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Abstract

In this thesis I report on the first experimental realization of ultracold mixtures of
fermionic chromium (53Cr) and lithium (6Li) atoms, and on an extensive investigation
of their interspecies collisional properties.
Our strategy to attain ultralow temperatures with such a novel system relies on an
all-optical approach. Atoms are first collected in a double-species magneto-optical
trap (MOT), where different laser cooling stages are employed to reach temperatures
of a few hundreds of microkelvins, close to the Doppler limit. Within an overall MOT
loading time of seven seconds, we produce cold clouds containing more than 5× 108

Li atoms and 8 × 107 Cr atoms, demonstrating more than a 100-fold increase in
the cold chromium sample, relative to previous studies. The two atomic species are
then directly loaded from the MOT into a bichromatic optical dipole trap (BODT),
realized by a combination of high-power infrared laser beams (confining more tightly
Li than Cr) and green light (tightly confining Cr and anti-confining Li). By carefully
adjusting the intensity of the green trapping beam, which strongly blue-shifts the
chromium laser cooling transition – thus creating an effective dark spot for the
chromium MOT – we are able to collect within the BODT more than 106 Cr and 107

Li atoms, at temperatures of about 300 µK. We then reach the ultracold regime by
relying on efficient evaporative cooling of the two lowest Zeeman states of lithium,
achieved near the homonuclear Feshbach resonance at 832 Gauss, and on sympathetic
cooling of the chromium component, polarized in its lowest Zeeman sublevel. After a
5 s-long evaporation stage, only slightly longer than the optimum one for evaporation
of single-species Li samples, we obtain chromium-lithium mixtures comprising up to
3× 105 Cr and 1× 106 Li atoms, in thermal equilibrium at ultralow temperatures of
about 5 µK.
With such a novel ultracold heteronuclear system, so far uniquely available in our
lab worldwide, we have performed extensive Feshbach loss spectroscopy involving
up to six different scattering channels. This experimental effort, which constitutes
one among the main achievements of my thesis work, has led to the discovery of
about 50 heteronuclear Feshbach resonances, located at magnetic fields spanning
from 0 to 1500 G. Such a large amount of scattering resonances, which include
both s-wave and higher-order partial wave features, constitutes the foundation for a
quantum-collisional model for 53Cr-6Li mixtures, with potentially predictive power
also for all other chromium-lithium isotopic pairs. The model is being developed
by our theory collaborator, Prof. A. Simoni (University of Rennes), a world-renown
expert of multichannel calculations.
Notably, our experimental activity has already enabled us to identify a few, suffi-
ciently broad Cr-Li s-wave Feshbach resonances. Our work thus constitutes a first,
crucial step towards a wealth of next-future experimental studies in the quantum-
degenerate regime: From the investigation of exotic few- and many-body phenomena
in resonantly interacting Fermi mixtures, to the realization of dipolar quantum gases
of CrLi ground-state molecules, characterized by both a large electric and magnetic
dipole moment.
In the final part of this work, I also describe the design of a high-resolution imaging
setup for lithium and chromium atoms, which I developed during my initial period in
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the lab. The bi-chromatic microscope objective, which I devised and simulated with
the ray-tracing software OSLO, exploits solely six off-the-shelf optical components,
thus making its practical realization easy and inexpensive. The present setup is
optimized to be both diffraction-limited over a sizeable numerical aperture NA = 0.4,
and free from longitudinal chromatic aberrations for the imaging wavelengths of the
two species (λLi = 671 nm and λCr = 425.5 nm, respectively). The theoretically
achievable resolution, on the order of 1 µm, combined with a diffraction-limited field
of view of about 200 µm, makes the design discussed in this work appealing for both
high-resolution microscopy and optical manipulation of lithium-chromium quantum
mixtures.
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Introduction
In the field of atomic physics, the last few decades have been marked by the tremen-
dous progress in the production and manipulation of ultracold and quantum gases.
The implications of such developments, ranging from high-precision spectroscopy
and accurate measurements of time and fundamental constants [1], to quantum
computing and quantum simulations of model hamiltonians [2], have spread and
extended well beyond the field itself. An ever-growing number of experimental and
theoretical publications has appeared since the early days of laser cooling, and an
increasing number of groups are currently working on the many branches emerged
in this research area.
From a historical point of view, the realization of the first Bose-Einstein condensate
(BEC) in 1995 [3, 4], with dilute gaseous samples of alkali metals, not only consti-
tuted a milestone achievement (awarded with the 2001 Nobel prize) per se, but also
represented a key starting point for a variety of fascinating investigations on the
properties of quantum matter. Just to name a few, soon after atomic BECs were
available, their long-range phase coherence, as well as their superfluid behaviour,
were experimentally demonstrated [5, 6, 7]. Nowadays, the field is considered rather
mature, and numerous reviews on Bose-Einstein condensates and their applications
exist in the literature, see e.g. Refs. [8, 9] and references therein.
It was soon realized that the various techniques developed to cool, trap, manipulate
and probe bosonic atoms could also have been applied to fermionic species. Fermions
do not exhibit an “evident” phase transition as they are cooled down to ultracold
temperatures [10], i.e. their quantum statistics does not allow for a macroscopic occu-
pation of a single quantum state. Nevertheless, the realization of the first degenerate
Fermi gas in 1999 [11] has paved the way for a wealth of intriguing studies on this
kind of systems. After some first characterizations of the ideal Fermi gas and of its
statistical and collisional properties [12, 13], the interest quickly moved to fermions
in optical lattices and two-component Fermi mixtures near Feshbach resonances.
The former are the essential ingredient for quantum simulation of various solid
state systems, see e.g. Ref. [14] and references therein. The latter have attracted
much interest due to their remarkable stability in the regime of strong interactions
[15, 16], a somewhat unexpected feature that is not encountered in bosonic sys-
tems. Indeed, in a two-component Fermi gas, three-body recombination processes
(the main source of heating and losses in strongly-interacting bosonic samples) are
substantially inhibited by Pauli’s exclusion principle. This notable fact allows for
the simulation of strongly correlated electronic materials with ultracold fermionic
species. A further milestone achievement of the field, closely related to the physics of
Feshbach resonances, was the realization of long-lived ultracold molecules formed by
two fermionic atoms [16, 17], which – being long-lived composite bosons – can Bose
condense [18, 19, 20], paving the way to the exploration of fermionic superfluidity
throughout the BEC-BCS interaction crossover [21]. Such Feshbach molecules are
weakly bound (or quasi-bound) dimers in a highly excited roto-vibrational state.
Different techniques can be used to bring these shallow compounds down to their
absolute ground state, where they exhibit large electric dipole moments [22].
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Furthermore, the introduction of a “heavy-light” mass asymmetry within a fermionic
mixture is expected to promote a rich variety of exotic quantum states that are
difficult to realize, or even unattainable, with currently available equal-mass sys-
tems. For few-particle physics, heteronuclear fermion mixtures are predicted to
exhibit various N>2–body cluster states and scattering resonances: Among others,
a proper mass imbalance may lead to the existence of the Efimov effect [23, 24],
as well as to the emergence of non-Efimovian clusters [24, 25, 26] with universal
properties. At the many-body level, the natural mismatch of the Fermi surfaces of a
mass-imbalanced Fermi mixture is expected to greatly enhance the observation of
paradigmatic regimes of unconventional superfluidity [27]. A sufficiently large mass
asymmetry may indeed promote pair condensation into non-zero momentum states,
thereby leading to the celebrated FFLO-type ordering [28, 29], and it can favour
the creation of “breached-paired” or Sarma superfluid states with exotic gapless
excitations [30, 31], at experimentally achievable temperatures.
The specific choice for the chromium-lithium mixture is primarily motivated by the
exceptional few-body properties of this system, which cannot be obtained with any
other atom-atom combination, and that lay the ground for a wealth of possibilities,
going well beyond the scope of presently available systems. The peculiar mass ratio
of 53Cr and 6Li (M/m = 8.8) is predicted to support, in the region of repulsive
Cr-Li interactions, three- and four-body cluster states [24, 25, 32] with universal
character and p-wave (i.e. ` = 1) symmetry, never observed in any physical system so
far. In turn, the availability of these exotic few-particle states near a Cr-Li Feshbach
resonance may potentially allow, for the first time, the resonant tuning of few-body
(p-wave) elastic interactions, on top of the standard two-body (s-wave) ones. This
will uniquely enable to controllably investigate novel many-body regimes of ultracold
fermionic matter in the presence of strong, non-perturbative few-body correlations.
Besides these two main points, it is worth noticing that the Cr-Li system represents
also an extremely appealing candidate for realizing ground state polar molecules
with both electric and magnetic dipole moments.
The realization of chromium-lithium mixtures in the ultracold regime, and the
discovery of about 50 interspecies Cr-Li Feshbach resonances, both achieved during
my work period in the lab, constitute a very promising starting point for future
investigations with the novel CrLi quantum simulator.

