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Alla mia famiglia

Dammi la tua mano... Vedi? Adesso tutto pesa la metà

(Leo Delibes)





Abstract

In this thesis, common features from the theories of open quantum systems,

estimation of state dynamics and statistical mechanics have been integrated

in a comprehensive framework, with the aim to analyze and quantify the

energetic and information contents that can be extracted from a dynamical

system subject to the external environment. The latter is usually assumed

to be deleterious for the feasibility of specific control tasks, since it can be re-

sponsible for uncontrolled time-dependent (and even discontinuous) changes

of the system.

However, if the effects of the random interaction with a noisy environ-

ment are properly modeled by the introduction of a given stochasticity within

the dynamics of the system, then even noise contributions might be seen as

control knobs. As a matter of fact, even a partial knowledge of the en-

vironment can allow to set the system in a dynamical condition in which

the response is optimized by the presence of noise sources. In particular,

we have investigated what kind of measurement devices can work better in

noisy dynamical regimes and studied how to maximize the resultant infor-

mation via the adoption of estimation algorithms. Moreover, we have shown

the optimal interplay between quantum dynamics, environmental noise and

complex network topology in maximizing the energy transport efficiency.

Then, foundational scientific aspects, such as the occurrence of an ergodic

property for the system-environment interaction modes of a randomly per-

turbed quantum system or the characterization of the stochastic quantum

Zeno phenomena, have been analyzed by using the predictions of the large

deviation theory. Finally, the energy cost in maintaining the system in the

non-equilibrium regime due to the presence of the environment is evaluated

by reconstructing the corresponding thermodynamics entropy production.

In conclusion, the present thesis can constitute the basis for an effective

resource theory of noise, which is given by properly engineering the inter-
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action between a dynamical (quantum or classical) system and its external

environment.
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Introduction

The term stochasticity quantifies the lack of predictability of a sequence

of events. Predictability is ensured only from a probabilistic point of view

in the distribution of the random variables’ outcomes, computed over a very

large number of replicas of the same sequence of events [143]. For this reason,

the introduction of stochastic processes in the mathematical formulation of

real systems dynamics at any dimensional scale has allowed the modeling

of a wide class of static and dynamical uncertainties, as, for example, the

unavoidable presence of noise on a measuring device, or the occurrence of

spontaneous transitions of a quantum mechanical system (such as atoms,

molecules or subatomic particles) from an excited energy state to a lower

energy one with the resulting emission of a quantum of light (photon).

On the other side, information is an actually universal term too: it

quantifies the relevance of a given amount of data in relation to our knowl-

edge of their (real or abstract) content [50]. This concept hides inside the

existence of a cognitive process given by the presence of an observer, provid-

ing an uncertain estimate of the issues under investigation after a repeated

sequence of observations. In this regard, especially in quantum mechanics,

the measurement process is to be considered as random, so as to describe

the predicted outcome of the measurements within the same probabilistic

framework, which is used to model the evolution of the observed phenom-

ena. In particular, the postulates of the quantum measurement theory enable

to quantitatively calculate the probability distributions of the measurement

outcomes and determine the corresponding back-actions on the quantum

system dynamics. Accordingly, the interplay between the application of

sequences of quantum measurements and the presence of stochastic contri-

butions within the system dynamics, due to the random interaction with the

environment, is actually a topic which is worth exploring.

Finally, in order to design nanoscale machines and engines, which can be

1
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characterized by automatic functionalities and computing capability, it can

be required to evaluate in routine transformations their energy consump-

tion, in comparison with the efficiency of the device. A larger efficiency-

energy rate unavoidably translates into novel challenges on how to fully ex-

ploit (by means of new methods) the minimum information content coming

from the measurements or proper interactions with the environment.

In this thesis, all of these concepts are contextualized in the framework

of open dynamical systems, i.e. systems that interact with an external en-

vironment, leading to the introduction of stochasticity contributions in the

form of disorder or noise. Generally, both disorder and noise are considered

deleterious to accurately manipulate/control the system; however, with the

present thesis, we want to provide the basic points, which define a resource

theory of noise, i.e.

� The capability to exploit measurement devices, that can work better in

noisy dynamical regimes by using estimation algorithms able to extract

information from fictitious variations of the device’s outcomes due to

a measurement noise source. As it will be explained in Chapter 1, an

example of such a device is given by binary (threshold) sensors.

� The knowledge of physical phenomena, which are well optimized by

nature (after thousand of years of continuous natural adaptation to

external boundary conditions) in their dynamical behaviour thanks to

the optimal interaction with the environmental degrees of freedom.

In this context, recent studies [65, 115] in the novel research field of

quantum biology [131] have shown that a remarkably high efficiency in

the excitation energy transfer over light-harvesting complexes can be

achieved only when noise sources affects each site of such a biological

systems. The presence of noise, indeed, allows the electron excita-

tions not to remain in any local minimum of the path potential, but

to efficiently proceed to the reaction site, where they are chemically

processed. The optimal interplay between quantum coherence and en-

vironmental noise to realize efficient energy transport phenomena is

also called Noise-Assisted Transport (NAT). In Chapter 2, a scalable

transport emulator based on optical fiber cavity network, which has

experimentally reproduced NAT, will be shown.

� The identification of mathematical tools (especially from statistical

mechanics), which allow to make predictions about the behaviour of
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a dynamical system subject to random interactions with the environ-

ment. In this regard, by modelling how the system is externally in-

fluenced in a repeated sequence of events, the Large Deviation (LD)

theory [57,187] has turned out to be the most appropriate method with

such a predictive feature. The application of the LD theory to open

quantum systems will be introduced in Chapter 3.

� The design of noise sensing algorithms. As a matter of fact, in order

to consider the noise entering into the system as an effective resource,

it can be required to be able to infer the noise fluctuation profiles,

which are uniquely determined by the corresponding power spectral

density in the frequency domain [55]. Moreover, as shown again in

Chapter 3, an a-priori modeling of the noise occurrence within the sys-

tem dynamics is essential to enhance the predictions from LD theory,

and, then, drive the system in a target non-equilibrium regime of the

system-environment configurations space.

� The introduction of a figure of merit, which can measure the degree

of energy dispersion within the system due to the presence of external

noise contributions. The latter is given by the thermodynamic entropy,

which quantifies how much the current state of the system, after re-

peated system-environment interactions, differs from a configuration

corresponding to states at minimal energy [53]. As a matter of fact,

noise terms can drive the system towards novel dynamical regimes

that could not be otherwise achieved, and it is worth asking questions

about the energetic cost needed to maintain the system in such non-

equilibrium condition. In this specific framework, in Chapter 4 the

most important result is given by the characterization of the thermo-

dynamic irreversibility for an arbitrary open quantum system subject

to external environments.

In this way, the presence of noise can be effectively seen as a control knob,

which would allow one to set-up a given dynamical system in a suitable

configuration, in which the responses of the system itself are optimized by

the presence of an external environment.

Thesis outline

Specifically, the following macro-themes will be addressed in detail within

the thesis:
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� Chapter 1: State estimation via networks of binary sensors.

We will address state estimation for complex discrete-time systems

with binary (threshold) measurements by following both determinis-

tic and probabilistic Moving Horizon Estimation (MHE) approaches.

The outputs of binary sensors (probes) can take only two possible val-

ues according to whether the sensed variable exceed or not a given

threshold. For both classical and quantum systems, the solution of

state estimation problems with binary sensors is of absolute scien-

tific and technological relevance, because such devices provide the least

amount of information as possible. As a matter of fact, especially in

the continuous-time case, the information coming from a binary sensor

is strictly related to the threshold-crossing instants (by the sensed vari-

able), and system-observability can be ensured only when the number

of threshold-crossing instants is sufficiently large, as well as for irreg-

ularly sampled systems. In this regard, we will show that by using

the probabilistic approach to state estimation the proposed estima-

tors exhibit noise-assisted features, so that the estimation accuracy is

improved under the presence of measurement noise.

� Chapter 2: Noise-assisted quantum transport. We will address

how excitations energy transport over complex networks can be per-

formed with remarkably high efficiency only via the optimal interplay

between quantum coherence and environmental noise. The presence

of coherence, indeed, leads to a very fast delocalization of excitations,

that in this way can simultaneously exploit several paths to the target

site. However, the transmission of energy can be prevented by the oc-

currence of destructive interference between different pathways and by

the presence of energy gaps between the network sites. In particular,

we have experimentally shown that, in specific dynamical conditions,

the additional and unavoidable presence of static disorder and noise

positively affects the transmission efficiency, thus leading to the evi-

dence of a noise-assisted quantum transport paradigm.

� Chapter 3: Large deviations and stochastic quantum Zeno

phenomena. We will address how to model the stochastic interaction

between a quantum (many-body) system and the external environment

by using the tools of the non-equilibrium statistical mechanics. In par-

ticular, we will analyze through the LD theory the effects on quantum

system dynamics given by the presence of some noise sources and the
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application of sequences of quantum measurement within the frame-

work of the stochastic quantum Zeno effect (QZE). The quantum Zeno

effect states that in case of a frequent enough series of measurements,

projecting back the quantum system to the initial state, its dynami-

cal evolution gets completely frozen, while the LD theory concerns the

asymptotic exponential decay of a given system probability function

due to large fluctuations of some stochastic variables entering into its

dynamics. We will show how to derive the typical value (not necessar-

ily equal to the mean value) of the probability that the system remains

in its initial state (survival probability) after a randomly-distributed

sequence of quantum measurements, so that it can be used as a con-

trol knob to protect and manipulate information contents within open

quantum systems. The chapter ends with the introduction of a novel

(quantum Zeno-based) noise filtering scheme for the detection of time

correlations in random classical fields coupled to the quantum system

used as a probe. Indeed, time correlations in the noise field determine

whether and how fast the typical value of the survival probability con-

verges to its statistical mean, and, consequently, how the standard

deviation of the survival probability over many realisations can reveal

information on the noise field.

� Chapter 4: Quantum thermodynamics. In this chapter, we will

finally address the characterization and reconstruction of general ther-

modynamical quantities such as work, heat and entropy. In the quan-

tum regime, the dynamics of systems is highly stochastic, in the sense

that thermal and quantum fluctuations become of the same order of

magnitude as the averages of the physical quantities defining the sys-

tem Hamiltonian. Therefore, the characterization of such fluctuations

with the tools of the non-equilibrium statistical mechanics is crucial

to understand both the dynamics of an open system and the ways

whereby the environmental stochasticity affects the system itself. In

particular, by starting from the analysis of the fluctuation theorem for

open quantum systems, we will introduce an efficient protocol (rely-

ing on the two-time quantum measurements scheme) to determine the

characteristic functions of the stochastic entropy production of an arbi-

trary quantum many-body system. It is worth noting that the concept

of entropy is important not only in thermodynamics, where it allows

to characterize the irreversibility of a dynamical system, but also in
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information theory to measure the amount of lost information within

a communication channel [50].

For the sake of clarity, the notation of each chapter is introduced before

being adopted. However, the same symbols with a different meaning can

be found in various chapters of the thesis. Furthermore, throughout the

thesis the Dirac notation (or bra-ket notation) will be largely used. The

bra-ket notation was initially introduced by Dirac to represent in a compact

way a vector (linear) space, and, in particular, in quantum mechanics is the

standard notation to describe quantum states. In general, a collection of

physical quantities is represented by a row or column vector. In this regard,

the Dirac notation uses two distinct symbols: given the generic vector v, the

ket

|v〉 ⇔

v1

...

vn

 (1)

corresponds to the column vectors, while the bra

〈v| ⇔ (v∗1 , · · · , v∗n) (2)

to a row vector. Observe that in (1), vi, i = 1, . . . , n, is the i−th element

of the vector v, while in (2) the superscript ∗ denotes complex conjugation.

Finally, in the thesis col(·) will denote the matrix obtained by stacking its

arguments one on top of the other, and diag(m1, . . . ,mq) will be the diagonal

matrix whose diagonal elements are the scalars m1, . . . ,mq. Further, given

a matrix M , vec(M) is the linear transformation which converts the matrix

M into a column vector and ‖|v〉‖M ≡ 〈v|M |v〉.



Chapter 1

State estimation via networks of

binary sensors

In this chapter, we will address how to solve the problem to ac-

curately infer a given system dynamics via the adoption of mea-

surement devices (sensors) providing a minimal amount of in-

formation. Such devices are modelled as binary sensors, whose

output can take only two possible values according to whether the

sensed variable exceed or not a given threshold. This issue is

crucial when we want to analyze phenomena in which the exact

outcomes coming from the measurement process are fundamen-

tally unpredictable, so that our knowledge of the real world is

given only by computing the probabilities of such outcomes. 1

1The part of this chapter related to moving-horizon state estimation for discrete-time

dynamical systems has been published in the following scientific papers: “Moving horizon

state estimation for discrete-time linear systems with binary sensors” in 54th International

Conference on Decision and Control (CDC), December 15-18, 2015, Osaka (Japan) [21];

“Moving horizon estimation for discrete-time linear systems with binary sensors: algo-

rithms and stability results” in Automatica 85, 374-385 (2017) [22]; “MAP moving horizon

state estimation with binary measurements” in The 2016 American Control Conference

(ACC), July 6-8, 2016, Boston (USA) [18]; “MAP moving horizon field estimation with

threshold measurements for large-scale systems” in preparation, 2017 (to be submitted to

the International Journal IEEE Transactions on Control Systems Technology) [19].

7



8 State estimation via networks of binary sensors

Introduction

Every measurement of a given physical (classical or quantum) quantity is un-

certain. About classical systems, the unavoidable presence of external noise

sources (especially in the measurement device) introduces systematic errors,

which makes our knowledge of the process partial and uncertain. About

quantum systems, indeed, uncertainty relations are consistently present in

the physical behaviour of systems such as electrons and light, which behave

sometimes like waves and sometimes like particles, in accordance with the

Heisenberg’s uncertainty principle. The latter, as given in Ref. [77], literally

states that any determination of the alternatives taken by a process capa-

ble of following more than one alternative destroys the interference between

them. As a consequence, if we introduce an additional (macroscopic) system

(i.e. an observer), which effectively measures the expectation value of the

position (momentum) operator along one or more of the path followed by

the particle, then our knowledge of the momentum (position) is prevented

by the presence of quantum fluctuations introduced by the observer. More

formally, the uncertainty principle states that

∆X∆P ≥ ~
2
, (1.1)

where ∆X and ∆P denotes, respectively, the standard deviations of the po-

sition and momentum operators, and ~ is the reduced Planck’s constant. In

the same way, as dual definition, the principle states that it is not possible to

prepare a quantum system state, which admits simultaneously well-defined

values of the position and momentum observables, X and P respectively, af-

ter being measured. Position and momentum, indeed, are non-commutating

operators, satisfying the relation [X,P ] = i~. In the present form, as given

for example by the well-known double-slit experiment, originally performed

by Davisson and Germer in 1927 [52]), the Heisenberg’s uncertainty princi-

ple sets a lower bound to the accuracy that can be reached in performing

a measurement on a given system observable. As clearly shown by Feyn-

man in [77], the connection between uncertainty in classical and quantum

systems is mainly given by the following two observations: (i) the quantum

mechanical laws of the physical world approach very closely to the classi-

cal ones when the size of the dynamical systems involved in the experiment

increases; (ii) the concept of probability is not altered in quantum mechan-

ics: what radically changes are the methods of determining the outcome

probabilities, which are provided by the postulates of quantum mechanics.
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In this chapter, we will analyze, for a given dynamical system, what is

the ultimate limit in estimating its state by using binary sensors, which

provide the minimal amount of information from the measurement process.

In particular, we will evaluate when the system is observable as a function of

the number of sensors and their placement within the system domain, and

proper mathematical estimators will be introduced with the aim to increase

the information that can be extracted from the system. Furthermore, as it

will be shown in the second part of this chapter, the presence of measurement

noise can be a helpful source of information when a probabilistic approach

to estimation is adopted. The above stated paradigm will be recast in the

branch of noise-assisted estimation/metrology.

Binary sensors

Many examples, requiring the use of a binary sensor as measurement device,

can be found both from classical and quantum systems. Binary (threshold)

sensors are measurement devices, which are nowadays commonly exploited

for monitoring/control aims in a wide range of application domains.

A non-exhaustive list of existing binary sensors, involving classical sys-

tems, includes: industrial sensors for brushless dc motors, liquid levels, pres-

sure switches; chemical process sensors for vacuum, pressure, gas concentra-

tion and power levels; switching sensors for exhaust gas oxygen (EGO or

lambda sensors), ABS, shift-by-wire in automotive applications; gas content

sensors (CO, CO2, H2, etc.) for gas & oil industry; traffic condition indi-

cators for asynchronous transmission mode (ATM) networks; and medical

sensors/analyses with dichotomous outcomes.

Regarding nanoscale systems, instead, any ideal detector of quantum

system dynamics performs projective measurements. In case the system is a

qubit, the measurements have only two possible values, 0 and 1, correspond-

ing to the two qubit states. Accordingly, the probabilities of these outcomes

are equal to the matrix elements of the qubit’s density matrix, which de-

scribes the statistical ensemble of the corresponding quantum state [109].

After the measurement, the quantum state is projected onto the subspace

corresponding to the measurement outcome. More practically, quantum bi-

nary sensors can be modelled and realized in several ways. (i) One can

use the model of indirect projective measurements, for which the quantum

system (whose state has to be estimated) interacts with an ancillary qubit,

that is later measured by means of standard projective measurements. (ii)
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We can adopt a linear detector in binary-outcome mode: the output of a

linear detector is compared with a certain threshold, so as to determine if

the output falls into the region given by result 0 or the region corresponding

to result 1. (iii) Binary detectors from solid-state qubits: the qubit used

as the quantum binary sensor is realized by a superconducting loop, which

is interrupted by a Josephson junction [103]. The qubit, then, is measured

by changing the magnetic flux through the loop, so that only one of the

two states of the qubit can tunnel outside the potential profile given by the

magnetic field. Finally, the tunnelling event or its absence, which is a bi-

nary measurement, is recorded by using another superconducting quantum

interference device [109].

In all of these applications, binary sensors represent the only viable so-

lution for real-time monitoring. In any case, especially if used for macro-

scopic systems, they provide a remarkably more cost-effective alternative to

continuous-valued sensors at the price of an accuracy deterioration which

can, however, be compensated by using many binary sensors (for different

variables and/or thresholds) in place of a single one or few linear sensors.

In other words, the idea is that by a large number of low-resolution sensing

devices it is possible to achieve the same estimation accuracy that a few

(possibly a single one) high-resolution sensors could provide.

Moreover, binary (threshold) measurements arise naturally in the context

of networked state estimation when, in order to save bandwidth and reduce

the energy consumption due to data transmission, the measurements col-

lected by each remote sensor are compared locally with a time-varying thresh-

old and only the information pertaining to the threshold-crossing instants

is transmitted to the computing center. This latter setting falls within the

framework of event-based or event-triggered state estimation [17, 176, 179],

and is more challenging as compared to the usually addressed settings due

to the minimal information exchange. A binary measurement just conveys

a minimal amount (i.e. a single bit) of information, implying possible com-

munication bandwidth savings and consequently a greater energy efficiency.

Thus, it is of paramount importance to fully exploit the little available in-

formation by means of smart estimation algorithms.

In the existing literature [200,201] investigated observability and observer

design for linear time-invariant (LTI) continuous-time systems under binary-

valued output observations, while the work in [202, 203] addressed system

identification using binary sensors. A possible solution for coping with the
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high nonlinearity associated with binary measurements within a stochastic

framework is particle filtering [58, 162]. Such techniques, however, suffer

from the so-called curse of dimensionality (i.e., the exponential growth of

the computational complexity as the state dimension increases) and from

the lack of guaranteed stability and performance, being based on Monte

Carlo integration.

Both limitations are discussed and solved for wide classes of dynami-

cal systems. In particular, state estimation with binary (threshold) output

measurements will be addressed by following a moving horizon estimation

(MHE) approach. MHE techniques were originally introduced to deal with

uncertainties in the system knowledge [100] and, in recent years, have gath-

ered an increasing interest thanks to their capability of taking explicitly

into account constraints on state and disturbances in the filter design [155],

and on the possibility of having guaranteed stability and performance even

in the nonlinear case [6, 7, 156]. Moreover, MHE has been successfully ap-

plied in many different contexts, ranging from switching and large-scale sys-

tems [5, 74,93,94,173] to networked systems [73,75,118].

The novel contributions here introduced in solving state estimation prob-

lems by using binary measurements can be split into two approaches:

� Deterministic approach: No probabilistic description of the sys-

tem disturbance and measurement noise is supposed to be available.

The estimates are computed by minimizing suitable cost functions,

which are defined over a given time-horizon (advancing in time) of finite

length, possibly subject to linear inequality constraints accounting for

the threshold measurements. Specifically, for such a case two different

cost functions are proposed and analyzed. About the first cost func-

tion, only the threshold-crossing instants are taken into account, so as

to penalize the distance of the expected continuous outputs (based on

the state estimates) from the threshold at those instants. The main ad-

vantage of this solution is that the resulting cost function is quadratic.

The second cost function, instead, exploits all the available informa-

tion by defining a piece-wise quadratic term which accounts for all the

available binary measurements, but requires the solution of a convex

optimization problem at each time instant. Stability results will be

proved for the two different choices of the cost function.

� Probabilistic approach: According to the deterministic approach,

information contributions from binary measurements are given only
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in correspondence of the sampling instants in which some outcomes

change their values. As a consequence, there is no or very little in-

formation available for estimation purposes whenever no or very few

binary sensor switchings occur. Therefore, a probabilistic approach is

recommended. In this regard, we can exploit binary sensor readings to

infer information about the probability distribution of the variable of

interest. To clarify this point, let us assume that a very large number

of binary sensors of the same type (i.e. measuring the same variable

with the same threshold) is available and that the distribution of their

measurement noise (e.g. Gaussian with zero mean and given standard

deviation) is known. Then, thanks to the high number of measure-

ments, the relative frequency of 1 (or 0) values occurring in the sensor

readings could be considered as a reasonable estimate of the proba-

bility that the sensed variable is above (or below) the threshold and

this, in turn, by exploiting the knowledge of the measurement noise

distribution, allows to extract information about the location of the

value of the sensed variable with respect to the threshold. The above

arguments suggest that, adopting a probabilistic approach to estima-

tion using binary measurements, the presence of measurement noise

can be a helpful source of information. Accordingly, a noise-assisted

paradigm for state estimation with binary measurements can be stated

by taking advantage of the fact that the measurement noise randomly

shifts the analog measurement, thus making possible to infer statistical

information on the sensed variable.

1.1 Problem formulation

Now, let us consider the problem of recursively estimating the state |xt〉 of

the following discrete-time nonlinear dynamical system:

|xt+1〉 = f(|xt〉, |ut〉) + |wt〉
zit = gi(|xt〉) + vit, i = 1, . . . , p

(1.2)

from binary (threshold) measurements

yit = hi(zit) =

{
+1, if zit ≥ τ i
−1, if zit < τ i

. (1.3)

In (1.2)-(1.3): |xt〉 ∈ Rn is the state to be estimated, |ut〉 ∈ Rm is a known

input, |zt〉 = col
(
zit
)p
i=1
∈ Rp, and τ i is the threshold of the i−th binary
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sensor. Instead, |wt〉 and |vt〉 = col
(
vit
)p
i=1

are the process and, respectively,

measurement noises assumed unknown but bounded. The process noise is

an additional disturbance affecting the system dynamics, which accounts for

uncertainties in the mathematical model, while the measurement noise mod-

els the effects of the environment on the measurement devices. Notice from

(1.2)-(1.3) that sensor i provides a binary measurement yit ∈ {−1,+1} (two-

level measurement quantization) according to whether the noisy function of

the state zit = gi(|xt〉) + vit falls below or above the threshold τ i. Hereafter,

for the sake of simplicity, we will use in the next sections of this chapter xt,

ut, wt and vt instead of |xt〉, |ut〉, |wt〉 and |vt〉. The bra-ket notation will

be resumed when quantum dynamical systems will be taken into account.

Let us observe that the aforementioned problem includes, as a special

instance, the case of quantized sensors with an arbitrary number of levels.

Indeed, a d-level quantizer, for generic d ≥ 2, can be easily realized by using

d− 1 binary (threshold) sensors for the same physical variable but with ap-

propriate different thresholds. The considered setting with multiple binary

sensors (which can measure the same physical variable with different thresh-

olds, but also different physical variables) is clearly more general. Moreover,

it is worth to point out how the problem of estimating the state of a dynam-

ical system via the adoption of binary sensors reveals a very deep connection

with the observability properties of the system. In this regard, let us recall

from control theory the definition of observability : observability is a mea-

sure of the observer capability to infer the state of a dynamical system from

the knowledge of some external outputs coming from the measurement de-

vices. For the analyzed case, at least for the deterministic approach, the

measurement outcomes are obtained by sampling the outputs of the system

in correspondence of a set of non-periodic and irregularly-spaced time in-

stants. As a matter of fact, the available information from binary sensors is

set in correspondence of the threshold-crossing instants. Thus, under these

hypotheses, the state observability may be lost, and only the moving horizon

approach will guarantee an asymptotically bounded estimation error.

1.2 Deterministic approach

In this section, the results of [21,22] are discussed. In a deterministic context,

the available information from a binary sensor is essentially concentrated at

the sampling instants in which the measurement outcomes have switched
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value [200]. However, as shown in [21,22], some additional information from

the measurements can be exploited also in the non-switching sampling in-

stants by penalizing the values of the estimated quantities, whose predicted

measurement is on the opposite side with respect to the binary sensors read-

ing.

In this regard, let us assume that the discrete-time dynamical system of

(1.2) is linear, i.e.

xt+1 = Axt +But + wt
zit = Cixt + vit, i = 1, . . . , p

(1.4)

where A,B,C = col
(
Ci
)p
i=1

are matrices of compatible dimensions. The bi-

nary measurement equation, instead, remains unchanged and is given again

by (1.3). The system (1.3)-(1.4) represents a very special instance of a lin-

ear system with output nonlinearity, generally called Wiener system [205].

However, due to the discontinuous nature of the measurement function of

(1.3), all the standard state estimation techniques for Wiener systems that

require a certain smoothness of the output nonlinearity (see for example [89]

and the references therein) cannot be applied. In fact, while general-purpose

nonlinear estimators accounting for such a discontinuity (e.g. the particle fil-

ter) could be used, the peculiar nature of the considered output nonlinearity

deserves special attention and, for optimal exploitation of the poor available

information, the development of ad-hoc receding-horizon estimators, that

will be presented in the sequel, is required.

Before addressing the estimation problem, some preliminary considera-

tions on the information provided by binary multi-sensor observations are

useful. With this respect, it has been pointed out in [200] that, in the

continuous-time case, the information provided by a binary sensor is strictly

related to the threshold-crossing instants. In this case, indeed, at every in-

stant corresponding to a discontinuity of the binary signal yi, it is known

that the signal zi is equal to the threshold value τ i, implying that the linear

measurement zi = τ i is available. Hence, observability with binary sensors

for continuous-time linear systems can be analyzed within the more general

framework of observability for irregularly sampled systems [200]. In partic-

ular, observability can be ensured when the number of threshold-crossing

instants, which corresponds to the number of available irregularly sampled

linear measurements, is sufficiently large.

The situation is, however, different for discrete-time systems. To see this,

let us consider a generic time instant k in which the binary signal yik changes



1.2 Deterministic approach 15

sign, i.e., yiky
i
k+1 < 0. Then, it is not possible to state, as in the continuous-

time case, that zik coincides with the threshold τ i. Conversely, it can be

simply concluded that there exists α ∈ [0, 1] such that

α zik + (1− α) zik+1 = τ i , (1.5)

where the exact value of α is clearly unknown and unobservable from the

binary measurements. Notice that (1.5) simply states that if the binary out-

put yik switches from discrete time k to k + 1, then the threshold τ i must

lie in the interval between zik and zik+1. In view of (1.5), such discrete time

instants k, at which the output of some binary sensor changes value, will be

more appropriately referred to as output switching or simply switching in-

stants, instead of threshold-crossing instants like in the continuous-time case

considered in [200]. It is easy to see that (1.5) corresponds to an uncertain

linear measurement, i.e.

α zik + (1− α) zik+1 = Cixk + δik + ζik, (1.6)

where δik is the uncertainty and ζik the measurement noise given by the

following relations:

δik = (1− α)Ci(A− 1)xk + (1− α)CiBuk, (1.7)

ζik = α vik + (1− α) vik+1 + (1− α)Ci wk , (1.8)

with 1 equal to the identity operator. As a consequence, even in presence

of bounded disturbances, the uncertainty associated with the measurement

(1.5) depends on xk and uk. Recalling that, in general in the context of state

estimation for uncertain systems, boundedness of the state trajectories is a

prerequisite for the boundedness of the estimation error - see, for instance,

the discussion in Section 2.1 of [27] - our attention will be restricted to

the case of bounded state and input trajectories by making the following

assumption:

A1 At any time t, the vectors xt, ut, wt, v
i
t, i = 1, . . . , p, belong to the

compact sets X, U , W , and V i, i = 1, . . . , p, respectively.

In practice, the compact sets X, U , W , V i need not be known by the esti-

mator; they will only be used for stability analysis purposes.
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1.2.1 Moving horizon estimation

In order to estimate the state xt of the linear system (1.4) given the binary

measurements (1.3), a MHE approach is adopted. Then, by considering a

sliding window Wt = {t−N, t−N + 1, . . . , t}, the goal is to find estimates

of the state vectors xt−N , . . . , xt on the basis of the information available in

Wt and of the state prediction xt−N at the beginning of Wt. Let us denote

by x̂t−N |t, . . . , x̂t|t the estimates of xt−N , . . . , xt, respectively, to be obtained

at any stage t.

Following the discussion at the end of the previous section, a first natural

approach for constructing a MH estimator would amount to considering the

information provided by the switching instants inside the sliding window Wt,

in order to define the cost-function to be minimized. Accordingly, for any

time instant t ≥ N and for any sensor index i, let us define the set Iit of

switching instants as

Iit = {k ∈Wt : k + 1 ∈Wt and yik y
i
k+1 < 0}. (1.9)

Then, the following least-squares cost function can be defined:

JAt = ‖x̂t−N |t − xt−N‖2P +

t−1∑
k=t−N

‖x̂k+1|t −Ax̂k|t −Buk‖2Q

+

p∑
i=1

∑
k∈Iit

‖Ci x̂k|t − τ i‖2Ri , (1.10)

where the positive definite matrices P ∈ Rn×n, Q ∈ Rn×n and the positive

scalars Ri, i = 1, . . . p, are design parameters to be suitably chosen. The

first term, weighted by the matrix P , penalizes the distance of the state

estimate at the beginning of the sliding window from the prediction xt−N .

The second contribution, weighted by the matrix Q, takes into account the

evolution of the state in terms of the state equation (1.4). Finally, for each

sensor i the third term weighted by the scalar Ri penalizes the distances of

the expected output (based on the state estimates) Ci x̂k|t from the thresh-

old τ i at the switching instants. Let us note that considering the distance

from the threshold at the switching instant is equivalent, for sampled-data

systems, to considering the beginning of the time interval [kTs, (k + 1)Ts]

in which the threshold crossing happens. As a matter of fact, since for a

sampled-data system a binary sensor does not provide a precise information
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on the threshold crossing instant in the interval [kTs, (k+ 1)Ts], considering

the distance from the threshold at the beginning of the time interval is just a

choice, not necessarily optimal. As an alternative, with little modifications,

one could consider for instance the middle point of the interval. Such mod-

ifications would not affect the properties (e.g. stability) of the estimator.

Thus, at each time t ≥ N , the estimates in the window Wt can be obtained

by solving the following optimization problem.

Problem EAt : Given the prediction xt−N , the input sequence {ut−N , . . . , ut−1},
and the sets Iit, i = 1, . . . , p, find the optimal estimates x̂◦t−N |t, . . . , x̂

◦
t|t that

minimize the cost function (1.10). Concerning the propagation of the esti-

mation procedure from Problem EAt to Problem EAt+1, different prediction

strategies may be adopted. For instance, a first possibility consists of assign-

ing to xt−N+1 the value of the estimate of xt−N+1 made at time instant t,

i.e. x̄t−N+1 = x̂◦t−N+1|t. As an alternative, following [6], the state equation

of the noise-free system can be applied to the estimate x̂◦t−N |t. In this case,

the predictions are recursively obtained by

xt−N+1 = Ax̂◦t−N |t +But−N , t = N,N + 1, . . . . (1.11)

Such a recursion is initialized with some a priori prediction x0 of the initial

state vector. Hereby, this latter possibility will be adopted as it will facilitate

the derivation of the stability results (see the next subsection).

The main positive feature of Problem EAt is that it admits a closed-

form solution since the cost function (1.10) depends quadratically on the

estimates x̂t−N |t, . . . , x̂t|t (for the readers’ convenience an explicit expression

for the solution is reported in the Appendix A). On the other hand, such

a cost takes into account only the information pertaining to the switching

instants, which, however, is intrinsically uncertain. In order to overcome

such a limitation, a different cost function can be considered by taking into

account all the time instants in the sliding window Wt. To this end, for any

sensor i = 1, . . . , p, let us define the functions

ωi(zi, yi) =

{
1, if

(
zi − τ i

)
yi < 0

0, otherwise
(1.12)

Suppose now that at time k the sensor i provides a measurement yik = 1.

Then, the information provided by such a measurement is that the linear

measurement zik is above the threshold τ i, i.e. belongs to the semi-interval
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[τ i,+∞). Such information can be included in the cost function by means of

a term of the form ωi(Cix̂k|t, 1) ‖Cix̂k|t−τ i‖2Ri , which penalizes the distance

of the expected output Cix̂k|t from [τ i,+∞). Similarly, in the case yik = −1,

a term of the form ωi(Cix̂k|t,−1) ‖Cix̂k|t − τ i‖2Ri can be used to penalize

the distance of the expected output Cix̂k|t from (−∞, τ i]. Summing up, the

inclusion of such terms gives rise to a cost function of the following form:

JBt = ‖x̂t−N |t − xt−N‖2P +

t−1∑
k=t−N

‖x̂k+1|t −Ax̂k|t −Buk‖2Q

+

p∑
i=1

t∑
k=t−N

ωi(Cix̂k|t, y
i
k)‖Cix̂k|t − τ i‖2Ri . (1.13)

While a closed-form expression for the global minimum of (1.13) does not

exist, since JBt is piece-wise quadratic, it is easy to see that the cost JBt
enjoys some nice properties. In fact, while each function ωi

(
Cix̂k|t, y

i
k

)
per

se is discontinuous, the product ωi
(
Cix̂k|t, y

i
k

)
‖Cix̂k|t − τ i‖2Ri is continu-

ous since at the points of discontinuity of ωi
(
Cix̂k|t, y

i
k

)
, i.e. for Cix̂k|t =

τ i, the product vanishes. Further, for similar reasons, also the derivative

2ωi
(
Cix̂k|t, y

i
k

)
Ri(Ci)′(Cix̂k|t − τ i) of the product turns out to be continu-

ous even at Cix̂k|t = τ i. Thus, the product ωi
(
Cix̂k|t, y

i
k

)
‖Cix̂k|t− τ i‖2Ri is

continuously differentiable on Rn, such that the overall cost function JBt is

continuously differentiable with respect to the estimates x̂t−N |t, . . . , x̂t|t and

also strictly convex (since P > 0 and Q > 0). Hence, standard optimization

routines can be used in order to find its global minimum. Clearly, since an

optimization has to be performed, it is also reasonable to include constraints

accounting for the available information on the state trajectory so that the

solver can work on a bounded solution set. In particular, in order to preserve

convexity, it is advisable to consider a convex set X containing X (if X is

convex, one can simply set X = X; in general, choosing X as a convex poly-

hedron is preferable so that only linear constraints come into play). Then,

at any stage t = N,N + 1, . . ., the following optimization problem has to be

solved.

Problem EBt : Given the prediction xt−N , the input sequence {ut−N , . . . , ut−1},
the measurement sequences {yit−N , . . . , yit, i = 1, . . . , p}, find the optimal es-

timates x̂◦t−N |t, . . . , x̂
◦
t|t that minimize the cost function (1.13) under the

constraints x̂◦k|t ∈ X for k = t−N, . . . , t.
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Also in this case, the predictions xt−N are supposed to be recursively

obtained via equation (1.11) starting from a prior prediction x0. Of course,

if no information on the set X is available or if it is preferable to resort to

an unconstrained optimization routine, one can simply let X = Rn. As a

final remark, it is worth pointing out that for the two previously presented

optimization problems there is a trade-off between estimation accuracy and

computational cost. As a matter of fact, the cost in Problem EAt is quadratic

but accounts only for part of the information provided by the sensors, while

Problem EBt accounts for all the available information but requires a convex

optimization program to be solved. To summarize

� The solution of Problem EAt requires simply the minimization of a

strictly convex quadratic form in (n + 1)N variables, where n is the

plant order. Standard techniques like Gaussian elimination can solve

this kind of problems with complexity O(n3N3), but faster algorithms

are available. This means that this approach is much computation-

ally cheaper as compared to particle filtering algorithm, which usually

require in the order of O(10n) particles to provide satisfactory perfor-

mance.

� As for the solution of Problem EBt , it entails the minimization of a

convex and continuously differentiable piecewise quadratic cost func-

tion. It is known that this kind of problems can be solved in finite time

by means of sequential quadratic programming [120]. Further, many

computationally efficient algorithms are available which are able to

handle problems with hundreds of optimization variables [146] and en-

joys super-linear convergence [207]. Nevertheless, application of Prob-

lem EBt is possible only when the number n of state variables is not

too large and the sampling interval is sufficiently large so as to allow

the optimization to terminate. In the other cases, one must resort to

Problem EAt .

Accounting for additional constraints

Provided that some information on the bounds of the process disturbance

wt and measurement noises vit is available, additional constraints can be

considered in the determination of the state estimates. For instance, con-

sidering a convex (usually polyhedral) set W containing W , one can impose
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the constraints

x̂k+1|t −Ax̂k|t −Buk ∈ W , k = t−N, . . . , t− 1 (1.14)

in the solution of the optimization problem. Moreover, assuming the knowl-

edge of upper bounds ρiV on the amplitudes |vit|, i = 1, . . . , p, of the mea-

surement noises, for each k and each i, the constraints{
Cix̂k|t < τ i + ρiV , if yik = −1

Cix̂k|t > τ i − ρiV , if yik = 1
(1.15)

can be imposed. With this respect, it is an easy matter to see that the con-

straints in (1.15) define a polyhedron in the state space as summarized in

the following proposition (the proof is reported in the Appendix A).

Proposition 1.1: Given the vector χ̂t = vec
(
[x̂t−N |t · · · x̂t|t]′

)
of the esti-

mates in the observation window, the constraints in (1.15), for k = 0, . . . , N

and i = . . . , p, can be written in compact form as

Γtχ̂t < γt, (1.16)

where

Γt = [Φt(C ⊗ IN )] ∈ RpN×nN ,
γt = [Φtvec(T ′) + vec(V)] ∈ RpN ,
Φt = −diag(y1

t−N , . . . , y
1
t , y

2
t−N , . . . , y

2
t , . . . , y

p
t−N , . . . , y

p
t ) ∈ RpN×pN ,

T =

τ
1 · · · τ1

...
...

...

τp · · · τp

 ∈ Rp×N , V =

ρ
1
V · · · ρ1

V
...

...
...

ρpV · · · ρpV

 ∈ Rp×N .

(1.17)

While the inclusion of the constraints (1.14) and (1.16) in the convex opti-

mization problem EBt is natural, in some circumstances it may be interesting

to combine them also with the quadratic cost JAt . For example, minimizing

JAt under the linear constraints (1.16) can be a way to account for the infor-

mation concerning the non switching instants without the necessity of consid-

ering the piece-wise quadratic cost. In fact, this would result in a quadratic

programming problem (being the cost quadratic and the constraints linear)

for which many efficient solvers are available. It is worth to point out that
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what is, among the above mentioned options, the best choice clearly depends

on the situation under consideration and, in particular, on the available com-

putational resources, on the available information (the bounds ρiV may be

unknown), and on the necessity (or not) of having estimates satisfying the

constraints (since clearly this property is guaranteed only if the constraints

are taken into account in the estimator design). Nevertheless, in the next

section it will be shown that both costs JAt and JBt imply some nice stability

properties of the resulting MH estimator.

Furthermore, as final remark, let us observe that while the considered

system dynamics is linear, we do not have access to the linear measurements

zt = Cxt+vt but rather to the nonlinear (binary) measurements yit = hi(zit),

for which we cannot apply neither the Kalman filter due to nonlinearity of

hi(·) nor the extended Kalman filter due to the discontinuous nature of hi(·).
It is however worth noting that the simplified quadratic cost JAt amounts

to considering a fictitious linear measurement of the form Cixk = τ i + ζik
for each switching instant k in the observation window. In this case and

supposing that no constraints are imposed, the estimates could be computed

also via a Kalman-like filter. In all the other cases, i.e. when the piecewise

quadratic cost JBt is used or constraints are imposed in the optimization,

this is no longer possible.

1.2.2 Stability analysis

Here, we analyze the stability properties of the state estimators obtained

by solving, at each time instant, either Problem EAt or EBt . Specifically, a

complete analysis is first provided in the more involved case of Problem EBt .

This will be followed by a short discussion on the main differences in the

analysis with respect to Problem EAt . Notice that the analysis carried out

in [6] for the nonlinear case cannot be directly applied in the present context,

since the binary sensors do not satisfy the observability requirement of [6].

The proofs of all results can be found in the Appendix A.

For each sensor i and for each time instant t ≥ N , let us denote by Θi
t

the observability matrix concerning the set Iit of the switching instants in

the observation window Wt, i.e,

Θi
t = col(CiAk−t+N )k∈Iit . (1.18)

Then, the observability matrix related to the switchings in Wt of all binary
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sensors is

Θt = col(Θi
t)
p
i=1. (1.19)

Please notice that the observability matrix defined in (1.18)-(1.19) is actually

related to the linear subsystem (1.4), with output zt, of the overall system

(1.3)-(1.4) considering only those discrete-time instants at which some binary

sensor output switches. Thus, the following uniform observability assump-

tion is needed in order to ensure that enough information is provided by the

binary sensors in each window Wt.

A2 For any t ≥ N , rank(Θt) = n, with n = dim(xt).

The above uniform observability assumption is made in accordance with the

observation that each output switching can be associated with a linear (albeit

uncertain) measurement of the form (1.5). Hence, each switching instant k

can be thought of as a sampling instant for the linear output zik. This means

that observability of the system depends crucially on the output switching

instants in each observation window which, in turn, clearly depend on the

thresholds and of the time window length N . In practice, the threshold

(or the thresholds when multiple sensors are available) and the time win-

dow length N must be chosen taking into account the system dynamics so

as to ensure that such an irregular sampling preserves observability. For

instance, when only one binary sensor is available, clearly N should be sub-

stantially greater than 2n − 1, with n = dim(xt), so as to ensure that at

least n output switching instants are present in each observation window.

While some analytical results on observability under irregular sampling are

available [200], the simplest approach amounts to studying, for instance by

numerical simulations, how the observability measure δ varies as a function

of the thresholds and of the time window length N . Of course, depend-

ing on the system dynamics, time-invariant thresholds may not be sufficient

to always ensure uniform observability (think for example to the case of a

constant linear output). In these cases, observability can be recovered by

making each threshold oscillate in the range of variability of the correspond-

ing continuous output zit with a sufficiently high frequency and by choosing

N so that each observation window contains a sufficient number of threshold

oscillation periods. This latter solution is particularly convenient in case zit
is a measurement collected by a remote sensor and a time-varying threshold

τ it is used for transmission scheduling.
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Before stating the main stability results, some preliminary definitions

are needed. Given a symmetric matrix S, let us denote by λ(S) and λ(S)

the minimum and maximum eigenvalues of S, respectively. Further, given

a matrix M , we define by ‖M‖ ≡ λ(M ′M)1/2 its norm. Given a generic

subset Ψ of an Euclidean space, ρΨ ≡ supv∈Ψ‖v‖. Then, given a generic

quantity Gi related to the i−th binary sensor, let us denote G ≡ maxi ‖Gi‖
and G ≡ mini ‖Gi‖. Finally, the uniform observability measure associated

to the matrices Θt is given by

δ = inf
t≥N
‖Θt‖ = inf

t≥N
λ(Θ′tΘt)

1/2 .

Recalling that, under assumption A2, δ > 0, we can state the following re-

sult.

Theorem 1.1: Let assumptions A1 and A2 hold. For each t ≥ N , let

the estimate x̂◦t−N,t be generated by solving Problem EBt , with xt−N re-

cursively obtained via equation (1.11), and consider the estimation error

et−N ≡ xt−N − x̂◦t−N |t. Then, the weighted norm of the estimation error can

be recursively bounded as

‖et−N‖2P ≤ a1‖et−N−1‖2P + a2, t = N,N + 1, . . . (1.20)

where

a1 =
b1‖A‖2
b2

,

a2 =
c1 ‖A− 1‖2 ρ2

X + c2 ‖B‖2 ρ2
U + c3 ρ

2
W + c4 ρ

2
V

b2
,

b1 =
λ(P )

λ(P )

[
4 +

d1

λ(Q)

(
d2 +R

)]
, b2 =

(
1

2
+

δ2R

4λ(P )

) (1.21)

and c1, c2, c3, c4, d1, d2 are suitable constants (given in the proof). In

addition, if the weights Q and Ri, i = 1, . . . , p, are selected such that a1 < 1,

the norm of the estimation error turns out to be asymptotically bounded in

that

lim sup
t→+∞

‖et−N‖ ≤ e◦∞ ≡
(

a2

1− a1

)1/2

.

�
The reason for analyzing the estimate at the beginning of the observa-

tion window is that, due to the nature of the MHE estimation scheme, the
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estimate x̂◦t−N |t is used to generate the prediction x̄t−N+1 used at time t+1.

This makes it possible to recursively write et−N+1 = xt−N+1− x̂◦t−N+1|t+1 as

a function of et−N = xt−N − x̂◦t−N |t. Let us note that even in the noise-free

case, i.e., when the process disturbance and the measurement noise are zero

and hence ρW = ρV = 0, the asymptotic bound e◦∞ on the estimation error

does not go to zero due to the presence of the term c1 ‖A−1‖2 ρ2
X+c2 ‖B‖2 ρ2

U

in a2. Indeed, such a term accounts for the intrinsic uncertainty associated

with the switching instants in discrete-time. With this respect, it is worth

recalling that, when the discrete-time system under consideration is obtained

by sampling a continuous-time system, the quantities ‖A−1‖ and ‖B‖ van-

ish as the sampling interval Ts goes to zero. This means that the smaller is

the sampling interval, the smaller turns out to be the asymptotic bound on

the estimation error since the information concerning the switching instants

becomes more precise.

Another important issue concerns the solvability of the stability condi-

tion a1 < 1. In particular, the following result can be readily proved.

Proposition 1.2: Let assumption A2 hold. Then, when δ > 0, it is al-

ways possible to select the weights P , Q and Ri, i = 1, . . . , p, so that a1 < 1.

In particular, for given Q and Ri, i = 1, . . . , p, the condition a1 < 1 can be

satisfied by letting P = εP , with P any positive definite matrix, provided

that ε is suitably small.

Hence, if the observability measure δ is strictly positive, it is sufficient to

choose P sufficiently small in order to ensure the satisfaction of the stability

condition a1 < 1. This result is in accordance with the well-known results

on stability of MHE algorithms which stipulate that stability is ensured

provided that the weight on the prediction is sufficiently small [6].

For the sake of clarity, the following remarks about the stability results

of Theorem 1.1 have to be stated:

� Let us consider now the case in which, for each t ≥ N , the estimate

x̂◦t−N |t is generated by solving Problem EAt , with xt−N recursively ob-

tained via equation (1.19). In particular, the estimates x̂◦t−N , . . . , x̂
◦
t

are readily obtained as the unique global minimum of the strictly con-

vex quadratic function JAt . A close inspection of the proof of Theo-

rem 1.1 shows that the same line of reasoning can be applied also for

Problem EAt . The main difference is that, when deriving the lower

bound for the optimal cost, each term ι(x̂◦k|t, x̂
◦
k+1|t) in the proof of
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Theorem 1.1 (see Appendix A) can be simply replaced with the quan-

tity ‖Cix̂◦k|t − τ i‖2 in accordance with the definition of cost JAt . Then

an inequality analogous to (1.20) can be derived, with the important

difference that, in the definition of the novel a2, ρX can be replaced by

ρX , which is consistent with the fact that the constraint set X is not

used in the solution of Problem EAt .

� While the foregoing analysis does not account for the possible pres-

ence of the additional constraints, analogous results could be easily

obtained also when the constraints (1.14) and/or (1.16) are imposed

in the determination of the state estimates. In this case, the bound on

the estimation error turns out to be smaller thanks to the additional

information provided by such constraints.

� The extension of the stability results reported here to the case in which

the binary measurements are obtained by thresholding nonlinear out-

put maps and/or the system dynamics is nonlinear does not entail

particular conceptual difficulties, by combining the analysis of Theo-

rem 1.1 with that of [6,7]. On the other hand, in this case, establishing

a link between the observability properties and the number of thresh-

old crossing instants appears more challenging. Further, for nonlinear

output maps, the resulting cost functions need not be convex.

1.2.3 Numerical examples

Here, we present some numerical examples in order to show the effectiveness

of the proposed MHE algorithms by adopting binary measurements. In par-

ticular, two different case-studies will be considered: a first simple example

concerns an hydraulic system composed of two tanks, and a second exam-

ple on networks of 2-mass 2-spring oscillators with multiple binary sensors.

In both numerical examples, the performance of the estimators has been

evaluated in terms of the Root Mean Square Error (RMSE):

RMSE(t) =

(
L∑
l=1

‖et,l‖2
L

) 1
2

, (1.22)

where ‖et,l‖ is the norm of the estimation error at time t in the l−th sim-

ulation run, averaged over L Monte Carlo trials. The estimation error is

computed at time t on the basis of the estimate x̂◦t−N+1|t.
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Hydraulic systems

Let us consider the following continuous-time linear dynamical system:

Ac =

 0 0 − 1
C1

0 − 1
R2C2

1
C2

1
Lf

− 1
Lf

−R1

Lf

 Bc =

 1
C1

0

0


C =

(
0 C2

S 0
)
,

(1.23)

that models an hydraulic system composed of two tanks in cascade (see

Fig. 1.1), in which C1 and C2 are the hydraulic capacities of the two tanks,

R1 and R2 the hydraulic resistances of the connection pipe between the tanks

and the output conduit, respectively, Lf is the inertance of the connection

pipe and S is the output tank area. In correspondence of the second tank a

binary sensor is placed, whose threshold value has been chosen equal to 0.17

[m].

Figure 1.1: Hydraulic system composed of two tanks in cascade.

The state x of the system is represented by the vector (p1, p2, q)
′, where p1

and p2 are the pressures in the connection pipe and in the output conduit

and q is the flow-rate of liquid in the connection pipe. The values of C1, C2,

R1, R2, Lf and S have been taken equal to 0.05 [Pa−1m3], 0.01 [Pa−1m3],

2 [Paskg−1], 15 [Paskg−1], 2 [Pas2m−3] and 1 [m2] respectively. Finally,

the input signal u is supposed to be characterized by a periodic behavior,

i.e. u = a sin(2πft) + u0, with a = 0.75 [m3s−1], f = 0.5 [Hz] and u0 = 1

[m3s−1]. The components of the initial state x0 and the noises wt and vt
are supposed to be mutually independent random variables uniformly dis-

tributed in the intervals [0, 10], [−10−2, 10−2] and [−10−2, 10−2] and the



1.2 Deterministic approach 27

weight matrices P , Q and R are taken equal to 106
13, 10−8

13 and 106, re-

spectively. The duration of each simulation experiment is fixed to 800Ts,

where the sampling time Ts is equal to 0.01 [s].

Now, for the sake of brevity, we shall denote as the Least-Squares Mov-

ing Horizon Filter (LSMHF) and as the Piece-Wise Moving Horizon Filter

(PWMHF) the filters obtained by solving, respectively, Problem EAt and

Problem EBt . The PWMHF has been implemented by means of the Matlab

Optimization Toolbox, and in particular by using the routine fminunc. Fig.

1.2 illustrates the behaviour of the true values and the estimates of both

the state and the output of the system for a randomly chosen simulation,

along with the binary sensor signal, where the number of samples N of the

estimation sliding window is equal to 5.

Figure 1.2: True values and estimates of both the state and the output of

the system and the binary sensor signal for a randomly chosen simulation.
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In the considered settings, LSMHF and PWMHF have a similar behavior, as

it can been seen especially in Fig. 1.3, where the RMSEs for the proposed fil-

ters are plotted. The PWMHF exhibits better performance in the transient

thanks to the additional information taken into account in the definition of

cost JBt .

Figure 1.3: RMSEs of the LSMH and PWMH filters.

Moreover, as a final remark, it can be noted that, due to the binary sensor

nonlinearity, the presence of a single sensor implies that a certain transient

time (i.e., a certain number of threshold crossings) is needed by the filters.

2-mass 2-spring oscillators

Let us, initially, consider the 2-mass 2-spring mechanical system of Fig. 1.4.

