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Introduction

Dilute quantum degenerate [1, 7, 9] gases can be considered at the intersection of atomic and
statistical physics. ¿anks to the development in laser manufacturing it is nowadays possible to
trap atomic clouds at temperatures so low to achieve quantum degenerate phases, such as the
Bose-Einstein condensation or the degenerate Fermi gases. It has also been possible to e�ciently
load these quantum degenerate clouds into optical lattices, i.e. lattices formed by the interference
of laser beams, therefore virtually defect-free with period and depth experimentally controllable
to a great extent. ¿ese systems can be used to realize experimental models of typical solid-state
physics problems [5].

¿e majority of these experiments use alkali or alkaline-like earth atoms that interact with
each other through a short range isotropic potential (contact interaction). ¿is potential can be
described by a single parameter as called scattering length (or s-wave scattering length) which
can be tuned by a magnetic �eld using the so called Feshbach resonances; in this way it is possible
to obtain attractive, repulsive or non interacting atomic clouds.

During the last years the interest in the realization of cold gases formed by particles, atoms or
molecules, with a natural magnetic or electric dipole moment is growing. Given the long-range
and anisotropic nature of the dipole-dipole interaction, these gases are predicted to show di�erent
proprieties than those regulated by the contact interaction only, as as bulk systems [18] or loaded
in an optical lattice [33]. A comparison between the contact and the dipolar interaction strength is
expressed by the ratio between the scattering length as and the so called dipolar length add which
quanti�es the strength of the dipolar interaction; the physical properties of these systems are
determined by this ratio. ¿e �rst experiment devoted to the study of a dipolar ultracold gas used
Chromium (µ= 6µb) [17] and in that case the scattering length was frustrated using a Feshbach
resonance. More recently the interest is devoted to the lanthanides elements and in particular
to erbium (µ = 7µb) and dysprosium (µ = 9.93µb). ¿e dipolar length add is proportional to
the squared (electric or magnetic) dipole moment and as a consequence the use of atoms with
higher magnetic dipole moment facilitate the emerging of the dipolar nature on the trapped
element. In this picture, dysprosium is particularly interesting not only because of it has the
highest magnetic dipole moment among stable elements but also because is present with both
bosonic and fermionic stable isotopes.

¿is thesis work has been done in the Laboratorio Disprosio in the Pisa Section of the Istituto
Nazionale di Ottica of the Consiglio Nazionale delle Ricerche. ¿is laboratory runs an experiment
devoted to the Bose-Einstein condensation of 162Dy performed in partnership with the LENS in
Florence. My work started when the initial cooling schemes of dysprosium where implemented
and �nished when the �rst results on the Bose-Einstein condensation where obtained.
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Introduction

¿e condensation of 162Dy is achieved starting from a dysprosium beam emerging from
a high temperature e�usive oven. ¿is beam is collimated and slowed using the 421 nm wide
transition. ¿e �rst con�nement and further cooling is realized in a magneto optic trap (mot)
that operates with the 626 nm narrow transition. Given the low Doppler temperature of the mot,
dysprosium atoms can be captured in an optical dipole trap realized in a high �nesse Fabry-Perot
cavity that permits to obtain a large waist and a su�ciently high potential well. Subsequently
atoms are transferred in a crossed optical dipole trap where as a results of forced evaporation
cooling the Bose-Einstein condensation is achieved. All the optical dipole traps operate with
1064 nm radiation. Data are extracted with standard absorption imaging.

¿is ¿esis is divided in three chapters: the �rst one, of theoretical nature, presents the
scattering and dipole forces and their use in the experiment, then the forced evaporative cooling
process and �nally the Bose-Einstein condensation for non interacting bosons in an harmonic
potential. ¿e second chapter is devoted to the description of the apparatus, the control systems
for the lasers frequency and the imaging setup while in the last chapter the results obtained are
presented .

My contribution has been mainly experimental as I participated in most of the measurements
reported in this ¿esis concerning the mot and the optical dipole trap characterization.

I also developed a Mathematica™code to calculate the characteristics of one or more dipole
traps, to perform a comparison with the experimental data. ¿e results of this code are reported
in the last chapter.
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Chapter 1

Theoretical background

In this chapter I will brie�y report some concepts concerning the interaction between an
atomic beam and the laser light that will be used to perform the slowing, cooling and trapping
processes. In order to maintain the text compact and ordered, in spite of subject coherence, a er
a �rst part regarding the light matter interaction, I will add a brief description of the atomic
beam. ¿e whole description will be restricted to a two levels atom in a semiclassical framework,
thus the atom is described by quantum mechanics while the laser �eld is considered as a classic
�eld. ¿is is a vast and well known subject, so the aim of this chapter is simply to report the
essential facts to provide a compact framework in which, the processes described in this ¿esis,
are contained. ¿e reference books used are [25] and [11] so a more detailed descriptions can be
found there as well as in many others books.

1.1 Radiative force

In a two level approximation the atom is considered to be in a state

Ψ(r, t ) = c1(t )ψ1(r, t )+ c2(t )ψ2(r, t )

= c1(t )ϕ1(r)e−iω1t + c2(t )ϕ2(r)e−iω2t
(1.1)

that is a linear combination of the two H0 eigenstates H0ϕi = Eiϕi and where ωi = Ei /×.
¿e semiclassical Hamiltonian of an atom in a electromagnetic �eld is

H = 1

2m
(p+ e

c
A)2 +V (r) (1.2)

where A(r, t ) is the vector potential and E(r, t ) =−1
c
∂A
∂t is the electric �eld. In the Coulomb gauge

(∇ • A = 0), and neglecting the A2 term, the previous Hamiltonian can be written as

H = p2

2m
+V (r)+ e

mc
p ·A = H0 +H ′. (1.3)
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Radiative force Theoretical background

Assuming A(r, t ) = A0
2

(
e i(k•r−ωt )+e−i(k•r−ωt )

)
and taking into account that λ

2π ' 100nm while
the Bohr radius is ab ' 0.5Å it can be considered e ik•r ' 1 over the atomic volume; this is the
electric dipole approximation: A(r, t ) = A0 cos(ωt ). Using the commutation rules between H0, r
and p the last term in eq. 1.3 can be written in the form

H ′ = er • E0
e iωt +e−iωt

2
; E0 = E1 −E2

×c
A0. (1.4)

Using the Hamiltonian in eq. 1.3 in the time dependent Schrödinger equation for the wave
function in eq. 1.1 yields to

i ċ1(t ) = c2(t )
〈1|er • E0|2〉

×
(
e i (ω−ωA)t +e−i (ω+ωA)t

)
i ċ2(t ) = c1(t )

〈2|er • E0|1〉
×

(
e−i (ω−ωA)t +e i (ω+ωA)t

) (1.5)

where

ωA = E2 −E1

× . (1.6)

¿e weak �eld approximation c1(t ) ' 1 is not valid in the case of the interaction with a
coherent �eld that can actually drive signi�cant displacements from equilibrium among the two
populations, then, the two eq. 1.5 have to be solved simultaneously. For ω'ωA the exponential
term in (ω+ωA) can be neglected and this case is called the rotating wave approximation (rwa).
With these approximation eq. 1.5 can be rearranged in two second order linear di�erential
equations. For the c2(t ) term the equation is:

c̈2 + iδċ2 + |Ω|2
2

c2 = 0 (1.7)

having de�ned the Rabi frequency Ω and the detuning δ as

Ω= 〈1|er • E0|2〉
× = E0e

〈1|r |2〉
× cos(θ)

δ=ω−ωA

(1.8)

where θ is the angle between the quantization axis of the atom and the electric �eld.
¿e excited state population is described by |c2(t )|2 that results in

|c2(t )|2 = Ω2

Ω2 +δ2 sin2
(pΩ2 +δ2

2
t
)
. (1.9)

¿e use of the ci (t ) coe�cients implies that the atom is in a pure state but, because of the
spontaneous emission, the atom is actually in a superposition of states each with a probability
pi therefore the density matrix ρ has to be used. ¿e ρi i terms are called the populations of the
states while the ρi j = ρ∗

j i are the coherences. In the case of a pure state, when the atom can be
described by a complete wave function, the density matrix reduces to ρi j = ci c∗j .

¿e electric dipole moment of an atom in a state |Ψ(r, t )〉 whereΨ is given by eq. 1.1, is

d(t) =−e〈Ψ|r |Ψ〉 =−e(c∗2 c1 〈1|r |2〉e iωAt + c∗1 c2 〈2|r |1〉e−iωA )

=−e〈1|r |2〉 (ρ12e iωAt +ρ21e−iωAt ).
(1.10)
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Theoretical background Absorption cross section

De�ning ĉ1 = c1e−i δ2 t ; ĉ2 = c1e i δ2 t so that ˆρ12 = ρ12e iδt and ˆρ21 = ρ21e−iδt , eq. 1.10 can be written
in the form

d(t) =−e〈1|r |2〉 (u cosωt − v sinωt ) (1.11)

where u = ˆρ12 + ˆρ21; v =−i( ˆρ12 − ˆρ21).
A detailed description of the spontaneous emission is beyond the scope of this thesis, here I

will report that in a similar way used to obtain eq. 1.5 and introducing the excited state lifetime
τ= 1

Γ as the exponential decay time constant for the ρ22 population and γ/2 for the coherences
yield to the optical Bloch equations whose stationary solutions are:u

v
w

= 1

δ2 + Ω2

2 + γ2

4

 Ωδ
Ωγ
2

δ2 + γ2

4

 (1.12)

where w = ρ11 −ρ22 and �nally for ρ22 it can be written as

ρ22 = 1

2
(1−w) = 1

2

Ω2/2

δ2 + Ω2

2 + γ2

4

. (1.13)

¿e previous expression (eq. 1.13) quanti�es the number of photons scattered by an atom. In
a plane-wave laser �eld every photon has the same wave vector and the same momentum ×k,
therefore, a er each absorption (emission), the atom’s momentum changes by the same (opposite
for emission) amount. On the other hand, the spontaneous emission of a photon by the atom
is simmetrically distributed with respect to the aquired dipole momentum direction giving an
average of 0 a er a long time compared to a spontaneous decay rate γ.

¿is change of the atomic momentum gives rise to a force, called the radiative or scattering
force. ¿e number of decays per second is given by Rs = γρ22 and each decay causes a mo-
mentum variation of ×k therefore the radiative force can be written as F =×kγρ22. Using the
expression (eq. 1.13) it �nally results in

F =×k
γ

2

Ω2/2

δ2 + Ω2

2 + γ2

4

. (1.14)

1.2 Absorption cross section and saturation intensity

For a laser beam of intensity I = ε0E0
2

2 c traveling trough a medium with populations N1 and
N2 for the ground and the excited states respectively, it can be written

dI

dz
=−(N1 −N2)σ(ω)I (1.15)

where σ(ω) is the absorption cross section. At the steady state, the energy absorbed per unity
volume has to be equal to the energy emitted by spontaneous emission:

(N1 −N2)σ(ω)I = N2 A21×ω (1.16)
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Absorption cross section Theoretical background

where

A21 = g1

g2

e2ω3

πε0×c3

| 〈1 |r |2〉 |2
3

(1.17)

is the Einstein coe�cient for the spontaneous emission and g1 and g2 the degenerancies of the
ground and excited levels respectively.

An expression for σ(ω) can be obtained from eq. 1.16. Taking into account that N1 +N2 = N ,
N2 = ρ22N and substituting the expression for ρ22 (eq. 1.13) and the expression for the Rabi
frequency (eq. 1.8) the absorption cross section results

σ(ω) = 3cos2(θ)
g2

g1

πc2

ω2
A

A2
21

δ2 +γ2/4
. (1.18)

Some attention has to be payed to eq. 1.18: the 3 factor multiplying the whole expression
arises from the isotropy of spontaneous emission A21 ∝ 1

3 | 〈1|r|2〉 |2 and from expressing the Rabi
frequency in terms of A21 but Ω2 ∝|〈1|r • Ê0|2〉 |2 = cos2(θ)E 2

0 | 〈1|r|2〉 |2 therefore if atoms aren’t
polarized in the right direction with respect to the incident light there is another 1

3 factor (from
1

4π

∫
cos2(θ)dΩ= 1

3 ) to be taken into account and in eq. 1.18 the 3 factor has to be substituted by
1.

At resonance (ω = ωA) and in absence of degenerancies (g1 = g2 and A21 = γ) eq. 1.18
becomes:

σ(ωA) = 3cos2(θ)
λ2

2π
. (1.19)

Again from eq. 1.16, writing N = N1 +N2 = (N1 −N2)+2N2, it can be obtained

N1 −N2 = N

1+ I 2σ(ω)
×ωA21

(1.20)

therefore the saturation intensity Is can be de�ned the as:

Is(ω) = ×ωA21

2σ(ω)
; Is(ωA) = Is = πhc

3

γ

λ3 . (1.21)

For I (ω) = Is(ωA) the numeric density of the two states assumes the form N1 − N2 = 1
2 N .

From eq. 1.13 it can be de�ned the saturation parameter s = I/Is and again from N1 +N2 = N it
can be obtained:

s = I

Is
= 2Ω2

γ2 (1.22)

therefore the radiative force (eq. 1.14) can be written in the more friendly form:

Fr =×k
γ

2

s

1+ s +4δ
2

γ2

. (1.23)
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Theoretical background Radiative force and Doppler effect
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Figure 1.1: Velocity dependence of the radiative force eq. 1.28 for I/IS = 1; δ=−γ. k and v have the same
direction.

1.3 Radiative force and Doppler effect

¿e expression for the radiative force eq. 1.14 was obtained considering the atom at rest (with
respect to the laser source). Taking into account the motion of an atom implies that Doppler
e�ect has to be considered. For sake of simplicity eq. 1.14 will be reported below in the form:

Fr =×k
γ

2

s

1+ s +4 (ω−ωA)2

γ2

. (1.24)

Note that this expression reaches its maximum at resonance and, increasing the laser intensity,
the force saturate to

Fmax =×k
γ

2
. (1.25)

If the atom is moving with a velocity v being k the wave vector of the laser beam, because of
the Doppler, e�ect the laser frequency becomes

ν′L = νL
(
1− v

c
cos(φ)

)
(1.26)

where φ is the angle between v and k. ¿is expression can be written in a more convenient form
as

ω′ =ω−k ·v (1.27)

and, reminding that δ=ω−ωA, we have ω′−ωA = δ−k • v. ¿erefore, for an atom in motion,
the expression of the force becomes

Fr =×k
γ

2

s

1+ s +4 (δ−k·v)2

γ2

(1.28)
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Radiative force and Doppler effect Theoretical background

resulting in a force that, at a given intensity, reaches its maximum when δ+kv = 0, i.e. when
ω−ωA +kv = 0.

¿e force assumes half its maximum value at v =−δ
k ± 1

2
γ
k

p
1+ s resulting in a full width at

half maximum fwhm of

FWHM = γ

k

p
1+ s (1.29)

as can be seen in fig. 1.1.

1.3.1 1D Optical molasses

Consider the case of two counter propagating, collinear and red detuned laser beams (i.e.ω−
ωa < 0) and an atom forced to move along their common direction. In this condition, due to
Doppler e�ect, the di�erenceω′−ωA is reduced for the beampropagating in the opposite direction
of the velocity of the atom and increased for the other beam therefore the force component
(eq. 1.28) opposite to the velocity v is always more intense than the one in the direction of v
resulting in a slowing of the atom.

For the sake of clarity let’s suppose the atom moving through the positive ẑ direction and
consider the laser beam propagating in the negative ẑ direction, the arising force is then described
by eq. 1.28:

F− =−×k
γ

2

s

1+ s +4 (δ+kv)2

γ2

. (1.30)

On the other hand, the laser beam propagating in the positive ẑ direction generates a force given
by

F+ =+×k
γ

2

s

1+ s +4 (δ−kv)2

γ2

(1.31)

and the resulting force is the sum F = F++F−, resulting in

F =×k
γ

2
s

16δkv
γ2

(1+ s)2 +8δ
2+k2v2

γ2 (1+ s)+16 (δ2−k2v2)2

γ4

(1.32)

In this form, is quite useless (the graph is reported in fig. 1.2) but neglecting the term
(k
γv

)2 =(
2πν

γ
v
c

)2 and higher orders it becomes

Fom = ×k2

γ
s

8δv(
1+ s +4δ

2

γ2

)2 . (1.33)

If ω<ωA , and in this case the laser is said to be red detuned, it results δ< 0 so that the force
Fom in eq. 1.33 is a damping force that can be written in the more convenient form:

Fom =−βv; β= ×k2

γ
s

8|δ|(
1+ s +4δ

2

γ2

)2 . (1.34)
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Theoretical background Radiative force and Zeeman effect

At a given detuning δ, β is constant and doesn’t depends on the velocity v so the equation of
motion of the atom is

M v̇ =−βv ⇒ v(t ) = v(0)e−
β

M t (1.35)

v(t ) seems to vanish (and the temperature seems to reach T = 0 K) quite quickly disregarding
any atom initial velocity, but this is not the case. ¿ere are in fact a lower velocity limit and thus
a lower temperature limit, as discussed below.

