0 � 1), a mean field approach12 can

be used and the energy associated to the BEC wave function Ψ0 turns out

to be

E[Ψ0] =

∫
dx

[
~2

2m
|∇Ψ0(x, t)|2 + Vext(x)|Ψ0(x, t)|2 +

g

2
|Ψ0(x, t)|4

]
(1.7)

where the first term is the kinetic energy Ekin, the second one the potential

energy Epot and the third one the interaction energy Eint
13. Minimizing the

energy 1.7 with respect to infinitesimal variations of Ψ0, yields the Gross-

Pitaevskii equation (GPE):

i~
∂

∂t
Ψ0(x, t) =

[
− ~2

2m
∇2 + Vext(x) + g|Ψ0(x, t)|2

]
Ψ0(r, t) (1.8)

As a consequence of interactions the wave equation 1.8 shows a non linear

term in the condensate order parameter Ψ0. Note that in absence of this term,

which describes the condensate self-interaction, the GP equation reduces to

the linear Schrödinger equation, characterized by the density distribution

1.5.

The stationary solutions of eq. 1.8 can be obtained by using the ansatz

Ψ0(x, t) = e−iµt/~ψ0(x), where µ is the condensate chemical potential14. By

11In the following only positive a will be considered since for a < 0 a condensate
is stable only for a very small number of atoms. As a matter of fact, above a certain
critical number, the condensate collapses due to three-body inelastic collisions caused by
the attractive interaction.

12According to the mean field theory, the many-body system of N interacting particles,
which is very difficult to solve exactly, can be replaced by a one-body problem by treating
the bosons collectively i.e. in terms of the single order parameter Ψ0.

13Note that the quantity Erel=Ekin+Eint, which is called release energy, is the energy
available during the ballistic expansion of the condensate, when the trap potential Vext is
switched off (see section 2.2).

14Multiplying eq. 1.9 by ψ∗0(x) and integrating in dx, yields µ = E/N + Eint/N
(E = Ekin + Epot + Eint being the total energy of eq. 1.7): the condensate chemical
potential, thus, differs from the total energy per particle E/N by the quantity Eint/N ;
the latter term being related to the fact that the GPE is not linear.

8



1.1 Bose-Einstein condensation

substituting this expression in eq. 1.8 we get the time-indipendent GPE[
− ~2

2m
∇2 + Vext(x) + g|ψ0(x)|2

]
ψ0(x) = µψ0(x). (1.9)

Thomas-Fermi approximation

The time-independent GPE can be analytically solved in the limit of

strong interactions, that is whenN a� aho and the interaction term g|Ψ0(x)|2

dominates on the kinetic one. By neglecting the term− ~2

2m
∇2 (Thomas-Fermi

approximation), the differential eq. 1.9 becomes an algebraic equation from

which we get the condensate density distribution

n0(x) = |ψ0(x)|2 =
1

g
[µ− Vext(x)] (1.10)

valid for µ > Vext(r). For an harmonic confining potential the density distri-

bution 1.10 assumes the shape of an inverted parabola:

n0(x) =
µ

g

[
1−

∑
i

(
xi
RTF
i

)2
]

with RTF
i =

√
2µ

mω2
1

(1.11)

RTF
i being the Thomas-Fermi radius in the i direction. Figure 1.4 shows

how the repulsive interaction between atoms causes a broadening of the con-

densate density distribution.

1.1.3 Tuning the interaction: Feshbach resonances

As mentioned in the previous subsection, in a bosonic gas at low tem-

peratures the effective interaction between atoms can be characterized by

a single quantity, the scattering length a. In this subsection we will show

how it is possible to tune the intensity of the scattering length, and thus

the intensity of the interactions15, by means of Feshbach resonances. First

studied in nuclear physics [12][13][14], Feshbach resonances later on became

important in atom physics [15][16][17] as they offer the possibility to tune

the interactions in a controlled way simply by changing a magnetic field.

15We remind that the type of interaction is determined by the sign of the scattering
length, a > 0 resulting in repulsive interactions, while a < 0 in attractive ones.

9



1.1 Bose-Einstein condensation

Figure 1.4: BEC density distribution for several positive values of the scattering length a.
For a = 0 (dashed line) the BEC density distribution has a narrow gaussian
shape. As a increases the repulsive interactions cause a broadening of the
density distribution, which in the strongly interacting regime is approximately
an inverted parabola (Thomas Fermi approximation). Note that the edges
of the parabolic distribution are actually smoothed since in these regions the
kinetic energy term dominates on the interaction energy one. Figure adapted
from [7].

In order to describe the basic idea of Feshbach resonance, we consider

(see figure 1.5) two diatomic molecular potential curves, Vop(R) (ground

state) and Vcl(R) (excited state), corresponding to two spin configurations

for atoms16. For large internuclear distances R, the potential Vop(R) corre-

sponds to the energy of the two free atoms17 (dashed line), which is chosen

here as energy reference (Vop(∞) = 0). As the two atoms collide with a very

small incident energy Einc, the level Vop(R) - called open channel - is energet-

ically accessible for a collisional process. The other potential Vcl(R), which is

not accessible (closed channel), may however have a bound molecular state

close to 0. If now the two atoms have the possibility to make a (temporary)

transition to this bound molecular state, then their scattering cross section

16In priciple, a molecule has several potential curves corresponding to the different
hyperfine and Zeeman levels. For simplicity, we consider here only one excited state,
which is appropriate for an isolate resonance.

17Neglecting the Zeeman effect, the energy at R→∞ is exclusively determined by the
sum of the hyperfine energies of the two free atoms.

10



1.1 Bose-Einstein condensation

Figure 1.5: Basic model for Feshbach resonances. The scattering resonance occurs when
two atoms colliding at energy Einc in the open channel Vop(R), resonantly
couple to a molecular bound state with energy Eb, supported by the closed
channel potential Vcl(R). The relative energy of the two levels is controlled
via magnetic field when the corresponding magnetic moments are different.
Figure adapted from [18].

can extremely increase. The (Feshbach) resonance may indeed take place

as the energy level of the closed channel can be tuned, with respect to the

open one, by varying a magnetic field. As a matter of fact, provided that the

states corresponding to the two channels have different magnetic moments,

i.e. they have a different response (Zeeman shift) to the applied magnetic

field B, this one can be tuned in such a way that the energy Eb of the bound

molecular state approaches Einc.

Near a Feshbach resonance, the magnetic field dependance on the scat-

tering length a is given by [19]

a(B) = abg

(
1− ∆

B −B0

)
(1.12)

where B0 is the resonance center, ∆ the resonance width and abg the back-

ground scattering length, i.e. the scattering length far from the resonance. A

plot of the scattering length a as a function of the magnetic field B is re-

ported in figure 1.6. The figure shows the 39K resonance at B0 ' 400 G, that

11



1.1 Bose-Einstein condensation

Figure 1.6: Magnetic field dependence of the scattering length between the 39K Feshbach
resonance at B0 ' 400 G and the zero-crossing Bzc ' 350 G. Note that the
small ratio abg/∆ (≈ 1

2 a0/G) allows to annul the interactions of a 39K BEC
with high degree of accuracy. Figure adapted from [20].

is also used in our experiment18.

An important point of a Feshbach resonance is the zero-crossing magnetic

field Bzc = B0 + ∆, i.e. the value of B at which a vanishes. The behaviour of

the scattering length in proximity of Bzc, as derived by eq. 1.12, is given by

a(B) =
abg
∆

(B −Bzc) for B → Bzc (1.13)

The parameter that is important in order to control the interaction around

the value a = 0, is the ratio abg/∆: the smaller this ratio, the better the ac-

curacy for tuning the interaction. For the resonance shown in figure, whose

width is ∆ ' 52 G and abg ' −29 a0 (a0 being the Bohr radius), the sensi-

tivity around Bzc = 350 G is da/dB ' 0.56 a0/G. This means that with a

stability, for instance, of 1 G for the magnetic field, the interactions of the

BEC can be nulled with an uncertainty of about half a Bohr radius.

18As shown in section 4.1 the resonance at B0 ' 400 G is accessible when the BEC is
in the substate |F = 1,m = 1 >, where F and m respectively label the hyperfine and
Zeeman levels of the 39K ground state.
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1.2 Optical potentials

1.2 Optical potentials

In the first section the basic features of the Bose-Einstein condensate

have been introduced. This system represents an ideal tool for the study

of many fundamental problems of matter physics as its quantum effects are

macroscopically observable and the main parameters of such a system can

be ”easily” controlled by means of laser light. After briefly discussing how

neutral atoms can be trapped by optical dipole forces, in this section we will

focus on the role that periodic and disordered optical potentials play in the

context of BEC theory. Since a system of ultracold bosonic atoms in a optical

lattice can be thought of as a quantum simulator for ideal condensed matter

systems (e.g. electrons in crystals without impurities and vibrations), the

theory of single particles in periodic potentials will be recalled (subsection

1.2.1). In subsection 1.2.2 then, the laser techniques used to produce disor-

dered lattices – which better reproduce the imperfections of real systems –

will be described.

Optical dipole forces

One of the main ways to trap and confine a gas of neutral atoms is to

use optical dipole potentials19. The conservative dipole potentials are based

on the interaction between the atomic electric dipole moment d, induced by

an electric field E, and the field itself, namely Vdip = −1
2
< d ·E >. It can

be shown [21] that if the (laser) light interacting with the neutral atoms is

far-off resonance – i.e. the detuning ∆ = ω − ω0 between the field frequency

ω and the atomic resonance frequency ω0 is much larger than the atomic

radiative linewidth Γ – then the dipolar potential can be expressed as follows

Vdip(x) =
3πc2

2ω3
0

Γ

∆
I(x) (1.14)

19Besides optical traps, there are other two ways to capture neutral atoms: via
radiation-pressure and via magnetic trap potentials. The formers, operating with laser light
near resonance, are dissipative and are used to cool thermal atoms down to T ≈ 10µK.
The latter ones, are conservative and with typical trap depths of the order of 100mK.
Note that when Feshbach resonances are employed to tune the interactions, as in our case,
magnetic traps can not be used, as they would be affected by the Feshbach magnetic field.
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1.2 Optical potentials

c being the speed of light in vacuum and I(x) = |E(x)|2 being the light

intensity, which in general will be position-dependent. Moreover, under the

same assumption, the scattering rate due to the far-detuned photon absorp-

tion (and subsequent spontaneous reemission) by the atoms, turns out to

be

Γsc(x) =
3πc2

2~ω3
0

( Γ

∆

)2

I(x) (1.15)

Equations 1.14 and 1.15 show that:

• Red detunings (∆ < 0) yield attractive interactions (Vdip(x) < 0),

meaning that the light intensity maxima correspond to the potential

minima. Conversely, for blue detunings (∆ > 0), the light intensity

maxima correspond to the potential maxima, as the interaction is re-

pulsive (Vdip(x) > 0).

• Vdip ∝ I/∆ whereas Γsc ∝ I/∆2; This means that for the optical

trap to be efficient, both ∆ and I must be suitably large, in such a

way that the scattering rate Γsc is negligible with respect to the trap

potential Vdip, and at the same time Vdip is sufficiently high.

In the experiments, dipole traps are produced by using red-detuned gaussian

laser beams that are focused by suitable lenses on pre-cooled20 atoms (see

figure 1.7 on top). These ones undergo an attractive force towards the beam

focus (intensity maximum) corresponding to a minimum of the potential Vdip.

The cylindrically shaped trap produced by such a laser beam is usually well

approximated by a 3D harmonic potential with a trapping frequency along

the radial direction ωr ∝
√
V0/w0 (V0 = Vdip(0) being the trap depth and w0

being the waist of the gaussian laser beam) much higher than that along the

beam direction21.

20Since optical dipole traps rely on an interaction with far-detuned light (i.e. large ∆),
in agreement with eq. 1.14 their typical depths are relatively low (usually below 1 mK).

21Note that in order to suitably confine the atoms also in the beam direction, usually
two crossed focused laser beams are used [22]. This configuration provides a quasi-isotropic
confinement with a trapping frequency along the beams directions only

√
2 times smaller

than that in the orthogonal one.
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1.2 Optical potentials

Figure 1.7: (top) Optical dipole trap. Neutral atoms are captured by a red detuned
focused laser beam which produces a cylindrically shaped dipole potential with
high confinement along the radial direction. (bottom) 1D optical lattice. The
stationary wave resulting from the interference with the retro-reflected beam,
produces an array of 2D disk-like trapping potentials with spacing d = λ/2.

1.2.1 Optical lattices

The scheme just shown for the optical trap can be easily developed to

build a periodic optical potential, i.e. an optical lattice. The idea (see figure

1.7 on bottom) is to retro-reflect a laser beam with a mirror in such a way

that a standing wave, resulting from the interference of the two counter-

propagating beams, forms. Formally, if we call E1 and E2 the sinusoidal

fields associated to the two counter-propagating beams – supposed to have

same wave number k = 2π/λ, same modulus E0 and same polarization –

then the time-averaged interference pattern is given by I(x) = |E1 +E2|2 =

I0 cos(kx)2 with I0 = 2E2
0 . Replacing this expression in eq. 1.14 yields the

interaction potential exerted by the stationary wave on the atoms, i.e.

Vlatt(x) = V0 cos
2(kx) with V0 =

3πc2

2ω3
0

Γ

∆
I0 (1.16)

This perfect sinusoid constitutes an optical lattice with period d = λ/2 and

depth V0, which is usually expressed in terms of recoil energies22 as the di-

22The recoil energy Er = ~2k2

2m is the kinetic energy with which an atom initially at rest
recoils when it absorbs a photon with momentum ~k. This energy can also be thought
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1.2 Optical potentials

mensionless quantity

s =
V0

Er
with Er =

~2k2

2m
(1.17)

The potential minima (if ∆ < 0, otherwise the maxima) can be used to

trap23 the atoms with axial confining frequency ωx ∝
√
V0/λ very high, for

each lattice site.

As shown in figure 1.8, 2D and 3D optical lattices can also be produced by

superimposing 2 or 3 orthogonal pairs of counter-propagating laser beams.

For a 2D optical lattice (a), the atoms are trapped to an array of tightly

Figure 1.8: (a) 2D optical lattice: array of 1D potential tubes. (b) 3D optical lattice: 3D
simple cubic array of harmonic oscillator potentials. Figure taken from [23].

confining 1D potential tubes, whereas in the 3D case (b) the optical lat-

tice can be approximated by a 3D simple cubic array of tightly confining

harmonic-oscillator potentials at each lattice site.

of as the ground state energy E = ~2π2

2md2 of a particle confined within a 1D-box of length
d = λ/2, i.e. the lattice spacing.

23The trapping of the atoms in the optical lattice takes place provided that they are
cold enough, i.e their energy kBT � V0.
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1.2 Optical potentials

The Bloch theorem

Let’s now consider the theory – extensively developed in the context of

solid state matter for electrons in crystals [24] – of a single particle in a

periodic potential. Such a theory can be used to describe the behaviour of a

non interacting BEC – which as seen in subsection 1.1.1 can be thought of

as a single object – in an optical lattice.

In the 1D case, which we will consider for simplicity, the stationary

Schrödinger equation for a single particle moving in a periodic potential

Vlatt(x) = Vlatt(x+ d), is

Hψ(x) =

(
− ~2

2m

∂2

∂x2
+ Vlatt(x)

)
ψ(x) = Eψ(x) (1.18)

According to the Bloch theorem the solutions of eq. 1.18 are plane waves

eiqx modulated by a function un,q(x) that has the same periodicity of the

potential, i.e

ψn,q(x) = eiqx un,q(x) with un,q(x) = un,q(x+ d) (1.19)

The eigenvalues En(q) and the corresponding eigenfunctions ψn,q(x) of the

Hamiltonian H are labelled by two quantum numbers: n, that is the band

index and q, that corresponds to the quasi-momentum ~q24. For a given q,

there are many solutions En(q), identified by the index n.

The periodicity of the direct lattice induces a periodicity also in the re-

ciprocal lattice, whose elementary cells – called Brillouin zones – are equally

spaced with period G = 2π/d. Due to such periodicity in the reciprocal

space, only the first Brillouin zone (ranging from q = −G/2 to q = G/2) is

relevant: out of it the following relations for En(q) and ψn,q(x) hold:

En(q +G) = En(q) and ψn,q+G(x) = ψn,q(x) (1.20)

Thus for a given n, En(q) is a continuous function periodic in q, commonly

referred to as energy band. This term arises from the fact that the periodicity

24As compared with the momentum p for a free particle (Vlatt(x) = 0), due to the
not complete invariance of the potential Vlatt(x), ψn,q(x) is not an eigenfunction of the
momentum operator and thus the quasi-momentum ~q is not its expectation value.
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1.2 Optical potentials

of the potential Vlatt(x) affects the energy spectrum in such a way that some

zones are allowed (energy bands) and other are forbidden (energy gaps).

By using a perturbative approach, the eigenvalues En(q) of 1.18 can be

obtained [25] in the limit of weak potential – for which the corresponding

wavefunctions ψn,q(x) are nearly plane waves – and in the limit of strong

potentials, for which the corresponding wavefunctions are localized in the

lattice sites (see tight binding model in subsection 1.2.1). Figure 1.9 shows,

Figure 1.9: Lowest five Bloch energy bands En(q) for increasing potential depths V0. The
higher the depth V0, the higher the energy gap and the lower the energy band
width. Note that as En(q) is a periodic function only the first Brillouin zone,
is considered. Figure adapted from [26].

in a reduced-zone scheme, the lowest five Bloch energy bands En(q) for in-

creasing potential depths V0. Note that for V0 = 0 (free particle), En(q)

corresponds to a parabola reduced to the first Brillouin zone and there are

no energy gaps. As the depth V0 increases the energy gap increases and the

energy width decreases.