The state of the system is defined as x = [x1, ẋ1, x2, ẋ2]
′
, where x1 and

x2 are the displacements of the two masses from their static equilibrium



1.2 Deterministic approach 29

positions. Accordingly the system is described by the continuous-time linear

state equations ẋ(t) = Acx(t) with

Ac =


0 1 0 0

− (k1+k2)
m1

0 k2

m1
0

0 0 0 1
k2

m2
0 − k2

m2
0

 (1.24)

where k1, k2 are the stiffnesses of the springs and m1,m2 the corresponding

masses. The parameters are set to m1 = 1 = m2 = 1 [Kg], k1 = k2 = 10

Figure 1.4: 2-mass 2-spring mechanical oscillator of example 1.

[N/m], and the continuous-time model is discretized with sampling inter-

val Ts = 0.1 [s]. Further, it is assumed that only the displacement x2

(third state component) is measured by a single threshold sensor so that

the output matrix turns out to be C = [0, 0, 1, 0]. In all the simulations,

the initial state is chosen so as to impose the harmonic motion condition,

i.e. x0 = [0.618, 0, 1, 0]′, making the two masses oscillate with the same fre-

quency but different amplitudes within the interval [−1, 1]; the initial phase

of the oscillations is a uniformly distributed random variable. The process

disturbance is taken equal to zero, while the measurement noise is a white se-

quence with uniform distribution in the interval [−ρV , ρV ]. In order to tune
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the proposed MHE algorithms for appropriate performance, the threshold

value τ of the binary sensor and the length N of the estimation sliding win-

dow need to be properly selected. To this end, it has been analyzed by means

of numerical simulations how the observability measure δ varies as a function

of N and τ , as shown in Fig. 1.5 with a simulation time interval of 50 [s]

and a noise level ρV = 0.05. As shown in Fig. 1.5, observability requires

N
0 50 100 150 200

/

0

0.1

0.2

0.3

=
-1 -0.5 0 0.5 1

/

0

0.05

0.1

0.15

(a)

(b)

Figure 1.5: Example 1 - (a) Observability measure δ as a function of the

length N of the estimation sliding window (with τ = 0.5). (b) Observability

measure δ as a function of the threshold value τ (with N = 100). The results

in (a)-(b) have been evaluated over 100 Monte Carlo trials.

sufficiently large window size (N ≥ 60 with τ = 0.5). Also notice that the

observability measure as a function of N has a monotonically increasing be-
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N LSMHE PWMHE

1 0.50·10−3 0.25

5 0.56·10−3 0.42

20 1.79·10−3 1.11

35 3.23·10−3 2.07

50 5.30·10−3 3.19

100 22.83·10−3 7.53

150 78.90·10−3 15.70

Table 1.1: CPU time (in [s]) per iteration step for different values of N .

haviour with some characteristic plateaus. Further, it is perfectly symmetric

with respect to τ : if the threshold value is outside the range [−1, 1] of the

system output, then no information is provided by the binary sensor; τ = 0

also implies poor observability as sampling the sinusoid in proximity of zero

provides little information about the sinusoid amplitude. From Fig. 1.5, we

chose N = 100 and τ = 0.5 for the forthcoming simulation results, so that

assumption A2 holds. For the weight matrices we selected Q = 14, R = 1

and P = ε14 with ε < 10−4 in order to satisfy the stability condition a1 < 1

according to Proposition 1.2.

In order to appreciate the accuracy of the proposed algorithms and take

into account the timescales of the systems, Monte Carlo simulations have

been performed by randomly varying the measurement noise realization, the

phase of the oscillations for the true state trajectories, and the a priori

prediction x0, which is randomly generated with uniform distribution in

[−5, 5]4. As performance index, in Fig. 1.6 we have plotted the RMSE (as

given in Eq. (1.22)) normalized by the Euclidean norm of the true system

state, with L = 100 Monte Carlo trials. Fig. 1.6 confirms the effectiveness

of the MHE algorithms for state estimation with binary observations: the

estimates resulting from both algorithms converge to the true trajectories of

the system state vector. As before, the PWMHE algorithm exhibits much

better performance in the transient regime.

The computational burden of solving both Problems EAt and EBt , as a

function of the length N of the estimation sliding window, has been evaluated

by means of the CPU time per iteration step (a notebook with an Intel Core

i7-2640M CPU @ 2.80 GHz has been used in simulations). The results are

reported in Table 1.1. Notice that PWMHE is by far more computationally
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Figure 1.6: Example 1 - Normalized RMSEs of the LSMHE and PWMHE

filters, evaluated over 100 Monte Carlo trials.

expensive than LSMHE (computing time three orders of magnitude larger

in this specific small-size example). As a matter of fact, the solution of

Problem EAt can be found analytically by an explicit matrix formula, while

for the solution of EBt a convex mathematical programming problem has to

be solved. However, it is worth to point out that the PWMHE algorithm has

been implemented by using standard functions of the Matlab Optimization

Toolbox, without resorting to ad-hoc optimization routines. Hence, we are

confident that much faster computing times can be achieved. The analysis

of the dependence of the performance on the threshold τ and the noise level

ρV can be found in Ref. [22].

Finally, in order to numerically assess the performance of the proposed

MHE algorithms when the dimensionality of the system state and the number

of binary sensors increase, the network in Fig. 1.7 of six coupled 2-mass 2-
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spring oscillators (like the one in Fig. 1.4) is considered. It is assumed that

each node is equipped with a binary sensor measuring the third component

of the local state vector, with threshold belonging to the range [−1, 1].

Figure 1.7: Network of six coupled 2-mass 2-spring oscillators. Each node of

the network has a binary sensor, monitoring the corresponding third state

component.

The network dynamics turns out to be described by a discrete-time linear

dynamical system with matrices

A = 16 ⊗Ad − γL ⊗ 14

and

C = 16 ⊗ [0, 0, 1, 0],

where Ad = exp(AcTs), L is the Laplacian matrix of the network, and Ts =

0.1 [s] is the sampling interval. For the sake of simplicity, we have chosen the

same value γ = 0.02 for the coupling constants between all the connected

sites, which ensures the synchronization of the system states. Note that syn-

chronization is reached if γ < 0.31685. The threshold values of the six binary

sensors are taken, respectively, equal to [0.5, 0.2,−0.5,−0.8,−0.2, 0.3]′. In

all simulations, the initial state of each 2-mass 2-spring system is a uniformly

distributed random variable centred around the vector x0 = [0.618, 0, 1, 0]′

with variations of ±5 for each component, while the measurement noise is

a white sequence uniformly distributed in the interval [−0.05, 0.05]. More-

over, the validity of Proposition 1.2 for the network is ensured by choosing
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ε = 10−5 with P = 124. The duration of each simulation experiment is

fixed to 35 [s], and the corresponding RMSE of the proposed MHE filters is

averaged over 100 Monte Carlo trials. In Fig. 1.8 the RMSEs, normalized by

the Euclidean norm of the true system state, of the LSMHE and PWMHE

algorithms are plotted. It can be seen that, also in this case, the PWMHE

filter exhibits better performance in the transient, and that the convergence

of its estimation error is slower by a factor of approximately 4 with respect

to the case of the single oscillator.

Figure 1.8: Normalized RMSEs of the LSMHE and PWMHE filters, eval-

uated over 100 Monte Carlo trials, for a network of six 2-mass 2-spring

oscillators.
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1.3 Probabilistic approach

In this section, we pursue a probabilistic approach to state estimation with

binary sensors by following [18, 19]. In this respect, some work has re-

cently addressed parameter identification or state estimation with binary

measurements by following approaches based on the recursive propagation

of conditional probability density functions [11,40,160–162]. Relying on the

aforementioned noise-assisted paradigm, we introduce a novel probabilis-

tic approach to recursive state estimation based on binary measurements.

These algorithms are based on a moving-horizon (MH) approximation of

Maximum A-posteriori Probability (MAP) estimation algorithms, and they

can be considered as an extension of the works in [162, 196], concerning re-

cursive parameter estimation. As it will be shown later as a novel result of

this thesis, if the dynamical system is linear and the noise distributions are

described by log-concave probability density functions, then the proposed

MH-MAP state estimator involves the solution, at each sampling interval,

of a convex optimization problem, practically feasible for real-time imple-

mentation. Moreover, by exploiting a probabilistic approach, the presence

of measurement noise can be helpful to enhance the amount of information

coming from the sensors, leading to the effective definition of a noise-assisted

paradigm for state estimation. As it will shown later, for quantum mechan-

ical systems the introduction of MH-MAP estimators could open the ways

towards noise-assisted quantum estimation schemes.

Let us consider the nonlinear dynamical system of (1.2). As before, the

measurements are provided by a set of binary sensors according to the fol-

lowing equation, which is almost identical to (1.3):

yit = hi(zit) =

{
1, if zit ≥ τ i
0, if zit < τ i

, (1.25)

where zit = gi(xt) + vit, with i = 1, . . . , p. Moreover, it is assumed that the

statistical behavior of the system is characterized by

x0 ∼ N (x0, P
−1), wt ∼ N (0, G−1), vt ∼ N (0, R) (1.26)

where N (µ, ν) denote a normal distribution with mean µ and variance ν. In

Eq. (1.26), R ≡ diag(r1, . . . , rp); E[wjw
′
k] = 0 and E[vjv

′
k] = 0 if j 6= k; and

E[wjv
′
k] = 0, E[wjx

′
0] = 0, E[vjx

′
0] = 0 for any j, k. As before, each sensor

i produces a threshold measurements yit ∈ {0, 1} depending on whether the

noisy system output zit is below or above the threshold τ i.
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1.3.1 Maximum a-posteriori state estimation

The probabilistic approach to state estimation with binary sensors is recast

in the Bayesian framework, which exploits the Maximum A posteriori Prob-

ability (MAP) estimation theory. In this way, we evaluate for each sensor

the probability that the corresponding measurements assume one of the two

binary values, in relation to the dynamical evolution of the system state we

are monitoring. As a result, also a binary sensor is always characterized by

an informative content, i.e. each binary measurement yit intrinsically pro-

vides information about the state xt. Such information is encoded in the

likelihood functions p(yit|xt) related to the i−th threshold sensor. The bi-

nary measurements yit are Bernoulli random variables, so that, for any binary

sensor i and any time instant t, the likelihood function p(yit|xt) is given by

p(yit|xt) = p(yit = 1|xt)y
i
t p(yit = 0|xt)1−yit , (1.27)

where

p(yit = 1|xt) = F i(τ i − gi(xt)) (1.28)

and

p(yit = 0|xt) = 1− p(yit = 1|xt) ≡ Φi(τ i − gi(xt)). (1.29)

The function F i(τ i − gi(xt)) is the complementary cumulative distribution

function (CDF) of the random variable τ i − gi(xt). Since vit ∼ N (0, ri),

the conditional probability p(yit = 1|xt) = F i(τ i − gi(xt)) can be written

in terms of a Q-function, which describes the tail probability of a standard

normal probability distribution [68]. In other words:

F i(τ i − gi(xt)) =
1√

2πri

∫ ∞
τ i−gi(xt)

exp

(
− u

2

2ri

)
du

= Q

(
τ i − gi(xt)√

ri

)
. (1.30)

Now, let us recall that Yt = col(y0, . . . , yt) is the vector of all binary mea-

surements collected up to time t and Xt ≡ col(x0, . . . , xt) is the vector of the

state trajectory. X̂t|t ≡ col(x̂0|t, . . . , x̂t|t), instead, collects the estimates of

Xt, made at any stage t. Then, at each time instant t, given the a-posteriori

probability p(Xt|Yt), the estimate of the state trajectory is obtained by solv-

ing the following MAP estimation problem:

X̂t|t = arg max
Xt

p(Xt|Yt) = arg min
Xt
− ln p(Xt|Yt). (1.31)
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From the Bayes rule

p(Xt|Yt) ∝ p(Yt|Xt) p(Xt), (1.32)

where p(Yt|Xt) is the likelihood function of the binary measurement vector

Yt, and

p(Xt) =

t−1∏
k=0

p(xt−k|xt−k−1, . . . , x0) p(x0)

=

t−1∏
k=0

p(xt−k|xt−k−1) p(x0), (1.33)

for which the Markov property for the dynamical system state has been taken

into account. Being the initial state x0 and the process noise wt normally

distributed vectors, it holds that

p(x0) ∝ exp

(
−1

2
‖x0 − x0‖2P

)
(1.34)

and

p(xk|xk−1) ∝ exp

(
−1

2
‖xk+1 − f(xk, uk)‖2G

)
, (1.35)

so that

p(Xt) = exp

(
−1

2

[
‖x0 − x0‖2P +

t∑
k=0

‖xk+1 − f(xk, uk)‖2G

])
. (1.36)

Now, the following assumption has to be stated:

A3 Statistical independence of the threshold measurements.

Under this assumption, the likelihood function p(Yt|Xt) can be written as

p(Yt|Xt) =

t∏
k=0

p(yk|xk) =

t∏
k=0

p∏
i=1

p(yik|xk)

=

t∏
k=0

p∏
i=1

F i(τ i − gi(xk))y
i
k Φi(τ i − gi(xk))1−yik . (1.37)

In conclusion, the log-likelihood function, natural logarithm of the likelihood

function, reads

ln p(Yt|Xt) =

t∑
k=0

p∑
i=1

[
yik lnF i(τ i − gi(xk)) + (1− yik) ln Φi(τ i − gi(xk))

]
,

(1.38)
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and the cost function − ln p(Xt|Yt) = − ln p(Yt|Xt) − ln p(Xt) to be mini-

mized in the MAP estimation problem (1.31) turns out to be, up to additive

constant terms, equal to

Jt(Xt) = ‖x0 − x0‖2P +

t∑
k=0

‖xk+1 − f(xk, uk)‖2G

−
t∑

k=0

p∑
i=1

[
yik lnF i(τ i − gi(xk)) + (1− yik) ln Φi(τ i − gi(xk))

]
.

(1.39)

Unfortunately, a closed-form expression for the global minimum of (1.39)

does not exist and, hence, the optimal MAP estimate X̂t|t has to be de-

termined by resorting to some numerical optimization routine. With this

respect, the main drawback is that the number of optimization variables

grows linearly with time, since the vector Xt has size (t+ 1)n. As a conse-

quence, as t grows the solution of the full information MAP state estimation

problem (1.31) becomes eventually unfeasible, and some approximation has

to be introduced.

In this regard, we propose an approximation solution , which is based on

the MHE approach to solve state estimation problems [56,76]. If we introduce

again the sliding window Wt = {t − N, t − N + 1, . . . , t}, then the goal of

the estimation problem becomes to find an estimate of the partial state

trajectory Xt−N :t ≡ col(xt−N , . . . , xt) by using the information available in

Wt. In this way, besides increasing the information content of the binary

measurements as in [21,22], by adopting the MHE approach we are also able

to solve state estimation problems with constrained system dynamics, such

that xt ∈ X ⊆ Rn, ut ∈ U ⊆ Rm, wt ∈ W ⊆ Rn and vit ∈ V ⊆ Rp, where

X, U , W and V are convex sets. Therefore, in place of the full information

cost Jt(Xt), at each time instant t the minimization of the following moving-

horizon cost is addressed:

JMH
t (Xt−N :t) = Γt−N (xt−N ) +

t∑
k=t−N

‖xk+1 − f(xk, uk)‖2Q

−
t∑

k=t−N

p∑
i=1

[
yik lnF i(τ i − gi(xk)) + (1− yik) ln Φi(τ i − gi(xk))

]
,

(1.40)
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where the non-negative initial penalty function Γt−N (xt−N ), known in the

MHE literature as arrival cost (see [7,156]), is introduced so as to summarize

the past data y0, . . . , yt−N−1 not explicitly accounted for in the objective

function. The form of the arrival cost plays an important role in the be-

havior and performance of the overall estimation scheme. While in principle

Γt−N (xt−N ) could be chosen so that the minimization of the moving-horizon

cost (1.40) yields the same estimate that would be obtained by minimizing

(1.39), an algebraic expression for such a true arrival cost seldom exists, even

when the sensors provide continuous (non-threshold) measurements [156].

Hence, some approximation must be used. With this respect, a common

choice [6], also followed in this section, consists of assigning to the arrival

cost a fixed structure penalizing the distance of the state xt−N at the be-

ginning of the sliding window from some prediction xt−N computed at the

previous time instant, making the estimation scheme recursive. A natural

choice is then a quadratic arrival cost of the form

Γt−N (xt−N ) = ‖xt−N − xt−N‖2Ψ , (1.41)

which has been used also in the deterministic approach to state estimation

with binary sensors, shown in the previous section. From the Bayesian point

of view, this choice corresponds to approximating the probability density

function of the state xt−N , conditioned to all the measurements collected up

to time t−1, with a Gaussian having mean xt−N and covariance Ψ−1. As for

the choice of the weight matrix Ψ, in the case of continuous measurements

it has been shown that stability of the estimation error dynamics can be

ensured provided that Ψ is not too large, so as to avoid an overconfidence on

the available estimates [6, 7]. Recently in [21, 22], similar results have been

proven to hold also in the case of binary sensors, but in the deterministic

context. In practice, Ψ can be seen as a design parameter which has to be

tuned by pursuing a suitable trade-off between such stability considerations

and the necessity of not neglecting the already available information, since

in the limit for Ψ going to zero the approach becomes a finite memory one.

Summing up, at any time instant t = N,N+1, . . ., the following problem

has to be solved.

Problem ECt : Given the prediction xt−N , the input sequence {ut−N , . . . , ut−1},
the measurement sequences {yit−N , . . . , yit, i = 1, . . . , p}, find the optimal es-

timates x̂◦t−N |t, . . . , x̂
◦
t|t that minimize the cost function (1.40) with arrival

cost (1.41).
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In order to propagate the estimation procedure from Problem ECt−1 to Prob-

lem ECt , the prediction xt−N is set equal to the value of the estimate of xt−N
made at time instant t − 1, i.e., xt−N = x̂t−N |t−1. Clearly, the recursion is

initialized with the a priori expected value x0 of the initial state vector. Let

us observe that, in general, solving Problem ECt entails the solution of a non-

trivial optimization problem. However, when the (discrete-time) dynamical

system is linear, the resulting optimization problem turns out to be convex

so that standard optimization routines can be used in order to find the global

minimum. To see this, let us consider again that f(xt, ut) = Axt +But and

gi(xt) = Cixt, i = 1, . . . , p, where A, B, Ci are constant matrices of suitable

dimensions. Then, the following result, whose proof is Appendix A, holds.

Proposition 1.3: If assumption A3 holds, the dynamical system is lin-

ear and the noise are distributed as a Gaussian probability density function,

then the CDF Φi(τ i − Cixt) and its complementary function F i(τ i − Cixt)
are log-concave. Hence, the cost function (1.40) with arrival cost (1.41) is

convex.

The convexity of the cost function (1.40) is guaranteed also in the more

general case in which the statistical behavior of the random variables x0,

wt, vt is described by logarithmical concave distribution functions. Indeed,

if a probability density function is log-concave, also its cumulative distribu-

tion function is log-concave, so that the contribution related to the threshold

measurements in (1.40) is effectively convex. Let us observe that the pro-

posed MH-MAP state estimator turns out to be the optimal Bayesian filter

when we want to estimate the state of a linear dynamics with a network of

independent binary sensors.

1.3.2 Dynamic field estimation

As main application of the MH-MAP estimator for macroscopic systems,

we address state estimation for a spatially distributed system with a noisy

measurement, which is provided by a set of binary sensors spread over the

spatial domain Ω of interest. In particular, we consider the problem of

reconstructing a two-dimensional diffusion field. The diffusion process is
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governed by the following parabolic Partial Differential Equation (PDE):

∂c

∂t
− λd∇2c = 0 in Ω (1.42)

which models various physical phenomena, as for example the spread of a

pollutant in a fluid. In this case, c(ξ, η, t) represents the space-time de-

pendent substance concentration, λd denotes the constant diffusivity of the

medium, and ∇2 = ∂2/∂ξ2 + ∂2/∂η2 is the Laplace operator, (ξ, η) ∈ Ω

being the 2D spatial variables. Furthermore, we assume mixed boundary

conditions to the PDE (1.42), i.e. a non-homogeneous Dirichlet condition

c = ψ on ∂ΩD, (1.43)

which specifies a constant-in-time value of concentration on the boundary

∂ΩD, and a homogeneous Neumann condition on ∂ΩN = ∂Ω\∂ΩD, assumed

impermeable to the contaminant:

∂c/∂υ = 0 on ∂ΩN , (1.44)

where υ is the outward pointing unit normal vector of ∂ΩN .

The objective is to estimate the values of the dynamic field of interest

c(ξ, η, t) given the measurements from a set of binary measurements in Ω.

The PDE system (1.42)-(1.44) is simulated with a mesh of finite elements

over Ω via the Finite Element (FE) approximation described in [20, 79].

Specifically, the domain Ω is subdivided into a suitable set of non overlapping

regions, or elements, and a suitable set of basis functions φj(ξ, η), with j =

1, . . . ,mφ, is defined on such elements. The choices of the basis functions

φj and of the elements are key points of the FE method. In this specific

case, we have chosen the elements of the mesh to be triangles in 2D, which

define a FE mesh with vertices (ξj , ηj) ∈ Ω, j = 1, . . . ,mφ. Then each basis

function φj is assumed to be a piece-wise affine function, which vanishes

outside the elements of the mesh in correspondence of the vertices (ξj , ηj),

so that φj(ξi, ηi) = δij , where δij denotes the Kronecker delta. In order to

take into account also the mixed boundary conditions, the basis functions are

supposed to follow a proper ordering law: m points of the mesh correspond to

vertices, which lie either in the interior of Ω or on ∂ΩN , while the others mφ−
m points correspond to vertices lying on the boundary ∂ΩD. Accordingly,

the discretized function, modeling the substance concentration within the
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domain Ω, is approximated as

c(ξ, η, t) ≈
m∑
j=1

φj(ξ, η) cj(t) +

mφ∑
j=m+1

φj(ξ, η)ψj , (1.45)

where cj(t) are the unknown expansion coefficient of the function c(ξ, η, t) at

the time instant t, while ψj is the known expansion coefficient of the bound-

ary function ψ(ξ, η). In this regard, let us observe that the second summa-

tion in (1.45) is needed in order to impose the non-homogeneous Dirichlet

condition on the boundary ∂ΩD, as given in (1.43).

As stated by the FE approximation, we recast the PDE (1.42) into the

following integral form:∫
Ω

∂c

∂t
ϕ dξdη − λd

∫
Ω

∇2c ϕ dξdη = 0 (1.46)

where ϕ(ξ, η) is a generic space-dependent weight function. It is worth to

point out that the function ϕ(ξ, η) is a weight function, that is introduced

as an additional degree of freedom of the method in order to ensure that on

average the solution of the PDE is effectively given by the substance concen-

tration (1.45). This procedure, which spatially discretizes the diffusion field

within the domain Ω, relies on weighted residual methods. The interested

reader to further details on the FEM theory is referred to [30]. Now, by

applying Green’s identity, i.e.∫
Ω

∇2c ϕ dξdη =

∫
∂Ω

∂c

∂υ
ϕdξdη −

∫
Ω

∇c∇ϕdξdη, (1.47)

one obtains:∫
Ω

∂c

∂t
ϕ dξdη + λd

∫
Ω

∇T c ∇ϕdξdη − λd
∫
∂Ω

∂c

∂υ
ϕ dξdη = 0 . (1.48)

Usually, the Galerkin weighted residual method [30] is then applied. It en-

sures that the error done by the approximation is minimal in correspondence

of the nodes of the elements of the mesh, that in this case are the vertices

of the triangles. According to the Galerkin method, the test function ϕ is

chosen equal to the basis functions φi(ξ, η). Hence, by exploiting the ap-
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proximation given by (1.45), we obtain the following equation:

m∑
i=1

∫
Ω

φiφj dξdη ċi(t) + λd

m∑
i=1

∫
Ω

∇Tφi ∇φj dξdη ci(t)

+λd

mφ∑
i=m+1

∫
Ω

∇Tφi ∇φj dξdη ψi = 0 (1.49)

for j = 1, . . . ,m. Let us observe that in (1.49) the boundary integral in

(1.48) has been omitted, since it is equal to 0 due to the validity of the

homogeneous Neumann condition (1.44) on ∂ΩN and to the fact that, by

construction, the basis functions φj , j = 1, . . . ,m, are vanishing on ∂ΩD.

Now, by defining the state vector x ≡ col(c1, . . . , cm) and the vector of

boundary conditions with γ ≡ col(ψm+1, . . . , ψmφ), (1.49) can be written in

the more compact form

Mẋ(t) + Sx(t) + SDγ = 0 (1.50)

where S is the so-called stiffness matrix, M the mass matrix, and SD captures

the physical interconnections among the vertices affected by the boundary

condition (1.43) and the remaining nodes of the mesh. The expression of

the matrices S, M and SD can be directly derived by (1.49). Thus, if we

apply for example the implicit Euler method, (1.50) can be discretized in

time, obtaining the following linear discrete-time model

xt+1 = Axt +B u+ wt (1.51)

where

A ≡
[
1 + δt M−1S

]−1

B ≡
[
1 + δt M−1S

]−1
M−1δt

u ≡ −SD γ

.

Moreover, in (1.51) δt is the time integration interval of the implicit Euler

method, and wt is the process disturbance taking into account the space-time

discretization errors. Let us notice that the linear system (1.51) has dimen-

sion m equal to the number of vertices of the mesh, which do not lie on the

boundary ∂ΩD, and it is assumed to be monitored by a network of p thresh-

old sensors. Each sensor, before threshold quantization is applied, directly

measure the pointwise-in-time-and-space concentration of the contaminant



44 State estimation via networks of binary sensors

in a point (ξi, ηi) of the spatial domain Ω. By exploiting (1.45), such a con-

centration can be written as a linear combination of the concentrations on

the grid points in that

c(ξi, ηi, t) ≈ Cixt +Diγ, (1.52)

where

Ci ≡ [φ1(ξi, ηi) , . . . , φn(ξi, ηi)] , (1.53)

Di ≡
[
φn+1(ξi, ηi) , . . . , φnφ(ξi, ηi)

]
. (1.54)

Hence the resulting output function takes the form

zit = Cixt + vit, i = 1, . . . , p (1.55)

where the constant Diγ can be subsumed into the threshold τi.

As example, let us consider the diffusion equation (1.42) with λd =

0.01 [m2/s]. It has been discretized in 1695 triangular elements and 915 ver-

tices, where the field of interest is defined over a bounded 2D spatial domain

Ω, which covers an area of 7.44 [m2]. Moreover, we have chosen the fixed

integration step length equal to δt = 1 [s], γ = 30 [g/m2], x0 = 0n [g/m2]

as initial condition of the field vector, and a non-homogeneous Dirichlet

boundary condition (see (1.43)) on the bottom edge and no-flux condition

(Neumann boundary condition - see (1.44)) on the remaining portions of

∂Ω. As shown in Fig. 1.9, the domain Ω has a L-shape. Traditionally, L-

shaped domains have been used in boundary-value problems as a basic yet

challenging problem, since the non-convex corner causes a singularity in the

solution of the diffusion equation. The aforementioned setting defines the

ground truth simulator of the problem, which constitutes the basis to design

the corresponding MH-MAP estimator. The latter, indeed, implements a

coarser mesh (in this regard, see Fig. 1.9) of mφ = 97 vertices (m = 89),

and runs at a slower sample rate (i.e. 0.1 [Hz]), so that the filter is affected

also by model uncertainties. The initial condition of the estimated dynamic

field is set to x0 = 5 · 1n [g/m2], the moving window has size N = 5, and

the weight matrices in (1.26) are chosen as P = 103 · 1n and Q = 102 · 1n.

As for the binary measurements, we first corrupted the true concentrations

(from the dynamical model of (1.51)) with a Gaussian noise with variance

ri, and, then, we applied a different threshold τ i for each sensor i of the

network. Furthermore, in order to receive informative threshold measure-

ments, the threshold τ i, i = 1, ..., p, are generated as uniformly distributed
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Figure 1.9: Mesh, used by the MH-MAP estimator, given by 152 elements

(triangles), and 97 nodes (vertices).

random numbers in the interval [0.05, 29.95], being [0, 30] the range of nom-

inal concentration values throughout each simulation. The duration of each

simulation experiment is fixed to 1200 [s] (120 samples).

Fig. 1.10 shows the performance of the proposed MH-MAP state esti-

mators implemented in MATLAB, in terms of the RMSE of the estimated

concentration field. To obtain the RMSEs plotted in Fig. 1.10, the esti-

mation error et,j at time t in the j−th simulation run has been averaged

over 304 sampling points (evenly spread within Ω) and the number of Monte

Carlo realizations has been set to α = 100. It can be observed that the pro-

posed estimators successfully estimate the dynamic field, even with a small

number of randomly deployed binary sensors. Furthermore, the effect of the

measurement noise on the mean value of the RMSE can be seen in Fig. 1.11,

in which it becomes apparent how for certain values of ri, including an ob-

servation noise with higher variance, the quality of the overall estimates can

actually be improved. Such result numerically demonstrate the validity of

the above stated noise-assisted paradigm in the recursive state estimation
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Figure 1.10: RMSE of the concentration estimates from the MH-MAP state

estimator as a function of time, for a random network of 5 threshold sensors.

Figure 1.11: RMSE of the concentration estimates as a function of the mea-

surement noise variance, for a fixed constellation of 20 threshold sensors. It is

shown here that operating in a noisy environment turns out to be beneficial,

for certain values of ri, to the state estimation problem.
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with threshold measurements.

1.3.3 Fast MH-MAP filter for large-scale problems

In order to achieve a good approximation of the original continuous field,

a large number of basis function need to be used in the expansion (1.45).

Hence, in general the FEM-based space discretization gives rise to a large-

scale system possibly characterized by thousands of state variables, equal

to the number of the vertexes of the mesh not lying on the boundary ∂Ω

of the domain. This means that a direct application of the MH-MAP filter

involves the solution, at each time instant, of a large-scale (albeit convex)

optimization problem. Although today commercial optimization software

can solve general convex programs of some thousands equations, the problem

becomes intractable from a computational point of view when the number

of variables (that is, the number of vertexes of the FE grid) is too large.

Further, even when a solution to the large-scale optimization problem can be

found the time required for finding it may not be compatible with real-time

operations (recall that the MH-MAP filter requires that each optimization

terminates within one sampling interval).

Here, we propose a more computationally efficient and fast version of the

MH-MAP filter for the real-time estimation of a dynamic field that is based

on the idea of decomposing the original large-scale problem into simpler

subproblems by means of a two-stage estimation procedure. Such results

are discussed in [19]. The proposed method allows to efficiently solve the

problem of estimating the state (ideally infinite dimensional) of a spatially-

distributed dynamical system just by using sensors with minimal information

content, such as a binary sensor. The improved version of the aforementioned

MH-MAP filter, which can be suitable for large-scale systems, will split the

estimation problem into two main steps:

(1) Estimation of the local concentration correspondence of each binary sen-

sor by means of p independent MH-MAP filters. The concentration

estimates provided by each local MH-MAP filter allows to recast the

threshold measurements into linear pseudo-measurements.

(2) Field estimation over a mesh of finite elements defined over the (spatial)

domain Ω on the basis of the linear pseudo-measurements provided by

the local filters in step 1. For this purpose, any linear filtering technique

suitable for large-scale systems can be used (see e.g. the finite-element
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Kalman filter as in [20]. In this step, field estimation is performed by

minimizing a single quadratic MH cost function for linear systems.

This solution turns out to be more computationally efficient as compared to

a direct application of the MH-MAP filter to the dynamical system in that:

(i) the number of binary sensors spread over the domain Ω is typically much

smaller than the number of vertexes (i.e. p � n); (ii) as will be clarified in

the following, each local MH-MAP filter in step 1 involves the solution of a

convex optimization problem with a reduced number of variables.

Step 1

Let us analyze in more detail step 1 of the fast MH-MAP filter. To this

end, let us denote by σit the value of the concentration in correspondence of

sensor i at the t-th sampling instant, i.e. σit = c(ξi, ηi, t), and let σik,t denote

the value of the k-th time-derivative of such a concentration, i.e.

σik,t ≡
∂k

∂sk
c(ξi, ηi, t)

∣∣∣∣
s=tTs

. (1.56)

Under the hypothesis of a small enough sampling time, in correspondence of

each binary sensor the dynamical evolution of the propagating field can be

approximated by resorting to a truncated Taylor series expansion, so that

σit+1 ≈ σit +

K∑
k=1

(Ts)
k

k!
σik,t (1.57)

Then, the local dynamics of the concentration in correspondence of sensor i

can be described by a linear dynamical system with state χit =
[
σit, σ

i
1,t, . . . , σ

i
K,t

]′
and state equation

χit+1 = Ã χit + wit, (1.58)

where the matrix Ã is obtained from (1.56) and wit is the disturbance acting

on the local dynamics with zero mean and inverse covariance G̃. Notice that

models like (1.58) are widely used in the construction of filters for estimating

time-varying quantities whose dynamics is unknown or too complex to model

(for instance, they are typically used in tracking of moving objects [14]).

With this respect, a crucial assumption for the applicability of this kind of

models is that the sampling interval be sufficiently smaller as compared to the

time constants characterizing the variation of the quantities to be estimated.
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Hence, their application in the present context is justified by the fact that,

in practice, (binary) concentration measurements can be taken at a high

rate so that between two consecutive measurements only small variations

can occur. In model (1.58), the simplest choice amounts to taking K = 0

and wit as a Gaussian white noise, which corresponds to approximating the

concentration as nearly constant (notice that, in this case, we have Ã = 1).

Instead, by taking K = 1, we obtain a nearly-constant derivative model with

state transition matrix

Ã =

[
1 Ts
0 1

]
(1.59)

which is equivalent to the usual nearly constant velocity models for moving

object tracking [14]. Clearly, each local model (1.58) is related to the i-th

binary measurement via the measurement equation

zit = C̃ χit + vit

yit = hi
(
zit
)

(1.60)

where

C̃ ≡ [1 , 0, · · · , 0] . (1.61)

Then, for each sensor i, at each time instant t the minimization of the fol-

lowing MH-MAP cost function is addressed

J̃ it (X
i
t−N :t) = ‖χit−N − χit−N‖2Ψ̃ +

t∑
k=t−N

‖χik+1 − Ã χik‖2Q̃

−
t∑

k=t−N

[
yik lnF i

(
τ i − C̃ χik

)
+ (1− yik) ln Φi

(
τ i − C̃ χik

)]
,

(1.62)

where Xit−N :t ≡ col
(
χik
)t
t−N and χit−N is the estimate of the local state at

time t − N computed at the previous iteration. In conclusion, at any time

instant t = N,N + 1, . . ., for any binary sensor i the following problem has

to be solved.

Problem step 1: Given the prediction χit−N and the measurement sequence

{yit−N , . . . , yit}, find the optimal estimates χ̂it−N |t, . . . , χ̂
i
t|t that minimize the

cost function J̃ it (X
i
t−N :t).
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As before, the propagation of the estimation problem from time t − 1 to

time t is ensured by choosing χit−N = χ̂it−N |t−1. The number of variables

involved in each of such optimization problems is (K + 1)(N + 1) and, in

view of (1.58) and (1.60), the cost function J̃ it is convex according to Propo-

sition 1.3. Hence, basically, step 1 amounts to solving p convex optimization

problems of low/moderate size.

Step 2

In step 2, the concentration estimates σ̂ik|t, k = t − N, . . . , t, obtained by

solving Problem of step 1 in correspondence of any binary sensor i, are used

as linear pseudo-measurements in order to estimate the whole concentration

field over the spatial domain Ω. By resorting again to the FE approximation,

the vector of coefficients xt can be estimated, for example, by minimizing a

quadratic MH cost function of the form:

J t(Xt−N :t) = ‖xt−N − xt−N‖2Ψ +

t∑
k=t−N

‖xk+1 −Axk −Bu‖2Q

+

t∑
k=t−N

p∑
i=1

‖σ̂ik|t − Cixk −Diγ‖2Ξi (1.63)

where the quantities A, B, γ, Ci, Di, for i = 1, . . . , p, are obtained by means

of the FE method as in Section 1.3.2. Notice that each term weighted by

the positive definite matrix Ξi penalizes the distance of the concentration

Cixk + Diγ estimated through the FE approximation from the concentra-

tion σ̂ik|t estimated in step 1 on the basis of the binary measurements. The

prediction xt−N is computed in a recursive way as previously shown. In

conclusion, at any time instant t = N,N + 1, . . ., after the application of

step 1 the following problem has to be addressed.

Problem step 2: Given the prediction xt−N and the optimal estimates

{σ̂it−N |t, . . . , σ̂it|t}, i = 1, . . . , p obtained by solving Problem of step 1, find the

optimal estimates x̂t−N |t, . . . , x̂t|t that minimize the cost function J t(Xt−N :t).

The above estimation problem admits a closed-form solution since the cost

function (1.63) depends quadratically on the states {xt−N |t, . . . , xt|t}. Hence,

the computational efforts needed to perform step 2 of the fast MH-MAP fil-

ter turns out to be limited, so that the overall algorithm is computationally
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efficient as compared to a direct application of the MH-MAP filter to the

large-scale system arising from the FE discretization. Numerical investiga-

tions of the effectiveness of the proposed Fast MH-MAP estimator can be

found in [19].

1.4 Noise-assisted estimation

The noise-assisted paradigm relies on the idea that we can extract a greater

amount of information from the knowledge of the measurement noise, which

unavoidably affects each binary sensor. The measurement noise, indeed,

shifts (of a certain amount) the analog measurements between the system

outputs and the threshold of the binary sensors, leading in this way to a

sufficiently large number of additional switching instants. The increased in-

formation content given by a greater number of switching instants can be

exploited for estimation purposes only by using a probabilistic approach,

whose aim is to find the optimal estimates by solving a Maximum A Pos-

teriori (MAP) estimation problem. Such information is contained in the

likelihood function of the binary measurements, which is evaluated at each

time instant of the sliding window Wt. The MAP estimation problem, then,

relies on defining a stochastic cost function, which is proportional to the

corresponding log-likelihood function. Let us observe, moreover, that ad-

ditional information contributions from the measurements can be extracted

also by virtual/fictituos switching instants, which are first obtained by prop-

agating the state estimates at the previous step of the procedure by using

the model of the system and, then, compared with the predictions given by

the measurement equation within the estimation sliding window. Clearly,

the moving horizon approximation is crucial to design a viable recursive pro-

cedure to state estimation with binary sensors, allowing us both to reduce

the computational complexity of the problem and to derive stability results.

Let us observe that the latter considerations lose of significance if the mea-

surement devices are linear. A linear sensor, indeed, provides the maximum

amount of information when the measurement noise is absent, returning in

such case the best estimates. However, when the sensors are characterized

by a prominent nonlinear characteristic (as e.g. for a binary sensor), the

aforestated probabilistic approach can ensure to obtain good performance in

noisy environments.
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Towards noise-assisted quantum estimation

The probabilistic approach to state estimation with binary sensors is very

promising if applied to quantum mechanics, mainly for two reasons.

� We could be able to derive a generalized expression of the Heisenberg’s

uncertainty principle when one or more measurement devices are taken

into account and an algorithm (or in general a software) is integrated to

them, with the capabilities to process the information coming from the

devices and provide improved accuracy (super-resolution) for quantum

state estimation [144].

� We could design and realize reliable estimation schemes based on the

noise-assisted estimation paradigm introduced in this chapter.

Hence, to conclude the chapter we will introduce a motivational example

to convince the reader about a possibly successful application of the MH-

MAP estimator to quantum systems. To this end, let us start from the

well-known double-slit experiment, that has demonstrated the fundamentally

probabilistic nature of quantum mechanical phenomena, by showing that

light and matter can exhibit features both of waves and particles [52].

A pictorial representation of the double-slit experiment is shown in Fig. 1.12,

where S denotes a source of electrons, with the same energy and the same

probability to impinge on the screen A, after coming out in all the space

directions. Such screen has two holes, 1 and 2, through which the electrons

may pass. Moreover, behind the screen A a second screen B is present. In

correspondence of B, we place a set of p photo-detectors, each at various

distance di, with i = 1, . . . , p, from the center of the screen [77]. The recon-

struction of the interference patterns along the screen B is provided by the

photo-detectors, which measure the presence or the absence of an electron

at the distance di at the time instant t. In case both the holes are open,

the standard intensity profile I ∝ p(di), representing the wave interference

pattern, is recovered. I is the intensity of a wave, which is arriving at the

screen B (at distance di from the center) by starting from S, while p(di) is

the probability to find an electron at such a distance. In particular, the im-

ages (a)-(d) in Fig. 1.13 from [186] by Tonomura et.al. show the interference

patterns with 100, 3000, 20000 and 70000 electrons, whose mean velocity is

approximately equal to 0.4c, where c is the speed of light.

A photo-detector is a binary measurement device. Indeed, by assuming

that the power transferred by the laser source S is very weak, each photo-
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Figure 1.12: Pictorial representation of the double-slit experiment, proving

the wave-particle duality. From a laser source, one electron at a time reaches

the screen B, by first passing through the holes 1 and 2 of the screen A. On

the screen B we observe an interference pattern, which is given by dark

and light regions representing the constructive and destructive interference

fringes of system with a wave behaviour.

Figure 1.13: Double-slit experiment by Tonomura et.al. [186], which was

performed by collecting 100 (a), 3000 (b), 20000 (c) and 70000 (d) electrons

on screen B.
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detector records a pulse representing the arrival of an electron at a different

time instant t, so that two or more photo-detectors cannot simultaneously

respond for the arrival of a particle. The latter event can occur only if the

source emits two electrons within the resolving time of the detectors. How-

ever, the probability of such occurrence decreases exponentially by reducing

the power of the laser source. As a result, each detector at position di records

the passage of a single electron, which travels from S to di, at different (ran-

dom) times. In other words, the effective arrival of the electrons at the screen

B is not continuous, but corresponds to a rain of particles. As a remark, let

us observe that we are implicitly assuming that each measurement device

(which can be also modeled as a single qubit in quantum computing or a

cavity mode in quantum electrodynamics) is not altered by the process of

measurement, so that the presence of the detector can only affect the energy

difference with the measured system.

Now, to introduce the noise-assisted quantum estimation paradigm, we

define by p1(di) and p2(di) the probabilities for the electron to arrive at the

screen B, respectively, through hole 1 and hole 2. Each of these probabilities

can be found by measuring the change of the electron to arrive at di when

only the corresponding hole is open. The probability p(di) strictly depends

on p1(di) and p2(di): if both holes are open, then the change of arrival at

the position di is not simply given by the sum of the probabilities p1(di)

and p2(di). It has been observed, indeed, that p(di) is the absolute square

of a phase term φ(di) (a complex number), which is the arrival amplitude to

reach the point di. In other words

p(di) ≡ |φ(di)|2, with φ(di) = φ1(di) + φ2(di), (1.64)

where φ1(di) and φ2(di) are solutions of a wave equation, modeling the spread

of an electron from S to the point di by passing through the holes 1 and 2,

respectively. As a result, p1(di) = |φ1(di)|2 and p2(di) = |φ2(di)|2. However,

this interference pattern can no longer be observed if one of the two holes is

closed, or if one observer is present behind them. In such cases, the proba-

bility p(di) turns out to be classical, in the sense that it becomes equal to the

sum of p1(di) and p2(di). Thus, the presence of an observer in correspondence

of hole 1 or 2 radically changes the dynamics of the system. In this regard, it

might be worth asking what is the best accuracy that can be achieved in de-

tecting the presence of an observer behind one of the two holes by adopting a

version of the MH-MAP state estimator, which has been properly designed for

the quantum mechanical framework. To this end, we first model the measure-
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ment equation, by observing that the binary measurements are statistically

independent in each time interval (indeed the photo-detectors do not affect

each other). Since the resolution of the photo-detector is chosen comparable

with the intensity of the laser source, so that each sensor can record at most

one electron in the time instants of the acquisition procedure, the outputs

y(di, t) of the photo-detectors are impulsive signals. The latter assume value

1 or 0 in correspondence of the discretized time instants tj = jTs (Ts is the

sampling time, which in this case is directly proportional to the detector

resolution), respectively, when an electron is detected or not detected. If we

consider again the sliding window Wt = {t−N, t−N + 1, . . . , t} composed

of N samples, then the measurement equation will be the intensity profile

p(di), which is evaluated within Wt:

pt−N :t(di) =
1

N

 N∑
j=0

y(di, t−N + j)

 . (1.65)

Then, being each electron detected by only one photo-detector at any time

instant t, the following constraint can be stated:

p∑
i=1

y(di, t) = 1 ∀t, (1.66)

so that the probability conservation is ensured:

p∑
i=1

pt−N :t(di) =
1

N

N∑
j=0

p∑
i=1

y(di, t−N + j) =
1

N

N∑
j=0

1 = 1.

Instead, the measurement noise vit on the i−th photo-detector is modeled

as a Bernoulli random variable, whose information content is encoded in the

conditional probability p(vit|yit), where yit is the measurement outcome at

time instant t as if the i−th photo-detector were ideal. Thus, if yit = 0, then

the measurement noise vit can assume the values 0 and 1, respectively, with

probabilities p1 and 1 − p1. Conversely, if yit = 1, vit can be 0 or −1 with

probabilities p2 and 1− p2. More formally,

If yit = 1⇒ vit =

{
0,with prob. = p1

−1,with prob. = 1− p1

If yit = 0⇒ vit =

{
0,with prob. = p2

1,with prob. = 1− p2



56 State estimation via networks of binary sensors

so that ∑
k

p(vit,k|yit = yit,j) = 1,∀j, i ∈ N and ∀t ∈ R,

where vit,k and yit,j are, respectively, the values that can be assumed by

the random variables vit and yit at time t. Finally, also the presence of the

observer will be described by a piece-wise function, entering the dynamical

behaviour of the whole system. In this respect, the double-slit experiment

represents the natural benchmark to test the presence and the role of an

external observer in quantum experimental setups, since any attempt to

determine which slit an electron has passed through destroys its interference

pattern on the arrival screen (screen B in Fig. 1.12).

To summarize, by knowing the dynamical model describing the dynamics

of an electron from the laser source S to the screen B, one could infer if

an external observer is present in correspondence of the holes 1 or 2, i.e.

if the probability profiles pt−N :t(di) are classical or quantum. Afterwards,

by taking into account the contribution of noise over the photo-detector

outcomes, one could estimate not only the presence of the observer, but also

the quantum state of the electron (i.e. the expectation values of its position

and momentum operators) around the two holes on the screen A, by using the

outcomes yes or no from the photo-detectors. We expect that, by applying

a properly designed MH-MAP estimator, the estimation accuracy is largely

improved.

As additional remarks, let us notice that placing a given number p of

photo-detectors along the screen B and, then, waiting for the arrival of an

electron to the screen B corresponds, to all effects, to irregularly sample a

portion of the quantum state of the system. Indeed, both the measurement

noise and the dephasing (which randomizes the phase of the wave function

of the system at any time instant t) contributes to make irregular the nom-

inal sampling interval. Furthermore, it is worth noting that to define a

noise-assisted estimation paradigm in the quantum mechanical context it is

essential to assume that the measurements are not directly performed on the

components of the system state that has to be inferred. In other words, the

estimation scheme (exploiting a noise-assisted paradigm) has to be chosen

among those schemes, which implement a Quantum Non-Demolition (QND)

measurement [15]. The latter is a special type of measurement, for which the

uncertainty of the measured observable (given by the measurement process)

does not increase with respect to the measured value after the subsequent

evolution of the system. Also for this reason, a QND measurement is the
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most classical and least disturbing type of measurement in quantum mechan-

ics. Accordingly, also the noise-assisted estimation paradigm requires both

to perform indirect sequences of measurements and to propagate (over time)

the estimates of the quantum state without losing information about the dy-

namical behaviour of the system. In this way, the accuracy of the estimation

procedure shall be improved (from a purely probability point of view), by

quantitatively using the information content of the measurement outcome,

and a driven optical cavity Quantum Electro-Dynamics (QED) setup could

be chosen as the most suitable apparatus to effectively achieve noise-assisted

quantum estimation. Such a setup, already used e.g. in [46] to probe energy

transport dynamics in photosynthetic bio-molecules, is essentially given by

a pump-probe scheme, in which the probe system is the cavity mode and

the sample system, whose state has to be estimated, is confined inside an

optical cavity. The energy injected into the system, instead, is provided by

an external laser field (pump).

1.5 Conclusions and contributions

Summarizing, this chapter provides the following contributions:

� Design of novel moving-horizon state estimators for discrete-time dy-

namical systems subject to binary (threshold) measurements using

both a deterministic and a probabilistic approach.

� By adopting the deterministic approach, both a least-square and a

piece-wise quadratic cost function to be minimized have been intro-

duced, either including or not constraints (boundary conditions). By

assuming also the presence of unknown but bounded noises affect-

ing both the system and the measurement devices, stability results

have been proved, showing that all proposed estimators, irrespectively

of the cost being used and of the inclusion of constraints, guarantee

an asymptotically bounded estimation error under suitable observabil-

ity assumptions. Performance comparison and examples have demon-

strated the effectiveness, in terms of both estimation accuracy and

computational cost, of our approach, especially with respect to parti-

cle filtering. However, from a more practical point of view, it is worth

noting that, depending on the system dynamics, the adoption of binary

sensors with time-invariant thresholds may not be sufficient to always
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ensure uniform observability. Thus, it can be required that one uses a

greater number of sensors or to make each threshold oscillate within

the range of variability of the sensed variable with a sufficiently high

frequency. In this case, the optimal value for the frequency of oscilla-

tion of the sensors threshold is strictly dependent on the value of N

(length of the observation window) and the eigenvalues of A. Indeed,

one can expect that less binary sensor detections are obtained when

the eigenvalues of A are real (and not complex conjugate) or the input

excitation is poor (given e.g. by pulse or step functions).

� Formulation of Moving Horizon (MH) Maximum A posteriori Proba-

bility (MAP) estimators to solve state estimation problems with binary

sensors (probabilistic approach). It has been proved that, in case the

dynamical system is linear and the threshold measurements are statis-

tically independent, the optimization problem turns out to be convex,

and, thus, solvable with computationally efficient algorithms. By re-

casting the estimation problem in a Bayesian framework, each binary

measurement is characterized by an information content for each time

instant t, encoded in the likelihood functions p(yit|xt), which is able to

distinguish in probability if a binary switching is due to noise or to the

dynamical behaviour of the system. Moreover, the simulation results

have exhibited the conjectured noise-assisted feature of the proposed

estimator: starting from a null measurement noise, the estimation ac-

curacy improves until the variance of the noise achieves an optimal

value, beyond which the estimation performance deteriorates.

� By using the probabilistic approach and the Finite Element (FE) ap-

proximation, field estimation of spatially distributed system with noisy

binary measurements has been addressed. The PDE, modeling a given

propagating field, has been discretized and simulated with a mesh of

finite elements over the spatial domain Ω, and a network of pointwise-

in-time-and-space threshold sensors has been introduced. Then, we

have proposed also an improved version of the MH-MAP estimator,

which can be adopted for large-scale systems.

� Introduction of a noise-assisted estimation paradigm for quantum dy-

namical systems.



Chapter 2

Noise-assisted quantum

transport

In this chapter, we will address theoretical models for noise-

assisted quantum transport, that have been confirmed and repro-

duced with an high degree of controllability by a scalable transport

emulator based on optical fiber cavity networks, completely real-

ized at the Consiglio Nazionale delle Ricerche (CNR) in Florence,

Italy. The possibility to design a perfectly controllable experimen-

tal setup, whereby one can tune and optimize its dynamics param-

eters, is a challenging but very relevant task, so as to emulate the

transmission of energy in light harvesting processes. Also disor-

der and dephasing noise can be finely tuned within the emulator

until the energy transfer efficiency is maximized. In particular,

we proved that the latter are effectively two control knobs allowing

to change the constructive and destructive interference patterns

to optimize the transport paths towards an exit site. 1

Introduction

Transport phenomena, i.e. the transmission of energy through interacting

systems, represent a very interdisciplinary topic with applications in many

1The part of this chapter related to noise-assisted transport has been published as

“Disorder and dephasing as control knobs for light transport in optical cavity networks”

in Scientific Reports 6, 37791 (2016) [194].

59
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fields of science, such as physics, chemistry, and biology. In particular, the

study and a full understanding of such mechanisms will allow to improve

in experimental and industrial setups the process of transferring classical

and quantum information across complex networks, and to explain the high

efficiency of the excitation transfer through a network of chromophores in

photosynthetic systems [131]. Very recently theoretical and experimental

studies, indeed, have shown that the remarkably high efficiency (almost

100%) of the excitation energy transfer in photosynthetic systems seems

to be the result of an intricate interplay between quantum coherence and

noise [42, 49, 65, 95, 115, 132, 142, 152, 158]. In this regard, let us recall the

concepts of quantum coherence and dephasing noise. Quantum coherence is

a feature of each quantum system, and comes from their wave-like properties.

As previously shown, particles such as electrons can behave as waves, which

can interfere and originate peculiar patterns, given by sequences of bright

and dark bands representing, respectively, constructive and destructive in-

terference. Such wave-like behaviour, which is mathematically described by

a wave function, is related to quantum coherence. Conversely, dephasing

(or quantum decoherence) [172] is the mechanism which leads to the loss of

coherence, and involves quantum systems that are not completely isolated,

but still interacting with the environment. Then, the effects of the environ-

ment to the quantum system dynamics is to randomize the phase of its wave

function.