¿is whole description isn’t valid for any initial velocity as eq. 1.34 could indicate given the
linear dependence of Fom by v (for example in fig. 1.1 it can be seen how the force actually
depends on the velocity). ¿is arise from the assumption that has been made to obtain eq. 1.33.
¿e whole expression of the force, eq. 1.32, plotted in fig. 1.2 is quite linear in z around v k

γ ' 0
while decreases and vanishes a er reaching the maximum. From eq. 1.29 and fig. 1.2, if I ¿ Is,
one can be de�ne the molasses capture velocity as vC = γ

k and the model depicted is valid for
v < vC.

Furthermore, there is a lower temperature limit that can be achieved: considering an atom
at rest, a er absorbing or emitting a photon, the momentum conservation law implies that the
atom isn’t at rest anymore but has to ful�ll ×k+Patm = 0, therefore its kinetic energy changes
due to the recoil by ∆Er = P2

2M = ×2k2

2M and so, for the absorption and emission processes we have
respectively ∆Eabs =×ωA +∆Er and ∆Eem =×ωA −∆Er so that the energy exchanged with the
laser a er an absorption and an emission is ∆E =∆Eabs−∆Eem = 2∆Er.

Due to the randomness of spontaneous emission this process actually turns in a heating of
the atoms. Recalling the scattering rate from eq. 1.23 and considering the two beams, the heating
power can be expressed by:

Pheat = 4∆Er
γ

2

s

1+ s +4δ
2

γ2

. (1.36)

On the other hand, the power dissipated by the dumping force (eq. 1.33) is Fom
d s
d t = Fomv =−βv2

and at the equilibrium the sum of the two has to vanish: Pheat−βv2 = 0. Substituting β with
its expression (eq. 1.33) for the squared velocity we have v2 = 1

M
×γ2

8δ

(
1+ s + 4δ

2

γ2

)
. For small

intensity, I ¿ Is, and taking into account the equipartition theorem in a 1D case (Ecin = 1
2 kbT )

an expression for the temperature can be obtained:

T = ×γ
8kb

( γ
|δ| +4

|δ|
γ

)
. (1.37)

¿is expression has a minimum in δ=−γ
2 , the minimum is called the Doppler temperature Td

and its value is:

Td = ×γ
2kb

. (1.38)

1.4 Radiative force and Zeeman effect

As can be seen in fig. 1.1, the radiative force (eq. 1.28) is di�erent from 0 only in a narrow
region across v =−δ

k (see eq. 1.29) resulting in a poor slowing capability: if the laser is chosen to
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δ =- 1/ 2Γ

δ =- Γ
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Figure 1.2: Velocity dependence of the optical molasses force eq. 1.32 for I/IS = 1 and for di�erent values of
red detuning.

be resonant for a certain velocity, the more the atoms are slowed the more the laser becomes o�
resonant with the atomic transition and so the force vanishes.

If one wants the force to be resonant in a large range of velocities, as it is in the case for
example for slowing down an atomic beam, an usual method to overcome this is to use the
Zeeman e�ect to keep the laser and the atomic transition tuned.

Consider a transition where the angular momentum changes from a ground state with J = 0
to an excited state with J ′ = 1 so that 1 ∆Jz =−1,0,1. In the presence of a magnetic �eld along
the ẑ direction, the excited state energy level is split in three di�erent sublevels, corresponding to
the three values ∆Jz. ¿e atomic frequency ×ω(0)

A = E2 −E1, then becomes

ωA =ω(0)
A +µb∆JzB

× (1.39)

where µb is the Bohr magneton. ¿e force expression is

Fzs =×k
γ

2

s

1+ s + 4
γ2

(
δ+kv−µb ∆JzB(z)

×
)2 (1.40)

valid for the case of atom velocity opposite to the laser wave vector, both alignedwith themagnetic
�eld along ẑ.

With an appropriate magnetic �eld variation along z the atom and the laser can be kept in
resonance even for large velocity variations. From the previous eq. 1.40 the resonance condition
is ω−ω(0)

A +kv−µb ∆JzB(z)
× = 0 therefore B(z) has to ful�ll the relation

B(z) = ×k

µb∆Jz
v(z)+ ×

µb∆Jz
δ. (1.41)

In order to determine B(z) one needs the expression for v(z) while the last term in eq. 1.41 is
constant and will not be considered. Solving the equation of motion isn’t easy because of the

1Here the Landè factors are omitted.
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Theoretical background Radiative force and Zeeman effect

Figure 1.3: Scheme for energy levels shi for an atom in position z0 moving toward ẑ with velocity v in
presence of a magnetic �eld of the form B = bz. Notation σ+ and σ− stand respectively for the
polarization beams increasing and decreasing Jz by ×; k(σ+) and k(σ−) are referred to the wave
vectors of the two beams.

velocity dependent force Fzs(v) (eq. 1.40). To overcome this di�culty it can be chosen to have
a constant acceleration a = ηamax = η

M
×γ
2 , with η< 1, resulting in a constant force. With this

approximation we obtain 1
2 Mv2

0 = η×kγ
2 z0 where v0 is the initial velocity of the atom and z0 is

the distance at which the atom is stopped, while for v(z):

v(z) = v0

√
1− z

z0
⇒ B(z) = ×k

µb∆Jz
v0

√
1− z

z0
+ ×δ
µb∆Jz

. (1.42)

All atoms having velocity v < v0 will be resonant with the laser beam at a certain z and so
will be slowed while atoms with velocity v > v0 are never resonant and so won’t be slowed. ¿is
will actually turns out in a cooling of the atomic beam because there is an actual increase of
the atomic velocity distribution around the �nal velocity. η is a security a factor that can be
choosen experimentally in order to compensate the di�erence between the real and themaximum
acceleration.

1.4.1 Magneto optical trap

¿e technique described so far allows slowing and cooling atoms or atomic beams but neither
one is able to con�ne atoms. ¿is result can be achieved with an optical molasses, arranged with
opportune polarization, and a non constant magnetic �eld, the so-calledmagneto-optical trap
(mot) [30].
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We illustrate here the basic working principle of a mot. For the sake of simplicity let’s consider
the case of an atom in position z0 moving with a velocity vẑ, the case of two beams separately
and suppose the magnetic �eld to take the expression

B = bz b =∇Bz

∣∣∣
z=0

(1.43)

where b is the �eld gradient
As in eq. 1.40, there is a change in the atomic and laser frequencies di�erence as shown in

fig. 1.3. For the σ+ and σ− polarized beams, their detuning ∆ can be written respectively:

∆σ+ = δ+kv+µb bz

× ∆σ− = δ−kv−µb bz

× . (1.44)

Inserting this quantities in eq. 1.23, we obtain

Fσ+ =×k
γ

2

s

1+ s +4
(∆σ+

γ

)2
; Fσ− =−×k

γ

2

s

1+ s +4
(∆σ−

γ

)2 (1.45)

and, as in the optical molasses case, the resulting force is given the sum Fmot = Fσ+ + Fσ− .
Performing the same approximations as before one obtains

Fmot =−8
×k

γ
s
|δ|(kv+ µbb

× z)(
1+ s +4δ

2

γ2

)2 . (1.46)

¿is expression resembles Fom (eq. 1.33) except for the z linear term that represent a damped
harmonic oscillator. De�ning

β= s
8×k2|δ|

γ
(
1+ s +4δ

2

γ2

)2 ; K = s
8µbk|δ|b

γ
(
1+ s +4δ

2

γ2

)2 =βµb×k
b (1.47)

we obtain, for an atom moving in the mot region

Fmot =−βv−βµbb

×k
z =−βv−K z (1.48)

In a classical viewpoint the solution of the equation of motion is

z(t ) = z(0)e−
γm

2 t cos(ωmt ) (1.49)

i.e. that of a damped harmonic oscillator with a damping rate and frequency oscillation given
respectively by:

γm = β

M
; ωm =

√
β

M

µbb

×k
. (1.50)
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1.5 Dipole force

¿e interaction energy between the atomic electric dipole moment d induced by an electric
�eld E and the �eld itself is given byU =−1

2 d ·E. Using eq. 1.11 and E = x̂E0(z)cos(ωt −kz) and
taking the average over the time the expression of the force becomes [11]:

F =−∇U =−e
〈1|x |2〉

2

(
u
∂E0

∂z
− vE0k

)
(1.51)

Substituting the expressions for u and v eq. 1.12 and taking into account eq. 1.8 the force can be
divided in two terms:

Fd =−×δ
2

1

1+ I
Is
+4(δγ )2

1

Is

∂I

∂z
; Fr =×k

γ

2

I

Is

1

1+ I
Is
+4(δγ )2

. (1.52)

¿e second term is the radiative force, described in detail in the preceding paragraphs, while Fd
is the so-called dipole force. In the three dimensional case Fd is:

Fd =−×δ
2

1

1+ I
Is
+4(δγ )2

1

Is
∇I . (1.53)

Fd doesn’t saturate by increasing the laser intensity and vanishes for δ= 0. Furthermore, while
Fr has the direction of k, Fd has the direction of ∇I while the verse depends on δ so that for a
red detuned laser beam an atom is attracted toward the maximum of the laser intensity.

1.5.1 Optical dipole trap

To realize an optical dipole trap then, it is su�cient to focus a red detuned laser beam (δ< 0)
and, given eq. 1.53, the atoms will be attracted to the focus itself.

Note that

Fd ' 1

δ
Fr ' 1

δ2 for δ→∞ (1.54)

given that Fr is proportional to the scattering rate of photons, in the end, is responsible for the
heating of the atoms as it can be seen in eq. 1.36. In order to avoid heating, given the asymptotic
behaviour of the radiative and the dipole force, very intense and far detuned beam are usually
used in optical dipole traps.

¿e force Fd is a conservative force so it can be obtained from Fd =−∇V with

V (r) = ×δ
2

ln
(
1+

I (r)/Is

1+4δ2/γ2

)
(1.55)

where the integrating constant is chosen so that V = 0 for I = 0.
For a far red detuned beam, |δ| À γ, using log(1+ x) ' x, γ2

γ2+4δ2 ' γ2

4δ2 and with the Is
de�nition (eq. 1.21) the previous formula can be simpli�ed as:

V (r) ' ×δ
2

( γ2

γ2 +4δ2

) I (r)

Is
' 3πc2

2ω3
A

γ

δ
I (r) (1.56)
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.
For a gaussian beam propagating along the z axis the intensity is:

I (x, y, z) = 2P

πw2(z)
e
− 2(x2+y2)

w2(z) (1.57)

where w(z) = w0

√
1+ ( z

zr

)2; zr = πw 2
0

λ and P is the power of the laser. For low temperatures
kbT <V (0), r ¿ w0 and z ¿ zr, and using e−x ' 1−x and 1

1+x2 ' 1−x2 the potential results in
[13]:

Vd(r) ' 3πc2

2ω3
A

γ

δ

2P

πw2
0

(
1− 2

w2
0

(x2 + y2)− 1

z2
r

z2
)
=Vd

(
1− 2

w2
0

(x2 + y2)− 1

z2
r

z2
)

(1.58)

that is said an harmonic 3d potential summed to a constant.

1.5.2 Spatial distribution of atoms in an optical dipole trap

Again in the case of a gaussian laser beam propagating along the ẑ direction (eq. 1.57), the
classical Hamiltonian of an atom of mass M moving in the potential of eq. 1.58 can be written as

H = P2

2M
+ 1

2
M(ω2

x x2 +ω2
y y2 +ω2

z z2) with ω2
x,y =

4Vd

M w2
0

; ω2
z =

2Vd

M z2
r

. (1.59)

Using the Boltzmann statistic the trapped atom density n(r) as a function of r = (x, y, z) is:

n(x, y, z) = N
( M

2πkbT

) 3
2
ωxωyωze−

1
kbT

M
2 (ω2

x x2+ω2
y y2+ω2

z z2) (1.60)

and de�ning

σ2
x,y,z =

kbTx,y,z

Mω2
x,y,z

; n0 = N

(2π)3/2

1

σxσyσz
(1.61)

the atom density distribution is

n(x, y, z) = n0e
−( x2

2σ2
x
+ y2

2σ2
y
+ z2

2σ2
z

)
(1.62)

with n0 the peak density.

1.6 Evaporative cooling

¿e scattering force Fr permits to slow and cool atoms and, combined with the Zeeman
shi of the atomic levels, can be used over a wide range of velocities but the lower limit of the
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temperature that can be achieved is determined by the spontaneous emission process and by the
recoil kinetic energy Er = ×2k2/2M i.e. the kinetic energy acquired by an atom a er a spontaneous
emission event. On the other hand, in a far red detuned optical dipole trap, photons scattering is
avoided (eq. 1.54) but, given the conservative nature of the trapping force eq. 1.58, this kind of
traps can’t be used to dissipate the kinetic energy of the atoms.

Evaporative cooling permits to cool the atomic sample at the cost of atom losses. In a �nite
depth (U0) potential well, atoms with higher kinetic energy are more likely to leave the trap and,
as a results, the temperature of the atomic cloud, formed by the remaining atoms with lower
average kinetic energy, is lowered. ¿is is called the static evaporation because the potential well
depthU0 remains constant. In this con�guration, the more the atomic cloud is cooled the less
probable that an atom with “high” kinetic energy will leave the trap is. For this reason, the trap
depthU0 is lowered in time and this technique is called forced evaporative cooling [16]. For an
atomic cloud at a temperature T so high that the motion of atoms can be considered classical:
kbT À×ωo (where ωo is the trap frequency), the process consists in maintaining U0 ' ζkbT ,
where ζ> 1 is an arbitrary constant. In an optical dipole trap this is done by regulating the laser
power (see eq. 1.58). For values of ζ of the order or higher than 10, the atomic cloud can be
described by a truncated Boltzmann distribution [20] but here, as a good approximation, will
be used the Boltzmann distribution as in sec. 1.5.2. In the case of an harmonic potential, atoms
that are more likely to leave the trap have an average kinetic energy ∼ (ζ+1)kbT [8] and for the
variation of the atomic cloud temperature and the number of atoms can be written the equation
[8]:

dT

T
=αdN

N
⇒ Tf

Ti
=

( Nf

Ni

)α
; α' ζ+1

3
−1 (1.63)

that shows how, at a cost of some atomic loss the temperature is lowered. ¿is description is
valid if a temperature of the atomic cloud can be de�ned i.e. if atoms have the time to reach the
thermodynamic equilibrium through elastic collisions. ¿is is never strictly true (evaporative
cooling is a non equilibrium process) but is at least approximately true ifU0 is lowered in a time
longer compared to the inverse of the elastic collisional rate nσv̄ and thus the trap frequencies
ωx,y,z can be considered constant while atoms reach the thermal equilibrium. ¿e elastic collision
rate is expressed as a function of the atomic density n = N/V , the temperature independent elastic
collisional cross section σ and the mean velocity v̄ = p

3kbT/M . From eq. 1.59 and eq. 1.61 it
holds V =σxσyσz = (ωxωyωz )−1(kbT/M)3/2 and as a results the collisional rate scaling law can be
expressed as a function of the temperature and, thanks to eq. 1.63, to the number of atoms. ¿e
relevant quantity in all this process, as it will be said in the next section, is the phase space density
de�ned as D = nλ3

dB where λdB is the thermal de Broglie wavelength. All these quantities can
then be described as a function of the number of atoms

T ∼ Nα; V ∼ T
3
2 = N

3
2α; nσv̄ ∼ N 1−α; D ∼ N 1−3α. (1.64)

In an evaporation where the number of atoms changes from Ni to N f , the phase space density
changes from Di to D f and as results of eq. 1.64 it holds

D f =Di

( Ni

N f

) 1−3α
α (1.65)
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in the evaporative cooling there is a loss of particles thus Ni > N f and as a consequence, provided
that α> 1/3, there is a gain in the �nal phase space density D f . As an example, for ζ= 11 and
thus α= 3, for N f = 0.1Ni we have D f = 2.37Di .