Tight-binding model

As mentioned previously, as the the potential depth V0 increases, the

Bloch waves – which in the weak potential limit are nearly plane waves –
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1.2 Optical potentials

become more and more localized around the lattice sites. In this regime of

Figure 1.10: (left) Density distributions for the localized Wannier functions w0,j(x) (red)
and for the extended Bloch wave function (blue) in the tight-binding limit.
The overlap defining the tunneling coupling J is highlighted in red. (right)
Lowest energy band E0(q) in the first Brillouin zone. Note that the width of
the band is 4J .

strong potential, which is known as tight binding regime, it is thus convenient

to express the Bloch wavefunction for a given n as a sum of orthogonal and

normalized set of wavefunctions maximally localized at each lattice site:

ψn,q(x) =

j=∞∑
j=−∞

eixjq wn(x− xj) (1.21)

where wn,j(x) is the so-called Wannier function – usually well approximable

with a gaussian function – localized at the site xj. In this tight-binding

approximation only the overlap integral

J = −
∫
dxw∗n(x)

[
− ~2

2m
∇2 + Vlatt(x)

]
wn(x+ d) (1.22)

between the Wannier functions of neighboring sites is considered. Such an

overlap is highlighted in red in figure 1.10 (on the left) where the density

distributions for the localized Wannier functions (red) and for the extended

Bloch wave function (blue), are shown. The quantity J , also referred to as

tunneling energy, represents thus the probability for a particle to jump from

one lattice site to a neighbor one.
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1.2 Optical potentials

As for the energy spectrum, in the limit of high potential depths V0, the

energy bands are narrower and the energy gap between the first and second

band is quite large (see figure 1.9). Since the resulting excitation probability

to higher bands is very small, only the lowest energy band E0(q) is usually

considered (see figure 1.10 on the right). Such an energy band is totally

determined by the tunneling energy J , being related to it as

E0(q) = E0 − 2Jcos(qd) (1.23)

where E0 is the energy at the center of the band, whose width is ∆E0 = 4J .

Dynamics in an optical lattice

In this subsection we will review the main features related to the dynamics

of a Bloch wawefunction in the presence of an external field25, as described by

the semiclassical model. It is possible to demonstrate [25] that the velocity

as a function of the quasimomentum q for a particle in the band n, i.e. the

Bloch velocity, is given by:

vn(q) =
1

~
∂En(q)

∂q
(1.24)

Note that vn(q), which is strictly related to the first derivative of the band

energy En(q), approaches 0 at the band edges where En(q) is flat (see figure

1.9). In agreement with the semiclassical model, we will assume that the

external force Fext acting on the system varies slowly on the scale length d of

the periodic potential, and that it is weak enough not to induce inter-band

transitions (i.e. n = cost). Under these assumptions Fext has the only effect

of changing the particle mean position x and the quasimomentum ~q, without

affecting the energy spectrum of the system, set by the lattice potential Vlatt.

In particular, the temporal evolution of x and q are:

ẋ =
1

~
∂En(q)

∂q
; ~q̇ = Fext (1.25)

25Besides the gravity force, which gives rise to the famous Bloch oscillations, a typical
example of external field is that of the harmonic trapping potential needed to confine the
atoms in every experiment.
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1.2 Optical potentials

where the first equation is simply a restatement of 1.24. As for the second

equation, we observe that the effect of the external force is to change the

quasimomentum: this is the analogy of the second Newton’s law of dynamics

with the only difference that the quasimomentum ~q and the external force

Fext respectively replace the momentum p and the total force acting on the

system (the latter being implicitly included in the energy spectrum En). By

using both equations 1.25, one gets ẍ = ∂vn(q)
∂q

q̇ = 1
~
∂2En(q)
∂q2

Fext. This relation

can be thought of as the second Newton’s law of dynamics if one identifies

the quantity

m∗n(q) =
1

~2

[
∂2En(q)

∂q2

]−1

(1.26)

with the effective mass of a particle subject to the external force Fext. Note

that the effective mass m∗ is related to the curvature of the energy bands and

reduces to the real mass m in the case of the parabolic free particle spectrum.

In the tight binding approximation, not only the energy spectrum 1.23

but also the dynamics is totally determined by the tunneling energy J , the

Bloch velocity v0(q) and the effective mass m∗0(q) being related to the first

and second derivatives of E0(q): by using equations 1.24 and 1.26 for the

J-dependent energy spectrum 1.23, one easily gets

v0(q) =
2Jd

~
sin(qd) m∗0(q) = m

(
ER
J

)
1

π2cos(qd)
(1.27)

1.2.2 Disordered optical potentials

In subsection 1.1.3 we described how it is possible to tune the interac-

tions of a BEC by using Feshbach resonances. We want to introduce now

the second key ingredient that will allow us (see sections 2.1 and 4.4) to

suitably describe the behavior of real systems, i.e. the disorder. The possi-

bility to control the disorder in ultracold bosonic systems with laser light is

quite remarkable, especially as compared with the real systems in nature,

where conversely the disorder – which is intrinsically present26 – can not be

26Note that the disorder plays a key role in nature as it, for instance, affects the
transport properties of electrons in crystals [27].
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1.2 Optical potentials

controlled.

In this subsection the two main laser techniques to produce disordered

optical potentials, that is the laser speckles and the quasiperiodic optical

lattices, will be described.

Laser speckles

The laser speckles is a laser technique that takes advantage of a rough

surface to produce a random intensity distribution of light. Observed in the

early 60s in reflection, this light scattering process is now usually performed

in transmission from a diffuser (see figure 1.11a). The speckle pattern (b)

Figure 1.11: Laser speckles. A laser beam impinging on a diffusive plate (a) gives rise to
a random intensity distribution of light (b). Figure taken from [28].

arises from the interference – constructive here, destructive there – between

the partial waves, randomly shifted in phase, scattered from the various facets

of the diffuser rough surface [29][30][31]. As the speckle-induced disorder is

stable on time, i.e. on the typical experiments time scale, it can be charac-

terized by only two parameters, namely its intensity standard deviation σI

and its lengthscale ∆x (see figure 1.12). As the dipole potential produced by

a laser beam is proportional to its intensity (eq. 1.14), the intensity pattern

I(x) shown in figure results in an analogously disordered optical potential

for the atoms.
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1.2 Optical potentials

Figure 1.12: Intensity distribution along one direction of the speckle pattern. The intensity
standard deviation σI , which characterizes the amplitude of the disorder, and
its lengthscale ∆x are reported. Figure adapted from [20].

As for the disorder lengthscale ∆x, it is given by the diffraction limit

related to the optical system employed to produce the laser speckles, i.e.

∆x ≈ l
λ

D
(1.28)

where λ is the laser wavelenght, l the distance between the diffusive plate

and the target atoms, and D the diameter of the lens placed next to the

diffuser. Note that the larger the laser beam size on the diffusive plate, the

higher the number of effective scatters and the lower the speckle grain size.

We stress here that in our experimental setup the optical access to the

atom cell is quite limited, the minimum distance we could set the diffuser

from the atoms being l ' 20 cm. With a laser with wavelength λ ≈ 1µm and

beam diameter D ' 5 cm, we would get a speckle grain size ∆x ≈ 4µm that

is not small enough compared with the size of our BEC (10 ÷ 20µm). For

this reason, in order to produce the disorder, we employed a quasi-periodic

optical lattice (see next subsection), whose ”grain size” ∆x is quite smaller

as it is given by the lattice constant d ≈ 1
2
µm.
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Quasi-periodic 1D optical lattices

A quasi-periodic optical potential can be obtained by superimposing to

an optical lattice with wavelength λ1 a weaker one with an incommensurate

wavelength λ2, i.e. such that the ratio β = λ1

λ2
is an irrational number [32][33].

Let us define the periodic potentials with wavelength λ1 and λ2 respectively

as the main lattice V1 and the secondary lattice V2 (see figure 1.13 on the

top); the quasi-periodic optical lattice, also known as dichromatic lattice, is

then given by V (x) = V1(x) + V2(x), i.e. according to 1.16 and 1.17, by

V (x) = s1Er1cos
2(k1x) + s2Er2cos

2(k2x) (1.29)

where ki = 2π/λi (i = 1, 2) are the lattice wavenumbers and si are the lattice

heights in units of the recoil energies Eri. A plot of eq. 1.29 for s1 = 10 and

s2 = 1 is shown in figure 1.13 (on the bottom) where the modulation induced

by the secondary lattice at the beating frequency c (k2 − k1) is highlighted

with a dashed line.

Provided that s2 � s1 and β is an irrational number, the secondary lattice

induces a perturbation in the main one, resulting in an inhomogeneous and

non-periodic shift of the energy minima. In other words, the effect of the

secondary lattice is to produce a sequence of wells D = d/(β − 1) apart,

whose lattice sites at the bottom have different potential heights. This shift

of the energy minima is in a range of size s2β
2, thus proportional to the

secondary lattice height s2.

Moreover, it is possible to demonstrate [34] that the perturbation induced

by the secondary lattice does not change significantly the position of the

lattice sites, i.e. if s2 � s1 the position of the dichromatic lattice sites are

xj ' d · j, d being the period of the main lattice.

Finally we note that the disorder introduced by using a dichromatic lattice

is not a pure random disorder as it has a quasi-periodic structure, character-

ized by the frequencies ck1, ck2 and c(k2 − k1). However the quasi-periodic

potential breaks the translational invariance of a perfect lattice, and it can

be thus used to study the physics of disordered systems.

24



1.2 Optical potentials

Figure 1.13: Quasi-periodic optical lattice (bottom) as a result of the superposition be-
tween two perfect lattices (top), one with s1 = 10 and λ1 = 1064 nm (red)
and the other with s2 = 1 and λ2 = 862 nm (blue). The modulation (dashed
line) induced by the secondary lattice produces a sequence of wells D apart,
whose lattice sites with lower energy are at different potential heights.
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Disordered Bose-Hubbard model: ∆ -U phase diagram
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The many-body physics of interacting bosons in a lattice can be repro-

duced by the Bose-Hubbard (BH) model [35]. Such a model describes a zero-

temperature system of bosons in an optical lattice assuming that each mini-

mum of the periodic potential can be locally approximated by an harmonic

potential well and that all the particles occupy the fundamental vibrational

state of the lattice sites. This model is particularly powerful as it allows to

take into account quantum correlations between particles in the regime of
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2.1 The Bose Hubbard model

strong interactions. The effect of disorder, which is our main interest, can

be introduced in this model as well.

After formally introducing the main features of the BH model, in this

chapter we will describe the several regimes of physical interest. Starting from

the condition of null disorder, we will describe firstly the interaction-induced

transition from a conductive to an insulating phase both in the ideal case of

an homogeneous system (section 2.2) and in the inhomogeneous experimental

case with the presence of a trap potential (subsection 2.2.2). In section 2.3

we will then consider the effect of disorder starting from the case of null in-

teraction: above a disorder threshold value a transition to another insulating

phase will be shown to take place (Anderson localization). The delocalizing

effect of weak interactions will be reported as well (subsection 2.3.1). Finally,

in section 2.4 we will consider the disordered strong-interaction regime where

a glassy insulating phase, called Bose-glass, is expected to appear.

2.1 The Bose Hubbard model

The quantum state of a gas of identical interacting bosons in an optical

lattice Vlatt and in the presence of an external potential Vext, can be described

[36] by the second quantization Hamiltonian

Ĥ =

∫
d3x ψ̂†(x)

[
−~2∇2

2m
+ Vlatt(x) + Vext(x) +

g

2
ψ̂†(x)ψ̂(x)

]
ψ̂(x) (2.1)

where ψ̂(x) is a boson field operator and the coefficient g is linearly related

to the scattering length a according to eq. 1.6. As shown in subsection

1.2.1 a Bloch wavefunction describing the quantum state of a particle in a

lattice can be expressed as a superposition of Wannier functions localized

at the lattice sites. This kind of description is particularly convenient when

one wants to describe atom-atom on-site interactions. Moreover, under the

assumption that the energies involved in the system are small enough not to

induce inter-band excitations, we can restrict ourselves to consider only the
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2.1 The Bose Hubbard model

lowest energy band n = 0; the boson field operators can then be written in

terms of Wannier functions (omitting the band index) as follows

ψ̂(x) =
∑
i

âiw(x− xi) (2.2)

âi being the annihilation operator of one boson at the i-th lattice site and

w(x−xi) being the Wannier function localized at the i-th site position xi. By

substituting this equation in 2.1 and considering only the tunneling between

neighboring sites, one can obtain the disordered Bose-Hubbard Hamiltonian

ĤDBH = −J
∑
〈i,j〉

â†i âj + U
∑
i

n̂i(n̂i − 1)

2
+
∑
i

εi n̂i (2.3)

where âi and â†i are the boson annihilation and creation operators satisfying

the canonical commutation relation [âi, â
†
j] = δij, n̂ = â†i âi is the number

operator representing the number of particles at the i-th lattice site, and

the symbol 〈i, j〉 indicates that the sum has to be considered only between

nearest neighbor sites. As for the quantities J , U and εi, they are particularly

important as they define the energy scales of the system:

• J = −
∫
d3xw∗(x− xi)

[
− ~2

2m
∇2 + Vlatt(x)

]
w(x− xj) is the tunneling

energy which, as described in subsection 1.2.1, is related to the overlap

between the Wannier functions localized at the i-th and j-th sites. As it

represents the probability for an atom to hop from one site to another

it can be thought of as an index of the delocalization of the particles

throughout the lattice.

• U = 4π ~2

m
a ·
∫
d3x |w(x)|4 is the on-site interaction energy, i.e. the

energy related to the repulsive (a > 0) interaction between two atoms at

the same lattice site. Note that in the BH Hamiltonian U is multiplied,

for each lattice site, by the number of atom pairs n̂i(n̂i−1)
2

, in agreement

with the fact that a site with ni = 0, 1 does not contribute to the total

interaction energy. Note also that interactions among atoms of different

sites are here neglected.
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2.1 The Bose Hubbard model

• εi =
∫
d3xVext(x)|w(x−xi)|2 ≈ Vext(xi) is the lattice site energy offset.

This energy contribution to the system may arise from two factors: the

first one is the external trap potential, which usually varies smoothly

across the lattice such that the energy εi within each lattice site can

be assumed constant; the second factor is the disorder, which can be

produced by means of the laser techniques discussed in the previous

chapter. In the case of a quasi-periodic optical lattice, εi ∈ [−∆,∆]

where 2∆ ' β2s2Er2 is the energy range of the disorder induced by the

secondary lattice of depth s2 [37].

We want to calculate now the integrals J and U and express them in

terms of the optical lattice depth which is the parameter that can be con-

trolled in the experiments. Let us consider an optical lattice of the form 1.16

in the 3D case, i.e. Vlatt =
∑

j Ersj sin
2(kxj) with j = x, y, z. Under the as-

sumption that around each minimum of the lattice potential this one can be

approximated by an harmonic potential well (sin2x ≈ x2), the corresponding

Wannier functions at each site i can be approximated as follows

wi(x) =
3∏
j=1

ks 1
4
j√
π

 1
2

e−
√

sj

2
(k xj)2 (2.4)

i.e. Gaussian functions whose width decreases as the optical lattice depth sj

increases. With such an approximation for wi(x), it is possible to analytically

calculate the above integrals for Jj (along each direction j = x, y, z) and U :

Jj =
4√
π
Er s

3/4
j e−2

√
sj ; U =

√
8

π
Erk a

(
3∏
j=1

sj

)1/4

(2.5)

From equations 2.5 we observe that increasing the optical lattice depth sj

yields to an increase of the ratio U/Jj since it corresponds to:

• an exponential drop of the tunneling energy Jj as a consequence of the

higher barrier that the particles have to hop in order to tunnel from

one site to another.
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2.2 Homogeneous case: SF to MI phase transition

• an increase in the interaction energy U as a consequence of the tighter

confinement of the particle density distribution within each lattice site.

To sum up, the quantum phase of the system depends on the interplay

between the just described three energy scales: the tunneling energy Jj (re-

lated to sj), the interaction energy U (related to sj and the scattering length

a) and the disorder parameter ∆ (related to s2).

2.2 Homogeneous case: SF to MI phase tran-

sition

Let us start considering the ideal case of a translationally invariant 1D

system in which there is no trap potential and no disorder; as the site energy

Figure 2.1: Homogeneous Bose-Hubbard model (εi = cost). The energy of the system
increases of the amount U , due to the repulsive interaction between two atoms
sharing the same site, and decreases of the amount J , due to a particle hop
from one site to another. Note that the higher the potential depth s1, the
larger the ratio U/J .

level εi is constant all over the lattice, we can neglect the last term in the

BH Hamiltonian 2.3 which thus reduces to

ĤBH = −J
∑
〈i,j〉

â†i , âj + U
∑
i

n̂i(n̂i − 1)

2
(2.6)

The Bose-Hubbard model in the homogeneous case is illustrated in figure

2.1. Depending on the ratio U/J between the two remaining energy terms

the system may show two quantum phases with different and well defined

features, i.e. the superfluid (SF) phase and the Mott insulator (MI) phase.
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2.2 Homogeneous case: SF to MI phase transition

When U � J , that is the first term in eq. 2.6 is the dominant one, each

atom is delocalized throughout the lattice and the system is said to be a

superfluid. Let us define the Bloch lowest energy state of a single delocalized

particle as the superimposition
∑

i â
†
i |0〉 of the wavefunctions localized on

each lattice site; the ground state of the system of N identical bosons can be

then written as

|ΨSF 〉 = (
∑
i

â†i )
N |0〉 (2.7)

that is the product of the N single-particle delocalized states. The system is

thus described by one macroscopic wavefunction whose phase is consequently

constant and well defined on each lattice site. As a consequence, the density

distribution of the atoms after a free expansion1 from the lattice, shows sharp

peaks ~G = 2~k apart resulting from the interference of the phase coherent

matter wave (see figure 2.2).

In a superfluid, thus, while for each site the phase is perfectly defined,

the number of particles per site is not determined and exhibits Poissonian

fluctuations. This is in agreement with the Heisenberg uncertainty principle

for which the phase operator φ̂i and the number operator n̂i are conjugate

variables that obey to the commutation relation [φ̂i, n̂i] = i.

When U � J , that is the second term in eq. 2.6 is the dominant one, the

atoms cannot move from one site to another as particle number fluctuations

are not energetically favorable any longer. This system is said to be a Mott

insulator. The strong repulsive interaction forces the particles not to share

the same sites, leading to an homogeneous and well defined distribution of

the particles across the lattice. For a given chemical potential µ, the particle

1After a free expansion (time-of-flight) of a few tenths of ms, the spatial density
distribution |Ψ(x)|2 of a non-interacting BEC approaches the density distribution |Ψ(p)|2
in the momentum space. This is regardless of the shape of the trapping potential. In
the particular case of a BEC initially confined in an optical lattice with period d, the
matter wave shows interference peaks approximately 1/d apart which recall the interference
pattern of a diffraction grating. In that case, the lower the slits aperture, the larger the
number of peaks; correspondently here, the smaller the width of the confined Wannier
functions (i.e. the higher the lattice height), the larger the number of peaks.
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2.2 Homogeneous case: SF to MI phase transition

Figure 2.2: Interference pattern of the momentum density distribution after a free expan-
sion from an optical lattice. (a) If the lattice height is low enough such that
J � U , the Wannier functions localized at each site are phase locked to each
other due to the tunneling. (b) When the optical lattice is switched off, the
Wannier wavefunctions are free to expand. The narrower the initial (spatial)
density distribution, the broader the final (momentum) density distribution.
(c) The phase-locked expanded functions interfere each other giving rise to
sharp peaks 2~k apart, whose envelope is given by the single site density dis-
tribution.

number per site is thus well determined and the ground state of the system

is given by the product of the single-site Fock states:

|ΨMI〉 =
∏
i

(â†i )
n|0〉 (2.8)

n ∈ N being the homogeneous site filling.