Regarding energy transport phenomena, the presence of coherence be-

tween chromophores of the photosynthetic system leads to a very fast delo-

calization of the excitation, that can hence exploit several paths to the target

site, named also as sink or reaction center. However, since the destructive

interference among different pathways and energy gaps between sites of the

complex are obstacles to the transmission of energy, this regime is not opti-

mal by itself. Only the additional and unavoidable presence of disorder and

noise, which is usually assumed to be deleterious for the transport proper-

ties, seems to positively affect the transmission efficiency [41, 42]. This can

be explained in terms of the

� inhibition of destructive interference;

� opening of additional pathways for excitation transfer.

This mechanism is known as Noise-Assisted Transport (NAT), and it

has been recently observed in some physical platforms: all-optical cavity-
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based networks [26,195], integrated photonic structures [43], and genetically

engineered complexes [145]. However, a deep analysis of the underlying con-

tributions, such as interference, disorder and dephasing, and their interplay

was still missing from the experimental point of view. In this regard, the pos-

sibility to experimentally realize simple test platforms being able to mimic

transport on complex networks, reproducing NAT effects, could allow

� to clarify the role of disorder, interference and noise contributions in

the transport behavior of natural (photosynthetic) complexes;

� to design feasible model of different complex networks, where the role

of topology can be further investigated;

� to engineer new artificial molecular structures where all the aforemen-

tioned control knobs (e.g. disorder and interference patterns) are op-

timized to achieve some desired tasks, such as the maximization of

the transferred energy or its temporary storage in some part of the

network.

As shown also in chapter 1, the possibility to introduce and exploit a noise-

assisted paradigm relies on our understanding of the complexity features of

the system, as given in this case by the network topology. Thus, the introduc-

tion of a simple experimental setup has remarkable advantages with respect

to real biological samples or expensive artificial systems, which are very dif-

ficult to manipulate both in their geometry and in the system parameters,

being these aspects governed by specific bio-chemical laws.

In this chapter, we will argue the recently realized optical platform, en-

tirely based on fiber-optic components, which has been designed to emulate

the transmission of energy in light harvesting processes. In particular, we will

show how an optimal combination of constructive and destructive interfer-

ence with static disorder and dephasing noise can be successfully exploited

as feasible control knobs to manipulate the transport behavior of coupled

structures and optimize the transmission rate. It is worth noting that such

a setup has provided the first experimental observation of the typical NAT

predictions in the dependence of the network transmission rate as a function

of the amount of noise introduced into the system [195].
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2.1 Theoretical model

In the proposed experimental setup, the coherent propagation of excitons in

a N−site quantum network is simulated by the propagation of photons in

a network of N coupled optical cavities. The dynamics of an optical cavity

network can be described by the following Hamiltonian:

H =
∑
i

~ωia†iai +
∑
(i,j)

~gij
(
a†iaj + aia

†
j

)
, (2.1)

where ai and a†i are the usual bosonic field operators [159], that annihilate

and create an excitation (a photon in our case) in the i-th site of the net-

work, ωi is the corresponding resonance frequency, and gij are the coupling

constants between all the connected sites. The first term in (2.1) describes

the energy structure of the system, while the second one is related to the

hopping process among the network nodes. Hereafter, we will refer to the

(random) energy level spacings of the network’s sites as static disorder and

it will be obtained by tuning the frequencies ωi of the network sites. Con-

versely, the presence of dephasing noise, randomizing the photon phase dur-

ing the dynamics, will be introduced in terms of dynamical disorder, i.e.

time-dependent random variation of the site energies. The dephasing rate

for the site i is denoted with γi. To summarize:

� Static disorder ≡ time-independent random energy level spacings of

the network’s sites.

� Dephasing noise ≡ time-dependent random variation of the site ener-

gies.

From a mathematical point of view, the effects of the presence of some de-

phasing noise on the quantum network dynamics is described by the so-called

Lindblad super-operator Ldeph(ρ) [31], defined as

Ldeph(ρ) =
∑
i

γi

(
−{a†iai, ρ}+ 2a†iaiρa

†
iai

)
, (2.2)

where ρ denotes the density matrix describing the state of the system. The

super-operator Ldeph models the interaction of a quantum system with its

environment (described by an Hamiltonian term) under the validity of the

Born and Markov approximations. The Born approximation relies on as-

suming between the system and the environment a weak coupling, which



2.1 Theoretical model 63

allow us to consider the contribution of the interaction on the behaviour of

the system only up to the second order of the corresponding perturbative

series as a function of the coupling term. The Markov approximation, in-

stead, is based on the hypothesis that the environment has so many degrees

of freedoms to consider negligible memory effects between the system and

the environment itself. The evolution of the density matrix is given by the

following differential Lindblad (Markovian) master equation:

dρ

dt
= − i

~
[H, ρ] + Ldeph(ρ) + Linj(ρ) + Ldet(ρ), (2.3)

where [·, ·] is the commutator. In this regard, let us recall that in quantum

mechanics the density matrix has been introduced to describe the state of a

quantum system, which does not necessarily live in a coherent superposition

state corresponding to the eigenstate of a physical (Hermitian) observable.

Such state is also called mixed quantum state, and is defined as a statis-

tical ensemble of pure states. In (2.3), the Lindbladian operators Linj(ρ)

and Ldet(ρ) describe two distinct irreversible transfer processes, respectively,

from the light source to the network (energy injection) and from the exit site

to an external sink (energy detection). In particular, the injection process

is modeled by a thermal bath of harmonic oscillators, whose temperature

is expressed by the thermal average boson number nth. In the Markov ap-

proximation, this process is described by the following Lindbladian term:

Linj(ρ) = nth
Γ0

2

(
−{a0a

†
0, ρ}+ 2a†0ρa0

)
+(nth+1)

Γ0

2

(
−{a†0a0, ρ}+ 2a0ρa

†
0

)
,

(2.4)

where a†0 is the bosonic creation operator for the network input site (denoted

as site 0), and {·, ·} defines the anticommutator. The photons leaving the

network, instead, are detected by the sink, that is usually denoted as the

output port of the network, modeling the reaction center of a photosynthetic

biological system. Each light-harvesting complex, indeed, is composed by

several chromophores that turn photons into excitations and lead them to the

reaction center, where the first steps of conversion into a more available form

of chemical energy occurs. This part is described by another Lindbladian

super-operator, that is

Ldet(ρ) = Γdet

(
2a†detakρa

†
kadet − {a†kadeta

†
detak, ρ}

)
, (2.5)

where a†det refers to the effective photon creation in the detector with the
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subsequent absorption of excitations from the site k, according to operator

ak, with Γdet being the rate at which the photons reach irreversibly the

detector.

Furthermore, the transferred excitation energy, reaching the sink at time

t, is defined as

Etr(t) = 2Γdet

∫ t

0

Tr
[
ρ(τ)a†kak

]
dτ, (2.6)

where Tr[·] is the trace operator, Γdet denotes the rate at which the pho-

tons reach irreversibly the output detector, and ak refers to the effective

absorption of photons from the site k corresponding to the output site. To

compare the theoretical results with the experimental data, where the light

is continuously injected into the network (with rate Γ0) and absorbed from

the detector, we need to define the network transmission as the steady-state

rate for the photons in the detector, i.e.

lim
t→∞

2ΓdetTr
[
ρ(t)a†kak

]
. (2.7)

Let us point out that, if one repeats a single-photon experiment many

times, one obtains the same statistics corresponding to an injected coher-

ent state [9], but this holds just because nonlinear processes are not present

in our setup. Moreover, note that the model is able to take into account also

the slight asymmetry that is present in the experimental setup by imposing

different coupling rate in the two paths of the networks, i.e. g01 6= g02 and

g13 6= g23. Such asymmetry is mainly caused by different loss rates in the

two resonators.

In Fig. 2.1 different time behaviours of the transferred energy are shown,

for different initial conditions of global constructive (2.1a) and destructive

(2.1b) interference and different values of dephasing and static disorder. The

numerical results, which will be then compared with the experimental data

from the setup, are obtained by implementing the master equation (2.3).

To this aim, we have assumed that the network is initially empty, namely

with no excitations inside, while a laser source continuously injects photons

in the site 0 with a rate Γ0. Moreover, in order to take into account the

experimental imperfections, the non-vanishing coupling constants are set in

the range [0.2, 0.5]. Indeed, by varying such parameters, we observe a sim-

ilar qualitative behaviour in agreement with the experimental observations,

as we simply expect from our abstract model. The destructive interference,

then, is simply obtained by introducing a phase in the hopping strength
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Figure 2.1: Time evolution of the excitation transferred energy. Etr vs time

for constructive (a) and destructive (b) interference. In both figures, the

curves refer to different values of γ2 and ω2: (γ2, ω2) = [0, 0] and (γ2, ω2) =

[0, 3] for solid and dash-dot lines, respectively, while (γ2, ω2) = [2, 0] and

(γ2, ω2) = [2, 3] for dashed and dotted lines. Moreover, we set Γdet = Γ0 =

0.5. Notice that Etr is measured in terms of the number of transmitted

photons, while the time is in the units of the inverse coupling rates. Inset:

Exponential behaviour of the transferred energy in the transient time regime.

g01, i.e. changing its sign, while the cavity resonance frequencies ωi are all

vanishing in the absence of static disorder that instead leads to a variation

of the frequency of site 2 within the range [0, 2]. Similarly, the only non-

zero dephasing rate γ2 for the cavity 2 (when dephasing is on) is chosen in

the range [0, 1]. Since the photon injection is continuous in time, the en-

ergy in the steady-state condition increases monotonically in time with an

asymptotic linear behavior whose slope is indeed the transmission rate. An

exponential behaviour is instead observed for the initial temporal regime, as

shown in the inset of Fig. 2.1. Then we find that, for constructive interfer-

ence both disorder and dephasing individually reduce the transferred energy

(no NAT). However, in presence of some disorder inhibiting the path to con-

structive interference, dephasing slightly assists the transport by opening

additional pathways. This can be also intuitively explained by the fact that

the two cavities are not energetically on resonance (because of the disorder)
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but the line broadening effect, induced by dephasing, allows again the hop-

ping between them. On the other side, destructive interference leads to very

small transferred energies since the two transmission paths over the two cav-

ities cancel each other (opposite phase). In this case, dephasing and disorder

can hinder such a perfect cancellation, thus partially restoring transport, i.e.

NAT behaviour.

2.1.1 Computational complexity

Here we evaluate the computational time for the single realization of the

numerical dynamical evolution of networks of increasing size (i.e., number of

sites/cavities N) with the model (2.2). As shown in Fig. 2.2, the computa-

tional complexity increases exponentially with N . In other words, already

adding a few cavities to our model would take months to theoretically sim-

ulate the corresponding dynamics for a given set of parameters, and the

computation becomes unfeasible if one wants to reconstruct the dynamical

behaviour of the system where thousands of simulations are needed to take

into account dynamical disorder, dephasing, etc. In particular, the critical

number of sites above which it becomes very hard to reproduce the theoret-

ical data is around 8 (corresponding to around six months of simulations for

one thousand realizations) – see again Fig. 2.2. Let us notice that, while the

experimental scheme has been realized with coherent states of light that in

principle allow its classical simulation time to scale polynomially with the

number of optical elements, if one instead considered a full quantum regime

(for example, with several single-photon walkers), the computation complex-

ity would have indeed scaled exponentially, as observed above. On the other

hand, the experimental complexity is not so affected by the network size and,

at most, linearly increases in terms of both the cost of the optical components

(cavities, beam-splitters, etc.) and the practical realization and observation

time of the stationary behavior of the optical system. However, even if the

increase of the network size is not a significant limit for the present setup

employing a classical coherent source, the same would not be true when op-

erating in a quantum regime, with one or multiple single-photon sources and

coincidence detection. In such a case, the increased losses in a larger network

(mainly due to the presence of several FBG resonators) could substantially

reduce the efficiency of the setup and imply much larger acquisition times.



2.2 Experimental setup 67

Figure 2.2: Computational complexity increasing the network size. Compu-

tational time (in hours) as a function of the simulated network size (i.e. N

number of cavities) for a single realization of the system dynamical evolution,

with only one choice of the system parameters. An exponential behaviour is

observed (green dashed line), hence a scheme with more than ten sites/cav-

ities (red dashed region in the inset) becomes very hard to be simulated by

a powerful workstation, corresponding on average to at least one month of

simulation. Our experimental setup corresponds to the case of four cavities

(blue dashed region), but can be easily extended to more cavities.

2.2 Experimental setup

2.2.1 Network of fiber-optic resonators

The realized experimental fiber-optic setup, which reproduces energy trans-

port phenomena (including the NAT effect), is given by the 4-site network

shown in the inset (a) of Fig. 2.3 [195]. The detailed scheme of the ex-
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perimental apparatus, instead, is shown in Fig. 2.3. More schematically, the

Figure 2.3: Experimental design of the fiber-optic cavity network. Light is

injected in the network by a continuous-wave diode laser, transmitted over

coupled optical cavities, and then irreversibly absorbed by a detector measur-

ing the transmission rate. O.I., Optical Isolator; M1 and M2, mirrors; P.C.,

polarization controller; C, 50x50 fiber coupler; C1 and C2, 90x10 fiber cou-

plers; FBG1 and FBG2, Fiber Bragg Grating resonators; PZT piezoelectric

transducer; D1, D2 and D3, detectors. The PZT can be driven to introduce

a difference between the resonance frequencies of FBG1 and FBG2, which

can be either constant in time (V0) or variable (V (t)), in order to insert

disorder and/or dephasing into the network. Inset (a): scheme of the 4-site

network mimicked by the optical setup. Inset (b): simplified scheme of our

optical platform.

scheme is reproduced by the Mach-Zehnder setup of inset (b), which presents

the following two main differences with respect to a standard Mach-Zehnder

interferometer:

� The insertion of a FBG resonator in each path of the interferometer.

� The presence of two additional mirrors (M1 and M2) at the normally

unused input and output port of the interferometer.

The resonators FBG1 and FBG2 represent the sites 1 and 2 with variable

local excitation energy ω1 and ω2, while the role of the other two sites 0 and 3
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is played by two fiber optic couplers (C), which represent two sites with fixed

local excitation energy resonant with the energy of the propagating excitation

ωS (ω0 = ω3 = ωS). The presence of the two additional mirrors M1 and M2

makes it possible to couple sites 1 and 2, since the light reflected by the

resonators is partially re-inserted into the network by M1, while transmitted

light is partially recycled by M2.

The setup is entirely based on single-mode fiber-optic components at

telecom wavelength (1550 nm). The choice of fiber components presents the

following advantages:

� It completely removes issues related to matching the transverse spatial

mode of the fields and considerably simplifies the alignment of sources,

cavities, and detectors, thus allowing one to easily adjust the network

size and topology.

� Working at telecom wavelengths guarantees low optical losses and a

low cost of the fiber components.

These two advantages are essential to achieve the scalability of the apparatus.

The FBG resonators are characterized by a straightforward alignment and

easy tunability by tiny deformations of the fiber section within the Bragg

mirrors. Each resonator is inserted in a home-made mounting to isolate

it from environmental noise and allowing the piece of fiber containing the

cavity to be stressed and relaxed in a controlled way by the contact with a

piezoelectric transducer (PZT). In such a way the length of each cavity and,

consequently, its resonance frequency, can be finely tuned. The laser source

injects light of frequency ωS into one input port of the first (50:50) fiber cou-

pler C. Light exiting the two cavities passes through two more polarization

controllers before being coupled by a second (50:50) fiber coupler C. Finally,

one of the interferometer outputs is measured by detector D3.

All the parameters characterizing the network and that are described in

the following sections are expressed in terms of the cavity detuning parameter

∆x, which is defined as

∆x ≡ ω2 − ω1. (2.8)

Thus, the cavity detuning parameter is equal to the difference between the

resonance frequencies of the two cavities (in units of their linewidth). Fi-

nally, two additional fiber couplers (C1 and C2) are used to split a small

portion (about 10%) of the light in each interferometer arm in order to mea-

sure the transmission peaks of each single cavity before interference. The
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transmission signals are measured by detectors D1 and D2 while scanning

the laser frequency ωS over an interval including a single longitudinal mode

of both cavities; from the difference between the frequency positions of the

two peaks it is possible to infer ∆x.

2.2.2 Network parameters

The network configuration is completely described by the following 3 char-

acteristics:

� The initial conditions related to global interference.

� Static disorder.

� Dephasing or dynamical disorder.

All these features are defined in terms of the cavity detuning parameter ∆x.

Let us observe that changes in the global interference of the network and

in the values assumed by dephasing and static disorder will involve radical

variations in the dynamical behaviour of the whole system. In this regard,

the implemented network of fiber-optic resonators is one of the first experi-

mental setups in which we can observe and reproduce the beneficial effects in

controlling some parameters, that are defined by stochastic processes. More-

over, since the aforementioned model well fits the experimental data from

the network transmission, future investigations about the definition of opti-

mized routines of stochastic variables for control tasks are desirable.

Initial Conditions for Interference.- The interferometric apparatus in-

volves no active stabilization. Consequently, the system is intrinsically un-

stable and the network response will be time dependent (on the time scale

of the order of hundreds of ms). This intrinsic instability can be used to

establish different initial conditions of global interference for our network.

The system throughput when the two cavities are resonant (∆x = 0) and

without any kind of noise will vary between a minimum and a maximum

value in correspondence of global destructive or constructive interference.

The output signal measured by detector D3 in this case will thus set the

initial conditions of global interference of the network.

Disorder or Static Disorder.- A network is said to be disordered if the

local excitation energies of different sites are unequal (ωj 6= ωk, with j 6= k),
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but constant in time. In the experimental setup, the static disorder of the

network is quantified with the cavity detuning parameter ∆x. The case of

Figure 2.4: Definition of Disorder and Dephasing. Transmission peaks of

FBG1 (black line) and FBG2 (red line), measured respectively by detector

D1 and detector D2 when the laser frequency ωS is scanned over an interval

including a single longitudinal mode of both cavities. a) Ordered system

without dephasing: ∆x = 0 and constant. b) System with static disorder

∆0: ∆x = ∆0 and constant (no dephasing). c) System with disorder ∆0 and

dephasing δ0: ∆x variable between ∆0 − δ0/2 and ∆0 + δ0/2.

an ordered system is illustrated in Fig. 2.4a, where ∆x = 0 and constant.

The case of a disordered system with a static disorder ∆x = ∆0 6= 0 is shown

in Fig. 2.4b. We assume that a system presents a medium level of disorder
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if ∆x ∼ 1, i.e. (ω2 − ω1) ∼ FWHMcav, which is defined as the full-width at

half-maximum linewidth of the cavity mode, while we have a high level of

disorder if ∆x > 1, i.e. (ω2 − ω1) > FWHMcav. Thus, to summarize:

� Ordered system −→ ∆x = 0 and constant.

� Medium level of disorder −→ ∆x ∼ 1 −→ (ω2 − ω1) ∼ FWHMcav.

� High level of disorder −→ ∆x > 1 −→ (ω2 − ω1) > FWHMcav.

Dephasing or Dynamical Disorder.- Dephasing or dynamical disorder

introduces a random phase perturbation in one or more sites of the network,

thus resulting in temporal fluctuations of the corresponding resonance fre-

quencies ωj ’s around their stationary values. We can introduce it into our

network by slightly changing the value of ω2 during measurement by means

of the piezoelectric transducer. In such a way, ∆x is not time constant but

can vary within an interval of ±δx/2 around ∆x. The amount of dephasing

can be quantified by the amplitude δx of this interval. The case of a network

with disorder ∆0 and a dephasing δ0 is illustrated in Fig. 2.4c, where ∆x

is variable in the interval [∆0 − δ0/2,∆0 + δ0/2]. We assume that a system

presents a medium level of dephasing if δx ∼ 1, and a high level of dephasing

if δx > 1.

Network Transmission.- Finally, the transmission of the network is de-

fined as the output signal measured by detector D3 in correspondence of the

transmission peak of cavity 1 (ω = ω1). Technical details about the acqui-

sition procedure can be found in [194]. Then, the value of the transmission

is normalized to the measured value of the output signal in conditions of

constructive interference, without disorder and without dephasing, i.e. for

∆x = δx = 0.

2.3 Experimental results

The network transmission has been investigated for different initial condi-

tions of global constructive or destructive interference, as a function of both

disorder and dephasing on the experimental 4-site network of fiber-optic

resonators in Fig. 2.3. In particular, the noise effects on the amount of

transferred energy will be shown from two points of view:
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� We analyze the network transmission as a function of dephasing for

different values of the disorder.

� Then, the network transmission is analyzed as a function of disorder

for different values of the dephasing.

The experimental data are compared with the theoretical results obtained

by the theoretical model, in order to demonstrate in a full range of cases

how different regimes of interference, static disorder and dephasing noise

are effective control knobs to optimize energy transport processes in com-

plex networks. Moreover, it is worth noting that in these results we are

able also to show when NAT behaviours can be observed in the presence

of different operating conditions. The agreement is reached in the common

behaviours of the experimental data and theoretical results, so that all the

different transport behaviours are well captured. Let us remind that our

experimental fiber-optic setup has been designed as a simple, scalable and

low-cost platform with not perfectly identical FBG resonators and signifi-

cant losses within the network, even if relatively small. Furthermore, the

effective Hamiltonian of the optical platform is hard to be quantified, for the

energy and coupling values, and the experimental scheme has been realized

with coherent states of light not in a fully quantum regime. Despite all these

limitations, we achieved a sufficiently high level of control by tuning the

global interference, static and dynamical disorder. As already expressed, in

the model the static disorder is added by tuning the cavity frequency of site

2, ω2, while dephasing is given by γ2. For both the experimental data and

numerical results, the network transmission is normalized to the value of the

output signal in the condition of constructive interference without disorder

nor dephasing.

Constructive Interference.- We start by investigating the behavior of

the network transmission for initial conditions of global constructive inter-

ference. In Fig. 2.5, the experimental and theoretical network transmission

are shown as a function of dephasing for three different configurations of

disorder. Without disorder (∆x = 0), the only effect of dephasing is to

reduce the transferred energy, i.e. no NAT is observed because the differ-

ent pathways do already constructively interfere. However, if the system’s

energy landscape presents some disorder (∆x > 0.4), NAT effects can be

detected and, in particular conditions of disorder, one finds the typical bell-

shaped NAT behavior with an optimal value of dephasing that maximizes
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Figure 2.5: Role of dephasing for constructive interference. Experimental

network transmission (black circles) vs dephasing δx, and numerical evalua-

tion of the network transmission (blue stars) vs γ2, for an initial condition

of constructive interference and for different values of disorder: no disorder

(∆x = 0, and ω2 = 0, top figure), medium disorder (∆x = 0.7, and ω2 = 1,

medium figure), and large disorder (∆x = 2, and ω2 = 2, bottom figure).

the network transmission. In other terms, dephasing enhances the transport

efficiency if the additional presence of disorder inhibits the otherwise fast

constructive-interference path. A similar behavior is found for the theoreti-

cal model for parameters compatible with the experimental ones, though it
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should be noted a discrepancy for small values of dephasing. The latter is due

to the difficult experimental feasibility of perfect constructive interference,

which is also hard to properly quantify in the model. Similar reasonings hold

for destructive interference.

Figure 2.6: Role of disorder for constructive interference. Experimental net-

work transmission (black circles) vs disorder ∆x, and numerical evaluation

of the network transmission (blue stars) vs ω2, for an initial condition of

constructive interference and for different values of dephasing: no dephas-

ing (δx = 0, and γ2 = 0, top figure), and large dephasing (δx = 1.83, and

γ2 = 1.8, bottom figure).

In Fig. 2.6, the network transmission is shown as a function of disorder for

two different dephasing configurations. Here, as expected, we find that dis-
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order has a generally negative impact on the transport performance since it

always leads to the suppression of the initial constructive interference. How-

ever, while a little bit of disorder quickly deteriorates transport in the case

without dephasing, the presence of some dephasing noise that broadens the

resonances has the effect of making the system more robust against static

disorder, with an evidently smoother decay in both the theoretical and ex-

perimental cases.

Destructive Interference.- Repeating the analysis above for the case of

initial destructive interference, it turns out that both dephasing and disor-

der independently assist transport, i.e. NAT behavior, since they reduce the

amount of interference that prevents the transmission of energy – see Fig. 2.7.

When the network is in a regime of high-disorder, again the typical bell-like

NAT shape is recovered. However, if a lower amount of disorder is included,

the additional contribution of dephasing does not further improve the net-

work transmission that instead shows a minimum value for a dephasing value

of δx ≈ 2.2. Finally, in Fig. 2.8 we show the role of disorder in enhancing

the transmission rate with its peak moving to higher value of disorder for

increasing dephasing values.

2.4 Observing and reproducing NAT

Noise is an unavoidable feature of any system, be it physical or cyber. As it

is usually known, the presence of noise usually leads to the deterioration of

performance in fundamental and well-defined processes such as information

processing, sensing and transport. However, noise-assisted transport phe-

nomena occur in several physical systems, where noise can open additional

transport pathways and suppress the ineffective slow ones. In the last years,

indeed, this scheme has been applied to better understand energy trans-

port in photosynthetic light-harvesting complexes, where dephasing noise

remarkably enhances the transmission of an electronic excitation from the

antenna complex to the reaction center in which such energy is further pro-

cessed [42]. The basic underlying mechanisms of such a behavior are mainly

due to line-broadening effects and the suppression of destructive interfer-

ence, so that the interplay of quantum coherence and noise is responsible

for the observed very high transport efficiency. However, while several the-

oretical studies have been performed, it is very challenging to actually test
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Figure 2.7: Role of dephasing for destructive interference. Experimental

network transmission (black circles) vs dephasing δx, and numerical evalua-

tion of the network transmission (blue stars) vs γ2, for an initial condition

of destructive interference and for different values of disorder: no disorder

(∆x = 0, and ω2 = 0, top figure), medium disorder (∆x = 0.7, and ω2 = 1,

medium figure), and large disorder (∆x = 2, and ω2 = 2, bottom figure).

these ideas either in the real photosynthetic pigment-protein complexes or

in artificial ones, since their structure and dynamical properties cannot be

controlled or even indirectly measured [46, 48] with the required resolution.
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Figure 2.8: Role of disorder for destructive interference. Experimental net-

work transmission (black circles) vs disorder ∆x, and numerical evaluation

of the network transmission (blue stars) vs ω2, for an initial condition of

destructive interference and for different values of dephasing: no dephasing

(δx = 0, and γ2 = 0, top figure), and large dephasing (δx = 1.83, and

γ2 = 1.8, bottom figure).

Moreover, these samples are usually quite expensive or difficult to synthesize.

For these reasons, it is very convenient to reproduce such transport phenom-

ena in a controlled system where one can tune the parameters and measure

the corresponding dynamical behaviors, while also playing with the underly-

ing network geometry. This will allow to better understand the underlying

physical phenomena and to start engineering new molecular/nano-structures
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for more efficient and feasible technological applications.

In this regard, the experimental setup, that has been previously de-

scribed, is a simple and scalable test optical platform with optimized ac-

cessible noise features for energy transport. Although the experiment could

be fully described by classical optics, the role of the quantum coherence

in energy transport processes, as observed for photosynthetic systems, can

be mimicked by the propagation of photons in correspondence of different

global interference conditions. In such a interferometric apparatus, the ef-

fective controllability of parameters is reached by exploiting the intrinsic

instability of the setup, where no phase locking is used for the stabilization

of the system. Hence, this setup not only allows to observe the NAT peak in

the network transmission as a function of the amount of noise in the system

dynamics, but, more importantly, can be exploited to monitor and control

different noise sources for quantum transport dynamics with specific types

of global interference. Overall, we observed that:

� When constructive interference provides a very fast path to the exit

site, dephasing has a detrimental effect and reduces the amount of

transferred energy.

� If some disorder is present in the system energy levels, thus blocking

the constructive interference path, dephasing represents a recovery tool

to achieve again higher transport efficiency, thanks to NAT effects.

� In the presence of destructive interference, both dephasing and disorder

are able to speed up the energy transport, whereby dephasing often

provides a faster NAT mechanism.

In conclusion, the role of noise in increasing the transferred energy can be

explained by considering how the pathways of energy transfer are modified:

destroying the inefficient ones (given by the inhibition of destructive interfer-

ence patterns in the network) or giving access to more efficient network hubs.

It is worth noting that, by increasing the network size, the results presented

in this chapter could be used also to observe even more complex transport

behaviors, that can be very hardly simulated on a computer. Indeed, as

shown also in this context, the network topology or connectivity plays a

crucial role that deserves to be further studied in future investigations.
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2.5 Conclusions and contributions

Summarizing, this chapter provides the following contributions:

� We have numerically and experimentally validated a class of theoretical

models for noise-assisted quantum transport.

� A quite simple, scalable and controllable experimental setup of coupled

cavities (only based on single-mode fiber optic components) have been

introduced as transport emulator, in which the system noise parame-

ters can be properly tuned to maximize the transfer efficiency. These

optical setups, indeed, turned out to be capable to mimic the trans-

port dynamics as in natural photosynthetic organisms, so that it could

be a very promising platform to artificially design optimal nanoscale

structures for novel, more efficient, clean energy technologies. In this

regard, the use of single-mode telecom optical fiber components is an

essential ingredient, as it dramatically reduces costs and losses, besides

canceling all issues related to the alignment and spatial mode-matching

procedures that should be faced when adding other cavities to the sys-

tem or changing its topology.

� We experimentally investigated the optimal interplay between con-

structive and destructive interference, static disorder and dephasing

to optimize the transport paths for excitons towards an exit site. In

other words, disorder and dephasing can be exploited as control knobs

to manipulate the transport performance of complex networks, as for

example the optimization of the final transmission rate or the capa-

bility to temporarily store energy/information in the system. In this

regard, the demonstration of noise-enabled information transfer phe-

nomena [45, 59] has shown that an information transmission system

exhibits optimal features when both static and dynamical disorder are

tuned to specific values, so that the information transfer is considerably

enhanced.

� As a final remark, it is worth noting that the numerical simulations

have been performed by modeling each site of the network as a two-

level quantum system, and, thus, all the presented results can be ap-

plied to real quantum networks, where the tensor product of sites grows

exponentially with their number. In this setup, the quantum transport

is favoured by the presence of noise sources on dynamical parameters.
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However, such property is valid on average by taking into account

networks with different number of sites and topologies. In this way,

the presence of noise cannot be seen as a control pulse in the system-

theoretical sense. We believe that further investigations are necessary

to analytically derive the conditions for the controllability of the quan-

tum network Hamiltonian under the presence of an external stochas-

tic driving. Indeed, noise-assisted transport features impose system

symmetries, which hamper the controllability of the system and build

preferential pathways for excitons towards exit sites.
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Chapter 3

Large deviations and stochastic

quantum Zeno phenomena

In this chapter, we will apply the LD theory [187] to open quan-

tum systems. In particular, we will base our procedure on the

modeling of the local couplings between a quantum system and the

environment as projection events given by the action of one (or

more) measurement operators, along the lines of the formalism of

quantum jump trajectories [153]. The latter, resulting from the

dissipative influence of the environment, are intrinsically stochas-

tic processes, since any interaction occurs at irregular time inter-

vals without any a-priori predictability. The stochasticity of such

a measurement sequence can also be introduced by experimental

noise or a randomly fluctuating classical field coupled to the sys-

tem. We will analytically show that, in the limit of a large number

m of randomly distributed measurements, the distribution of the

probability for the system to remain in the initial state assumes a

large-deviation form, namely, a profile decaying exponentially in

m. This result has allowed to obtain analytical expressions also

for the most probable and the average value of such probability.

The former represents what an experimentalist will measure in a

single typical implementation of the measurement sequence, while

the latter is given by averaging the experimental outcomes over

a large (ideally infinite) number of experimental runs. Hence, by

tuning the probability distribution of the time intervals between

83
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consecutive measurements, one can effectively realize a specific

value for the most probable survival provability, thereby allowing

to engineer novel optimal control protocols for the manipulation,

e.g., of the atomic population related to a specific quantum state.

Furthermore, the extension of these theoretical results to the ap-

plication of multi-dimensional projection operators has made it

possible to control also the amount of quantum coherence within

an arbitrary Hilbert subspace. Thus, in conclusion, by charac-

terizing the statistical space of configurations concerning the ran-

dom variables, that enter into the system dynamics and describe

the effects of the system-environment interactions, we are able to

formulate a noise-assisted quantum control paradigm, which may

require to be supported by quantum noise sensing techniques. 1

Introduction

The theory of Large Deviations (LD) studies the exponential decay of prob-

abilities concerning observables of stochastic dynamical systems [57,63,187,

192]. In particular,by means of LD theory we can derive the scaling of such

probabilities when the deviation of their results from the expected value is

relevant. For the sake of clarity, let us consider for example the following

question: Which is the probability that the single realization of the stochastic

process 1
n

∑n
i=1Xi is greater than 3/4, given that X1, . . . , Xn are Bernoulli

random variable with probability 1/3 to take the value 1? Clearly, the oc-

currence of such event is a large deviation with respect to the expected result

of the process (that will be around 1/3), and its probability is exponentially

small. LD theory has been largely used to identify and gather information

on the occurrence of extreme or rare events, that arise from the realization

of tail fluctuations (i.e. fluctuations with a low but relevant frequency of oc-

currence) in the system dynamics. Moreover, in LD theory the relationship

1 The results shown in this chapter have been published as “Stochastic Quantum

Zeno by Large Deviation Theory”, in New Journal of Physics, 18(1), 013048 (2016) [85];

“Fisher information from stochastic quantum measurements”, in Physical Review A 94,

042322 (2016) [137]; “Stochastic quantum Zeno-based detection of noise correlations”,

in Scientific Reports 6, 38650 (2016) [134]; “Ergodicity in randomly perturbed quan-

tum systems”, in Quantum Science and Technology 2(1), 015007 (2017) [86]; “Quantum

Zeno dynamics through stochastic protocols”, in Annalen der Physik 529(9), 1600206

(2017) [135].
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between information theory and statistics is very close (see e.g. [50]), and

its application to dynamical systems for monitoring and control purposes is

desirable. In the last years an increasing interest has led to several studies of

large deviations in both classical and quantum systems. In the latter case,

the LD formalism has been discussed in the context of quantum gases [82],

quantum spin systems [139], and quantum information theory [3] among

others. Furthermore, an interesting recent application pursued in [83, 116]

has invoked the LD theory to develop a thermodynamic formalism to study

quantum jump trajectories [153] of open quantum systems [31].

In this chapter we will show how to use LD theory to derive the exponen-

tial decay of the probability distribution of the probability that an arbitrary

quantum system, subject to repeated sequence of quantum measurements,

is confined within a given portion of the corresponding Hilbert space.

3.1 LD theory applied to quantum Zeno phe-

nomena

Here, the results in [85] are discussed, and the interplay between the sequence

of projective measurements and stochastic contributions from an external

environment on a quantum system dynamics is analyzed by using LD theory.

In the extreme case of a frequent enough series of measurements project-

ing the system back to the initial state, its dynamical evolution gets com-

pletely frozen. As a consequence, the probability that the system remains

in the initial state approaches unity in the limit of an infinite number of

measurements. This effect is known as the quantum Zeno effect (QZE), that

was first discussed in a seminal paper by Sudarshan and Misra in 1977 [129].

The QZE can be understood intuitively as resulting from the collapse of

the wave function corresponding to the initial state of the system due to

the process of measurement. Then, it was later explored experimentally in

systems of ions [99], polarized photons [112], cold atoms [78], and dilute

Bose-Einstein condensed gases [184]. In particular, in [99] it was observed

the inhibition of induced transitions in an RF transition between two 9Be+

ground-state hyperfine levels, while in [112], interaction-free measurements

have been experimentally proved by using single photons in a Michelson in-

terferometer, being the presence of an absorbing object in one of the arms

of an interferometer able to modify the interference of an incident photon,

which is used as a probe. Thus, the photon and the object do not need to



86 Large deviations and stochastic quantum Zeno phenomena

interact one with the other, and the presence of the object is revealed by

a sequence of repeated measurements, which inhibit the coherent evolution

of the photon. Finally, in [78] a system of cold sodium atoms trapped in

a far-detuned standing wave of light is studied, and it has been observed

that, depending on the frequency of the measurements, the decay features of

the atoms are suppressed (Zeno effect) or enhanced (anti-Zeno effect) with

respect to the unperturbed case. Moreover, in noisy quantum systems both

the Zeno and anti-Zeno effects have been shown in [107,108], and, then, pro-

posed for thermodynamical control of quantum systems [66] and quantum

computation [147]. In recent times, Zeno phenomena have assumed partic-

ular relevance in applications owing to the possibility of quantum control,

whereby specific quantum states (including entangled ones) may be protected

from decoherence by means of projective measurements [105,122].

In its original formulation, QZE was defined over a sequence of repeated

measurements at constant times, while only recently [177] considered the

case of randomly spaced in time measurements, which takes the name of

Stochastic Quantum Zeno Effect (SQZE). According to SQZE, the survival

probability that the system remains in the projected state becomes itself a

random variable, that takes on different values corresponding to different

realizations of the measurement sequence. In this regard, one would expect

that the expectation value of the survival probability, obtained by averaging

the measurement sequence over a large (ideally infinite) number of realiza-

tions, leads to the result obtained for an evenly spaced sequence under some

constraints (e.g. the mean time interval between consecutive measurements

is finite). However, some interesting questions, of both theoretical and ex-

perimental relevance, naturally emerges:

� Is it possible to have realizations of the measurement sequence that

give values of the survival probability significantly deviated from the

mean?

� How typical/atypical are those realizations?

� Are there ways to quantify the probability measures of such realiza-

tions?

These questions assume particular importance in devising experimental pro-

tocols that on demand may slow down or speed up efficiently the transitions

of a quantum system between its possible states.
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In this chapter, by exploiting tools from probability theory, we propose a

framework that allows an effective addressing of the questions posed above.

In particular, we adapt the well-established theory of LD to quantify the

dependence of the survival probability on the realization of the measure-

ment sequence, in the case of independent and identically distributed (i.i.d.)

time intervals between consecutive measurements. In doing this, our goal is

twofold:

� Adapt and apply the LD theory to discuss the QZE by transferring

tools and ideas from classical probability theory to the arena of quan-

tum Zeno phenomena.

� Analytically predict the corresponding survival probability and exploit

it for a new type of control based on the stochastic features of the

applied measurements.

3.1.1 Sequences of repeated quantum measurements

Here, we will argue how to model sequences of repeated quantum measure-

ments. In this respect, let us consider a quantum mechanical system de-

scribed by a finite-dimensional Hilbert space H, which may be taken to be

a direct sum of r orthogonal subspaces H(k), i.e.

H =

r⊕
k=1

H(k).

To each subspace is assigned a projection operator Π(k), such that

Π(k)H = H(k).

Then, we assume that the initial state of the quantum system is described by

a density matrix ρ0, which undergoes a unitary dynamics to evolve in time

t to exp(−iHt)ρ0 exp(iHt), where H denotes the system Hamiltonian and

the reduced Planck’s constant ~ has been set to unity. Observe that usually

H commutes with the projectors Π(k).

In this model, starting with a ρ0 that belongs to one of the subspaces,

say subspace r̃ ∈ 1, 2 . . . , r, so that ρ0 = Π(r̃)ρ0Π(r̃) and Tr[ρ0Π(r̃)] = 1,

we subject the system to an arbitrary but fixed number m of consecutive

measurements separated by time intervals τj : τj > 0, with j = 1, . . . ,m.

During each interval τj , the system follows a unitary evolution described
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by the Hamiltonian H, while the measurement corresponds to applying the

projection operator Π(r̃). We take the τj’s to be independent and identically

distributed (i.i.d.) random variables sampled from a given distribution p(τ),

with the normalization
∫
p(τ)dτ = 1. Moreover, we assume that p(τ) has

a finite mean, which is denoted by τ . For the sake of simplicity, in the

following we will represent Π(r̃) and H(r̃) by Π and HΠ, respectively. The

(unnormalized) density matrix at the end of evolution for a total time

T ≡
m∑
j=1

τj , (3.1)

corresponding to a given realization of the measurement sequence {τj} ≡
{τj ; j = 1, 2, . . . ,m}, is given by

Wm({τj}) ≡ (Π Um) . . . (Π U1) ρ0 (Π U1)
†
. . . (Π Um)

†

= Rm({τj})ρ0R
†
m({τj}), (3.2)

where we have defined

Rm({τj}) ≡
m∏
j=1

Π UjΠ, (3.3)

and Uj ≡ exp (−iHτj). Clearly, also T is a random variable that depends

on the realization of the sequence {τj}. Let us observe that, to obtain (3.2),

we have used the following relations:
Π† = Π,

ρ0 = Πρ0Π,

Π2 = Π,

(3.4)

which are obtained by modeling the quantum measurement with a projection

operator.

The survival probability, namely, the probability that the system belongs

to the subspace HΠ at the end of the evolution, is given by

P({τj}) ≡ Tr [Wm({τj})] = Tr
[
Rm({τj})ρ0R

†
m({τj})

]
, (3.5)

while the final (normalized) density matrix is

ρ({τj}) =
Rm({τj})ρ0R

†
m({τj})

P({τj})
. (3.6)
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Note that the survival probability P({τj}) depends on the system Hamilto-

nian H, the initial density matrix ρ0 and also on the probability distribution

p(τ).

3.1.2 Survival probability statistics

Now, we will provide a novel method from LD theory to derive the distribu-

tion of the survival probability P({τj}) with respect to different realizations

of the sequence {τj}. To this end, let us suppose that the system is initially

in a pure state |ψ0〉 belonging to HΠ, so that ρ0 = |ψ0〉〈ψ0|, and that the pro-

jection operator is given by Π ≡ |ψ0〉〈ψ0|. In this way, starting with a pure

state, the system evolves according to the following repetitive sequence of

events: unitary evolution for a random interval, followed by a measurement

that projects the evolved state into the initial state. The survival probability

P({τj}) is, then, evaluated by using (3.5) to get

P({τj}) =

m∏
j=1

q(τj), (3.7)

where the probability q(τj) is defined as

q(τj) ≡ |〈ψ0|Uj |ψ0〉|2 , (3.8)

which takes on different values depending on the random numbers τj . Note

that, being a probability, possible values of q(τ) lie in the range 0 < q(τ) ≤ 1.

Moreover, the distribution of q(τj) is obtained as

Prob (q(τj)) = p(τj)

∣∣∣∣ dτj
dq(τj)

∣∣∣∣ , (3.9)

where (3.8) gives ∣∣∣∣dq(τj)dτj

∣∣∣∣ = 2 |〈ψ0|HUj |ψ0〉| . (3.10)

Then, from (3.7) one derives the distribution of P as

Prob (P) =

 m∏
j=1

∫
dτj p(τj)

 δ
 m∏
j=1

q(τj)− P

 , (3.11)

where δ(·) is the Dirac-delta distribution. In particular, one may be in-

terested in the average value of the survival probability, where the average
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corresponds to repeating a large number of times the protocol of m consecu-

tive measurements interspersed with unitary dynamics for random intervals

τj . One gets:

〈P〉 =

m∏
j=1

∫
dτj p(τj)q(τj). (3.12)

In this regard, let us observe that here and in the following we will use

angular brackets to denote averaging with respect to different realizations of

the stochastic sequence under analysis. Additionally, let us note that writing

q(τ) as

q(τ) = 1− µ(τ); 0 ≤ µ(τ) < 1, (3.13)

we have

µ(τ) =

∣∣∣∣∣
∞∑
k=1

(−iτ)k

k!
〈Hk〉

∣∣∣∣∣
2

, (3.14)

with

〈Hk〉 ≡ 〈ψ0|Hk|ψ0〉; k = 0, 1, 2, . . . (3.15)

In particular, considering τ � 1, one has, to leading order in τ2, the result

µ(τ) =
τ2

τ2
Z

, (3.16)

where τZ is the so-called Zeno-time [71,180] and is defined as{
τ−2
Z ≡ ∆2H,

∆2H ≡ 〈H2〉 − 〈H〉2.
(3.17)

Let us now employ the LD formalism to derive the statistics of the sur-

vival probability P({τj}) in the limit of m → ∞. In this limit, (3.1) gives

〈T 〉 = mτ, (3.18)

where we have used the fact that the τj ’s are i.i.d. random variables and τ is a

finite number. Moreover, let us consider p(τ) to be a d-dimensional Bernoulli

distribution, namely τ takes on d possible discrete values τ (1), τ (2), . . . , τ (d)

with corresponding probabilities p(1), p(2), . . . , p(d), such that
∑d
k=1 p

(k) = 1.

The average value of the survival probability is, then, obtained by using

(3.12) as

〈P〉 = exp
(
m ln

d∑
k=1

p(k)q(τ (k))
)
. (3.19)
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In order to introduce the LD formalism for the survival probability, consider

the log-survival-probability

L({τj}) ≡ ln (P({τj})) =

d∑
k=1

nk ln q(τ (k)), (3.20)

where nk is the number of times τ (k) occurs in the sequence {τj}. Noting

that L({τj}) is a sum of i.i.d. random variables, its probability distribution

is given by

Prob(L)

=
∑

{nk}:
∑
k nk=m

m!

n1!n2! . . . nd!
(p(1))n1 . . . (p(d))ndδ

(
d∑
k=1

nk ln q(τ (k))− L
)

=
m!

ñ1!ñ2! . . . ñd!

d∏
k=1

(p(k))ñk , (3.21)

where, as indicated, the summation in the first equality is over all possible

values of n1, n2, . . . , nd subject to the constrain
∑d
k=1 nα = m. In the second

equality, instead, ñk’s are such that
d∑
k=1

ñk = m,

d∑
k=1

ñk ln q(τ (k)) = L.
(3.22)

Starting from (3.21) and considering the limit m → ∞, the following

LD form for the probability distribution Prob (L/m) can be derived (in this

regard, see Appendix B) as

Prob (L/m) ≈ exp
(
−mI (L/m)

)
, (3.23)

where the function I(ξ), also called rate function [187], is given by

I (ξ) =

d∑
k=1

f(τ (k)) ln

(
f(τ (k))

p(k)

)
, (3.24)



92 Large deviations and stochastic quantum Zeno phenomena

where
f(τ (k)) =

ln q(τ (d))− ξ
(d− 1)

[
ln q(τ (d))− ln q(τ (k))

] ; k = 1, . . . , (d− 1),

f(τ (d)) = 1−
d−1∑
k=1

f(τ (k)).

(3.25)

The approximate symbol ≈ in (3.23) stands for the fact that there are sub-

dominant m-dependent factors on the r.h.s. of the equation. An alternative

form to (3.23), that involves an exact equality and can be considered as the

equation defining the function I(ξ), is

lim
m→∞

− 1

m
Prob (L/m) = I (L/m) . (3.26)

The rate function I (ξ) in (3.24) is the relative entropy or the Kullback-

Leibler distance between the set of probabilities {f(τ (k))} and the set {p(k)}.
It has the property to be positive and convex, with a single non-trivial min-

imum [50]. Equation (3.23) implies that the value at which the function

I(L/m) is minimized corresponds to the most probable value L? of L as

m→∞. Using

∂I(L/m)

∂ ln q(τ (k))

∣∣∣∣
L=L?

= 0; k = 1, . . . , d

we get (see Appendix B)

L? = m

d∑
k=1

p(k) ln q(τ (k)). (3.27)

As for the distribution of the survival probability, one may obtain a LD

form for it in the following way:

Prob(P) =

∫
dL Prob(L)δ(L − lnP)

=

∫
d(L/m) Prob(L/m)δ(L/m− lnP)

≈
∫
d(L/m) exp (−mI(L/m)) δ(L/m− lnP))

≈ exp
(
−m minL:L=m lnPI(L/m)

)
, (3.28)
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where in the third step we have considered large m and have used (3.23),

while in the last step we have used the saddle point method to evaluate the

integral. We, thus, obtain

lim
m→∞

− ln(Prob(P))

m
= J(P), (3.29)

with

J(P) ≡ minL:L=m lnPI(L/m). (3.30)

The value at which J(P) takes on its minimum value gives the most probable

value of the survival probability in the limit m → ∞, which may also be

obtained by utilizing the relationship between L and P; one gets

P? = exp
(
m

d∑
k=1

p(k) ln q(τ (k))
)
, (3.31)

which may be compared with the average value in (3.19). In other words,

while the average value 〈P〉 is determined by the logarithm of the averaged

q(τ (k)), the most probable value P? is given by the average performed on the

logarithm of q(τ (k)). The latter is the so-called log-average or the geometric

average of the quantity q(τ (k)) with respect to the τ -distribution.

A straightforward generalization of (3.31) for a generic continuous τ -

distribution is

P? = exp
(
m

∫
dτp(τ) ln q(τ)

)
, (3.32)

while that for the average reads as

〈P〉 = exp
(
m ln

∫
dτp(τ)q(τ)

)
. (3.33)

Using the so-called Jensen’s inequality, namely, 〈exp(ξ)〉 ≥ exp(〈ξ〉), it im-

mediately follows that

〈P〉 ≥ P?, (3.34)

with the equality holding only when no randomness in τ (that is, only a

single value of τ exists) is considered. The difference between P? and 〈P〉
can be estimated in the following way in an experiment. If we perform a

large number m of projective measurements on our quantum system, then:

� The value of the survival probability to remain in the initial state that

is measured in a single experiment will very likely be close to P?, with

deviations that decrease fast with increasing m.
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� On the other hand, averaging the survival probability over a large

(ideally infinite) number of experimental runs will yield 〈P〉.
All the derivations above were based on the assumption of a fixed number

m of measurements, so that the total time interval T is a quantity fluctuating
between different realizations of the measurement sequence. To obtain the
LD formalism, we eventually let m approach infinity, which in turn leads
to an infinite 〈T 〉. We now consider the situation where we keep the total
time T fixed, and let m fluctuate between realizations of the measurement
sequence. In this case, in contrast to (3.21), we have the following joint
probability distribution:

Prob(L, T ) =
∑
m

∑
nk:

∑
k nk=m

m!

n1! . . . nd!

d∏
k=1

(
p(k)

)nk
δ

(
d∑
k=1

nk ln q(τ (k))− L
)

× δ

(
d∑
k=1

nkτ
(k) − T

)
. (3.35)

We thus have to find the set of nk’s, which we now refer to as ñk’s, such

that the following conditions are satisfied:

d∑
k=1

ñk = m,

d∑
k=1

ñk ln q(τ (k)) = L,
d∑
k=1

ñkτ
(k) = T .

(3.36)

The above equations have a unique solution only for d = 2, that is, when

one has a Bernoulli distribution. In this case, the solutions satisfy

T −mτ (2)

τ (2) − τ (1)
=

L −m ln q(τ (2))

ln q(τ (2))− ln q(τ (1))
, (3.37)

which may be solved for m, for given values of L and T , and then used in

(3.35) to determine Prob(L, T ). In the limit m → ∞, provided the mean τ

of p(τ) exists, (3.1) together with the law of large numbers2 gives:

T = mτ. (3.38)

2The law of large numbers states that the sum of a large number N of i.i.d. random

variables, when scaled by N , tends to the mean of the underlying identical distribution

with probability one as N approaches infinity [143].
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In this case, for every d, one obtains an LD form for Prob(L, T ) (see Ap-

pendix B for the derivation):

Prob(L, T ) ≈ exp
(
−mI

( L
m
,
T
m

))
, (3.39)

where

I (ξ, y) =

d∑
k=1

g(τ (α)) ln

(
g(τ (k))

p(k)

)
, (3.40)

g(τ (k)) =
τ (d)(m ln q

(
τ (d)

)
− ξ)(

ln q
(
τ (d)

)
− ξ
)

(τ (d) − τ (k)) + y(d− 1) ln
(
q
(
τ (d)

)
/q
(
τ (k)

)) ;

k = 1, . . . , (d− 1), (3.41)

g(τ (d)) = 1−
d−1∑
k=1

g(τ (k)). (3.42)

The rate function (3.40) is related to the rate function (3.24) as follows:

I(L/m) = minT /m:T =〈T 〉I
( L
m
,
T
m

)
, (3.43)

and, similarly to (3.28), one has

Prob(P, T ) ≈ exp (−mJ (P, T /m)) , (3.44)

where

J (P, T /m) ≡ minL:L=m lnPI(L/m, T /m). (3.45)

Finally, as in (3.32), the most probable value of the survival probability for

a continuous τ -distribution is given by

P?(T ) = exp
(
m

∫
dτp(τ) ln g(τ)

)
. (3.46)

3.1.3 Quantum Zeno limit

Stochastic quantum Zeno effect has been previously introduced by applying

on an arbitrary quantum system a sequence of projective measurements,

which are randomly spaced in time. Therefore, to recover the exact quantum

Zeno limit, we assume that the m projective measurements are at times

equally separated by an amount τ , so that one has

p(τ) = δ(τ − τ), (3.47)
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and

〈T 〉 = T = mτ. (3.48)

As a consequence, we obtain

P? = 〈P〉 = P(τ) ≡ exp
(
m ln q(τ)

)
= exp

(T
τ

ln q(τ)

)
. (3.49)

QZE, then, is recovered in the limit τ → 0 with finite T . Indeed, by using

(3.13) and (3.16), one obtains

P(τ) ≈ exp
(
− T τ∆2H

)
≈ 1, (3.50)

provided that ∆2H is finite, as it is the case for a finite-dimensional Hilbert

space.