A detailed description of the temporal behaviour of the evaporative cooling is beyond the
scope of this thesis, here it will be said that as η increases (and as a consequence α), an increase in
the phase space density requires less atoms to be lost (eq. 1.65) thus the e�ciency of the process
increases as well. As a drawback increasing η and hence the potential well depthU0, slows the
process because it is less probable that an atom acquires an energy high enough to leave the
trap. Given that a trap has a �nite lifetime, a balance between the cooling e�ciency and the time
required has to be found empirically.

1.7 Bose-Einstein condensation

A complete description of the Bose-Einstein condensation is beyond the scope of this thesis,
nevertheless the fundamental concepts and the characteristics observed in our experiment so far
will be reported here following the description in [8].

1.7.1 Non interacting particles

¿e simpler starting point to describe the condensation is the case of N non interacting
bosons contained in a box of volume V . ¿e number of states with energy εi is given by the
Bose-Einstein statistics multiplied by the degeneracy of each state (gi ) and the sum of all these
states must be equal to the number of particles:

N =∑
i

gi
1

exp
( εi−µ

kbT

)−1
=∑

i
gi

z

exp
( εi

kbT

)− z
(1.66)

where µ is the chemical potential and z = exp( µ
kbT ) the fugacity that must satisfy 0 ≤ z < 1 and,

for �xed T and V , is an increasing function of N . ¿e condensation phenomena appears when, at
T and V �xed, the fugacity z approaches 1. Considering N in eq. 1.66 as the sum of the ground
(ε0 = 0 and non degenerate) state and of the excited states leads to

N = N0 +Nex = z

1− z
+ ∑

i 6=0
gi

z

exp
( εi

kbT

)− z
. (1.67)

For T and V �xed, Nex is upper bounded, while N0 isn’t and when the population in the excited
states is saturated any new particlemust occupy the ground state. In the case of particles contained
in a box of volume V it holds gi → 4πV

h3 p2dp and the sum in eq. 1.67 can be evaluated resulting
in

Nex = V

λ3
dB

g3/2(z) ⇒ N = N0 + V

λ3
dB

g3/2(z) (1.68)
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where λdB = hp
2πmkbT

is the de Broglie wavelength and g3/2(z) =∑∞
m=1

zm

m3/2
has the maximum

for z = 1 and its maximum is 2.612. In order to have n0 = N0/V ≥ 0 i.e. in order to populate the
ground state, n = N/V must satisfy the relation

nλ3
dB(T ) ≥ 2.612 (1.69)

thus the distance between the particles has to be of the order of λdB. From its de�nition, λdB is a
decreasing function of the temperature then, once the density n is �xed, the critical temperature
Tc can be de�ned from nλ3

dB(Tc) = 2.612 and when the temperature is lowered below Tc, the
particles start to accumulate in the ground state. ¿e quantity D = nλdB already encountered in
the previous section, is called the phase space density.

In a similar way it can be described the case of non interacting particles in an isotropic har-
monic potential. Here the energies are the eigenvalues of the Hamiltonian of a three dimensional
harmonic oscillator: εn =×ωho(nx+ny+nz+ 3

2 )whereωho is the oscillator frequency and nx , ny ,
nz ∈N and n = (nx ,ny ,nz ). ¿e ground state has an energy ε0 = 3/2×ωho and is not degenerate
while each eigenstate with given n = nx +ny +nz has a degeneracy gn = 1/2(n +1)(n +2). As in
the previous case it can be written

N = N0 +Nex = z

1− z
+ ∑

n=1

( (n +1)(n +2)

2

z

exp
(n×ωho

kbT

)− z

)
(1.70)

and also in this case the sum in eq. 1.70 is upper bounded. For z = 1 and in the condition
×ωho ¿ kbT its upper limit can be calculated resulting in [8]:

Nmax '
( kbT

×ωo

)3
g3(1); g3(1) ' 1.2 (1.71)

from this equation, posing N = Nmax, it can be de�ned the critical temperature (Tc) and the
ground state population for temperatures T < Tc:

Tc
×ωo
kb

( N

g3(1)

)
; N0(T ) = N

(
1− ( T

Tc

)3
)
. (1.72)

A system composed by non interacting particles in an harmonic potential, is described by
the Hamiltonian

H1 =
∑

i

[ p2
i

2M
+Vt(ri )

]
; Vt(r) = 1

2
Mω2

hor2
i (1.73)

that is the sum of N independent terms and thus the collective many body wave function ψ(r)
can be written as the tensor product of the single particle wave functions φ(ri)

ψ(r) = |φ(r1)〉⊗ |φ(r2)〉⊗ · · ·⊗ |φ(rN )〉 (1.74)

where |φ(ri )〉 are the wave functions of a quantum harmonic oscillator. In this way |ψ(r)〉 is
symmetric for particle exchange as required for bosons [8] and at T = 0 each single particle wave
function is the ground state solution of the harmonic oscillator

φ0(ri ) =
( Mωho

π×
) 3

4
e−

Mωho
2× r2

i . (1.75)
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1.7.2 Interacting particles

In the case of interacting bosons, in addition to the trapping potential Vt(r), has to be
considered the interaction potential V (ri − r j ) and the many body Hamiltonian results in

H =∑
i

[ p2
i

2M
+Vt(ri )+ 1

2

∑
j 6=i

V (ri − r j )
]
=∑

i

[
H1(ri )+ 1

2

∑
j 6=i

V (ri − r j )
]

. (1.76)

¿e ground state many body wave function is again taken in the form eq. 1.74 that satis�es the
symmetry required for bosons but the single particle wave functions φ(ri ) have to be found.
Instead of �nding the eigenfunctions of eq. 1.76 is used a variational method: themany body wave
function,ψ(r), mustminimize theHamiltonianmatrix elementwith the constrain 〈ψ(r)|ψ(r)〉 = 1
and, using the Lagrange multipliers method, has to be a solution of 〈δψ|H |ψ〉−µ〈δψ|ψ〉+
〈ψ|H |δψ〉−µ〈ψ|δψ〉 = 0. ¿e two terms in ψ∗ and ψ are considered to be independent so
only the �rst two terms in the previous equation remain. Substituting eq. 1.74 and using the
Hamiltonian expression eq. 1.76 and remembering that for N bosons at T = 0 all the single
particle wave function φ(ri ) are identical, the problem becomes a single particle problem in the
form [8]

H1(r)φ(r)+N
(∫

V (r− r′)φ(r′)dr′
)
φ(r) =µφ(r). (1.77)

¿is expression is valid for low density gasses, eq. 1.74 implies that correlations between particles
are not taken into account. In this condition, the interaction between particles is described by
the asymptotic behaviour of the wave function. Furthermore, in the case of ultracold particles,
collisions happen at very low energy. Expanding the scattering wave function of two particles
interacting through the potential V (r− r′) in spherical harmonics, the lowest energy solution
is the ` = 0 one. In this approximation the interaction potential can be replaced by a pseudo
potential in the form [8]:

Vps = 4π×2

M
asδ(r− r′) (1.78)

where as is the s-wave scattering length. Substituting Vps in eq. 1.77 we �nd the Gross-Pitaevksii
equation:

− ×2

2M
∇2φ(r)+Vt(r)φ(r)+N g

∣∣∣φ(r)
∣∣∣2 =µφ(r); g = 4π×2

M
as (1.79)

that describes the static ground state of an interacting Bose-Einstein condensate. Substituting
the pseudo potential to the interaction potential in eq. 1.77 it can be shown that the energy of
the ground state depends explicitly on the particles number N and the Lagrange multiplier µ in
eq. 1.79 is the chemical potential of the condensate.

In order to obtain an explicit expression of a solution of eq. 1.79 in the case of an harmonic
trapping potential eq. 1.73, the ground state wave function of an harmonic oscillator eq. 1.75 is
used as a model in the so called Gaussian ansatz:

φ(r) = 1

π3/4

√
w3a3

ho

e
− r 2

2w2 a2
ho (1.80)
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Figure 1.4: Scheme of the oven. ¿e ϕ angle is omitted.

where aho =
p×/Mωho is the width of the ground state wave function of the harmonic oscillator

and w a numeric parameter.
In the Gaussian ansatz it can be found that the energy of the ground state is given by [8]:

E(w) = Nωho
(3

4

1

w2 + 3

4
w2 + 1p

2π

asN

aho

1

w3

)
(1.81)

where the three terms are respectively the kinetic energy, the potential energy in the trap potential
and the energy due to the interactions. If N as

aho
À 1 the kinetic energy of the particles can be

ignored and the Gross-Pitarvskii equation eq. 1.79, in the ¿omas-Fermi limit, reduces to

Vt(r)+N g |φ(r)|2 =µ ⇒ n(r) = 1

g

(
µ− 1

2
Mω2

hor 2) (1.82)

thus, in the ¿omas-Fermi limit, the particle density n(r) = N |φ(r)|2 has the shape of a parabola.
¿is last equation is one of the characteristics that can be easily observed experimentally that
indicates when Bose-Einstein condensation occurs and it is valid even in the case of dipolar
Bose-Einstein condensates [18].

1.8 Atomic beam

¿e starting point of the experiment is the slowing of an atomic beam of dysprosium, hence
it will be reported a brief description of the atomic beam consisting of free particles emerging
from an oven depicted as a box of volume V at a certain temperature T with a circular hole on a
wall submerged in the vacuum.

Assuming the box as a closed box, the number of particle in the vapor is proportional to the
vapor pressure itself. Vapor pressure of dysprosium has been studied in [24] and can be expressed
as

P = eB−A
T (1.83)

where A = 35170/K and B = 20.56 for temperature in the 1239–1534 K range.
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Assuming the particle number N proportional to the vapor pressure and considering dyspro-
sium atoms as hard spheres, their energy is the kinetic energy E = 1

2 Mv2 and from the Boltzmann
statistic it follows that

n(v) = N

V

(2πkbT

M

)− 3
2

e−
1
2

Mv2

kbT (1.84)

and the Maxwell-Boltzmann distribution for the modulus of the velocity is

f (v) = 4π
(2πkbT

M

)− 3
2 v2e−

1
2

Mv2

kbT . (1.85)

¿e atoms emerging from the aperture dA with velocity v are those contained in the cilinder
of volume dVc = vcosθdtdA and because the eq. 1.84 doesn’t depend on the angle, atoms in the
solid angle sinθdθdϕ have to be considered. ¿e resulting atom �ux through the aperture is

dN (v,θ,ϕ)

dt
= n0

cosθ sinθdθdϕ

4π
π
(2πkbT

M

)− 3
2 v3e−

1
2

Mv2

kbT dA (1.86)

integrating for θ ∈ (0, π2 ) and ϕ ∈ (0,2π) it results in the velocity distribution of the atomic �ux:

dN (v)

dt
=πn0

(2πkbT

M

)− 3
2 v3e−

1
2

Mv2

kbT dA (1.87)

and the most probable velocity therefore is

vmp =
√

3
kbT

M
. (1.88)

¿e atomic density in the volume element dV = R2 sinθdθdϕdR in fig. 1.4 is given by

dN

dV
= n0

cosθdA

R2

(2πkbT

M

)− 3
2 v2e−

1
2

Mv2

kbT (1.89)

and integrating over v ∈ (0,∞) it becomes [28]

n(θ,ϕ) = n0
dA

4πR2 cosθ (1.90)

and then the atomic density in dV is obtained integrating eq. 1.90 over the area dA. Assuming
that in the channel represented in fig. 1.4 atoms are re�ected by the walls with the same angle
dependence as eq. 1.90 and that no atoms are trapped by the walls the particle density can be
obtained integrating eq. 1.90 on the aperture dA (for the particles arriving at P without hitting
the channel) and over dA2(z) along the z axis:

n(z) =
∫

A
n0

dA

4πR2 cosθdA+
Ï

A2

n(z ′)
dA2

4πR2
2

cosθ2dA2dz ′. (1.91)

An approximate expression for the wall collision rate ν(z) has been found [28]:

ν(z) = ν0

(
1−α(β)− (1−2α(β)

z

L

)
(1.92)
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Table 1.1: Dysprosium has seven stable isotopes with mass number 154, 156, 158, 160—164, 154Dy is arti�cial.
¿e two most abundant isotopes are 162Dy and 164Dy which, together with 160Dy are bosons;
161Dy and 163Dy are fermions. ¿e relative abundance of 156Dy and 158Dy is below 1%. Data
from [27].

Isotope Abundance [%] Spin
160Dy 2.34 0
161Dy 18.9 5/2
162Dy 25.5 0
163Dy 24.9 5/2
164Dy 28.2 0

where β= d
L and α(β) → 2/3β for L À d and α(β) → 1/2(1−β) for d À L. With ν(z) the integral

in eq. 1.91 can be solved resulting in the expression for the atomic �ux at a given angle I (ϕ):

I (ϕ)dω= ν0
A

π
j (ϕ)dω (1.93)

where A = π/4d 2 is the area of the channel, dω is th solid angle of observation and j (ϕ) is a
function de�ned di�erently for tan(ϕ) < d/L or tan(ϕ) ≥ d/L, i.e.depending on which of the two
terms in eq. 1.91 is dominating. ¿e �rst term (when tan(ϕ) < d/L) concerns particles that aren’t
re�ected by the channel walls and the second one (tan(ϕ) ≥ d/L) when re�ected particles are the
majority.

¿e collision rate ν(z) can be substituted by the atom density n(z) (the number of collision
is proportional to the number of particles present) and writing all the various parts together we
have an expression for the atom density at a given angle of observation given by:

I (ϕ)dω∝ (eB−A
T )

A

π
j (ϕ)dω (1.94)

1.9 Dysprosium

Dysprosium [Dy] is a rare earth element with atomic number 66 and seven stable isotopes
(tab. 1.1). Its electronic con�guration is [Xe]4 f 106s2 and the ground state has angularmomentum
J = 8 (L = 6, S = 2) and the magnetic moment of the ground state is µ= 9.93µb [22] is the highest
among the natural elements. Its melting point is 1680 K and thus to reach suitable atomic e�usive
�ux dysprosium is usually heated at around 1200 ◦C.

¿e complex electronic structure of Dy allows many quasi-cycling transitions. ¿e strongest
one, with linewidth 32 MHz, is the one at 421 nm. In our experiment it is used for the atomic
beam collimation and slowing respectively in the transverse cooling and Zeeman Slower stages.
Nevertheless, being the Doppler temperature associated with this transition very large (Td−421 =
774µK), a second, narrower, optical transition at 626 nm has been used for the mot trapping.
Here, the reduced linewidth (136 kHz) guarantees a Doppler Temperature of Td−626 = 3.3µK
suitable for direct loading of the atoms in an optical dipole trap at the cost of a reduced capture
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Figure 1.5: Dy energy-level diagram with high J values. ¿e relevant laser cooling transitions between the
even parity (red) ground state and the odd (black) excited states are marked with wavelengths
and spectroscopic terms. ¿e �gure has been modi�ed from ref. [19].
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Table 1.2: Characteristics of the transitions in use [3](*) from [22].

Symbol Description 421 nm 626 nm

λ wavelength (air) 421.1714 nm 626.083 nm
k = 2π

λ wave vector 23743 cm−1 1.0×105 cm−1

τ life time 4.94 ns 1.17 µs
Γ= 1

τ spontaneous decay rate 2.02×108 s−1 8.54×105 s−1

γ= 2π
τ

∆νnat = Γ
2π natural line width 32.2 MHz 136 kHz

Is = π×cΓ
3λ2 saturation int. 56.4 mW/cm2 72.5 µW/cm2

Td = ×γ
2kb

Doppler temperature 774 µK 3.26 µK

Trec = ×2k2

2M recoil temp. 660 nK 300 nK

amax = ×kγ
2M max. acc. 5.79×105 m/s2 1.68×103 m/s2

vC = γ
k om capture velocity 14 m/s 0.085 m/s

g (*) g-factor 1.22 1.29

velocity [21] [10]. A narrower transition at 741 nm (14 kHz) exists and has been used to obtain
the �rst Dy Bose-Einstein condensate [26].
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Chapter 2

Experimental setup

¿is chapter is devoted to the description of the setup we used to trap dysprosium atoms.
¿e majority of the apparatus was already built before my thesis started. Even if during my thesis
I did not directly build any part of the apparatus, nevertheless a description of the various devices
provides a general overview of the experiment.