While the particle number per site is perfectly determined, there is no

phase correlation (no overlap) between the Wannier functions localized at

each site. As a result, no macroscopic phase coherence holds.

The SF to MI phase transition with ultracold atoms was first observed

by Greiner et al. [38] by increasing the lattice height s1 (and thus the ratio

U/J). The time-of-flight fluorescence images of figure 2.3, show, for increas-

ing depths of a 2D optical lattice, the progressive loss of phase coherence in

the momentum density distribution (bottom row). Simultaneously, the high

resolution in-situ images (top row), show the progressive reduction of atom
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2.2 Homogeneous case: SF to MI phase transition

Figure 2.3: (top row) Single-site imaging of atom number fluctuations across the SF to
MI phase transition. The In-situ fluorescence images are taken for increasing
2D-lattice heights from a region of 10 by 8 lattice sites within the n=1 Mott
shell that forms in a deep lattice. Sites occupied with odd or even atom
numbers appear in the images respectively as full or empty sites. This is the
case of the SF regime (A and B), whereas in the MI regime, occupancies other
than 1 are highly suppressed (D). (bottom row) Corresponding fluorescence
images after free expansion of the cloud in the 2D optical lattice: the phase
coherence is progressively lost moving from A to D. Figure adapted from [39].

number fluctuations across the 2D optical lattice.

The phase diagram of figure 2.4 shows the boundaries between the SF

and MI phases at T = 0, as a function of the ratios µ/U and J/U [35]. In

the MI phase (J/U � 1), for a given value of the chemical potential µ2, the

site filling n is well defined (integer number). In particular, as the chemical

potential µ increases, the site filling n discontinuously increases. In the SF

phase (J/U � 1), instead, for a given µ, the site filling n̄ is defined only

on average (poissonian number fluctuations). Note that for larger µ, and

thus for larger site fillings n, the phase transition from MI to SF occurs at a

smaller critical value (J/U)c.

2The chemical potential µ, for a given temperature T < Tc, is a positive value depend-
ing only on the average particle density. In subsection 2.2.2, the role of µ will be played
by an effective chemical potential µi taking into account the local inhomogeneities of the
system.
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2.2 Homogeneous case: SF to MI phase transition

Figure 2.4: Phase diagram of the SF to MI transition in a homogeneous system as a func-
tion of the ratios µ/U and J/U . The MI lobes are characterized by a constant
occupancy n and thus a vanishing compressibility K (corresponding to a dis-
continuous energy spectrum). In the SF phase the occupancy is defined only on
average and, due to its gapless spectrum, the system is compressible. Note that
the larger the average occupancy n̄, the larger the interaction energy (J/U)c
required to enter the corresponding MI domain. Figure adapted from [35].

2.2.1 Excitation energy spectrum and compressibility

So far we have compared the SF and MI phases referring only to the

particle number fluctuations and the phase coherence properties. There are

other two important features that characterize the two quantum phases, i.e.

the excitation energy spectrum and the compressibility.

As it happens in solid state physics, the conductivity properties of the

system are strictly related to its excitation energy spectrum: like the electrons

in the metals, the atoms in the SF phase are capable to move from one site

to another due to their gapless energy spectrum: when even a weak external

force is applied to the system, the atoms start moving as they can be excited

to states with energy very close to that of the original state by changing the

momentum of some atoms by a small amount.

Conversely, in the MI phase where the atoms are not free to move, the

energy spectrum is discontinuous with a gap of the order of U . In an ho-

mogeneous system3, as sketched in figure 2.1, removing an atom from a site

3As we will see in section 2.4, an inhomogeneous system like a disordered one, shows
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2.2 Homogeneous case: SF to MI phase transition

and adding it to a neighbor one with the same occupancy, has an energy cost

equal to the on-site interaction energy U (see also the phase diagram 2.4 in

the limit J → 0). Figure 2.5 shows an experimental energy spectrum [40]

Figure 2.5: Excitation energy spectrum for a MI. The two peaks at the excitation energies
U and 2U correspond to the hop of an atom to a site respectively with the same
occupancy and with an occupancy difference of one atom (at the boundary
between two MI domains). Figure adapted from [40].

with two peaks at the excitation energies U and 2U . The former corresponds

to the hop of an atom to a site with the same occupancy, the latter corre-

sponds to the hop of an atom to a site with different site occupancy, which,

as we shall see in the next subsection, is present at the boundary between

two MI domains due to the inhomogeneity of the confined sample.

As for the compressibility, it is a measure of the density change as a

response to an energy change; formally

K =
∂n

∂µ
(2.9)

The MI lobes of the phase diagram 2.4 are characterized by a constant site

filling n and, consequently, a compressibility K = 0: a system in the MI phase

is thus incompressible. This fact is a direct consequence of the discontinuous

nature of the energy spectrum. The SF, whose energy spectrum is gapless,

a completely different energy spectrum.
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2.2 Homogeneous case: SF to MI phase transition

is instead compressible: a small change in the energy of the system results

in a change in the average particle number per site.

In table 2.1 the features of the SF and MI phases are summarized.

Superfluid (J � U) Mott-insulator (U � J)
Long-range phase coherence No phase coherence

Poissonian number fluctuations No number fluctuations
Gapless excitation spectrum Gap in the excitation spectrum

Compressible Not compressible

Table 2.1: Superfluid and Mott-insulator phases.

2.2.2 Inhomogeneous case: shell structure

So far only the ideal homogeneous system for which εi = const, has been

considered. In this subsection we will take into account the experimental sit-

uation in which a local energy variation is always introduced by the presence

of an external potential, due at least to the confining force exerted by the

focused beams that form the optical lattices. The term
∑

i εini in the BH

Hamiltonian 2.3 must thus not be neglected any longer. Due to the energy

Figure 2.6: Optical lattice potential in the presence of an harmonic trap. The local effec-
tive chemical potential µi = µ− εi decreases moving from the lattice center to
the edges.
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2.2 Homogeneous case: SF to MI phase transition

offsets εi, the system can be thought to be characterized by a local effec-

tive chemical potential µi = µ− εi slowly varying through the lattice; With

reference to figure 2.6, for an harmonic trapping potential, µi is maximum

for the atoms at the center of the trap and progressively decreases moving

towards the edges. According to the phase diagram of figure 2.4 (red dashed

line), for a given value J/U < (J/U)c, the atoms alternate different phases

depending on their position across the lattice: moving from the center of the

trap towards the edges, MI shells alternate to SF shells, the formers being

characterized by a lower and lower occupation number (see figure 2.7 on the

left). In the limit case of J = 0, only MI phases hold and the density profile

Figure 2.7: (left) Spatial distribution of the alternating MI and SF phases for a system
confined in a harmonic trap with J/U < (J/U)c. (right) Single-site images of
the MI shell structure (J → 0) for increasing atom number. Full (empty) shells
contain an even (odd) atom number per site. Figures adapted from [41][39].

has a step-like structure, also known as wedding cake or shell structure, with

integer occupation number of all sites, highest occupation numbers being at

the center of the trap. Figure 2.7 (on the right) shows experimental images

of the shell structure for increasing atom number [39]. Note that the larger

the number of atoms, the larger the number of MI shells.
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2.3 Non-interacting disordered system: Anderson localization

2.3 Non-interacting disordered system: An-

derson localization

In this section we will first take into account a non interacting system

and we will see how its transport properties are affected by the presence of

disorder. In particular we are interested in the phenomenon, first studied

by P.A. Anderson more than 50 years ago [42], of localization of particles

and waves in disordered media. Anderson studied the transport of electrons

in crystals by using a single-particle tight-binding model with random on-

site energies: he showed that the transport, i.e. the diffusion of an initially

localized wavepacket, is suppressed if the disorder amplitude ∆ exceeds a

critical value of the order of the tunneling energy J4.

In the following we will see how the original idea of Anderson can be

developed [44] to study the disorder induced localization of a quantum wave-

function in a quasi-periodic optical lattice (see subsection 1.2.2). It has been

proven that this system shows a transition from extended to localized states

analogous to the Anderson transition for a pure random disorder. The main

difference is that with a quasi-periodic lattice the transition occurs already in

1D [33][45], whereas in the case of pure random disorder, 2D or 3D systems

are required [46].

Let us consider a non interacting system (U = 0) in a 1D quasi-periodic

optical lattice of the form 1.29. The BH hamiltonian 2.3 takes then the form

(Aubry-André Hamiltonian [45])

ĤAA = −J
∑
〈i,j〉

â†i , âj +
∑
i

εi n̂i with εi = ∆ cos(2πβ i). (2.10)

where the second term contains the quasiperiodic shift of the on-site energies

due to the secondary lattice. J ≈ e−2
√
s1 and ∆ ' s2Er2 β

2/2 are thus

the two relevant energies which, as previously discussed, can be controlled

4Due to the high electron-electron and electron-phonon interactions, the transition
between extended and localized states studied by Anderson for non-interacting electrons
has not been directly observed in crystals [27]. Nevertheless, owing to the importance and
the general validity [43] of his discovery, in 1977 Anderson was awarded the Nobel Prize
in Physics.

38



2.3 Non-interacting disordered system: Anderson localization

independently by changing the heights s1 and s2 of the main and secondary

lattice potentials, respectively.

As mentioned in subsection 1.2.2, when the ratio of the two lattice wavenum-

bers β = λ1/λ2 is an irrational number, the system displays features of a

quasi-disorder system. If the disorder amplitude ∆ is large enough, for the

system is energetically convenient that the atoms are localized in correspon-

dence of the energy minima: an atom jumping from a site to a neighbor one

results in an energy cost for the system of the order of ∆ (see the second

term of equation 2.10). In particular, if the inverse of the golden ratio is

used, β = (
√

5− 1)/2, the model shows a “metal-insulator” phase transition

from extended to localized states exactly at ∆/J = 2 [45]. By diagonalizing

the Hamiltonian the ground state wavefunction can be obtain. Figure 2.8

shows a typical density distribution, as a function of ∆/J , for β = 1.1972...

(corresponding to our experimental parameters). Note that due to the quasi-

Figure 2.8: Density distribution as a function of ∆/J (vertical axis) for a quasi-periodic
optical potential with β = 1.1972.... For small values of ∆/J the state is de-
localized over many lattice sites (left inset). For ∆/J ≈ 7 the state becomes
exponentially localized on lengths smaller than the lattice constant (right in-
set). Figure adapted from [20].

periodic nature of the potential, the localized states are D ≈ 5 d apart, d

being the period of the main lattice. Moreover, due to the limited degree of
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2.3 Non-interacting disordered system: Anderson localization

“irrationality” of the β used, the transition doesn’t occur exactly at ∆/J = 2

but is broadened and shifted towards larger values.

Absence of diffusion

The transport properties of the system have been experimentally inves-

tigated [47], by suddenly switching off the main harmonic confinement and

letting the atoms expand along the one-dimensional dichromatic lattice. Fig-

ure 2.9a shows the in-situ absorption images of the BEC spatial density dis-

tribution for increasing evolution times. In the regular lattice (∆ = 0) the

Figure 2.9: (a) In situ absorption images of the BEC diffusing along the quasi-periodic
lattice for various values of ∆ and with J/h = 153 Hz. For ∆/J ≥ 7 the size of
the BEC remains at its original value, reflecting the onset of localization. (b)
Axial size of the condensate after 700 ms of diffusion, for three different values
of the tunneling energy J in units h. The dashed line indicates the initial size
of the condensate. The inset shows the exponential decay of the tails in the
localized regime; a fit with an exponential function (red curve) and with a
gaussian function (blue curve) are also reported. Figures adapted from [20].

eigenstates of the potential are extended Bloch states, and the system ex-

pands ballistically along the lattice (vertical) direction. For large disorder

(∆/J ≥ 7), there is no diffusion any longer: in this regime the BEC can

be described as the superposition of several localized eigenstates whose in-

dividual extensions are less than the initial size of the condensate. In the

crossover between these two regimes a ballistic expansion with reduced speed

can be observed. Figure 2.9b shows the width of the atomic distribution af-

40



2.3 Non-interacting disordered system: Anderson localization

ter 700 ms of diffusion as a function of the rescaled disorder strength ∆/J ,

for three different values of J . In all three cases, the system approaches the

localized regime at the same disorder strength, providing clear evidence of

the scaling behaviour of the Aubry-André model.

In this regime, the eigenstates of the hamiltonian in equation 2.10 are ex-

ponentially localized [48], and the tails of diffusing wave packets are expected

to behave like stretched exponentials (see the inset of figure 2.9b).

Broadening of the momentum distribution

Information on the eigenstates of the system can also been extracted from

the analysis of the momentum density distribution P (k). The width of P (k)

is inversely proportional to the spatial extent of the condensate in the lattice.

As mentioned in subsection 2.2, this can be measured by releasing the atoms

from the lattice and imaging them after a ballistic expansion.

A comparison between the experimental and the theoretical momentum

distributions P (k) for increasing values of ∆/J is reported in figure 2.10.

Without disorder, the typical grating interference pattern can be observed,

Figure 2.10: Experimental (a) and theoretical (b) momentum distributions P (k) for in-
creasing ∆/J (0, 1.1, 7.2 and 25, from top to bottom). The interference
pattern of a regular lattice observed at ∆ = 0 is at first modified by the
appearance of peaks at the beating between the two lattices, and then in-
creasingly broadened. Momentum is measured along the horizontal axis in
units of k1 = π/d. Figure adapted from [20].
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2.3 Non-interacting disordered system: Anderson localization

the three peaks at k = 0,± 2k1 reflecting the periodicity of the primary

lattice. The tiny width of the peak at k = 0 indicates that the wavefunction

is spread over many lattice sites [49]. For weak disorder, the eigenstates of the

hamiltonian in equation 2.10 are still extended, and additional momentum

peaks appear at momentum space distances ± 2(k1−k2) from the main peaks,

corresponding to the beating of the two lattices. As ∆/J further increases,

P (k) broadens and its width eventually becomes comparable with that of the

Brillouin zone, ±G/2 = ±k1 = ± π/d, indicating that the extension of the

localized states has decreased down to the order of the lattice spacing d.

2.3.1 Delocalizing the system with a weak interaction

So far the effect of disorder has been considered only in the non-interacting

regime. In this section we will thus describe how introducing a weak repulsive

interaction can affect a disordered system.

While disorder tends to localize non-interacting particles in the absolute

lowest energy state, giving rise to Anderson localization (see figure 2.11a),

weak repulsive interactions can counteract this effect drastically changing the

features of the system [50]. In particular, a weak5 repulsion can ”screen” the

disorder [51] and bring the system back to a coherent, extended superfluid

(d), passing through an intermediate glassy phase (b,c). In the evolution

from an Anderson insulator to a superfluid we can think of two different

stages:

• A very weak interaction pushes the bosons out of the lowest localized

states, thus increasing the overall size of the system. The many-body

states are however very close to the single-particle ones, and there

is no coherence between distant or even neighbouring states. This

regime is often addressed as an Anderson (or Lifshitz) glass in litera-

ture [52][53][54].

5As we shall see in the next section, a strong repulsion can instead induce a very
complex competition between the disorder, the interaction energy and the kinetic energy,
resulting in a non-trivial strongly correlated glassy phase (the so-called Bose glass).
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2.3 Non-interacting disordered system: Anderson localization

Figure 2.11: Schematic of the interaction-induced delocalization in a quasi-periodic opti-
cal lattice. (a) non-interacting regime (U = 0): for sufficiently large ∆ the
wavefunctions are exponentially localized and only the absolute lowest en-
ergy level is populated. (b) Anderson glass: with a very weak interaction
several lowest energy levels are populated. (c) Fragmented BEC : due to the
repulsive interactions several lowest energy levels become almost degenerate
and the corresponding wavefunctions are modified giving rise to locally co-
herent fragments, though long-range phase coherence is not yet restored. (d)
BEC: for large interaction strengths the energy minima are degenerate and
a coherent extended wavefunction is formed. Figure taken from [50].

• For larger interaction energies (of the order of a tenth of ∆), the energy

minima – where most of the atoms are localized and thus the effect of

the interaction is larger – start becoming degenerate and consequently

the many-body wavefunctions may occupy a few neighbouring sites.

Here the system can locally be superfluid, but, globally, it is still an

insulator. This regime is often addressed as fragmented BEC [54] (or

weakly interacting Bose glass [35][37][55]).

Momentum distribution and correlation function

The transition from the insulating phase (Anderson glass) to the super-

fluid one of the disordered Bose gas has been investigated [50] by studying the

momentum density distribution |Ψ(k)|2 and, more conveniently, the associ-

ated correlation function g(x) =
∫

Ψ∗(x+ x′)Ψ(x′)dx′, for U increasing from

zero up to values of the order of J . Figure 2.12 shows an example of |Ψ(k)|2

and the corresponding g(x) for both a non-interacting system (on the left)
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2.3 Non-interacting disordered system: Anderson localization

Figure 2.12: Momentum distribution for a non-interacting system (left) and for an inter-
acting one (right). The derived correlation function g(D) shows a fast decay
(with a modulation of wavelength D) in the first case, and a much slower
decay in the second case. Figure adapted from [56].

and for an interacting one (on the right). From the momentum density distri-

bution, one can see that while the non-interacting system doesn’t show any

phase coherence, when the interaction is added the typical SF interference

pattern is restored.