Let us, now, discuss QZE for a general p(τ). Note that in this case it

is natural in experiments to keep the number of measurements m fixed at a

large value, with the total time T fluctuating between different sequences of

measurements {τj}. From (3.32) and (3.33), with the use of (3.13), and the

Taylor expansion of log(1 + ξ) for ξ < 1, we get

P? = exp
(
−m

∞∑
n=1

〈µn〉
n

)
≈ exp

(
−m〈µ〉

)
(3.51)

and

〈P〉 = exp
(
−m

∞∑
n=1

〈µ〉n
n

)
≈ exp

(
−m〈µ〉

)
, (3.52)

where

〈µk〉 ≡
∫
dτp(τ)µk(τ); k = 1, 2, 3, . . . (3.53)

From (3.51) and (3.52), it follows that in the limit of very frequent mea-

surements so that m → ∞, provided that 〈µ〉 ≈ 0, one recovers the QZE

condition, i.e.

P? = 〈P〉 ≈ 1. (3.54)

Thus, the condition to obtain QZE in the case of stochastic measurements

is

〈µ〉 =

∫
dτp(τ)τ2

τ2
Z

≈ 0 , (3.55)

which, considering that τZ is finite, reduces to the requirement∫
dτp(τ)τ2 ≈ 0. (3.56)
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For instance, for a quite general probability distribution p(τ) with power-law

tails, namely,

p(τ) ∼
(τ0
τ

)1+α

,

with α > 0 and τ0 being a given time scale, QZE is achieved for τ0 � 1 and

α > 2, corresponding to a finite second moment of p(τ).

3.1.4 Illustrative example - Zeno-protected entangled

states

Here, in order to test our analytical results, we numerically simulate the

dynamical evolution of a generic n-level quantum system governed by the

following Hamiltonian:

H =

n∑
j=1

ωj |j〉〈j|+
n−1∑
j=1

Ω (|j〉〈j + 1|+ |j + 1〉〈j|) . (3.57)

Here, |j〉 ≡ |0 . . . 1 . . . 0〉, with 1 in the j−th place and 0 otherwise, denotes

the state for the j-th level with ωj the corresponding energy, while Ω is the

coupling rate between nearest-neighbor levels. For simplicity, we take n = 3,

Ω = 2πf , with f = 100 kHz, and ωj = 2πfj , with f1 = 30 kHz, f2 = 20

kHz and f3 = 10 kHz. We choose the initial state |ψ0〉 to be the following

entangled (with respect to the bipartition 1|23) pure state

|ψ0〉 ≡
1√
2

(|100〉+ |001〉). (3.58)

Under these conditions, we obtain the survival probability P as a function of

the number of measurements m for a d-dimensional Bernoulli distribution for

the τj ’s, with d = 2, 3, 4 – see Fig. 3.1. We find a perfect agreement between

the numerical evaluation of (3.5) for a typical realization of the measurement

sequence {τj} and the asymptotic most probable values obtained by using

(3.31). Moreover, a comparison between these two quantities for d = 2,

m = 2000, and 100 typical realizations of the measurement sequence is shown

in Fig. 3.2.

Furthermore, to test our analytical predictions for a continuous τ -distribution,

we have considered the following distribution for the τj ’s, namely,

p(τ) = α
τα0
τ1+α

,
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Figure 3.1: Survival probability P as a function of the number of mea-

surements m for a d-dimensional Bernoulli distribution for the τj ’s, with

d = 2, 3, 4. Specifically, we have chosen for d = 4 the values p(1) = 0.3, p(2) =

0.2, p(3) = 0.05, p(4) = 0.45, and τ (1) = τ0, τ
(2) = 3τ0, τ

(3) = 2τ0, τ
(4) =

0.5τ0, with τ0 = 1 ns. For d = 3, the values are p(1) = 0.3, p(2) = 0.2, p(3) =

0.5, and τ (1) = τ0, τ
(2) = 3τ0, τ

(3) = 2τ0, while for d = 2, we have taken

p(1) = 0.3, p(2) = 0.7, and τ (1) = τ0, τ
(2) = 3τ0. Here, the points denote the

values obtained by evaluating (3.5) numerically for a typical realization of

the measurement sequence {τj}, while the lines denote the asymptotic most

probable values obtained by using (3.31).

with α > 0 and τ ∈ [τ0,∞). The corresponding survival probability shown in

Fig. 3.3 further confirms our analytical predictions. Note that the decrease of

fluctuations around the most probable value with increasing α is consistent

with the concomitant smaller fluctuations of τ around the average τ . In all

the cases discussed here, we observe excellent agreement with our estimate of
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Figure 3.2: Comparison between the survival probability P obtained by

evaluating (3.5) numerically for 100 typical realizations of the measurement

sequence (points) and the most probable value P? (line) obtained by using

(3.31), for the case d = 2 in Fig. 3.1 and for the number of measurements

m = 2000.

the most probable value based on the LD theory. Moreover, our analytical

predictions are numerically confirmed also for any coherent superposition

state |ψ0〉 ≡ a1|100〉+ a2|001〉 with |a1|2 + |a2|2 = 1.

Finally, we want to address the following question. Does the presence of

disorder in the sequence of measurement time intervals enhance the survival

probability? To address it, we consider a d-dimensional Bernoulli p(τ) with

d = 2, and a given fixed value of the average τ = p(1)τ (1) + p(2)τ (2). Then,

in the first scenario, we apply m projective measurements at times equally

spaced by the amount τ , while in the second we sample this time interval

from p(τ). As previously shown, the absence of randomness on the values

of τ trivially leads to P? = 〈P〉. In the second scenario, the most probable
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Figure 3.3: Survival probability P as a function of the number of measure-

ments m for the distribution p(τ) = α
τα0
τ1+α , with α > 0 and τ ∈ [τ0,∞].

Here, τ0 is a time scale set to 1 ns. Besides, we choose values of α such

that p(τ) has a finite mean and a finite second moment, i.e. α > 2. As

in the preceding figures, the points denote the values obtained by evaluat-

ing numerically (3.5) for a typical realization of the measurement sequence

{τj}, while the lines denote the asymptotic most probable values obtained

by using (3.32).

value P? is given by (3.31), from which

P? = exp
(
m
[
p(1) ln q(τ (1)) + (1− p(1)) ln q(τ (2))

])
, (3.59)

with

τ (2) =
τ − p(1)τ (1)

p(2)
. (3.60)

Thus, the question arises as to whether for given fixed τ and τ (1) a random
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sequence of measurement yields a larger value of the survival probability than

the one obtained by performing equally spaced measurements.
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Figure 3.4: Most probable value (red lines) of the survival probability P? for

a d-dimensional Bernoulli distribution p(τ) with d = 2, given fixed values of

the average τ = p(1)τ (1) +p(2)τ (2) and τ (1), m = 100. The black line denotes

the value P? in the case of projective measurements equally spaced in time,

with m = 100. We have considered τ = 2.4τ0, τ (1) = τ0, and τ0 = 10 µs.

For the Hamiltonian (3.57) and the initial state (3.58), we show in Fig. 3.4

the behavior of P? as a function of p(1) at fixed values of τ = 2.4τ0 and

τ (1) = τ0, with τ0 = 10 µs. A comparison with P(τ) shows that while

in the Zeno limit, such a disorder is deleterious, there are instances where

random measurements are beneficial in enhancing the survival probability.

Moreover, as shown in Fig. 6 in Ref. [85], an effective survival probability

enhancement is reached in every dynamical evolution regime (except that

in the Zeno limit) also in the behaviour of the ratio P?/P(τ) as a function
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of P(τ (1)) at fixed values of p(1) = 0.99, m = 100 and τ = 2.4τ (1), with

τ (1) ∈ [1, 250] ns. Interestingly enough, these regimes might be particularly

relevant from the experimental side when the ideal Zeno condition is only

partially achieved.

3.2 Experimental realization with Bose-Einstein

condensates

In this section, an experimental demonstration of the theoretical results in

[85], which have been previously introduced, is shown [86]. The experimental

platform is given by a Bose-Einstein condensate (BEC) of Rubidium (87Rb)

atoms, prepared on an atom chip [170]. Atom chips give the possibility

to realize a trapping field for cold-atom clouds with current-carrying wires,

whose induced magnetic field is compensated with a constant magnetic field

(the bias) perpendicularly to the wire. The presence of a bias field, indeed,

generates a zero of the total magnetic field on the axis parallel to the wire

direction at a given (fixed) weight. Around such direction the field can be

approximated with a quadrupole, which thus constitutes a linear guide for

the atoms [151]. Further details on the setup will be discussed in this section,

together with the experimental results.

By applying the LD theory to a sequence of randomly-distributed projec-

tive measurements, we have proved the equivalence between the analogous

of the time and ensemble averages of the configurations assumed by the

stochasticity in the time interval between measurements, when the system

approaches the quantum Zeno regime. The observation of such equivalence

corresponds to prove the ergodicity of the interaction modes between the

system and the environment. This result could pave the way towards the

development of new feasible schemes to control quantum systems by tunable

and usually deleterious stochastic noise. Before showing in detail the exper-

imental results, let us recall that the mathematical definition of ergodicity

was initially introduced by von Neumann [198, 199]: his ergodic theorem

ensures that only rarely an observable of the system deviates considerably

from its average value. In accordance with von Neumann’s theory, Peres de-

fined ergodicity in quantum mechanics as the equality between the time and

ensemble averages of an arbitrary quantum operator [149]. Recently, in [138]

ergodic dynamics have been proved in a small quantum system consisting of

three superconducting qubits, which was realized as a general framework for
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investigating non-equilibrium thermodynamics.

Now, given an observable O, we introduce two schemes to take into ac-

count the presence of stochastic noise in terms of an external environment

by applying consecutive quantum projective measurements to the system, as

shown in Fig. 3.5.

OA{…

OG

Figure 3.5: Pictorial representation of the two measurement schemes cor-

responding, respectively, to here called geometric OG and arithmetic OA
averages of a generic observable O of an open quantum system. The black

lines represent the interaction with the external environment, that is mim-

icked by a sequence of consecutive projective measurements, where the total

time of a given realization of the measurements sequence is a random variable

depending on how stochasticity is realized.

The first scheme is based on the measurement of O after a single dynamical

evolution of the system, that interacts with the environment at stochastically

distributed times (geometric average OG). The second scheme, instead, con-

sists of averaging the final observable outcomes over different dynamical re-

alizations of the system each periodically interacting with the environment

(arithmetic average OA). Then, different realizations of the measurement

sequence correspond to different time intervals in the system-environment

interaction, but extracted from the same probability distribution as in the
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first scheme. Moreover, the total number of times in which the time inter-

val is sampled by the corresponding probability distribution establishes the

relative weight to compute the arithmetic average OA.

More formally, let us consider a sequence of repeated quantum measure-

ments, which are separated by random time intervals sampled from a given

probability density function p(τ). The most probable value P?(m) of the

survival probability (probability that the system belongs to the measure-

ment subspace after m measurements) is given by (3.32), while the average

value 〈P(m)〉 by (3.33). It can be observed that P?(m) is identically equal

to the geometric average Pg of the survival probability, weighted by p(τ).

Indeed

Pg ≡
∏
{τ}

q(τ)mp(τ) = exp

(
m

∫
τ

dτp(τ) ln(q(τ))

)
= P?(m), (3.61)

where the index of multiplication assumes all possible values of {τ}, i.e. the

ones in the support of p(τ). In the limit of a large number of measurements

M , the geometric average Pg(m) is the value to which the time average

P̂M (m) ≡ 1

M

M∑
k=1

P({τj}kj=1)
m
k (3.62)

of the survival probability P({τj}) converges, so that

P̂(m) ≡ lim
M→∞

1

M

M∑
k=1

P({τj}kj=1)
m
k = Pg(m). (3.63)

As a matter of fact, the value of the survival probability after m measure-

ments can be estimated by using the corresponding value P({τj}kj=1) after

k measurements by using the relation

P({τj}mj=1) ≈ P({τj}kj=1)
m
k . (3.64)

This value, then, if averaged for k = 1, . . . ,M , converges to the geometric

average Pg(m) in the limit of large M . Finally, one can consider the ordered

case of periodic projective measurements, i.e. τj = τ , but with τ being

selected according to p(τ). This leads to the definition of the arithmetic

average, i.e.

Pa ≡
∫
τ

dτp(τ)q(τ)m = exp

(
ln

∫
τ

dτp(τ)q(τ)m
)
. (3.65)
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Using the Jensen’s inequality and considering that 〈ξ〉m ≤ 〈ξm〉 for any

ξ ∈ [0, 1] and m ∈ N, it follows that

Pg ≤ 〈P〉 ≤ Pa, (3.66)

i.e.

exp

(
m

∫
τ

dτp(τ) ln(q(τ))

)
≤
(∫

τ

dτp(τ)q(τ)

)m
≤ exp

(
ln

∫
τ

dτp(τ)q(τ)m
)
.

(3.67)

As main result, it is has been proved in [86] that in the Zeno regime it is

sufficient to examine the series of constant τ in order to determine Pg, Pa
and 〈P〉. The Zeno regime is defined by the relation

m

∫
dτp(τ) ln q(τ) = m〈ln q(τ)〉 � 1, (3.68)

in perfect agreement with (3.54). Within this limit all the three averages are

equal ; indeed

Pa ≈ 〈1 +m ln q〉 = 1 +m〈ln q〉 ≈ Pg, (3.69)

and, as a consequence of the relation (3.66), the equality holds also for the

ensemble average 〈P〉. Since in the geometric average the noise is averaged

over time while the other two averages are computed over different realiza-

tions of the measurement sequence, the validity of this equality proves the

ergodicity of the system-environment interaction modes. More specifically,

let us define the normalized discrepancy D between Pg and Pa as

D ≡ Pa − PgPa
= 1− e−∆q(τ,m) ≈ ∆q(τ,m), (3.70)

where

∆q(τ,m) ≡ ln〈q(τ)m〉 − 〈ln q(τ)m〉. (3.71)

∆q(τ,m) is equal to zero only within the Zeno regime, while outside the

equality (3.69) (under second-order Zeno approximation) breaks down. As

a matter of fact, the leading term in D is of fourth order in τ , i.e.

∆q(τ,m) ≈ m2

2
(∆2H)2

(
〈τ4〉 − 〈τ2〉2

)
, (3.72)

which is determined by the second and the fourth moment of p(τ) (〈τ2〉 ≡∫
τ
dτp(τ)τ2 and 〈τ4〉 ≡

∫
τ
dτp(τ)τ4, respectively) and by the variance of the

energy ∆2H (see Appendix B for further details).
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Figure 3.6: Probability distribution Prob(P) of the survival probability. The

grey boxes refers to the relative frequencies of P, obtained by evaluating

numerically 1000 random realizations of the survival probability after m =

100 measurements. They are compared to the expected distribution (3.73)

shown in dark red. The top panel shows the results in the Zeno regime, the

lower panel for violated Zeno condition. As it can be seen, the values of the

geometric average Pg and of the expectation value 〈P〉 are very similar. In

the Zeno limit, also Pa is very close to these two values, unlike the lower

panel where the Zeno condition does not hold, hence demonstrating the

ergodic hypothesis for a randomly perturbed quantum system only in the

Zeno regime.

For the sake of clarity, let us consider a bimodal distribution for p(τ), with

values τ (1) and τ (2) and probability p1 and p2 = 1− p1. The survival proba-

bility in the Stirling approximation for m sufficiently large is distributed as

Prob(P) ≈ 1√
2πmp1p2

exp

(
− (k(P)−mp1)2

2mp1p2

)
, (3.73)
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where

k(P) =
lnP −m ln q(τ (2))

ln q(τ (1))− ln q(τ (2))
, (3.74)

is the frequency of the event τ (1). Also the derivation of (3.73) can be

found in Appendix B. Fig. 3.6 shows the distribution Prob(P) of the survival

probability for this bimodal distribution. The grey boxes refer to the relative

frequencies of P with τ (1) = 1 µs after m = 100 measurements for 1000

random realizations, as compared to the expected distribution (3.73) in dark

red. The top panel displays the results for τ (2) = 2 µs (satisfying both the

Zeno condition and the ergodic hypothesis), the lower panel for τ (2) = 10

µs (not satisfying both the Zeno condition and the ergodic hypothesis). We

select two values of τ (2) (i.e., 2 µs and 10 µs) in order to show two different

scenarios closely related to the experimental observations (in this regard, see

also Fig. 3.9). τ (2) = 2 µs, indeed, is close to the minimal time interval that

is experimentally feasible and leads to Zeno dynamics in a regime where the

geometric average Pg can also be different from 1 (depending on the choice

of p2). On the other side, τ (2) = 10 µs guarantees that the Zeno condition

is violated with Pg being however significantly larger than zero. In both

scenarios Pg is the maximal value assumed by Prob(P) and the expectation

value 〈P〉 is very close to it. In the Zeno limit also Pa is very close to these

two values, while in the lower panel, where the Zeno condition is violated,

it assumes a different value, confirming the analytical results. The other

parameters are ∆H = 2π · 2.5 kHz, p1 = 0.8 and p2 = 0.2. Qualitatively

similar behaviours have been observed for other parameter values.

Finally, in Table 3.1 we show the difference between the values of Pa
and Pg for a bimodal distribution when varying the probability p1 but with

τ (2) = 10 µs. Outside the Zeno regime, the arithmetic average Pa is always

different from the geometric average Pg. Such discrepancy disappears when

the stochasticity in the time interval between the measurements vanishes,

i.e. for p1 = 0 (complete leakage) and for p1 = 1 (standard Zeno regime).

As it will be shown in the following, all the theoretical predictions are well

corroborated by the experimental data.

Experimental setup and methods

The aforementioned theoretical results have been tested with a Bose-Einstein

condensate of 87Rb produced in a magnetic micro-trap realized with an atom

chip. The trap has a longitudinal frequency of 46 Hz and a radial trapping
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p1 Pa Pg
0.01 0.0905 0.0842

0.05 0.1234 0.0927

0.2 0.2470 0.1329

0.5 0.4941 0.2729

0.8 0.7412 0.5606

0.95 0.8648 0.8035

0.99 0.8977 0.8845

Table 3.1: Arithmetic and geometric averages Pa and Pg as a function

of the probability p1 for a bimodal distribution p(τ), expressed with four

decimal digits. In the simulations we have chosen τ (1) = 1 µs, τ (2) = 10 µs,

∆H = 2π · 2.5 kHz, and m = 100.

frequency of 950 Hz. The BEC has typically 8 · 104 atoms, a critical temper-

ature of 0.5 µK and is at 300 µm from the chip surface. The magnetic fields

for the micro-trap are provided by a Z-shaped wire on the atom chip and an

external pair of Helmholtz coils, while the RF fields for the manipulation of

the Zeeman states are produced by two further conductors also integrated

on the atom chip.

Let us recall that the ground state of 87Rb is a hyperfine doublet sep-

arated by 6.834 GHz with total spin F = 2 and F = 1, respectively. To

prepare the atoms for the experiment, the condensate is released from the

magnetic trap and allowed to expand freely for 0.7 ms, while a constant

magnetic field bias of 6.179 G is applied in a fixed direction. This proce-

dure ensures that the atom remains oriented in state |F = 2,mF = +2〉
and strongly suppresses the effect of atom-atom interactions by reducing the

atomic density. The preparation consists of three steps (see Fig. 3.7):

� In the first step all the atoms are brought into the |F = 2,mF = 0〉
state with high fidelity (∼ 95%). This is obtained applying a 50µs

long frequency modulated RF pulse designed with an Optimal Control

(OC) strategy [121].

� After the RF pulse we transfer the whole |F = 2,mF = 0〉 population

into the |F = 1,mF = 0〉 sub-level by shining in bichromatic (Raman)

laser light. This is the initial state ρ0 for our experiment. Note that,

with our choice of laser polarizations and thanks to the presence of the



3.2 Experimental realization with Bose-Einstein condensates 109

homogeneous bias field shifting away from resonance other magnetic

sub-levels, the bichromatic light does not alter the population of the

other magnetic sub-levels.

� The preparation is completed by applying another RF pulse to place

some atomic population in the |F = 1,mF = ±1〉 states for normaliza-

tion of the imaging procedure. Atoms in these last states will be not

affected during the actual experiment, so they can be used as a control

sample population.

Figure 3.7: State preparation sequence for the experiment on stochastic

quantum Zeno effect. After the condensation in the pure state |F = 2,mF =

+2〉, in the first step the atoms are transferred to the state |F = 2,mF = 0〉
with fidelity ∼ 95%. In the second step, by two Raman lasers the atoms in

this sub-level are transferred to the lower state |F = 1,mF = 0〉, which is the

initial state ρ0 for our experiment. In the third and last step, a fixed amount

of population is transferred into the side sub-levels |F = 1,mF = ±1〉. These

atoms will be used as a benchmark to compute the survival probability after

the experiment.

In order to check each step of the preparation procedure, we record the
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number of atoms in each of the 8 mF -states by applying a Stern-Gerlach

method. In this regard, an inhomogeneous magnetic field is applied along

the quantization axis for 10 ms. This causes the different mF -sub-levels to

spatially separate. After a total time of 23 ms of expansion, a monochro-

matic light in resonance with the |F = 2〉 → |F ′ = 3〉 transition is used

for 200µs, so to push away all atoms in the F = 2 sub-levels and recording

the shadow cast by these atoms onto a CCD camera. We let the remaining

atoms expand for further 1 ms and, then, apply a bichromatic pulse con-

taining light resonant to the |F = 2〉 → |F ′ = 3〉 and |F = 1〉 → |F ′ = 2〉
transitions, effectively casting onto the CCD the shadow of the atoms in

the F = 1 sub-levels. Another two CCD images to acquire the background

complete the imaging procedure.

The experiments are performed by coupling the |F = 1,mF = 0〉 and

|F = 2,mF = 0〉 with a Raman transition driven at a Rabi frequency of

5 kHz by a bichromatic laser beam, as shown in Fig. 3.8. Since we are working

with ground state atoms, with our choice of laser polarizations and thanks

to the presence of the homogeneous bias field (shifting away from resonance

other magnetic sub-levels) and selection rules for Raman transitions, we have

effectively isolated a closed 2-level system. The projective measurements

Π = |ψ0〉〈ψ0|, then, are realized by shining the atoms with a 1µs pulse of

light resonant with the |F = 2〉 → |F ′ = 3〉 component of the Rubidium

D2 line. Note that from the excited state |F ′ = 3〉 atoms will immediately

decay outside the condensate and will not be seen by our imaging system.

Under constant coupling by the Raman beams, we apply 100 projective

measurements Π after variable intervals of free evolution τj . At the end of the

sequence we measure the population remaining in state |F = 1,mF = 0〉 and

normalize it by comparison with the population in states |F = 1,mF = ±1〉.
This allows to measure, in a single shot, the survival probability P of the

atoms in the initial state. Each experimental sequence is repeated 7 times

to obtain averages and standard deviations.

3.2.1 Ergodicity of the system-environment interaction

modes

To realize the theoretical predictions we experimentally measure the geomet-

ric and arithmetic averages of the survival probability P by assuming p(τ)

as a bimodal distribution, where we take τ (1) = 2µs to be fixed and τ (2)

variable between 2µs and 25µs. Overall, the experiment can be synthesized
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Figure 3.8: Confinement induced by pulsed quantum Zeno effect. The

ground state structure of the 87Rb in presence of a magnetic field consists

of two hyperfine levels (F = 1 and F = 2), with no internal degeneracy. A

laser induced Raman transition couples the sub-levels |F = 1,mF = 0〉
and |F = 2,mF = 0〉, while a laser on resonance with the transition

|F = 2〉 → |F ′ = 3〉 (red arrows in the picture) depletes the population

of the former. If the laser is strong enough, this equates to a projective

measurement. On the right we show the typical exponential decay of the

survival probability of the atoms in the |F = 1,mF = 0〉 sub-level while

the Raman coupling is on, and simultaneously the laser resonant to the

|F = 2〉 → |F ′ = 3〉 transition is pulsed 100 times. The survival probability

is plotted as a function of the interval τ between two pulses.

in two sets of data acquisitions:

� In a first set of experiments we measure the arithmetic average Pa by

fixing the intervals of free evolution τj to be all the same and equal to

τ ∈ {τ (1), τ (2)} and we determine P(τ), i.e the probability for an atom

to remain in the initial state as a function of τ . As shown in Fig. 3.8,

P(τ) displays the characteristic exponential decay, which becomes neg-

ligible, in our case, after 9µs. After measuring P(τ (1)) and P(τ (2)), we

then calculate the arithmetic average of the two data with statistical

weights p1 and p2, respectively. In this way we obtain Pa(τ (2)) which



112 Large deviations and stochastic quantum Zeno phenomena

represents the statistical mean averaged over the two possible system

configurations as a function of the variable time τ (2). In Fig. 3.9 we

report as yellow dots the results of three choices (0.2, 0.8), (0.5, 0.5),

and (0.8, 0.2) for the statistical weights (p1, p2).

� In order to determine the geometric average Pg of a single realization,

we perform a second set of experiments. In each experimental sequence

we now choose the intervals of free evolution τj from the bimodal proba-

bility density function given by τ (1) and τ (2) with probabilities (p1, p2).

The results of these experiments give the geometrical average Pg(τ (2))

of the survival probability as a function of the parameter τ (2). We

choose again the probabilities (0.2, 0.8), (0.5, 0.5), and (0.8, 0.2) and

the experimental results are shown as blue squares in Fig. 3.9.

As it can be observed in the figure, the agreement of theoretical predictions

and experiments is generally very good, although some deviations go beyond

the error bars and are systematic. Indeed, in the model the measurement has

been assumed to be instantaneous while in the experiment it is a dissipative

process of a duration of about 1µs. Furthermore, we can see in Fig. 3.9 that

for small values of τ (2), i.e. in the Zeno regime, the two averages Pg and

Pa practically coincide, and this has been predicted by approximating the

discrepancy between the two quantities with ∆q(τ,m) ≈ m2

2 (∆2H)2(〈τ4〉 −
〈τ2〉2), which is of fourth order in τ (1), τ (2). Finally, it is worth noting that

Fig. 3.6 corresponds to two cases of the lower panel of Fig. 3.9.

3.3 Fisher information from stochastic quan-

tum measurements

In the previous section, we have shown how the interaction between a quan-

tum system and the external noisy environment can be modeled with a se-

quence of stochastic measurements, i.e. measurements separated by random

time intervals. Here, we analytically study the distinguishability [29, 206]

of two different sequences of stochastic measurement in terms of the Fisher

Information (FI) measure [50], as given in [137]. Indeed, if we want to char-

acterize the dynamics and the statistics of a randomly perturbed quantum

system by measuring its state after a given evolution time, it becomes impor-

tant to investigate how much two arbitrary states, obtained by propagating

different stochastic contributions, can be distinguished by the measurement
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Figure 3.9: Scaling of Pg (blue) and Pa (yellow) with the interval length

τ (2) of a bimodal distribution for p(τ). In all three cases τ (1) = 2 µs and

∆H = 2.5 kHz. The probabilities of the bimodal distribution (p1, p2) are,

respectively, (0.2, 0.8) (upper panel), (0.5, 0.5) (middle panel), and (0.8, 0.2)

(lower panel). The solid lines are the theoretical curves, while the single

points are experimental values where the error bars indicate the standard

deviation of the experimental error. The Zeno regime corresponds to van-

ishing τ2.

process. In this regard, a key role is played again by the quantum Zeno

effect, whereby the largest interval such that two quantum states remain in-
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distinguishable under an arbitrary evolution is given by the Zeno time. As

proved in [180], the Zeno time can be written in terms of the Fisher infor-

mation computed as a function of the conditional probability that the state

of the system (after a free evolution) is projected into the Zeno subspace.

In this context, a FI measure has been recently introduced to investigate

the realizability of quantum Zeno phenomea, when non-Markovian noise is

also included [209], but, as in [180], the small parameter of the theory is the

constant time interval between two consecutive measurements. Conversely,

within the formalism of stochastic quantum measurements, we will introduce

a Fisher information operator, for which the dynamical small parameters are

defined by the statistical moments of the stochastic noise acting on the quan-

tum system.

3.3.1 Fisher information operator

As shown before, the survival probability P of a quantum system subject to a

sequence of m random measurements is a random variable, which converges

to the corresponding most probable value P? in the limit of a large number

of measurements. In particular, Fig. 3.10 shows how the survival probability

decays with ongoing time, slowed down by the intermediate measurements.

At final time, after m projective measurements, we make a final measurement

and we register its outcome – survival or not. For large enough m, the repe-

tition of the experiment will allow us to determine the most probable value

P?, to which the survival probability converges for every single realization

of the τj ’s. By introducing a perturbation δp(τ) of the probability density

function p(τ), we are interested in investigating the sensitivity of the survival

probability most probable value P? with respect to such perturbation, which

induces a change of P? by the quantity

δP? = mP?
∫
τ

dτδp(τ) ln q(τ). (3.75)

In other words, δP? quantifies how sensitive is P? to a change of p(τ), and

corresponds to the following functional derivative:

δP?
δp

(·) = mP?
∫
τ

dτ(·) ln q(τ). (3.76)

It is worth noting that, formally, this functional derivative is an element of

the dual space with respect to that of the probability density functions p(τ),
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Figure 3.10: Decay of the survival probability P? for a quantum system

to remain in an Hilbert subspace when subjected to a stochastic sequence

of measurements. As the time goes on, the population slowly leaks out of

the subspace (ΠH, where Π is the measurement projector and H is the full

Hilbert space) as illustrated by the blue shades in the lower panel. After

each measurement P? evolves quadratically in time. Only the final survival

probability is registered by a (red) detector.

and thus a linear mapping from the admissible changes δp(τ) to the real

number δP?. We can express this fact by introducing the ket notation 〈·|,
such that the functional derivative (3.76) is given by〈δP?

δp

∣∣∣ = mP?〈ln q|. (3.77)

Observe that for two arbitrary functions f and g the application of a bra to

a ket leads to the scalar product

〈f |g〉 =

∫
τ

dτf(τ)g(τ), (3.78)

where the bra 〈f | is an element of the dual space and defines a linear mapping

of the ket |g〉 onto the space of real numbers (through the scalar product

operation).

If the projective measurements are frequent enough, the system evolution

is effectively limited to the subspace given by the measurement projector

Π, such that in the limit of infinite measurement frequency, the survival
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probability given by its most probable value P? converges to one. By using

the bra-ket notation, the small deviation from this ideal scenario can be

approximated by the following relation:

P? ≈ 1 +
〈δP?
δp

∣∣∣p〉, (3.79)

whereby the quality of the Zeno confinement is determined by the sensitivity

of the survival probability P? with respect to a perturbation δp(τ). Such

sensitivity is closely linked to the corresponding Fisher information, which

quantifies the information on p(τ) that can be extracted by a statistical

measurement of P?. When dealing with a single estimation parameter θ and

possible measurement results η, the Fisher information is defined as

F (θ) ≡
∫
η

1

p(η|θ)

(
∂p(η|θ)
∂θ

)2

dη, (3.80)

where p(η|θ) is the conditional probability to observe the result η given

a known value of the parameter θ. In the case of a binary event, i.e.

η ∈ {yes,no}, the integral reduces to a sum over the two events, and since

p(no|θ) = 1−p(yes|θ) such that

[
∂p(yes|θ)

∂θ

]2

=

[
∂p(no|θ)

∂θ

]2

, the FI simpli-

fies to

F (θ) =
1

p(yes|θ)(1− p(yes|θ))

(
∂p(yes|θ)

∂θ

)2

. (3.81)

The Fisher information (3.81) quantifies the information that we obtain on

θ when an event yes or no occurs. Thus, let us now consider the case where

we perform m projective measurements on the quantum system and we keep

only the result of the last measurement. As shown in Fig. 3.10, we measure

survival or not, hence one of two possible events with respective probabili-

ties P? and 1 − P?. Given two different probability density functions p(τ)

characterized by their statistical moments, one can ask how they can be dis-

tinguished by a proper measurement. Since the probability depends on the

function p(τ) (instead of a single parameter θ), we approach this problem by

generalizing the Fisher Information Matrix (FIM)

Fij(θ) ≡
1

p(yes|θ)(1− p(yes|θ))

(
∂p(yes|θ)
∂θi

)(
∂p(yes|θ)
∂θj

)
, (3.82)

depending on the vector θ ≡ (θ1, θ2, . . . )
′, to a Fisher Information Operator
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(FIO), which involves the functional derivatives of P?. We get

F (p) ≡
∣∣∣∣δP?δp 〉〈δP?δp

∣∣∣∣ = m2 P?
1− P? | ln q〉〈ln q| . (3.83)

The Fisher information operator has the following three properties:

(1) Since also P? depends on m, in the Zeno limit the FIO linearly scales

with m:

F (p) ≈ m

|〈ln q|p〉| | ln q〉〈ln q| . (3.84)

(2) The FIO is a rank one operator, since binary measurement outcomes

determine just P? and not its distribution. As a consequence, it is

characterized by the single eigenvector |v〉 = | ln q〉 corresponding to the

non-zero eigenvalue

Λv = m2 P?
1− P? ‖ ln q‖2, (3.85)

with ‖ · ‖ being the L2-norm, which is defined as

‖ ln q‖2 =

∫
τ

dτ | ln q(τ)|2. (3.86)

(3) The FIO can be transformed into a FIM, if it is expressed in a certain

basis, and the corresponding FIM in the generic basis {|fi〉} is given by

the relation

Fij = m2 P?
1− P? 〈fi| ln q〉〈ln q|fj〉. (3.87)

In particular, we might be interested in expressing the FIO in terms of

the statistical moments

〈τk〉 ≡
∫
τ

dτp(τ)τk (3.88)

of the probability density function p(τ). As shown in Appendix B, the

corresponding FIM reads as

F̃ij = m2 P?
(1− P?)

βiβj
i!j!

, (3.89)

where

βk ≡
∂k ln(q(τ))

∂τk

∣∣∣∣
τ=0

. (3.90)
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The third property of the Fisher information operator implies that, in prin-

ciple, we can distinguish two probability density functions that differ by a

single statistical moment or a linear combination of them. As main result,

the highest sensitivity of such a distinguishability problem is found for a dif-

ference in the statistical moments of p(τ) along the (single) eigenvector v

(corresponding to the non-zero eigenvalue λv) of the FIM (3.89). The non-

zero eigenvalue is given by

λv = m2 P?
1− P?

∑
k

(
βk
k!

)2

. (3.91)

Moreover, the k−th element of the (non-normalized) eigenvector v is equal

to vk = βk/k!. Therefore, the most probable value P? can be expressed also

as a function of Λv (λv) and |v〉 (v), such that

P? =
Λv

Λv +m2‖v‖2 =
λv

λv +m2‖v‖2 (3.92)

or equivalently

P? = exp
(
m〈v|µ〉

)
, (3.93)

where the functions

‖v‖ ≡
√∑

k

(vk)2 (3.94)

and

〈v|µ〉 = 〈v|col(〈τk〉)k〉 ≡
∑
k

vk〈τk〉 (3.95)

are, respectively, the Euclidian norm of v and the scalar product between

v and µ, which collects the statistical moments of p(τ). As final remark,

it is worth noting that the eigenvector of the FIM (3.89) depends only on

the system properties ({βk}), while the corresponding eigenvalue depends on

both the system ({βk}) and the probability density function p(τ) through

the quantities {〈τk〉}.

3.4 Stochastic quantum Zeno dynamics

The generalization of the QZE is given by the so-called Quantum Zeno Dy-

namics (QZD), which is achieved by applying sequences of projective mea-

surements onto a multi-dimensional Hilbert subspace [70]. In this case, the



3.4 Stochastic quantum Zeno dynamics 119

system evolves away from its initial state, but remains confined in the sub-

space defined by the measurement operator [71]. At the very heart of QZD

there is the quantum mechanical concept of the measurement back-action,

which is the ability to drive a given quantum state along specific paths by

measuring the system: if the measurements are frequent enough, then the

system is continuously projected back to its initial state, and the back-action

confines its dynamics within the measurement subspace. The QZD has been

confirmed first in an experiment with a Rubidium Bose-Einstein condensate

in a five-level Hilbert space [170] and later in a multi-level Rydberg state

structure [178]. In particular, [170] realizes confinement of the atom dy-

namics in a subspace of a 5-level hyperfine manifold through four different

coherent and dissipative protocols. Instead, [178] examines a 51-dimensional

angular momentum space, where the observation protocol allows to adjust

the size of the accessible subspace and the confinement can be used to pro-

duce “Schrödinger cat” states.

In this section, we investigate how the stochasticity in the time intervals

between a series of projective measurements modifies the probability of a

quantum system to be confined in an arbitrary Hilbert subspace, by general-

izing the LD formalism for SQZE [85] to Stochastic Quantum Zeno Dynamics

(SQZD). These results are discussed also in [135]. Moreover, since both the-

oretically [71] and experimentally [170] it has been demonstrated that QZD

evolutions can be equivalently achieved not only by frequent projective mea-

surements, but also by strong continuous coupling or fast coherent pulses,

we will analyze also the accessibility to quantum Zeno dynamics if stochastic

coherent or dissipative protocols are taken into account (see Fig. 3.11).

The aim of using protocols, which rely on quantum Zeno dynamics, is to

constrain the quantum system dynamics to remain within a given Hilbert

subspace, also called Zeno subspace. The perfect (ideal) implementation of

such a protocol forbids the system to go beyond the Zeno subspace, so that

the system dynamics is described exclusively by the projected Hamiltonian

ΠHΠ (Zeno Hamiltonian). In this case, the dynamical evolution of the

system is determined by the propagator

U (Π)(t) ≡ T̂ exp

(
−i
∫ t

0

ΠH(ξ)Πdξ

)
(3.96)

so that

ρ(Π)(t) = U (Π)(t)ρ0

(
U (Π)(t)

)†
, (3.97)
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Figure 3.11: Pictorial representation of the observation protocols for stochas-

tic quantum Zeno dynamics. A subsystem (orange, left) exhibits quantum

Zeno dynamics when decoupled from the rest of the system by frequent

measurements (blue “detectors”, randomly spaced on the time axis) of the

(population) leakage from the subspace or alternatively by a strong coher-

ent coupling effectively locking the dynamics of the border site. The blue

curly bracket indicates that the occupation in the grey part of the chain is

measured to determine the leakage out of the (orange) subsystem, while the

yellow thicker link indicates where the coherent coupling acts. The coherent

coupling in its temporal behaviour can be continuous (red) or pulsed (green),

as shown in the graph in the upper panel of the figure (coupling strength

vs. time). The measurements as well as the coupling pulses can be spaced

randomly, thus making the leakage stochastic.

where T̂ denotes the time ordering operator, while ρ(Π)(t) is the density

matrix describing the state of the system within the Zeno subspace.

3.4.1 Zeno protocols

Stochastic projective measurements protocol

To realize quantum Zeno dynamics, the standard observation protocols are

given by applying a sequence of repeated projective measurements separated
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by constant small intervals, in which the system freely evolves with unitary

dynamics. In this way, the quantum state is projected onto the multidimen-

sional subspace HΠ ≡ ΠH by the measurement operator Π, which usually

does not commute with the system Hamiltonian H [70, 71]. However, if

we consider a stochastic distribution p(τ) of the time intervals between the

measurements, the QZD can be described also in the case of temporal noise

within the protocol. Moreover, the presence of some stochasticity intro-

duces the possibility to engineer the dynamics by varying the underlying

probability density function p(τ). Indeed, by controlling the functional be-

haviour of p(τ), we can influence the strength of confinement of the system

and, in principle, vary its time behaviour by means of a sophisticated in-

terplay with the system internal dynamics. This could allow to explore the

whole Hilbert space of a quantum system, by dynamically engineering the

measurement operator and, thus, slowly moving the population from one

portion of the Hilbert space to another. To this end, let us consider again a

sequence of m projective measurements separated by random time intervals

τj , j = 1, . . . ,m, which are assumed to be independent and identically dis-

tributed random variables. Accordingly, by generalising the results of [85],

the survival probability Pm({µj}) ≡ Prob (ρm ∈ HΠ) that the system be-

longs to the Zeno subspace HΠ after m projective measurements (at the

total time T ) is equal to

Pm({τj}) =

m∏
j=1

qj(τj), (3.98)

where

qj(τj) ≡ Tr[Π UjΠρj−1Π U†j Π] (3.99)

is the probability to find the system in the Zeno subspace at the j−th mea-

surement. As shown also in [180], for small τj the single survival probability

qj(τj) can be expanded as

qj(τj) = 1−∆2
ρj−1

HΠτ
2
j , (3.100)

where ∆2
ρj−1

HΠ is the variance of the Hamiltonian

HΠ ≡ H −ΠHΠ (3.101)

with respect to the state ρj−1.

In the case the measurement subspace is unidimensional (as given in the

previous sections) or more generally when T is small compared to the system
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dynamics within the Zeno subspace, the survival probability qj(τj) reduces

to

q(τj) = Tr[Π UjΠρ0Π U†jΠ] = 1−∆2
ρ0
HΠτ

2
j , (3.102)

where the variance is now calculated with respect to the initial state. With

this simplification, the most probable value P? of the survival probability

Pm({τj}) is

P? =
∏
{τ}

q(τ)mp(τ) = exp

(
m

∫
τ

dτp(τ) ln(q(τ))

)
, (3.103)

as given by (3.32) and (3.61). Now, the following theorem can be stated:

Theorem 3.1: Given a stochastic sequence of m projective measurements

separated by random time intervals {τj}, the most probable value P? of the

survival probability P can be expressed as

P? ≈ 1−m∆2
ρ0
HΠ(1 + κ)τ2, (3.104)

under the strong Zeno limit

m∆2Hρ0
(1 + κ)τ2 � 1, (3.105)

with κ ≡ ∆2τ/τ2, where τ and ∆2τ are, respectively, the expectation value

and the variance of the probability density function p(τ). Conversely, if the

weak Zeno limit

〈τ3〉 ≡
∫
τ

dτp(τ)τ3 � 1

mC
, (3.106)

is valid, where C is a positive constant so that∣∣∣∣16 ∂3 ln(q(τ))

∂τ3

∣∣
τ=ξ∈[0,τ ]

∣∣∣∣ ≤ C, (3.107)

then P? can be approximated as

P? ≈ exp
(
−m∆2

ρ0
HΠ(1 + κ)τ2

)
. (3.108)

The proof of Theorem 3.1 can be found in Appendix B.

Theorem 3.1 defines two approximated expressions for the survival prob-

ability’s most probable value P?, which quantifies the confinement of the
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quantum system dynamics within the Zeno subspace. The first is obtained

under the so-called strong Zeno limit (3.105), which requires a tight condi-

tion for the square of the expectation values of p(τ), and ensures an ideal

Zeno confinement also when a stochastic sequence of measurements is ap-

plied to the quantum system. As a matter of fact, if we set κ = 0 (i.e.

we consider a sequence of equally-distributed measurements), we directly

recover the survival probability for standard quantum Zeno dynamics [180].

Conversely, the strong Zeno limit (3.106) provides an expression for P? when

the confinement is good but not perfect, allowing to model system dynamics

outside the Zeno subspace due to large deviations of p(τ) with respect to the

average behaviour of the system. Indeed, (3.108) does not depend on the

variance of the probability distribution p(τ), but on its degree of skewness.

In the more general case that the measurement subspace has dimension

greater than one and the dynamics within the subspace plays a role, the

previous simplification qj(τj) = q(τj) is no longer valid, so that we can-

not substitute ρj−1 with ρ0 within the equation qj(τj) = 1 − ∆2
ρj−1

HΠτ
2
j .

However, a different approximation can be made:

� First, approximate the state of the system with ρ(Π)(t), which denotes

the dynamics for perfect Zeno confinement.

� Secondly, assume that the system Hamiltonian (in general time-dependent)

is constant in the small time interval between two measurements.

As a consequence, the survival probability qj(τj) for small enough τj can be

expanded as

qj(τj) ≈ q̃(τj , cj) = 1− c2jτ2
j , (3.109)

where

cj ≡ ∆
ρ

(Π)
j−1

HΠ(tj−1), (3.110)

and ∆2

ρ
(Π)
j−1

HΠ(tj−1) is the variance of HΠ(tj−1) with respect to the density

matrix ρ
(Π)
j−1. Moreover, for the coefficients cj we introduce the artificial prob-

ability density function p̃(c), that properly takes into account the average

influence of the system dynamics on the leakage (out of the Zeno subspace)

by requiring that ∫
c

p̃(c)c2dc =
1

T

∫ T
0

∆2
ρ(Π)(t)HΠ(t)dt. (3.111)
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In this way, the most probable value of the survival probability for quantum

Zeno dynamics can be written as

P? =
∏
{c}

∏
{τ}

 m∏
j=1

q̃(τj , cj)

p(τ)p̃(c)

= exp

(
m

∫
τ,c

dτdcp(τ)p̃(c) ln(q̃(τ, c))

)
. (3.112)

Finally, under the hypothesis that the quantum system is in the weak Zeno

limit and that the Hamiltonian varies only slowly in time (compared to the

time scale of the measurement intervals), we can state that ∆2
ρ(Π)(t)

HΠ(t)

changes slowly with respect to the measurement frequency. Hence, by mak-

ing the approximation

ln(q̃(τ, c)) ≈ 1− q̃(τ, c), (3.113)

the integral in (3.112) can be easily solved, so as to obtain

P? ≈ exp

(
−mτ

2(1 + κ)

T

∫ T
0

∆2
ρ(Π)(t)HΠ(t)dt

)
. (3.114)

As main result, (3.114) is the generalization of (3.108) for stochastic quantum

Zeno dynamics and time-dependent Hamiltonian.

Coherent protocols

In the previous section, we have considered how to realize stochastic Zeno dy-

namics by means of instantaneous projective measurements. However, pro-

jective measurements are difficult to be experimentally implemented, since

the duration of a single measurement might be comparable to or even larger

than the time scale of the system dynamics.

Accordingly, quantum Zeno dynamics can be alternatively achieved via

coherent couplings [69–72]: continuous coupling (c.c.) or pulsed coupling

(p.c.). To this end, we add to the system Hamiltonian H the additional

coupling Hamiltonian gHc, that acts on the complement H1−Π of the Zeno

subspace. For the continuous coupling protocol, the coupling strength g is

constant over time and in the limit of strong coupling strength g different

regions of the system Hilbert space can be dynamically disjointed. Con-

versely, for the pulsed coupling protocol, the coupling is switched on and



3.4 Stochastic quantum Zeno dynamics 125

off repeatedly to perform fast unitary kicks (with high coupling strength g),

which are followed by time intervals of switched-off coupling.

The time intervals between two unitary kicks can allow for the same

stochasticity as the time-disordered measurements. These unitary kicks or

instantaneous rotations, indeed, are given by the propagator

U (p.c.) = exp (−iHcs) , (3.115)

where the time s denotes the rotation angle. This rotation angle is given

by the pulse area (i.e. the coupling strength integrated over the duration

of the pulse) of a coupling pulse in a finite time realization. As in the case

of quantum bang-bang controls for dynamical decoupling tasks [197], we

assume that the pulse area is finite and that arbitrarily strong coupling kicks

lead to practically instantaneous rotations. Similarly to the time-disordered

sequence of projective measurements, also the Zeno protocol based on pulsed

coupling is intrinsically stochastic if the pulses are separated by random time

intervals τj sampled from p(τ). Accordingly, in order to compare the results

from the two coherent coupling schemes, we require that on average the pulse

area of the two coherent coupling protocols is the same. Then, the survival

probability is evaluated by computing

P = Tr(Πρ(c.c.)) or P = Tr(Πρ(p.c.)), (3.116)

where ρ(c.c.) and ρ(p.c.) are the normalised density matrices of the system at

the end, respectively, of the continuous and pulsed coupling Zeno protocols.

It is worth noting that a closed expression for the survival probability as a

function of the coupling strength g cannot be trivially calculated; however,

we can derive the scaling of P with respect to g. For this purpose, let us

consider, without loss of generality, the continuous coupling method, and,

then, the total system Hamiltonian Htot (with the additional term coupling

term gHc), which can be decomposed as

Htot = ΠHΠ⊗ 1 + 1⊗ [gHc + (1−Π)H(1−Π)] +Hint. (3.117)

In this regard, we have assumed that Hc acts only outside the Zeno subspace,

and Hint is the interaction Hamiltonian term between the subspace and its

complement. By transforming the total Hamiltonian in a basis where Hc

is diagonal, the coupling between the Zeno subspace and its complement is

effectively a driving, that is off-resonant by a term proportional to g. As a

consequence, the confinement error 1 − P within the Zeno subspace scales
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as ||Hint||2/g2. This becomes clearer if we consider the paradigmatic three

level system (see also Fig. 3.12), given by the Hamiltonian

Htot = ω(|1〉〈2|+ |2〉〈1|) + g(|2〉〈3|+ |3〉〈2|).

Figure 3.12: Coherent coupling protocol in the paradigmatic three level sys-

tem. Initially the system is prepared in state |1〉 (left). This state is coupled

to the state |2〉 by a Rabi frequency of ω. This level |2〉, in turn, is cou-

pled to a third level |3〉 with constant coupling strength g. Under the basis

change G we get the picture on the right hand side. Level |1〉 is now coupled

to the two new basis states (|2〉 + |3〉)/
√

2 and (|2〉 − |3〉)/
√

2, where both

couplings are detuned. The detuning has an absolute value of |g| and, thus,

by increasing the coupling between the levels |2〉 and |3〉, we effectively lock

the population in level |1〉.

The coupling rate (with strength g) to the upper level |3〉 plays the role of

the measurement, and the Zeno subspace is assumed to be the state |1〉. The

coupling Hamiltonian Hc, thus, is given by the term g(|2〉〈3|+ |3〉〈2|), as it

is shown on the left hand side of Fig. 3.12. Then, let us introduce a linear

transformation G, which diagonalizes Hc and makes the coupling diagonal.

In the canonical matrix representation, G can be chosen equal to

G =

1 0 0

0 1√
2

1√
2

0 1√
2
− 1√

2

 , (3.118)



3.4 Stochastic quantum Zeno dynamics 127

so that the transformed Hamiltonian is

G†HG =

 0 ω√
2

ω√
2

ω√
2

g 0
ω√
2

0 −g

 . (3.119)

The system and the Hamiltonian after the transformation G are sketched

on the right hand side of Fig. 3.12. We can observe that, if the initial state

of the system is taken in the Zeno subspace HΠ, then the coupling makes

extremely difficult the transfer of the system dynamics outside HΠ, since the

transition to the rest of the Hilbert space (here, driven by the Rabi frequency

ω) is moved out of resonance by a factor g. As a consequence, the effective

driving is reduced to ω2/g2. When g →∞, we obtain an ideal confinement

of the quantum system in the measurement subspace. This can be easily seen

by solving the model, and computing the corresponding survival probability

P(t) =

[
1− 2ω2

ω2 + g2
sin2

(√
ω2 + g2 t

2

)]2

(3.120)

in the Zeno subspace. In conclusion, the confinement error scales with one

over the square of the coupling strength, as it can later observed in the inset

of Fig. 3.15.

3.4.2 Illustrative example - Quantum spin chains

The dynamics within the Zeno subspace can be characterized also by collec-

tive behaviours originating from inter-particle interactions. In this regard,

let us consider a chain of N qubits, whose dynamics is described by the

following Hamiltonian:

HN = γ1

N∑
i=1

σiz +
γ2

2

N−1∑
i=1

(
σixσ

i+1
x + σiyσ

i+1
y

)
, (3.121)

where σiz is the Pauli z-matrix acting on the i-th site, and σix/yσ
i+1
x/y are the

interaction terms, which couple spins i and i+ 1 through the tensor product

of the respective Pauli matrices [23]. Moreover, γ1 is an external magnetic

field, while γ2 denotes the coupling strength of the interaction. Here, we

are interested in a dynamical regime, whereby the measurement projectors

restrict the dynamics to excitations of the first ν spins, which thus define a
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2ν-dimensional measurement subspace. If we measure the excitations outside

this subspace, both the Hamiltonian evolution and the negative measurement

outcomes (which give the absence of population in the rest of the chain) pre-

serve the number of excitations. In particular in the following, by neglecting

states with more than one excited spin, we will limit the dynamics of the

spin chain to the single excitation sector, and only to pure states of the form

|ψ(t)〉 =

N∑
i=1

φi(t)|1i〉. (3.122)

In (3.122) |1i〉 = |0..010..0〉 denotes the state with one excitation at site i,

while the coefficients of the initial state of the chain will be chosen so that

φk(0) = 0 for k > ν. Under these assumptions, the probability to find the

system in the measurement subspace after the j-th measurement is equal to

qj(τj) = 1− γ2
2τ

2
j |φν(tj−1)|2 , (3.123)

where

γ2
2 |φν(tj−1)|2 = ∆2

|ψj−1〉HΠ,

and, as before, the variance ∆2
|ψj−1〉HΠ is computed with respect to the state

|ψj−1〉. In other words, the probability qj(τj) can be directly computed just

by observing the modulus of the state |1ν+1〉 at time tj , corresponding to

the leakage outside the measurement subspace.