As said before, we use the 421 nm blue transition for the transverse cooling, the Zeeman-
Slower, and the imaging; the 626 nm red transition for the mot and 1064 nm radiation for
the optical dipole traps. Hence we need three laser systems that make the apparatus rather
complex and sensitive to the ambient conditions. For these reasons the laboratory is temperature
controlled: the temperature oscillates in less than 2 ◦C in the room and less than 1 ◦C at the
optical tables. In the laboratory there are several optical tables: one containing the red and blue
laser sources, shown in fig. 2.1(a) and a second one with the vacuum setup, shown in fig. 2.1(b),
containing the atomic compound composed by the oven, the Zeeman Slower, and the science
cell. ¿e vacuum chamber is placed over a 40 cm supporting structure to allow the entrance
of the vertical beams and in order to gain space on the optical table. Two 3.5 cm aluminium
breadboard at the same high provide additional support for the necessary optics. One arm of the
mot mounted on one of the two breadboard is showed in fig. 2.1(c). ¿e two 1064 nm lasers and
the relative optics used are place on the second optical table and in other two smaller tables. ¿e
light is transported from the various sources by single mode polarization maintaining optical
�bers.

As described in the section of this chapter devoted to the imaging, we extract all the measures
from an absorption image of the sample that destroys the sample itself so, in order to perform
another measure, a new sample has to be prepared. For this reason the experiment runs in cycles
controlled by a computer where all the single operations are scheduled and executed trough ttl
and analog signals generators.

27



Experimental setup

(a)

(b)

(c) (d)

Figure 2.1: (a) Picture of the table containing the vacuum chamber. (b) Picture of the red and blue lasers in
the dark. (c) Picture of an arm of the mot. It can be seen the science cell and �nal coils of the
Zeeman Slower. (d) Picture of the two beams of the transverse cooling crossing on the atomic
beam. It can also be seen the blue light of the Zeeman Slower scattered by the atoms.
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Experimental setup Vacuum chamber

Figure 2.2: Scheme of the apparatus.

2.1 Vacuum chamber

¿e vacuum setup is divided in two regions, a �rst one with the e�usive oven of high vacuum
(< 1×10−7 Torr) section, and a second one, containing the science cell, of ultra high vacuum
(< 1×10−10 Torr). Looking ate the apparatus setup from le to right (see fig. 2.2), the setup is
composed of the Dy e�usive oven, the transverse cooling section, a di�erential pumping section
that ends with a high vacuum valve that separates the high vacuum and the UHV sections. A er
the valve there is the Zeeman Slower section then the science cell that terminates with a tee from
where the slowing laser beam enters the setup.

¿e cold atomic cloud in the vacuum chamber is submerged into the residual gas that is
in thermal equilibrium with the chamber walls. For this reasons, its composing particles, are
moving at velocities of the order of thousand of metre per second. If they collide with a trapped
atom this atom is lost regardless of the trap depth that is by far lower than the thermal particles
energy. ¿is kind of atom loss is proportional to the probability that such collision occurs, hence
to the atomic cloud density multiplied the residual gas density, and is called one body loss. In this
picture, the number of atoms that remain trapped can be described by a decreasing exponential
function of the time and its time constant is called the lifetime of the trap. In order to increase
the cloud lifetime, the residual gas pressure has to be made as low as possible.

A particular attention is paid to the e�usive oven. If, on the one hand, a higher pressure
of the subliming dysprosium is desirable to achieve an intense atomic �ux, on the other hand
high velocity dysprosium atoms are a cause of trapped atom losses. ¿is particular situation
is circumvented using a di�erential pumping stage: in the relatively high pressure zone of the
oven section, a Varian VacIon Plus 20 ion pump (that has an ultimate pressure of 10−11 Torr)
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is placed. ¿is section of the experimental chamber is then connected to the beginning of the
Zeeman Slower with a tube 8 cm in length and 5mm in diameter and at its end is placed a second
ion pump identical to the �rst one. In the molecular �ux condition (the condition in which
gas density is so small that particles interact primarily with the chamber surface rather than
with each other) the small conductance of this tube guaranties a pressure di�erence at the tube
extremes, in this way the higher pressure zone of the oven is separated from the lower pressure
zone at the beginning of the Zeeman Slower. At the end of the Zeeman Slower, in the proximity
of the mot chamber, there is a third pump: a NEXTorr D 100-5 (that, again, has an ultimate
pressure of 10−11 Torr). ¿is pump is a combination of a small ion pump and a getter cartridge
and is placed as close as possible to the mot zone without getting into the optical paths. ¿e
pressure in the mot chamber can be estimated by the current of ions gathered by the last pump
that is smaller than minimum current the device can read, so it can be said that, at least in this
zone, the pressure is lower than 1×10−11 Torr.

At the beginning of the Zeeman Slower is present a shutter used to block the atomic �ux
once the mot is loaded in order to protect the trapped atoms from the non slowed atoms; the
Zeeman Slower beam is turned o� once the mot is loaded because, given the large di�erence it
the linewidth of the respective transitions, atoms trapped in the mot are easily pushed away by
the blue light.

Externally of the science cell (see fig. 2.2) we �nd di�erent coils necessary for the generation
of the magnetic �elds. ¿ere are two pairs of circular coils with vertical axes placed in Helmholtz
and anti-Helmholtz con�guration, i.e. with their radius equal to their distance. ¿e coils used for
the mot are in the anti-Helmholtz con�guration, the current �ow in a coil is opposite than in the
other, in this way is generated a linear magnetic �eld gradient around the point on the common
axis equidistant from the coils centres (the mot is formed in the vicinity of this point). In each of
the coils in the Helmholtz con�guration con�guration the current �ow is the same in order to
generate a constant magnetic �eld in the neighbour of the quadrupole centre. ¿e current �ow
in these two coils is controlled and stabilised by a pid, because they are used for the Feschbach
spectroscopy hence the magnetic �eld has to be �ne controlled. Other two rectangular coils are
placed in a quasi Helmholtz con�guration with the axis in common with the Zeeman Slower axis
and are used in order to compensate for the disperse magnetic �eld emerging from the Zeeman
Slower itself.

¿e Zeeman Slower laser beam enters in the vacuum chamber vertically and then is turned
horizontally by a 45° mirror. In a precedent con�guration a window was used but the glass
was coated by the dysprosium �ux coming from the beam. ¿e use of the mirror, being the
dysprosium coating re�ective, avoid this problem.

¿e stainless steel mot chamber is a standard octagonal cell (by Kimball) with CF40 �anges
on the side surface and other two windows one on the top and one on the bottom surfaces that
provide the optical access for the mot, the odt and the imaging beams.
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Figure 2.3: Schematics of the 421 nm laser optics a er the shg frequency doubling cavity, lenses for the
beam shaping are omitted. ¿e frequency of the di�erent beams is detailed in the text. In the
present setup the third �ber for imaging is not used and the imaging beam is derived from the
one for transverse cooling.
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2.2 The 421 nm laser

¿e 421 nm light is obtained by frequency doubling the 842 nm light with a second har-
monic generation (shg) cavity. ¿e laser is subsequently locked to the atomic line by the Pond-
Drevel-Hall technique performed on the dysprosium atomic beam itself via modulation transfer
spectroscopy. ¿e laser project is detailed in [3]. As showed in fig. 2.3 the laser in divided in to
three di�erent beams. ¿e �rst beam, a er a double passage in a 350 MHz aom is shined on the
atomic beam to perform both the spectroscopy and the frequency lock; the second one, again
a er a double passage in a 350 MHz aom is used for the transverse cooling and the imaging; the
third one a er a single passage in a in a −350 MHz aom is sent to the Zeeman Slower. In this way
the transverse cooling and imaging beams are in resonance with the atomic transition (correction
of the order of Γ421 are done �ne-tuning the aom frequency) while the Zeeman Slower is red
detuned by 1GHz ' 27Γ421 as designed. Furthermore the aom can be used as an optical switch.

¿e 842 nm laser is a commercial Ti:Sapphire (SolsTiS by M2) laser pumped by another
commercial 10 W 532 nm laser (Sprout by Lighthouse Photonics) and generates up to 2.4 W of
842 nm light; it is composed by a Sapphire crystal doped with Titanium enclosed in a ring cavity.
¿e wavelength is conditioned by a birefringent �lter and an etalon in the cavity, then, a second
external reference cavity with a free spectral range of 3 GHz, narrows the linewidth down to
50 kHz. ¿is cavity is provided with an external input that we use to lock the cavity to the atomic
line.

¿e 842 nm radiation is then frequency doubled by a shg cavity built in the Lens laboratory
in Firenze [3]. ¿is cavity uses an LBO (LiB3O5) crystal in a bow tie optical scheme. In order
to actually work, a cavity must have an optical length that is an integer multiple of the light
wavelength, hence one of the mirrors is mounted on a piezoelectric transducer controlled via the
Hansch-Couillaud locking technique [14]. ¿e construction and analysis of the locking scheme
in use is detailed in [3]. Brie�y, the lbo crystal has di�erent refractive indexes in the di�erent
directions so the optical path depends on the light polarization. Assuming that the cavity length
is choosen in order to be an integer multiple of the wavelength for the component of the electric
�eld (E∥) parallel to one of the optical axes of the lbo crystal, the orthogonal component of the
electric �eld (E⊥), due to the di�erence in the refractive index, doesn’t propagates in the cavity
and is re�ected with no change in its phase with respect to the incident �eld. E∥, on the other
hand, does propagates in the cavity and acquires a phase δ with respect to E⊥. At resonance
it holds δ = 2πm and the re�ected electric �eld E (r ) = E (r )

⊥ +E (r )
∥ is linearly polarised. Out of

resonance we have δ 6= 2πm and E (r ) is elliptically polarised. With a λ/4 waveplate it is possible
to distinguish these two situations by sending the two elliptical polarizations to two photo diodes
and monitoring the di�erence in their output signals.

Once obtained the 421 nm light, it is possible to lock the SolsTiS reference cavity to the
atomic transition. In order to have aDoppler-free reference the saturated absorption spectroscopy
scheme [11] is used. In a �rst apparatus design a hollow cathode lamp was used as source of
dysprosium vapour unfortunately these lamps have a too short lifespan (two of them were
required over three years) for our purpose and so the locking scheme has been changed and
today the atomic beam emerging from the oven is used instead. ¿e locking principles are in any
case the same: atoms are excited by a pump beam and the absorption of a counter-propagating
probe beam is observed. If the two beams have the same frequency, because of the Doppler shi ,
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(a) (b)

Figure 2.4: (a) Scheme (not to scale) of the transverse cooling (TC) optics; the �rst polarising beamsplitter
is inserted in order to have a clean linear polarised light. ¿e beam is then elliptically shaped
by two anamorphics prisms and divided in two with λ/2 waveplate and a second polarising
beamsplitter in order to balance the two arms intensities. ¿e two λ/4 waveplates change the
polarization from linear to circular, �nally the two beams are retrore�ected. (b) Scheme (not to
scale) of the Zeeman Slower (ZS) optics; a er the polarising beamsplitter the light is linearly
polarised and �nally made circular by the λ/4 waveplate.

they interact only with atoms moving at a velocity v = 0 along the beams propagation direction;
the pump beam excites these atoms and as a consequence the absorption of the probe beam is
decreased. In this way it is possible to obtain a Doppler free absorption peak whose width is
comparable to the natural linewidth. ¿e actual lock is detailed in [3]. Brie�y, the pump probe
is phase modulated by an eom and this modulation is transferred to the pump beam via the
modulation transfer spectroscopy [23] and used in a Pound-Drever-Hall con�guration [4] where,
instead of the re�ection from the cavity, the transmitted probe beam is used to generate the error
signal.

2.2.1 Zeeman Slower and transverse cooling

¿e optical schemes of the transverse cooling (a) and the Zeeman Slower (b) respectively are
reported in fig. 2.4.

¿e transverse cooling creates a 2D optical molasses (sec. 1.3.1) acting on the plane perpendic-
ular to atomic beam propagation direction in order to increase the atomic beam density (sec. 3.1).
It applies a viscous force to the velocities perpendicular to the propagation direction the time
dependence is given by eq. 1.35: v(t ) = v(0)e−(β/M)t , where β is given by eq. 1.34 and M is the
atomic mass, and the damping is heavily dependent on the interaction time. ¿e gaussian tem00

beam emerging from the optical �bre is elliptically shaped by two anamorphics prisms in the
direction of the propagation of the beam in order to increase the transit time while maintaining
an intensity as large as possible. ¿e beam has 3.5 and 8 mm waists at the atomic beam posi-
tion. Two λ/4 waveplates change the light polarization from linear to circular to optimize the
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Figure 2.5: Scheme of the Toptica TA-SHG Pro (from the technical manual).

transverse cooling.
¿e Zeeman Slower optics is designed in order to focus the laser beam at the oven position

so as to mimic the atomic beam size increase with the distance (see �g. 3.3) from the oven itself.
Its waist at the mot position is 8 mm and the light is circularly polarised.

2.3 The 626 nm laser

In order to be able to load the atoms in an optical dipole trap, we choose, to operate the mot,
the narrow line 626 nm transition, which has a residual Doppler temperature of only 3.2 µK.
¿e light at this wavelength is obtained by a Toptica TA-SHG Pro laser (fig. 2.5), a commercial
compact device. An external cavity laser diode generates a low intensity radiation at 1252 nm
that is ampli�ed by a Master-Oscillator Power-Ampli�er (mopa) and then frequency doubled in
a bow-tie cavity in order to obtain nearly 1 W of radiation at the desired wavelength. ¿e laser
scheme is reported in fig. 2.5 from its technical manual. According to the datasheet, this laser
has a line-width of ∼ 20kHz, hence narrower than the dysprosium line-width of 135 kHz- Given
the small saturation intensity of the transition choosen, we are able to obtain a peak intensity
higher than 200Is in either of the three mot beams.
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(a)

(b)

Figure 2.6: (a) Diagram of the locking scheme: one of the three aom operates at 350 MHz and the other
two at 80 MHz, all of them are in double passage. (b) Saturated absorption error signal of the
I2 (in blue) and the Dy 626 nm transition spectroscopy (in red), the frequency gap between the
162Dy peak and the last Iodine peak is bridged by 4 aoms.
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2.3.1 Iodine lock

¿e reference signal necessary to lock the 626 nm laser to the atomic transition is obtained
again via the saturated absorption spectroscopy of an Iodine (I2) transition. In fig. 2.6 are
reported both the optical scheme (a) and dysprosium absorption (red) and the error signals
(blue) that this apparatus provides (b).

As already said in the previous section, the saturated absorption spectroscopy permits to
achieve a Doppler free absorption signal. ¿e optical scheme is reported in fig. 2.6(a) and is
analogous to the one used for the blue 421 nm lock: a strong pump beam excites the atoms and
the absorption of a weaker counter-propagating probe beam is observed, in this way only the
v = 0 atomic velocity class is resonant. To obtain the error signal the pump beam is frequency
modulated at 43 kHz and thanks to the non linear Iodine response, this modulation is transferred
to the probe beam [23]. ¿e lock-in technique can be described observing the absorption signal
in fig. 2.7(a). If the laser frequency is below resonance, then the resulting probe amplitude
modulation (determined by the slope of the absorption curve) has a phase that is opposite with
respect to the modulation one. On the other hand, if the laser frequency is above resonance, the
the resulting amplitude modulation has the same phase as the frequency modulation. At this
point, if the probe beam is detected by a photodiode, and the electric signal produced by the
photodiode is multiplied by a square symmetric zero-crossing wave with the same period and
the same phase (this is done with a mixer, like in the Pound–Drever–Hall scheme), the mixed
signal oscillates at a double frequency with respect to the original pump modulation frequency.
Furthermore, the mixed signal, is negative, null and positive at a base laser frequency respectively
smaller, equal and higher than the resonance one. As a �nal step, the mixed electric signal, is
low-pass �ltered with a cuto� frequency lower than the probe modulation frequency resulting in
the needed error signal.