As for the correlation function g(x), this shows a characteristic modula-

tion at the lattice spatial frequency 1/d, a second deeper modulation at the

quasiperiodic frequency 1/D, and an overall decay which is related to the

long-range coherence properties of the system. The theoretical expectations

in the presence of an external harmonic confinement are of an exponentially

decaying g(x) in an insulating phase, and a gaussian g(x) in the superfluid

phase, with an increasing decay length for decreasing localization. A qual-

itative indication of this behavior can be obtained by the evolution of the

correlation function at exactly one quasiperiod, g(D). Figure 2.13 shows

g(D) as a function of the ratios ∆/J and U/J both in the experimental

(left) and the theoretical case (right) [50]. One can note for example how for

vanishing interaction, g(D) is saturated at a large value (blue) for ∆ < 2J ,

where the system is superfluid, while it gradually decreases when ∆ increases
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2.3 Non-interacting disordered system: Anderson localization

Figure 2.13: The experimental (left) and theoretical (right) evolution of the correlation
function g(D) as a function of the disorder strength and the interaction en-
ergy. The various regimes identified by the theoretical analysis are an An-
derson glass (AG), a fragmented condensate (fBEC) and a superfluid (BEC).
Figure adapted from [50].

to the Anderson localization regime (red-orange). This is in agreement with

what has been previously discussed about the metal-insulator transition in

the quasiperiodic lattice. Interestingly, for a given ∆ and increasing U (black

dashed-line), g(D) increases again to reach almost the same value that it has

at ∆ = 0. This is an evidence that the repulsive interaction tends to delo-

calize the system, bringing it back towards a superfluid.

It is interesting to note that the white line U = 0.05 ∆ in the experimental

panel of figure 2.13 – which corresponds to the interaction energy being

equal to the standard deviation of the quasiperiodic lattice lowest energy

levels – nicely matches the center of the crossover from the glassy phase

to the superfluid one. This quantitatively confirms the screening argument

[51], according to which a sufficiently large interaction energy can screen the

disorder making the lowest-lying energy levels become degenerate and thus

making the corresponding bosonic wavefunctions phase lock each other to

form a superfluid.

45



2.4 Strongly-interacting disordered system: BG phase

2.4 Strongly-interacting disordered system:

BG phase

In this section the regime of strong interaction in the presence of disorder

will be discussed. We will see that in such a regime a quantum phase not

very different from the insulating Anderson glass analyzed in the previous

section, is expected to appear [35]. In particular, we will focus our descrip-

tion on the transition that the system, with a given strong-interaction U ,

undergoes when the disorder amplitude ∆ is gradually added. As discussed

in section 2.2, when the system is homogeneous (εi = 0), its properties are

totally determined by the competition between the tunneling energy J and

the interaction energy U (see figure 2.14a). In particular in the limit of strong

Figure 2.14: Phase diagram for an interacting disordered system as a function of the ratios
µ/U and J/U . Depending on the interplay between the energy scales J , U
and ∆, three quantum phases can be identified: a superfluid (SF), a Mott-
insulator (MI) or a Bose-glas (BG) phase. Figure adapted from [57].

interactions (U � J), the system is characterized by MI domains, each of

them with an integer site occupation n determined by the local effective

chemical potential. When a weak disorder ∆ < U is added to the system

(figure 2.14b), the MI lobes are expected [35] to shrink, their size being given
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by 1−∆/U , and progressively make room to another quantum phase, known

as Bose glass phase. For larger disorders, when ∆ ≥ U (figure 2.14c), the MI

lobes should completely disappear and, for a sufficiently small J , only the

BG phase should hold.

A Bose Glass (BG) phase can be thought of as something in between a MI

and a SF phase. Like a MI, the BG is insulating since it doesn’t have long-

range phase coherence. Like a SF, it has a gapless excitation spectrum (see

next subsection) and consequently a finite compressibility. It is important to

note that the coexistence of these two properties, i.e. insulating and gapless

excitation spectrum, is not in contradiction: despite the zero energy gap,

excitations only occur locally giving rise to regions of local superfluidity with

short-range phase coherence but, globally, the BG remains insulating.

We also stress here that such features are in general typical of glass. As

a matter of fact the quantum phase we referred to as AG in the previous

section discussing about the weak-interaction regime is not different from

the BG phase just described, since both are insulating and incompressible.

Figure 2.15 shows a phase diagram as a function of the ratios ∆/J and U/J ,

obtained by numerically solving the Bose-Hubbard problem in the particular

cases of occupancy n = 1 (left) and n = 0.5 (right) [37]; note that besides the

MI and the SF phases, a unique glassy phase, indicated as BG, is present for

large disorder amplitudes ∆, both in the weak and strong-interaction regime.

It is also interesting to note that since an integer occupancy n is required

for the MI phase to form, in the case n = 0.5 only the SF and BG phases

exist. In particular, above the threshold ∆/J = 2 the system enters the

BG phase as a consequence of the localizing effect of the disorder discussed

in subsection 2.3. This is true except for the small U/J zone where, as

discussed in subsection 2.3.1, the weak interaction delocalizes the system

and consequently the SF-BG transition threshold is higher.

As for the n = 1 case, a MI phase instead forms for strong interactions

(see subsection 2.2) and as the disorder amplitude ∆ equals the interaction

energy U (see dashed line), the excitation energy spectrum becomes gapless.
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Figure 2.15: Phase diagrams as a function of the ratios ∆/J and U/J obtained by numer-
ically solving the Bose-Hubbard problem for an occupancy n = 1 (left) and
n = 0.5 (right); the dashed line in the case n = 1 indicates the disorder am-
plitude ∆ = U above which for U � J the MI energy gap vanishes. Figures
adapted from [37].

We conclude this subsection stressing that in the experiments, due to the

trap confinement, the number of atoms per site n in general varies along

the optical lattice, meaning that we aspect a phase diagram that might be a

combination of the two pictures of figure 2.15.

2.4.1 Gapless excitation energy spectrum

Let us now try to understand the gapless nature of the excitation spec-

trum in the BG phase. This will automatically explain why its compressibil-

ity, which has been defined in eq. 2.9, is non zero. With reference to figure

2.16a we first consider the limit case of a homogeneous MI (J → 0,∆ = 0):

as explained in subsection 2.2.1, the lowest excitation energy is ∆E = U cor-

responding to the energy cost of an atom jumping from one site to a neighbor

one with same occupancy (see also figure 2.5). Introducing disorder (figure

2.16b) yields random energy differences ∆i ∈ [−∆,∆] between neighboring

sites. As a result, the energy cost due to an atom jumping from one site to a
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2.4 Strongly-interacting disordered system: BG phase

Figure 2.16: (a) In a homogeneous MI the energy cost for an atom jumping from one site
to a neighbor one with same occupancy is ∆E = U . (b) If some disorder
is introduced the energy cost for such a process becomes ∆Ei = U ± ∆i,
∆i being the disordered-induced energy difference between neighboring sites.
Figure adapted from [57].

neighbor one is now position dependent as ∆Ei = U ±∆i. This means that

in the full BG regime, when ∆ ≥ U , an infinite-sized system can be excited

at arbitrarily small energies as the energy gap approaches zero6.

Figure 2.17: Excitation energy spectra of a strongly-interacting system for increasing
height s2 of the disordering lattice potential. (a) Excitation peaks in the
MI phase (∆ = 0) as in figure 2.5. (b - d) The characteristic excitation
peaks progressively broaden and eventually, for ∆ > U , the energy spectrum
becomes almost flat. Figure adapted from [57].

This vanishing energy gap in the excitation spectrum for the BG phase has

6Note that the excitation energy spectrum of a real finite-sized system, even though
very small, always has a gap.
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2.5 Realization of quasi-1D systems

been experimentally investigated by [57]. Figure 2.17 shows the progressive

broadening and eventually flattering of the MI excitation energy peaks as

the disorder amplitude ∆ increases.

Time of flight measurements performed at a given disorder amplitude

∆ > U , and for increasing height s1 of the main lattice, have then shown

a progressive loss of phase coherence of the system, indicating a transition

from a SF to an insulating phase. The combination of these two results,

i.e. gapless excitation spectrum and no phase coherence, has been a first

experimental evidence of the existence of the BG phase [57].

2.5 Realization of quasi-1D systems

Most of the models and experiments we have presented in this Chapter

are one-dimensional (1D). Let us now briefly discuss how such a regime can

be reached in an experiment. At zero temperature, and for weak interactions,

one can realize a quasi-1D system ”simply” by superimposing a 1D disordered

optical lattice along one of the axes of a 3D harmonic trap. Since the potential

is separable along the longitudinal and radial directions, one can study the

phenomena related to the disordered potential independently of the radial

motion of the atoms. The atoms ideally populate the ground state energy

level of the radial harmonic trap, while performing their complex dynamics

along the disordered optical lattice. This was for example the strategy of the

previous experiments on Anderson localization performed in our ”BEC2”

laboratory [47][50] and discussed in subsections 2.3 and 2.3.1.

This very simple technique fails when one wants to explore the regime

of strong interactions. In this case, indeed, the interaction mixes the spatial

degrees of freedom and the resulting interaction energy is redistributed along

all three directions. As a matter of fact, the previous attempt to characterize

the phase diagram of disordered bosons by tuning the scattering length of
39K atoms [50] was limited to the regime of weak interactions. The reason is

that the radial harmonic energy ~ωr was comparable to the hopping energy

J , and therefore an interaction energy U > J would have brought the radial
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2.5 Realization of quasi-1D systems

distribution in the Thomas-Fermi regime, where, as discussed in subsection

1.1.2, it acquires an interaction-dependent width. The radial broadening of

the atomic distribution, in turn, lowers the density and the interaction energy

itself. With this geometry it is actually impossible to achieve interaction

energies larger than the radial harmonic one.

This problem can of course be overcome by using a much stronger radial

confinement, such as the one that can be obtained by slicing the radial distri-

bution into the very tight traps provided by an auxiliary 2D optical lattice.

We will give a detailed description on the actual implementation of such a

geometry in the Chapter describing the experiments (subsection 4.2.1). Here

we want just to discuss how the picture above described changes when the

radial confinement of the quasi-1D systems is provided by a very tight opti-

cal lattice, say with s ≈ 30. Using equation 2.5 (one should introduce there

also the zero-point energy E0 = ~ω/2 =
√
s1Er) one finds in this case that

the tunnelling energy is very small, J/h ∼ 0.1 Hz, and the on-site oscillation

frequency is very large ωr ≈ 25 kHz. On the one hand, this implies that

on a realistic timescale for an experiment (. 1 s) the atoms cannot tunnel

from one site to the next, i.e. they can have an appreciable dynamics only

along the axial direction. On the other hand, one finds that the radial energy

becomes the dominant energy scale, ~ωr � U, J . Under these conditions the

interaction energy can be made much larger than the tunneling one, and the

regime of strong interactions, U � J , can be reached. This is the regime of

interest for our experiments.

We would like to point out that an indefinite increase of the radial con-

finement would bring the quasi-1D gas into a regime of extreme interactions,

the so-called Tonks-Girardeau regime [58][59][60]. It is indeed possible to see

[61] that if the length of the radial harmonic oscillator becomes comparable

to the scattering length, then the nature of the two-body collisions change,

since the collision energy can no longer be distributed in the radial direc-

tions, but only in the axial one. This has in turn a drastic impact on the

properties of a zero-temperature system, which can show a ”fermionization”
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2.5 Realization of quasi-1D systems

phenomenon where basically the individual bosons tend to avoid each other

and get segregated in limited spatial regions along the 1D system. The ex-

periments we have performed are however out of this regime, and we will

not give a detailed description of its properties. We want just to note that

one can in principle define a parameter that measures the closeness to such

regime of very strong interactions:

γ ≈
2aa‖
a2
⊥N

, (2.11)

where a is the scattering length, a‖ and a⊥ are the longitudinal and radial

harmonic lengths, respectively, and N is the atom number. One enters the

extreme-interactions regime when γ � 1. In our case instead is γ ' 0.5.
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CHAPTER 3

Realization of a laser portable spectrum analyzer
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In this chapter we will describe the features of a homebuilt laser portable

spectrum analyzer (LPSA) and we will show how this is used to monitor

the stability of the several diode lasers employed to produce the BEC. Such

spectrum analyzer is the result of a part of this thesis work, performed at

the Niels Bohr Institute (NBI) in Copenhagen in the group of Prof. Eugene

Polzik and Prof. Jörg Müller. Presently in use at the NBI laboratories, the

portable spectrum analyzer in principle is suitable for being used at our

laboratory at LENS as well.

3.1 Introducing the LPSA

The laser portable spectrum analyzer allows to investigate the features

of a laser beam as it is coupled to the analyzer by means of an optical fiber.
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Besides a Rubidium cell1 – which allows to perform saturation spectroscopy

and analyze the absolute frequency of the signal – the heart of the setup is

a confocal Fabry-Pérot interferometer. With a Finesse ≈ 1000, the Fabry-

Pérot allows a resolution (γ ≈ 1 MHz) larger than that one of the natural

linewidth (of the order of a few tenths of MHz).

The idea at the base of this project is to study the spectrum purity of

the lasers (in particular the slave lasers) used for the production of a BEC.

The aim is to check whether the slave lasers do ”follow” in frequency or

not the master laser which feeds them, and find out the possible presence of

uncontrolled sidebands. Another function of the LPSA is to assess whether

the diode laser, used to probe at various frequencies the BEC during the

experiments, is single or multi-mode.

For the (upstream) coupling into the optical fiber to be easier, a setup

involving a laser pointer – whose beam is downstream coupled – has also

been implemented: the laser pointer beam produces in fact a bright trace for

the alignment of the counterpropagating laser beam that must be analyzed.

Besides the mechanical design of the optical cavity and the laser pointer

mounts, the project required the design and the construction of an electronic

circuit. The main parts of this electronic circuit are: a triangle ramp gen-

erator (with adjustable amplitude and offset) for scanning the piezoelectric

transducer mounted on one of the Fabry-Pérot mirrors; a circuit for the DC-

DC conversion from 24V (voltage provided by the wall power supply needed

to scan at least one Free Spectral Range) to 3V for the laser pointer supply.

Furthermore the project required the construction of three photodetec-

tors (also supplied at 24V by the above mentioned circuit): two of them

for detecting the Rb cell and the Fabry-Pérot signals, the third one – with

adjustable sensitivity – for monitoring the light coupled into the optical fiber.

To sum up, what is needed for the LPSA to work is simply an oscilloscope

for the display of the three signals coming from the photodetectors and the

1Note that in principle the cell of Rubidium might be replaced with one of another
sample, like, for instance, Potassium which in addition to Rubidium is used in our labo-
ratory at LENS.
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two signals (trigger and ramp) coming from the triangle ramp generator.

3.1.1 Basics of Fabry-Pérot interferometer

A scanning Fabry-Pérot interferometer makes use of the optical trans-

mission characteristics of an optical cavity (Fabry-Perot) as a very selective

filter to scan across the optical spectrum of a laser.

For an easier understanding of the Fabry-Pérot basic features, we will now

assume both the laser beam wavefront and the cavity mirror shape to be flat.

The description of the actual gaussian shape of the beam in a curved mirror

interferometer will be introduced and discussed later (subsection 3.1.1).

Let us consider a beam with frequency ν and intensity IIN impinging

(perpendicularly) on an interferometer consisting of two identical mirrors

with reflectivity R and separated by a distance L. We are interested in the

transmission function IT/IIN – that is the ratio of the transmitted to the

incident beam intensity – as a function of ν, R and L. The dependance on the

frequency ν is connected with the type of interference occurring between the

multiple reflections of the beam bouncing back and forth inside the cavity.

Constructive interference – which corresponds to high transmission peaks –

occurs when a beam with wave-number k = 2π/λ, after a round trip 2L2, is

in phase with itself; in other words, the resonant condition is achieved when

the phase shift δ = k · 2L is an integer multiple of 2π. As a consequence

the steady waves resonating in the cavity are those with wavelengths and

frequencies:

λ =
2L

n
ν =

c

2L
· n (3.1)

with n = 0, 1, 2... and c speed of light3. This means that in frequency space

the resonant peaks are shifted each other by a constant quantity (Free Spectral

2If we consider a cavity in a medium with index of refraction nr, then the path length
2L must be replaced by the optical path length 2Lnr.

3Since usually the wavelength λ of a laser beam is of the order of 1µm, for a cavity
length L ≈ 10 cm, the number of longitudinal modes resonating into the cavity is n ≈ 105.

56



Range4)

FSR =
c

2L
(3.2)

By going through the math, in the absence of losses5, one can find [62] that

the transmission function, also known as Airy function, is given by:

IT
IIN

=
1

1 + (2F/π)2 sin2(δ/2)
(3.3)

where F is a dimensionless quantity related to the quality of the cavity – and

for this reason named Finesse – that depends on the mirrors reflectivity R6

as:

F =
π
√
R

1−R
' π

1−R
(3.4)

where the approximation is valid for high reflectivity mirrors (R ' 1).

For instance for a reflectivity R = 99% the Finesse is F ≈ 300, while

for the interferometer used in the present work for a nominal reflectivity

R = (99.75± 0.1)% – theoretically7 – we get:

Fth = 1255+838
−359 (3.5)

According to 3.3, at resonance (δ = 2π n) – for lossless mirrors – all the

light is transmitted (IT = IIN)8. The phase shift can be expressed in terms

of length or frequency as follows:

δ = k · 2L = 2π
ν

FSR
(3.6)

A plot of the Airy function in terms of frequency is shown in figure 3.1. Note

4The FSR reciprocal τ = 2L/c is the round trip time, that is the time needed for the
light to go back and forth in the cavity.

5The losses Σ in the Fabry-Pérot are due to both absorption from whatever inside
the cavity – mirrors, medium – and diffraction (when the beam size is not negligible with
respect to the mirrors aperture). Note that the higher the Finesse, the higher the losses.
If one takes into account the losses, then equation 3.3 has to be multiplied by the factor
T 2/(1 − R)2 < 1 where T is the mirror transmissivity and, for the energy conservation
law, 1−R = T + Σ.

6If the mirrors are different R is the geometric mean reflectivity of the two mirrors:
R =

√
R1R2.

7In chapter 3.4 we will se how some factors can lead to a lower experimental value for
the Finesse.