In the case the initial condition of the dynamics is given by an eigenstate

of the Zeno-Hamiltonian ΠHNΠ ≡ Hν (which is the spin chain Hamiltonian

with ν spins) and we re-normalise the system state after every measurement,

then the coefficient |φν(t)| is approximately constant and equal to φν , such

that

qj(τj) = 1− γ2
2τ

2
j |φν(tj−1)|2 = 1− γ2

2τ
2
j φ

2
ν = q(τj),

In this way, the quantum mechanical probability of finding the system in the

subspace upon measurements depends just on the length of the interval τj ,

and from (3.108) we have

P? = e−γ
2
2φ

2
νmτ

2(1+κ). (3.124)

However, in a more general case the time dependence of |φν(t)|2 has to

be taken into account, and P? can be computed either numerically (by simu-

lating the sequence of repeated measurement on the N spin chain) or analyt-

ically (by using the approximation given by (3.114) for stochastic quantum
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Zeno dynamics). In the latter case, we have

P? ≈ exp

(
−mγ

2
2τ

2(1 + κ)

T

∫ T
0

|φν(t)|2dt
)
. (3.125)

In the following, numerical results for a chain of N = 12 spins are pre-

sented. All the results are evaluated for a bimodal distribution of the mea-

surement intervals. First, we examine the behaviour of the survival prob-

ability when the system is subjected to a stochastic protocol of projective

measurements and two different initial states are considered. In particular,

the initial state of the system is prepared, respectively, as an entangled W-

state (i.e. a delocalized excitation) and then as a state where the excitation

is localized in the left-most spin of the chain. For each set of parameters we

consider a single realization of random time intervals τj and we calculate the

survival probability as P =
∏
j qj(τj), where qj(τj) is the probability (nu-

merically calculated) to find the population in the subspace after the j−th

measurement. For the coherent Zeno protocols, instead, the survival proba-

bility is given by P = P(tj), that is the population of the system within the

measurement subspace at time tj =
∑
j τj .

W-state

Let us prepare the quantum system in the entangled state

|ψν(t)〉 =
1√
ν

ν∑
i=1

|1i〉. (3.126)

In Fig. 3.13 we show the survival probability (i.e. P =
∏
j qj(τj), black lines)

obtained by numerical simulations of a sequence of random measurements for

ν = 1, . . . , 9 (bottom to top), compared to (3.125) (cyan lines). An excellent

agreement is observed: the numerical values and the theoretical approxima-

tion practically coincide, confirming thus the validity of the approximation.

Although the initial state (3.126) is not an eigenstate of Hν , the dynamics

of the system approximately converges to such a state, as observed in the

numerical simulations. Hence, we can compare the survival probability P
(black lines), obtained by the numerical simulation, to P? computed from

(3.124) (cyan lines), where |φν(t)|2 is assumed to be constant. In this re-

gard, the inset of Fig. 3.13 shows the comparison between this analytical
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Figure 3.13: The quantum spin chain is initially prepared in the W-state

(3.126). In the figure, we show one realisation of P (for each ν = 1, . . . , 9,

from bottom to top) as a function of the number of measurements m (black

lines) compared to P?, calculated by using (3.125) (cyan lines). Inset – The

same realizations (black lines) compared to P?, calculated by (3.124) (cyan

lines). The probability density function is bimodal with p1 = p2 = 0.5,

τ (1) = 1µs, and τ (2) = 5µs.

approximation and the numerical values. The agreement is better for small

ν, where the discrepancy between the initial state and the eigenstates of the

subspace Hamiltonian Hν is small (in particular, for ν = 1, 2 the initial state

is an eigenstate of Hν).

Left-most qubit excited

By starting from |11〉, the excitation travels towards the edge of the sub-

space, where it is reflected. Hence, apart from the spreading, the excitation

oscillates between the edge of the chain and the edge of the subspace, with a

velocity ς given by the Lieb-Robinson bound [117]. The velocity ς can be de-

termined by evaluating (for ν = 2, . . . , 10) the time when the excitation first

peaks at the edge qubit ν, which is the one qubit belonging to the subspace
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that directly interacts with the rest of the chain. We numerically obtain

ς ≈ 0.06 sites/ms, in good agreement with the theoretical bound given by

the norm of the interaction operator [106], i.e.

ς ≤ e
∥∥∥γ2

2
(σνxσ

ν+1
x + σνyσ

ν+1
y )

∥∥∥ ≈ 0.085 sites/ms.
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Figure 3.14: The quantum spin chain is prepared in the state |11〉. We

plot the numerical value of P? (black line) as a function of the number of

measurements m compared to (3.125) (cyan lines) for ν = 9. The blue

dashed line is |φ9(t)|2 as obtained by a simulation with H9, while in the

inset of the figure we show P? for ν = 1, . . . , 9 (from bottom to top). The

probability density function is bimodal with p1 = p2 = 0.5, τ (1) = 1µs, and

τ (2) = 5µs.

Fig. 3.14 shows the survival probability P =
∏
j qj(τj) (black lines), obtained

by numerical simulations and compared to (3.125) (cyan lines) for ν = 9 (in

the inset the most probable value P? is shown for ν = 1, . . . , 9, bottom to

top). The plateaus correspond to zero or very little excitation of the edge

qubit (with |φν | very small), while the steps correspond to a considerable

excitation located at the edge qubit. This excitation (i.e. |φν |2 for ν = 9)
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of the edge qubit, plotted as a blue dashed line, oscillates between the edge

of the chain and the edge of the subspace and the peaks indicate the time

instances where the excitation is practically located at the edge qubit. The

remnant plateaus for ν = 1 occur only in the numerical simulation and

are absent in the model, since they do not come from an oscillation of the

excitation in the 1-qubit subspace, but from repetitive measurements after

the smaller time interval τ (1). Thus, it is an effect that is averaged out in the

model. For ν > 1, instead, the plateaus are originated also by the dynamics

within the subspace and, thus, are present both in the single realizations

(numerics) and in the averaged model (theory).

Coherent Couplings

Without applying a sequence if quantum measurements on the system, we

can include the coupling of the system with a coherent driving by means of

the following additional (coupling) Hamiltonian:

Hc(ν) =
(
σν+1
x σν+2

x + σν+1
y σν+2

y

)
. (3.127)

The coupling is chosen so that g =
π

2τ
in the case of continuous coupling, and

s =
π

2
in the case of pulsed coupling. Thus, on average in both cases the pulse

area of the coupling is the same, and for the pulsed coupling the projective

measurement is substituted by an excitation flip between the qubits ν+1 and

ν + 2. The performance of the Zeno protocols are evaluated by introducing

the Uhlmann fidelity [101,189], defined as

F (protocol) = Tr

√√
ρ

(Π)
m ρ

(protocol)
m

√
ρ

(Π)
m . (3.128)

F (protocol) compares the evolved density matrices to the density matrix ρ
(Π)
m ≡

ρ(Π)(t = T ), which is obtained by exact subspace evolutions. The superscript

(protocol), instead, refers to the examined Zeno protocols given by projective

measurements (p.m.), continuous coupling (c.c.) or pulsed coupling (p.c.).

Fig. 3.15 shows the fidelity F of the respective dynamics as a function

of the number of qubits ν within the subspace. While projective measure-

ments (p.m.) yield the highest fidelity, all three Zeno protocols show a similar

scaling behaviour with respect to m and ν. It should be noted though that,

due to the probabilistic nature of the projective measurements given by the

survival probability P?, the coherent methods show the better deterministic
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Figure 3.15: Performance of the Zeno protocols as a function of the sub-

space size ν. The red upper triangles, green lower triangles and blue circles

show the fidelities, respectively, for continuous coupling, pulsed coupling

and projective measurements. Instead, the black squares show the survival

probability. The simulations where carried out for the initial W-state and

a bimodal probability density function with p1 = p2 = 0.5, τ (1) = 3µs and

τ (2) = 5µs. The inset shows how the system behaves for ν = 5 when mτ

is constant, and the interaction (given by the number of measurements m

or the coherent coupling strength g) is varied: As we approach the Zeno

limit the confinement error 1 − P vanishes for all the three Zeno protocols

(from top to bottom: p.m. (black), c.c. (dark red), p.c. (dark green)), and

the scaling with respect to τ is linear for the protocol based on projective

measurements and quadratic for the coherent coupling methods.

performance with a slight advantage for pulsed coupling (p.c.) over coherent

coupling (c.c.). For increasing ν, we approach higher values of fidelity and

survival probability, since the edge qubit is on average less populated, so

that we have less leakage. The inset of Fig. 3.15 shows the leakage 1−P for

the three protocols, projective measurements (black), pulsed coupling (dark

green) and continuous coupling (dark red), when approaching the Zeno limit,
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by setting mτ to be a constant value and decreasing τ while at the same time

m is increasing. The results are shown for ν = 5, p1 = 1, and τ (1) = 3µs.

While the projective measurements approach shows a linear scaling with

τ ∝ 1/m, the coherent coupling protocols exhibit a quadratic scaling (in this

regard, see the inset of Fig. 3.15). The linear scaling in the first case is a

direct consequence of (3.104), while the quadratic scaling in the latter case

corresponds to the prediction of the off-resonant driving model.
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Figure 3.16: Performance of the three protocols as a function of the time

disorder 1+κ. The red upper triangles, green lower triangles and blue circles

show the fidelities, respectively, for continuous coupling, pulsed coupling and

projective measurements. The black squares show the survival probability.

The system was initially prepared in the W-state. The cyan curves are the

theoretical values obtained by (3.125), where |φν(t)| has been taken from

the time evolution with Hν . The probability density function is bimodal

with p1 = 0.8, p2 = 0.2, τ = 3µs, τ (1) ∈ [1, 3]µs and τ (2) ∈ [3, 11]µs,

corresponding to κ ∈ [0, 1.778]. Inset: Performance of the three protocols

when only the left-most spin was initially excited.

Finally, in Fig. 3.16 the performance of the Zeno protocols as a function
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of the time disorder 1 + κ are shown. As it can be observed, we find a

decrease in the fidelity F both for the protocol based on projective measure-

ment (p.m.), and for the coherent pulsed coupling (p.c.), while, trivially, no

change occurs for continuous coupling (c.c.). At the same time the survival

probability for the projective measurement protocol decreases to about half

its ordered value (κ = 0) over the plotted range of disorder. Fig. 3.16 shows

the behaviour of these quantities for the case when the system is initially

prepared in the W-state, while in the inset it is shown that the behaviour is

very similar when the system is initially prepared with an excitation in the

left-most spin.

3.5 Stochastic sequences of correlated quan-

tum measurements

Usually the environment is unknown and very hard to be characterized. In

particular, it can be distinguished according to whether the system to which

it is coupled can generate Markovian or non-Markovian dynamics [163]. In

this regard, time correlations in the noisy environment can potentially gen-

erate non-Markovian dynamics within the quantum system, depending on

the structure and energy scale of the system Hamiltonian. In particular,

also classical environments exhibiting non-Gaussian fluctuations (i.e. char-

acterized by non-Gaussian probability density functions) can lead to non-

Markovian quantum dynamics, as shown in Ref. [24, 25].

In this section, we will consider a quantum system subject to a sequence of

projective measurements, where each measurement (defined by the projector

Π) occurs after a fixed time interval τ and the system driving is given by

a random classical field. More specifically, we will study a quantum system

that is coupled to a bath that effectively acts on the system via a time

fluctuating classical field Ω(t), according to the following Hamiltonian:

Htot(t) = H0 + Ω(t)Hnoise = H0 + [〈Ω〉+ ω(t)]Hnoise, (3.129)

where H0 is the Hamiltonian of the unperturbed system, while Hnoise de-

scribes the coupling of the environment with the system. Moreover, we

assume that Ω(t) takes real values with mean 〈Ω〉, whereby ω(t) is the fluc-

tuating part of the field with vanishing mean value. The system dynamics

for a given realization of the random field Ω(t), then, is described by the
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stochastic Schrödinger equation

ρ̇(t) = −i[H0 + 〈Ω〉Hnoise, ρ(t)]− iω(t)[Hnoise, ρ(t)], (3.130)

that, if averaged over the statistics of the field Ω(t) as shown in Appendix B,

takes the form of the following master equation:

〈ρ̇(t)〉 = −i[H0 + 〈Ω〉Hnoise, ρ(t)]−
∫ t

0

〈ω(t)ω(t′)〉[Hnoise, [Hnoise, ρ(t′)]]dt′,

(3.131)

where 〈ω(t)ω(t′)〉 denotes the second-order time correlation function or mem-

ory kernel of the random field ω(t), and [·, ·] is the commutator. If the classi-

cal field is a white noise, the second-order time correlation function turns out

to be a Dirac-delta distribution, i.e. 〈ω(t)ω(t′)〉 ∝ δ(t− t′), and the standard

Lindblad-Kossakowski master equation [31] is obtained. Otherwise, a differ-

ent memory kernel can lead to non-Markovian dynamics depending on the

structure and time scale of the Hamiltonian, as for example demonstrated

for random telegraph noise (RTN) and 1/f -noise [24,25]. We denote the sin-

gle measurement quantum survival probability (i.e. the probability for the

system to remain confined within the measurement subspace) as q(Ω), that

depends on the value of Ω during the time interval τ and thus is a random

variable. Accordingly, the survival probability for the whole time duration

is given by

Pk(m) =

m∏
j=1

q(Ωj,k) , (3.132)

where k = 1, . . . N labels the realization of a trajectory, j represents the

time order of the m measurements, and Ωj,k(t) is the corresponding fluctu-

ating field. Moreover, in (3.132) the single measurement quantum survival

probability q(Ωj,k) is defined as

q(Ωj,k) = Tr [ρk(jτ)Π] , (3.133)

where ρk(jτ) is the k−th realization of the system density matrix at time

tj = jτ .

Also in this case, where the stochasticity is given by the random classical

field Ω(t), the survival probability becomes a random variable described by

the stochastic quantum Zeno dynamics formalism. In this regard, in the

following we propose a way to probe the presence of noise correlations in

the environment, by analyzing the time and ensemble average of the system
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survival probability. In particular, we will demonstrate how such environ-

mental time correlations can determine whether the two averages do coincide

or not [134]. It is worth noting that also this method relies on the very recent

idea of the so-called quantum probes, whereby their fragile properties, as co-

herence and entanglement, are strongly affected by the environment features

and can be used for detection purposes. Examples of such physical systems,

which are used to probe environments like biological molecules or surfaces

of solid bodies or amorphous materials, are quantum dots, atom chips and

nitrogen vacancy centers in diamond [13,47,88,96,124,126,165,185]. Finally,

especially in this framework, the introduction of noise quantum filtering tech-

niques can be required to achieve the following two main goals:

� To improve the effectiveness of the predictions given by applying the

LD theory to open quantum systems.

� To design robust quantum devices for information processing and take

advantage at most of the presence of an external environment.

As a matter of fact, robust control of a quantum system is crucial to perform

quantum information processing, which has to be protected from decoherence

or noise contributions originating from the environment. The decay of the

coherence of an open quantum system depends in a peculiar way both on the

spectrum of the bath and the driving terms of the system. In this regard,

as shown in [55, 108, 141, 148], the application of different control functions

lies at the core of the so-called filter function approach to spectrally resolve

quantum sensing, that however can undergo the problem of spectral leakages.

Most protocols, indeed, investigate the noise fluctuations only in a finite

frequency band, while the interaction of the probe with the environment

has contributions also outside this band, leading thus to a decreasing of the

measurement precision. In solving this issue, we proposed in [136] a fast

and robust estimation strategy (based on filter function orthogonalization,

optimal control filters and multi-qubit entanglement) for the characterization

of the spectral properties of classical and quantum dephasing environments

within the whole frequency band. The robustness of such sensing procedure

is quantified in terms of a directional Fisher information operator [137], and

then optimal control theory is employed to construct filter functions that

maximize the sensitivity of the filter with respect to the noise spectrum. The

two methods (i.e. the optimal multi-probe method and the Zeno-based one)

not only are complementary, but, being designed on two different quantum
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system behaviours, could be in principle used to validate the results coming

from both of them.

3.5.1 Time and ensemble averages vs. noise correla-

tions

To characterize the survival probability Pk(m), two natural quantities arise:

The time-average and the ensemble average. In this case, the time average

is defined as

P̂k(m) ≡ lim
M→∞

1

M

M∑
j=1

Pk(j)
m
j . (3.134)

As before, by using the measured value of the survival probability after

the j−th measurement, one can estimate the corresponding value after m

measurements as

Pk(m) ≈ Pk(j)
m
j .

This value, then, is averaged for j = 1, . . . ,M , and the limit of a large number

of measurements M is performed. Note that this limit will depend on the

realization k of the fluctuating field, and, in particular, on the strength of

the noise correlation. The ensemble average, instead, is defined as

〈P(m)〉 ≡ lim
N→∞

1

N

N∑
k=1

Pk(m), (3.135)

where the average of Pk(m) is performed over a large number of realizations

N . In the limit of infinite realizations, the average does not depend on the

single realization but on their probability distribution. Now, let us make

the following assumption: For each realization k of the stochastic process

the fluctuating field between two measurements assumes a constant value,

i.e. Ωj,k(t) → Ωj,k, which is sampled from the probability density function

p(Ω). Fig. 3.17 shows (in the right upper panel) how the fluctuating field Ω

causes the survival probability P to decrease at a fluctuating rate. Observe

that within each time interval between two measurements the decrease of

P is quadratic in the time interval and the field strength. While the field

fluctuations are random, after a few measurements the influence of these

fluctuations on P is averaged out and the decay of P behaves similarly for

each realization. When the field fluctuations are correlated, however, the

decay of the survival probability depends much stronger on the realization
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Figure 3.17: Schematic view of the field fluctuations and their influence on

the survival probability during the measurement sequence. The driving field

Ω fluctuates in time and with increasing temperature the time correlations

vanish going from quenched disorder to annealed disorder. The survival

probability P decreases in time at a rate depending on the fluctuating value

of the field. For annealed disorder the effect of the field fluctuations over a

couple of time intervals is averaged out and for each realization P converges

to the same value. If we decrease the temperature, the time correlation

of the fluctuation grows and this convergence slows down. In the limit of

T = 0 the fluctuations degenerate to a random offset value that determines

the behavior of P that is now different for each realization.

because the probability distribution for Ωj+1,k depends on the value of Ωj,k,

and potentially also on the previous history. This means that the convergence

of the time average can be much slower with respect to the uncorrelated case,

since a random deviation will influence not only a single time interval but a

range of them, according to the relaxation time τc of the noise correlations.

For this reason, the results, that will be shown later, about the behaviours

of the time and ensemble averages as a function of the noise correlation will

depend just on the statistics of q(Ω) and not on the actual dependence of

q on Ω, so that Ω will be treated as a parameter describing the statistics

of q(Ω) via the probability density function p(Ω). In accordance with the

aforestated assumption, we sample Ωj+1,k from p(Ω) with probability p, and

Ωj+1,k = Ωj,k otherwise, where the update probability p can be associated

to a temperature T according to the relation p = e−E/kT . In Fig. 3.17, the

temperature grows from left to right yielding different types of disorder. For
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T = 0, one has p = 0, i.e. the value of the field Ω is chosen only once

randomly and then remains always the same. Hence, the relaxation time τc
is infinite and the time average does always converge to the same value. It is

worth noting that this scenario simulates the interaction of the system with

an environment that exhibits quenched disorder. Depending on the value

of Ω in correspondence of the k−th realization, the decay of the survival

probability Pk(m) can be faster or slower, while for infinite temperature we

have p = 1, representing an annealed disorder environment. Between these

two extreme regimes, i.e. for finite temperature, we have p ∈ [0, 1], hence a

mixture of both behaviours. As explained in [62], quenched disorder means a

scenario with a static noise that depends on the initial random configuration

of the environment, whereas annealed disorder means that the environment

changes its configuration randomly in time.

Let us write now the expressions for the time and ensemble averages when

also environmental time correlations are taken into account. In particular, for

the time average P̂k(m) we introduce the expected frequencies mnΩ that the

event Ω occurs in one realization of the stochastic sequence of measurements.

Then, the time average is given by

P̂k(m) = lim
M→∞

1

M

M∑
j=1

∏
{Ω}

(q(Ω)jnΩ)
m
j =

∏
{Ω}

q(Ω)mnΩ , (3.136)

where the product is over all possible values of Ω and nΩ. For independent

(thus uncorrelated) and identically distributed (i.i.d.) random variables Ωj,k
the expected frequencies correspond directly to the underlying probability

density function p(Ω). Instead, for correlated Ωj,k the convergence of the

time average might not be unique or not even exist. The latter consideration

is very relevant, since it is linked to the Markov property and recurrence of a

stochastic process [113], as explained in more detail below by introducing the

theoretical expressions for the time average in different correlated dynamical

regimes. In this regard, let us recall that a Markovian stochastic process does

not imply Markovian quantum system dynamics, since a Markovian fluctu-

ating field can generate non-Markovianity through its time-correlations. The

ensemble average, instead, is the expectation value of the survival probability
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P, i.e.

〈P(m)〉 ≡
∫
P
dPProb(P)P

=

∫
Ω1

dΩ1· · ·
∫

Ωm

dΩm

m∏
j=1

pj(Ωj |Ω1, . . .Ωj−1)q(Ωj),

(3.137)

where Prob(P) is the probability distribution of the survival probability

Pk(m) (which is by itself a random variable depending on the field fluctua-

tions) and pj(Ωj |Ω1, . . .Ωj−1) is the conditional probability of the event Ωj
given the process history. In the case of i.i.d. random variables Ωj , (3.137)

becomes

〈P(m)〉 =

∫
Ω1

dΩ1· · ·
∫

Ωm

dΩm

m∏
j=1

p(Ωj)q(Ωj) =

(∫
p(Ω)q(Ω)

)m
.

(3.138)

Finally, we compute the time and ensemble averages as a function of

p in three different regimes: (i) Annealed Disorder (p = 1), (ii) a finite

temperature case with p ∈ [0, 1] and a number m of measurements such that

at least 5− 10 jumps occur, and (iii) quenched disorder (p = 0). In the case

of annealed disorder (an), i.e. uncorrelated noise, the two averages follow

straightforwardly from the definitions, namely

P̂k(m)an = em〈ln q(Ω)〉 (3.139)

for the time average and

〈P(m)〉an = em ln〈q(Ω)〉 (3.140)

for the ensemble average. Conversely, in the case of quenched disorder (qu),

each realization has constant q(Ω) and, thus, survival probability q(Ω)m. Ac-

cordingly, the ensemble average is the arithmetic average of these outcomes:

〈P(m)〉qu = eln〈q(Ω)m〉 = 〈q(Ω)m〉. (3.141)

Instead, the time average for quenched disorder does not take a single value

but splits into several branches, i.e.

P̂k(m)qu ∈ {q(Ω)m |Ω ∈ supp(p(Ω))}, (3.142)
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since the underlying stochastic process is not recurrent, in the sense that

given the value of Ω in the first interval, all the other values of the support

of p(Ω), supp(p(Ω)), cannot be reached anymore within the same realization

of the process. Finally, for the finite temperature (fT) regime the problem is

more difficult, but not for the time average, which is the same of the annealed

disorder case:

P̂k(m)fT = P̂k(m)an = em〈ln q(Ω)〉. (3.143)

The reason is that, despite of the time correlations, the time average is equal

to the weighted geometric average of the quantity q(Ω)m with respect to

p(Ω), being computed over all possible configurations of {Ωj} independently

from the history of the process. Indeed, only in the quenched disorder case

the σ−algebra of the random variable Ω is drastically decreased, and also p is

independent of the current value of the field. Thus, for a sufficiently long time

the frequency of occurrence for the single measurement quantum survival

probability q(Ω) converges to the expected values nΩ = p(Ω). Conversely,

in order to derive the ensemble average we have to take into account the

correlations and examine (i) the occurrence of the sequences of constant

Ω(t)’s over several time intervals and (ii) the updates of their values according

to p. If the length of such a sequence is labelled by l, then l is distributed

by the Poisson distribution

r(l, λP ) ≡ λlP
l!
e−λP , (3.144)

where λP ≡ 1/p. Thus, the expectation value of the survival probability

PCF for this sequence of constant field values Ω’s is given by

〈PCF(l,Ω, p)〉l,Ω

≡
∞∑
l=0

r(l, λP )〈PCF(l,Ω, p)〉Ω =

∞∑
l=0

r(l, λP )

∫
Ω

dΩp(Ω)q(Ω)l

=

∫
Ω

dΩp(Ω)e−
1
p

( ∞∑
l=0

(λP q(Ω))l

l!

)
=

∫
p(Ω)e

q(Ω)−1
p dΩ. (3.145)

Moreover, also the update frequency of the constant Ω’s is Poisson dis-

tributed, with expectation value pm. Hence, the ensemble average of the

system survival probability in case of time-correlated random fields is equal
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to

〈P(m)〉fT = 〈PCF(l,Ω, p)〉l,Ω,p = e−pm
∞∑
n=0

(pm)n

n!
〈PCF(l,Ω, p)〉l,Ω

= epm(〈PCF(l,Ω,p)〉l,Ω−1). (3.146)

To summarize, 〈P(m)〉fT has been derived by means of the following two

steps:

� First, we have first computed the expectation value of the system sur-

vival probability with a repeated sequence of projective measurements,

characterized by constant values of Ω(t) over the time intervals of the

sequence. For such derivation, we have assumed that the length l of the

sequence is a Poisson distributed random variable, whose mean value

has been calculated with respect to l and Ω.

� Secondly, also the update frequency of the Ω’s has been modeled as a

Poisson random variable, so that the ensemble average of the system

survival probability turns out to be equal to the expectation value of

〈PCF(l,Ω, p)〉l,Ω with respect to p.

Fig. 3.18 shows the above calculated ensemble averages together with numer-

ical values from the realization of N = 1000 stochastic processes for different

values of p. In all cases, for p(Ω) we have used a bimodal distribution with

p1 = 0.8, p2 = 1− p1 = 0.2 and corresponding single measurement quantum

survival probabilities q1 = 0.999, q2 = 0.9. By decreasing (increasing) q1

and q2, the decay becomes faster (slower). The same happens if we increase

(decrease) p2, that is the probability associated with q2 < q1. Note that the

probabilities p1, p2, q1, q2 and the update frequency p fully define the time

and ensemble average of P, so that we do not have to specify the Hamiltonian

of the system.

3.5.2 Detection of noise correlations

In this section, we will show how to probe time correlations of a noisy envi-

ronment coupled to a quantum system used as probe.
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Figure 3.18: Ensemble Averages for p = 0, 0.5, 0.1, 0.03, 1 (black, green, yel-

low, red, blue). The dashed lines correspond to the values calculated from

1000 realizations of the stochastic process, while the solid lines correspond

to the respective theory curves.

Accumulated standard deviation

Let us evaluate the variance of the probability distribution Prob(P), which

is defined as

∆2P(m) ≡ 〈P(m)2〉 − 〈P(m)〉2, (3.147)

where ∆P is the corresponding standard deviation. Thus, to derive the

variance ∆2P(m), we still need to calculate the second moment of the prob-

ability distribution Prob(P). In the case of infinite temperature or annealed

disorder, it is given by

〈P2(m)〉an =

∫
Ω1

dΩ1· · ·
∫

Ωm

dΩm

m∏
j=1

p(Ωj)q(Ωj)
2

= em ln(
∫
Ω
dΩp(Ω)q(Ω)2) = em ln〈q(Ω)2〉, (3.148)

so that the normalized variance is equal to

∆2P(m)an

〈P(m)〉2an

=
〈P(m)2〉an − 〈P(m)〉2an

〈P(m)〉2an

= em(ln〈q(Ω)2〉−ln〈q(Ω)〉2) − 1

≈ m
(
ln〈q(Ω)2〉 − ln〈q(Ω)〉2

)
, (3.149)
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and the normalized standard deviation reads as

∆P(m)

〈P(m)〉 ≈
√
m
√

ln〈q(Ω)2〉 − ln〈q(Ω)〉2 ≈ √m∆2Hτ2
√
〈Ω4〉 − 〈Ω2〉2.

(3.150)

Note that the r.h.s. of (3.150) is given by a second order expansion in the

interval length τ .

For finite temperature, instead, let us consider again the statistical en-

semble composed by the sequences of projective measurements with constant

Ω’s, whose second statistical moment is

〈PCF(l,Ω, p)2〉l,Ω =

∞∑
l=0

r(l, λP )

∫
Ω

p(Ω)q(Ω)2ldΩ =

∫
Ω

p(Ω)e
q(Ω)2−1

p dΩ.

(3.151)

Then, being also p a Poisson random variable, the second statistical moment

of the system survival probability turns out to be

〈P(m)2〉fT = 〈PCF(l,Ω, p)〉l,Ω,p

= e−pm
∞∑
n=0

(pm)n

n!
〈PCF(l,Ω, p)2〉nl,Ω = epm(〈PCF(l,Ω,p)2〉l,Ω−1) ,(3.152)

and the normalized variance reads as

∆2P(m)fT

〈P(m)〉2fT
= epm(〈PCF(l,Ω,p)2〉l,Ω−2〈PCF(l,Ω,p)〉l,Ω+1) − 1

≈ pm
(
〈PCF(l,Ω, p)2〉l,Ω − 2〈PCF(l,Ω, p)〉l,Ω + 1

)
,

(3.153)

leading to the following normalized standard deviation:

∆P(m)fT

〈P(m)〉fT
≈ √m

√
1 +

1

p
∆2Hτ2

√
〈Ω4〉 . (3.154)

Finally, for the quenched disorder case one has

〈P2(m)〉qu =

∫
Ω

dΩp(Ω)q(Ω)2m = eln〈q(Ω)2m〉 , (3.155)

where the normalized variance is given by

∆2P(m)qu

〈P(m)〉2qu

= eln〈q(Ω)2m〉−ln〈q(Ω)m〉2 −1 ≈ ln〈q(Ω)2m〉− ln〈q(Ω)m〉2. (3.156)
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As a consequence, the normalized standard deviation is

∆P(m)qu

〈P(m)〉qu
≈
√

ln〈q(Ω)2m〉 − ln〈q(Ω)m〉2 ≈ m∆2Hτ2
√
〈Ω4〉 − 〈Ω2〉2 ,

(3.157)

where the latter expression is given again by a second order expansion in the

interval length τ .

Fig. 3.19 shows the standard deviations ∆P (without normalization) to-

gether with the values from the realization of 1000 stochastic processes for

the chosen value of p, i.e. p = 0, 0.03, 0.1, 0.5, 1.
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Figure 3.19: Standard deviation for p = 0, 0.5, 0.1, 0.03, 1 (black, green, yel-

low, red, blue). The dashed lines correspond to the value calculated from

1000 realizations of the stochastic process, while the solid lines correspond

to the respective theory curve.

We find that the larger is the time-correlation (the smaller p), the larger is the

standard deviation ∆P of the survival probability P, i.e. the more the out-

come depends on the single realization. To average out the non-monotonic

behaviour of ∆P, we introduce the accumulated standard deviation

D(m) ≡
m∑
j=1

∆P(j), (3.158)

given by summing up the standard deviation values for an increasing num-

ber j = 1, . . . ,m of measurements. The result is shown in Fig. 3.20. For
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Figure 3.20: Accumulated standard deviation D(m) =
∑m
j=1 ∆P(j) for

p = 0, 0.5, 0.1, 0.03, 1 (black, green, yellow, red, blue). The dashed lines

correspond to the values calculated from 1000 realizations of the stochastic

process. For a relatively high number of measurements m > 300 there is

a clear monotonicity of D as a function of the degree of the noise time-

correlations.

relatively large values of m (> 300) D(m) monotonically increases with the

amount of time-correlations, which is directly proportional to the quantity

1 − p. Hence, we propose D(m) as the natural figure of merit to infer the

strength of such a noise time-correlation.

Ergodicity breaking of interaction modes

As shown before, the time and ensemble averages of the system survival

probability P strictly depend on the update frequency p. Only for large

values of m and N (i.e. many measurements and many realizations), the

frequency of each event q(Ω) is mNp(Ω), independently of p. If we compare

the expressions for such averages as a function of the noise time correlation

(i.e. for different temperatures p), we find that the ensemble average will

grow until it takes the maximum in the quenched disorder limit, which is

given by the arithmetic average of the quantity q(Ω)m. In other words, one

get

P̂k(m)an ≤ 〈P(m)〉an ≤ 〈P(m)〉fT ≤ 〈P(m)〉qu, (3.159)
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so that the following conclusions can be stated:

� For the case of annealed disorder the time and ensemble averages prac-

tically coincide: we refer to this equality as an ergodic property of the

system environment interaction, as shown in [86].

� However, the more the q(Ωj,k) are correlated, the more the ensemble

average moves away from the time average and the ergodicity is bro-

ken. This can be seen in Fig. 3.21 where time and ensemble averages

are simulated for a bimodal distribution p(Ω) for quenched and an-

nealed disorder, and for two values of finite temperature. Also for this

simulation, as well as for Figs. 3.18, 3.19 and 3.20, we have used a

bimodal distribution with p1 = 0.8, p2 = 0.2 and corresponding single

measurement quantum survival probabilities q1 = 0.999, q2 = 0.9. As

given by (3.150), (3.154) and (3.157), the non-ergodic behaviour de-

pends essentially on the second and fourth moment of p(Ω). In other

terms, this effect will decrease if we choose p1 ≈ p2 or q1 ≈ q2. The

same happens if we change the bimodal distribution into a multimodal

or continuous distribution.

From an application point of view, this allows to detect correlations in a

fluctuating field by measuring and comparing to each other the time and

ensemble averages of the survival probability. Furthermore, by changing the

time interval τ between two measurements, we can explore the occurrence

time scale of these correlations.

In order to test our method for a real quantum system, let us now consider

the following two-level Hamiltonian

Htot = ∆ σz + Ω(t)σx ,

where σx, σz are Pauli matrices, Ω(t) is the (fluctuating) driving of the system

(e.g. an unstable classical light field), and ∆ is a detuning term. We set

∆ = 2π × 5 MHz and Ω ∈ 2π × {1, 5} MHz as a fluctuating RTN field with

equal probability for both values. We initially prepare the system in the

ground state |0〉 and perform projective measurements in this state spaced by

intervals of constant length τ = 100 ns. Such scheme may be implemented on

many different experimental platforms and, very recently, has been realized

to prove the stochastic quantum Zeno effect with a Bose-Einstein condensate

on an atom-chip [86]. Note that the second order time correlation function
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Figure 3.21: In the numerical simulations we have considered 50 realizations

of the time average with M = 2000 (grey solid lines), along with the en-

semble average calculated from 1000 realizations of the stochastic process

(red solid lines). These are compared to the theoretical curves for the time

average (dark blue dashed) and ensemble average (orange dashed). Top left:

quenched; top right: p = 0.1; bottom left: p = 0.5; bottom right: annealed.

for the RTN is exponential in time, so that

〈ω(t)ω(t′)〉 ∝ e−
2(t−t′)
τc , (3.160)

where the relaxation time τc is equal to the average time between two field

switches. In this regard, Fig. 3.22 shows the time and ensemble averages,

together with the corresponding standard deviation, for an average time

between the fluctuating field switches equal, respectively, to 10, 103, 105,
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Figure 3.22: Time and ensemble averages of the system survival probability,

along with the standard deviation ∆P for the two-level Hamiltonian with

a fluctuating RTN (classical) field. For the numerical simulations, we have

considered 50 realizations of the time average (grey solid lines) with M =

2000, along with the ensemble average calculated from 1000 realizations of

the stochastic process (red solid line). The dark green dashed lines show the

standard deviation ∆P of the single realizations. The time scale τc of the

correlation decreases from left to right and from top to bottom, ranging from

perfectly correlated (quenched) disorder to uncorrelated (annealed) noise.

107 ns. It can be clearly seen how a relaxation time τc longer than the time

interval τ generates a growing standard deviation ∆P, which can then be

exploited as a witness of the strength of noise correlations.
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3.6 Conclusions and contributions

Summarizing, this chapter provides the following contributions:

� We have analyzed stochastic quantum Zeno phenomena by means of the

LD theory. In particular, for an arbitrary quantum system with uni-

tary dynamical evolution subject to a sequence of random-distributed

measurements projecting it into a fixed initial state, we have analyti-

cally shown that (in the limit of a large number m of measurements)

the distribution of the (survival) probability to remain in the initial

state assumes a large-deviation form, namely, a profile decaying ex-

ponentially in m with a positive multiplying factor. Such a profile is

given by the so-called rate function, which is a function only of the

survival probability. Our analytical results, then, have been tested in

the case of Zeno-protected entangled states. We have shown that the

presence of disorder in the sequence of time intervals between consec-

utive measurements is deleterious in reaching the Zeno limit. Never-

theless, the disorder does enhance the survival probability when the

latter is not exactly one, which, interestingly enough, corresponds to

the typical experimental situation. Furthermore, it is worth noting

that, since the decoherence may correspond to a continuous monitoring

from the environment (repetitive random measurements), our formal-

ism allows one to predict the occupation probability of an arbitrary

quantum state by the knowledge of the probability distribution of the

system-environment interaction times.

� The application of the LD theory to open quantum systems allowed

to obtain analytical expressions for the most probable and the average

value of the survival probability. While the most probable value repre-

sents what an experimentalist will measure in a single typical imple-

mentation of the measurement sequence, the average value corresponds

instead to an averaging over a large (ideally infinite) number of experi-

mental runs. Hence, by tuning the probability distribution of the time

intervals between consecutive measurements, one can achieve a spe-

cific value for the most probable survival provability, thereby allowing

to engineer novel optimal control protocols.

� We analytically and experimentally demonstrated the occurrence in the

Zeno regime of an ergodic property for the interaction modes between



152 Large deviations and stochastic quantum Zeno phenomena

a quantum system and the external environment, by measuring the

system at random times. In particular, by using the large deviation

theory we have proved that the most probable value of the probability

for the system to remain in a given quantum state is equal to the

corresponding arithmetic average, computed over a statistical ensemble

of ordered sequences of measurements, when the system approaches

the quantum Zeno regime. These results have been experimentally

tested using a Bose-Einstein condensate of Rubidium atoms, which are

trapped on an atom chip. They are expected to represent further steps

towards controlled manipulations of quantum systems via dissipative

interactions [171], whereby one can control the noisy environment or

part of it to perform desired challenging tasks.

� By exploiting again LD theory, we have analytically derived under

which conditions one can distinguish two different noise probability

density functions p(τ) of a stochastic sequence of quantum measure-

ments, by evaluating the corresponding survival probability at the end

of the sequence. In particular, we have introduced a Fisher informa-

tion operator, which is expressed in terms of the statistical moments of

the corresponding noise probability density function. This has allowed

us to quantify how sensitive is the survival probability’s most probable

value to an arbitrary perturbation δp(τ) of p(τ), and to distinguish the

difference between the perturbed and unperturbed noise distribution.

Such a tool might become a promising method to analyze the temporal

behaviour of an unknown environment when coupled to the measured

quantum system.

� The accessibility to Zeno dynamics for a quantum system in random

interaction with the environment has been analyzed. In this regard,

when noise contributions in quantum Zeno protocols are taken into ac-

count, the accessibility to system dynamics becomes more difficult, so

that the confinement within the measurement subspace is effectively re-

alized only if the stochasticity is compensated by a stronger observation,

that e.g. can be realized by a sequence of measurements occurring at

random times but on average more frequently. To achieve this result,

we have extended the large deviation theory approach, used to intro-

duce the stochastic quantum Zeno effect, to the description of survival

probabilities from QZD by considering also the dynamics within the

measurement subspace. The new approach has allowed us to find a
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less restrictive condition for the confinement of quantum Zeno dynam-

ics (the weak Zeno limit), for which the observations are fast enough to

ensure that the dynamics in the subspace follow closely the dynamics

of a perfectly truncated system, while the survival probability decays

with increasing time.

� Besides the stochastic quantum Zeno protocol based on projective mea-

surements, we have shown that SQZD can be equivalently achieved

with high fidelity also by applying fast random unitary kicks or strong

continuous couplings, that have the advantage to be fully deterministic

and easy to implement. Since only by modelling with enough accuracy

the nature of such interactions with the environment we can effectively

control a quantum dynamics in a well-defined Hilbert space portion, we

believe that the results about SQZD will provide a new tool in quantum

information processing and quantum computation not only for control-

ling the amount of quantum coherence by means of Zeno-protection

protocols, but also to design engineered quantum paths within the sys-

tem Hilbert space. To all effects, when this framework, originated from

the application of the large deviation theory to open quantum systems,

will be combined with optimization methods to derive control pulses,

it could be denoted as noise-assisted quantum control paradigm.

� Stochastic sequences of correlated quantum measurements have been

analyzed. In particular, we have quantified stochastic quantum Zeno

phenomena in time-correlated environments and we have shown how

the ergodicity breaking of the system-environment interaction modes

depends on the time scale of the noise correlations. Indeed, the devi-

ation between the time and ensemble averages of the system survival

probability monotonically grows for increasing values of p, which quan-

tifies the strength of such correlations. In doing this, we have intro-

duced a novel method to probe time correlations in random classical

fields coupled to the quantum probing system. The advantage of this

method is that it does not rely on quantum state or process tomog-

raphy but on a simple Zeno-based measurement scheme. In this way,

by realizing different initial states and measurement operators, one has

also the possibility to probe the effect of the environment on different

subspace of the system. We believe that this approach will further

contribute to the development of new schemes for quantum sensing

technologies, where nanodevices may be exploited to image external
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structures or biological molecules via the surface field they generate.

As final remark, it is worth noting that the introduction of (quantum)

noise sensing schemes is crucial also to improve the reliability of the

predictions provided by the LD theory about the fluctuation profile of

specified system observables.

� As final remark, note that the results we have shown in this chap-

ter rely on the hypothesis that the introduction of fluctuating semi-

classical fields can model a wide class of noise sources, external to the

dynamics of the system. Accordingly, the underlying noise-assisted

properties follow from our ability to model the fluctuations within the

system dynamics, i.e. to correctly predict the occurrence probabilities

of the values taken by each system dynamical variable. Such assump-

tion becomes realistic if, before manipulating the system, noise sensing

techniques (see e.g. Ref. [136, 141, 148]) are used to evaluate (also

approximately) the shape and the intensity of the noise sources af-

fecting the system. Thus, to make stable, or robust, the noise-assisted

properties for a given system, the adoption of noise sensing techniques,

together with LD predictions, appears to be the most efficient solution.

Otherwise, the presence of unmodeled noise is expected to invalidate

the positive effects of noise-assisted phenomena.



Chapter 4

Quantum thermodynamics

In this chapter, we will address the characterization and recon-

struction of general thermodynamical quantities, such as work,

internal energy and entropy for a quantum system in interaction

with an external environment, not necessarily thermal. Indeed, in

the quantum regime the dynamics of nanoscale systems is highly

stochastic, in the sense that thermal and/or quantum fluctua-

tions become of the same order of magnitude as the averages of

the physical quantities, which define for example the Hamilto-

nian of the quantum system. Therefore, the analysis of the en-

ergetic and informative content of such fluctuations in terms of

non-equilibrium statistical mechanics is crucial to understand the

role and the effects of the stochasticity given by random system-

environment interactions. On one side, our results allow to quan-

tify the energy that is absorbed by a quantum system due to the

presence of stochastic fluctuations, and, on the other side, to infer

the environment structure by characterizing the thermodynamic

irreversibility of a given quantum process. Moreover, we aim

also to clarify the relation between the concepts of entropy and

disorder in the sense of stochasticity, by starting from a quantum

mechanical microscopic derivation of the entropy production un-

til to derive a macroscopic definition given by the second law of

155
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thermodynamics. 1 2

Introduction

The stochastic behaviour of a dynamical system is linked to the presence

of non-equilibrium dynamics due to the interaction of the system with an

external environment. Such interactions are not necessarily known by an

external observer, and, in general, are well modelled by random (fluctuat-

ing) couplings. Also the environment, indeed, is a dynamical system, and

only rarely it is uniquely determined by some macroscopic variables, as e.g.

the temperature, as it happens when the environment is a thermal bath.

As a consequence, we can deduce that, if we only observe the evolution of

a system (for example by tracing out the environment), then each trans-

formation performed on it is generally irreversible, since in principle such a

transformation cannot be reversed by taking back both the system and the

environment in their initial conditions, without using a greater amount of

energy with respect to that used to realized it. Only in few cases a system

transformation can be defined reversible, i.e. when it is realized by infinites-

imal and quasi-static variations, that preserve the system in an equilibrium

state in each time instant. As a matter of fact, in classical mechanics the

solutions of the equations of motion are unique and the motion along the

trajectories in system phase space can be, in principle, always inverted to

retrieve all the states previously occupied by the system [175]. However, the

time inversion in experiments with a macroscopic number of particles cannot

be practically performed, due to some information losses and the evidence

that for a system is very unlikely to occupy the same state at a later time

within the dynamics. Similarly, in quantum mechanics the dynamics of the

system wave function and more generally of the density matrix cannot always

be reversed in time, and it ensues the corresponding need to characterize and

quantify, where possible, irreversible quantum processes [35,67]. The typical

1The results shown in this chapter have been published as “Reconstruction of the

stochastic quantum entropy production to probe irreversibility and correlations”, in Eprint

arXiv:1706.02193, 2017 (submitted to the International Journal Quantum Science and

Technology - IOPscience) [87]; “Non-equilibrium quantum-heat statistics under stochastic

projective measurements”, in preparation, 2017 (to be submitted to the International

Journal Physical Review E) [84].
2Part of this work was conducted while the author was a visiting Ph.D. student at

SISSA, Scuola Internazionale Superiore di Studi Avanzati, in January and July 2016, and

in January, March and July 2017, Trieste (Italy).
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instance is given by the thermalization of an open system, where the dissi-

pative processes taking place due to the interaction of the system with its

environment degrade the quantum nature of the system and the coherence

of the quantum states [90].

Accordingly, the following questions naturally emerge: How far a dy-

namical system can be led from an equilibrium regime by means of external

interactions? What is the corresponding energy dispersion (loss of informa-

tion) while performing a non-equilibrium transformation? How much energy

is required to maintain the system in a non-equilibrium regime, induced by

interactions with the environment? In this regard, in 1865 Rudolf Clau-

sius first introduced the concept of entropy production, which quantifies the

unavailability of a system to produce useful work. More formally, entropy

(which is not directly measurable) is a state function of a system in ther-

modynamic equilibrium, and is proportional to the number of microscopic

configurations assumed by the system, while it is approaching to a state as

specified by one or more macroscopic variables. In its formulation of ther-

modynamics, Clausius proved that for a thermodynamic system the entropy

production is always larger than the heat exchange by the system with its

surroundings. Such a statement, known as Clausius inequality, is valid for ir-

reversible and reversible processes, as well as for isolated and open systems.

Moreover, the concept of entropy is crucial not only in thermodynamics,

where it allows to characterize irreversibility of a quantum process (for both

classical and quantum systems), but also in information theory, where it is

used to quantify the amount of lost information within a communication

channel [50].

In particular, in the present chapter we will address the following topics:

� We will investigate the statistics of the quantum-heat absorbed by a

quantum system subject to a sequence of projective measurements ap-

plied at random times, in order to characterize from an energy point of

view the effects produced by the presence of some fluctuating fields due

to the random interaction between the system and the environment.

� By starting from the derivation of the quantum fluctuation theorem

for open (decoherent) systems, we will introduce an efficient protocol

(relying on a two-time quantum measurements scheme) to reconstruct

the entropy production of a quantum given process. In this way, we will

be able to (i) understand how much the energetic configuration of the

system is altered by the interaction with an arbitrary environment,
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and (ii) characterize the structure and the features of the external

environment.

4.1 Quantum-heat

In this section, the results in [84] about non-equilibrium quantum-heat statis-

tics under stochastic projective measurements are discussed. In the last

decades, a growing interest in the thermodynamic properties of quantum dy-

namical systems has emerged [35,67]. One of the main goals of such research

activity is to devise and implement more efficient engines by exploiting quan-

tum resources [1,36,104,110,166,174,191]. In particular, it has focussed the

attention on the exploration of the role of non-thermal states [181] and the

capability of characterizing the statistics of the energy, which is exchanged

by a quantum system in interaction with an external environment and/or

measurement apparata [?,?, 38, 39,204,208].

Previously in the thesis, we have introduced models relying on sequences

of stochastic quantum measurements [?, 85] with the aim to model the ran-

dom interaction between the environment and the system within the frame-

work of open quantum systems [?]. Indeed, randomness may appear in a

measurement process, not only in the outcome of the measurement, but also

in the time of its occurrence. Quantum measurements, at variance with

classical measurements, are invasive and are accordingly accompanied by

stochastic energy exchanges between the measurement apparatus and the

measured system. In this work we shall adopt the convention to call such

energy exchanges quantum-heat [64], and denote it by the symbol Qq, to dis-

tinguish it from the heat proper Q (i.e., the energy exchanged with a thermal

bath) and the work W (i.e., the energy exchanged with a work source).

In this paper, we study the statistics of the energy exchanged between a

quantum system and a measurement apparatus, under the assumption that

the interaction can be modelled by a sequence of projective measurements

occurring instantly and at random times. Our system does not interact with

a thermal bath nor with a work source, hence the energy exchanges is all

quantum-heat. Specifically, the following main results will be shown:

� A direct consequence of previous studies [38,39] is that when the projec-

tive measurements occur at predetermined times, the Jarzynski equal-

ity of quantum-heat is obeyed. Here we observe that the same is true

when there is randomness in the waiting time distribution between con-
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secutive measurements. This can be understood based on the fact that

the dynamics that dictate the evolution of the quantum system density

matrix are unital [?, 4, 102, 157]. We investigate both the case when

the randomness is distributed as a quenched disorder and as annealed

disorder [128], for which we present the expression of the characteristic

function.

� Our general analysis is illustrated for a repeatedly measured two-level

system. We focus on the impact of randomness of waiting times on the

average quantum-heat absorbed by the system. As compared with the

case of no-randomness, the two-level system exchanges more quantum

heat in the presence of randomness, when the average time between

consecutive measurements is sufficiently small compared to its inverse

resonance frequency. More quantum-heat is absorbed by the two level

system when randomness is distributed as quenched noise as compared

to annealed noise.

� Finally, we find that even an infinitesimal amount of randomness is

sufficient to induce a non-null quantum-heat transfer when many mea-

surements on the system Hamiltonian are performed.

These results have allowed us also to verify a phenomenon of noise-induced

quantum-heat transfer as the result of the presence of external (semi-classical)

stochasticity. As further remark, it is worth pointing out how this formalism

might be easily exploited even when some parameters of the Hamiltonian

are fluctuating variables.

4.1.1 Protocol of stochastic projective measurements

We consider a quantum mechanical system S described by a finite dimen-

sional Hilbert spaceH. We assume that the system is initially at t = 0− in an

arbitrary quantum state given a density matrix ρ0. The system Hamiltonian

H is time-independent and reads:

H =
∑
n

En|En〉〈En|, (4.1)

where En and |En〉 are its eigenvalues and eigenstates, respectively. The

eigenstates of H are non-degenerate.

At time t = 0 a first projective energy measurement occurs projecting

the system in the state ρn = |En〉 〈En|, with probability pn = 〈En|ρ0|En〉.
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Accordingly, the corresponding energy of the system at t = 0+ is En. After-

wards, the system S is repeatedly subject to an arbitrary but fixed number

m of consecutive projective measurements of a generic observable O

O ≡
∑
k

okΠk, (4.2)

Here ok’s are the possible outcomes of the observable O, while the set {Πk}
are the projectors belonging to the measured eigenvalues. The projectors

are Hermitian and idempotent unidimensional operator satisfying the rela-

tions ΠkΠl = δkrΠr and
∑
k Πk = I. According to postulates of quantum

measurement [169], the state of the quantum system after a projective mea-

surement is given by one of the projectors Πk. We denote by τi the waiting

time between the (i − 1)th measurement and the ith of the observable O.

Between those measurements the system undergoes the unitary dynamics

generated by its Hamiltonian (4.1), that is U(τi) = e−iHτi , where the re-

duced Planck’s constant ~ has been set to unity. The waiting times τi are

random variables and so is the total time T =
∑M
j=1 τj , when the last, i.e.

the M th, measurement of O occurs. This is immediately followed by a second

measurement of energy that projects the system on the state ρl = |El〉 〈El|.
The quantum-heat Qq absorbed by the system is accordingly:

Qq = El − En (4.3)

In the following we shall adopt the notation ~τ = (τ1, . . . , τm) for the se-

quence of waiting time distributions, and ~k = (k1, . . . , km) for the sequence

of observed outcomes of the measurement of O in a realisation of the mea-

surement protocol. Given the sequences ~k, ~τ , density matrix ρn is mapped

at time T into

ρ̃n,~k,~τ =
V(~k, ~τ)ρnV†(~k, ~τ)

P(~k, ~τ)
, (4.4)

where V(~k, ~τ) is the super-operator

V(~k, ~τ) ≡ ΠkmU(τm) · · ·Πk1
U(τ1) (4.5)

and P(~k, ~τ) ≡ Tr
[
V(~k, ~τ)ρnV†(~k, ~τ)

]
.