2.3.2 mot optical design

¿e optical scheme of the mot is reported in fig. 2.7. With a series of λ/2 waveplates and
polarising beamsplitters, it is possible to adjust the relative intensity in the three mot’s arms. ¿e
aom allows to control the laser beam both in frequency and in amplitude, an can be used as an
optical switch. During the loading of the mot the light is far red detuned (−35Γr) while during
the compression stage both detuning and intensity of the beams are reduced in order to maintain
a su�cient con�ning force and a small scattering rate. In addition, during the mot loading phase,
the aom frequency is modulated (∼2 MHz at 135 kHz rate) in order to increase the mot capture
velocity (see fig. 1.2). Once atoms are captured and cooled their velocity dispersion is reduced
and the frequency modulation is no more necessary and turned o�.

¿e maximum velocity an atom can have and still be captured by the mot, the mot capture
velocity, can be estimated by equating the kinetic energy of the atom to the maximum work that
the scattering force can make along the laser beam diameter. Considering that the scattering
force saturates at high intensity (see eq. 1.25), enlarging the beam waist results in a higher capture
velocity, provided (as in our case) that the light intensity remains well above the saturation
intensity. ¿e design of each of the three mot arms follow this concept: the three beams are made
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(a) (b)

Figure 2.7: Scheme of the mot optics. (a)¿e 626 nm light is injected in three mono mode (PM) optical
�bers, the AOM is used for both frequency and amplitude modulation of the light. (b). ¿e �rst
λ/4 waveplate turn the light polarization from linear to circular while the second one, a the
�rst passage turn the polarization to linear and, at the second passage, again circular but with
opposite ellicity (see fig. 1.3).

as wide as possible, the limit being the windows diameter 4 cm of the science cell. ¿e out of
scale scheme of the optics used is reported in fig. 2.7(b) (the scheme is the same for all the three
beams). A certain attention has to be paid to the polarization of the light: as depicted by fig. 1.3,
for the correct mot operation, the two counter-propagating beams have to be circularly polarised
but with opposite helicity. At the exit of the �ber the light is approximately linear polarised, then
polarization is made clearly linear by a polarizer, then circular by the �rst λ/4 waveplate then
again linear by the second λ/4 waveplate and �nally circular again during the second passage in
the second λ/4 waveplate.

2.4 The 1064 nm lasers

¿e 1064 nm radiation is provided by two commercial Mephisto lasers. ¿ey use a Nd:Yag
crystal to produce up to 10 W of radiation. ¿eir frequency can be controlled by varying a
piezoelectric transducer and by changing the crystal temperature.

2.4.1 Resonator optical trap

¿e optical dipole potential is proportional to the laser intensity, in order to be able to
con�ne the atomfrom the mot at ' 20µK and with a su�ciently large waist (∼ 300µm), powers
of the order of 100 W would be required. In order to reduce this power we use a resonant cavity
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Figure 2.8: Scheme of the resonator optical dipole trap and its Pound-Drever-Hall locking scheme. ¿e
second aom is used as a variable quasi neutral-density optical �lter to maintain the correct
power level on the photo diode. ¿e beam splitter (B.S.) is used to deviate the cavity re�ection
onto the photo diode.

made with two high-re�ectivity spherical mirrors. ¿ese mirrors are at 9 cm distance and have
a curvature radius of 3 m and the measured cavity �nesse is 1050. In this way a 1 W power is
su�cient to form a potential of the order of 100 µK (see sec. 3.4). A drawback of this con�guration
is that the radiation needs to be resonant with the cavity. For this reason one of the Mephysto
lasers is locked to the cavity with a Pound-Drever-Hall scheme [4]. A scheme of the principal
devices is reported in fig. 2.8. Because of the laser frequency locking, the light intensity inside
the resonator can’t be completely switched o� even when the other two odts are crossed inside
the cavity. In order not to perturb the crossed trap, the light intensity has to be reduced by a
factor higher than the cavity �nesse but, at the same time, the photo diode that provide the signal
to the locking electronics has a much lower dynamic range than 1×103. For this reason two
aoms are used as quasi neutral-density �lter: the �rst, aom1 is used to regulate the light intensity
in the cavity while the second one, aom2, is used to regulate the power level onto the photo diode.
In this way it is possible to attenuate the light intensity in the cavity by a factor of 1×10−4 while
maintaining the laser locked.

¿e Pound-Drever-Hall locking mechanism build uses two pid in order to compensate the
slow and fast perturbations of the cavity: the �rst pid modify the laser frequency varying the
Mephysto cavity length via the piezoelectric transducer, and this can compensate high frequency
perturbations, then the output of the �rst pid is low pass �ltered and sent to another pid that
changes the Nd:Yag crystal temperature in order to maintain the �rst pid output at zero hence
the laser at resonance with the cavity; this second feedback, acting on the crystal temperature, is
much slower than the �rst one but permits higher frequency variations.

2.4.2 Single-beam optical dipole traps

¿e last two optical traps in use are two single beam optical dipole traps. ¿ey are realised by
focusing a gaussian tem00 beam at 1064 nm. With this con�guration the con�nement is very
weak on the propagation direction of the beam and ismuch tighter on the transverse directions, so,
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Figure 2.9: Optical scheme of the two optical dipole traps in use (for historical reasons odt1 odt3)
Odt1 doesn’t have the two anamorphics prisms and has a gaussian beam with a waist of
400.6±0.2×40.6±0.2 µm while odt3 is elliptical with a waist of 36.6±0.2×80.6±0.2 µm
thanks to the two anamorphics prisms. With respect to the other devices they are quite sim-
ple: the laser doesn’t need to be locked, given the absence of resonating devices and the weak
dependence of the dipole force for far red detuning radiation. ¿e feedback loop, composed
essentially by the photodiode, the aom and the pid, necessary to power stabilise the two traps,
is also reported.

in order to have a three dimensional con�nement, we use two crossed gaussian beams at an angle
of 40°. One of the two traps (odt1) is a cylindrical trap because is made with a radial symmetric
beam, the other (for historical reasons odt3), being made with a elliptic cross section beam, is
called an elliptic trap. In this way, the harmonic potential con�ning the atoms has comparable
frequencies in all the three axes. Given the dipolar nature of dysprosium, the frequency of the
potential along the polarization direction of the atoms needs to be higher than the one in the
other two directions [18], and this is why odt3 is made cylindrical.

Given the absence of resonant devices and the weak dependence of the dipole force on the
radiation frequency (in the case of far red detuned radiation), the design of these two traps ,
depicted in fig. 2.9, is quite simpler than the others encountered so far. Anyway, they need to be
power stabilised, particularly in the last phases of the evaporation, because the potential depth
depends linearly on the laser intensity hence �uctuations in the laser power perturb the potential
and, in the end, can lead to atom losses. ¿e power stabilisation is obtained using an aom, a
photodiode and a pid. At this wavelength the aom frequency modi�cation can be neglected but
its trasmissivity as a function of the rf power at which it is drive, can’t. ¿e power control is
achieved by sending the photodiode signal (proportional to the laser intensity) to an input of
the pid, the other input is driven by the control apparatus and it works as a stable and noise free
reference. ¿e pid output drives the rf arriving at the aom controlling that the beam intensity
matches the reference input. In this way, to some extent, the potential depth is independent on
the actual laser power and to the noise.

As previously said, the resonator trap can’t be completely turned o� otherwise the lock of the
laser fails. Furthermore, as already said, the high �nesse cavity increases by a factory of roughly
∼ 1000 the radiation intensity present in the cavity and it easily perturbs the others optical dipole
traps even though its power is set to the minimum. For this reason, the odt1 is designed to be
lowered by 3 mm moving one focusing lens. In this way, when atoms are loaded in the dipole
traps, the resonator in�uence is completely neglected. ¿is feature has not been actually used for
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obtaining the �rst 162Dy BEC.

2.5 Imaging setup

Data are extracted using standard absorption imaging with 421 nm resonant light through
horizontal or vertical direction at choice. A short blue �ash of the duration of 0.13 ms and a
power of roughly 7 mW is sent to the trapped atoms and then an image is registered with a
Stingray digital camera. Considering that the lifetime di�erence between the 626 and the 421 nm
transitions is of the order of 1×103, for each scattering event in the mot roughly a thousand
scattering events with the imaging beam occur so atoms are easily scattered out of the mot and
out of any odts, so the imaging process results in the destruction of the sample.

In order to have a background-independent measure of the total absorption of the atomic
sample, three images are required. ¿e �rst one (“Im1”) with the atoms present; a second one
(“Im2”) taken a er all the atoms are scattered but with all the laser beams on and a third one
(“Im3”) with all the beams turned o�. Assuming that the camera provides a signal in the form of
Im = AI +B , where Im are the pixels values corresponding to an intensity I and A and B are
respectively the gain and the o�set, the �nal measure is actually done on an image constructed
as Img = − ln( Im1−Im3

Im2−Im3 ) = ln(I0/I ) that depends only on the ratio between the light intensity
collected with the atoms (I ) and without the atoms (I0).

¿e �rst blue �ash of intensity I (z = 0) = I0 encounter in his path an atomic cloud with
numeric density given by eq. 1.62:

n(x, y, z) = N
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moving along the ẑ direction, for the light intensity it can be written:
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and, using a resonant light and considering all the atoms in the ground state, for the absorption
cross section and for the populations it can be written:
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2π

so the equation becomes ∂I
∂z =−n(x, y, z)σI whose solution is

ln
( I (x, y, z)

I0

)
=−σ

∫ z

a
n(x, y, z ′)dz ′;

posing I (z) = I0 for z ≤ a; for z →∞ it becomes:

ln
( I (x, y)

I0

)
=− Nσ

(2π)σxσy
e
−( x2

2σ2
x
+ y2

2σ2
y

)
. (2.2)
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¿e image used by our imaging program is then

Img(x, y) =− ln
( I (x, y)

I0

)
= Nσ

(2π)σxσy
e
−
(

(x−x0)2

2σ2
x

+ (y−y0)2

2σ2
y

)
(2.3)

where x0 and y0 are the coordinate of the cloud centre.
In order to extract useful information from eq. 2.3, a �t is done in the two orthogonal

directions: the program sums the pixels over the same row (i.e. over x) in order to obtain

ln
(
− I (y)

I0

)
= Nσp

2πσy
e
− (y−y0)2

2σ2
y (2.4)

and then it calculates the �t using A = MPy Nyσ/
p

2πσy and MPyσy as �t parameters, where
M is the magni�cation factor and Py the ŷ pixel dimension, and then it calculates Ny and σy .
Repeating the same procedure but summing over each column (y) it obtains Nx and σx and
�nally N =√

Nx Ny (x0 and y0 are obtained directly from the maximum in the image).

2.5.1 Time of flight measurement

If the con�ning potential is turned o�, a er a time t ¿e Maxwell-Boltzmann velocity
distribution will be

f (v) =
(2πkbT

M

)− 3
2

e−
1
2

Mv2

kbT (2.5)

given the absence of any potential it can be written: r(t )− r0 = vt and eq. 2.5 becomes

f (v) = 1

(2π)3/2

1

σ3
v

e
(r−r0)2

2σ2
v ; σ2

v = kbT

M
t 2 (2.6)

thus the distribution of the �nal position of the atoms is

n(r) =
∫ ∞

−∞
n(r0) f (

r− r0

t
)dr0 = N

(2π)3/2

1

σx(t )σy(t )σz(t )
e
−
(

x2

2σ2
x (t )

+ y2

2σ2
y (t )

+ z2

2σ2
z (t )

)
(2.7)

where

σ2
x,y,z(t ) =σ2

x,y,z(0)+ kbT

M
t 2. (2.8)

By taking an in situ absorption image it is possible to measure the cloud size while by taking
the image a er a free expansion time, it is possible to calculate the velocity distribution and thus
the atomic temperature.
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Figure 2.10: Cloud centre displacement as a function of time (dots) and (line) the �t result with the function
z =O + 1

2 At 2.

2.5.2 Horizontal imaging magnification

In order to have more detailed images, the imaging beam passes trough a series of optics that
enlarge it so to produce magni�ed images. If, on the one hand, this magni�cation is useful, on
the other hand can produce a systematic error.

¿e magni�cation factor can be calculated via the geometric optics laws and, at least for the
horizontal beam, using the acceleration of a free falling body as a reference.

Fig. 2.10 reports the measure of the central position of a free falling cloud (at rest at t = 0)
for di�erent times t . ¿e displacement from the t = 0 position is then z(t ) = −1

2 g t 2 where
g = 9.81m/s2 is the gravity acceleration. In our case, performing a �t with the function: z(t ) =
O − 1

2 At 2, where A = g M(pxsize) and O is the initial position, gives A = 4.89 and, keeping in
mind that the camera in use has pixel of 6.45 µm, a magni�cation factor of M = 3.2, in very good
accordance with the calculated one.

42



Chapter 3

Results

¿is chapter is devoted to present our experimental results. ¿ey will be reported in an order
related to the various physical phenomenons presented in cap. 1 that, incidentally, is the same
order of the phenomena that atoms, in their travel toward the degeneracy, experience.

¿e �rst process described is the so called transverse cooling stage. It is essentially a 2D
optical molasses arranged in the plane orthogonal to the atomic beam. It is intended to collimate
the atomic beam and maximize the atomic �ux arriving at the mot position and, as an example,
a measure of the �uorescence radiation is reported.

For what concerns the Zeeman Slower, I report some simulation results that helped in the
understanding how the various parameters like current, laser detuning and oven temperature
are related and the measure of the �nal velocity.

Our mot, given the narrow-line used, is rather peculiar, and a description and a characteri-
zation are reported. Together with the measured results are discussed and compared with the
publications from other experiment.

Finally, it follows a description of the various optical dipole traps, along with the discussion
of the various parameter measured, and a comparison with the performed calculation.

Strictly related to the optical dipole trapping technique, there is the forced evaporative
cooling (today under development) so a description of the various ramps and, for what is in my
capabilities, a description of the phenomenon involved is reported.

Obviously in this chapter there is not only my work but there is the work of several physicists.
In any case I participated, although with a limited role in all the reported measurements.

As it will be said in the following, our measurements are entirely done with absorption
imaging, which destroys the sample. So the experiment works in cycles: the atomic beam is
slowed, then the mot is loaded, then the resonator dipole trap and �nally the three single beam
optical dipole traps are loaded. If an absorption imaging is performed at some point the sample
is lost and another measure is taken in the successive cycle. ¿e various samples aren’t exactly
equal but exhibit some �uctuations, especially in the number of atoms that can vary up to 30%
from cycle to cycle. ¿is is our biggest error source so, each measure is obtained repeating the
same measure a certain number of times. ¿e error is then calculated by using standard error
theory.
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Figure 3.1: Fluorescence signal at the science cell obtained shining the 626 nm laser orthogonally with
respect to the atomic beam. ¿e laser frequency was modulated in order to scan a useful range
of velocities. ¿e resulting transverse velocity distributions have quite similar widths but Data
are �tted with y = A/

p
2πsexp(−(x−x0)2/2s2); the ratio between the two A parameters is ∼ 2.1

and between the two s parameters is ∼ 1.1. ¿e resulting �t functions are integrated leading
to a 16:9 ratio. ¿e x0 parameter is necessary because the frequency scale hasn’t an absolute
reference.

3.1 Transverse cooling

¿e transverse cooling stage is intended to increase the density of atoms propagating at small
angles and thus entering the ZS and being slowed. It consists in a 2D optical molasses that slows
the velocities in the plane xz orthogonal to the Zeeman Slower axis y . ¿e transverse velocities
are dumped exponentially with a certain time constant (see sec. 1.3.1) so the cooling e�ect is
dependent on the interaction time between the moving atoms and the laser beams. ¿e beams are
shaped with an elliptical waist with 3.5×8 mm axis in order to increase this interaction time, have
total laser power of 75 mW (' 3Is) and a detuning of δ=−γ/3. We tried di�erent con�gurations
in the beams path and polarizations and the best one was with two retrore�eced beams of the
same intensity, obtained by splitting the blue light. ¿e power balance was controlled by a λ/2

plate and a polarising beam-splitter and two additional λ/4 allowed varying the polarization.
Assuming that the atoms reach a thermal equilibrium in the path from the oven to the

science cell, the �nal Maxwell-Boltzmann distribution has always the same width but di�erent
peak density respectively with or without the transverse cooling. In fig. 3.1 are reported two
�uorescence spectra of the atomic-beam at the science cell, the �uorescence was collected by a
photomultiplier tube orthogonal both to the probe laser and the atomic-beam. Bymodulating the
frequency of the 626 nm laser, atoms with di�erent velocity were excited at di�erent frequencies
thanks to the Doppler e�ect. ¿e amplitude of the signal produced by the photomultiplier tube
was proportional to the number of excited atoms. Again, data in fig. 3.1 are �tted with a gaussian
function whose integral is proportional to the atom density. From the data analysis it emerged
that the peak atom density is increased by a factor of 2.1 by the transverse cooling, in these
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Figure 3.2: ¿e magnetic B(y) calculated with eq. 3.5 for di�erent values of the detuning δ, the saturation
parameter is s =∞.

conditions we observed an increase up to a factor of 4 in the number of trapped atoms in the
mot with the transverse cooling turned on.