My thesis work has been carried out in the Cr-Li lab at the Department of Physics
of the University of Florence, under the supervision of Dr. Matteo Zaccanti.
At the beginning of my lab activity, the whole experimental apparatus that allows us
to produce Cr-Li mixtures was already prepared. I participated in the construction of
new parts of the so-called PoLiChroM machine (namely, the high-field imaging setups
for Li and Cr), and in the optimization of some among the experimental routines (in
particular those regarding evaporation ramps, RF population transfers, and Feshbach
loss spectroscopy). Once the machine was optimized, I contributed to the acquisition
of extensive Feshbach scans, targeted to the detection of interspecies scattering
resonances. As anticipated, we experimentally unveiled around 50 heteronuclear
Cr-Li Feshbach resonances, which constitute an exceptional experimental input for a
refined Cr-Li quantum collisional model, currently under development by our theory
collaborator, Prof. A. Simoni (University of Rennes).
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Finally, as a side and totally independent project, I also designed a bichromatic high-
resolution imaging system for our mixture. The objective, devised and simulated
with the ray-tracing software OSLO, relies only on six catalogue lenses, and it is
optimized to be both diffraction-limited over a sizeable numerical aperture NA = 0.4,
and free from longitudinal chromatic aberrations for the imaging wavelengths of the
two species (λLi = 671 nm and λCr = 425.5 nm, respectively). The theoretically
achievable resolution, on the order of 1 µm, combined with a diffraction-limited field
of view of about 200 µm, makes the design discussed in this work appealing for both
high-resolution microscopy and optical manipulation of lithium-chromium quantum
mixtures.