4.1.2 Quantum-heat statistics

Qq is a random variable due to the randomness inherent to measurements

outcomes ~k, stochastic fluctuations in the sequence of waiting times ~τ , as
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well as from the initial statistical mixture ρ0. Its statistics reads

P (Qq) =
∑
n,l

δ(Qq − El + En)pl|n pn, (4.6)

where pl|n is the transition probability to obtain the final energy El condi-

tioned to have measured En in correspondence of the first energy measure-

ment. Denoting as pl|n(~k, ~τ) the probability to make a transition from n to

l, conditioned on the waiting time and outcomes sequences ~τ ,~k, the overall

transition probability pl|n reads

pl|n =

∫ ∑
~k

dm~τp(~τ)pl|n(~k, ~τ), (4.7)

where p(~τ) is the joint distribution for the sequence of waiting times ~τ .

The conditioned transition probability pl|n(~k, ~τ) is expressed in terms of the

evolution super-operator V(~k, ~τ), i.e.

pl|n(~k, ~τ) = Tr
[
ΠlV(~k, ~τ)ΠnV†(~k, ~τ)Πl

]
. (4.8)

The quantum-heat statistics is completely determined by the quantum-

heat characteristic function

G(u) ≡
∫
P (Qq)e

iuQqdQq, (4.9)

where u ∈ C is a complex number. Such characteristic function could be
directly measured by means of Ramsey interferometry of single qubits [34,
61, 125], or by means of methods from estimation theory [87]. Accordingly,
plugging (4.7) into (4.6) the quantum-heat statistics becomes

P (Qq) =

∫
dm~τp(~τ)

∑
n,~k,l

Tr
[
ΠlV(~k, ~τ)ΠnV†(~k, ~τ)Πl

]
pn (4.10)

Furthermore, substituting (4.10) in the definition (4.9) and using Tr
[
ΠlVΠnV†Πl

]
=

〈El| V |En〉 〈En| V† |El〉 we obtain

G(u) =

∫
dm~τp(~τ)

∑
n,~k,l

〈El| V |En〉 〈En| ρ0 |En〉 · 〈En| e−iuHV†eiuH |El〉 .

(4.11)

Finally, being eiuEl |El〉 = eiuH |El〉 and 〈En| e−iuEn = 〈En| e−iuH , we ob-

tain

G(u) =
〈

Tr
[
eiuHV(~k, ~τ)e−iuHρ0V†(~k, ~τ)

]〉
(4.12)
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where the angular brackets mean quantum-mechanical expectation 〈·〉 =

Tr(·)ρ0, and the overline stands for the average over noise realisations (·) =∫
dm~τp(~τ)(·).

In the special case when there is no randomness in the waiting times,

i.e. if p(~τ) = δm(~τ − ~τ0), where ~τ0 ≡ (τ0, τ0, . . . , τ0) and δm(~x) denotes the

m-dimensional Dirac delta, the characteristic function G(u) reduces to

G(u) =
∑
~k

Tr
[
eiuHV(~k, ~τ0)e−iuHρ0V†(~k, ~τ0)

]
, (4.13)

in agreement with the expression in Ref. [208].

The statistical moments of the quantum-heat are obtained, by follow-

ing the general rule, from the derivatives of the quantum-heat generating

function, according to the formula

〈Qnq 〉 = (−i)n∂nuG(u)|u=0 , (4.14)

where ∂nu denotes the n−th partial derivative with respect to u. Explicit

expressions for G(u) and 〈Qnq 〉 will be derived in the following section for the

paradigmatic case of a two-level quantum system.

As a side remark we observe that, since the characterization of the mea-

surement operators is encoded in the super-operator V(~k, ~τ), Eq. (4.12) is

valid also when a protocol of POVMs (excluding the first and the last mea-

surements, performed on the energy basis) is applied to the quantum system.

In such a case, the measurement projectors Πk are replaced by a set of Kraus

operators {Bl}, such that
∑
l B
†
lBl = I.

4.1.3 Fluctuation Relation

It is a known fact that, when a quantum system is subject to a time depen-

dent forcing protocol and as well to a predetermined number of quantum

projective measurements occurring at predetermined times ~τ , the following

holds (Jarzynski equality):

〈e−βT (Ẽl−En)〉 = e−βT∆F , (4.15)

where Ẽl are the final eigenvalues of the time-dependent system Hamil-

tonian H(t), ∆F ≡ −β−1
T ln Tr[e−βTH(T )]/Tr[e−βTH(0)] denotes the free-

energy difference, and the initial state of the system has the Gibbs form

ρ0 = e−βTH(0)/Tr[e−βTH(0)] [39]. Z ≡ Tr[e−βTH(0)] is also called partition
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function. If turning off the time-dependent forcing, as in the present inves-

tigation, this implies that with fixed waiting times ~τ one has:

〈e−βTQq 〉 = 1, (4.16)

because, without driving, all the energy change in the quantum system can

be ascribed to quantum-heat and, being the Hamiltonian time-independent,

in that case ∆F = 0. For the sake of clarity, we recall that the notation

〈e−βTQq 〉 denotes a purely quantum-mechanical expectation with fixed wait-

ing time sequence ~τ .

However, as main result, we can easily prove that this continues to hold

also if the times between consecutive measurements are random. Indeed,

using (4.12), we obtain

〈e−βTQq 〉 = G(iβT )

=

∫
dm~τp(~τ)

∑
~k

Tr

[
e−βTHV(~k, ~τ)eβTH

e−βTH

Z
V†(~k, ~τ)

]

= Tr

e−βTH
Z

∫
dm~τp(~τ)

∑
~k

V(~k, ~τ)V†(~k, ~τ)

 =
Tr
[
e−βTH

]
Z

= 1, (4.17)

where we have used the property∫
dm~τp(~τ)

∑
~k

V(~k, ~τ)V†(~k, ~τ) = I, (4.18)

which follows from the normalisation
∫
dm~τp(~τ) = 1, idempotence of projec-

tors ΠkΠk = Πk, ciclyicity of the trace operation, and the unitarity of the

quantum evolutions between consecutive measurements. Its mathematical

significance is that the quantum channel that describes the unconditioned

evolution from t = 0 to t = T

ρ 7→
∫
dm~τp(~τ)

∑
~k

V(~k, ~τ) ρV†(~k, ~τ) (4.19)

is unital, i.e. it has the identity I as a fixed point. It is this mathematical

property that ensures the validity of the fluctuation relation (4.12) [?,4,102,

157].

The fluctuation relation (4.12) can also be understood by noticing that,

from Eq. (4.16), it is 〈e−βTQq 〉 = 1, in which the average is restricted to the
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sole realisations where the sequence ~τ occurs. The double average remains

therefore equal to one: 〈e−βTQq 〉 =
∫
dm~τp(~τ)〈e−βTQq 〉 = 1. Accordingly,

we have shown, from one side, that the fluctuation relation is robust against

the presence of randomness in the waiting times ~τ , and, on the other side,

that such stochasticity shall not be a-posterior revealed by a measure of

〈e−βTQq 〉 with ρ0 Gibbs thermal state, whatever are the values assumed by

~τ and p(~τ).

Moreover, from an experimental point of view, 〈e−βTQq 〉 can be obtained

by repeating for a sufficiently large number N of times the foregoing protocol

of projective measurements, so that

〈e−βTQq 〉 =
1

N

N∑
j=1

e−βTQ
(j)
q , (4.20)

where Q
(j)
q is the value of quantum-heat, which is measured after the j−th

repetition of the experiment.

4.1.4 Noise-induced quantum heat transfer

Below, we will analyze in detail 〈e−βTQq 〉 and the mean quantum-heat 〈Qq〉,
when a stochastic sequence of projective quantum measurements is per-

formed on a two-level-system. Let E+ and E− denote its two energy eigenval-

ues. We assume the initial density matrix is diagonal in the energy eigenbasis:

ρ0 = c1 |E+〉 〈E+|+ c2 |E−〉 〈E−| , (4.21)

with c1, c2 ∈ [0, 1] and c2 = 1−c1. We denote the eigenstates of the measured

observable O as {|αj〉}, j = 1, 2, so that is Πj = |αj〉〈αj |. They can be

generally expressed as a linear combination of the energy eigenstates, i.e.

|α1〉 = a |E+〉 − b |E−〉
|α2〉 = b |E+〉+ a |E−〉

(4.22)

where a, b ∈ C, |a|2 + |b|2 = 1 and a∗b = ab∗.

Fixed waiting times sequence

We begin by considering the standard case where the waiting time τ between

two consecutive measurements is constant. In this case p(~τ) =
∏m
i=1 δ(τi−τ̄),
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where δ(·) denotes the Dirac delta. By computing the characteristic function

(4.13) in u = iβT for the two-level system, we obtain

G(iβT ) =

(|a|2e−βTE + |b|2eβTE
|a|2eβTE + |b|2e−βTE

)′
·
(

1− ν ν

ν 1− ν

)m−1

·
(|a|2c1eβTE + |b|2c2e−βTE
|a|2c2e−βTE + |b|2c1eβTE

)
, (4.23)

where the transition probability ν = ν(τ) is expressed in terms of the func-

tion

ν(t) ≡ | 〈α2| U(t) |α1〉 |2 = | 〈α1| U(t) |α2〉 |2 = 2|a|2|b|2 sin2(2tE), (4.24)

The explicit calculation is reported in the Appendix.

In Fig. 4.1 we report the quantity G(iβT ) = 〈e−iβTQq 〉 as a function of c1
for various values of a, which have been chosen to be real. We first observe

that G(iβT ) is a linear function of c1. This is confirmed by the numerical

simulations of 〈e−iβTQq 〉 from the underlying protocol, which is in agreement

with the analytical formula (4.23), except for some finite size errors. We

further observe that, for an arbitrary value of a, G(iβT ) is identically equal to

1 in correspondence of the value of c1 for which ρ0 = e−βTH/Z, in agreement

with Eq. (4.16). In Fig. 4.1 such condition is realized in the point where all

the analytical lines are crossing.

Stochastic waiting times sequence

Quenched disorder: By quenched disorder it is meant that the time be-
tween consecutive measurements within a given sequence is fixed and only
varies between distinct sequences. The joint distribution p(~τ) reads p(~τ) =
p(τ1)

∏m
i=2 δ(τi − τ1). In other words, only the first waiting time of a se-

quence is chosen randomly from p(τ) and then that waiting time repeats
within the sequence. For the sake of simplicity, we assume that p(τ) is a
bimodal probability density function, with values τ (1), τ (2) and probabilities
p1 and p2 = 1− p1. Accordingly, from Eq. (4.12) we have that

G(iβT ) =

(|a|2e−βTE + |b|2eβTE
|a|2eβTE + |b|2e−βTE

)′
·

 dτ∑
j=1

(
1− ν(τ (j)) ν(τ (j))

ν(τ (j)) 1− ν(τ (j))

)m−1

pj


·

(|a|2c1eβTE + |b|2c2e−βTE
|a|2c2e−βTE + |b|2c1eβTE

)
(4.25)

where dτ = 2 is the number of values that can be assumed by the random

variable τ .
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Figure 4.1: Analytic form of G(iβT ) (solid yellow, dotted blue and dashed

red lines) as a function of c1, which parameterizes the initial density matrix

of the system, for three real values of a (respectively, a = 0, 0.1, 0.5). The

analytical predictions are compared with the numerical simulations (green

crosses, blue x-marks and red circles). The simulations have been performed

by applying protocols of m = 5 projective measurements, averaged over

1000 realizations in order to numerically derive the mean of the exponential

of work, with E± = ±1. The point, in which all the analytical lines are

crossing, corresponds to the initial thermal state ρ0 = e−βTH/Z with βT = 1.

Annealed disorder: By annealed disorder it is meant that the waiting
times, (τ1, . . . , τm) = ~τ are random variables sampled from one and the
same probability distribution p(τ). Accordingly, the joint distribution of the
waiting times is p(~τ) =

∏m
j=1 p(τj). Assuming p(τ) to be bimodal as above,

the characteristic function at u = iβT reads (see Appendix):

G(iβT ) =

(|a|2e−βTE + |b|2eβTE
|a|2eβTE + |b|2e−βTE

)′
·

 dτ∑
j=1

(
1− ν(τ (j)) ν(τ (j))

ν(τ (j)) 1− ν(τ (j))

)
pj

m−1

·
(|a|2c1eβTE + |b|2c2e−βTE
|a|2c2e−βTE + |b|2c1eβTE

)
(4.26)
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In Fig. 4.2 we plot it as a function of c1. The presence of the disorder
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Figure 4.2: Plot of G(iβT ) (solid yellow, dotted blue and dashed red lines)

as a function of c1 for three real values of a (a = 0, 0.1, 0.5, respectively).

In this case, the stochasticity in the time intervals between measurements

is distributed as annealed disorder. Again the analytical predictions are

compared to the numerical simulations (green crosses, blue x-marks and red

circles) for the three values of a. Also in this case, the point in which all the

lines are crossing corresponds to the thermal state. Inset: Slope of G(iβT )

as a function of c1, i.e. ∂c1G(iβT ), for different values of the parameter |a|2
with resolution of |a| = 0.05. The curves have been performed by applying

protocols of m = 5 projective measurements, averaged over 1000 realizations,

with E± = ±1 and βT = 1. Instead, for p(τ) we have chosen a bimodal

probability density function, with values τ (1) = 0.01, τ (2) = 3 and p1 = 0.3.

does not affect the linear dependence of G(iβT ) on c1, and it still equals 1

in correspondence of the initial state to be thermal with temperature 1/βT .

What the stochasticity effectively changes is the slope of G(iβT ) when it is

plotted as a function of c1. In this regard, in the inset of Fig. 4.2 we show
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how the slope of G(iβT ) as a function of c1, given the partial derivative of

G(iβT ) with respect to c1 (i.e. ∂c1G(iβT )), depends on |a|2 for both the case

of fixed and stochastic waiting times sequence with m = 5 measurements.

The values of ∂c1G(iβT ) are identically equal when |a|2 = 0 and 0.5, and in

the range 0 ≤ |a|2 ≤ 0.5 they are symmetric with respect to the ones in the

range 0.5 ≤ |a|2 ≤ 1.

Mean quantum-heat

By substituting u = 0 in ∂uG(u) (in the appendix, we show the analytical

expression of the n−th partial derivative of G(u) for the two-level system),

we find the mean value 〈Qq〉, which is a linear function in the parameter c1
both in the ordered and the stochastic case. In particular,

〈Qq〉 = −φ [2c1 − 1] , (4.27)

where

φ ≡ E
[
1− λ(τ)

]
. (4.28)

Accordingly, φ depend on the average (w.r.t. the values that can be assumed

by the waiting time ~τ in a given sequence of the protocol according to p(~τ))

of the parameter λ(τ), which is given by the following relation:

λ(τ) = (1− 2|a|2)2(1− 2ν(τ))m−1 ≤ 1. (4.29)

Being φ ≥ 0, the maximum value of 〈Qq〉, i.e. 〈Qq〉max, occurs at 〈Qq〉 = φ

when c1 = 0; while 〈Qq〉 = 0 when c1 = 1/2 for any value of m, a and p(~τ).

Moreover, when a = 0 or a = 1 then 〈Qq〉 = 0. This can be understood by

noticing that the condition a = 0, 1 implies that the measured observable O
coincides with the system Hamiltonian. In this case, the system after the

initial projection onto the state |E±〉 only acquires a phase during the free

evolution while the subsequent measurements have no effect on the state.

Accordingly the quantum-heat would be always null Qq = 0 and so will be

its average.

For a sequence of measurements at fixed times λ(τ) = λ(τ), while in the
quenched and annealed disorder instance it is respectively equal to

λ(τ)
(qu)

=

dτ∑
j=1

λ(τ (j))pj = (1− 2|a|2)2
dτ∑
j=1

[1− 2ν(τ (j))]m−1pj (4.30)
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and

λ(τ)
(an)

= (1− 2|a|2)2

 dτ∑
j=1

[1− 2ν(τ (j))]pj

m−1

. (4.31)

Thus, we will denote the mean quantum-heat in such cases respectively as

〈Qq〉
(qu)

and 〈Qq〉
(an)

. In general, by changing the initial density matrix

ρ0 (i.e. c1), the parameter a (related to the measurement bases) or the

number m of measurements, the mean value of the quantum-heat can assume

a value within the range [−φ, φ]; and when the initial state is thermal then

〈Qq〉 = βTE(1−λ(τ)) tanh(βTE), as shown also in Ref. [208] for a sequence

of measurements at fixed times.

Let us observe that 〈Qq〉 ≥ 0 if 0 ≤ c1 ≤ 0.5, while it is always ≤ 0

for 0.5 ≤ c1 ≤ 1. These two conditions correspond to two distinct regimes:

quantum-heat absorption by the two-level system and quantum-heat emis-

sion. Then, being 〈Qq〉 a linear function passing through c1 = 1/2, we can

study the quantum-heat transfer (heat absorption/emission) by comparing

the absolute value of the maximum quantum-heat, i.e.
∣∣∣〈Qq〉max

∣∣∣ = φ, for

sequence of measurements at fixed and stochastic times. This implies to

analyze which is the relations between λ(τ), λ(τ)
(qu)

and λ(τ)
(an)

. We find

that ∣∣∣〈Qq〉(qu)
∣∣∣ ≥ |〈Qq〉| ⇐⇒ (1− 2ν)m−1 ≥ [1− 2ν(τ)]m−1

(qu)
. (4.32)

and ∣∣∣〈Qq〉(an)
∣∣∣ ≥ ∣∣∣〈Qq〉(qu)

∣∣∣ , (4.33)

being λ(τ)
(an) ≤ λ(τ)

(qu)
. Eq. (4.32) sets the condition allowing for the

transfer on average of a greater amount of quantum-heat under the case of

quenched noise as compared to the case of no noise. To better understand

its physical meaning, let us consider m = 2 and τ (j)∆E � 1, j = 1, 2. We

derive that ∣∣∣〈Qq〉(qu)
∣∣∣ ≥ |〈Qq〉| ⇐⇒ τ2 ≥ τ2, (4.34)

where τ2 is the second statistical moment of p(τ). If the condition (4.34)

is not verified, then the application of a sequence of measurements at fixed

times will lead to a greater amount of transferred quantum-heat. Instead, for

a given choice of p(τ) and total number of measurements m more quantum-

heat is absorbed/emitted by the two-level system in the case of annealed
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noise as compare to the quenched noise case. This agrees with the intuition

that the system should heat-up more in case it is subject to higher noise,

and the annealed disorder is “more noisy” than the quenched one. This

evidences a phenomenon of noise-induced quantum-heat transfer which we

will be investigating further elsewhere.

As final remark, it is worth mentioning that in recent studies on stochas-

tic quantum Zeno dynamics [86, 134], it has been shown that the survival

probabilities that the system remains frozen in its initial state after per-

forming ordered and stochastic sequences of measurements behave in the

opposite way: the better the Zeno confinement is, the less quantum-heat is

transferred by the system.

The m→∞ limit

For m → ∞ the characteristic function tends to G∞(u) = (1 + e2iuE)/2 −
c1 sinh(2iuE) for each value of a 6= 0 and is exactly equal to 1 for |a|2 = 0, 1..

That is the m → ∞ asymptotic characteristic function G∞(u) presents a

discontinuity at |a|2 = 0, 1. Such a discontinuity is present also in the mean

quantum-heat 〈Qq〉: when |a|2 → 0, 1 and m is finite, 〈Qq〉 → 0 for any value

of c1, while for m→∞ and |a|2 6= 0, 1 we get 〈Qq〉 → E(1− 2c1) = 〈Qq〉∞.

In this way, the m→∞ asymptotic mean quantum-heat 〈Qq〉∞ can be easily

expressed in terms of the m→∞ asymptotic characteristic function G∞(u),

so that

G∞(u) =
sinh(2iuE)

E
〈Qq〉∞ + [cosh(2iuE) + 1]. (4.35)

The existence of this discontinuity is a mathematical feature that is

physically relevant when one performs many measurements (m → ∞) of

the Hamiltonian (|a|2 → 0, 1). Perfect measurements of the Hamiltonian

(|a|2 → 0, 1) are accompanied by null quantum heat 〈Qq〉, however even

an infinitesimal amount of noise in the measurement process will result,

in the limit of many measurements, in the finite amount of quantum-heat

〈Qq〉∞ = E(1− 2c1). Note that the latter is positive (negative) if the initial

state is at positive (negative) temperature c1 > (<)c2.

4.2 Stochastic quantum entropy production

In this section, we discuss the results obtained in [87], about the reconstruc-

tion of the stochastic quantum entropy production from a quantum system
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in interaction with the external environment. One of the major goals of

the quantum thermodynamics is the definition and characterization of irre-

versibility in quantum processes. This could have a significant impact on

technological applications for the possibility of producing work with heat

engines at high efficiency using systems where quantum fluctuations are

important. In this regard, several studies have shown how to derive the

quantum version of the fluctuation-dissipation theorem, both for closed and

open quantum systems [4,37,38,102,111,123,157], and recently, in [2] a fully

quantum fluctuation theorem has been formulated, explicitly including the

reservoir exchanging energy with the system and a control system driving

its dynamics.

Considerable efforts have been made in measuring irreversibility, and,

consequently, the stochastic entropy production in quantum thermodynam-

ics [16,32,54]. The ratio between the probability to observe a given quantum

trajectory and its time reversal is related to the amount of heat exchanged by

the quantum system with the environment. Lately it has been experimentally

proved, moreover, that irreversibility in quantum non-equilibrium dynamics

can be partially rectified by the presence of an intelligent observer, identified

by the well-known Maxwell’s demon [91], which manages to assess additional

microscopic information degrees of freedom due to a proper feed-forward

strategy [33]. As previously introduced an shown in [34, 61, 81, 92, 125, 150],

the reconstruction of the fluctuation properties of general thermodynamical

quantities for open quantum systems can be well-performed by adopting an

interferometric setting for the measurement of the characteristic function of

the work distribution.

In this section we will mainly address the following three issues:

� We discuss how to relate the stochastic entropy production to the quan-

tum fluctuation theorem, generalizing the Tasaki-Crooks theorem for

open systems. This relation is obtained via the evaluation of the irre-

versibility of the quantum dynamics, hence highlighting the quantum

counterpart of the second law of the thermodynamics at zero temper-

ature.

� We propose a procedure to reconstruct the stochastic entropy pro-

duction of an open quantum system by performing repeated two-time

measurements, at the initial and final times of the system transfor-

mation. In particular, we will present a novel measurement scheme,

that relies on quantum estimation theory [144], able to infer the work
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and entropy statistics with a minimal number of measurements. The

proposed algorithm requires to determine the characteristic functions

of the stochastic quantum entropy distribution, so that, by adopting a

parametric version of the integral quantum fluctuation theorem, we can

derive the corresponding statistical moments. We will show, moreover,

that the number of the required measurements scales linearly with the

system size.

� By assuming that the quantum system is bipartite, we apply the recon-

struction procedure both for the two subsystems and for the composite

system by performing measurements, respectively, on local and global

observables. The comparison between the local and the global quan-

tity will allow us to probe the presence of correlations between the

partitions of the system

4.2.1 Quantum fluctuation theorem

The fluctuations of the stochastic quantum entropy production obey the

quantum fluctuation theorem, that can be derived by evaluating the forward

and backward protocols for a non-equilibrium process according to a two-

time quantum measurement scheme. To this end, let us consider an open

quantum system that undergoes a transformation in the interval [0, T ] con-

sisting of measurement, dynamical evolution and second measurement. We

call this forward process and then study also its time-reversal, which we call

backward process:

FORWARD : ρ0 7−→︸︷︷︸
{Πin

m}

ρin 7−→︸︷︷︸
Φ

ρfin 7−→︸︷︷︸
{Πfin

k }

ρT

BACKWARD : ρ̃T 7−→︸︷︷︸
{Π̃ref

k }

ρ̃ref 7−→︸︷︷︸
Φ̃

ρ̃in′ 7−→︸︷︷︸
{Π̃in

m}

ρ̃0′

At time t = 0− the system is prepared in a state ρ0 and then subjected to a

measurement of the observable

Oin =
∑
m

ain
mΠin

m,

where Πin
m ≡ |ψam〉〈ψam | are the projector operators given in terms of the

eigenvectors |ψam〉 associated to the eigenvalues ain
m (the m−th possible out-

come of the first measurement). After the first measurement (at t = 0+), the
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density operator describing the ensemble average of the post-measurement

states becomes

ρin =
∑
m

p(ain
m)|ψam〉〈ψam |, (4.36)

where p(ain
m) = Tr

[
Πin
mρ0Πin

m

]
= 〈ψam |ρ0|ψam〉 is the probability to obtain

the measurement outcome ain
m. Then, the system undergoes a time evolution,

which we assume described by a unital completely positive, trace-preserving

(CPTP) map Φ : L(H) → L(H), with L(H) denoting the sets of density

operators (non-negative operators with unit trace) defined on the Hilbert

space H. Quantum maps (known also as quantum channels) represent a very

effective tool to describe the effects of the noisy interaction of a quantum

system with its environment [31, 44]. A CPTP map is unital if it preserves

the identity operator 1 on H, i.e. Φ(1) = 1. The assumption of a unital map

covers a large family of quantum physical transformations not increasing the

purity of the initial states, including, among others, unitary evolutions and

decoherence processes. The time-evolved ensemble average is then denoted

as

ρfin ≡ Φ(ρin). (4.37)

For example, in case of unitary evolution with Hamiltonian H(t), the final

quantum state at t = T − equals ρfin = Φ(ρin) = UρinU†, where U is, as

before, the unitary evolution operator. After the time evolution, at time t =

T +, a second measurement is performed on the quantum system according

to the observable

Ofin =
∑
k

afin
k Πfin

k ,

where Πfin
k ≡ |φak〉〈φak |, and afin

k is the k−th outcome of the second measure-

ment (with eigenvectors |φak〉). Consequently, the probability to obtain the

measurement outcome afin
k is p(afin

k ) = Tr
[
Πfin
k Φ(ρin)Πfin

k

]
= 〈φak |ρfin|φak〉.

Thus, the resulting density operator, describing the ensemble average of the

post-measurement states after the second measurement, is

ρT =
∑
k

p(afin
k )|φak〉〈φak |. (4.38)

The joint probability that the events “measure of ain
m” and “measure of afin

k ”

both occur for the forward process, denoted by p(afin = afin
k , a

in = ain
m), is

given by

p(afin
k , a

in
m) = Tr

[
Πfin
k Φ(Πin

mρ0Πin
m)
]
. (4.39)
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To study the backward process, we first have to introduce the concept

of time-reversal. Time-reversal is achieved by the time-reversal operator Θ

acting on H. The latter has to be an antiunitary operator. An antiunitary

operator Θ is anti-linear, i.e.

Θ(x1|ϕ1〉+ x2|ϕ2〉) = x?1Θ|ϕ1〉+ x?2Θ|ϕ2〉 (4.40)

for arbitrary complex coefficients x1, x2 and |ϕ1〉, |ϕ2〉 ∈ H, and it transforms

the inner product as 〈ϕ̃1|ϕ̃2〉 = 〈ϕ2|ϕ1〉 for |ϕ̃1〉 = Θ|ϕ1〉, and |ϕ̃2〉 = Θ|ϕ2〉.
Antiunitary operators satisfy the relations Θ†Θ = ΘΘ† = 1. The antiuni-

tarity of Θ ensures the time-reversal symmetry [183]. We define the time-

reversed density operator as ρ̃ ≡ ΘρΘ†, and we consider the time-reversal

version of the quantum evolution operator, i.e. our unital CPTP map Φ.

Without loss of generality, it admits an operator-sum (or Kraus) represen-

tation:

ρfin = Φ(ρin) =
∑
u

EuρinE
†
u

with the Kraus operators Eu being such that
∑
uE
†
uEu = 1 (trace-preserving) [31,

44]. For each Kraus operator Eu of the forward process we can define the

corresponding time-reversed operator Ẽu [51, 123], so that the time-reversal

Φ̃ for the CPTP quantum map Φ is given by

Φ̃(ρ) =
∑
u

ẼuρẼ
†
u, (4.41)

where

Ẽu ≡ Aπ1/2E†uπ
−1/2A†,

π is an invertible fixed point (not necessarily unique) of the quantum map

(such that Φ(π) = π), and A is an arbitrary (unitary or anti-unitary) opera-

tor. Usually, the operator A is chosen equal to the time-reversal operator Θ.

If the density operator π is a positive definite operator, as assumed in [51,97],

then also the square root π1/2 is positive definite and the inverse π−1/2 exists

and it is unique. Since our map is unital we can choose π1/2 = π−1/2 = 1.

Thus, from (4.41), we can observe that also Φ̃ is a CPTP quantum map with

an operator sum-representation, such that
∑
u Ẽ
†
uẼu = 1. Summarizing, we

have

Ẽu = ΘE†uΘ†,

so that

Φ̃(ρ) =
∑
u

ẼuρẼ
†
u = Θ

(∑
u

E†uρ̃Eu

)
Θ†.
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We are now in a position to define the backward process. We start by

preparing the system (at time t = T +) in the state ρ̃T = ΘρT Θ†, and

measure the observable

Õref ≡
∑
k

aref
k Π̃ref

k ,

with Π̃ref
k = |φ̃ak〉〈φ̃ak | and |φ̃ak〉 ≡ Θ|φak〉, that is we choose this first

measurement of the backward process to be the time-reversed version of the

second measurement of the forward process. If we call the post-measurement

ensemble average ρ̃ref, as a consequence ρ̃T = ρ̃ref, or equivalently ρT = ρref,

where the latter is called reference state.

Remark: Although the quantum fluctuation theorem can be derived with-

out imposing a specific operator for the reference state [168], the latter has

been chosen to be identically equal to the final density operator after the

second measurement of the protocol. This choice appears to be the most

natural among the possible ones to design a suitable measuring scheme of

general thermodynamical quantities, consistently with the quantum fluctu-

ation theorem.

Accordingly, the spectral decomposition of the time-reversed reference state

is given by

ρ̃ref =
∑
k

p(aref
k )|φ̃ak〉〈φ̃ak |, (4.42)

where

p(aref
k ) = Tr[Π̃ref

k ρ̃T Π̃ref
k ] = 〈φ̃ak |ρ̃T |φ̃ak〉 (4.43)

is the probability to get the measurement outcome aref
k . The reference state,

then, undergoes the time-reversal dynamical evolution, mapping it onto the

initial state of the backward process ρ̃in′ = Φ̃(ρ̃ref). At t = 0+ the density

operator ρ̃in′ = Φ̃(ρ̃ref) is subject to the second projective measurement of

the backward process, whose observable is given by

Õin =
∑
m

ain
mΠ̃in

m,

with Π̃in
m = |ψ̃am〉〈ψ̃am |, and |ψ̃am〉 ≡ Θ|ψam〉. As a result, the probability

to obtain the outcome ain
m is p(ain

m) = Tr[Π̃in
mΦ̃(ρ̃ref)Π̃

in
m] = 〈ψ̃am |ρ̃in′ |ψ̃am〉,

while the joint probability p(ain
m, a

ref
k ) is given by

p(ain
m, a

ref
k ) = Tr[Π̃in

mΦ̃(Π̃ref
k ρ̃T Π̃ref

k )]. (4.44)
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The final state of the backward process is instead ρ̃0′ =
∑
m p(a

in
m)Π̃in

m. Let us

observe again that the main difference of the two-time measurement protocol

that we have introduced here, compared to the scheme in [168], is to perform

the 2nd and 1st measurement of the backward protocol, respectively, on the

same basis of the 1st and 2nd measurement of the forward process after a

time-reversal transformation.

The irreversibility of the two-time measurement scheme is, thus, analyzed

by studying the stochastic quantum entropy production σ defined as:

σ(afin
k , a

in
m) ≡ ln

(
p(afin

k , a
in
m)

p(ain
m, a

ref
k )

)
= ln

(
p(afin

k |ain
m)p(ain

m)

p(ain
m|aref

k )p(aref
k )

)
, (4.45)

where p(afin
k |ain

m) and p(ain
m|aref

k ) are the conditional probabilities of mea-

suring, respectively, the outcomes afin
k and ain

m, conditioned on having first

measured ain
m and aref

k . Its mean value

〈σ〉 =
∑
k,m

p(afin
k , a

in
m) ln

(
p(afin

k , a
in
m)

p(ain
k , a

ref
m )

)
(4.46)

corresponds to the classical relative entropy (or Kullback-Leibler divergence)

between the joint probabilities p(afin, ain) and p(ain, aref), respectively, of the

forward and backward processes [50, 190]. The Kullback-Leibler divergence

is always non-negative and as a consequence

〈σ〉 ≥ 0. (4.47)

As a matter of fact, 〈σ〉 can be considered as the amount of additional infor-

mation that is required to achieve the backward process, once the quantum

system has reached the final state ρT . Moreover, 〈σ〉 = 0 if and only if

p(afin
k , a

in
m) = p(ain

m, a
ref
k ), i.e. if and only if σ = 0. To summarize, the trans-

formation of the system state from time t = 0− to t = T + is then defined

to be thermodynamically irreversible if 〈σ〉 > 0. If, instead, all the fluctu-

ations of σ shrink around 〈σ〉 ' 0 the system comes closer and closer to

a reversible one. We observe that a system transformation may be ther-

modynamically irreversible also if the system undergoes unitary evolutions

with the corresponding irreversibility contributions due to applied quantum

measurements. Also the measurements back-actions, indeed, lead to energy

fluctuations of the quantum system, as recently quantified in [64]. In case

there is no evolution (identity map) and the two measurement operators are

the same, then the transformation becomes reversible. We can now state the
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following theorem:

Theorem 4.1: Given the two-time measurement protocol described above

and an open quantum system dynamics described by a unital CPTP quan-

tum map Φ, it can be stated that:

p(afin
k |ain

m) = p(ain
m|aref

k ). (4.48)

The proof of Theorem 4.1 can be found in Appendix C.

Throughout this article we assume that Φ is unital and this property of the

map guarantees the validity of Theorem 4.1. Note, however, that [97, 123]

present a fluctuation theorem for slightly more general maps, that however

violate (4.48).

As a consequence of Theorem 4.1 we obtain:

σ(afin
k , a

in
m) = ln

(
p(ain

m)

p(aref
k )

)
= ln

(
〈ψam |ρ0|ψam〉
〈φ̃ak |ρ̃T |φ̃ak〉

)
. (4.49)

providing a general expression of the quantum fluctuation theorem for the

described two-time quantum measurement scheme. Let us introduce, now,

the entropy production σ̃ for the backward processes, i.e.

σ̃(ain
m, a

ref
k ) ≡ ln

(
p(ain

m, a
ref
k )

p(afin
k , a

in
m)

)
= ln

(
p(aref

k )

p(ain
m)

)
,

where the second identity is valid only in case we can apply the results

deriving from Theorem 4.1. Hence, if we define Prob(σ) and Prob(σ̃) as the

probability distributions of the stochastic entropy production, respectively,

for the forward and the backward processes, then it can be shown (see e.g.

[168]) that

Prob(σ̃ = −Γ)

Prob(σ = Γ)
= e−Γ, (4.50)

where Γ belongs to the set of values that can be assumed by the stochastic

quantum entropy production σ. The identity (4.50) is usually called quantum

fluctuation theorem. By summing over Γ, we recover the integral quantum

fluctuation theorem, or quantum Jarzynski equality, 〈e−σ〉 = 1, as previously

shown e.g. in [111,168].
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4.2.2 Mean entropy production vs quantum relative en-

tropy

Here, we discuss the irreversibility of the two-time measurement scheme for

an open quantum system S in interaction with the environment E (described

by a unital CPTP map), deriving an inequality (Theorem 2) for the entropy

growth. Following Ref. [168], the essential ingredient is the non-negativity

of the quantum relative entropy and its relation to the stochastic quantum

entropy production. As a generalization of the Kullback-Leibler informa-

tion [190], the quantum relative entropy between two arbitrary density op-

erators ν and µ is defined as S(ν ‖ µ) ≡ Tr[ν ln ν] − Tr[ν lnµ]. The Klein

inequality states that the quantum relative entropy is a non-negative quan-

tity [193], i.e. S(ν ‖ µ) ≥ 0, where the equality holds if and only if ν = µ

- see e.g. [168]. In the following we will show the relation between the

quantum relative entropy of the system density matrix at the final time of

the transformation and the stochastic quantum entropy production for uni-

tal CPTP quantum maps. Accordingly, the following theorem can be stated:

Theorem 2: Given the two-time measurement protocol described above and

an open quantum system dynamics described by a unital CPTP quantum map

Φ, the quantum relative entropy S(ρfin ‖ ρτ ) fulfills the inequality

0 ≤ S(ρfin ‖ ρτ ) ≤ 〈σ〉, (4.51)

where the equality S(ρfin ‖ ρτ ) = 0 holds if and only if ρfin = ρτ . Then, for

[Ofin, ρfin] = 0 one has 〈σ〉 = S(ρτ )− S(ρin), so that

0 = S(ρfin ‖ ρτ ) ≤ 〈σ〉 = S(ρfin)− S(ρin). (4.52)

Moreover, S(ρfin ‖ ρτ ) = 〈σ〉 if S is a closed quantum system following a

unitary evolution. A proof of Theorem 2 is in Appendix C.

While Eq. (4.51) is more general and includes the irreversibility contri-

butions of both the map Φ and the final measurement, in Eq. (4.52) due

to a special choice of the observable of the second measurement we obtain

ρfin = ρτ and, thus, the quantum relative entropy vanishes while the stochas-

tic quantum entropy production contains the irreversibility contribution only

from the map. This contribution is given by the difference between the von

Neumann entropy of the final state S(ρfin) and the initial one S(ρin)3.

3Let us assume that the initial density matrix ρin is a Gibbs thermal state at inverse
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In a fully quantum regime, following [8, 119], we consider the internal

energy of the system Tr[ρ(t)H(t)] ≡ Tr[ρH](t), where H(t) is the Hamilto-

nian of the system S). An infinitesimal change of the internal energy during

the infinitesimal interval [t, t + δt] is δTr[ρH](t) ≡ Tr[ρ(t + δt)H(t + δt)] −
Tr[ρ(t)H(t)]. This can be recast into the following relation, representing the

first law of thermodynamics for the quantum system:

δTr[ρH](t) = Tr[ρ(t)δH(t)] + Tr[δρ(t)H(t)], (4.53)

where δH(t) ≡ H(t+ δt)−H(t) and δρ(t) ≡ ρ(t+ δt)− ρ(t). The quantity

Tr[ρ(t)δH(t)] is the infinitesimal mean work δ〈W〉(t) done by the system

in the time interval [t, t + δt], while Tr[δρ(t)H(t)] denotes the infinitesimal

mean heat flux δ〈Q〉(t). In particular, the mean heat flux δ〈Q〉(t) disappears

in case the quantum system dynamics is unitary, and, for time-independent

Hamiltonians and a finite value change of the internal energy of the quan-

tum system during the protocol, it reduces to 〈Q〉 = Tr[ρfinH]−Tr[ρinH] =

Tr [(Φ− I)[ρin]H] , where I is the identity map acting on the sets of the

density operators defined on the Hilbert space of the quantum system S.

Here, it is worth recalling that our derivations, relying on Theorems 1 and 2,

are valid for unital CPTP quantum maps, for which 〈σ〉 = S(ρτ )− S(ρin) =

Tr[ρin ln ρin]−Tr[ρτ ln ρτ ] (when [Ofin, ρfin] = 0). Accordingly, we can deduce

that 〈σ〉 is not linearly proportional (with βT as proportionality constant) to

the internal energy of the open quantum system, and, consequently, to the

mean heat flux 〈Q〉. A unital quantum process cannot in general describe the

mapping between two Gibbs thermal states, and the linear relation between

〈σ〉 and 〈Q〉 can be achieved only in case the environment E is a thermal

bath with inverse temperature βT , in analogy with classical thermodynam-

ics. Indeed, in this case we need to require the additional hypothesis that

both the initial density matrix ρin and the final state ρτ of S after the sec-

ond measurement of the protocol are described by canonical distributions,

temperature βT , i.e. ρin ≡ eβT [F (0)1S−H(0)], where F (0) ≡ −β−1
T ln

{
Tr[e−βTH(t=0)]

}
and H(0) are, respectively, equal to the Helmholtz free-energy and the system Hamiltonian

at time t = 0. Accordingly, the von Neumann entropy S(ρin) equals the thermodynamic

entropy at t = 0, i.e. S(ρin) = βT (〈H(0)〉 − F (0)), where 〈H(0)〉 ≡ Tr[ρinH(0)] is the av-

erage energy of the system in the canonical distribution. More generally, we can state that

given an arbitrary initial density matrix ρin the thermodynamic entropy βT (〈H(0)〉−F (0))

represents the upper-bound value for the von Neumann entropy S(ρin), whose maximum

value is reached only in the canonical distribution. To prove this, it is sufficient to con-

sider S(ρin ‖ eβT (F (0)1S−H(0))) = βT (F (0)− 〈H(0)〉) − S(ρin), from which, from the

positivity of the quantum relative entropy, one has S(ρin) ≤ βT (〈H(0)〉 − F (0)).
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i.e. ρin ≡ eβT [F (0)1S−H(0)] and ρτ ≡ eβT [F (τ)1S−H(τ)]. Physically, this is

equivalent to assume that before the application of the two-time measure-

ment scheme the quantum system S is in contact with a thermal bath with

inverse temperature βT , and, then, after the time evolution described by

a unital quantum map (for which the results of Theorem 2 are valid), the

system is still put aside to the thermal bath, so as to effectively induce a

thermalization of the final state ρfin, which has a faster time-scale with re-

spect to the system dynamics. Under this hypothesis, as shown also in [168],

the conventional second law of thermodynamics

〈W〉 ≥ ∆F (4.54)

is recovered, where ∆F ≡ F (τ)− F (0) is the free-energy difference.

To summarize, if the environment E is not thermal, not directly accessible

from the outside or partially controllable only in its own macroscopic prop-

erties, the stochastic quantum entropy production represents a very general

measurable thermodynamic quantity especially in the fully quantum regime.

Therefore, its reconstruction becomes really relevant, not only for the fact

that we cannot longer adopt energy measurements on S to infer σ and its

fluctuation properties, but also because in this way we could manage to

measure the mean heat flux exchanged by the partitions of S in case it is a

multipartite quantum system.

4.2.3 Open bipartite systems

In this section, our intent is to define and, then, reconstruct the fluctuation

profile of the stochastic quantum entropy production σ for an open multi-

partite system (for simplicity we will analyze in detail a bipartite system),

so as to characterize the irreversibility of the system dynamics after an ar-

bitrary transformation. At the same time, we will also study the role played

by the performance of measurements both on local and global observables

for the characterization of Prob(σ) in a many-body context, and evaluate

the efficiency of reconstruction in both cases. In particular, as shown by the

numerical examples, by comparing the mean stochastic entropy productions

〈σ〉 obtained by local measurements on partitions of the composite system

and measurements on its global observables, we are able to detect (quantum

and classical) correlations between the subsystems, which have been caused

by the system dynamics.
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To this end, let us assume that the open quantum system S is composed

of two distinct subsystems (A and B), which are mutually interacting, and

we denote by A − B the composite system S. However, all the presented

results can be in principle generalized to an arbitrary number of subsystems.

As before, the initial and final density operators of the composite system

are arbitrary (not necessarily equilibrium) quantum states, and the dynam-

ics of the composite system is described by a unital CPTP quantum map.

The two-time measurement scheme on A − B is implemented by perform-

ing the measurements locally on A and B and we assume, moreover, that

the measurement processes at the beginning and at the end of the proto-

col are independent. Since the local measurement on A commutes with the

local measurement on B, the two measurements can be performed simulta-

neously. This allows us to consider the stochastic entropy production for the

composite system by considering the correlations between the measurement

outcomes of the two local observables. Alternatively, by disregarding these

correlations, we can consider separately the stochastic entropy production of

each subsystem.

The composite system A−B is defined on the finite-dimensional Hilbert

space HA−B ≡ HA ⊗ HB (with HA and HB the Hilbert spaces of system

A and B, respectively), and its dynamics is governed by the following time-

dependent Hamiltonian:

H(t) = HA(t)⊗ 1B + 1A ⊗HB(t) +HA−B(t). (4.55)

1A and 1B are the identity operators acting, respectively, on the Hilbert

spaces of the systems A and B, while HA is the Hamiltonian of A, HB the

Hamiltonian of system B, and HA−B is the interaction term. We denote

the initial density operator of the composite quantum system A − B by ρ0

(before the first measurement), which is assumed to be a product state, then

the ensemble average after the first measurement (at t = 0+) is given by the

density operator ρin, which can be written as:

ρin = ρA,in ⊗ ρB,in, (4.56)

where {
ρA,in =

∑
m p(a

in
m)Πin

A,m

ρB,in =
∑
h p(b

in
h )Πin

B,h

(4.57)

are the reduced density operators for the subsystems A and B, respectively.

The projectors Πin
A,m ≡ |ψam〉〈ψam | and Πin

B,h ≡ |ψbh〉〈ψbh | are the projectors
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onto the respective eigenstates of the local measurement operators for the

subsystems A and B: the observables Oin
A =

∑
m a

in
mΠin

A,m on system A and

Oin
B =

∑
h b

in
h Πin

B,h on system B, with possible measurement outcomes {ain
m}

and {binh }, upon measurement of ρ0. After the measurement, the composite

system A − B undergoes a time evolution up to the time instant t = T −,

described by the unital CPTP quantum map Φ, such that ρfin = Φ(ρin).

Then, a second measurement is performed on both systems, measuring the

observables Ofin
A =

∑
k a

fin
k Πfin

A,k on system A and Ofin
B =

∑
l b

fin
l Πfin

B,l on

system B, where {afin
k } and {bfin

l } are the eigenvalues of the observables,

and the projector Πfin
A,k ≡ |φak〉〈φak | and Πfin

B,l ≡ |φbl〉〈φbl | are given by the

eigenstates |φak〉 and |φbl〉, respectively. After the second measurement, we

have to make a distinction according to whether we want to take into account

correlations between the subsystems or not.

If we disregard the correlations, the ensemble average over all the local

measurement outcomes of the state of the quantum system at t = T + is

described by the following product state ρA,T ⊗ ρB,T , where{
ρA,T =

∑
k p(a

fin
k )Πfin

A,k

ρB,T =
∑
l p(b

fin
l )Πfin

B,l

. (4.58)

The probabilities p(afin
k ) to obtain outcome afin

k and p(bfin
l ) to obtain the

measurement outcome bfin
l are given byp(a

fin
k ) = TrA

[
Πfin
A,kTrB [ρfin]

]
p(bfin

l ) = TrB

[
Πfin
B,lTrA [ρfin]

] , (4.59)

where TrA [·] and TrB [·] denote, respectively, the operation of partial trace

with respect to the quantum systems A and B. Conversely, in order to

keep track of the correlations between the simultaneously performed local

measurements, we have to take into account the following global observable

of the composite system A−B:

Ofin
A−B =

∑
k,l

cfin
kl Πfin

A−B,kl , (4.60)

where Πfin
A−B,kl ≡ Πfin

A,k ⊗Πfin
B,l and {cfin

kl } are the outcomes of the final mea-

surement of the protocol. The state of the system after the second measure-

ment at t = T + is then described by an ensemble average over all outcomes
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of the joint measurements:

ρT =
∑
k,l

p(cfin
kl )Πfin

A−B,kl , (4.61)

where p(cfin
kl ) = Tr

[
Πfin
A−B,kl ρfin

]
. In both cases, consistently with the previ-

ous assumptions, we choose ρT as the reference state of the composite system.

The measurement outcomes of the initial and final measurement for the com-

posite system A− B are, respectively, cinmh ≡ (ain
m, b

in
h ) and cfin

kl ≡ (afin
k , b

fin
l ).

These outcomes occur with probabilities p(cinmh) and p(cfin
kl ), which reflect

the correlation of the outcomes of the local measurements. As a result, the

stochastic quantum entropy production of the composite system reads

σA−B(cinmh, c
fin
kl ) = ln

(
p(cinmh)

p(cfin
kl )

)
. (4.62)

In the same way, we can define the stochastic quantum entropy production

separately for each subsystem, i.e. σA for subsystem A and σB for subsystem

B:

σA(ain
m, a

fin
k ) = ln

(
p(ain

m)

p(afin
k )

)
, and σB(binh , b

fin
l ) = ln

(
p(binh )

p(bfin
l )

)
. (4.63)

If upon measurement the composite system is in a product state, the mea-

surement outcomes for A and B are independent and the probabilities to

obtain them factorize as{
p(cinmh) = p(ain

m)p(binh )

p(cfin
kl ) = p(afin

k )p(bfin
l )

.

As a direct consequence, the stochastic quantum entropy production becomes

an additive quantity:

σA−B(cinmh, c
fin
kl ) = σA(ain

m, a
fin
k ) + σB(binh , b

fin
l ) ≡ σA+B(cinmh, c

fin
kl ). (4.64)

In the more general case of correlated measurement outcomes, the proba-

bilities do not factorize anymore. Instead, the mean value of the stochastic

entropy production σA−B(cinmh, c
fin
kl ) becomes sub-additive. In other words

〈σA−B〉 ≤ 〈σA〉+ 〈σB〉 ≡ 〈σA+B〉, (4.65)

i.e. the mean value of the stochastic quantum entropy production σA−B of

the composite system A − B is smaller than the sum of the mean values of
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the corresponding entropy production of its subsystems, when the latter are

correlated. To see this, we recall the expression of the mean value of the

stochastic entropy production in terms of the von Neumann entropies of the

two post-measurement states (see appendix C):

〈σA−B〉 = S(ρT )− S(ρin) = S(ρT )− S(ρA,in)− S(ρB,in)

≤ S(ρA,T ) + S(ρB,T )− S(ρA,in)− S(ρB,in)

= 〈σA〉+ 〈σB〉 = 〈σA+B〉.

4.2.4 Probability distribution

Depending on the values assumed by the measurement outcomes cin ∈ {cinmh}
and cfin ∈ {cfin

kl }, σA−B is a fluctuating variable as it is true also for the

single subsystem contributions σA ∈ {σA(ain
m, a

fin
k )} and σB ∈ {σB(binh , b

fin
l )}.

We denote the probability distributions for the subsystems with Prob(σA)

and Prob(σB) and Prob(σA−B) for the composite system. We will further

compare this probability distribution for the composite system (containing

the correlations of the local measurement outcomes) to the uncorrelated

distribution of the sum of the single subsystems’contributions. We introduce

the probability distribution Prob(σA+B) of the stochastic quantum entropy

production σA+B by applying the following discrete convolution sum:

Prob(σA+B) =
∑
{ξB}

Prob((σA+B − ξB)A)Prob(ξB), (4.66)

where (σA+B − ξB)A and ξB belong, respectively, to the sample space (i.e.

the set of all possible outcomes) of the random variables σA and σB .

The probability distribution for the single subsystem, e.g. the subsystem

A, is fully determined by the knowledge of the measurement outcomes and

the respective probabilities (relative frequencies). We obtain the measure-

ment outcomes (ain
m, a

fin
k ) with a certain probability pa(k,m), the joint proba-

bility for ain
m and afin

k , and this measurement outcome yields the stochastic en-

tropy production σA = σA(ain
m, a

fin
k ). Likewise, for system B we introduce the

joint probability pb(l, h) to obtain (binh , b
fin
l ), which yields σB = σB(binh , b

fin
l ).

Therefore, the probability distributions Prob(σA) and Prob(σB) are given

by

Prob(σA) =
〈
δ
[
σA − σA(ain

m, a
fin
k )
]〉

=
∑
k,m

δ
[
σA − σA(ain

m, a
fin
k )
]
pa(k,m)

(4.67)
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and

Prob(σB) =
〈
δ
[
σB − σB(binh , b

fin
l )
]〉

=
∑
l,h

δ
[
σB − σB(binh , b

fin
l )
]
pb(l, h),

(4.68)

where δ[·] is the Dirac-delta distribution. In (4.67) and (4.68), the joint

probabilities pa(k,m) and pb(l, h) readpa(k,m) = Tr
[
(Πfin

A,k ⊗ 1B)Φ(Πin
A,m ⊗ ρB,in)

]
p(ain

m)

pb(l, h) = Tr
[
(1A ⊗Πfin

B,l)Φ(ρA,in ⊗Πin
B,h)

]
p(binh ).

(4.69)

By definition, given the reconstructed probability distributions Prob(σA)

and Prob(σB), the probability Prob(σA+B) can be calculated straightfor-

wardly by calculating the convolution of Prob(σA) and Prob(σB) accord-

ing to (4.66). Equivalently, the probability distribution Prob(σA−B) of the

stochastic quantum entropy production of the composite system (containing

the correlations between the local measurement outcomes) is given by:

Prob(σA−B) =
〈
δ
[
σA−B − σA−B(cinmh, c

fin
kl )
]〉

=
∑
mh,kl

δ
[
σA−B − σA−B(cinmh, c

fin
kl )
]
pc(mh, kl), (4.70)

where

pc(mh, kl) = Tr
[
Πfin
A−B,klΦ

(
Πin
A,m ⊗Πin

B,h

)]
p(cinmh), (4.71)

with p(cinmh) = p(ain
m)p(binh ). Now, the integral quantum fluctuation theorems

for σA, σB and σA−B can be derived just by computing the characteristic

functions of the corresponding probability distributions Prob(σA), Prob(σB)

and Prob(σA−B).