3.2 Zeeman Slower

¿e aim of the Zeeman Slower is to provide a �ux of dysprosium atoms cool enough to be
captured by the mot. For this task, thanks to its strength, the 421 nm blue transition is used with
a circular polarised light.

Because of the magnetic dipole moment of µ9.93µb, the dysprosium atoms in a non zero
magnetic �eld are aligned in the direction of the �eld, and the use of circularly polarised light
lead to a σ− (σ+) transition which pumps atoms in a “stretched” i.e. J = 8, m J = −8 (optical
pumping). From eq. 1.88 the most probable velocity of an atom at 1110 ◦C is vmp ' 480m/s and
at this velocity the time for covering a 0.5 m distance (approximately the Zeeman Slower length)
is 1 ms. Given the 421 nm transition lifetime of 4.94 ns (tab. 1.2) the number of absorption
followed by spontaneous emission is roughly 1×105 and, because of the optical pumping, all the
atoms can be considered cycling between the J = 8,mj =−8 and J = 9,mj =−9 states hence a
two state model of the atom can be used.

As reported in chapter 2, the Zeeman Slower principle is based on the force eq. 1.40 that
has to be adapted to our case so µb∆mj =µb(gj′mj’− gjmj) and, for light atoms where the L-S
coupling is valid, the expression for the g-factor is:

gj = 1+ J (J +1)+S(S +1)−L(L+1)

2J (J +1)
. (3.1)
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Dysprosium is a quite heavy atom so the previous expression (eq. 3.1) is not exact, the correct
g-factor values are g ′ = 1.22 and g = 1.24 [15] so, in our case the correct form of eq. 1.40 is

Fzs =×k
γ

2

s

1+ s + 4
γ2

(
δ+kv−1.06 µbB(y)

×
)2

. (3.2)

As already reported in sec. 1.4 the force in eq. 3.2 is maximum when the term in bracket at
the denominator is zero, leading to the condition for the magnetic �eld

B(y) = ×
1.06µb

(
k v(y)+δ)

. (3.3)

So, for each atom moving at the velocity v(y) the maximum possible force is ηFmax (where η< 1
is a “security” factor introduced to have into account the fact that the force can be non optimal.
In our case a value η= 0.4 has been choosen. ¿is determines the length of the Zeeman Slower).
Once the initial and �nal velocities (vi and vf respectively) and the saturation parameter s are
chosen, the length of the apparatus z0 and the maximum force Fmax are determined by

y0 = 1

2
M

v2
i −v2

f

ηFmax
; Fmax =×k

γ

2

s

1+ s
. (3.4)

With this assumptions, an atom moves with a constant acceleration so that an expression can be
written for both the velocity v(y) and also for the magnetic �eld B(y):

v(y) = v0

√
1− y

y0
; B(y) = ×

1.06µb

(
δ+kv0

√
1− y

y0

)
. (3.5)

¿e laser detuning in eq. 3.5 can be chosen in order to have a more convenient magnetic
�eld. As shown in fig. 3.2 the choice to have δ= 0 implies that the blue laser is resonant with the
atoms leaving the Zeeman Slower. In this case the atoms will be pushed away from the radiation
pressure of the blue light and will never reach the mot. Furthermore this choice leads to a very
intense magnetic �led at the end of the Zeeman Slower hence a high power is required to generate
it. Choosing a δ 6= 0 implies that a constant magnetic �eld (Boff = ×δ

1.06µb
) is present and causes

the laser not to be resonant with the exiting atoms and the total magnetic �eld to be smaller
at the beginning of the Zeeman Slower. ¿e use of a detuned laser, as can be seen in fig. 3.2
implies that the z projection of the magnetic �eld assumes both positive and negative values,
this means that the atoms change their angular momentum orientation and also the transition
change between σ+ and σ−. ¿is is a so called spin �ip Zeeman Slower.

Our Zeeman Slower fig. 3.3 is a spin �ip one and themagnetic �eld is generated by 11 di�erent
coils connected in series. ¿e inversion of themagnetic �eld direction is obtained by inverting the
current �ow direction in the coils. A smaller coil at the beginning ensures that the magnetic �eld
goes quickly to zero before the beginning of the ZS.¿e laser beam is focused at the oven position
and is shaped in order to have a diameter of roughly 16 mm (the diameter of the cf16 tube ) at
the entrance of the ZS, so that the saturation intensity is reached at a laser power of P ' 112mW.
A power of 150 mW is normally used. Assuming the waist evolving linearly in space from 16 to
6 mm, the average saturation parameter is s ' 1.3. ¿e laser detuning is around -32.8Γ and, in
absence of magnetic �eld, it is resonant with the atoms moving at a velocity of 480 m/s.
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Results Zeeman Slower

Figure 3.3: Scheme of the Zeeman Slower: the orange and black boxes are the cross sections of the di�erent
coils with opposite current direction. Superimposed in red there is (solid line) the magnitude of
the resulting magnetic �eld along the longitudinal. ¿e blue shadow represents the laser beam
focused at the oven position in the approximation of a linear varying waist. ¿e atoms are
moving to the right and the blue light to the le .
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Figure 3.4: ¿e �nal atomic velocities measured and simulated as a function of the Zeeman Slower current.
¿e simulation code has been kindly provided by Prof. Fallani of the University of Florence.
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Zeeman Slower Results

We measured the velocity of the atoms exiting the Zeeman Slower by varying the current
circulating in the coils (fig. 3.4) and we confronted them with simulations. ¿e simulation
program was kindly provided by Prof. L. Fallani of the LENS at the University of Florence.
In order to measure the �nal velocity we illuminated the dysprosium beam at the centre of
the science cell with two red 626nm laser beams propagating in the x y (horizontal) plane, one
orthogonally to the atoms direction (in order to be resonant with all the frequency classes) and the
other at the same frequency with an angle of θ = 45° in order to be sensitive to di�erent velocity
at di�erent frequency. We observed the �uorescence emitted by the atoms with a photomultiplier
tube directed along the z axis, in this way we observed only the spontaneous emitted light. ¿e
red laser wavelength was scanned until we observed the 162Dy and 164Dy peaks, by knowing
their frequency separation of 1 GHz, we were able to assign a frequency to the timescale of the
oscilloscope, at this point the distance of the slowed atom peak from the 162Dy peak gave us
the frequency shi (∆) due the atomic velocity and then from v = ∆

k cosθ we obtained the �nal
velocity.
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(a)

(b)

Figure 3.5: Results of the Zeeman Slower simulation code for a current of 1.8 A, a laser power of 110 mW
and a detuning of 32.8Γ. (a) Trajectories in the velocity/position phase space for di�erent classes
of initial velocities. One can observe that the highest velocities are not slowed, a large central
part of the velocity classes is slowed to a �nal velocity of∼ 36m/s and some very slow classes are
pushed back. (b) All the slowed velocities are slowed to an average �nal velocity of 36 m/s this
causes a di�erent velocity distribution (light) than the one for an atomic beam eq. 1.87 (dark)
resulting in a big increase in the population in the average �nal velocity and in conclusion in an
e�ective cooling (the higher peak, its value being f (v) = 0.07, in order to have a readable graph
is cut.
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Figure 3.6: Simulation results of the fraction of slowed atoms and of the �nal velocity as a function of the
laser power.
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Figure 3.7: Simulation results of the fraction of slowed atoms and of the �nal velocity as a function of the
laser detuning.
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Figure 3.8: Simulation results of the fraction of slowed atoms and of the �nal velocity as a function of the
oven temperature (at a current of 1.8 A).
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Figure 3.9: Simulation results of the �nal velocity as a function of the laser detuning for two di�erent
current values in the ZS.
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626 nm MOT Results

In our setup the Zeeman Slower is essential to load the mot in fact the atoms must have
a su�ciently low velocity in order to be captured. Furthermore, once trapped in the mot, the
atoms are lost at certain rate so it is also important to have a big �ux of slowed atoms. At a
�rst sight, all the atoms moving with a velocity smaller than the initial velocity for which the
Zeeman Slower has been designed are slowed because, moving trough the apparatus, they reach
a region in which the Zeeman shi , due to the magnetic �eld, make the laser to be resonant and
then the atoms exit from the slower at the designed exit velocity, so all the velocity populations
f (v), v < v0 are transferred in the �nal velocity one (fig. 3.5). ¿is holds if the magnetic �eld
is shaped exactly as in eq. 3.5 but the practical realization can’t be exact. In order to have some
information we performed some additional simulations to �nd out how the �nal velocity and
the ratio of the atoms slowed vary as a function of the laser power, of the laser detuning, of the
oven temperature and of the coils current. ¿e results are plotted in fig. 3.6 and fig. 3.7.

Taking into account that at the end of the Zeeman Slower both B(y) and δ are negative, the
inversion of eq. 3.3 and eq. 3.4 leads to

vf =
1

k

(
− 1.06µb

× |B(yf)|+ |δ|
)

vf =
√

v2
i −

2ηFmax
M

yf (3.6)

In fig. 3.8 it can be seen how the velocity decreases linearly as the detuning increases as well as
the laser power (trough the saturation parameter s in the de�nition of Fmax eq. 3.4). ¿e increase
in the number of atoms slowed with increasing the laser power can be referred to the decreasing
of y0 (eq. 3.4) so that also atoms with higher initial velocity (that would require a bigger y0) can
be slowed. Finally, in fig. 3.9, it can be seen how the current and the detuning are related: once
the current is changed, varying the detuning it is possible to obtain the same �nal velocity.

3.3 626 nm MOT

¿e mot setup is arranged with three retrore�ected laser beams each of which is propagating
from the source optical table trough single-mode polarization-maintaining optical �bers. Of
the three beams, one is propagating along the vertical (ẑ) direction and the other two in the
horizontal x y plane with an angle of 45 and 135° with respect to the Zeeman Slower axis ŷ ¿e
two coils producing the quadrupole �eld are parallel to the x y plane hence the strong axis of
the quadrupole �eld is directed along ẑ. In order to have the correct circular polarization, at
the exit of each �ber there are a polarising beam-splitter and a λ/4 plate so, a er the polarising
beam-splitter, the linearly polarised light is turned circular by the plate. Before entering into the
cell, the three beams are collimated by a f = 150mm lens to a waist of 13.2 mm. A er exiting
from the cell, the beams encounter another λ/4 plate so, being retrore�ected they pass trough the
plate twice and, in this way, the helicity is inverted as shown in fig. 1.3. A total power of 150 mW
in the three beams (corresponding to I > 200Is per beam) is used during the mot loading.

52



Results 626 nm MOT

(a) (b) (c)

Figure 3.10: (a): Picture of one of the �rst mot achieved (the small red dot at the center). (b): vertical
mot absorption image, the circular shape reveals the symmetry with respect to the ẑ axis of
the con�ning forces. (c): Horizontal mot absorption image, the image has been rotated so to
have the ẑ axis in the vertical direction; it can be seen how the gravity in�uences the cloud
shape. In (b,c) the di�erence in size of the two images is due principally to the di�erences in the
magni�cation factor (1.6× and 3.2× for the vertical and horizontal imaging beam respectively)
the brightness of each pixel is proportional to ln I0

I .

3.3.1 mot imaging

¿e mot absorption imaging can be performed either with an horizontal beam or with a
vertical one. ¿e latter has a higher resolution (∼ 2.5µm). Images are then �tted to extract the
atom number, the peak density and the atomic temperature.

Although the assumptions used in sec. 2.5 are rigorously veri�ed only in a optical dipole
trap, given the elastic forces in eq. 1.48, the same �t function can be used in the mot imaging,
especially in the x y images fig. 3.10 where gravity doesn’t play any role (as will be explained in
the next section).

Sadly we recognized an error in our program imaging due to a misplacement of the mag-
ni�cation factor in the formulas leading to a miscalculation of the absolute number of atoms.
¿erefore, in the nex two sections the number of atoms is incorrect, overestimated by a factor of
4.
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Figure 3.11: mot number of atoms as a function of the detuning and frequency modulation (the frequency
of the modulation was 135 kHz as in [10] and very similar to [21]. ¿e lines connecting the
point are to be intended as simple visual aids. ¿e absolute number of atoms isn’t correct as
explained in the text. ¿e modulated width is indicated in the �gure.
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Figure 3.12: mot number of atoms as a function of the magnetic �eld gradient. ¿e atom number reported
in this graph as well as all the others re obtained a er the compression phase in the c-mot.
¿e absolute number of atoms isn’t correct as explained in the text.
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3.3.2 mot detuning and related characteristics

¿e use of the “red” 626 nm transition for the mot formation, given its linewidth of 136 kHz
(tab. 1.2) implies a low enough Doppler temperature to allow the direct loading of a dipole trap
but, on the other hand, implies some peculiarities in the mot detuning during the loading phase
and in its equilibrium position. As an example see fig. 3.10.

¿e measured results of the number of atoms captured as a function of the detuning are
reported in fig. 3.11 for di�erent amplitudes of frequency modulation. In fig. 3.12 the number of
atoms as a function of the magnetic �eld gradient is reported.

Restricting the discussion along the ẑ axis, an atom is subjected both to the radiative and
the weight forces which have to compensate each other in order to maintain the atom at the
equilibrium. In this condition the atom moves to a region where the Zeeman shi , due to
the magnetic �eld gradient, breaks the balance between the forces exerted by the two counter-
propagating vertical laser beams resulting in a neat force opposing the weight force. ¿is situation,
where one of the two counter propagating laser beams is o� resonant, can be better described
by Zeeman Shi dependent radiative force (eq. 1.40) rather than the expression for the mot
(eq. 1.46). ¿is case has been studied in detail in [10] and, although with a di�erent atom and
for a “narrower” transition, in [2]. For an atom at rest and neglecting the force arising from the
static magnetic �eld gradient µb (which is at least one order of magnitude smaller) the two forces
remaining at play have to satis�es the relation Fr+mg = 0 resulting in a local detuning ∆loc
sum of the laser detuning and the Zeeman shi given by [10]:

∆loc =−γ
2

√
(η−2)s −1; η= ×kγ

2mg
(3.7)

In addition, as observed in [10], the displacement of the centre of the mot at a �nite distance
below the centre of the quadrupole magnetic �eld imply that the atoms are constantly at a non
zero magnetic �eld and so, as for the Zeeman Slower, the use of a circularly polarised light gives
rise to optical pumping into the J = 8,mj = −8 state. With this assumption, the equilibrium
position zeq depends on the laser detuning δ, the magnetic �eld gradient b and the saturation
parameter s. In our con�guration, can be written as

zeq = ×
∆µb

(
δ+ γ

2

√
s(η−1)−1

)
(3.8)

where ∆µ = (−9g9 + 8g8)µb = −1.69µb, b is the magnetic �eld gradient. ¿e light circular
polarisation and the magnetic �eld gradient are adjusted in order to result in ∆µb > 0.

Increasing the red laser detuning (δ< 0) increases the displacement of the mot centre farther
below the Zeeman Slower laser beam, zeq < 0 in eq. 3.8. In this way losses due to the blue light
[12, 21] are reduced resulting in an increase in the number of atoms loaded by a factor of three, as
shown in fig. 3.11. In addition to the vertical displacement, the far detuning (in eq. 1.23 Fr scales
as 1/δ2) implies a decrease of the elastic force in eq. 1.46 ad as a consequence an increase of the
mot size. A further increase in the detuning leads to a smaller �nal number of atoms due to the
�nite size of the laser beams. For a similar reason, there is a dependence of the number of atoms
on the magnetic �eld gradient: increasing its magnitude decreases the width of the geometrical
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region where the resonance condition

δ+kv− ∆µ× bz =∆loc (3.9)

holds, resulting in a smaller overlap between the slowed atoms �ux emerging from the Zeeman
Slower leading, at the end, to fewer captured atoms. As a �nal observation, given the much
narrower line-width of the 626 nm transition compared to the 421 nm one, the frequency modu-
lation of the red laser allows to satis�ed the resonance condition eq. 3.9 trough a wider interval
of the velocities distribution around the �nal average velocity vf in eq. 3.6. An analytic analysis
won’t be reported here but a graphical explanation can be found in fig. 1.2.