This thesis is organized as it follows:

- Chapter 1 summarizes the theoretical background to describe ultracold atomic
collisions. In particular, after recalling fundamental elements of scattering
theory and reviewing pairwise atomic interactions, a basic overview of Feshbach
resonances is provided.

- Chapter 2 illustrates the complex optical setup of our experimental machine,
with which we produce the laser lights to cool, trap, and image lithium and
chromium samples.

- Chapter 3 outlines the experimental procedures that we employ to produce
ultracold Cr-Li mixtures, from the loading of the double-species magneto-
optical trap (MOT), to the final evaporation ramps in a bichromatic optical
dipole trap (BODT).

- Chapter 4 reports on the outcome of the extensive heteronuclear Feshbach loss
spectroscopy that we performed on our ultracold mixtures. Phenomenological
models to interpret and analyse the experimental data are presented, with
results compared with theoretical predictions.

- Chapter 5 describes the design and optimization of a bichromatic high-
resolution objective, with preliminary results concerning the most relevant
figures of merit, obtained with ray-tracing simulations.
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Chapter 1

Atom-atom interactions
In this chapter I summarize the most relevant features of the interaction
between two neutral atoms in a cold, dilute atomic gas.
First, I briefly introduce different kinds of potentials that can be used for
a “first order” description of the two-body interactions. Secondly, I invest
some pages on (a simplified version of) the quantum theory of scattering,
reviewing a couple of elementary examples that help illustrating the role
of the scattering length, a key parameter of the problem. In general, I
give particular emphasis to situations that involve resonant scattering.
Anyway, this first part is by no means an exhaustive review of the subject;
rather, it has to be regarded as a practical way to gain insight into the
problem, and to introduce the relevant quantities and the standard
notation. An extensive treatment of the topic can be found in many
textbooks, e.g. Refs. [33, 34, 36, 37, 38, 47].
Finally, after taking into account more realistic atomic interactions, I
present the phenomenon of the so-called Feshbach resonances, and discuss
their importance in the context of ultracold atom experiments.

As a first step in the study of atomic collisions, let us consider some among the
physical mechanisms that can give rise to an interaction between different atoms. In
the case of neutral atoms (e.g. alkali metals, or two-electron atoms), the interaction
at large distances is due to induced dipole-dipole contributions, and has an attractive
character. On the contrary, at very short distances, electrostatic effects come into
play, and the potential features a repulsive “hard wall”. The simplest function that
one can use to describe this kind of interaction is the Lennard-Jones potential

VLJ(r) = −C6
r6 + C12

r12 (1.1)

which is isotropic, and has a short-range character (the meaning of this last statement
will be clarified in the following). Besides, we also note that VLJ(r) has a minimum,
which falls typically on the Å scale.
In the case of dipolar atoms (e.g. transition metals, rare earths), a dipole-dipole
contribution to the interaction potential may be not negligible. If the sample is
polarized, one can conveniently write

Vdd(~r) = µ0 µ2

4π
(1− 3 cos2 θ)

r3 (1.2)

where µ0 is the vacuum magnetic permeability, and µ is the atomic magnetic dipole
moment.1 This potential is not isotropic (both its sign and modulus depend on
the angle θ between the dipoles), and can be considered as a borderline case of
long-range interaction.
1Neutral atoms have no permanent electric dipole moment.
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Before going through the machinery of scattering theory, an important point to be
emphasized is the concept of diluteness of the atomic gas. Indeed, even if atomic
samples can be brought to the quantum-degenerate regime, their spatial density
remains pretty low compared to classical gases. For instance, in the case of Bose-
Einstein condensates (BECs), atomic densities are typically on the scale of 1014 cm−3,
yielding average interparticle distances d ∼ 0.2 µm. At the same time, the typical
range for the interaction is on the order of 100 a0 ' 50 Å, where a0 is the Bohr radius.
Hence, being such an interaction range much shorter than d, we can consider the
atomic sample as dilute, and VLJ(r) as a contact-like potential. This, in turn, leads
to two important simplifications: on the one hand (when performing many-body
calculations) we can replace VLJ(r) with a δ-like potential, adjusting the coupling
strength in order to get the same final results for the (two-body) scattering problem.
On the other hand, since (N>2)-body collisions in a dilute gas are much rarer than
two-body processes, we can mainly focus on the latter, neglecting (for the moment)
other few- and many-body contributions.
In any case, atoms in ultracold gases collide at very low energies, so a quantum-
mechanical treatment of the scattering problem is required.