8Out of resonance ( δ = 2π[n+1/2] ), the transmission function doesn’t vanish but ap-
proaches to the background value 1/[1+(2F/π)2 which decreases as the Finesse increases.
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Figure 3.1: Transmission and reflection signal as a function of frequency for a Fabry-
Pérot interferometer in absence of losses. Note that the peaks – which can be
thought of as Lorentzian functions – are one FSR apart and that the higher
the Finesse, the narrower the linewidth γ.

that in the absence of losses, the signal reflected by the interferometer IR
IIN

is the complement of the transmission signal, such as (energy conservation

law)
IR
IIN

+
IT
IIN

= 1 (3.7)

As for the signal inside the cavity IC
IIN

, this can be obtained by simply

dividing the Airy function 3.3 by the mirror transmissivity T (which takes

into account the output intensity reduction due to the transit of the beam

through the last mirror):
IC
IIN

=
1

T
· IT
IIN

(3.8)

Since usually T is a very small value (typically ranging from around 1% down

to 1 ppm), the signal in the cavity, at resonance, can be much more intense

than the incident one (which, as we saw, at resonance and in the absence of

losses is equal to the transmitted one).

One can show9 that by expanding the Airy function 3.3 around a peak

9For small displacement (δν � FSR) around the peak center the sin function in the
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center, for a small frequency detuning ∆ν, the peak has the shape of a

Lorentzian function:

L =
1

1 + (2 ∆ν
γ

)2
(3.9)

whose linewidth γ (FWHM) is connected to the FSR and the Finesse by

the fundamental relationship

γ =
FSR

F
(3.10)

For instance, for the interferometer used in this work (Fth ≈ 1300) the the-

oretic linewidth is γth ≈ 600 MHz. Obviously, the lower the linewidth, the

higher the resolution of the interferometer.

It’s interesting to note that the peak linewidth is strictly related to the

cavity decay (or storage) time

τs '
1

2π γ
(3.11)

that is the time after which the energy stored in the cavity without input

decreases by a factor 1/e10.

In conclusion one can think of the transmission signal (equation 3.3, figure

3.1) as a series of Lorentzian functions, each one separated from the others

– in frequency space – by one FSR and with a linewidth that is inversely

proportional to the Finesse which in turns increases, according to equation

3.4, with the mirror reflectivity R.

TEMpl modes in a symmetric spherical mirror cavity

So far we have considered only the flat mirror cavity that has the ad-

vantage of supporting only the longitudinal modes since the higher order

transverse modes TEMpl
11, in this configuration, turn out not to be stable.

Airy equation can be approximated with its argument and by using 3.6 in equation 3.3
one gets the result 3.9.

10Note also that the ratio of the storage time to the round trip time τ is connected
to the number of round trips Nrt and to the Finesse F by the simple relationship Nrt ≈
(τs/τ) ' F/(2π).

11In cylindrical coordinates, the transverse mode patterns of a laser beam are described
by the Gaussian-Laguerre TEMpl modes where p and l are integers respectively labeling
the number of rings and the number of bars across the pattern.
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The flat mirror cavity, however, has the drawback that it is the most diffi-

cult to be aligned and the actual resolution – which for this configuration

is strongly alignment dependent – is usually much less12. For this reason

spherical mirrors usually result to be more suitable.

When describing the resonant modes in a spherical mirror cavity, one

must take into account that the laser beam wavefront is not flat but its

phase in general is given by:

φ(z) = kz − (2p+ l + 1) arctan
z

zR
(3.12)

where z is the beam propagation direction and zR = (π w2
0)/λ is the Rayleigh

length. With respect to the first (plane wave) term there is a phase shift

which depends on the transverse modes order (i.e. on the mode indices p, l)13.

For constructive interference to occur, the phase shift from one mirror to the

other – which also will be mode number dependent – must be a multiple

of π. By using this condition in equation 3.12, after some manipulations it

turns out that the resonance frequencies inside a spherical cavity with equal

mirrors are:

νn p l =
c

2L

[
n+

2p+ l + 1

π
arccos

(
1− L

RC

)]
(3.13)

According to the second term of the equation, which depends on the radius

of curvature RC
14, the transverse TEMpl modes with the order index k =

2p+ l15 are frequency shifted – with respect to the longitudinal TEM00 mode

12Furthermore, the very precise alignment and well collimated beam needed to achieve
high resolution, causes the beam to be reflected directly back into the laser, possibly
destabilizing it.

13By replacing (2p+ l) with (m+ n) – where the indices m and n are integers labeling
the number of bars in the x and y directions – the beam phase expressed for a rectangular
geometry is obtained.

14Note that for a flat mirror cavity (RC =∞) the second term of equation 3.13 vanishes
and we get the previous result with the only longitudinal modes spacing c/(2L). Note also
that in the general case of asymmetric cavity mirrors with radii of curvature RC1 and
RC2, the argument of arccos in 3.13 must be replaced by

√
(1− L/RC1)(1− L/RC2).

15Note that the resonant frequencies depend on k = 2p + l, not on p and l separetely;
therefore, different transverse modes with same k are degenerate.
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– by the quantity:

∆νk =
c

2L
· k
π

arccos

(
1− L

RC

)
(3.14)

As shown in figure 3.2, for a near planar or long-radius cavity (RC � L),

Figure 3.2: Resonant-mode spectrum for a near planar (RC � L) optical cavity. The
spectrum is composed of the TEM00 (longitudinal) modes – spacing c/(2L) –
surrounded by the less and less intense, degenerate, transverse modes identified
by the order index k = 2p+l and equally spaced by the quantity ∆νk=1. Figure
adapted from [63].

the frequency shift 3.14 is small compared to the FSR (frequency distance

between the longitudinal modes). Therefore, in this case16, the spectrum is

composed of the relatively high longitudinal modes surrounded by a set of

equally spaced, degenerate, (transverse) higher order modes.

Confocal configuration

Even though the laser beam is a gaussian TEM00 beam, without mode

matching – that is preferential coupling into a single mode – many trans-

verse modes of the interferometer may be excited, making the display quite

useless17.

16In subsection 3.4.1 will be shown the experimental case of L & RC where the trans-
verse mode spectrum looks a bit different.

17The number of the higher modes resonating into the cavity can be easily of the order
of 100 for a big size of the beam impinging on the input mirror and in absence of mode
matching and of a good alignment (beam offset from the axis).
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A way to avoid the problem is to use a cavity configuration (i.e. a partic-

ular cavity length L with respect to RC) in which some of the (transverse)

higher order modes have the same frequency as the (longitudinal) TEM00
18

modes. The degeneracy condition is that the arccos term in equation 3.13

equals π/N with N = 1, 2, 3...

The most important and common configuration – which has also been used

Figure 3.3: Resonant-mode spectrum for a confocal (L = RC) optical cavity (bottom).
The even higher order modes are degenerate with the longitudinal modes. The
odd higher order modes fall halfway between the longitudinal modes cutting
the FSR of the cavity in half to c/(4L). This mode degenerate spectrum (N =
2) is shown as a result of the shifting of the transverse modes as the length L
of the cavity – initially in a near planar configuration (top) – increases. The
degeneracy condition with N = 3 (center) is shown as well. Figure adapted
from [63].

in the present work (see chapter 3.4) – is the confocal configuration (L = RC)

where both the mirrors have the focus in the center of the cavity19. In figure

3.3 it can be seen how the frequencies of the transverse modes move with

18Note that, since transverse and longitudinal modes have the same characteristics, the
resolution of the ideal interferometer is not affected by the fact that each peak representing
a longitudinal mode of the input laser may actually be built up of contributions from
multiple transverse modes excited in the cavity.
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respect to those of the longitudinal modes as the optical cavity length L is

changed leading to degeneracy conditions such as the confocal configuration

(N = 2). In such a configuration the frequency shift for the kth higher order

mode is:

∆νk =
c

4L
· k (3.15)

meaning that the transverse modes with:

– even k are degenerate with the longitudinal modes.

– odd k fall halfway between the longitudinal modes cutting the FSR of

the cavity in half to c/(4L).

Such a FSR corresponds to the fact that a paraxial beam (i.e. one parallel

to the optical axis) entering the confocal cavity off-center, returns to its

original position after travelling the cavity four times in a zig-zag pattern

(figure 3.4). However, if the beam is very well aligned to the optical axis,

Figure 3.4: Zig-zag pattern of a laser beam propagating in a confocal optical cavity: the
paraxial (off-centered) beam overlaps with itself after a path of 4L. Note that
the beam produces two spots on the mirrors. Figure adapted from [63].

either the modes with even k or those with odd k will be excited, leading

again to a FSR = c/2L.

3.1.2 Basics of Saturation spectroscopy

In high precision experiments the saturation spectroscopy is a technique

that allows to overcome the problem of the Doppler broadening of the atomic
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lines, thus enabling the observation of the otherwise coverd atomic hyperfine

structure20.

The Doppler broadening of the atomic lines is due to the thermal agitation

of the atoms in a gas. If we indicate with Vx the atoms speed along the laser

beam direction, the laser frequency νL in the atoms reference frame is given

by (Doppler effect):

ν ′L = νL

(
1− Vx

c

)
(3.16)

So only the atoms with Vx = 0 absorb the laser radiation when its frequency

νL coincides with that one of the actual transition (let’s call it ν0). Vice-

versa, the atoms with Vx 6= 0 can be at resonance with laser radiation at

different frequencies from ν0.

The resulting absorption pattern, in agreement with the atomic Maxwell

velocity distribution, is a gaussian-like pattern characterized by a FWHM

γD = ν0

√
8 ln2 kBT

Mc2
(3.17)

whit kB Boltzman constant, M atomic mass and T absolute temperature.

For a Rb gas, for instance, at room temperature we get a Doppler broadening

γD ≈ 500 MHz which is actually greater than the hyperfine structure peaks

separation (≈ 100 MHz).

Sub-Doppler spectroscopy

The sub-Doppler spectroscopy technique consists in overlapping, on the

sample under investigation, two counterpropagating beams with the same

frequency (νL). The atoms with a certain velocity component Vx along the

beams direction ”see” one of the two beams red-shifted in frequency and

the other blue-shifted. Only the atoms with velocity Vx = 0 ”see” the two

20In an analogous way of the fine structure energy levels – which arise from the L · S
coupling of the (orbital L and spin S) angular momenta related to the valency electrons
– the energy levels splitting, called hyperfine structure, arises from the magnetic dipole
coupling HMD = −µI ·BJ ∝ I · J where I and µI ∝ I are respectively the nuclear spin
and the correspondent magnetic momentum while J and BJ ∝ J are respectively the
total angular momentum and the magnetic field produced by the valency electrons on the
nucleus.
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beams with the same frequency. When the laser frequency coincides with

the transition one (νL = ν0), then both beams interact with the same atomic

velocity class, that is the one with Vx = 0. Therefore, in correspondence of

the frequency of interest ν0, the absorption from the atoms (with Vx = 0) of

the beam used for the investigation (called probe beam) is reduced because

of the saturation induced by the other beam (called pump beam): the atoms

which have been excited by the pump beam are not able anymore (for a time

equal to their mean life) to absorb the probe beam. As a result, a small

Lorentzian peak ”dug” within the larger gaussian peak (Lamb dip), appears.

3.2 Experimental setup

The 40 cm x 40 cm experimental setup of the LPSA is illustrated in figure

3.5. Once the laser light has been coupled into the optical fiber (OF ), the

Figure 3.5: Experimental setup of the LPSA. Three main blocks can be seen: the inter-
ferometry and the spectroscopy ones and the part with the laser pointer. The
size of the whole breadboard is 40 cm x 40 cm.
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beam, which is reflected by the mirror M121, is split off by a 50/50 beam split-

ter (BS1): the reflected part is sent to the Fabry-Pérot interferometer (sec-

tion 3.2.1) while the transmitted one is sent to a second beamsplitter (BS2):

the transmitted beam reaches the spectroscopy setup (section 3.2.2), while

the reflected one is focused (by the lens L1) into a photodetector (OFP ).

This photodetector, which has a changeable sensitivity22, allows to monitor

how much light is coupled into the optical fiber and therefore at disposal for

the spectroscopy and the interferometry measurements.

3.2.1 Fabry-Pérot interferometer

A picture and a description of the Fabry-Pérot interferometer are pre-

sented in figure 3.6; for a design and a technical description of the optical

cavity mount the reader is referred to appendix A. Still in the figure, the

beam path – only for the interferometry part – is highlighted in red: the

beam reflected by BS1 is sent and focused into the optical cavity by the mir-

rors M4 and M5 and the lens L2. The transmitted signal is then detected

by the photodetector FPP after being focused by the short focal length lens

L3.

Alignment of the optical cavity

The detected transmission signal – and therefore the status of the coupling

– can be monitored on a oscilloscope while sweeping the cavity length with

a triangle ramp signal23 fed to the piezoelectric transducer which the mirror

FM1 is mounted on.

In general, before – and so decoupled by – the two adjustable turning

mirrors needed for the alignment, two lenses are required for a good mode

21As it will be shown in section 3.2.3, the mirror M1, whereas is reflective for IR light,
it allows visible light to be transmitted.

22A complete description of the photodetector is presented in section 3.3.3.
23A description of the triangle ramp generator providing the signal to scan the cavity

is reported in section 3.3.1. Note that one could get an analogous transmission signal by
directly scanning the laser frequency but this could more easily cause the laser not to emit
in single mode.
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Figure 3.6: Picture of the Fabry-Pérot interferometer. The interferometer is composed of
two equal spherical mirrors facing each other and with a radius of curvature of
20 cm; the mirror FM1 is mounted on a piezoelectric for sweeping the cavity
length. The mirror FM2 sits on an extra mount which has the possibility to
slide along a runner in order to provide the desired configuration: confocal
when the extra mount is roughly at half of the runner and not confocal other-
wise. The beam path relating only to the interferometry setup is highlighted
in red.

matching. In this case, however, our single mode fiber provides a well colli-

mated and round shaped beam which can nicely match the cavity mode with

the use of only one lens (L2) sitting at a distance from the mirrors focus

roughly equal to its focal length f = 300 mm. In other words, the mode

matching has been achieved because the beam size and the lens focal length

were such that the wavefront radius of curvature in correspondence of the

input mirror FM1 approximately equaled that of the mirror itself24.

In order to align the laser beam to the optical cavity, the mirrors M4

and M5 have been adjusted such that the beam hits the center of the cavity

24The wavefront radius of curvature for a gaussian beam propagating along the z di-
rection is R(z) = z [1+(zR/z)2] where zR = πw0

2/λ is the Rayleigh length: the wavefront
is plane in the waist (z = 0) and becomes spherical for z � zR. Since for a confocal
cavity the mirror radius of curvature RC equals the cavity length L, the mode matching
condition is given by R(L/2) = L. This condition, for the given values L = 200 mm and
λ = 780 nm sets the value of the waist w0 at about 160µm. This means therefore that for
a beam size wl ' 500µm in correspondence of the lens, the focal length has to be chosen
as f = π wl w0

λ ' 300 mm.
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mirrors FM1 and FM2 respectively, and also such that the beam reflected

by the first cavity mirror FM1 hits the furthest mirror (M4) at the same

point as the incoming beam. After doing that the two mirrors before the

interferometer have not been touched anymore and only the four degrees of

freedom given by the cavity mirrors have been used.

For an interferometer to be aligned the beam axis must pass through the

center of curvature of the two cavity mirrors, this means that each of the two

mirrors must be perpendicular to the beam axis. In order to do that FM1

has been adjusted in such a way that the spots on its internal surface – due

to the beam transmitted by FM1 and due to the back reflections from FM2

– overlapped. In an analogous way FM2 has been adjusted as well.

As the cavity mirrors – that were previously set roughly 20 cm apart –

are not exactly in a confocal configuration, the transmission peaks look a

bit asymmetric with a tail on one side. The cavity length has therefore

been adjusted in such a way that the overlapping modes were completely

degenerate.

When a first nice alignment is done, the (higher order) odd modes – which

according to equation 3.15 in the transmission signal fall exactly in between

the TEM00 modes and have their same height – start getting less intense in

favour of the fundamental modes which consequently get higher. With fine

adjustments the odd peaks can be reduced more and more to the extent of

almost vanish. However, how much these modes can be reduced also depends

on the quality of the mode matching. In section 3.4.1 (figure 3.13) will be

shown a transmission signal where the ratio of the odd to the even mode

peak height is less than 3%.

3.2.2 Saturation spectroscopy

Again with reference to figure 3.5 the beam transmitted by the beamsplit-

ter BS2 is aligned and focused – by means of the mirror M7 and the lens

L4 – into the cell containing Rb vapour. After being recollimated by the lens

L5 the beam is reflected by the mirror M8 in such a way that it retraces the
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same path backwards to the beamsplitter: the transmitted part of the beam

is unused while the reflected part is detected by the photodetector RbP after

being focused by the lens L6. So in this very simple scheme the backreflected

beam acts as a probe for the atoms saturated by the incoming beam (pump

beam).

3.2.3 Laser pointer: trace for the alignment

As mentioned in chapter 3.1, for the LPSA to be a handy and practical

tool, an additional setup involving a laser pointer25 has been implemented:

with reference to figure 3.7, the laser pointer produces a red (650 nm) and

intense (≈ 40 mW) light beam which is coupled – by using the adjustable

turning mirrors M11 and M10 – into the optical fiber. Note that the mirror

Figure 3.7: Picture of the laser pointer. The beam path of the visible light (650 nm) coming
from the laser pointer and coupled into the optical fiber (OF ) is highlighted
in red. Instead, a semitransparent red is used to highlight the IR light coming
from the optical fiber and reflected from the mirror M1 towards the optical
cavity and the Rb cell.

M1, whose optical coating is active in the IR range and therefore for the

25A description of the electronic circuit which supplies the laser pointer is given in
section 3.3.2 while a design of the laser pointer mount can be found in appendix A.
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light coming from the optical fiber, is quite transparent for the red light

coming from the backside. With a coupling efficiency of about 70%26 the

optical fiber output can be used as a bright trace for the alignment of the

(counterpropagating) laser beam that has to be analyzed: as long as the

beam under investigation is not too diverging and doesn’t quite match the

fiber mode, the coupling into the optical fiber can be easily achieved by:

– using an adjustable turning mirror (together with an adjustable mount

for the optical fiber) to overlap the counterpropagating beams in two

points and get a signal on a scope connected to the photodetector OFP

(see figure 3.5).

– improving the coupling by walking the beam.

3.3 Electronic circuit

A picture with a block diagram of the electronic circuit is shown in figure

3.8 while the correspondent circuit layout is reported in appendix B. The

whole circuit is supplied by a 24 V AC wall power supply. A circuit – whose

schematic is shown in appendix B – converts the AC signal into a DC signal

which is then used to supply:

1) the triangle ramp generator (section 3.3.1). The triangle ramp signal is

sent both to the Fabry-Pérot and – together with its trigger signal – to

the oscilloscope.