Given the size of the cloud during the loading phase, in order to obtain usable images as
in fig. 3.10, the mot has to be compressed ramping down the detuning typically to δ=−6Γ626

and the laser intensity down to I = 0.3Is in 40 ms. ¿is operation is quite critical, decreasing the
detuning moves the mot toward the quadrupole centre and so toward smaller magnetic �eld
hence, if the intensity isn’t appropriately reduced simultaneously, the polarization of the sample
is easily lost.

3.3.3 mot population temporal evolution

Once we determined the best choices for the detuning, magnetic �eld gradient and frequency
modulation we studied the mot loading and holding time. Once an atom is captured in the mot
region it doesn’t remain trapped for an inde�nite amount of time but can be lost as a result of
multiple events. ¿e evolution of the mot population during the loading phase is determined
by the capture rate R (the number of atoms captured each second) which can be considered
constant, and by the rate at which atoms are lost. ¿e study of the loading phase is simply done
by starting at t = 0 the loading process and then taking absorption images at successive times t
until the population reaches a steady state. ¿e mot lifetime study is done letting the population
to reach the steady state then, at t = 0 a shutter blocks the atoms �ux. During the lifetime study
the Zeeman Slower beam is turned o� and �nally absorption images are taken at successive times
t . ¿e measurents obtained are reported in fig. 3.13. ¿e presence or absence of the ZS (see [21])
has a deep in�uence on the mot lifetime. As said, once the atoms are trapped, they can leave
the trap a er di�erent types of events, the �rst one is the collision with the background gas that
is in thermal equilibrium with the chamber walls so the particles are moving at velocities well
beyond the ones that can be trapped. As a result, for each collision, a trapped atom leaves the
mot, assuming negligible the probability that an escaping atom collides with a trapped atom.
¿is process occurs with a probability dependent on the number of atoms of the background gas
in the mot region (and hence on the background pressure, assuming the pressure constant in
the chamber) and on the density of the trapped atoms and, because it involves one trapped atom
at a time, is called a one-body loss. In this way the average mot density variation depends on the
density itself leading to a time dependence as

n̄(t ) = n̄0e−
t
τ (3.10)

where n̄0 = 1
2
p

2
N
V is the initial average density and τ the mot decay time. Among other processes

that can lead to atom losses of interest are the so called two body or density dependent losses
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Figure 3.13: (a): mot number of atoms as a function of the loading time, the capture rate at early times
is R=4.6×107/s and the loading time is 10 s. (b) mot number of atoms as a function of the
holding time and a single exponential �t superimposed resulting in a time decay constant of
τ= 10.3±0.3s. In both cases the detuning was δ=−35Γ626 and the magnetic �eld gradient
about 1.4 G/cm. ¿e absolute number of atoms isn’t correct as explained in the text.
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that, because imply a two trapped atoms collision, it depends on the squared average population
density with a general law [29]

dn̄

d t
= n̄

τ
−β0n̄2 (3.11)

where β0 depends on the particular process involved. Our results of the mot population are
reported fig. 3.13. Data of gr:mottime(b) are �tted with eq. 3.10 but the data can be correctly
�tted just for times longer than 5 s meaning that at large population we are in presence of two
body losses that became less relevant while the trapped population decrease leaving the one-body
losses to predominate.

3.3.4 mot dimensions and temperature

In order to transfer the greater number atoms from the mot to the optical dipole trap the
mot temperature and size are of particular interest. From our measurements1 we observed for
the compressed mot dimension (in situ) varying from 400 to 550 µm (depending on the number
of atoms) in the x̂ and ŷ directions and around 300 µm (with much smaller variations) in the ẑ
direction.

A temperature measurement is done using eq. 2.8: once known the in situ dimension, the
mot is le to freely expand for a determined period of time, 30 ms in our case, then the new
dimensions are measured and �nally, inverting eq. 2.8, the temperature is obtained. We observed
a mot temperature of 20 µK.

3.3.5 Oven temperature and mot population

From what reported in sec. 1.8, an increase in the oven temperature, should lead to an
increase in the atom density in the atomic beam and, in the end, in an increase in the number of
atoms captured in mot. Surprisingly the results of our measurement of the mot population at
a constant time in fig. 3.14 exhibits a maximum around 1130 ◦C . In eq. 1.94, the temperature
dependence is given from the exponential term that is monotonic with respect to T . A possible
explanation is that at higher temperature the atom density became so high that the e�usive
regime underlying all the description fails.

3.3.6 Other mots in literature

1¿ese values are obtained with the corrected imaging program and are correct.

58



Results 626 nm MOT

1000 1050 1100 1150
0

10

20

30

40

Oven temperature ( °C )

N
a
t
⨯
1
0
6

Figure 3.14: Number of atoms captured by the mot as a function of the oven temperature. We expected
the number of atoms to be a monotonic function of the oven temperature but we observed a
maximum at 1130 ◦C. ¿e atomic number reported here is correct.

Table 3.1: Principal characteristics of the various mot I found in the literature. ¿e use of the 421 nm
transition by the Stanford group results in big di�erences in almost every aspect of the mot. Using
the 626 nm transition leads to very similar laser detuning in the loading phase, while for larger
light intensities the �nal temperatures are higher.

Loading phase

us Stuttgart ENS-PSL Stanford

λ (nm) 626 626 626 421
Waist (mm) 13.16 22.5 20 11
b (G/cm) 1.4 3 1.71 ?
T load (s) 10 4 6 0.05
I (Is) 200 370 50 0.2
δ (Γ) -35 -35 -31 -1.2
∆µ (Γ) 15 ? 45 0
Nat×108 1? 1.5 3 2.5
Temp. (µK) ? 500 15 1000

Compressed mot

us Suttgart ENS-PSL Stanford

λ (nm) 626 626 626 421
Waist (mm) 13.16 22.5 20 11
b (G/cm) 1.4 1.5 – –
Duration (ms) 40 170 430 –
I (Is) 0.4 0.15 ? –
δ (Γ) -6 -2.75 ? –
∆ν (Γ) 15 ? ? –
Nat×108 1? 1 ? –
Temp. (µK) 20 6 ? –
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Figure 3.15: Resonator optical dipole trap depth calculation for a laser power P = 0.6W, a waist w0 =
320µm. Plot of the potential as a function of y or z (x = 0) and b = 1.68G/cm and b = 0;
the resulting trap frequencies in the b = 1.68G/cm case are: ωx = 98kHz, ωy = 73.3Hz,
ωz = 72.9Hz, the vertical depth is 72 µK while along ŷ and x̂ is 107 µK. For b = 0 the vertical
depth is 35.5 µK while in the other directions is unchanged.

3.4 Resonator optical dipole trap

In order to start the forced evaporative cooling, once captured by the mot, atoms have to be
con�ned by a conservative potential well, hence in an optical dipole trap.

¿e optical dipole trap should have a waist roughly of the mot dimensions w ' 300µm and
should be deep enough to con�ne atoms at 20 µK. Given these conditions, with a 1064 nm laser,
the power required is around 350 W. ¿is power can be reduced to more reasonable values using
an high �nesse optical resonator.

We adopted a symmetric nearly planar optical resonator composed of two mirror of the same
re�ectivity R = 99% at a distance of L = 88.3mm and with curvature radius R = 3m. ¿e waist
inside the resonator can be calculate by [32]:

w0 =
√
λL

π

(1+ L/R

4L/R

)1/4

; w =
√
λL

π

( 1

1− (1− L/R)2

)1/4

(3.12)

where w0 = 270µm is the minimum waist (at the centre of the cavity) and w = 320µm is the
waist at the mirror. For a gaussian beam propagating along the x̂ axis, the electric �eld can be
written as [32]

E(x, y, z) = E0e
−ik

(
x+ y2+z2

2

(
1
R −i λ

πw2(x)

))
(3.13)

where k = 2π
λ and R is the curvature radius of the wave front. Given the big curvature radius of

the mirrors, equal to R at the mirror itself, the previous expression can be approximated by

E(x, y, x) ' E0e
− y2+z2

w2(x) e−ikx . (3.14)
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¿e amplitude of the electric �eld a er the passage through the �rst mirror is multiplied by [6]p
1−R then, a er the �rst re�ection on the second mirror is again multiplied by

p
R, taking

into account the opposite direction of propagation a er each re�ection, the total electric �eld
inside the cavity is given by:

E(x, y, z) ' E0e
− y2+z2

w2(x)
p

1−R
∞∑

m=0

(
e(−)m ikxR

m/2
)
= E0

eikx +p
Re−ikx

p
1−R

e
− y2+z2

w2(x) . (3.15)

In order to describe an optical dipole trap we are interested in the intensity of the electromagnetic
�eld (sec. 1.5.1) and the previous expression, in therms of light intensity, is obtained by taking
the (squared) modulus:

I (x, y, z) ' 2P

πw2(x)

4F

π
cos2(kx)e

−2 y2+z2

w2(x) (3.16)

where I0 = 2P
πw 2 is the intensity of the laser beam, F = π

p
R

1−R is the �nesse of the cavity (that
can actually be measured) and the substitution R = 1 has been made. ¿e cavity has a �nesse
of 1050 (see in sec. 2.4.1) and the light intensity inside the resonator is multiplied by a factor
varying between 0 and 4F

π allowing us to use a 1 W laser to obtain a trap depth of nearly 200 µK.
Furthermore the optical dipole potential is obtained by multiplying the light intensity by the
atomic polarizability (see sec. 1.5.1) and the cos2(kx) term (due to the interference inside the
cavity) making the x̂ dependence of the dipole potential rather di�erent than in the other two
directions. In addition, for the ẑ direction both the gravity and the force arising from themagnetic
�eld gradient have to be taken into account leading to an expression for the trap potential:

U (x, y, z) =−α 8PF

π2w2
0

cos2(kx)e
−2 y2+z2

w2
0 + (M g −µb)z (3.17)

where α, M and µ are respectively the dysprosium polarizabilty, mass and magnetic moment;
g is the gravity acceleration and, in addition, the waist inside the resonator is supposed to be
constant and equal to w0. In a similar way described in [13] it could be calculated the Taylor
series of eq. 3.17 at the minimum of the potential rc

U (x, y, z) 'U (rc )+ 1

2

∑
i , j=1,2,3

∂2U (rc )

∂xi∂x j
(xi − ri c )(x j − r j c ) (3.18)

in order to obtain an harmonic approximation of the potential:

U (x, y, z) = 1

2
Mω2

x x2 + 1

2
Mω2

y y2 + 1

2
Mω2

z z2 (3.19)

where, in the basis where ∂2U (rc )
∂xi∂x j

is diagonal, it holds

ω2 = 1

M

∂2U (rc )

∂x2 . (3.20)

In our case, calculations will be rather complicated and of limited help, nevertheless some
characteristics of ωx and ωy can be shown: posing A =α 4PF

π2w 2
0
, for the �rst derivatives we have

∂U

∂x
= 2k sin(2kx)Ae

−2 y2+z2

w2
0 ;

∂U

∂y
= 8y

w2
0

cos2(kx)Ae
−2 y2+z2

w2
0 (3.21)
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Table 3.2: Optimal compressed mot detuning values for di�erent laser power.

Nat×106 Temp µK Res. Power (%) ∆ (Γ)

30±5 29±2 100 8.2±0.5
31±5 25±2 80 7.9±0.5
36±5 23±2 60 7.7±0.5
28±5 14±2 50 7.4±0.5
24±5 10±2 40 7.5±0.5

and the x derivative vanishes for x = mλ/4 while the y derivative vanishes for y = 0 or x =
(2m +1)λ/4, m ∈N, so rc = (0,0, zc ). For the second derivatives we have:

∂2U

∂x2 = 4k2 cos(2kx)Ae
−2 y2+z2

w2
0 ;

∂2U

∂y2 =
( 8

w2
0

− 32y2

w4
0

)
cos2(kx)Ae

−2 y2+z2

w2
0 (3.22)

and in rc = (0,0, zc ) we have

ω2
x ∝ αFP

w2
0

k2 ; ω2
y ∝

αFP

w4
0

. (3.23)

Given k ' 6×106 and w0 ' 300×10−6 we expect a ωx/ωy ratio of the order of 4×103 hence
atoms are much more tightly con�ned in the x direction rather than in the other two and due to
gravity ωz is expected to be even smaller than ωy .

Calculation using eq. 3.18 are reported in fig. 3.15 for a laser power of P = 0.6W, a waist of
w0 = 320µm and a magnetic �eld gradient of b = 1.68G/cm. ¿e resulting vertical trap depth
is U (106/kb) = Tz = 71.3µK. and the resulting frequencies are ωx = 98kHz; ωy = 73.3Hz and
ωz = 72.9Hz.

3.5 Mot to resonator optical dipole trap transfer

Atoms are loaded from the mot into the resonator optical dipole trap. Although the resonator
permits to have a quite large waist it is still smaller than the compressed mot hence a certain
amount of atoms will be lost. Furthermore, due to the high light intensity, the mot is perturbed
during the compression stage that is a rather delicate phase that can easily end in a copious loss
of atoms. ¿e process involves a �ne tuning of the �nal detuning and of the light intensity of
the cmot, the light intensity injected in the optical cavity and the duration of the time for which
the mot is superimposed to the resonator. In �g. 3.17 (a,b) are reported both the number of
atoms and the temperature of the atoms as a function of the superimposing time. ¿e mot was
compressed with the resonator power at 50% and, a er varying the superimposing time, the mot
was turned o� and atoms were le in the resonator for 50 ms; then an absorption image was
taken with a time of �ight of 13 ms. From the graph it can be seen that atoms were heated from
the 20 µK in the cmot then cooled down again until an estimate temperature of roughly 15 µK.
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Figure 3.16: Number (a) and temperature, (b) of the atoms trapped in the resonator as a function of the
superimposing time with both the compressed mot and the resonator beams on. ¿e cmot
intensity was ramped down to 0.5Is and the resonator intensity was 0.5 W. Superimposed in
(b) is the �t with y = A+Be−t/τ, the time constant resulting is τ= 19±9ms and the constant
value A = 14±2µK.
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Figure 3.17: Number of atoms (a) and temperature (b) as a function of the resonator power (100%=1 W).
Atoms in the mot had an initial temperature of around 20 µK. A er an initial evaporation
that lowers this temperature, increasing the laser power beyond the limit required to hold them
results in an heating of the atoms. Imaging was performed a er atoms were le 50 ms in the
resonator.
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We can notice that a high light intensity in the optical cavity assures that atoms are bounded
by a higher force but, on the other hand, if atoms are already colder than the trap depth, there
is no gain in the process e�ciency. In the graphs in �g. 3.17 (c,d) it can be seen how increasing
the laser intensity over 60% (roughly 600 mW) there is an actual heating due to the increasing
the scattering rate with the light intensity. In addition we noticed that for each laser power there
is an optimal mot detuning that causes minimum loss of atoms and a lower �nal temperature;
this is probably due to the light shi [26] of the 626 nm transition in the presence of the high
intensity 1064 nm light. Our results are reported in tab. 3.2.

A er some studies it was found that by changing the polarization of the light injected in
the cavity from circular to linear, the transfer of atoms from the mot to the cavity trap is more
e�cient and robust, in particular for certain angle in the light polarization. ¿is fact can be
related to the light-shi induced by the 1064 nm radiation to the dysprosium state excited by the
mot light: keeping in mind that atoms are polarised along the vertical direction this anisotropy
arises from the tensor part in the dysprosium excited state polarizability. ¿is feature is actually
being studied.