4.2.5 Characteristic function

As shown in the previous sections, the characteristic function of a real-
valued random variable is given by its Fourier transform and it completely
defines the properties of the corresponding probability distribution in the
frequency domain. Thus, the characteristic function GC(λ) of the probabil-
ity distribution Prob(σC) (for C ∈ {A,B,A − B}) is defined as GC(λ) =∫

Prob(σC)eiλσCdσC , where λ ∈ C is a complex number. For the two sub-
systems, by inserting (4.67)-(4.69) and exploiting the linearity of the CPTP
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quantum maps and of the trace (see appendix C), the characteristic functions
for Prob(σA) and Prob(σB) can be written as

GA(λ) = Tr
[(

(ρA,T )−iλ ⊗ 1B

)
Φ
(

(ρA,in)1+iλ ⊗ ρB,in

)]
(4.72)

and
GB(λ) = Tr

[(
1A ⊗ (ρB,T )−iλ

)
Φ
(
ρA,in ⊗ (ρB,in)1+iλ

)]
. (4.73)

In a similar way, we can derive the characteristic function GA−B(λ) of the

stochastic entropy production of the composite system A−B:

GA−B(λ) = Tr
[
ρ−iλT Φ(ρ1+iλ

in )
]
. (4.74)

Furthermore, if we choose λ = i, the integral quantum fluctuation theorems
can be straightforwardly derived, namely for σA and σB :〈

e−σA
〉
≡ GA(i) = Tr [(ρA,T ⊗ 1B) Φ (1A ⊗ ρB,in)] (4.75)

and 〈
e−σB

〉
≡ GB(i) = Tr [(1A ⊗ ρB,T ) Φ (ρA,in ⊗ 1B)] , (4.76)

as well as 〈
e−σA−B

〉
≡ GA−B(i) = Tr [ρT Φ (1A−B)] = 1 (4.77)

for σA−B (with Φ unital).

Remark: It is worth noting observe that the characteristic functions (4.72)-

(4.74) depend exclusively on appropriate powers of the initial and final den-

sity operators of each subsystem. These density operators are diagonal in the

basis of the observable eigenvectors and can be measured by means of stan-

dard state population measurements for each value of λ. As will be shown

in the following, this result can lead to a significant reduction of the number

of measurements that is required to reconstruct the probability distribution

of the stochastic quantum entropy production, beyond the direct application

of the definition according to (4.67)-(4.69).

4.3 Reconstruction algorithm

In this section, we present a novel algorithm for the reconstruction of the

probability distribution of a generic thermodynamical quantity such as work,

internal energy or entropy. Such protocol is based on the determination of

the corresponding characteristic function, which is built over the stochastic
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realizations of the thermodynamical quantity after the second measurement

of the protocol. The characteristic functions, that are measured, are eval-

uated over a given set of (real) parameters, in order to collect an adequate

information to infer a complete statistics. In this regard, let us observe that

the principles behind this procedure can be framed within the least squares

approach to estimation theory [154].

Without loss of generality, we will introduce the algorithm to reconstruct

the probability distribution Prob(σ) of the stochastic quantum entropy pro-

duction σ. Being the procedure based on a parametric version of the integral

quantum fluctuation theorem (i.e. 〈e−ϕσ〉, with ϕ ∈ R), we introduce the

moment generating functions χC(ϕ) for C ∈ {A,B,A−B}:

〈e−ϕσC 〉 = GC(iϕ) ≡ χC(ϕ).

χC(ϕ) can be expanded into a Taylor series, so to obtain

χC(ϕ) = 〈e−ϕσC 〉 =

〈∑
k

(−ϕ)k

k!
σkC

〉
= 1− ϕ〈σC〉+

ϕ2

2
〈σ2
C〉 − . . . (4.78)

Accordingly, the statistical moments of the stochastic quantum entropy pro-

duction σC , denoted by {〈σkC〉} for k = 1, . . . , N − 1, can be expressed in

terms of the χC(ϕ)’s defined over the parameter vector ϕ ≡ [ϕ1, . . . , ϕN ]′,

i.e.


χC(ϕ1)

χC(ϕ2)
...

χC(ϕN )

 =


1 −ϕ1 +

ϕ2
1

2 . . . (−ϕ1)N−1

N−1!

1 −ϕ2 +
ϕ2

2

2 . . . (−ϕ2)N−1

N−1!
...

...
...

...
...

1 −ϕN +
ϕ2
N

2 . . . (−ϕN )N−1

N−1!


︸ ︷︷ ︸

A(ϕ)


1

〈σC〉
〈σ2
C〉
...

〈σN−1
C 〉

 , (4.79)

where the matrix A(ϕ) can be written as a Vandermonde matrix, as detailed

below. It is clear at this point that the solution to the problem of inferring

the set {〈σkC〉} can be related to the resolution of a polynomial interpolation

problem, where the experimental data-set is given by N evaluations of the

parametric integral fluctuation theorem of σC in terms of the ϕ’s. Let us

observe that only by choosing real values for the parameters ϕ is it possible

to set up the proposed reconstruction procedure via the resolution of an

interpolation problem. By construction, the dimension of the parameters
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vector ϕ is equal to the number of statistical moments of σC that we want

to infer, including the trivial zero-order moment. In this regard, we define

the vectors

m̃ ≡
(

1, −〈σC〉, . . . , (−1)N−1 〈σN−1
C 〉

N − 1!

)′
,

with element m̃j = (−1)j
〈σjC〉
j! , j = 0, . . . , N − 1, and

χ
C
≡ (χC(ϕ1), . . . , χC(ϕN ))′.

Then one has

χ
C

= V (ϕ)m̃, (4.80)

where

V (ϕ) =


1 ϕ1 ϕ2

1 . . . ϕN−1
1

1 ϕ2 ϕ2
2 . . . ϕN−1

2
...

...
...

...
...

1 ϕN ϕ2
N . . . ϕN−1

N

 (4.81)

is the Vandermonde matrix built on the parameters vector ϕ. V (ϕ) is a

matrix whose rows (or columns) have elements in geometric progression,

i.e. vij = ϕj−1
i , where vij denotes the ij− element of V (ϕ). Eq. (4.80)

constitutes the formula for the inference of the statistical moments {〈σkC〉}
by means of a finite number N of evaluations of χC(ϕ). Note that the

determinant of the Vandermonde matrix, i.e. det
[
V (ϕ)

]
, is given by the

product of the differences between all the elements of the vector ϕ, which are

counted only once with their appropriate sign. As a result, det
[
V (ϕ)

]
= 0

if and only if ϕ has at least two identical elements. Only in that case, the

inverse of V (ϕ) does not exist and the polynomial interpolation problem

cannot be longer solved. However, although the solution of a polynomial

interpolation by means of the inversion of the Vandermonde matrix exists

and is unique, V (ϕ) is an ill-conditioned matrix [127]. This means that the

matrix is highly sensitive to small variations of the set of the input data

(in our case the parameters ϕ’s), such that the condition number of the

matrix may be large and the matrix becomes singular. As a consequence,

the reconstruction procedure will be computationally inefficient, especially in

the case the measurements are affected by environmental noise. Numerically

stable solutions of a polynomial interpolation problem usually rely on the

Newton polynomials [188]. The latter allow us to write the characteristic
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function χC(ϕ) in polynomial terms as a function of each value of ϕ, which

is denoted as χpol
C (ϕ).

Then, the natural question arises on what is an optimal choice for ϕ. It

is essential, indeed, to efficiently reconstruct the set {〈σkC〉} of the statisti-

cal moments of σC . For this purpose, we can take into account the error

eC(ϕ) ≡ χC(ϕ)−χpol
C (ϕ) in solving the polynomial interpolation problem in

correspondence of a value of ϕ different from the interpolating points within

the parameter vector ϕ. The error eC(ϕ) depends on the regularity of the

function χC(ϕ), and especially on the values assumed by the parameters ϕ.

As shown in [188], the choice of the ϕ’s for which the interpolation error is

minimized is given by the real zeros of the Chebyshev polynomial of degree

N in the interval [ϕmin, ϕmax], where ϕmin and ϕmax are, respectively, the

lower and upper bound of the parameters ϕ. Accordingly, the optimal choice

for ϕ is given by

ϕk =
(ϕmin + ϕmax)

2
+
ϕmax − ϕmin

2
cos

(
2k − 1

2N
π

)
, (4.82)

with k = 1, . . . , N .

Remark: Let us observe that the value of N , i.e. the number of evaluations

of the characteristic function χC(ϕ), is equal to the number of statistical

moments of σC we want to infer. Therefore, in principle, if the probabil-

ity distribution of the stochastic quantum entropy production is a Gaussian

function, then N could be taken equal to 2.

Hence, once all the evaluations of the characteristic functions χC(ϕ) have

been collected, we can derive the statistical moments of the quantum en-

tropy production σC , and consequently reconstruct the probability distribu-

tion Prob(σC) as

Prob(σC) ≈ F−1

[
N−1∑
k=0

〈σkC〉
k!

(iµ)k

]
≡ 1

2π

∫ ∞
−∞

(
N−1∑
k=0

〈σkC〉
k!

(iµ)k

)
e−iµσCdµ,

(4.83)

where µ ∈ R and F−1[·] denotes the inverse Fourier transform [130], which is

numerically performed [12]. To do that, we fix a-priori the integration step

dµ and we vary the integration limits of the integral, in order to minimize

the error
∑
k

∣∣∣〈̃σkC〉 − 〈σkC〉∣∣∣2 between the statistical moments 〈̃σkC〉, obtained
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by measuring the characteristic functions χC(ϕ) (i.e. after the inversion of

the Vandermonde matrix), and the ones calculated from the reconstructed

probability distribution, 〈σkC〉, which we derive by numerically computing

the inverse Fourier transform for each value of σC . This procedure has to be

done separately for C ∈ {A,B,A − B}, while, as mentioned, the probabil-

ity distribution Prob(σA+B) is obtained by a convolution of Prob(σA) and

Prob(σB). Here, it is worth observing that Eq. (4.83) provides an approx-

imate expression for the probability distribution Prob(σC). Ideally, given a

generic unital quantum CPTP map modeling the dynamics of the system,

an infinite number N of statistical moment of σC is required to reconstruct

Prob(σC) if we use the inverse Fourier transform as in Eq. (4.83). While

we can always calculate the Fourier transform to reconstruct the probability

distribution from its moments, in the case of a distribution with discrete

support (as in our case), there is a different method that can lead to higher

precision, especially when the moment generating function is not approxi-

mated very well by the chosen number N of extracted moments. As a matter

of fact, each statistical moment 〈̃σkC〉, with C ∈ {A,B,A − B}, is the best

approximation of the true statistical moments of σC from the measurement

of the corresponding characteristic functions χC(ϕ). Hence, apart from a

numerical error coming from the inversion of the Vandermonde matrix A or

the use of the Newton polynomials χpol
C , we can state that

〈̃σkC〉 '
MC∑
i=1

σkC,iProb(σC,i) = σkC,1Prob(σC,1) + . . .+ σkC,MC
Prob(σC,MC

),

(4.84)

with k = 1, . . . , N . In (4.84), MC is equal to the number of values that

can be assumed by σC , while σC,i denotes the i−th possible value for the

stochastic quantum entropy production of the (sub)system C. As a result,

the probabilities Prob(σC,i), i = 1, . . . ,M , can be approximately expressed

as a function of the statistical moments
{
〈̃σkC〉

}
, i.e.


〈̃σC〉
〈̃σ2
C〉
...

〈̃σNC 〉

 =


σC,1 σC,2 . . . σC,M
σ2
C,1 σ2

C,2 . . . σ2
C,M

...
...

...
...

σNC,1 σNC,2 . . . σNC,M


︸ ︷︷ ︸

ΣC


Prob(σC,1)

Prob(σC,2)
...

Prob(σC,M )

 , (4.85)
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where ΣC ∈ RN×M . By construction ΣC is a rectangular matrix, that

is computed by starting from the knowledge of the values assumed by the

stochastic quantum entropy production σC,i. Finally, in order to obtain the

probabilities Prob(σC,i), i = 1, . . . ,MC , we have to adopt the Moore-Penrose

pseudo-inverse of ΣC , which is defined as

Σ+
C ≡ (Σ′CΣC)−1Σ′C . (4.86)

A pictorial representation of the reconstruction protocol is shown in

Fig. 4.3. Let us observe, again, that the proposed algorithm is based on the

Figure 4.3: Pictorial representation of the reconstruction algorithm. The

reconstruction algorithm starts by optimally choosing the parameters ϕ ∈
{α, β, γ} as the zeros of the Chebyshev polynomial of degree N in the in-

terval [ϕmin, ϕmax]. Then, the moment generating functions χC(ϕ), with

C ∈ {A,B,A−B}, are measured. Once the estimates 〈̃σkC〉 of the statistical

moments of σC are obtained, the inverse Fourier transform F−1[·] has to be

numerically performed. Alternatively, the Moore-Penrose pseudo-inverse of

ΣC can be adopted. As a result, an estimate Prob(σC) for the probability

distribution Prob(σC) is obtained.

expression of (4.49) for the stochastic quantum entropy production, which

has been obtained by assuming unital CPTP quantum maps for the sys-

tem dynamics. It is expected that for a general open quantum system, not

necessarily described by a unital CPTP map, one can extend the proposed re-

construction protocol, even though possibly at the price of a greater number

of measurements. Notice that, since (4.48) is no longer valid in the general

case, one has to use directly (4.45)-(4.46). However, we observe that, as

shown in [123], the ratio between the conditional probabilities may admit

for a large family of CPTP maps the form p(afin
k |ain

m)/p(ain
m|aref

k ) ≡ e−∆V ,
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where the quantity ∆V is related to the so-called non-equilibrium potential,

so that σ = σunital + V and σunital again given by (4.49).

Required number of measurements

From an operational point of view, we need to measure (directly or indirectly)

the quantities
χA(α) = Tr

[
((ρA,T )α ⊗ 1B) Φ

(
(ρA,in)1−α ⊗ ρB,in

)]
χB(β) = Tr

[(
1A ⊗ (ρB,T )β

)
Φ
(
ρA,in ⊗ (ρB,in)1−β)]

χA−B(γ) = Tr
[
(ρT )γΦ

(
(ρin)1−γ)] , (4.87)

i.e. the moment generating functions of σA, σB and σA−B , after a proper

choice of the parameters α, β and γ, with α, β, γ ∈ R. For this pur-

pose, as shown in appendix C, it is worth mentioning that (ρC,in)
1−ϕ ≡∑

m Πin
C,mp(x

in
m)1−ϕ and (ρC,T )

ϕ ≡ ∑k ΠTC,kp(x
T
k )ϕ, where C ∈ {A,B,A −

B}, x ∈ {a, b, c} and ϕ ∈ {α, β, γ}. A direct measurement of χC(ϕ), based

for example on an interferometric setting as shown in [125] for the work dis-

tribution inference, is not trivial, especially for the general fully quantum

case. For this reason, we propose a procedure, suitable for experimental

implementation, requiring a limited number of measurements, based on the

following steps:

(1) Prepare the initial product state ρin = ρA,in ⊗ ρB,in, as given in (4.56),

with fixed probabilities p(ain
m) and p(binh ). Then, after the composite

system A − B is evolved within the time interval [0, T ], measure the

occupation probabilities p(afin
k ) and p(bfin

l ) via local measurements on

A and B. Then, compute the stochastic quantum entropy productions

σA(ain
m, a

fin
k ) and σB(binh , b

fin
l ). Simultaneous measurements on A and B

yield also the probabilities p(cfin
kl ) and thus σA−B(cinmh, c

fin
kl ).

(2) For every chosen value of α, β and γ, prepare, for instance by quantum

optimal control tools [60], the quantum subsystems in the states

ρIN(α) ≡ (ρA,in)1−α ⊗ ρB,in
Tr [(ρA,in)1−α ⊗ ρB,in]

ρIN(β) ≡ ρA,in ⊗ (ρB,in)1−β

Tr [ρA,in ⊗ (ρB,in)1−β ]

ρIN(γ) ≡ (ρA,in ⊗ ρB,in)
1−γ

Tr
[
(ρA,in ⊗ ρB,in)

1−γ
]

,
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and let the system evolve.

(3) Since the characteristic function χC(ϕ), with C ∈ {A,B,A − B} and

ϕ ∈ {α, β, γ}, is given by performing a trace operation with respect

to the composite system A − B, one can write the following simplified

relation:

χC(ϕ) =
∑
k

∑
m

〈m|p(xfin
k )ϕ|k〉〈k|ρFIN(ϕ)|m〉

=
∑
m

p(xfin
m )ϕ〈m|ρFIN(ϕ)|m〉, (4.88)

where {|l〉}, l = m, k, is the orthonormal basis of the composite system

A − B, x ∈ {a, b, c} and ρFIN(ϕ) ≡ Φ[ρIN(ϕ)] (with p(xfin
m ) measured

in step 1 and ρIN(ϕ) introduced in step 2). Thus, measure the occupa-

tion probabilities 〈m|ρFIN(ϕ)|m〉 in order to obtain all the characteristic

functions χC(ϕ).

It is observed that the measure of the characteristic functions χC(ϕ) re-

lies only on the measure of occupation probabilities. Hence, the proposed

procedure does not require any tomographic measurement. Moreover, for

the three steps of the protocol we can well quantify the required number of

measurements to properly infer the statistics of the quantum entropy pro-

duction regarding the composite quantum system. The required number of

measurements, indeed, scales linearly with the number of possible measure-

ment outcomes coming from each quantum subsystem at the initial and final

stages of the protocol. Equivalently, if we define dA and dB as the dimension

of the Hilbert space concerning the quantum subsystems A and B, we can

state that the number of measurements for both of the three steps scales

linearly with dA + dB , i.e. with the number of values MA + MB that can

be assumed by σA and σB , the stochastic quantum entropy production of

the subsystems. It also scales linearly with MAMB for the reconstruction

of the stochastic quantum entropy production σA−B of the composite sys-

tem. The reason is that the described procedure is able to reconstruct the

distribution of the stochastic quantum entropy production, without directly

measuring the joint probabilities pa(k,m) and pb(l, h) for the two subsys-

tems and pc(mh, kl) for the composite system. Otherwise, the number of

required measurements would scale, respectively, as M2
A and M2

B for the

subsystems and as (MAMB)2 for the composite system in order to realize

all the combinatorics concerning the measurement outcomes.
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4.3.1 Illustrative example - Mølmer-Sørensen gate

Here, in order to illustrate our theoretical results, we discuss an experimental

implementation with trapped ions. Trapped ions have been demonstrated to

be a versatile tool for quantum simulation [80, 114], including simulation of

quantum thermodynamics [1,10,98,166,167]. The application of our protocol

on a physical example relies on the availability of experimental procedures

for state preparation and readout, as well as an entangling operation.

We consider a system of two trapped ions, whose two internal states allow

to encode the qubit states |0〉 and |1〉 of the standard computational basis.

Then, the subsystems A and B are represented by the two qubits. The latter

can interact by the common vibrational (trap) mode of the two ions, and

external lasers allow to manipulate the ion states, generating arbitrary single

qubit rotations through individual addressing or an entangling operation, as

for example the Mølmer-Sørensen gate operation [133,140,164,182]. Fig. 4.4

Figure 4.4: Pictorial representation of two trapped ions subjected to two

laser fields. The internal levels of the ions allow to encode one qubit in

each ion. The transition between these levels is driven by the lasers, where

the driving depends on the state of the common vibrational (trap) mode of

the two ions. The lasers can be focused to choose between single or global

addressing. This allows to generate local gates as well as entangling gates.
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shows a pictorial representation of the system. While usually universal state

preparation for single qubits is supposed only for pure states, here we have to

prepare mixed states. However, once we have prepared a pure state with the

right amount of population in the two levels, we can reach the required mixed

state by applying a random Z rotation leading to a complete dephasing of

the two levels, where Z is the corresponding Pauli matrix. The two-qubit

operation, that generates entanglement between A and B, is chosen to be

a partial Mølmer-Sørensen gate operation, given by the following unitary

operation, depending on the phase φ:

U(φ) = e−iφ(XA⊗XB), (4.89)

where XA and XB are equal, respectively, to the Pauli matrix X for the

quantum systems A and B. In the following (and unless explicitly stated oth-

erwise), we choose φ = π
7 , and start from the initial state ρ0 = diag

(
6
25 ,

9
25 ,

4
25 ,

6
25

)
since this choice leads to a non-Gaussian probability distribution Prob(σA−B)

of the stochastic quantum entropy production. For the sake of simplicity, we

remove the label A and B from the computational basis {|0〉, |1〉} considered

for the two subsystems. Thus, the corresponding projectors are Π0 ≡ |0〉〈0|
and Π1 ≡ |1〉〈1|, and each ion is characterized by 4 different values of the

stochastic quantum entropy production σC , with C ∈ {A,B}. As a conse-

quence, the probability distribution Prob(σA−B) of the stochastic quantum

entropy production for the composite system A−B is defined over a discrete

support given by l samples, with l ≤MAMB = 16.

Correlated measurement outcomes and correlations witness

Generally, the outcomes of the second measurement of the protocol are cor-

related, as in our example, and the stochastic quantum entropy production

of the composite system is sub-additive, i.e. 〈σA−B〉 ≤ 〈σA〉+ 〈σB〉. Hence,

by adopting the reconstruction algorithm proposed in Fig. 4.3 we are able to

effectively derive the upper bound of 〈σA−B〉, which defines the thermody-

namic irreversibility for the quantum process. In the simulations we compare

the fluctuation profile that we have derived by performing local measure-

ments on the subsystems A and B with the ones that are obtained via a

global measurement on the composite system A − B, in order to establish

the amount of information which is carried by a set of local measurements.

Furthermore, we discuss the changes of the fluctuation profile of the stochas-

tic quantum entropy production both for unitary and noisy dynamics. The
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unitary operation describing the dynamics of the quantum system is given

by (4.89), while the noisy dynamics is given by the following differential

Lindblad (Markovian) equation:

ρ̇(t) = −i [H, ρ]−
∑

C∈{A,B}

ΓC

(
{ρ, L†CLC} − 2LCρL

†
C

)
. (4.90)

In (4.90), ρ(t) denotes the density matrix describing the composite quantum

system A−B, {·, ·} is the anticommutator, ΓA and ΓB (rad/s) are dephasing

rates corresponding to LA ≡ Π0⊗1B and LB ≡ 1A⊗Π0 are pure-dephasing

Lindblad operators. The Hamiltonian of the composite system A − B in

(4.90), instead, is given by

H = ω
(
XA ⊗XB

)
,

where the interaction strength ω = φ/τ (rad/s) with τ kept fixed and chosen

equal to 50 s (leading to a largely relaxed system dynamics), consistently

with the unitary operation (4.89).

In Figs. 4.5 and 4.6, we plot the first 4 statistical moments of σA−B
and σA+B as a function of the phase φ, respectively, in case of unitary and

noisy dynamics. Moreover, we show, for a given value of φ, the probabil-

ity distributions Prob(σA−B) and Prob(σA+B) for both unitary and noisy

dynamics, compared with the corresponding reconstructed distributions ob-

tained by applying the reconstruction algorithm, which we call Prob(σA−B)

and Prob(σA+B), respectively. Let us recall that Prob(σA+B) is obtained by

performing the two local measurements with observables Ofin
A and Ofin

B in-

dependently (disregarding the correlations of their outcomes) on the subsys-

tems A, B, while the distribution Prob(σA+B) requires to measure Ofin
A and

Ofin
B simultaneously, i.e. measuring the observable Ofin

A−B , defined by (4.60).

For unitary dynamics, the statistical moments of the stochastic quantum

entropy productions σA−B and σA+B follow the oscillations of the dynamics

induced by changing the gate phase φ. Conversely, for the noisy dynam-

ics given by (4.90), with Γ = ΓA = ΓB > 0, when φ increases the system

approaches a fixed point of the dynamics. Consequently, the statistical mo-

ments of the stochastic quantum entropy production tend to the constant

values corresponding to the fixed point, and the distribution of the stochas-

tic entropy production becomes narrower. In both Figs. 4.5 and 4.6, the

first statistical moments (or mean values) 〈σA−B〉 and 〈σA+B〉 are almost

overlapping, and the sub-additivity of σA−B is confirmed by the numerical
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Figure 4.5: In the four top panels, we show the statistical moments 〈σkA−B〉
and 〈σkA+B〉, k = 1, . . . , 4, of the stochastic quantum entropy production

σA−B and σA+B as a function of φ ∈ [0, 2π], in the case where the dynamics

of the composite quantum system A−B is unitary. In the two bottom pan-

els, moreover, we plot a comparison between the samples of the probability

distributions Prob(σA−B), Prob(σA+B) (black squares) and the samples of

the corresponding reconstructed distribution (red circles). The latter nu-

merical simulations are performed by considering φ = π/7, and N is equal,

respectively, to 20 (for the fluctuation profile of σA−B) and 10.

simulations. Furthermore, quite surprisingly, also the second statistical mo-

ments of σA−B and σA+B are very similar to each other. This means that

the fluctuation profile of the stochastic entropy production σA+B is able

to well reproduce the probability distribution of σA−B in its Gaussian ap-

proximation, i.e. according to the corresponding first and second statistical

moments. In addition, we can state that the difference of the higher order

moments of 〈σA+B〉 and 〈σA−B〉 reflects the presence of correlations be-
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Figure 4.6: In the four top panels, the statistical moments 〈σkA−B〉 and

〈σkA+B〉, k = 1, . . . , 4, of the stochastic quantum entropy production σA−B
and σA+B as a function of φ ∈ [0, 2π] are shown, in the case where the dy-

namics of the composite quantum system A−B is described by a Lindblad

(Markovian) equation. In the two bottom panels, moreover, we plot a com-

parison between the samples of the probability distributions Prob(σA−B),

Prob(σA+B) (black squares) and the samples of the corresponding recon-

structed distribution (red circles). The latter numerical simulations are per-

formed by considering φ = 5π
6 , Γ = ΓA = ΓB = 0.2 rad/s, and N is equal,

respectively, to 20 (for the fluctuation profile of σA−B) and 10.

tween A and B created by the map, since for a product state σA−B = σA+B .

Therefore, the difference between the fluctuation profiles of σA−B and σA+B

constitutes a witness for classical and/or quantum correlations in the final

state of the system before the second measurement. As a consequence, if

Prob(σA−B) and Prob(σA+B) are not identical, then the final density ma-

trix ρfin is not a product state, and (classical and/or quantum) correlations
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are surely present. Notice that the converse statement is not necessarily true

because the quantum correlations can be partially or fully destroyed by the

second local measurements, while the classical ones are still preserved and

thus detectable.

Furthermore, in Fig. C.1 we show the first 4 statistical moments of σA−B
and σA+B as a function of Γ (rad/s). As before, we can observe a perfect

correspondence between the two quantities when we consider only the first

and second statistical moments of the stochastic quantum entropy produc-

tions, and, in addition, similar behaviour for the third and fourth statistical

moments.

Indeed, since the coherence terms of the density matrix describing the dy-

namics of the composite quantum system tend to zero for increasing Γ, the

number of samples of σA−B and σA+B with an almost zero probability to oc-

cur is larger, and also the corresponding probability distribution approaches

a Gaussian one, with zero mean and small variance. In accordance with

Figs. 4.5 and 4.6, this result confirms the dominance of decoherence in the

quantum system dynamics (for large enough Γ), which coincides with no

creation of correlations.

Reconstruction for unitary dynamics

Here, we show the performance of the reconstruction algorithm for the prob-

ability distribution of the stochastic quantum entropy production σA+B via

local measurements on the subsystems A and B, when the dynamics of the

quantum system is unitary. In particular, in the numerical simulations,

we take the parameters α and β of the algorithm, respectively, equal to

the real zeros of the Chebyshev polynomial of degree N in the intervals

[αmin, αmax] = [0, N ] and [βmin, βmax] = [0, N ]. This choice for the minimum

and maximum values of the parameters α and β ensures a very small nu-

merical error (about 10−4) in the evaluation of each statistical moment of

σA and σB via the inversion of the Vandermonde matrix, already for N > 2.

Indeed, since all the elements of the vectors α and β are different from each

other, i.e. αi 6= αj and βi 6= βj ∀i, j = 1, . . . , N , we can derive the sta-

tistical moments of σC , with C ∈ {A,B}, by inverting the corresponding

Vandermonde matrix. The number N of evaluations of the moment generat-

ing functions χA(α) and χB(β), instead, has been taken as a free parameter

in the numerics in order to analyze the performance of the reconstruction

algorithm. The latter may be quantified in terms of the Root Mean Square
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Figure 4.7: The statistical moments 〈σkA−B〉 and 〈σkA+B〉, k = 1, . . . , 4, of

the stochastic quantum entropy production σA−B and σA+B as a function

of Γ ∈ [0, 1.2] rad/s are shown, in the case the dynamics of the composite

quantum system A − B is described by a Lindblad (Markovian) equation,

with φ = π/7.

Error (RMSE) defined as

RMSE
(
{〈σkA+B〉}Nmax

k=1

)
≡

√√√√√√
Nmax∑
k=1

∣∣∣〈σkA+B〉 − 〈σkA+B〉
∣∣∣2

Nmax
, (4.91)

where {〈σkA+B〉} are the true statistical moments of the stochastic quan-

tum entropy production σA+B , which have been numerically computed by

directly using (4.66)-(4.68), while 〈σkA+B〉 are the reconstructed statistical
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moments after the application of the inverse Fourier transform or the Moore-

Penrose pseudo-inverse of ΣC , C ∈ {A,B}. Nmax, instead, is the largest

value of N considered for the computation of the RMSE
(
{〈σkA+B〉}

)
in the

numerical simulations (in this example Nmax = 16). Another measure for

Figure 4.8: Reconstructed statistical moments of σA, σB and σA+B as a

function of N with unitary dynamics. In the four top panels we show

the statistical moments 〈σkC〉, C = {A,B} (equal due to symmetry), and

〈σkA+B〉, k = 1, . . . , 4, of the stochastic quantum entropy production σA, σB
and σA+B as a function of N . As N increases, the reconstructed statistical

moments converge to the corresponding true value. The corresponding RM-

SEs RMSE
(
{〈σkA+B〉}

)
and RMSE ({Prob(σA+B,i)}), instead, are plotted

in the two bottom panels. All the numerical simulations in the figure are

performed by considering unitary dynamics for the composite system A−B
with φ = π/7.

the evaluation of the algorithm performance, which will be used hereafter,
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is given by the RMSE

RMSE
(
{Prob(σA+B,i)}li=1

)
≡

√√√√√√
l∑
i=1

R2
i

l
, (4.92)

where Ri ≡
∣∣∣Prob(σA+B,i)− Prob(σA+B,i)

∣∣∣ is the reconstruction deviation,

i.e. the discrepancy between the true and the reconstructed probability dis-

tribution Prob(σA+B). The RMSE ({Prob(σA+B,i)}) is computed with re-

spect to the reconstructed values Prob(σA+B,i) of the probabilities Prob(σA+B,i),

i = 1, . . . , l, for the stochastic quantum entropy production σA+B .

Fig. 4.8 shows the performance of the reconstruction algorithm as a func-

tion of N for the proposed experimental implementation with trapped ions

in case the system dynamics undergoes a unitary evolution. In particular,

we show the first 4 statistical moments of σA, σB and σA+B as a func-

tion of N . In this regard, let us observe that the statistical moments of

the stochastic quantum entropy production of the two subsystems A and B

are equal due to the symmetric structure of the composite system. As ex-

pected, when N increases, the reconstructed statistical moments converge to

the corresponding true values, and also the reconstruction deviation tends

to zero. This result is encoded in the RMSEs of (4.91)-(4.92), which be-

have as monotonically decreasing functions. Both the RMSE
(
{〈σkA+B〉}

)
and RMSE ({Prob(σA+B,i)}) sharply decrease for about N ≥ 6, implying

that the reconstructed probability distribution Prob(σA+B) overlaps with the

true distribution Prob(σA+B) with very small reconstruction deviations Ri.

Since the system of two trapped ions of this example is a small size system,

we have chosen to derive the probabilities {Prob(σA,i)} and {Prob(σB,i)},
i = 1, . . . , 4, without performing the inverse Fourier transform on the statis-

tical moments {〈̃σkC〉}, C ∈ {A,B}. Indeed, the computation of the inverse

Fourier transform, which has to be performed numerically, can be a tricky

step of the reconstruction procedure, because it can require the adoption of

numerical methods with an adaptive step-size in order to solve the numerical

integration. In this way, the only source of error in the reconstruction pro-

cedure is given by the expansion in Taylor series of the quantity χC(ϕ), with

C ∈ {A,B} and ϕ ∈ {α, β}, around ϕ = 0 as a function of a finite number of

statistical moments 〈σkC〉, k = 1, . . . , N − 1. As shown in Fig. 4.8, the choice

of the value of N is a degree of freedom of the algorithm, and it strictly de-

pends on the physical implementation of the reconstruction protocol. In the
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experimental implementation above with two trapped ions, N = 10 ensures

very good performance without making a larger number of measurements

with respect to the number of values assumed by the stochastic quantum

entropy production σA+B .

Figure 4.9: True and reconstructed statistical moments of σA, σB and σA+B

as a function of the phase φ with unitary dynamics. We show the statistical

moments 〈σkC〉, C = {A,B} (equal by symmetry), and 〈σkA+B〉, k = 1, . . . , 4,

of the stochastic quantum entropy production σA, σB and σA+B as a function

of the phase φ. All the numerical simulations are performed by considering

unitary dynamics for the composite system A − B with N = 10 and φ ∈
[0, 2π].

In Fig. 4.9, moreover, we show for N = 10 the first 4 true statistical mo-

ments of the stochastic quantum entropy productions σA and σB of the two

subsystems, as well as the correlation-free convolution σA+B as a function

of φ ∈ [0, 2π], along with the corresponding reconstructed counterpart 〈σkC〉,
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k = 1, . . . , 4, C ∈ {A,B,A + B}. As before, the reconstruction procedure

yields values very close to the true statistical moments of σA, σB and σA+B

for all values of the phase φ.

Reconstruction for noisy dynamics

Let us consider, now, that the system dynamics is affected by pure-dephasing

contributions, described via the differential Lindblad (Markovian) equation

(4.90), where the Hamiltonian of the composite system A − B is defined

as H = ω
(
XA ⊗XB

)
. Since the fixed duration τ of the transformation

has been chosen as before equal to 50 s, we choose the desired phase φ by

setting the interaction strength to ω ≡ φ/T (rad/s). Again, we evaluate

the performance of the reconstruction algorithm also as a function of the

phase φ = ωT . As shown in Fig. 4.10, when φ increases (with a fixed

value of Γ, set to 0.2) the statistical moments of σA+B (but not necessarily

the ones regarding the subsystems A and B) increase as well, since when

φ increases the system tends to a fixed point of the dynamics. Also the

reconstruction procedure turns out to be more accurate for larger values of

φ, as shown in the two bottom panels of Fig. 4.10 (for this figure we use the

Fourier transform). The reason is that when the dynamics approaches the

fixed point, the distribution of the stochastic quantum entropy production

becomes narrower and the convergence of the Fourier integral is ensured.

Finally, in Fig. 4.11 we plot the behaviour of the first three statistical

moments of σA, σB and σA+B as a function of the dephasing rate Γ = ΓA =

ΓB , with N = 10 and φ = π/7. As before, due to the symmetry of the

bipartition, the statistical moments of σA and σB are identically equal. For

increasing Γ the dephasing becomes dominant over the interaction and all

correlations between the subsystems are destroyed. As a consequence, the

stochastic quantum entropy production tends to zero as is observed in the

figure for all the investigated moments, both for the subsystems and the

composite system.

Probing irreversibility and dynamics correlations

Once the fluctuation profile of the stochastic quantum entropy production

(i.e. the corresponding probability distribution) is reconstructed, then the

irreversibility properties of the composite system transformation can be suc-

cessfully probed. The thermodynamic irreversibility is quantified by means of
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Figure 4.10: True and reconstructed statistical moments of σA, σB and σA+B

as a function of the phase φ with noisy dynamics. In the first 4 panels we

show the statistical moments 〈σkC〉, C = {A,B} (equal by symmetry), and

〈σkA+B〉, k = 1, . . . , 4, of the stochastic quantum entropy production σA, σB
and σA+B as a function of the phase φ. All the numerical simulations are

performed by considering a Lindblad (Markovian) dynamics for the com-

posite system A − B, given by (4.90), with N = 10, Γ = 0.2 rad/s, and

φ ∈ [0, 2π]. In the bottom panels of the figure, instead, we show the root

mean square errors RMSE
(
{〈σkA+B〉}

)
and RMSE ({Prob(σA+B,i)}).

the mean value 〈σA−B〉, with 〈σA−B〉 = 0 corresponding to thermodynamic

reversibility. As previously shown in Figs. 4.5, 4.6 and C.1, the mean value

〈σA−B〉 can be well approximated by 〈σA+B〉 and from (4.51) and (4.65)

we have 0 ≤ 〈σA−B〉 ≤ 〈σA+B〉. From Figs. C.1 and 4.11, thus, we can

observe that the implemented noisy transformation is more reversible with
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Figure 4.11: True and reconstructed statistical moments of σA, σB and

σA+B as a function of the dephasing rate Γ. The first 3 statistical moments

of the stochastic quantum entropy productions for A, B (equal by symme-

try) and the composite system A − B as a function of the dephasing rate

Γ = ΓA = ΓB (rad/s) are shown for the physical example of 2 trapped

ions. In particular, the statistical moments of σA+B are put beside their

reconstructed version, which have been obtained by choosing N = 10 and

φ = π/7. In the last panel, moreover, the corresponding root mean square

error RMSE
(
{〈σkA+B〉}

)
as a function of Γ is shown.

respect to the unitary one. Indeed, the statistical moments of the stochastic

quantum entropy production, as well as the corresponding mean value, go

to zero as Γ increases. Since the dynamics originating from the Lindblad

equation (4.90) admits as a fixed point the completely mixed state of the
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composite system A − B, if we increase the value of Γ then the probability

distribution of the quantum entropy production for the systems A, B and

A−B tends to a Kronecker delta around zero, leading to a more-reversible

system transformation with respect to the unitary case. For this reason,

also the numerical simulations of Fig. 4.11 have been performed by using the

inverse Fourier transform to reconstruct the probabilities {Prob(σC,i)}, with

i = 1, . . . ,MC and C ∈ {A,B}, instead of calculating the pseudo-inverse

of the matrix ΣC . As a matter of fact, as Γ increases some values of σC
approach zero and ΣC becomes singular. Let us observe that, when the dy-

namics is unitary, the performance of the reconstruction algorithm adopting

the inverse Fourier transform can be affected by a non-negligible error, as

shown by the RMSE
(
{〈σkA+B〉}

)
in the last panel of Fig. 4.11. For such case,

the adoption of the pseudo-inverse of ΣC is to be preferred. Moreover, we

expect that increasing the number of ions the thermodynamic irreversibility

becomes more and more pronounced.

In conclusion, a system transformation on a multipartite quantum sys-

tem involves stochastic quantum entropy production whenever correlations

between the subsystems of the multipartite system is first created by the dy-

namics of the composite system and then destroyed by the second measure-

ment. This result, indeed, can be easily deduced from Figs. 4.10 and 4.11,

in which, for a fixed value of Γ (Γ = 0.2) and φ (φ = π/7) respectively,

the behaviour of the statistical moments of the stochastic quantum entropy

production as a function of φ (Γ) is monotonically increasing (decreasing).

Indeed, the stronger is the interaction between the two ions, the larger is

the corresponding production of correlations between them. On the other

side, instead, the production of correlations within a multipartite system is

inhibited due to the presence of strong decoherent processes.

4.4 Conclusions and contributions

To summarize, this chapter provides the following contributions:

� We have studied the statistics of quantum-heat in a quantum system

subjected to a sequence of projective measurements of a generic ob-

servable O. At variance with previous works, we have investigated the

case when the waiting time between consecutive measurements is a ran-

dom variable. Previous works imply that when the waiting times are

predetermined the quantum-heat obeys a integral fluctuation theorem
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which reads like the Jarzynski equality where quantum-heat replaces

work. Here, we have shown that this continues to hold when the wait-

ing times are random, and this can be understood by noticing that the

corresponding quantum dynamics is unital.

� We have illustrated the theory with a two-level system, for which we

have provided the explicit expressions of the characteristic function of

quantum-heat. In particular, we have investigated both the case when

the noise in the waiting times is annealed or quenched, and have noticed

that, interestingly, in the annealed case more quantum heat is trans-

ferred by the two-level system as compared to the quenched noise case.

Accordingly, our results reflects the intuition that a greater amount

of noise in the waiting times between consecutive measurements of a

given protocol is accompanied by higher quantum-heat transfer. Fi-

nally, we have found the existence of a discontinuity in the charac-

teristic function G(u) when the protocol relies on the application of

many measurements of the Hamiltonian, i.e. m→∞ and |a|2 → 0, 1.

This means that even an infinitesimal amount of noise in the measure-

ment process will result in a finite amount of quantum-heat, also when

measurements of the Hamiltonian are performed.

� We have characterized the stochastic quantum entropy production of

an open quantum system by starting from a quantum fluctuation the-

orem (generalization of the Tasaki-Crooks theorem) based on the use

of a two-time measurement protocol. In particular, the mean value 〈σ〉
of the stochastic quantum entropy production quantifies the amount

of thermodynamic irreversibility of the system, with 〈σ〉 = 0 (〈σ〉 > 0)

corresponding to thermodynamic reversibility (irreversibility). At vari-

ance, we proved that 〈σ〉 < 0 – violating the second law of the ther-

modynamics – do not occur due to the non-negativity of the Kullback-

Leibler divergence.

� Under the hypothesis that the open quantum system (at most de-

scribed by an unital CPTP quantum map) is composed by mutually

interacting subsystems, we have investigated the stochastic quantum

entropy production both for the subsystems and for the composite sys-

tem, showing that the mean values of the entropy production for the

subsystems are sub-additive. However, their fluctuation profiles coin-

cide if the composite system is described by a product state. As a



4.4 Conclusions and contributions 209

consequence, by analyzing these fluctuation profiles one can witness

classical and quantum correlations between each subsystem.

� We have proposed a suitable algorithm for the reconstruction of the

fluctuation profiles of an arbitrary thermodynamical quantity. Without

loss of generality, we have applied the procedure to infer the statistics

of the stochastic quantum entropy production for each subsystem of

a multipartite system. The algorithm is designed over a parametric

version of the integral quantum fluctuation theorem, and provides the

first N statistical moments of the chosen thermodynamical quantity

through the inversion of a Vandermonde matrix, which encodes the

experimental evaluation of the corresponding characteristic function.

� By adopting the proposed reconstruction algorithm, we have proved

that the required number of measurements to achieve the reconstruc-

tion scales linearly with the number of the values that can be assumed

by the stochastic variable, and not quadratically as one would expect

by a direct application of the definition of the corresponding probabil-

ity distributions.

� We have observe that the fluctuation properties of the stochastic quan-

tum entropy production strongly depend on the presence of decoherent

channels between an arbitrary quantum system and the environment,

which does not necessarily have to be a thermal bath. As a conse-

quence, one could effectively determine not only the influence of the

external noise sources on the system dynamics, but also characterize

the environment structure and properties via quantum sensing proce-

dures.

� Finally, we have proposed (in the form of an illustrative example)

an experimental implementation of the reconstruction algorithm with

trapped ions for the characterization of the thermodynamic irreversibil-

ity of a given system with Hamiltonian H.
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Appendix A

Proofs of chapter 1

Closed-form solution of Problem EA
t

Let us consider the cost function (1.10). Under the assumption A1, (1.10)

can be written as the following quadratic form:

JAt = Ŷ ′t−N |tMt−N Ŷt−N |t − Ŷ ′t−N |tDt−N −D′t−N Ŷt−N |t + rt−N =

= Ŷ ′t−N |tMt−N Ŷt−N |t + 2Ŷ ′t−N |tUt−N + rt−N ,
(A.1)

where Ŷt−N |t = col(x̂t−N+i|t)
N
i=0 ∈ RnN , Dt−N = −Ut−N ∈ RnN and the

matrices Ut−N ∈ RnN , Mt−N ∈ RnN×nN are defined as

Mt−N =


P +A′QA+ ζj,1 −A′Q 0 · · · 0

−QA Q+A′QA+ ζj,2 −A′Q · · · 0
...

...
... · · ·

...

0 0 0 · · · Q+A′QA+ ζj,N


and

Ut−N =


A′QBu0 − Pxt−N − πj,1
A′QBu1 −QBu0 − πj,2

...

A′QBuN−1 −QBuN−2 − πj,N−1

A′QBuN −QBuN−1 − πj,N

 ,
with

δij,h =

{
1, if ∃j ∈ Iit : j = h

0, else
, h = 1, . . . , N,
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and

πj,h =

p∑
i=1

δij,hC
i′Riτ i, h = 1, . . . , N, ζj,k =

p∑
i=1

δij,hC
i′RiCi,

rt−N = x̄′t−NPx̄t−N +

t∑
k=t−N

u′kB
′QBuk +

p∑
i=1

hiR
iτ i

2 ∈ R,

hi = dim(Iit).

Necessary condition for the minimum of the cost function (A.1) is

∇Ŷt−N|tJ
A
t (Ŷt−N |t) = 2Mt−N Ŷt−N |t + 2Ut−N = 0, (A.2)

for any t = N,N + 1, . . . Solving (A.2) as a function of x̂t−N |t, we obtain the

optimal estimates x̂◦t−N |t, t = N,N + 1, . . . that minimize the cost function

(1.10), namely

x̂◦t−N |t =

[
1n 0 . . . 0︸ ︷︷ ︸
∈R(N−1)n×n

]
M−1
t−NDt−N , t = N,N + 1, . . . (A.3)

Choosing the weighting matrices P and Q as positive semi-definite matrices

and Ri > 0, the solution (A.3) corresponds to a global minimum, since

the Hessian matrix Mt−N of the cost function is strictly positive definite.

As a final remark, notice that there are many equivalent ways of writing

the solution of Problem EAt and the particular form presented here is a

consequence of the fact that we consider as optimization variables the state

estimates x̂t−N+i|t for i = 0, . . . , N . An alternative would be to consider

as optimization variables the state estimate x̂t−N |t at the beginning of the

observation interval together with the estimates of the process disturbance

ŵt−N+i|t = x̂t−N+i+1|t − Ax̂t−N+i|t − But−N+i for i = 0, . . . , N − 1. In

this case, each x̂t−N+i|t would be written as a function of x̂t−N |t and the

observability matrix would explicitly appear in the solution.

Proof of Proposition 1.1

For each k = t −N, . . . , t − 1, we initially introduce the constraints for the

i−th measurement equation, i = 1, . . . , p:{
Cix̂k|t < τ i + ρiV , if yik = −1

Cix̂k|t > τ i − ρiV , if yik = 1
(A.4)
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The system (A.4) is equivalent to the inequality

yik(Cix̂k|t + yikρ
i
V ) > yikτ

i. (A.5)

Observing that (yik)2 = 1, ∀k = t−N, . . . , t− 1, we obtain

yik(Cix̂k|t − τ i) + ρiV > 0, k = t−N, . . . , t− 1.

If we define φk ≡ diag(yik) ∈ Rp×p, i = 1, . . . , p, τp = col(τ i)pi=1 ∈ Rp and

ν = col(ρiV )pi=1 ∈ Rp, then we can write

φk(Cx̂k|t − τp) + ν > 0,

since φ′kφk = 1p. Moreover, introducing the matrices Φt, T and V as in

(1.17), the constraints (A.4) can be written in matrix form, namely

Φt vec
[
(CX̂t − T )′

]
< vec(V) (A.6)

where X̂t ≡
[
x̂t−N |t, . . . , x̂t|t

]′
. Observing that

vec
[
(CX̂t)

′
]
≡ (C ⊗ In)vec

(
X̂ ′t

)
, (A.7)

(A.6) is equal to (1.16), so that the proposition is proved.

Proof of Theorem 1.1

Some preliminary definitions are needed. Notice first that, while the function

ω(Cix, y)‖Cix− τ i‖ is not differentiable for Cix = τ i, for Cix 6= τ i one has

∂

∂x
ω(Cix, y)‖Cix− τ i‖ =

{
0, if y(Cix− τ i) > 0 ,

−y Ci, if y(Cix− τ i) < 0 .

}
.

Hence ω(Cix, y)‖Cix−τ i‖ is globally Lipschitz with Lipschitz constant Li =

‖Ci‖, for i = 1, . . . , p. Further, consider for each sensor i and each sliding

window Wt, the vector z̃it|t = col(Cix̂◦k|t)k∈Iit . Then, we can write

z̃it|t = Θi
tx̂
◦
t−N |t +Hi

t ũt +Di
tw̃
◦
t ,

where

ũt = col(uk)k∈[t−N,t],

w◦k|t = x̂◦k+1|t −Ax̂◦k|t −Buk,
w̃◦t = col(w◦k|t)k∈[t−N,t],



214 Proofs of chapter 1

andHi
t andDi

t are suitable matrices. Moreover, let φi be defined as supt≥N λ(Di ′

t D
i
t)

1/2.

Clearly, φi is finite since Di
t can assume only a finite number of configurations

in the estimation window.

Let us now consider the estimation error as et−N = xt−N − x̂◦t−N ; the

aim is to find a lower and an upper bound for the optimal cost

J◦t = ‖x̂◦t−N |t − xt−N‖2P +

t−1∑
k=t−N

‖x̂◦k+1|t −Ax̂◦k|t −Buk‖2Q

+

p∑
i=1

t∑
k=t−N

ω(zik, y
i
k)‖Cix̂◦k|t − τ i‖2Ri . (A.8)

to derive a bounding sequence on the norm of the estimation error.

– Upper bound on the optimal cost J◦t :

For the optimality of the cost function J◦t , we have J◦t ≤ JBt
∣∣
x̂k|t=xk, k∈Wt

and hence

J◦t 6 ‖xt−N − xt−N‖2P +

t−1∑
k=t−N

‖wk‖2Q +

p∑
i=1

t∑
k=t−N

ω(zik, y
i
k)‖zik − τ i‖2Ri .

(A.9)

The discontinuous function ω(zik, y
i
k) is non zero if and only if zik − τ i ∈

V i, i.e. if the system output is close to the i−th sensor threshold and the

measurement noise makes the sensor detection incoherent with the system

evolution. Thus, the upper bound (A.9) can be rewritten as

J◦t ≤ ‖xt−N − xt−N‖2P +Nλ(Q)ρ2
W + p(N + 1)Rρ2

V . (A.10)

– Lower bound on the optimal cost J◦t :

Let us consider a time instant k ∈ Iit and suppose, for the sake of nota-

tional simplicity, that yik = 1 and yik+1 = −1 (up-down threshold crossing).

Note that the dual case can be analysed in a similar way. Thus, in the cost
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function J◦t the following contribution is present:

ι(x̂◦k|t, x̂
◦
k+1|t) ≡ ω(zik, 1)‖Cix̂◦k|t − τ i‖2Ri + ω(zik+1,−1)‖Cix̂◦k+1|t − τ i‖2Ri

=
[
ω(zik, 1) + ω(zik,−1)

]︸ ︷︷ ︸
=1, by definition

‖Cix̂◦k|t − τ i‖2Ri + ω(zik+1,−1)‖Cix̂◦k+1|t − τ i‖2Ri

−ω(zik,−1)‖Cix̂◦k|t − τ i‖2Ri ,

where

ω(zik+1,−1)‖Cix̂◦k+1|t − τ i‖2Ri − ω(zik,−1)‖Cix̂◦k|t − τ i‖2Ri
≤ (Li)2‖(A− 1)x̂◦k|t +Buk + w◦k|t‖2.

Since x̂◦k|t ∈ X for k = t − N, . . . , t, it can be stated that each term

ι(x̂◦k|t, x̂
◦
k+1|t) has a lower bound, such that

ι(x̂◦k|t, x̂
◦
k+1|t) ≥ ‖Cix̂◦k|t−τ i‖2Ri−3(Li)2

(
‖A− I‖2ρ2

X + ‖B‖2ρ2
U + ‖w◦k|t‖2

)
.

Since k is a switching instant,

yik = hi(Cixk + vik) = 1

and

yik+1 = hi(CiAxk + CiBuk + Ciwk + vik+1) = −1,

i.e. there exists α ∈ [0, 1] such that αzik + (1− α)zik+1 = τ i, from which

τ i = Cixk + ζik,

where ζik = δik + ηik. Then,

‖Cix̂◦k|t − τ i‖2Ri = ‖Cix̂◦k|t − Cixk − ζik‖2Ri ≥
1

2
‖Cix̂◦k|t − Cixk‖2Ri − ‖ζik‖2Ri ,

where

‖ζik‖2Ri ≤ 4Ri
(
‖Ci‖2‖A− 1‖2ρ2

X + ‖Ci‖2‖B‖2ρ2
U + ‖Ci‖2ρ2

W + (ρiV )2
)
.