2) a DC-DC converter which provides the opportune voltage for the laser

pointer (section 3.3.2) to work.

3) the 3 photodetectors (section 3.3.3). The output signals from the pho-

todetectors are convenientely low-pass filtered and then sent to the

oscilloscope.

26Despite all the power losses due to the IR coating mirrors – roughly 80% efficiency for
each reflection and 60% efficiency after the transmission – and due to the fiber coupling,
the output power might still be too high/dangerous (about 9 mW), therefore if needed, a
small on purpose made misalignment of the beam can provide the desired power.
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Figure 3.8: Picture of the electronic circuit. A block diagram of the circuit is highlighted
in green. All the connectors for the cables going to the breadboard and to the
oscilloscope can be seen respectively on the right and on the top.

3.3.1 Triangle ramp generator

The circuit schematic of the triangle ramp generator is shown in figure

3.9.

The whole circuit works with the use of only one IC – i.e. a quad operational

amplifier (TL074) – supplied with 24 V. The first two operational amplifiers

(op-amps) cooperate to provide both a triangle ramp (OP2 output) – which

is needed for scanning the cavity length of the Fabry-Pérot interferometer –

and a square wave (OP1 output), which is used as a trigger signal. The last

two op-amps make the triangle ramp adjustable in amplitude (OP3) and in

offset (OP4). The 1/2 voltage divider (bottom left) produces a 12 V signal

which is used – instead of GND – as a reference voltage for all the op-amps.
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Figure 3.9: Schematic of the triangle ramp generator circuit. The first two operational
amplifiers generate a square and a triangle wave signals. The last two ones
make the triangle ramp adjustable respectively in amplitude and in offset. The
reference voltage is set to 12 V.

Schmitt trigger and Miller integrator

The op-amp OP2 is a current integrator – also known as Miller integrator

– that generates linear voltage ramps by charging and discharging the capac-

itor CI with the constant current flowing through the resistance RI given by

(Ohm’s law 27):

I± =
V ±A − 12V

RI

(3.18)

The polarity of the current depends on the two possible constant outputs V ±A

of the op-amp OP1. We will go back to OP1 in a while, for the moment let’s

simply consider the fact that V +
A ≈ 24 V is larger than the voltage reference

12 V and that V −A ≈ 0V is smaller. If we assume that at a certain time OP1

is in the output state V −A , the corresponding negative current I− flowing

27Note that the OP2 negative input is not at (virtual) ground but is set at the reference
value 12 V of the positive input.
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through CI is integrated by OP2 producing a positive linear ramp:

∆VB = −
∫
T/2

I−

CI
dt =

12V − V −A
RICI

· T
2

(3.19)

where T/2 is the time of integration. If we suppose that after this time

the OP1 output switches to V +
A (and as we will se this is exactly what the

Schmitt trigger does), then OP2 will start producing the other half of the

triangle ramp (again given by equation 3.19 but with opposite sign). When

after an equivalent amount of time (T/2), OP1 switches again to V −A , a new

cycle of period T starts.

For the piezoelectric to scan at least a FSR of the cavity, a ramp am-

plitude |∆VB| ≈ 24 V is required. By using this value in equation 3.19 and

solving for the reciprocal of T one gets a ramp frequency :

f ≈ 1

4RICI
(3.20)

The 100 kΩ trimmer RI therefore allows to choose the desired frequency: for

a given capacitance CI = 50 nF, RI has been set (at approximately 50 kΩ)

in such a way to have a ramp frequency f = 100 Hz. Such a frequency is

neither too high28 for the piezoelectric to follow it nor too slow for having a

convenient display on an analog oscilloscope.

Let’s now consider the Schmitt trigger (i.e. the op-amp OP1) which, as

we mentioned, produces a square wave signal. This happens because the

op-amp OP1 behaves as a comparator for the two input signals V+ and V−
29:

when V+ is larger than V−, OP1 greatly amplifies this difference, bringing its

output to its maximum value V +
A i.e. approximately the op-amp’s positive

power supply voltage (24 V). Analogously when V+ becomes smaller than V−

the OP1 output switches to its minimum value V −A i.e. approximately the

28As it will be shown in section 3.3.3 (equation 3.27), the higher the scanning frequency
f , the higher the photodetector bandwidth needed to resolve the Fabry-Pérot transmission
signals.

29Note that, unlike all the other three op-amps in the circuit, OP1 doesn’t have a
negative feedback and therefore in general V+ will be different than V−.
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negative power supply voltage (0V ). As V− is set to 12 V, the positive input

V+ = VB
R2

R1 +R2

+ VA
R1

R1 +R2

(3.21)

is a combination of both the feedbacks from the output state VA and from

the integrator output VB
30. Since the OP1 output states are two (VA+ and

VA−), there are two31 values (thresholds VB+ and VB−) for the input VB that

satisfy the switching condition V+ = V−, i.e.:

VB± = V−
R1

R1 +R2

− VA∓
R1

R2

(3.22)

In other words, as soon as the Miller integrator output VB reaches the thresh-

old VB+ (VB−), the Schmitt trigger output switches to its high (low) value

VA+ (VA−) which in turn produces - as we saw - a ramp inversion.

Finally, R1 and R2 have been chosen different, because with the same

value one of the two thresholds, let’s say VB+ , would be higher than the rail

value VA+
32 (i.e. the maximum value for the op-amps), meaning that the

integrator would start saturating without ever reaching the threshold and

consequently the Schmitt trigger would never be able to perform the switch-

ing, preventing therefore the ramp inversion. To sum up, with R2 slightly33

bigger than R1, according to equations 3.22, one reduces the distances of the

thresholds values VB+ and VB− from the center value (12 V), preventing the

integrator from saturating.

Amplitude and offset

For the triangle ramp to be suitable for the measurements (chapter 3.4), it

must be adjustable both in amplitude and in offset. For the first aim, again

30Equation 3.21 can be obtained by considering that for the Ohm’s law V+ = VB − iR1

where i = (VB − VA)/(R1 +R2) is the current flowing both through R1 and R2.
31Without (positive) feedback (R2 = ∞ =⇒ i2 = 0 =⇒ V+ = VB) there would be

only one threshold (i.e VBth
= V−) meaning that the square signal in this case would be

irreparably compromised by the noise which would make the comparator switch continu-
ously.

32Since the rails VA+ and VA− are slightly asymmetric with respect to the center value
12V, if one puts R1 = R2 in equation 3.22, then finds out that for |VA−−V−| > |VA+−V−|,
VB+ is larger than VA+ , while in the opposite case VB− is smaller than VA− .

33Note that if R2 is chosen too big with respect to R1, than the ramp amplitude
VB+ − VB− becomes too small, compromising the suitable cavity length scan.
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with reference to figure 3.9, the op-amp OP3 – together with a trimmer

(R7) and a one turn potentiometer (R8) – has been used: OP3 works in the

inverting configuration with unitary gain (R6 = R5) producing therefore a

specular voltage around 12 V of the integrator output VB, i.e34.

VC = 24V − VB (3.23)

Let’s suppose for a moment to short R7 (wiper in pin 1). In this case the

amplitude of the R8 output ranges from the maximum value of the VA signal

when the wiper is in pin 3, to 0 V (flat signal still centered at 12 V) when the

wiper is at the center of the potentiometer. So in principle this configura-

tion could work, nevertheless when the R8 wiper is pushed toward pin 1 the

ramp amplitude (flipped with respect to the 12 V reference) starts increasing

again up to its maximum (VC signal). This inconvenience can be overcome

by setting the R7 wiper in such a way that the lower limit of the amplitude

is reached when the potentiometer R8 is turned all the way through (i.e.

with the wiper in 3). In this way, furthermore, the whole sensitivity of the

potentiometer is used.

In order to add an offset to the adjustable amplitude triangle ramp, the

op-amp OP4 – together with a 10 turns potentiometer (R11) – has been used.

The op-amp sums the two signals VC′ and VC′′ after respectively the R8 and

R11 potentiometers, as follows35:

VD = (24V − VC′) + Voff Voff = 12V − VC′′ (3.24)

The term in brackets, again, is simply the specular image around 12 V of the

adjustable amplitude triangle ramp VC′ . The second term (Voff ) is the offset

34Equation 3.23 is obtained by considering that with R6 = R5 = R for the Ohm’s law
VC = V− − iR where i = (VA − V−)/(R) is the current flowing both through R5 and R6

and V− is the op-amp negative input which the op-amp itself tries to keep equal to the
positive input i.e. 12 V.

35Equation 3.24 can be obtained by considering that for the Ohm’s law VD = V− −
i12R12 where V− is the op-amp negative input which equals the positive input (12 V), and
i12 = i9 + i10 = (VC′ − V−)/R9 + (VC′′ − V−)/R10 is the sum of the currents flowing
respectively through R9 and R10. With R12 = R9 = R10 the result 3.24 is obtained.
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contribution coming from the potentiometer R11: this contribution ranges

from −12 V (wiper in 1) to +12 V (wiper in 3).

Finally, the triangle ramp signal adjustable in amplitude and offset, passes

through a low pass filter with a cutoff frequency fc = 1/(2π R13C) = 2KHz �
f which reduces the high frequency noise without appreciably smoothing the

ramp edges36.

3.3.2 Laser pointer power supply

The laser pointer that has been used as trace for the alignment to the

optical fiber (section 3.2.3), is made in such a way to work with two batteries

of 1.5 V each. To let the laser pointer work with the supply at disposal (24 V),

Figure 3.10: Circuit schematic of the laser pointer power supply. A DC-DC converter
lowers down the voltage to the required value (3 V). Several precautions are
then taken to prevent the laser pointer from being damaged.

a circuit with a DC−DC converter to 3 V (IF 0505S) has been implemented

(figure 3.10), taking into account that the diode in the laser pointer is very

sensitive to sudden variations in current and voltage37.

After the capacitor C4, which is used to buffer the ripple of the DC−DC
converter output voltage, the switch SW2 allows the laser pointer to be

36R13 = 50 Ω has been chosen in such a way that it is low enough to prevent a high
drop of voltage and, at the same time, high enough to prevent the op-amp from damage in
case of an accidental short of the OP4 output to GND. C has been chosen consequently.

37Note that normally the laser pointer is ”buffered” by the high capacitance of the
batteries.
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switched off after the alignment of the optical fiber. Besides avoiding to

waste power, this is important as the (red) light back-reflected by the fiber

coupler is aligned with the whole setup (see figure 3.5) and consequently

affects all the measurements.

The series between R14 and the parallel R15 − C5 is needed to smooth

the spikes coming from the switch every time it is switched on and off. The

spikes (high frequency signals) within the time constant τ = R14C5 = 100µs

are absorbed by the capacitor, preventing therefore the laser pointer from

the risk of being damaged38.

Since the DC − DC converter actual output (3.3 V without load) was

still a bit high, a Si diode (D1) – which causes a voltage drop of ≈ 0.6 V39 –

has been used. Despite the supply voltage (2.7 V) was less than the required

one, the laser pointer output power (above 50 mW) was too high: as a last

precaution, a 50 Ω trimmer has been used in series before the laser pointer

in order to lower its power down to ≈ 40 mW.

3.3.3 Photodetectors

In order to monitor the light coupled into the optical fiber and to detect

the signals from the Rb cell and the optical cavity, three photodetectors have

been built. The use – for all of them – of an integrated circuit (OPT101) –

that is a photodiode with on-chip transimpedance amplifier and that stands

24 V as power supply – made possible the circuits to be very simple and the

physical sizes to be quite limited (3 x 2 x 1.5 cm3). The circuit schematic

of the photodetector for the Rb spectroscopy is shown in figure 3.11 (on the

left). On the right of the same figure a picture (from behind) of one of the

38Note that R14 = 1Ω has been chosen in such a way that it is low enough to prevent
too much current to flow in the laser pointer and, at the same time, high enough to prevent
the DC −DC converter output current (I = 3.3V/1 Ω = 3.3 A) from damaging it. Note
also that, when the circuit is open (and without load), R15 allows C5 to discharge fast
enough (τ = 100 ms) without allowing a significant amount of current coming from the
converter to pass through (R15 � Rlaserpointer).

390.6 V is approximately the direct bias voltage needed for Si diodes to start conducting.
Note that due to the exponential shape of the diode I − V curve, no matter how intense
the current, the voltage drop keeps almost the same.
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Figure 3.11: Circuit schematic of the photodetector for the Rb spectroscopy (left). The
chip – composed of a photodiode and a transimpedance op-amp – has also
been used with an external resistance to increase the bandwidth for the Fabry-
Pérot photodetector. A picture of the latter one is also shown (right).

photodetectors is shown as well. With reference to the schematic, the light

is detected by the photodiode D and the (current) signal is amplified by the

op-amp in inverting configuration with a nominal gain factor of 106 V/A and

a nominal bandwidth of 23 kHz.

As for the Fabry-Pérot photodetector, it must be fast enough to resolve

the width (γ ≈ 600 MHz) of the resonance curve during the scan across it.

If we define the scanning rate of the piezo over a frequency range ∆ν – let’s

say – of a FSR as40

α = 2f ·∆ν = 150GHz (3.25)

the time over which the Fabry-Pérot is on resonance during the scan of the

cavity length is41:

τres = γ/α ≈ 4µs (3.26)

The photodetector bandwidth BW must be then grater than

BWmin = γ · τs
τres
≈ 39 kHz (3.27)

40The factor 2 in equation 3.25 arises from the fact that the scan is only over half ramp
period 1/f .

41In other words, τres is the time over which the cavity length is such that, according
to equation 3.1, the light can constructively interfere and be transmitted.
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where, according to equation 3.11, τs ' 1/(2πγ) ≈ 260 ns is the cavity storage

time42. As a consequence, for the cavity signal features not to be limited by

the finite bandwidth of the photodetector, its gain has been reduced43. This

has been achieved by simply connecting – as feedback for the op-amp – an

external resistor of 100 kΩ between pins 2 and 5 of the IC. As a result, a

reduction by a factor of ten in the gain, led – according to the datasheet –

to a bandwidth twice higher (BW = 44 kHz).

Monitor photodetector: switching the sensitivity

For monitoring the light coupled into the optical fiber, a photodetector

with adjustable sensitivity has been built. This required the use of an extra

Figure 3.12: Circuit schematic for the photodetector monitoring the light coupled into the
optical fiber. Besides the monolithic photodiode with on-chip transimpedance
op-amp, an analog switch is used to allow a reduction of the photodetector
gain.

IC – i.e. an analog switch (ADG1421) – which allows reducing the photode-

tector gain when the quantity of light coupled into the optical fiber is too

42Note that since (τres � τs) the light intensity is stationary at every point of the
resonance curve during the scan, meaning that the linewidth can’t be broadened by the
cavity.

43The criterion 3.27 ensures that even when the scan is performed over the full FSR
the peaks are not broadened by more than a factor of 2.

79



high and the photodiode saturates. A schematic of the circuit is shown in

figure 3.12 while its layout is reported in appendix B. In normal conditions,

the OPT101 chip works in the same way as for the spectroscopy photode-

tector, i.e. with a gain of 106 V/A given by its internal resistor R1. When,

by means of a mechanical switch, a signal V+ (which as usual is the 24 V

voltage supply) is sent to the analog switch (pin 5), the device closes the cir-

cuit by shorting pins 1 and 10. As a result, the op-amp’s external resistance

R14 = 47 kΩ is connected in parallel with the much higher internal resistance

(R1 = 1MΩ) leading to a gain for the photodetector about 20 times lower.

A low pass filter for both the analog switch input (IN) and for the pho-

todetector output, has been used. The former to ”buffer” the analog switch,

the latter (with a cut-off frequency fc = 1/(2πC4R15) ' 3 kHz) to reduce the

high frequency noise.

3.4 Measurements and data analysis

In order to perform the measurements with the LPSA, some light from

the beam paths of the lasers used for the BEC, has been diverted and coupled

into the optical fiber of the spectrum analyzer according to the procedure

described in section 3.2.3.

3.4.1 Characterizing the Fabry-Pérot

By applying a voltage ramp to scan the cavity piezo, several Fabry-Pérot

transmission signals have been recorded. One of them showing two peaks

defining the optical cavity FSR is reported in figure 3.1344. As it can be

seen, a FSR of the cavity can be scanned by the piezo with a voltage

ramp of (10.50 ± 0.05)V45. This result can be used as a calibration factor

44Note that the time scale provided by the oscilloscope has been converted into a
frequency scale by using the known value (FSR = 750 MHz) for the frequency difference
between the two peaks.

45The voltage value and its error – which is mostly due to the non perfect linearity of
the voltage ramp – have been calculated respectively as the mean value and the standard
deviation obtained from 10 measurements.
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Figure 3.13: Transmission signal of the confocal Fabry-Pérot interferometer with two
peaks defining the FSR and the much less intense (≈ 3%) odd modes peak
lying exactly at halfway. Note that, as the Fabry-Pérot does not provide an
absolute frequency value, the origin of the frequency scale has been chosen
arbitrarily in correspondence of the first peak. The calibration given by the
voltage ramp needed to scan a FSR is also shown.

(71.4MHz/V ) to measure the linewidth of the transmission peaks and there-

fore calculate the Fabry-Pérot Finesse.

Finesse measurements

In measuring the linewidth, care was taken to zoom-in on the peak (figure

3.14) not by decreasing the oscilloscope time scale but rather by decreasing

the ramp voltage amplitude in such a way that the broadening of the peak,

due to the quite high scanning rate α of the piezo (equation 3.25), reduced.

By using the voltage ramp with the voltage-frequency conversion factor, the

x-scale (with arbitrary origin) has been calibrated.

In agreement with equation 3.9 a Lorentzian fit has been performed. The

repetition of the procedure for ten acquisitions led to a mean value of the

linewidth of

γ = (1.36± 0.18)MHz (3.28)
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Figure 3.14: Transmission peak of the Fabry-Pérot interferometer. The voltage ramp,
together with the calibration factor given in the previous figure, are used to
calibrate the frequency axis. The peak linewidth γ (FWHM) resulting from
a Lorentzian fit is also reported.

where the error is not that one calculated by the fit procedure46 shown in fig-

ure, but arises from the statistics. According to equation 3.10, this linewidth

corresponds to a Finesse:

F ≈ 600 (3.29)

that is about two times lower than the theoretical one (equation 3.5). One of

the main reasons why the experimental linewidth results (about two times)

broader than the theoretical one (γth ≈ 600 kHz) most likely is the fact that

what one actually measures is not simply the cavity transmission peak but

rather its convolution with the laser one47. Another reason explaining this

broadening could be the diffraction losses of the cavity (see note 5).