1.1 Elements of scattering theory
To begin our study on atomic collision, let us consider the simplest scattering
problem; namely, the non-relativistic elastic scattering of two distinguishable spinless
particles (with masses m1 and m2), interacting via a (real) central potential.2 We
can write the Schrödinger equation in the center of mass frame3[

p2

2m + V (r)
]
ψ(~r) = E ψ(~r) (1.3)

where m = m1m2/(m1 +m2) is the reduced mass, ~p = ~~k = ~p2 − ~p1 is the relative
momentum, and E = (~k)2/2m > 0 is the scattering energy. Without loss of
generality [34], we can model the incoming effective single-particle wavefunction
ψi with a plane wave propagating along the z-axis, and (at large distances) the
scattered fraction ψs − ψi with a modulated spherical wave:

ψi(~r) ' ei k z (1.4a)

ψs(~r) ' ei k z + f(k, θ) ei k r
r

(for large r) (1.4b)

where the scattering amplitude f(k, θ) (which generally may also depend on the
azimuthal angle ϕ and on the final wavevector k′) carries all the information about
the interaction.
From the standard definition of probability current

(
~jn = ~

m =m
[
ψ∗ ~∇ψ

] )
, we can

readily compute the radial4 scattered current for a given angle θ 6= 0. This results
2More realistic situations with respect to ultracold atomic collisions are considered towards the
middle of this chapter.

3It can be shown that integrated quantities, such as the total scattering cross section (defined in
the following), do not depend on the chosen reference frame, see App. 2 in Ref. [36].

4In spherical coordinates the gradient operator reads ~∇ = r̂ ∂r + θ̂ r−1 ∂θ + ϕ̂ (r sin(θ))−1 ∂ϕ, so
the leading contribution for r → ∞ is given by the radial term. Moreover, as soon as f(k, θ) is
obtained (see Eq. (1.18b)), it can be shown that the scattered current is purely radial [48].
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in js(k, θ) = v
r2 |f(k, θ)|2, where v (the relative velocity of the particles) directly

gives the incident flux for the chosen normalization. The outgoing scattered flux in
the solid angle dΩ is given by dΦs = js · r2 dΩ. Hence the differential cross section,
defined as the ratio between dΦs and the incident flux (per unit solid angle), reads

dσ
dΩ = |f(k, θ)|2 (1.5a)

The total elastic cross section is therefore given by

σel(k) =
∫

dΩ
( dσ

dΩ

)
= 2π

∫ π

0
dθ sin(θ) |f(k, θ)|2 (1.5b)

In order to proceed with analytical calculations, it is convenient to perform the
partial wave expansion

ψ(~r) =
∞∑
`=0

+∑̀
m=−`

R`,m(r)Y`,m(θ, ϕ) =
∞∑
`=0

R`,0(r)Y`,0(θ) (1.6)

where R`,m(r) denote the radial wavefunctions, and Y`,m(θ, ϕ) are the spherical
harmonics. In the case of a central potential, due to the cylindrical symmetry of the
problem (one direction is fixed by the incoming wavevector), terms with m 6= 0 do
not contribute to the sum.5 Moreover, since spherical harmonics form a complete
orthogonal set of angular momentum eigenstates, partial waves associated with
different values of ` do not interfere with one another. By inserting Eq. (1.6) into
Eq. (1.3), one finds that the radial wavefunctions must satisfy

− ~2

2m

[ 1
r2

∂

∂r

(
r2 ∂

∂r

)
− ` (`+ 1)

r2

]
R`(r) + V (r)R`(r) = ER`(r) (1.7a)

Hence, by defining the “reduced” radial wavefunctions U`(r) = r · R`(r), and the
dimensionless parameter ρ = kr, Eq. (1.7a) becomes[

∂2

∂ρ2 −
` (`+ 1)
ρ2 + 1

]
U`(ρ) = Ṽ (ρ)U`(ρ) (1.7b)

where Ṽ (ρ) = V (ρ)/E is the dimensionless potential. In the trivial case in which
Ṽ (ρ) identically vanishes, Eq. (1.7b) reduces to the well-known Riccati-Bessel
equation, that supports two different families of solutions

ĵ`(ρ) = ρ · j`(ρ) ; n̂`(ρ) = −ρ · n`(ρ) (1.8)

where j`(ρ) and n`(ρ) are the spherical Bessel and von Neumann functions, respec-
tively. The following expansions6 and recurrence relation will be quite helpful [35]

j`(ρ→ 0) ' ρ `(
2`+ 1

)
!!

(1.9a)

n`(ρ→ 0) ' −
(
2`− 1

)
!!

ρ(`+1) (1.9b)

j`(ρ→∞) '
sin
(
ρ− `π

2
)

ρ
(1.10a)

n`(ρ→∞) ' −
cos

(
ρ− `π

2
)

ρ
(1.10b)

f`
′(ρ) = `

ρ
f`(ρ) − f`+1(ρ) (1.11)

5From now on, we will drop the m subscript when denoting the radial wavefunctions.
6The double factorial in Eq. (1.9b) is defined such that (−1)!! = 1, see also Refs. [36, 37].
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where f` stands either for j` or n`, and the prime denotes the derivative with respect
to the argument. It is worth noticing that spherical Bessel functions are regular at
the origin, while spherical von Neumann functions are not.
In the asymptotic region, where the potential is negligible, we can look for solutions
of Eq. (1.7b) in the form7

U (2)
` (k, r →∞) = α`(k)

[
ĵ`(ρ) + β`(k) n̂`(ρ)

]
(1.12)