Summarizing the previous results, if we consider ∀i only the instants k ∈ Iit,

we obtain

J◦t ≥ ‖x̂◦t−N |t − xt−N‖2P +

p∑
i=1

∑
k∈Iit

(
‖Cix̂◦k|t − Cixk‖2Ri

)
− βt − σt,
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where

βt =

p∑
i=1

∑
k∈Iit

[
4Ri

(
‖Cj‖2‖A− 1‖2ρ2

X + ‖Ci‖2‖B‖2ρ2
U

+ ‖Ci‖2ρ2
W + (ρiV )2

)
+ 3(Li)2(‖A− 1‖2ρ2

X + ‖B‖2ρ2
U )
]

and σt =

p∑
i=1

∑
k∈Iit

3(Li)2‖w◦k|t‖2 are quantities with an upper bound. Indeed,

it can be stated that:

βt ≤ 4p(N + 1)R
(
C

2‖A− 1‖2ρ2
X + C

2‖B‖2ρ2
U + C

2
ρ2
W + ρ2

V

)
+ 3p(N + 1)L

2 (‖A− 1‖2ρ2
X + ‖B‖2ρ2

U

)
= β̆t

and

σt ≤ 3p
(

max
i
Li
)2 t−1∑

k=t−N

‖w◦k|t‖2

≤ 3pL
2

λ(Q)

[
‖x̂t−N |t − xt−N‖2P +Nλ(Q)ρ2

W + p(N + 1)Rρ2
V

]
= σ̆t.

To conclude the calculation of the lower bound, let us define z̃it ≡ col(zk)k∈Iit
and R̃i ≡ RiI|Iit| and write

ψt ≡
p∑
i=1

∑
k∈Iit

(
‖Cix̂◦k|t − Cixk‖2Ri

)
=

p∑
i=1

‖z̃it|t − z̃it‖2R̃i =

=

p∑
i=1

‖Θi
tx̂
◦
t−N |t +Hi

t ũt +Di
tw̃
◦
t −Θi

txt−N −Hi
t ũt −Di

tw̃t − ṽit‖2R̃i ,

with w̃t ≡ col(wk)k∈[t−N,t] and ṽit ≡ col(vik)k∈Iit . Hence,

ψt ≥
p∑
i=1

(
1

4
‖Θi

t(x̂
◦
t−N |t − xt−N )‖2

R̃i
− ‖Di

tw̃
◦
t ‖2R̃i − ‖D

i
tw̃t‖2R̃i − ‖ṽ

i
t‖2R̃i

)
≥ 1

4
‖Θt(x̂

◦
t−N |t − xt−N )‖2

R̃
− µ̆t,
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where

µt =

p∑
i=1

Ri
[
‖Di

t‖2
(
‖w̃◦t ‖2 + ρ2

W

)
+ (ρiV )2

]
≤ pR

[
φ

2

λ(Q)

(
‖xt−N − xt−N‖2P +Nλ(Q)ρ2

W + p(N + 1)Rρ2
V

)
+ φ

2
ρ2
W + ρ2

V

]
= µ̆t,

i.e.

ψt ≥
δ2R

4λ(P )
‖x̂◦t−N |t − xt−N‖2P − µ̆t =

δ2R

4λ(P )
‖et−N‖2P − µ̆t.

In conclusion

J◦t ≥ ‖x̂◦t−N |t − xt−N‖2P +
δ2R

4λ(P )
‖et−N‖2P − β̆t − σ̆t − µ̆t. (A.11)

Now we can exploit the bounds on the optimal cost J◦t in order to obtain a

bounding sequence on the norm of the estimation error. More specifically,

combining (A.10) and (A.11), we derive the following inequality:

‖x̂◦t−N |t − xt−N‖2P +
δ2R

4λ(P )
‖et−N‖2P ≤ β̆t + σ̆t + µ̆t

+‖xt−N − xt−N‖2P +Nλ(Q)ρ2
W + p(N + 1)Rρ2

V . (A.12)

But, noting that

‖x̂◦t−N |t − xt−N‖2P ≥
1

2
‖et−N‖2P − ‖xt−N − xt−N‖2P

and

xt−N − xt−N = Aet−N−1 + wt−N−1,

namely

‖xt−N − xt−N‖2P ≤ 2
(
‖A‖2P ‖et−N−1‖2P + λ(P )ρ2

W

)
,

inequality (A.12) can be rewritten as

‖et−N‖2P ≤ a1‖et−N−1‖2P + a2,
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where the coefficients a1 and a2 are defined as in formula (1.21) and

d1 = 2pφ
2
, d2 = 3L

2
φ̄−2,

c1 = c2 = p(N + 1)
(

4R C
2

+ 3L
2
)
,

c3 = b1 +Nλ(Q)

(
b1

2λ(P )
− 1

)
+ pR

[
4(N + 1)C

2
+ φ

2
]
,

c4 = p(N + 1)R

(
b1

2λ(P )
− 1

)
+ pR(4N + 5).

Since a2 is a positive scalar, if we further impose that a1 < 1, the asymptotic

upper bound e◦∞ can be easily derived, in that

‖et‖2P < at1‖e0‖2P + a2

t−1∑
j=0

aj1,

which tends to a2/(1− a1) as t→∞.

Proof of Proposition 1.2

Notice first that the stability condition a1 < 1 can be rewritten as

λ(P )

λ(P )

[
4 +

d1

λ(Q)

(
d2 +R

)]
‖A‖2 ≤

(
1

2
+

δ2R

4λ(P )

)
.

By letting P = εP , with P any positive definite matrix, the above inequality

becomes

λ(P )

λ(P )

[
4 +

d1

λ(Q)

(
d2 +R

)]
‖A‖2 ≤

(
1

2
+

δ2R

4 ε λ(P )

)
.

It can be seen that the left-hand side of such an inequality does not depend

on ε, whereas the right-hand side goes to infinity as ε goes to 0, provided

that δ2 > 0. Hence, when δ2 > 0, it is always possible to ensure that the

stability condition a1 < 1 holds by taking any Q, Ri, i = 1, . . . , p, P , and

then choosing ε suitably small.

Proof of Proposition 1.3

If assumption A3 holds, the dynamical system is linear and the noise are

distributed as a Gaussian probability density function, then the cost function
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(1.40) is convex if and only if F i(τ i−Cixt) and Φi(τ i−Cixt) are log-concave

functions, ∀i = 1, . . . , p.

A function f : Rn → R is log-concave if f(x) > 0 for all x in its domain

and ln f(x) is concave [28], namely

∇2ln f(x) =
1

f2(x)

[
∂2f(x)

∂x2
f(x)−

(
∂f(x)

∂x

)′(
∂f(x)

∂x

)]
< 0. (A.13)

Now, let us consider the CDF Φi(τ i−Cixt) and its complementary function

F i(τ i−Cixt), that are positive functions for all χit ≡ τ i−Cixt, i = 1, . . . , p.

From the fundamental theorem of calculus, namely

∂

∂x

(∫ a(x)

b(x)

f(x)dx

)
= f(a(x))

∂a(x)

∂x
− f(b(x))

∂b(x)

∂x
, (A.14)

where a(x) and b(x) are arbitrary functions of x, the first and the second

derivatives of the function F i(τ i−Cixt) with respect to xt are, respectively,

equal to
∂F i(τ i − Cixt)

∂xt
=

Ci√
2πri

exp

(
− (τ i − Cixt)2

2ri

)
(A.15)

and

∂2F i(τ i − Cixt)
∂x2

t

=
(Ci)′Ci

ri
√

2πri
(τ i − Cixt) exp

(
− (τ i − Cixt)2

2ri

)
. (A.16)

If τ i−Cixt ≤ 0, then ∂2F i(τ i−Cixt)
∂x2
t

≤ 0. Hence ∂2F i

∂x2 F
i ≤ 0 and, from (A.13),

it follows that the Q-function F i is log-concave. Conversely, if τ i−Cixt > 0,

the log-concavity of F i depends on the sign of the term

∂2F (i)

∂x2
F i −

(
∂F i

∂x

)′(
∂F i

∂x

)
=

(Ci)′Ci

2πri
exp

(
− (τ i − Cixt)2

2ri

)
×
[
τ i − Cixt

ri

(∫ ∞
τ i−Cixt

exp

(
− u

2

2ri

)
du

)
− exp

(
− (τ i − Cixt)2

2ri

)]
.

(A.17)

From the convexity properties of the function f(x) = x2/2, it can be easily

verified for any variable s, k that s2/2 ≥ −k2/2+sk, and hence exp
(
−s2/2

)
≤

exp
(
−sk + k2/2

)
(see e.g. [28]). Then, if k > 0, it holds that

∫ ∞
k

exp

(
−s

2

2

)
ds ≤

∫ ∞
k

exp

(
−sk +

k2

2

)
ds =

exp
(
−k2

2

)
k

. (A.18)
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Since τ i −Cixt > 0, with a simple change of variable, it can be stated that

τ i − Cixt
ri

(∫ ∞
τ i−Cixt

exp

(
− u

2

2ri

)
du

)
≤ exp

(
− (τ i − Cixt)2

2ri

)
, (A.19)

proving, as a consequence, the log-concavity of the Q-function F i(τ i−Cixt).
By using the complement rule, the cumulative distribution function can

be written as

Φi(τ i − Cixt) = 1− F i(τ i − Cixt) ≥ 0 (A.20)

and
∂2Φi(τ i − Cixt)

∂x2
t

= −∂
2F i(τ i − Cixt)

∂x2
t

. (A.21)

If τ i − Cixt > 0, then ∂2Φi

∂x2 Φi < 0 such that Φi is log-concave. In the

remaining case, i.e. τ i − Cixt ≤ 0, noting that

Φi =
1√

2πri

∫ τ i−Ci(xt)

−∞
exp

(
− u

2

2ri

)
du =

1√
2πri

∫ ∞
−(τ i−Cixt)

exp

(
− u

2

2ri

)
du,

(A.22)

it can be observed that the sign of the term

∂2Φi

∂x2 Φi −
(
∂Φi

∂x

)′ (
∂Φi

∂x

)
= (Ci)′Ci

2πri
exp

(
− (τ i−Cixt)2

2ri

)
×
[
−(τ i−Cixt)

ri

(∫ ∞
−(τ i−Cixt)

e
− u2

2ri du

)
− exp

(
− (τ i−Cixt)2

2ri

)]

is negative, thus proving the log-concavity of the CDF Φi(τ i−Cixt) and the

convexity of the whole cost function.
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Proofs of chapter 3

Log-survival-probability distribution

Here, we derive the distribution of the log-survival-probability, as given by

(3.23) in chapter 3. From the constraints (3.22), we get

m ln q
(
τ (d)

)
− L =

d−1∑
k=1

ñkλ
(
µ(α)

)
, (B.1)

with

λ(τ (k)) ≡ ln q(τ (d))− ln q(τ (k)). (B.2)

Eq. (B.1) is solved with

ñα =
m ln q

(
τ (d)

)
− L

(d− 1)λ
(
τ (k)

) ; k = 1, 2, . . . , d− 1, (B.3)

while ñd is given by

ñd = m−
d−1∑
k=1

ñk. (B.4)
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Then, (3.21) gives

Prob(L)

= exp

(
lnm!−

d∑
k=1

ln ñk! +

d∑
k=1

ñk ln p(k)

)

≈ exp

(
m lnm−m−

d∑
k=1

ñk ln ñk +

d∑
k=1

ñk +

d∑
k=1

ñk ln p(k)

)

= exp

m lnm−m
d−1∑
k=1

ln q
(
τ (d)

)
− L

m

(d− 1)λ (τ (k))
ln

m ln q
(
τ (d)

)
− L

m

(d− 1)λ (τ (k))


−m

1−
d−1∑
k=1

ln q
(
τ (d)

)
− L

m

(d− 1)λ (τ (k))

 ln

m
1−

d−1∑
k=1

ln q
(
τ (d)

)
− L

m

(d− 1)λ (τ (k))


+m

d−1∑
k=1

ln q
(
τ (d)

)
− L

m

(d− 1)λ (τ (k))
ln p(k) +m

1−
d−1∑
k=1

ln q
(
τ (d)

)
− L

m

(d− 1)λ (τ (k))

 ln

(
1−

d−1∑
k=1

p(k)

)
≈ e−mI( Lm ), (B.5)

where, in the second step, we have used the Stirling’s approximation, while

in the third step (B.3) and (B.4) have been used. Being, from (B.5),

I (ξ) =

d∑
k=1

f(τ (k)) ln

(
f(τ (k))

p(k)

)
, (B.6)

f(τ (k)) =
ln q(τ (d))− ξ
(d− 1)λ(τ (k))

; k = 1, . . . , (d− 1), (B.7)

f(τ (d)) = 1−
d−1∑
k=1

f(τ (k)), (B.8)

the distribution of the log-survival-probability, as given by (3.23), has been

derived.

Most probable value of the log-survival-probability

Here, we provide more details on the derivation of (3.27). From (3.24),

the condition ∂I (L/m) /∂ ln q(τ (k))|L=L? = 0 gives for k = 1, . . . , d − 1 the

relation

p(d)f(τ (k)) = p(k)

(
1−

d−1∑
k=1

f(τ (k))

)
. (B.9)
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Summing both sides over k = 1, 2, . . . , d− 1, we get

p(d)
d−1∑
k=1

f(τ (k)) =

(
1−

d−1∑
k=1

f(τ (k))

)
d−1∑
k=1

p(k), (B.10)

which, by using
∑d
k=1 p

(k) = 1, gives

d−1∑
k=1

f(τ (k)) =

d−1∑
k=1

p(k). (B.11)

Using the above equation, and combining (B.7) and (B.9), one has

(
ln q(τ (d))− L

?

m

)
= (d− 1)

(
1−

d−1∑
k=1

p(k)

)
p(d)

p(k)λ(τ (k)), (B.12)

i.e.

L?
m

= ln q(τ (d))−
(

1−
d−1∑
k=1

p(k)

)(
d−1∑
k=1

λ(τ (k))
p(k)

p(d)

)
, (B.13)

which yields, finally, to the expression for the most probable value of the

log-survival-probability, i.e.

L? = m

d∑
k=1

p(k) ln q(τ (k)). (B.14)

LD form for the joint probability distribution

Prob(L, T )
To derive (3.39), we use (3.36) and (3.38) to get

d∑
k=1

ñkτ
(k) = mτ, (B.15)

which, by rewriting

d∑
k=1

ñk = m as

(
m−

d−1∑
k=1

ñk

)
τ (d) +

d−1∑
k=1

ñkτ
(k) = mτ, (B.16)
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leads to

m =

d−1∑
k=1

ñk

(
τ (d) − τ (k)

)
(τ (d) − τ)

. (B.17)

Then, from equation

d∑
k=1

ñk ln q(τ (k)) = L, one obtain (similarly to the deriva-

tion of (B.3))

ñk =
m ln q

(
τ (d)

)
− L

(d− 1)λ
(
τ (k)

) ; k = 1, 2, . . . , d− 1, (B.18)

while ñd is

ñd = m−
d−1∑
k=1

ñk. (B.19)

Combining (B.17) and (B.18), and noting that m 6= 0, we get

d−1∑
k=1

(
ln q

(
τ (d)

)
− L/m

)
(τ (d) − τ (k))

(d− 1)λ
(
τ (k)

)
(τ (d) − τ)

= 1, (B.20)

which is satisfied with(
ln q(τ (d))− L/m

)
(τ (d) − τ (k)) = (d− 1)λ(τ (k))(τ (d) − τ). (B.21)

∀ k = 1, . . . , (d− 1). Hence, from (B.18), we get for k = 1, 2, . . . , d− 1 that

ñk =
τ (d)(m ln q

(
τ (d)

)
− L)

(d− 1)λ
(
τ (k)

)
(τ (d) − τ + τ)

=
τ (d)(m ln q

(
τ (d)

)
− L)(

ln q
(
τ (d)

)
− L/m

)
(τ (d) − τ (k)) + (T /m)(d− 1)λ

(
τ (k)

) .
(B.22)

Using the last expression, and proceeding in a way similar to Appendix B,

we get

Prob(L, T ) ≈ exp
(
−mI

( L
m
,
T
m

))
, (B.23)

where the expressions of I (ξ, y), g(τ (k)) and g(τ (d)) are given by (3.40), (3.41)

and (3.42) in chapter 3.
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Normalized discrepancy D in the Zeno regime

Here, we show that the normalized discrepancy

D ≡ Pa − Pg
Pa

= 1− e−∆q(τ,m)

≈ ∆q(τ,m) = ln〈q(τ)m〉 − 〈ln q(τ)m〉 (B.24)

is not vanishing only at the fourth order in τ . To this end, let us consider

the series expansion of qm and its logarithm up to fourth order, namely

qm = 1−m∆2Hτ2 +
m

12

[
γH + 3(2m− 1)(∆2H)2

]
τ4 +O(τ6) (B.25)

and

ln qm = −m∆2Hτ2 +
m

12

[
γH − 3(∆2H)2

]
τ4 +O(τ6). (B.26)

In (B.25) and (B.26)

γH ≡ H4 − 4H3H + 6H2H
2 − 3H

4
(B.27)

is the kurtosis of the system Hamiltonian. As a result, under this fourth

order approximation, ∆q(τ,m) ≈ D is identically equal to

∆q ≈ m∆2H〈τ2〉 − m

12

[
γH − 3(∆2H)2

]
〈τ4〉

+ ln
[
1−m∆2H〈τ2〉+

m

12

[
γH + 3(2m− 1)(∆2H)2

]
〈τ4〉

]
≈ m2

2
(∆2H)2〈τ4〉 − m2

2
(∆2H)2〈τ2〉2

=
m2

2
(∆2H)2

(
〈τ4〉 − 〈τ2〉2

)
, (B.28)

where 〈τ2〉 ≡
∫
τ
dτp(τ)τ2 and 〈τ4〉 ≡

∫
τ
dτp(τ)τ4.

Derivation of Prob(P) for a bimodal p(τ)

We analytically derive the expression for Prob(P) when the probability den-

sity function p(τ) is bimodal, with values τ (1) and τ (2) and probabilities p1

and p2 = 1 − p1. To this end, let us write the survival probability P({τj})
as

P = q(τ (1))k(P)q(τ (2))m−k(P), (B.29)
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where k(P) is the frequency of the event τ (1). By taking the logarithm of P
and resolving for k(P), one has

k(P) =
lnP −m ln q(τ (2))

ln q(τ (1))− ln q(τ (2))
. (B.30)

Moreover, being the frequency k(P) binomially distributed, it can be stated

that

Prob(k(P)) =
m!

k(P)!(m− k(P))!
p
k(P)
1 p

m−k(P)
2 . (B.31)

Then, assuming that for each value of k(P) there exists a single solution

P of (B.30), Prob(P) is univocally determined from Prob(k(P)). Since by

using the Stirling approximation the binomial distribution Prob(k(P)) is

approximately equal (for m sufficiently large) to a Gaussian distribution, we

get

Prob(P) ≈ 1√
2πmp1p2

exp

(
− (k(P)−mp1)2

2mp1p2

)
. (B.32)

Fisher information operator in terms of the sta-

tistical moments of p(τ)

Here, we show how to transform the Fisher Information Operator (FIO)

F (p) = m2 P?
1− P? | ln q〉〈ln q| (B.33)

into the corresponding Fisher Information Matrix (FIM) expressed in terms

of the statistical moments of the probability density function p(τ), defined

as

〈τk〉 ≡
∫
τ

dτp(τ)τk. (B.34)

To this end, let us express the FIO (B.33) in the the generic basis {|fi〉}. We

get the following relation:

Fij = m2 P?
1− P? 〈fi| ln q〉〈ln q|fj〉. (B.35)

Then, by introducing the basis functions

fk(τ) = 2
(−1)k

k!

∂kδ(τ)

∂τk
, (B.36)
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with δ(·) equal to the Dirac-delta distribution, we can express the FIO in

terms of the statistical moments 〈τk〉’s. Indeed, a small change of the prob-

ability density function p(τ) in the direction of fk(τ) will only change its

k−th moment 〈τk〉, but not affect the other moments. Now, by means of a

Taylor expansion around zero, we can write ln(q(τ)) as

ln(q(τ)) =

∞∑
k=1

∂k ln(q(τ))

∂τk

∣∣∣∣
τ=0

τk

k!
, (B.37)

and, by defining

βk ≡
∂k ln(q(τ))

∂τk

∣∣∣∣
τ=0

, (B.38)

we obtain

P? = exp

(
m

∞∑
k=1

βk〈τk〉
k!

)
, (B.39)

as well as

〈fi| ln q〉 =
βi
i!
. (B.40)

This means that βi/i! is the effect of the system dynamics ln(q(τ)) in the

direction of the basis function |fi〉. In conclusion, the resulting FIM given

by representing the FIO in the basis (B.36) is equal to

F̃ij = m2 P?
(1− P?)

βiβj
i!j!

. (B.41)

It is worth noting that, since

∂P?
∂〈τh〉 = mP? βh

h!
, (B.42)

(B.41) is compatible with the standard definition of the FIM, i.e.

F̃ij =
1

P?(1− P?)
∂P?
∂〈τ i〉

∂P?
∂〈τ j〉 . (B.43)

Finally, as observed for the FIO, also the rank of the FIM is equal to one.

Indeed, the determinant of a generic 2× 2 minor of the Fisher matrix F̃ij is

equal to 0: (
m2 P?

(1− P?)

)2
∣∣∣∣∣
βiβj
i!j!

βiβj+1

i!(j+1)!
βi+1βj
(i+1)!j!

βi+1βj+1

(i+1)!(j+1)!

∣∣∣∣∣ = 0. (B.44)
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Proof of Theorem 3.1

To prove Theorem 3.1, let us consider the survival probability’s most prob-

able value

P? = exp

(
m

∫
τ

dτp(τ) ln(q(τ))

)
. (B.45)

Then, if we perform a Taylor expansion of ln q(τ) as a function of the time

intervals, then we can write

P? = exp

(
m

∞∑
k=1

αk
k!

∫
τ

dτp(τ)τk

)

= exp

m h/2∑
k=1

α2k

2k!

∫
τ

dτp(τ)τ2k +Rh(ξ)

 , (B.46)

where

αk ≡
∂k ln(q(τ))

∂τk

∣∣∣∣
τ=0

(B.47)

and Rh(ξ) is the remainder of the Taylor expansion of ln(q(τ)) up to the

h−th order, with ξ ∈ [0, µ] real number. For odd k, due to the symmetry

of q(τ), we find αk = 0. Thus h is assumed to be an even number greater

than zero. For h = 2, namely by considering a second order approximation

of the Taylor expansion (only the first term of the summation in (B.46) is

considered), the survival probability’s most probable value is equal to

P? = exp
(
m
α2

2
(1 + κ)τ2

)
exp (m〈R2(ξ)〉) , (B.48)

where

α2 = −2∆2
ρ0
HΠ (B.49)

and

κ ≡ ∆2τ

τ2 . (B.50)

Note that τ and ∆2τ are, respectively, the expectation value and the variance

of the probability density function p(τ), while the 2nd order remainder of

the Taylor expansion in the Lagrange form is

R2(ξ) ≡ ∂3 ln(q(τ))

∂τ3

∣∣
τ=ξ

τ3

6
, (B.51)
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where ∣∣∣∣16 ∂3 ln(q(τ))

∂τ3

∣∣
τ=ξ

∣∣∣∣ ≤ C (B.52)

for some positive constant C depending on the form of the specific system

Hamiltonian H and the initial state ρ0. Hence

〈R2(ξ)〉 ≡
∫
τ

dτp(τ)R2(ξ) (B.53)

is bounded by Cτ3 and, if ∫
τ

dτp(τ)τ3 � 1

mC
, (B.54)

then the term 〈R2(ξ)〉 is negligible. Accordingly, we can now approximate

the survival probability as

P? ≈ exp
(
−m∆2

ρ0
HΠ(1 + κ)τ2

)
. (B.55)

(B.55) generalizes the expression for the probability that the quantum system

belongs to the measurement subspace after m random projective measure-

ments beyond the standard Zeno regime. We denote the inequality in (B.54)

as the weak Zeno limit, while the condition

m∆2Hρ0
(1 + κ)τ2 � 1 (B.56)

is the strong Zeno limit, which leads to

P? ≈ 1−m∆2
ρ0
HΠ(1 + κ)τ2. (B.57)

Time-continuous stochastic Schrödinger equa-

tion

Let us consider an arbitrary quantum system that is coupled to a bath, whose

effects on the system are encoded in the time fluctuating classical field Ω(t).

Thus, the corresponding Hamiltonian is given by

Htot(t) = H0 + Ω(t)Hnoise, (B.58)

where H0 is the coherent part of the Hamiltonian, while Hnoise describes the

coupling of the environment with the system. Then, the system dynamics is

governed by following stochastic Schrödinger equation:

ρ̇ = −i[Htot(t), ρ] = −i[H0, ρ]− iΩ(t)[Hnoise, ρ]. (B.59)
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The integral form of the initial value problem states that

ρ(t) = ρ(0)− i
∫ t

0

[Htot(t
′), ρ(t′)]dt′, (B.60)

so that

ρ̇(t) = −i
[
Htot(t),

(
ρ(0)− i

∫ t

0

[Htot(t
′), ρ(t′)]dt′

)]
. (B.61)

The random field Ω(t) is sampled from the probability density function p(Ω),

such that

〈Ω(t)〉 ≡
∫

Ω

p(Ω)ΩdΩ, (B.62)

denotes its expectation value and

〈Ω(t)Ω′(t′)〉 =

∫
Ω

∫
Ω′
p(Ω)p(Ω′)ΩΩ′dΩdΩ′ (B.63)

is the corresponding second-order time correlation function. Now, if we

average (B.61) over the realizations of the noise term, we get

〈ρ̇(t)〉 =

∫
Ω

∫
Ω′
p(Ω)p(Ω′)ρ̇(t)dΩdΩ′

= −i
[(
H0(t) +

∫
Ω

p(Ω)ΩHnoisedΩ

)
,(

ρ(0)− i
∫ t

0

[(H0(t′) +

∫
Ω′
p(Ω′)Ω′HnoisedΩ′), 〈ρ(t′)〉]dt′

)]
,

(B.64)

and by using (B.60), the general expression for 〈ρ̇(t)〉 can be straightfor-
wardly obtained:

〈ρ̇(t)〉 = −i
[(
H0 + 〈Ω(t)Hnoise〉Ω(t)

)
,

(
ρ(t)− i

∫ t

0

[
〈Ω(t′)Hnoise〉Ω(t′), ρ(t′)

]
dt′
)]

,

(B.65)

where 〈ξ(t)X〉ξ(t) is equal to
∫
ξ
dξp(ξ)ξX. Note that[

〈Ω(t)Hnoise〉Ω(t),−i
∫ t

0

[
〈Ω(t′)Hnoise〉Ω(t′), ρ(t′)

]
dt′
]
≡

−i
[
Hnoise,

∫ t

0

∫
Ω

∫
Ω′
p(Ω)p(Ω′)ΩΩ′dΩdΩ′

[
Hnoise, ρ(t′)

]
dt′
]
. (B.66)
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Hence, if we separate the contributions of the coherent term and the noise

term, we get

〈ρ̇(t)〉 = −i [H0 + 〈Ω〉Hnoise, ρ(t)]

−
[
Hnoise,

∫ t

0

∫
ω

∫
ω′
dωdω′dt′p(ω)p(ω′)ωω′

[
Hnoise, ρ(t′)

]]
= −i [H0 + 〈Ω〉Hnoise, ρ(t)]−

[
Hnoise,

[
Hnoise,

∫ t

0

dt′
〈
ω(t)ω(t′)

〉
ρ(t′)

]]
= −i [H0 + 〈Ω〉Hnoise, ρ(t)]−

∫ t

0

dt′〈ω(t)ω(t′)〉[Hnoise, [Hnoise, ρ(t′)]],

(B.67)

being assumed that Ω(t) = 〈Ω〉 + ω(t), ω(t) is the fluctuating part of Ω(t)

with vanishing expectation value.
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Appendix C

Proofs of chapter 4

Derivation of the characteristic function G(u)

Here, we derive the expression for the characteristic function

G(u) =

∫
P (Qq)e

iuQqdQq (C.1)

by taking into account, respectively, quenched and annealed disorder for

the waiting times between measurements. In Eq. (C.1) the quantum-heat

probability distribution is defined as

P (Qq) =
∑
n,l

δ(Qq − El + En)pl|n pn, (C.2)

where pl|n is the transition probability to get the final energy El conditioned

to have measured En after the first energy measurement.

Quenched disorder

Plugging the expression of the joint distribution

p(~τ) = p(τ1)

m∏
i=2

δ(τi − τ1) (C.3)

into Eq. (4.7) in the main text, we obtain for the transition probability pl|n
the expression

pl|n =
∑
~k

∫
dτp(τ)Tr

[
ΠlV(~k, τ)ΠnV†(~k, τ)Πl

]
, (C.4)
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where V(~k, τ) = ΠkmU(τ) · · ·Πk1U(τ). Accordingly, the corresponding quantum-

heat probability distribution is equal to

P (Qq) =

∫ ∑
n,~k,l

Tr
[
ΠmV(~k, τ)ΠnV†(~k, τ)Πl

]
pnp(τ)dτ, (C.5)

so that the characteristic function G(u) reads

G(u) =

∫ ∑
n,~k,l

〈El| V(~k, τ) |En〉 〈En| V†(~k, τ) |El〉 eiu(El−En)pnp(τ)dτ,

(C.6)

where we used the relation

Tr
[
ΠlVΠnV†Πl

]
= 〈Em| V |En〉 〈En| V† |El〉 . (C.7)

Finally, using {
eiuEl |El〉 = eiuH |El〉
〈En| e−iuEn = 〈En| e−iuH

, (C.8)

we obtain

G(u) =
∑
~k

∫ ∑
n,l

〈El| V |En〉 〈En| ρ0 |En〉 〈En| e−iuHV†eiuH |El〉 p(τ)dτ

=
∑
~k

∫
Tr
[
Ve−iuHρ0V†eiuH

]
p(τ)dτ, (C.9)

i.e. Eq. (4.12) in the main text for the quenched disorder case.

Annealed disorder

In case the stochasticity between consecutive projective measurements is

distributed as an annealed disorder, the joint distribution of the waiting

times is

p(~τ) =

m∏
j=1

p(τj), (C.10)

so that the transition probability pl|n is equal to

pl|n =
∑
~k

∫
dm~τp(~τ)Tr

[
ΠlV(~k, ~τ)ΠnV†(~k, ~τ)Πl

]
. (C.11)
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The latter corresponds to a multiple integral defined over the waiting times

~τ , where V(~k, ~τ) = ΠkmU(τm) · · ·Πk1
U(τ1). As a result, the quantum-heat

probability distribution P (Qq) and the corresponding characteristic function

G(u) can be written, respectively, as

P (Qq) =
∑
~k

∫ ∑
n,l

Tr
[
ΠlV(~k, ~τ)ΠnV†(~k, ~τ)Πl

]
pnp(~τ)dm~τ (C.12)

and

G(u) =
∑
~k

∫ ∑
n,l

〈El| V |En〉 〈En| ρ0 |En〉 〈En| e−iuHV†eiuH |El〉 p(~τ)dm~τ .

(C.13)

Accordingly, by using again the relations of Eq. (C.8), we can derive the

expression of G(u), i.e.

G(u) =
〈

Tr
[
eiuHV(~k, ~τ)e−iuHρ0V†(~k, ~τ)

]〉
, (C.14)

i.e. Eq. (4.12) in the main text, where the angular bracket denote quantum-

mechanical expectation, while the overline stands for the average over the

noise realizations.

Fluctuation relation

To derive G(iβT ) = 1, let us substitute the initial thermal state ρ0 =

e−βTH/Z and u = iβT in the characteristic function of Eq. (C.14). We

get

G(iβT ) =

〈
Tr

[
e−βTHV(~k, ~τ)eβH

e−βTH

Z
V†(~k, ~τ)

]〉

= Tr

e−βTH
Z

∑
~k

V(~k, ~τ)V†(~k, ~τ)

 =
Tr [e−βTH ]

Z
= 1,

(C.15)

where we have exploited the unitality of the system dynamics, i.e.
∑
~k V(~k, ~τ)V†(~k, ~τ) =

I, and the normalisation
∫
dm~τp(~τ) = 1.
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Analytical G(u) for a two-level system

Fixed waiting times sequence

Let us consider a sequence of projective measurements applied to a n−level

quantum system at fixed waiting times; we denote with τ the (fixed) time

between consecutive measurements. Then, the characteristic function of the

quantum-heat is given by Eq. (4.13), which can be rewritten as:

G(u) = f(u)Lm−1g(u). (C.16)

For a two-level system an explicit expression for G(u) can be derived. To this

end, we assume, without loss of generality, that the system energy values E±
are equal to ±E and, then, we make use of the energy eigenvalue equation,

i.e. H|E±〉 = E±|E±〉, so as to obtain

f(u)′ =

(〈α1|eiuH |α1〉
〈α2|eiuH |α2〉

)
=

(|a|2eiuE + |b|2e−iuE
|a|2e−iuE + |b|2eiuE

)
, (C.17)

where {|αj〉}, j = 1, 2, is the basis, defining the projective measurements of

the protocol. As shown in the main text, the elements of the basis {|αj〉} are

chosen as linear combinations of the energy eigenstates |E±〉 (see Eq. (4.22)).

Instead, the transition matrix L turns out to be

L =

(∣∣|a|2e−iEt + |b|2eiEt
∣∣2 ∣∣a∗be−iEt − ab∗eiEt∣∣2∣∣b∗ae−iEt − ba∗eiEt∣∣2 ∣∣|b|2e−iEt + |a|2eiEt

∣∣2
)

=

(
1− ν ν

ν 1− ν

)
,

(C.18)

where

ν ≡ 2|a|2|b|2 sin2(τ∆E), (C.19)

and ∆E ≡ (E+−E−) = 2E. Then, by using the decomposition of the initial

density matrix ρ0 in the energy basis - Eq. (4.21)) - and again Eq. (4.22), it

holds that

g(u) =

(〈α1|e−iuHρ0|α1〉
〈α2|e−iuHρ0|α2〉

)
=

(|a|2c1e−iuE + |b|2c2eiuE
|a|2c2eiuE + |b|2c1e−iuE

)
. (C.20)

In conclusion, the explicit dependence of G(u) from the set of parameters

(a, b, c1, c2, τ) is given by the following equation:

G(u) =

(|a|2eiuE + |b|2e−iuE
|a|2e−iuE + |b|2eiuE

)′(
1− ν ν

ν 1− ν

)m−1

·
(|a|2c1e−iuE + |b|2c2eiuE
|a|2c2eiuE + |b|2c1e−iuE

)
. (C.21)
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It is worth noting that the characteristic functionG(u) admits a discontinuity

point in correspondence of |a|2 → 0, 1 and m → ∞. In particular, when

|a|2 → 0, 1 and a finite number m of measurements is performed, G(u) is

identically equal to 1. Conversely, under the asymptotic limit m → ∞, the

characteristic function does not longer depend on a and it equals to

G(u) =
(1 + e2iuE)

2
− c1 sinh(2iuE), (C.22)

so that G(iβT ) = (1 + e−2βTE)/2 + c1 sinh(2βTE). The transition matrix L,

indeed, admits as eigenvalues the values 1 and (1− 2ν) < 1, and, thus, after

the eigendecomposition of the transition matrix, for m→∞ it holds that

Lm−1 −→ V

(
0 0

0 1

)
V T =

(
1
2

1
2

1
2

1
2

)
, (C.23)

with

V =

(
− 1√

2
1√
2

1√
2

1√
2

)
. (C.24)

Stochastic waiting times sequence

Here, we take into account a sequence of projective measurements with

stochastic waiting times τk, k = 1, . . . ,M , which sampled by a bimodal

probability density function p(τ), as shown in the main text.

The explicit expression of the characteristic function in the presence of
quenched disorder can be derived from Eqs. (4.12) and (C.21). We obtain

G(u) =

dτ∑
j=1

(
|a|2eiuE + |b|2e−iuE
|a|2e−iuE + |b|2eiuE

)′(
1− νj νj
νj 1− νj

)m−1

·
(
|a|2c1e−iuE + |b|2c2eiuE
|a|2c2eiuE + |b|2c1e−iuE

)
pj , (C.25)

where

νj ≡ ν(τ (j)) = 2|a|2|b|2 sin2(2τ (j)E), (C.26)

and dτ = 2. As discussed in the main text, also in this case the characteristic

function admits a discontinuity point in correspondence of |a|2 → 0, 1 and

m → ∞. As before, when |a|2 → 0, 1 and a finite number m of measure-

ments is performed, G(u) is identically equal to 1; while for m → ∞ the
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Figure C.1: Convergence of the slope of G(iβT ) as a function of c1, given by

∂c1G(iβT ), to the asymptotic limit of m→∞, when quenched disorder in the

time intervals between measurements is taken into account. In particular,

we have considered m = 2 (solid blue), m = 10 (dashed yellow) and m = 100

(dash-dotted orange), with |a|2 ∈ [0, 0.5], E± = ±1, τ (1) = 0.01, τ (2) = 3

and p1 = 0.3.

characteristic function does not longer depend on a and it equals again to

G(u) =
(1 + e2iuE)

2
− c1 sinh(2iuE), (C.27)

as we obtained in the non-stochastic case. Indeed, the transition matrix

L
(
τ (j)

)
admits as eigenvalues the values 1 and (1 − 2νj) < 1, so that for

m→∞

L
(
τ (j)

)m−1

−→
(

1
2

1
2

1
2

1
2

)
with j = 1, . . . , dτ . (C.28)

For the sake of clarity, let us observe the results shown in Fig. C.1, where

the slope of G(iβT ) as a function of c1, i.e. ∂c1G(iβT ), changes for different

values of |a|2 ∈ [0, 0.5] and increasing values of m.
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Finally, we repeat the latter derivation when the stochasticity between

measurements is distributed as annealed disorder. In this regard, the char-

acteristic function

G(u) =

m−1∑
k=0

(
m− 1

k

)
f(u)L(τ (1))kL(τ (2))m−k−1g(u)pk1p

m−k−1
2 . (C.29)

and, by substituting the expressions of f(u), L and g(u) as given in Eqs. (C.17),
(C.18), (C.19) and (C.20), we obtain the following relation:

G(u) =

m−1∑
k=0

(
m− 1

k

)(
|a|2eiuE + |b|2e−iuE
|a|2e−iuE + |b|2eiuE

)′
·
(

1− ν1 ν1

ν1 1− ν1

)k

·
(

1− ν2 ν2

ν2 1− ν2

)m−k−1

·
(
|a|2c1e−iuE + |b|2c2eiuE
|a|2c2eiuE + |b|2c1e−iuE

)
pk1p

m−k−1
2 ,

(C.30)

As for the other cases, we find the same discontinuity in G(u) in the lim-

its of |a|2 → 0, 1 and m → ∞. Quite surprisingly, the discontinuity is

exactly the same for both types of disorder. To observe this, let us take

Eq. (C.29) with a 6= 0, and, then, use the binomial theorem, given by

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk with x, y arbitrary real variables. As a result,

we obtain

G(u) = f(u)
(
L(τ (1))p1 + L(τ (2))p2

)m−1

g(u). (C.31)

By introducing the quantity ζ ≡ ν1p1 + ν2p2, the weighted sum (w.r.t. p(τ))

of the transition matrices L(τ (1)) and L(τ (2)) can be simplified as(
L(τ (1))p1 + L(τ (2))p2

)
=

(
1− ζ ζ

ζ 1− ζ

)
, (C.32)

which admits eigenvalues 1 and (1− 2ζ) ≤ 1. Thus, by performing the limit

m → ∞, the weighted sum of the transition matrices tends to a projector,

so that G(u) is effectively given by Eq. (C.27).

n−th order derivative of G(u)

Analytical expression for ∂nuG(u) allows us to derive all the statistical mo-

ments of the quantum-heat, and, consequently, the its mean value 〈Qq〉.
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In particular, the n−th order derivative of the quantum-heat characteristic

function, when a protocol of projective measurements at fixed waiting times

is considered, is

∂nuG(u) =

n∑
k=0

Ak(u)′ ·
(

1− ν ν

ν 1− ν

)m−1

·Bn−k(u), (C.33)

where

Al(u) ≡ (i)l
(〈α1|H leiuH |α1〉
〈α2|H leiuH |α2〉

)
(C.34)

and

Bl(u) ≡ (−i)l
(〈α1|H le−iuHρ0 |α1〉
〈α2|H le−iuHρ0 |α2〉

)
. (C.35)

Instead, in the quenched disorder case ∂nuG(u) reads

∂nuG(u) =

dτ∑
j=1

n∑
k=0

Ak(u)T ·
(

1− ν(τ (j)) ν(τ (j))

ν(τ (j)) 1− ν(τ (j))

)m−1

·Bn−k(u)pj ,

(C.36)

while in the annealed case

∂nuG(u) =

m−1∑
k=0

n∑
l=0

Al(u)′ ·
(

1− ν(τ (1)) ν(τ (1))

ν(τ (1)) 1− ν(τ (1))

)k

·
(

1− ν(τ (2)) ν(τ (2))

ν(τ (2)) 1− ν(τ (2))

)m−k−1

·Bn−l(u)pk1p
m−k−1
2 .

(C.37)

Proof of Theorem 4.1

In this section, we prove the equality between the conditional probabili-

ties p(afin
k |ain

m) and p(ain
m|aref

k ), respectively, of the forward and backward

processes of our two-time measurement scheme. Let us recall the observ-

ables Oin ≡
∑
m a

in
mΠin

m, Ofin ≡
∑
k a

fin
k Πfin

k , Õref ≡
∑
k a

ref
k Π̃ref

k and Õin =∑
m a

in
mΠ̃in

m. The dynamical evolution of the open quantum system be-

tween the two measurements is described by a unital CPTP map Φ(·) (with

Φ(1) = 1), whose Kraus operators {Eu} are such that
∑
uE
†
uEu = 1, where

1 denotes the identity operator on the Hilbert space H of the quantum sys-

tem. Accordingly, Φ(ρin,m) =
∑
uEuρin,mE

†
u, where ρin,m ≡ Πin

mρ0Πin
m, and
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thus the conditional probability p(afin
k |ain

m) equals

p(afin
k |ain

m) =
Tr[Πfin

k Φ(ρin,m)]

Tr[Πin
mρ0Πin

m]
=

Tr[Πfin
k

∑
uEuρin,mE

†
u]

Tr[Πin
mρ0Πin

m]

=
∑
u

Tr[Πfin
k EuΠin

mρ0Πin
mE
†
u]

Tr[Πin
mρ0Πin

m]
=
∑
u

|〈φak |Eu|ψam〉|2.

(C.38)

Next, by inserting in (C.38) the identity operator 1 = ΘΘ† = Θ†Θ, where

Θ is the time-reversal operator, one has:

|〈φak |Eu|ψam〉|2 = |〈φak |Θ†
(
ΘEuΘ†

)
Θ|ψam〉|2 = |〈φ̃ak |ΘEuΘ†|ψ̃am〉|2

= |〈ψ̃am |ΘE†uΘ†|φ̃ak〉|2. (C.39)

where we have used complex conjugation and the modulus squared to flip

the order of the operators. The time-reversal of a single Kraus operator is

Ẽu ≡ Aπ1/2E†uπ
−1/2A†, where we choose A = Θ and π = 1 (as Φ is unital,

such that Φ(1) = 1). We can now state that

|〈φak |Eu|ψam〉|2 = |〈ψ̃am |Ẽu|φ̃ak〉|2. (C.40)

Moreover, by observing that

∑
u

|〈ψ̃am |Ẽu|φ̃ak〉|2 =
Tr[Π̃in

mΦ̃(ρref,k)]

Tr[Π̃ref
k ρ̃T Π̃ref

m ]
= p(ain

m|aref
k ), (C.41)

where ρref,k ≡ Π̃ref
k ρ̃T Π̃ref

m , the equality p(afin
k |ain

m) = p(ain
m|aref

k ), as well as

Theorem 4.1, follow straightforwardly.

Proof of Theorem 4.2

Here, we prove Theorem 4.2, i.e. the inequality

0 ≤ S(ρfin ‖ ρT ) ≤ 〈σ〉,

where ρfin and ρT are the density operators of the open quantum system S
before and after the second measurement of the forward process. S(ρfin ‖ ρT )

is the quantum relative entropy of ρfin and ρT and 〈σ〉 is the average of the

stochastic quantum entropy production. This inequality may be regarded as
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the quantum counterpart of the second law of thermodynamics for an open

quantum system.

To this end, let us consider the stochastic entropy production σ(afin, ain) =

ln
[
p(ain)
p(aref)

]
(as given in (4.49) in chapter 4) for the open quantum system S,

whose validity is subordinated to the assumptions of Theorem 4.1. Accord-

ingly, the average value of σ is

〈σ〉 =
∑

afin,ain

p(afin, ain) ln

[
p(ain)

p(aref)

]
=

∑
ain

p(ain) ln[p(ain)]−
∑
afin

p(afin) ln[p(aref)] ≥ 0. (C.42)

We observe that the mean quantum entropy production 〈σ〉 is a non-negative

quantity due to the positivity of the classical relative entropy, or Kullback-

Leibler divergence. Since p(afin) ≡ 〈φa|ρfin|φa〉 and the reference state is

diagonal in the basis {|φa〉}, we have∑
afin

p(afin) ln[p(aref)] =
∑
afin

〈φa|ρfin|φa〉 ln[p(aref)] =
∑
afin

〈φa|ρfin ln ρref|φa〉

= Tr [ρfin ln ρT ] , (C.43)

where the last identity is verified by assuming the equality between the ref-

erence state ρref and the density operator ρT after the second measurement

of the protocol. One also has:∑
ain

p(ain) ln[p(ain)] = Tr [ρin ln ρin] = −S(ρin), (C.44)

where S(ρin) ≡ −Tr [ρin ln ρin] is the von Neumann entropy for the initial

density operator ρin of the quantum system S. The mean quantum entropy

production 〈σ〉, thus, can be written in general as

〈σ〉 = −Tr [ρfin ln ρT ]− S(ρin). (C.45)

The quantum relative entropy is defined as

S(ρfin ‖ ρT ) = −Tr [ρfin ln ρT ]− S(ρfin)

and trivially S(ρfin ‖ ρT ) ≥ 0. According to our protocol, the initial and

the final states are connected by the unital CPTP map Φ as ρfin = Φ(ρin).
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As a consequence of the unitality of Φ, the von Neumann entropies obey the

relation S(ρin) ≤ S(ρfin). Summarizing, we obtain

0 ≤ S(ρfin ‖ ρT ) = −Tr [ρfin ln ρT ]−S(ρfin) ≤ −Tr [ρfin ln ρT ]−S(ρin) = 〈σ〉,
(C.46)

proving the original inequality.

Note that if we perform the second measurement with a basis in which

ρfin is diagonal (i.e. vanishing commutator between measurement opera-

tor and final state, [Ofin, ρfin] = 0), the state is unchanged by the second

measurement and ρfin = ρT . As a consequence

0 = S(ρfin ‖ ρT ) ≤ 〈σ〉 = S(ρfin)− S(ρin),

i.e. the quantum relative entropy vanishes, while the average of the stochas-

tic entropy production equals the difference of final and initial von Neumann

entropies, 〈σ〉 = S(ρfin) − S(ρin), and thus describes the irreversibility dis-

tribution of the map Φ only (and not of the measurement, as it would be

in the general case). In the general case, i.e. if the condition [Ofin, ρfin] = 0

does not hold, still the post-measurement state ρT is diagonal in the basis

of the observable eigenstates and we obtain

〈σ〉 = −Tr [ρfin ln ρT ]− S(ρin) = S(ρT )− S(ρin). (C.47)

Characteristic functions for quantum entropy

production

We derive the expressions for the characteristic functions GA(λ) (for the

probability distributions Prob(σA)) and GB(λ) (for the probability distribu-

tions Prob(σB)), given by (4.75) and (4.77), respectively. We start with the

definition

GA(λ) =

∫
ProbA(σA)eiλσAdσA, (C.48)

where

Prob(σA) =
∑
k,m

δ
[
σA − σA(ain

m, a
fin
k )
]
pa(k,m), (C.49)

as well as

pa(k,m) = Tr
[
(ΠTA,k ⊗ 1B)Φ(Πin

A,m ⊗ ρB,in)
]
p(ain

m), (C.50)
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and

σA(ain
m, a

fin
k ) = ln[p(ain

m)]− ln[p(afin
k )] (C.51)

Exploiting the linearity of Φ and the trace, we obtain

GA(λ) =
∑
k,m pa(k,m)eiλσA(ain

m,a
fin
k )

= Tr
[(∑

k ΠTA,ke
−iλ ln[p(afin

k )] ⊗ 1B
)

Φ
(∑

m Πin
A,me

iλ ln[p(ain
m)]p(ain

m)⊗ ρB,in

)]
.

(C.52)

Recalling the spectral decompositions of the initial and final density oper-

ators, ρA,in ≡
∑
m Πin

A,mp(a
in
m) and ρA,T ≡

∑
k ΠTA,kp(a

T
k ), with eigenvalues

p(ain
m) and p(aTk ) = p(afin

k ), we get∑
k

ΠTA,ke
−iλ ln[p(afin

k )] =
∑
k

ΠTA,ke
−iλ ln[p(aTk )] =

∑
k

ΠTA,kp(a
T
k )−iλ = (ρA,T )

−iλ
,

(C.53)

and∑
m

Πin
A,me

iλ ln[p(ain
m)]p(ain

m) =
∑
m

Πin
A,mp(a

in
m)1+iλ = (ρA,in)

1+iλ
. (C.54)

If we insert these expressions into (C.52) we obtain the expression for the

characteristic function GA(λ) given in (4.72). Analogously we can derive

(4.73) for GB(λ). In a similar way we can derive the characteristic function

GA−B(λ) of the stochastic entropy production of the composite system A−B:

GA−B(λ) = Tr
[
ρ−iλT Φ(ρ1+iλ

in )
]
. (C.55)
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Publications

This research activity has led to several publications in international journals

and conferences. These are summarized below.1

International Journals

1. R. Mencucci, S. Matteoli, A. Corvi, L. Terracciano, E. Favuzza,

S. Gherardini, F. Caruso, R. Bellucci, “Investigating the ocular tem-

perature rise during femtosecond laser fragmentation: an in vitro study”,

Graefe’s Archive for Clinical and Experimental Ophthalmology, 253(12),

2203-10 (2015).

2. S. Gherardini, S. Gupta, F.S. Cataliotti, A. Smerzi, F. Caruso, S.

Ruffo, “Stochastic quantum Zeno by large deviation theory”, New Journal

of Physics 18(1), 013048 (2016).

3. M.M. Mueller, S. Gherardini, A. Smerzi, F. Caruso, “Fisher informa-

tion from stochastic quantum measurements”, Physical Review A 94, 042322

(2016).

4. S. Viciani, S. Gherardini, M. Lima, M. Bellini, F. Caruso, “Disorder

and dephasing as control knobs for light transport in optical fiber cavity

networks”, Scientific Reports 6, 37791 (2016).

5. M.M. Mueller, S. Gherardini, F. Caruso, “Stochastic quantum Zeno-

based detection of noise correlations”, Scientific Reports 6, 38650 (2016).

1The author’s bibliometric indices are the following: H -index = 3, total number of

citations = 30 (source: Google Scholar on Month 03, 2018).
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6. S. Gherardini, C. Lovecchio, M.M. Mueller, P. Lombardi, F. Caruso,

F.S. Cataliotti, “Ergodicity in randomly perturbed quantum systems”,

Quantum Science and Technology 2(1), 015007 (2017).

7. M.M. Mueller, S. Gherardini, F. Caruso, “Quantum Zeno dynamics

through stochastic protocols”, Annalen der Physik 529(9), 1600206 (2017).

8. G. Battistelli, L. Chisci, S. Gherardini, “Moving horizon estimation

for discrete-time linear systems with binary sensors: algorithms and stability

results”, Automatica 85, 374-385 (2017).

9. S. Gherardini, S. Gupta, S. Ruffo, “Kuramoto models for synchro-

nization: statistical mechanics of out-of-equilibrium globally coupled phase

oscillations”, 2018, accepted in Contemporary Physics.

Submitted

1. S. Gherardini, M.M. Mueller, A. Trombettoni, S. Ruffo, F. Caruso,

“Reconstruction of the stochastic quantum entropy production to probe ir-

reversibility and correlations”, in Eprint arXiv:1706.02193, 2017, submitted

to Quantum Science and Technology - IOPscience.

2. M.M. Mueller, S. Gherardini, F. Caruso, “Noise robust quantum

sensing via optimal multi-probe spectroscopy”, in Eprint arXiv:1801.10220,

2018, submitted to Nature - Communications Physics.

To be submitted

1. S. Gherardini, L. Buffoni, M.M. Mueller, F. Caruso, M. Camp-

isi, A. Trombettoni, S. Ruffo, “Non-equilibrium quantum-heat statistics

under stochastic projective measurements”, in preparation, 2018, to be sub-

mitted to Physical Review E.

2. G. Battistelli, L. Chisci, N. Forti, S. Gherardini, “MAP moving hori-

zon field estimation with threshold measurements for large-scale systems”,

in preparation, 2018, to be submitted to Automatica.

International Conferences

1. G. Battistelli, L. Chisci, S. Gherardini, “Moving horizon state estima-

tion for discrete-time linear systems with binary sensors”, in 54th Interna-

tional Conference on Decision and Control (CDC), December 15-18, 2015,

Osaka (Japan).

2. G. Battistelli, L. Chisci, N. Forti, S. Gherardini, “MAP moving hori-

zon state estimation with binary measurements”, in The 2016 American

Control Conference (ACC), July 6-8, 2016, Boston (USA).
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