A measurement of the Finesse has also been performed by using a laser

whose amplitude modulation produces first order sidebands 10 MHz apart

46Note that as the fit procedure doesn’t take into account the correlation between the
fit degrees of freedom, its error is reasonably underestimated.

47By a beatnote measurement the laser linewidth resulted to be less than 500 kHz and if
we suppose both the peak shapes to be Lorentzian, then their linewidths must be summed
linearly.
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from the carrier (figure 3.15). As the distance between the peaks is known

Figure 3.15: Transmission peak of the Fabry-Pérot interferometer with 10 MHz sidebands.
The sidebands provide a convenient frequency reference for the measurement
of the carrier linewidth γc. The three peaks are fitted with Lorentzian func-
tions.

such sidebands allow for a direct calibration of the x-axis. The statistics over

ten measurements led to a linewidth γ = (1.31±0.12)MHz that is consistent

with 3.28.

Non confocal configuration

By displacing the mirror sitting on the cavity extra mount (figures 3.6,

13) up to its edge, i.e by a quantity δ ' 1.25 cm, the Fabry-Pérot has been

set up in a non confocal configuration. A spectrum corresponding to such

configuration is shown in figure 3.16 (on the left). On the right of the same

figure, a zoom-in on the even k modes is shown as well. The transverse

TEMpl modes – that are not mode degenerate any longer – are displaced

– with respect to the longitudinal modes – according to equation 3.14. In

particular, with a separation of the mirrors L = RC + δ, the frequency shift

of the second order modes (k = 2), can be approximated for δ � RC as
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Figure 3.16: Fabry-Pérot spectrum for a non confocal configuration with L & RC . A set
of even and a set of odd transverse modes are visible (left); a zoom-in on
the former ones is also shown (right). A fit with three Lorentzian functions
provides the relative distance between the even modes and highlights the
peak broadenings due to the fine splitting of the transverse modes.

follows48:

∆νk=2 ≈
c

2L

2 δ

πRC

' 30MHz (3.30)

This result is in agreement with that one obtained with the fit reported in

figure.

Note also the fine splitting of the higher order modes that, according to

equation 3.13, should be degenerate49. As a matter of fact, especially in high

Finesse cavities, this degeneracy is removed when any detachment of the

mirror surfaces shape from the spherical one occurs (symmetry breaking).

Finally note the asymmetry of the longitudinal mode: in agreement with

what said in section 3.3.3 for a scan of a full FSR, the tail at the right side

of the peak is due to the finite detector speed.

48If L = RC + δ with δ � RC the arccos function in equation 3.14 can be expanded
as arcocos(−δ/RC) = π/2− arcsin(−δ/RC) ≈ π/2 + δ/RC . By taking into account that
the Airy function repeats itself after each FSR, the result 3.30 is easily obtained.

49For instance, in the k = 2 peak, two TEMpl modes are actually distinguishable, i.e.
the TEM10 and the TEM02 modes.
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3.4.2 Rb saturation spectroscopy

The Rb saturation spectroscopy signals can be obtained by turning off

the voltage ramp of the cavity piezo and by directly scanning the frequency

of the laser light (λ = 780 nm) coupled into the optical fiber of the LPSA.

This frequency scan has been achieved by applying a voltage ramp to the

piezo of the laser grating. While monitoring on the oscilloscope (trigged at

Figure 3.17: Sub-Doppler absorption spectrum correspondent to the transition from the
level F = 2 of the 87Rb and related Fabry-Pérot spectrum used for the
calibration of the frequency axis. A fit with a function combination of a
Gaussian function for the Doppler background and three Lorentzian functions
for the visible Lamb-dips, is reported in red.

the scanning frequency) the signals coming from both the interferometer and

the Rb cell, the laser parameters – such as the injection current, the voltage

offset applied to the piezo of the laser grating and if necessary the temper-

ature – have been adjusted in order to change the laser frequency and find

the Rb D2 absorption lines. As an example the line correspondent to the

transition from the level F = 2 of the 87Rb is shown – together with the

Fabry-Pérot transmission signal – in figure 3.17. The Fabry-Pérot transmis-

sion signal has been used to calibrate the frequency axis. Note that three
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(out of six50) hyperfine structure peaks are probably too weak to be clearly

distinguished within the Doppler background. As a consequence a fit with a

combination of a Gaussian function and only three Lorentzian functions has

been performed51. The resulting peaks (relative) positions and linewidths are

shown in figure 3.17. Note that, in agreement with the predictions (equation

3.17), the Doppler linewidth is γD = (487± 5) MHz.

3.4.3 Other applications

One of the main applications of the LPSA is the study of the spectrum

purity of the slave lasers used for the achievement of the BEC. For a slave

laser to inherit the spectral properties of the single-mode master laser which

feeds it, the injection parameters – such as both the angle and the power

of injection and both the current and the temperature of the slave laser –

must be chosen suitably. In this frame the LPSA provides an effective way

to monitor52 the injection of the slave lasers: it allows to check whether the

slave laser is operating in single or multi-mode and to assess, in particular,

the stability of the single-mode behavior over an enough wide range of the

injection parameters. An example of multi-mode spectrum is reported in

figure 3.18.

50Due to the selection rules the F = 2 hyperfine transitions for the D2 lines are 6: 3
of them towards real levels (F ′ = 1, 2, 3) and other 3 towards fictitious levels which lie
exactly halfway of the real ones. The latter ones, called cross-over transitions, are made
possible by those atoms whose velocity along the counterpropagating beams direction is
such that they see both beams (one blue-shifted and the other red-shifted) at resonance
frequencies.

51As mentioned in section 3.1.2, the thermal agitation of the atoms in the gas leads to
a Gaussian-like broadening, whereas the sub-Doppler spectroscopy one is an homogeneous
Lorentzian-like broadening due to the fact that all the atomic classes behave statistically
in the same way.

52Usually the injection of the slave laser is monitored by means of a fluorescence signal
from a Rb cell which the slave laser beam is directed through. As the injected laser current
is modulated, spikes or dips in the fluorescence signal indicate that the laser is operating
in multi-mode, whereas a large plateau in the signal suggests stable single-mode behavior.
Nevertheless such procedure doesn’t give a high degree of confidence about the stability
of the laser operating in single-mode.
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Figure 3.18: (Confocal) Fabry-Pérot spectrum for a laser operating in multi-mode. Besides
the longitudinal cavity modes (the two highest peaks) and the odd modes
peak (exactly at halfway), many other laser modes are visible.

Besides the slave lasers, the LPSA is also used to monitor the spectrum

purity of other diode lasers. For instance, when the lasers investigating the

BEC must be tuned in frequency (by adjusting the current and the temper-

ature), part of the light used for the experiment can be sent to the LPSA in

order to check, for each frequency, the mode behavior of the laser.
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CHAPTER 4

Experimental study of the ∆− U phase diagram
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In this Chapter we will describe the experimental procedures that we

have followed to investigate the phase diagram of a disordered system of

ultracold bosonic atoms. In particular, after briefly reporting how we pro-

duce a 39K BEC with tunable interaction, we will show the experimental

techniques implemented to produce a set of quasi-1D systems with a quasi-

periodic optical potential. We will finally report the measurements of the

momentum distribution of the atomic sample for different levels of disorder
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and interaction strength, which provide a first evidence of the phase diagram

of the disordered system both in the regime of weak and strong interactions.

4.1 Experimental production of the BEC

The starting point of the experiments described in this thesis is a BEC

of Potassium-39 with tunable interactions [44]. 39K has a natural negative

scattering length [64][65], corresponding to an attractive interaction, which,

as mentioned in subsection 1.1.2, would make the BEC collapse [66][67][68].

Nevertheless, by using a Feshbach resonance, it is possible not only to con-

dense 39K, by tuning the scattering length to positive values, but also to

suitably control the interaction energy and reduce it almost to zero. Due to

the presence of both a broad resonance and a small background scattering

length [69], 39K is actually an excellent sample for the production of a weakly

interacting BEC.

At zero magnetic field the collisional properties of 39K do not favour direct

evaporative cooling [70][71]. However it is possible to use 87Rb in order to

sympathetically cool 39K. In spite of the small heteronuclear scattering length

for the 39K - 87Rb collisions [72][73], the sympathetic cooling for 39K has been

proven to work efficiently [71]. The experimental setup that has been used to

produce the 39K BEC is largely described in previous theses at the ”BEC-2”

laboratory at LENS [74][75][76][77][78]. In the following we report only a

brief summary of the steps performed to experimentally produce the BEC

[20]:

1. Laser cooling and trapping of 87Rb and 39K atoms in a magneto-optical

trap (MOT) [79].

2. Transfer via optical pumping of the two samples in the magnetically

trappable Zeeman state |F = 2,m = 2〉 (see figure 4.1 for the hyperfine

and Zeeman structure of 39K, the case of 87Rb being analogous).

3. Loading of the 39K - 87Rb mixture in a pure (quic) magnetic trap with

an average harmonic trap frequency of about 100 Hz.
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Figure 4.1: Hyperfine structure (left) and Zeeman shift of the ground state levels |F = 1〉
and |F = 2〉 (right) of 39K. The red dots show the magnetically trappable
states.

4. Selective µ-wave evaporation of 87Rb atoms and sympathetic cooling

of 39K ones, via 87Rb - 39K collisions. The temperature of the mixture

is lowered from about 100µK down to T ≈ 1µK. At this point it is

necessary to use Feshbach resonances in order to further cool down 39K

atoms. A different kind of trapping potential, which is compatible with

the application of the Feshbach magnetic field, is thus required.

5. Loading of the atoms into an optical dipole trap, which, in agreement

with the procedure described in subsection 1.2, is produced with two

cross-focused laser beams red-detuned at wavelength λ = 1032 nm and

with an average harmonic trap frequency of about 50 Hz. The experi-

mental setup is sketched in figure 4.2.

6. Transfer of both the 87Rb and 39K atoms in the absolute ground state

|F = 1,m = 1〉 where 39K has a broad Feshbach resonance around 400 G.

7. An homogeneous magnetic field (Feshbach field) is applied in order to

tune inter- and intra-specimens interactions. Atoms are further cooled

down by reducing the intensity of the optical trap (optical evaporative

cooling). The evaporation in the optical trap is performed in two steps.
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Figure 4.2: Experimental setup. The optical dipole trap is created by means of two focused
laser beams (waist w0 = 100µm) with λ = 1032 nm, crossing on the horizontal
plane. The Feshbach magnetic field B is generated by a couple of coils in
Helmholtz configuration with axis in the vertical direction. B can be tuned in
the range of 0÷ 1000 G with an uncertainty ∆B . 0.1 G.

• Firstly the magnetic field is tuned to one of the several heteronu-

clear Feshbach resonances existing in this mixture [73] (see the

blue curve in figure 4.3), resulting in a larger rate of collisions

between 87Rb and 39K atoms. The evaporation is performed in

order to evaporate atoms in the vertical direction, meaning that

mainly the heavier 87Rb atoms evaporate. 39K in this first step is

thus sympathetically cooled.

• The magnetic field is then tuned to the homonuclear Feshbach

resonance [77] (black curve) in order to get a positive value of a.

In this second step, in which 87Rb has completely evaporated from

the trap, the cooling of 39K relies only on intraspecies collisions.

Weakly interacting 39K condensate

Once the BEC has been produced (with a typical number of atoms

N ≈ 50 000), a can be further tuned in order to get a weakly interacting
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Figure 4.3: Magnetic field dependance of the heteronuclear scattering length aRb−K (blue
curve) and of the homonuclear scattering length a (black curve). The first
part of evaporation is performed at the heteronuclear Feshbach resonance
(B = 316 G) where a = −33 a0 and aRb−K = 150 a0. The second part of
the evaporation is performed at the homonuclear resonance (B = 395.2 G)
where a = 180 a0 and aRb−K = 28 a0. Figure taken from [20].

condensate. Starting from a magnetic field value B = 395 G slightly below

the |1, 1〉 resonance, where a = 180 a0 has been used for the 39K evapora-

tion process, B can be lowered adiabatically1 down to a value, within the

field range 350 G - 395 G, where the scattering length is positive and the

condensate is stable. As described in subsection 1.1.3, due to the small ra-

tio abg/∆ in the |1, 1〉 resonance close to 400 G, the degree of control in the

interaction energy is very high2, the sensitivity around Bzc = 350 G being

da/dB ' 0.56 a0/G. In particular, in our experimental setup the stability of

the Feshbach magnetic field is of the order of 0.1 G, meaning that a can be

tuned to zero with an uncertainty ∆a . 0.1 a0
3.

1B is lowered down with a ramp that is a combination between a linear and an expo-
nential ramp in about 100 ms in order to reduce the heating of the atomic cloud.

2This degree of control is better than that of most other species, which have narrower
resonances ∆ and/or larger background scattering lengths abg. The only sample that could
be better than 39K in order to control a around the zero crossing is 7Li [69].

3A possible way to accurately approach the zero-crossing magnetic field Bzc it is to
measure the energy released from the condensate during the expansion from the trapping
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4.2 Experimental setup

A 3D optical lattice is produced by means of the laser light generated

by a solid state Nd:YAG laser. Such a laser, which is optically pumped

by a diode laser, is a very stable and powerful source characterized by a

spectral linewidth ∆ν . 1 kHz and a maximum emission power P ' 10 W. In

agreement with what discussed in subsection 1.2, the laser light wavelength,

λ1 = 1064 nm, is red-shifted with respect to the 39K resonance wavelength,

λ0 = 766.1 nm, in such a way that the atoms can be suitably trapped with

the power provided by the laser.

The beam of the Nd:YAG laser is split in three parts by means of λ/2

waveplates and polarizing beamsplitter cubes. The power of each laser beam

is controlled by means of acusto-optical modulators (AOMs), which can be

used as fast switches with a commutation time of the order of 10µs. More-

over, such devices, by diffracting the laser light with an acoustic wave at

frequency ωA ' 80 MHz, allow to shift the laser frequency up to ±ωA. Each

laser beam is then coupled into a polarization-maintaining optical fiber which

spatially filter them. With a power of about 1 W out of the optical fiber (when

the AOMs are completely open), each beam is sent to the cell with the atoms

and then retro-reflected in order to produce the stationary wave forming the

optical lattice. Both the incoming and the retro-reflected beams are focused

by lenses on the atomic sample with a waist w0 ≈ 100µm, resulting in an

average trap frequency ω ' 75 Hz. Undesired interference between the laser

beams forming the lattices in the three directions can be prevented by rotat-

ing the linear polarizations coming out of the fibers in such a way that they

are orthogonal with respect to each other. For the same aim, the frequency

of the three beams are shifted by ∼ 10 MHz with respect to each other by

means of the AOMs.

In order to produce a disordering optical lattice another laser is required:

potential. However, minimizing the decoherence induced by interactions during a Bloch
oscillation into a vertical lattice results in a more sensitive procedure [20].
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a Ti:Sapphire laser of wavelength λ2 = 859.6 nm and variable power up to

P ≈ 200 mW is thus employed. The Ti:Sapphire laser beam, whose power is

controlled by an AOM, is sent to the cell with the atoms and superimposed

to the 3D optical lattice along the vertical direction. Both the incoming

and retro-reflected beams are focused in correspondence of the atomic cloud

position with a waist of about 100µm.

4.2.1 The optical lattice setup

With reference to figure 4.4 we describe in this subsection the optical

lattice setup employed in the experiments.

Figure 4.4: Optical lattice potentials. The two horizontal optical lattices (x̂ and ŷ
directions) provide a tight confinement forming an array of 1D indepen-
dent vertical potential tubes. The vertical quasiperiodic optical potential is
formed by superimposing two incommensurate optical lattices: the main one
(λ1 = 1064 nm), which is related to the tunneling energy J , and the secondary
one (λ2 = 859.6 nm), which is related to the disorder amplitude ∆.

Confining optical lattice. By means of a strong 2D optical lattice

(sx, sy ' 30) along the x̂ and ŷ directions, we can produce an array of

1D potential tubes along the ẑ direction. Typically, out of a sample of

N ≈ 50 000 atoms we get approximately Ntubes ≈ 500 tubes with an average
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number of atoms n̄tube ≈ 100 each4. Since the tunneling of the single particle

between different tubes is suppressed on the time scale texp ∼ 100 ms of the

experiments (i.e. h/Jx,y ∼ 1 s � texp), we can study the physics along

the tubes which can be reasonably thought of as 1D systems (see section

2.5). Moreover, due to the strong confinement along the x̂ and ŷ directions

(ωx = ωy ' 30 kHz) and due to the consequent high density of particles in

the tubes, it is possible, by increasing the scattering length with the Feshbach

magnetic field, to study the system in a regime of strong interactions5.

Main optical lattice. Along the tubes direction (ẑ direction), we em-

ploy the same laser source used for the 2D confining lattice to produce the

main optical lattice with spacing d = λ1/2 ' 532nm and height s1 ' 10.

According to equation 2.5, such height corresponds to a tunneling energy

along the tubes equal to J/h = 88 Hz.

Assuming for the interacting BEC a Thomas-Fermi density distribution

along each tube ρ(z) = ρ0(1 − z2

R2
z
) with ρ0 = 3

4
n̄tube

Rz
determined by the nor-

malization condition n̄tube =
∫
ρ(z)dz, we can calculate the average number

of atoms per site as n̄ = d · ρ̄ = d ·
∫
ρ2(z)dz = 3

5
n̄tube

d
Rz

. With Rz ' 13µm6

we get an average site occupancy n̄ ' 2.5.

Secondary optical lattice. Along the same direction of the main lat-

tice, we employ the Ti:Sapphire laser (λ2 = 859.6 nm) to produce a disorder-

ing optical lattice with intensity, in units of recoil energy Er2, up to s2 ' 1.

The inhomogeneous and non-periodic shift of the energy minima induced by

4If we approximate the Thomas-Fermi density distribution of the interacting BEC
with an homogeneous distribution of radius RTF = 3

√
RxRyRz, the number of tubes in

the x − y plane can be roughly estimated as Ntubes ∼ πRxRy

d2 , d2 being the surface area
of each tube. With d = λ1/2 ≈ 0.5µm and Rx ' Ry ≈ 5µm we get Ntubes = 100. A
more accurate calculation, taking into account the parabolic shape of the Thomas Fermy
density distribution, yields Ntubes ≈ 500.