Here, α`(k) are just normalization factors, whereas β`(k) are mixing coefficients that
fully characterize the scattering process. If we assume that V (r) ' 0 beyond a
certain (arbitrarily large) distance R0, these coefficients can be obtained by requiring
the logarithmic derivative of the radial wavefunction to be continuous at r = R0.
This leads to

β`(k) = ρ0 j`
′(ρ0)− L(1)

` j`(ρ0)
ρ0 n`′(ρ0)− L(1)

` n`(ρ0)
(1.13a)

where ρ0 = kR0, and L(1)
` is the dimensionless logarithmic derivative of the (possibly

numerically-computed [37]) wavefunction at short distances, evaluated for r = R0:

L(1)
` = R0 ·

(
∂R

(1)
`
∂r

)∣∣∣∣
R0

R(1)
` (R0)

= ρ0 ·

(
∂U

(1)
`
∂ρ

)∣∣∣∣
ρ0

U (1)
` (ρ0)

− 1 (1.13b)

By defining8

β`(k) = tan
(
δ`(k)

)
(1.14a)

α`
′(k) = α`(k)

cos
(
δ`(k)

) (1.14b)

our solution in Eq. (1.12) takes the simple form

U (2)
` (k, r →∞) = α`

′(k) sin
(
kr − `π

2 + δ`(k)
)

(1.15)

where the phase shifts δ`(k) are the key parameters that entirely encode the scattering
process: in other words, knowledge of these quantities completely solves our two-body
problem. For large r, the total wavefunction thus reads

ψ(2)(~r) =
∞∑
`=0

α`
′(k)
kr

sin
(
kr − ` π

2 + δ`(k)
)
Y`,0(θ) (1.16)

This expression has to be compared with Eq. (1.4b). To this end, another useful
formula is the Bauer expansion of a plane wave in terms of spherical harmonics [38]

ei kz = ei kr cos(θ) =
∞∑
`=0

√
4π (2`+ 1) (i)` j`(kr)Y`,0(θ) (1.17a)

7Actually, we point out here that this entire procedure (and line of reasoning) is valid only if the
scattering potential V (r) decays faster than 1/r as r →∞. For instance, in the case of Coulomb
scattering, one finds that the incoming and outgoing wavefunctions are (logarithmically) distorted
even at asymptotic distances [37], thus not being properly described by Eqs. (1.4).

8Note that, from Eq. (1.14a), δ`(k) is only defined modulo π. For the moment, we can safely ignore
this fact, as such an ambiguity does not compromise our analysis. Anyway, it will be specifically
addressed in Sec. 1.5.
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which, in the asymptotic limit, approaches (see Eq. (1.10a))

ei kz '
∞∑
`=0

√
4π (2`+ 1) (i)`

kr
sin
(
kr − `π

2
)
Y`,0(θ) (1.17b)

From a first comparison of Eqs. (1.17b) and (1.16), one realizes that the main
difference between the free and the scattered state lies in the presence of the phase
shifts δ`(k).9 More precisely, by inserting Eq. (1.17b) into Eq. (1.4b) and equating
the result to Eq. (1.16), after some algebraic manipulations one finds

α`
′(k) =

√
4π (2`+ 1) (i)` ei δ`(k) (1.18a)

f(k, θ) =
√

4π
k

∞∑
`=0

√
2`+ 1 ei δ`(k) sin

(
δ`(k)

)
Y`,0(θ) (1.18b)

where it should be emphasized that the scattering amplitude f(k, θ) is fully deter-
mined by the phase shifts. Therefore, due to the orthogonality of spherical harmonics,
the total (elastic) cross section reads

σel(k) =
∞∑
`=0

σ`(k) = 4π
k2

∞∑
`=0

(2`+ 1) sin2 (δ`(k)
)

(1.19)

In the case of a central potential, this constitutes an absolutely general result: the
total elastic cross section is given by the sum over the independent contributions
of every single partial wave, each of these contributions being in turn entirely
determined by the corresponding phase shift.
We conclude this section by pointing out that Eq. (1.19) can be recast into another
quite meaningful form. Indeed, from the properties of spherical harmonics it follows
that Y`,0(θ = 0) =

√
(2`+ 1)/4π. Therefore we have

σtot(k) = 4π
k

=m
[
f(k, θ = 0)

]
(1.20)

This last relation, known as the optical theorem, essentially expresses the conservation
of the probability current [36]: in other words, the scattering cross section quantifies
the removal of particles from the incident flux. Further, when compared to Eq. (1.19),
it shows that in general the scattering amplitude is complex, with =m

[
f(k, θ = 0)

]
being always positive. As we will discuss in the following section, quantum gases
in the so-called s-wave regime represent an exception to this rule, as the imaginary
part of f(k, θ = 0) vanishes for k → 0 [48].
Lastly, yet importantly, the optical theorem is not restricted to elastic scattering,
being also valid for inelastic processes [37].