3.5.1 The resonator trap lifetime

Once the optimal parameters for the resonator loading were established, we studied the
lifetime of the trap at the full power, P ' 1W. ¿e results are plotted in fig. 3.18 the lifetime
obtained is τ = 0.92s and the temperature was stable at T ' 20µK. In order to work at lower
resonator laser power, we decided to compensate the gravity using the quadrupole magnetic �eld.
As a consequence of the polarization of our mot (sec. 3.3.2) we know that atoms cycle between
the J = 8 mj =−8 and the J ′ = 9 mj′ =−9 states so ∆mu =µb(−9g9 +8g8) < 0 but, at the same
time, at red mot detuning it has to be ful�lled the condition ∆µb > 0 (eq. 1.40) and, in the end,
b < 0. Applying a constant magnetic �eld, once the mot is turned o�, the atoms decay into the
J = 8 mj =−8 and remain polarized in this state with µ= 9.93µb > 0. From

µb =−M g (3.24)

(where g is the gravity acceleration and M the dysprosium mass) it follows that we have to
invert the direction with respect to that used during the mot stage, in order to compensate
gravity. ¿e quadrupole magnetic �eld needed to be inverted in order to have b > 0 and it was
done simply inverting the current �ow. From eq. 3.24 it follows that the required magnetic �eld
gradient is b = 2.88G/cm. In fig. 3.18 are plotted the lifetime and temperature with the gravity
compensation. Without the gravity compensation the measured lifetime was ∼ 1s. ¿e lifetime
is longer with gravity compensation because with the same laser power, and so with the same
scattering rates, the vertical trap depth is higher avoiding vertical losses.
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Figure 3.18: (c) Number of atoms as a function of time but with b inverted during in the mot phase in
order to compensate gravity; the �t revealed a lifetime of τ= 2.2±0.4s, without compensating
for the gravity the resulting lifetime is 1.0±0.2 s.
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Table 3.3: Principal characteristics of the three optical dipole traps.

Vertical waist Horizontal waist Power Angle Polarization
(µm) (µm) (W) (°)

Resonator 320.5 320.5 1 (240) 8° linear
odt1 40.6±2.0 40.6±2.0 1.5 0° linear
odt3 36.6±1.0 80.6±2.0 2.5 40±3° linear

3.6 Single beam optical dipole traps

¿e last con�ning method implemented is constituted by two crossed single beam optical
dipole traps: odt1 and odt3. Before entering in the details of the atomic cloud transfer be-
tween the di�erent trapping schemes, a brief description of the crossed trap resulting from the
superposition of the two beams is reported below.

3.6.1 Crossed optical dipole traps frequencies

For each single trap the potential depth can be obtained using eq. 1.58 where x, y, z are
referred with respect to the beam propagating along x̂:

ω2
y,z =

α

M

8P

π(w0yw0z)2 ; ω2
z =

α

M

4Pλ2

π2(w0yw0z)4 (3.25)

where gravity has been neglected and an elliptic waist beam is considered. For a wavelength
of λ= 1064nm and a waist of w0 ' 10µm it holds ω2

y,z ∼×102ω2
x then, given the same kinetic

energy, the oscillation amplitude of a particle is ' 1×102 longer in the longitudinal direction
with respect to the transverse one and as a result atoms are essentially con�ned along a line.

In our experiment, in order to obtain a three-dimensional trap with comparable lengths along
the three axis, two crossed beams are used at an angle of 40°. When di�erent odts are crossed,
the resulting potential calculation is performed in a slightly di�erent way than using (eq. 3.25)
that is referred with respect each beam axis. When two beams are superimposed the reference
axis are function not only of the crossing angle but also of the relative beam intensities and waists.
A calculation can be performed using eq. 3.18: the light intensity in eq. 1.57 is in�nitely derivable,
hence the matrix obtained with all the nine second order crossed derivatives is symmetric so it
has three real eigenvalues (ξ1, ξ2, ξ3) and their relative eigenvectors can be used to de�ne a basis
(x̂ ′, ŷ ′, ẑ) where eq. 3.20 holds (ẑ ′ = ẑ given that all beams propagate in the x y plane). ¿e three
trap frequencies then are:

ω2
x ′ = ξ1

M
, ω2

y ′ = ξ2

M
, ω2

z =
ξ3

M
(3.26)

that can be used in eq. 3.19.
Calculation relies on the beam waist, the laser power and the atomic polarizability. ¿e

laser power is easily measured, the dysprosium polarizability at 1064 nm has been measured
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Figure 3.19: Example of vertical trap frequency measure. (a) For odt1 at 1.45 W, ν= 268±1Hz. (b)Odt1
frequency as a function of the laser power. From eq. 3.25 the �t function is ν = A

p
P −P0

where P0 ∼ 0.3W is the minimum laser power that permits to hold the cloud against the gravity.
¿e error bars in (b) are within the dots.
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[31] for the 164Dy (for the 162Dy the di�erence is expected to be negligible) then the remaining
unknownparameter is the beamwaist. Measurements of the beamwaist have been done recording
the beam with a ccd camera at various distances and then �tting the measured waist with
w(z) = w0

√
1+ ( z

zr

)2. But this method, although accurate, has the disadvantage that can’t be
done in the vacuum chamber: once the position of the minimum waist (w0) is found outside the
vacuum chamber, the beam has to be deviated into the chamber thus the position at which beams
intersects isn’t known exactly. In a di�erent prospective, by comparing the measured frequency
traps for di�erent laser powers with the calculated one, the beams waist (the only parameter not
known) can be inferred indirectly. In fig. 3.19 it is reported an example of such a measurement
for the odt1.

Once the waists of the three optical dipole traps are known, the resulting values are reported
in tab. 3.3. ¿e trap potentials can be calculated in various con�gurations: the potential of the
odt1 superimposed to the resonator is plotted fig. 3.20 along with the absorption image. In
fig. 3.21 it is plotted the potential for the crossed trap along with a 3D representation of the
shape of the atomic thermal cloud. We observed that for a given vertical trap depth U0, the
corresponding temperature of the atomic cloud is approximately Tz = 1/7U0 thus the 3D plot is
the surface determined by the solution of this equation.

¿e method we used for measuring the trap frequencies consisted in loading the two traps
and performing an evaporation ramp until reaching a cloud temperature of 1 µK. ¿en the two
traps are switched o� for 0.6 ms and odt1 is again switched on at the desired power. ¿e trap is
held for a variable time t and then again the cloud is released and �nally, a er a �xed time of
�ight of tf = 5ms, an absorption image is taken. In this way, by considering the centre of mass
of the cloud at rest in the origin when the trap is shut down at t =−t0, its position and velocity
when the recapture start at t = 0 are respectively z0 and v0. During the variable recapture time,
the position and velocity of the centre of mass of the cloud are respectively:

z(t ) = A sin(ωz t +φ) z0 =−1/2g t 2
0 v0 =−g t0

vz (t ) =ωz A cos(ωz t +φ) A2 = z2
0 + ω2

v2
0

; tanφ= z0
ω/v0

(3.27)

in the end, when the absorption image is taken at t = tf the position of the centre of mass of the
cloud is:

z(tf) = A sin(ωz t +φ)+ωz A cos(ωz t +φ)tf− 1

2
g t 2

f . (3.28)

Once the data are collected, the actual �t is done with the function:

z = (
O + A sin(ωt +φ)

)
e−t/τ (3.29)

where A, O, φ and τ are �tting parameters. ¿e exponential term, although its origin is not clear
(at least to me, maybe it is necessary because the underlying hypothesis in the model depicted
is that the trapped cloud is a rigid body while it actually isn’t, furthermore the potential is not
constant in the cloud volume) is necessary in order to obtain a reasonable �t. ¿e waists resulting
from these measurements are reported in tab tab. 3.3.

Given the strong dipolar nature of dysprosium [17] the trap frequency ωz along the polariza-
tion direction of the dysprosium atoms ẑ must be higher than the average frequency ω̄x ′y ′ in the

69



Single beam optical dipole traps Results

y direction

z direction

- 400 - 200 0 200 400

- 200

-150

-100

-50

0

50

distance ( μm )

Po
te
n
ti
a
l

(
μ
K
)

(a)

(b)

Figure 3.20: (a) Calculated potential of the odt1 superimposed to the resonator optical dipole trap as a
function of x and z: odt1 is much weaker than the resonator and it presents as the small peak
at the top of each well. (b) Absorption image of the transfer from the resonator to the odt1,
the tight longitudinal con�nement of the resonator trap prevent atoms to spread along the
odt1 direction. ¿e intensity of the light injected into the cavity is already reduced to permit
the transfer to the odt1.
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Figure 3.21: Example of potential calculation for the crossed trap with odt1 at 0.05 W and odt3 at 0.8 W.
(a)¿e potential (expressed asU /kb×106) in the three directions, it can be seen the gravity
e�ect in the ẑ direction. (b) ¿e 3D graph is the surface determined by the solutions of
1
7 Tz = 1

2 M(ω2
x′x

′2 +ω2
y ′ y

′2 +ωz z2); the vertical trap depth is 0.4 µK and the aspect ratio of
the trap is λ= 3.9 [17].
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plane x̂ ′ ŷ ′ orthogonal to ẑ and the aspect ratio:

λ= ωzp
ωx ′ωy ′

= ωz

ω̄x ′y ′
(3.30)

must satisfy λ> 3 [26]. For this reason, the laser beam forming odt3 is elliptically shaped with
the smaller axis of the waist directed along ẑ. Crossing the two beam at a di�erent angle than
π/2 permits to vary the potential shape and orientation as a function of the two beams powers
while assuring an aspect ratio λ> 3.

3.6.2 Odts lifetime

¿e crossed trap lifetime is an important parameter and a study of the trapped population
time evolution provides information about the loss mechanism involved. Furthermore, as the
trapping potential depth decrease during the evaporation ramps, trap frequencies also decrease
and as a consequence the velocity at which the potential depth is decreased needs to be slowed
(see Sec. 1.6). Finally having a trapped sample with a long lifetime allows for future studies to be
performed.

¿e study is done measuring the number of trapped atoms at successive longer times. From
the results, plotted in fig. 3.22, it can be seen that, for higher temperature the trap lifetime is
quite long ∼13 s and is well �tted with a single exponential function meaning that the atom
loss isn’t due to the two or three body processes. At colder temperature (hence at lower laser
intensity) the lifetime is shorter ∼1.7 s but the population evolution is again well �tted with a
single exponential, atom losses are probably due to some noise in the laser radiation although
from the plot (not shown here) of the temperature time evolution it doesn’t appear clearly.

3.7 Evaporative cooling and first signs of Bose-Einstein con-
densation

¿e evaporative cooling process begins as soon as atoms are transferred from the compressed
mot to the resonator optical dipole trap. As said, atoms captured in the mot are pumped in
the J = 8, m J =−8 state and a constant and uniform magnetic �eld of 3 G is applied during the
whole time in order to prevent spin-�ip collisional losses.

¿e power of the three lasers as function of time are reported in fig. 3.23. ¿e graph starts
at the end of the mot phase. ¿e resonator light intensity is ramped up during the last mot
compression phase until a potential depth of 200 µK, that are su�cient to trap up to 3×107

atoms at 30 µK. At the same time, also the odt1 is activated at 1.5 W then the resonator power is
exponentially decreased in 2 s down to a potential of 20 µK. In this stage, atom are prevented to
move along the odt1 propagation direction thanks to the longitudinal periodicity of the resonator
potential (eq. 3.16 and fig. 3.20) which provides a strong longitudinal con�ning force. At this
point the odt3 trap is activated providing the con�nement along the odt1 propagation direction
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Figure 3.22: Number of atoms (a) and temperature (b) of the atomic cloud held in the crossed optical dipole
trap without evaporation. ¿is gives an estimate of the heating rate.
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Figure 3.23: Time sequence of the lasers power during evaporative cooling ramps. ¿e graph starts at the
end of the mot phase. ¿e optical power in the resonator is the power of the incoming beam,
not the power inside the cavity.

when the resonator laser power is reduced by a factor of 1×10−4. In the remaining crossed trap
are collected up to 1×106 atoms at 4 µK while the calculated trap depth is 34 µK with an aspect
ratio of λ= 3. In the �rst 1600 ms of the evaporation stage the light intensity of odt1 is decreased,
then both odt1 and odt3 laser power are decreased down to 50 mW for odt1 and 800 mW for
odt3, the entire evaporation phase lasts 5 s. ¿is �nal potential is plotted in fig. 3.21 the trap
depth is 0.9±0.1 µK and the trap frequencies are ωz = 2π×141±1Hz, ωy’ = 2π×81.0±0.5Hz
and ωy’ = 2π×27.0±0.2Hz.

In the absorption images of fig. 3.24, taken at the end of the process described above with a
time of �ight of 35 ms, it can be seen how the atomic density pro�le changes from a gaussian
pro�le into a parabolic pro�le, the last meaningful temperature measure indicates a temperature
of 100 nK and the number of atoms is roughly 5×104.

¿e emerging of the parabolic peak in the gaussian thermal distribution of the cloud density
pro�le, as predicted in the ¿omas-Fermi limit [18] is the sign of the phase transition toward
Bose-Einstein condensation of 162Dy. A more detailed study is necessary, and will be done in the
next future. ¿e �rst dysprosium condensate has been achieved in 2011 for the isotope 164Dy
(see ref. [26]).

In fig. 3.25 we report the measurement of the lifetime the condensate. Its lifetime is compa-
rable with the one measured for a thermal cloud at 0.4±0.1 µK, the data are well �tted with a
single exponential.
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(a) (b) (c)

Figure 3.24: False colours absorption images taken with a time of �ight of 35 ms along the vertical direction.
¿e images are a screenshot of the program used to extract data from the images collected.
¿e blue lines represent the integral of the column pixel values; the red lines is a bi-modal
(gaussian +¿omas-Fermi) �t to these data.
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Figure 3.25: Lifetime of the condensate.
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Conclusions

During the �rst days of my¿esis the measures of �nal velocity of dysprosium atoms slowed
by the Zeeman slower were in progress while this ¿esis ends with the �rst characterization
of the Bose-Einstein condensation. For me it is without any doubt an honour to present these
results in my Diploma¿esis.

During the �rst part of my experience in the laboratory I participated to the realization of
some electronics while becoming familiar with the complexity of the experimental apparatus,
then I took part in many of the measurements and �nally realized a Mathematica code capable to
calculate the depth and the trapping frequencies of a combination of optical dipole traps. ¿is has
allowed the possibility to compare the experimental measurements of the trapping frequencies
to the theory and so precisely calibrate the waist of the lase beams used for the odts, which are
very hard to measure experimentally.

Today, in addition to the other Bose-Einstein condensates of dysprosium already realized
before this ¿esis was started, other experiments are on the way to attain quantum degeneracy.
¿is a clear sign of the interest generated by the dipole-dipole interaction in the physics of
ultracold atoms.

Achieving the quantumdegeneracy for alkali atoms is nowadayswell proved but for submerged-
shell lanthanides it was far from being obvious given their complex electronic structure. ¿e
transition chosen to obtain the mot has allowed to limit the apparatus complexity but has re-
quired a careful tuning of the the mot itself and of the ZS. ¿e optical dipole trap realized with a
Fabry-Perot cavity is another peculiarity of our setup that allowed to obtain a large waist optical
dipole trap with the use of a relatively low power laser and again it wasn’t known if it could work
with dysprosium. At this point it can be said that the experimental apparatus has proven to be
well conceived and rather stable.

¿e Bose-Einstein condensate obtained is the key starting point for a series of quantum
phases that are planned to be studied. Another important factor in view of these studies is the
ability to control the s-wave scattering length, this days is under exam the Feshbach spectrum of
dysprosium and the �rst characterization of a broad low magnetic �eld resonance is started. ¿e
new experimental tool, the Bragg spectroscopy, will be implemented in the near future, allowing
a momentum selected excitation of the condensate.

¿e prospects of this experiment, once concluded the characterization and optimization
phase of the Bose-Einstein condensate, are multiple and very exciting. By adding some extra laser
beams, it will be possible to produce 1D, 2D or 3D optical lattices where the dipolar condensate
can be loaded. ¿is will enable the exploration of new quantum phases, in particular to undertake
the long-awaited quest for the super-solid phase. Finally, with a small change in the frequency

77



Evaporative cooling and first signs of Bose-Einstein condensation Results

stabilization chain of the two main lasers (the 421 nm and the 626 nm one), one of the Fermionic
isotopes of dysprosium will be cooled, trapped and eventually reduced to quantum degeneracy.
¿is will enlarge the wealth of possibilities of studies o�ered by this experiment.

I believe that workingwith the two joint teams fromLens and fromCNR-INO formyDiploma
thesis has been an interesting and productive experience. I took part in a poster section at the
INO Annual Symposium 2018 and the characterization of our mot has been published. In the
experiment there are aspects concerning di�erent subjects I encountered in my studies and this
gave me the opportunity to put to work what I have studied in my courses and to gain a deeper
understanding of the light-matter interaction. I also faced my limits but I was lucky enough
to meet physicists that helped me to overcome some of them, it has been a very meaningful
experience in my life.
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