5We note that for all the measurements performed in this work, the regime of extreme
interactions in 1D is never reached, since the maximun value of the interaction parameter
in our case is γ ' 0.5.

6As we shall see in subsection 4.3.1, after loading the horizontal confining optical
lattices which squeeze the tubes along the vertical direction, the Thomas-Fermi radius Rz
along ẑ results larger than those along the x̂ and ŷ directions previously used to calculate
the average number of atoms n̄tube in a tube.
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the secondary lattice (see subsection 1.2.2) results in a separation of neigh-

boring states in the quasi-periodic optical potential of 1/(β − 1) ' 4.2 lattice

sites (see figure 4.5).

Figure 4.5: Quasi-periodic optical lattice obtained with β = 1.238... and a disorder am-
plitude ∆/J ' 6. The quasi-periodic optical potential is characterized by
potential wells approximately every 1/(1 − β) ≈ 4.2 lattice sites, which arise
from the beating of the two optical lattices (grey dashed line). In red, the
lowest energy eigenstates of the lattice potential are shown. Note that the
lower the site energy level, the larger the correspondent density distribution.

4.2.2 Calibration of the optical lattice height

In principle the height of the optical lattices could be calculated by using

equation 1.16. However, the measurement of the actual intensity I0 expe-

rienced by the atoms is affected by systematic errors: small misalignments

of the lattice beams or not completely parallel polarizations may result in

a different intensity from the one calculated. For this reason the height of

the optical lattice is calibrated by using an interferometric in-situ technique

relying on the so-called Raman-Nath diffraction.

The idea at the base of this phenomenon is simple: as a standard electro-

magnetic wave can be diffracted by a grating, in a symmetrical way a BEC,

which can be thought of as a matter-wave, can be diffracted by an optical

lattice. If a pulse of the laser beam forming the optical lattice is shined on
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the atoms for a time Tlat ≈ 10µs short enough for them not to move along the

lattice, the BEC gets diffracted and after a free expansion of ttof ' 20 ms its

density distribution shows a number of interference peaks that, as reported

in figure 4.6, increases for increasing lattice height s. More quantitatively, it

Figure 4.6: Absorption images of the BEC diffracted by a pulse of the optical lattice laser
beam for increasing lattice heights (s = 0, 5, 15 from top to bottom). The
images are taken after a free expansion of ttof = 16 ms and with a pulse
duration Tlat = 20µs. Note that the larger the optical lattice height s, the
larger the number of diffraction peaks.

can be shown [75] that the lattice height s is related to the RMS size of the

expanded BEC as follows:

σ2
rms = σ2

0 +
1

2

(
kErec
m

ttof Tlat

)2

s2 (4.1)

where k is the laser beam wave number, m is the mass of the atoms and

Erec = ~2k2

2m
is the recoil energy. Since the second moment σ2

rms of the density

distribution and the width σ0 of the central peak are computed, by using

equation 4.1 one can get the optical lattice height s.

Besides indirectly measuring the optical lattice height s, this technique

can also be used to perform an accurate alignment of the optical lattice beams

on the atoms: the laser beams directions are finely adjusted in such a way

that the number of diffraction peaks increases.
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4.3 Measurements and data analysis

After firstly describing the experimental sequence by which the measure-

ments are performed, in this section we will show a few significant images and

the procedure adopted to analyze them in order to obtain the momentum

distribution phase diagram reported in section 4.4.

4.3.1 Loading the BEC into the optical lattice

In figure 4.7 we report the temporal sequence with which the optical

lattices are ramped up on the atoms. With reference to that figure, the BEC

Figure 4.7: Temporal sequence for loading the BEC into the optical lattices. Note that
while the confining and the main optical lattices (red curves) are always
ramped up to the same values (respectively sx = sy ' 30 and s1 ' 10), the fi-
nal value of the scattering length a (black dotted line) and of the quasi-periodic
optical lattice height s2 (blue-dotted line) are suitable chosen depending on
the measurements to be performed.

is produced in the optical trap at t = 0 with a scattering length a = 180 a0

(black curve). During the optical lattice loading sequence, the optical trap

is kept constant in intensity, with an average trap frequency ω ' 70 Hz, and

thus is not shown in the figure. We have experimentally verified that the

heating that the BEC undergoes during the lattices loading is minimized

if the magnetic field is linearly ramped down to 370 G, corresponding to a
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scattering length a ' 20 a0. At t = 50 ms, when the interaction of the

BEC has thus been reduced, the height of the confining optical lattices (red

curve) is adiabatically increased with exponential ramps up to sx = sy ' 30

in 200 ms. At the same time the main optical lattice (dotted red curve)

is ramped up to s1 ' 10. The exponential ramp of the disordering lattice

(dotted blue curve) is performed in 100 ms in such a way that it reaches the

desired final value (s2 = 0÷ 1) at the same time of the others (t = 250 ms).

All the optical lattices heights are then kept at their maximum value for

50 ms in order to adiabatically tune the scattering length to the desired value

(a = 0÷ 280 a0) with a magnetic field ramp long enough (100 ms) while the

atoms are already partially loaded into the optical lattices. At t = 300 ms,

when the BEC is completely loaded into the optical lattices and the scattering

length is set at its final value, the atoms are let free to expand for 16 ms

(green dot) in order to perform measurements of momentum distribution, by

suddenly switching off all the optical lattices and the trap laser beams.

4.3.2 Measurements of momentum distribution

We will now report the first measurements that we have performed with

the experimental setup previously described. So far we have investigated the

various zero-temperature quantum regimes described in Chapter 2 by study-

ing the evolution of the momentum distribution of the system. Although

other measurements will be needed, such as those related to transport or

compressibility, the momentum distribution already gives a strong indica-

tion of the system phenomenology.

We switch off all the optical potentials and we let the atoms freely ex-

pand for 16 ms after which the density distribution in the coordinate space

approaches the one in the momentum space. As described in subsection 2.2

(figure 2.2), if before switching off all the optical lattices the (Wannier) wave-

functions localized in each lattice site are phase-locked to each other, that is

the system is a SF, then the Wannier functions interfere each other giving rise

to sharp peaks in the density distribution along the direction of the free ex-
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pansion. In particular, the distance between the peaks corresponds to the size

of the Brillouin zone in the momentum distribution, that is 2~π/d = 2~k1,

d = λ1/2 being the spacing of the optical lattice generated by the laser beam

with wavelength λ1. Figure 4.8 on the left shows an image of a momentum

density distribution in the SF regime taken without either interaction (a ' 0)

or disorder (s2 = 0). Despite the background noise due to the imaging sys-

Figure 4.8: Images of momentum density distribution with scattering length a ' 0 and
disordering optical lattice height s2 = 0, taken with (left) and without (right)
the confining optical lattices forming the potential tubes. Note the matter-
wave interference fringes along the ẑ direction.

tem, three horizontal stripes arising from the matter-wave interference along

the tubes direction (ẑ direction) can be easily distinguished. By contrast, the

broad distribution along the other direction is a clear evidence of the absence

of phase coherence between the wavefunctions belonging to different poten-

tial tubes. As a comparison, the same figure on the right reports an image

taken with the same parameters but without the confining optical lattices

forming the potential tubes (sx = sy = 0). Such configuration corresponds

to a system in a unique 3D vertical potential tube.

As described in subsection 2.2, when the on-site interaction energy U is

much larger than the tunneling energy J the system enters the MI phase.

Figure 4.9 shows an image of a momentum density distribution in the MI

regime taken at a large interaction value (a ' 200 a0) and without disorder

(s2 = 0). The loss of phase coherence shown in the broad momentum distri-

bution also along the vertical direction is a proof of the fact that the system
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Figure 4.9: Image of momentum density distribution with scattering length a ' 200 and
disordering optical lattice height s2 = 0. Note that the phase coherence is lost
also along the ẑ direction.

is in an insulating phase.

For a full characterization of the competing roles of disorder and interac-

tion, we have taken several series of images for varying interaction at several

values of the disorder strength.

4.3.3 Data analysis

In order to study more quantitatively the crossovers between the SF and

the insulating regimes, each image has been analyzed as follows: an intensity

profile P (k) along the ẑ direction has been obtained by integrating the two-

dimensional density distribution along the other direction (see figure 4.10).

The linewidth of the central peak is then extracted by fitting it with a gaus-

sian function (red curve)7. In the figure the intensity profiles P (k) with the

gaussian fits corresponding to both the SF (left) and insulating (right) 1D

systems of the previous images are reported.

For a given disorder amplitude ∆ ' β2s2Er2/2, several images at increas-

ing scattering length a have been taken and analyzed. The width of the

7In general the shape of the wavefunction depends on the specific quantum phase; for
example one expects an exponential shape in a localized phase, or a gaussian in an extended
one. However, the measured wavefunction is the result of an average over the wavefunctions
of the many potential tubes, each one, in turns, characterized by wavefunctions with in
general different shapes for each lattice site. As a consequence we have heuristically fitted
the density distributions with gaussian functions.
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Figure 4.10: Intensity profiles P (k) along the ẑ direction of the two-dimensional density
distributions of figures 4.8 (left) and 4.9 (right), as obtained by integrating
along the other direction. A gaussian fit of the central peak – performed to
extract its width – is shown in red.

momentum distribution central peak is reported in figure 4.11 as a function

of the scattering length a obtained for two sets of measurements without dis-

order (∆/J = 0) and with ∆/J = 10.6. In the case ∆/J = 0 (blue dots), the

momentum distribution broadens as the interaction increases. As previously

said this corresponds to the crossover from the SF to the MI phase. At large

disorder (red triangles), the width of the momentum distribution, which is

large (about half the Brillouin zone) in the non interacting regime, decreases

for small interactions and then increases again in the regime of strong in-

teractions. Such behaviour at small a is in agreement with the delocalizing

effects of a weak interaction on a disordered system discussed in subsection

2.3.1. The broadening at large a instead is compatible with the fact that the

system enters the insulating BG phase, as discussed in subsection 2.4.

4.4 ∆− U Phase diagram

We have repeated the procedure described in the previous section for

various values of ∆/J ranging from 0 to about 14. In order to perform a
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Figure 4.11: Width of the momentum distribution central peak as a function of the scat-
tering length a obtained for two sets of measurements: at ∆/J = 0 (blue
dots), the momentum distribution broadens as the interaction increases (SF
to MI crossover). At ∆/J = 10.6 (red triangles) the momentum distribution
firstly gets narrower (AG to SF crossover) and then broadens again (SF to
BG crossover). The uncertainty bars are given by the standard deviation of
several measurements performed at a given value of ∆/J and a.

more quantitative analysis, we have converted the scattering length into the

interaction energy, by using the second of equations 2.5. In particular, for

our experimental parameters we find a conversion a/a0 ≈ 8U/J .

From the fitted width of the momentum distribution one can build a two

dimensional diagram: figure 4.12 shows the momentum distribution (central

peak) obtained by interpolating all the sets of measurements, as a function

of ∆/J and U/J . The plot is representative of the phase changes occurring

in the BEC. At small disorders and interactions, the momentum distribution

is narrow (blue zone) and the system is in a SF phase. At larger disorder and

interaction values the momentum distribution progressively broadens (green,

yellow and red zones) meaning that the system is becoming more and more

insulating. Let us now analyze all the several quantum regimes of the phase

diagram keeping in mind the theoretical description followed in chapter 2.

Let us thus first consider an ordered system, that is the case ∆/J = 0.
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Figure 4.12: Phase diagram. The plot reports the interpolated momentum distribution
(central peak), as a function of ∆/J and U/J . The blue zone corresponds
to a narrow momentum distribution (SF phase), whereas the green, yellow
and red zones correspond to progressively broader momentum distributions
(insulating phases). The purple dot represents the center of the crossover
between the SF an MI phases calculated assuming a site occupancy n = 2
in equation 4.2. The crossover between the BG (AG) phase and the SF one
is represented, according to the screening argument [51], by the U = 0.05 ∆
curve. The U = ∆ curve above which the full BG phase is expected to appear,
is shown as well.
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As already mentioned, the system undergoes a transition from a SF to a

MI phase as the interaction becomes sufficiently large. As we can see, the

threshold of the phase transition (which in the following we rather call more

properly crossover) is not sharp and well defined but is instead spread over

a wide range of U/J . The reason is that the system is not homogenous and

as described in subsection 2.2.2, the transition to a MI domain with a small

occupancy n occurs at lower interaction values than those required to enter

a MI domain with a higher n (see figure 2.4). In particular for a 1D system8

the transition occurs at the n-dependent critical value [61]:

(U/J)c = 2n
(

1 +
√

1 + 1/n
)2

(4.2)

Since in our case we have calculated (subsection 4.2.1) a mean site occupa-

tion n̄ = 2.5, by using n = 2 as integer value, we get Ūc ' 20J . Such value

is reported on the phase diagram as a purple dot.

Let us now consider the regime of weak interactions. In particular, at

U/J ' 0, if we increase the disorder amplitude ∆ (normalized by the inter-

action energy J), the system enters the Anderson localized phase (BG-AG)

as discussed in subsection 2.3. We note that the disorder-induced localization

in the AG-BG phase (green zone) is less strong than that one of the MI phase

(yellow-red zone): while in the MI the localization of the single atom is by

definition at the level of the lattice site, in the case of Anderson localization

the wavefunction can be localized over more lattice sites, which, within the

quasi-periodic lattice well, are almost degenerate in energy (see figure 4.5).

As expected, at a given large disorder ∆/J , the system delocalizes when

we add a weak interaction. Such result is in good agreement with the exper-

iments previously performed with a 3D system [50] and thus in agreement

with the screening argument [51] discussed in subsection 2.3.1, according to

which the AG-SF crossover occurs at an interaction energy U = 0.05 ∆ (red-

dashed curve).

8In the general case, the factor 2 in equation 4.2 must be replaced by the number of
neighboring sites.
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Finally, let us consider the strong-interaction regime. Due to the in-

homogeneity of the confined sample, when the system is strong interacting

(U > Uc) and not disordered (∆/J < 2), the MI and SF phases coexist in the

so called wedding cake structure (see figures 2.7 and 2.14a). For a given in-

teraction energy U , if we move vertically on the phase diagram towards larger

∆/Js we note that the momentum distribution broadens, meaning that the

SF component of the wedding cake structure is localizing due to the disorder.

This fact seems to suggest that a mixture of MI and BG phases forms (see

figure 2.14b). If we then move towards a disorder amplitude ∆ larger than

the interaction energy U (see the dot-dashed purple curve U = ∆), then the

system is expected to be in the full BG phase (see figure 2.14c) where the

localization of the atoms is due only to the disorder whereas the effect of

the interaction is negligible: for large ∆/J values our phase diagram shows

a continuity (green zone) with the BG phase of the weak interaction regime.

In conclusion, the measurements of momentum distribution performed so

far are compatible with the presence of both the MI and BG insulating quan-

tum phases. The observed evolution of the momentum distribution width in

the ∆ − U plane is in qualitative agreement with both previous measure-

ments of figure 2.13 and the theoretical phase diagrams of figure 2.15, if we

take into account the inhomogeneity of our system. Further investigation is

however needed to better characterize and distinguish the BG from the MI

phase. In particular, an investigation of the compressibility and/or of the

excitation spectrum of the system might provide a better distinction of the

the two insulating phases in presence of strong disorder.

106



Conclusions

Ultracold atoms in disordered optical potentials are a powerful tool for

studying the physical properties of condensed matter systems. While in

nature both disorder and interaction are intrinsically present but quite not

easily controllable, conversely, when working with Bose-Einstein condensates

in optical lattices, such properties can be manipulated in a controlled way. In

particular, our experimental setup, thanks to both a 3D optical lattice and

a broad Feshbach resonance of 39K, allows us to study the interplay between

disorder and interaction with a high degree of control.

In this thesis work we reported the results of the first investigation of

the phase diagram describing the behaviour of a Bose-gas in a disordered

system, in a regime of both weak and strong interactions. With regard to

the weak interaction regime, such phase diagram confirms the results ob-

tained in experiments previously performed at our laboratory, according to

which an insulating disordered system can be delocalized by means of a weak

interaction.

As for the strong-interaction regime, the phase diagram shows that the

insulating features of a disordered system are qualitatively in agreement with

those predicted by the theory for a Bose-Glass. Nevertheless, due to the inho-

mogeneity of the BEC sample in the confining trap, making a comprehensive

reference to the theory is a difficult task. As a matter of fact our measure-

ments are a first attempt to characterize the mixture of the diverse quantum

phases present in an inhomogeneous system. In particular, the Bose-Glass
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phase, which is characterized by two features, that is being insulating and

compressible, still has to be largely investigated. For the former feature, the

transport properties of the system might be verified by diffusion measure-

ments of the BEC into the optical lattice. As for the latter, measurements

of compressibility would be determinant to characterize the system and in

particular to distinguish the Bose-glass phase from the Mott-insulator one.
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Appendices

A Mechanics designs

Figure 13: Design of the Fabry-Pérot interferometer mount.

109



The design of the Fabry-Pérot interferometer mount is shown in figure 13.

The mount, 285 mm long, is made to host two equal spherical mirrors with

a radius of curvature of 200 mm: while a mirror sits at one edge (top left)

and can not move, the second one sits on an extra mount (top right) which

has the possibility to slide along a runner in order to provide the desired

configuration. Note that the extra mount is linked - by means of two screws

which pass through the 54 mm long slit - to the small bar underneath it which

allows the extra mount to be fasten when it sits at the desired position.

The two 34 mm long slits allow the mount to be clamped to the bread-

board and the M4 holes - two for each side - are made to fasten (on the most

convenient side) the BNC connector of the cables coming from the piezo-

transducer the mirror is mounted on.

The design of the Laser pointer mount is shown in figure 14. The mount

Figure 14: Design of the laser pointer mount.
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is made to clamp the laser pointer in the horizontal position at the proper

working height (77 mm) taking into account the height (60.2 mm) of the

mirror post which has been used to hold the mount (see the M4 x 5 hole

underneath at the center). Insulating tape (underneath) and 3 mm high

rubber (above) surrounding the laser pointer have also been used to insulate

it and give more mechanical stability.
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B Electronics circuit layouts

.

Figure 15: Layout of the electronic circuit.
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Figure 16: Circuit schematic of the AC-DC converter.

Figure 17: Circuit layout of the photodetector with adjustable sensitivity.
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