9Note that, in the absence of a scattering potential, i.e. if V (r) = 0 ∀ r, the internal solution
reduces to U

(1)
` (ρ) = ĵ`(ρ), aside from normalization factors. Therefore, the numerator on the

r.h.s. of Eq. (1.13a) vanishes, together with β`(k) and δ`(k), and one recovers the free particle
solution. Hence, the scattering phase shifts are seen to arise from the action of V (r). On the other
hand, the term − `π

2 in the argument of the asymptotic wavefunction vanishes only for ` = 0. It is
ultimately related to the centrifugal potential (see Sec. 1.2), thus being commonly referred to as
the centrifugal phase shift.
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1.2 Low-energy scattering
In the context of ultracold atoms, the partial wave expansion (Eq. (1.6)) is particularly
important: the reason, as we shall see in this section, is that at low energies only a
few partial waves yield non-negligible contributions to the scattering cross section.
Indeed, by inspection of Eq. (1.7a), one realizes that the centrifugal potential
essentially acts as a repulsive term, which dominates over the interaction at large
distances. Thus, one actually deals with an effective potential

Veff(r) = V (r) + ~2

2m
` (`+ 1)
r2 (1.21)

which, when V (r) is given by Eq. (1.1), features a local maximum somewhere near
the van der Waals range R0. Typically, the height of this maximum, ranging around
a few mK, is much smaller than the (short-distance) potential depth, which can
be instead on the order of hundreds of kelvins. Nevertheless, ultracold atoms have
kinetic energies that lie well below these values: thus, a colliding pair approaching
with orbital angular momentum ` > 0 must actually tunnel through the centrifugal
barrier in order to experience the interaction potential V (r). It can be shown
(e.g. with the WKB method [39]) that the tunneling probability rapidly drops as the
collisional energy decreases: therefore, in the limit of T → 0, only a few partial waves
will actively contribute to the scattering process. A more formal and quantitative
approach to get the same result is based on the so-called Wigner’s threshold law
[40], that can be summarized as [46]:

For a scattering potential that behaves like V (r) ∼ r−α for large r, in the
low-energy limit the phase shifts δ`(k) scale as

δ`(k → 0) ∝ k(2`+1) if 2` ≤ α− 3 (1.22a)
δ`(k → 0) ∝ k(α−2) if 2` ≥ α− 3 (1.22b)

This rather general result can be understood on the basis of our calculations (at least
when 2` ≤ α− 3) by making use of Eqs. (1.9) and (1.11) into Eq. (1.13a). Thereby,
defining L(1)

` = lim
k→0

L(1)
` , and provided that L(1)

` 6= −(`+ 1), one finds10

β`(k → 0) = tan
(
δ`(k → 0)

)
' ρ2`+1

0

(2`+ 1)
[
(2`− 1)!!

]2
(
`− L(1)

`

)(
`+ 1 + L(1)

`

) (1.23)

10If, “by accident”, L(1)
` = −(`+ 1) for a particular `, the tangent of the corresponding phase shift

δ` diverges. With a not completely satisfactory yet simple argument, one could conclude that in
such a situation δ` = (2n+ 1) π2 , with n being an integer number. Therefore, from Eq. (1.18b):

f(k, θ) =
√

4π
k

∞∑
`=0

√
2`+ 1 (i)4n+1 Y`,0(θ)

Hence, the `-th contribution to the total cross section diverges as 1/k2, namely σ`(k) ' 4π (2`+
1) · k−2. This is a first example of resonant scattering (more precisely, this is a zero-energy
resonance). A more formal approach is presented in Sec. 1.8.
On the other hand, one also realizes that for L(1)

0 = 0 =⇒ β0(k → 0) = 0. Hence, under this
condition, in the low-temperature limit the scattering would be suppressed even for s-wave
collisions. This is instead a manifestation of the Ramsauer-Townsend effect, better discussed in
Sec. 1.6.
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Hence, following from Eqs. (1.19) and (1.22), for each term σ`(k) in the sum we have

σ`(k → 0) ∝ k4` if 2` ≤ α− 3 (1.24a)
σ`(k → 0) ∝ k2(α−3) if 2` ≥ α− 3 (1.24b)

Therefore, for a short-range potential (i.e. any potential falling off with α > 3), at
very low temperatures the ` = 0 (i.e. s-wave) scattering cross section approaches
a constant value, whereas contributions from higher partial waves are strongly
suppressed. In this case, one can conveniently define the s-wave scattering length as

as = − lim
k→0

tan
(
δ0(k)

)
k

(1.25a)

Note that, with the help of Eq. (1.23), we have

as = R0
L(1)

0
L(1)

0 + 1
(1.25b)

By inserting Eq. (1.25a) into Eq. (1.19), we can express the total elastic cross section
in the zero-energy limit as

σel(k → 0) = 4π a2
s (1.26)

The latter is a celebrated result of scattering theory: for a central short-range poten-
tial, the low-energy scattering is to first order isotropic, and the total cross section
approaches a constant value, which is solely determined by the s-wave scattering
length (i.e. not by k). Actually, this very last statement is strictly valid only in the
context of off-resonant scattering, which anyway encompasses the majority of cases.
The concept of resonant scattering will be introduced later, and an expression for
the resonant cross-section is derived in Sec. 1.8.
In the following, we will briefly review some basic examples of scattering problems,
in order to gain a better understanding of the physical meaning of as.
Before that, we remark that in the case of dipolar interactions (where α = 3, see
Eq. (1.2)), from Wigner’s law one finds that – even for k → 0, all partial waves
actively contribute to the total cross section, each contribution being (to first order)
k-independent in the low-temperature limit.

1.3 Scattering by a square potential barrier
The real interaction potential experienced by two atoms is a quite complicated
function, as we shall discuss later. Let us here examine a couple of toy models in
order to gain more insights into the problem, especially to better understand the
physical meaning of the scattering length. In particular, we start by considering a
(3D) spherical barrier of the kind

V (r) =
{
V0 for r < b
0 for r > b

(1.27)

where V0 = (~k0)2/2m. The situation is depicted in Fig. 1.1a. The Schrödinger equa-
tion for the reduced radial wavefunction reads (see Eqs. (1.7))[

− ~2

2m∂2
r + ~2 ` (`+ 1)

2mr2 + V (r)− E
]
U`(r) = 0 (1.28)
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In the limit of low-energy scattering, invoking Wigner’s law we neglect all contri-
butions from partial waves with ` > 0. Within this approximation, the centrifugal
barrier vanishes, yielding

∂2
r U0(r) − (k2

0 − k2) U0(r) = 0 (r < b) (1.29a)
∂2
r U0(r) + k2 U0(r) = 0 (r > b) (1.29b)

We look for solutions of Eqs. (1.29) with positive energy, in the limit of k → 0 (i.e.
E < V0). In the inner region (r < b) we can write

U (1)
0 (r) = A1 sinh

(√
k2

0 − k2 r

)
(1.30a)

since the total radial wavefunction, namely R0(r) = U0(r)/r, must be regular at the
origin. On the other hand, in the outer region (r > b) we have

U (2)
0 (r) = A2 sin(kr) +B2 cos(kr) = C2 sin

(
kr + δ0(k)

)
(1.30b)

where δ0(k → 0) = −kas, see Eq. (1.25a). The wavefunction and its first derivative
need to be continuous everywhere, so our solutions must satisfy the boundary
condition

1√
k2

0 − k2
tanh

(√
k2

0 − k2 b

)
= 1

k
tan

(
k (b− as)

)
(1.31a)

We can consider Eq. (1.31a) as an equation for as. By taking the limit of k → 0, the
scattering length is given by

as = b

(
1 − tanh(k0b)

k0b

)
(1.31b)

and its trend, with respect to the barrier parameter k0b, is shown in Fig. 1.1b. The
most relevant feature is that, for such a repulsive potential barrier, the scattering
length is always a positive quantity. Indeed, when k0b → 0, as tends to zero as
(k0b)2; then, as k0b → ∞, it approaches its maximum value amax

s = b, yielding a
total cross section σmax

0 = 4π b2 (which is four times larger than the corresponding
classical result). When compared to Eq. (1.26), this last relation offers a simple
physical picture of the scattering length: indeed, the latter can be understood as the
radius of an effective “hard sphere” that reproduces the same low-energy phase shift.

Figure 1.1 – Scattering by a repulsive square potential barrier: (a) sketch. (b) Low-energy
(s-wave) scattering length.

(a) (b)
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1.4 Scattering by a square potential well
Let us now study the scattering by a (3D) spherical well, that we take as

V (r) =
{
−|V0| for r < b

0 for r > b
(1.32)

This potential, sketched in Fig. 1.2a, may be regarded as an extremely rough
approximation of the real interatomic interaction (see, e.g., Eq. (1.1)). Anyway,
despite its simplicity, this model provides many useful insights into real-world
scattering phenomena, so it deserves a careful examination.
Following the steps of the previous section, by taking the limit of s-wave scattering
we can cast the Schrödinger equation as

∂2
r U0(r) + (k2

0 + k2) U0(r) = 0 (r < b) (1.33a)
∂2
r U0(r) + k2 U0(r) = 0 (r > b) (1.33b)

Note that in this case, for positive energies, there are no classically forbidden regions.
We look for solutions of Eqs. (1.33) in the form

U (1)
0 (r) = A1 sin

(√
k2

0 + k2 r
)

(r < b) (1.34a)

U (2)
0 (r) = C2 sin

(
k (r − as)

)
(r > b) (1.34b)

Then, from the application of boundary conditions at r = b, we obtain

1√
k2

0 + k2
tan

(√
k2

0 + k2 b

)
= 1

k
tan

(
k (b− as)

)
(1.35a)

Lastly, by solving Eq. (1.35a) for as when k → 0, one finds

as = b

(
1 − tan(k0b)

k0b

)
(1.35b)

As shown in Fig. 1.2b, this result is quite different from the one obtained for the
repulsive barrier (see Eq. (1.31b)). In this case, while for k0b → 0 the scattering
length goes to zero (from negative values) as −(k0b)2, a quite peculiar behaviour is

Figure 1.2 – Scattering by a square potential well: (a) sketch, showing also the lowest
` = 0 bound states. (b) Low-energy (s-wave) scattering length.

(a) (b)
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encountered whenever k0b approaches an odd multiple of π
2 . Indeed, as exhibits a set

of singularities, near which it both diverges and changes sign, passing abruptly from
−∞ to +∞. As we shall see in the following section, this striking difference with
respect to the repulsive barrier ultimately arises from the fact that a potential well
can support bound states, and it turns out to be a general property of (sufficiently
strong) attractive potentials. Lastly, we highlight how these resonance-like features
become narrower as k0b is progressively increased, yielding a value of as that is
“almost everywhere” close to b (hence positive). The latter is a quantum-mechanical
effect known as quantum reflection.

1.4.1 Bound states of the square potential well
The square-well potential (see Eq. (1.32)) can also support solutions with negative
energy, i.e. bound states. Following a procedure analogous to the one that yielded
Eqs. (1.33), but now assuming E = −~2k2/2m < 0, we obtain

∂2
r U0(r) + (k2

0 − k2) U0(r) = 0 (r < b) (1.36a)
∂2
r U0(r) − k2 U0(r) = 0 (r > b) (1.36b)

The inner and outer region solutions of Eqs. (1.36) are, respectively

U (1)
0 (r) = A1 sin

(√
k2

0 − k2 r
)

(r < b) (1.37a)

U (2)
0 (r) = C2 e−kr (r > b) (1.37b)

and they must satisfy the boundary condition

1√
k2

0 − k2
tan

(√
k2

0 − k2 b

)
= − 1

k
(1.38a)

Given k0 and b, this equation can be numerically solved to find the discrete set of
bound states energies. However, we are now interested to look at Eq. (1.38a) from a
different perspective: while keeping the potential range b fixed, we search for those
particular values of k0 that yield a bound state with E → 0−. Thus, in the limit of
k → 0, Eq. (1.38a) becomes

tan(k0b)
k0

= − 1
k
−−−−→
k→0

−∞ (1.38b)

that is satisfied if
k0b =

(
2n + 1 + ε

) π
2 (1.38c)

with n being an integer number, and ε → 0+. One immediately realizes that
Eq. (1.38c) is actually the same condition which, from Eq. (1.35b), gives singularities
in as. Namely, the scattering length diverges whenever the potential well parameter
k0b is such that a (weakly) bound state with E → 0 is supported by V (r). In
particular, when as � 0, the potential supports a (weakly) bound state, whereas
for as � 0 there exists a virtual state close to E = 0 (relatively to the scattering
threshold). This is a general result of scattering theory, known as Levinson’s theorem
[41], that holds for a wide class of two-body interaction potentials. Moreover, it is
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worth noticing that, for such a weakly-bound state, from Eqs. (1.38b) and (1.35b)
we can express the binding energy as

Eb = −~2k2

2m ' − ~2

2m (b− as)2 ' −
~2

2ma2
s

(1.39)

where the last (approximate) equality follows from as being very large when
Eq. (1.38c) holds. Thus we understand that, ultimately, the (low-energy) scat-
tering length is closely related to the position of the least bound (or virtual) state
of the scattering potential. In particular, when a scattering resonance is closely
approached, it can be shown that Eq. (1.39) holds regardless of the details of the
interaction, giving rise to what is commonly referred to as the universal behaviour.

1.5 Levinson’s theorem applied to the square well
Before proceeding further, let us step back to our definition of the phase shifts, namely
Eq. (1.14a). One realizes that defining δ`(k) by means of the mixing coefficients
β`(k) actually fixes the former quantities only modulo π. This ambiguity can be
overcome. The starting point is to write (see Eq. (1.13a))

δ`(k) = tan−1
[
ρ0 j`

′(ρ0)− L(1)
` j`(ρ0)

ρ0 n`′(ρ0)− L(1)
` n`(ρ0)

]
(1.40)

with the phase shifts being now uniquely defined in the range
[
- π2 ; π

2
]
. However,

following this path, they turn out to be not continuous functions of k (i.e. of the
scattering energy E), which is physically unpleasant. Indeed, as E varies, δ` would
have a jump of π whenever it reaches ±π

2 [37].
To better frame the situation, aiming for an absolute definition of δ`(k), let us
remind that:

- for V −→ 0, δ`(k) −→ 0 ∀ `, k : in other words, if the potential vanishes,
there is no scattering;

- for E −→∞, δ`(k →∞) −→ 0 : if the kinetic energy is very large, the
effects of the potential are negligible, and
the relative motion is unperturbed;

- for E −→ 0, δ`(k → 0) −→ 0 : as long as Wigner’s law holds.11

For sake of simplicity, let us consider the square-well potential. The first point can
be exploited as an absolute reference for the phase shifts: namely, we define δ`(k)
to be zero (for any `, k) when V0 = 0, which is a reasonable assumption. Then,
we build a continuous solution by manually adding or subtracting a contribution
of π whenever necessary. This is performed in two steps: first, we work in the
low-energy limit and, starting from V0 = 0, we progressively increase the potential
depth, removing any encountered jump during the process. Secondly, for any fixed
V0, starting from E →∞ (where we assume again δ`(k →∞) = 0), we gradually
11To be more precise, Wigner’s law refers to the tangent of the phase shifts, meaning that Eqs. (1.22)
actually hold for β`. Alternatively, as we shall derive shortly, one could argue that δ`(k → 0) −→ 0 ,
but modulo π, and provided off-resonant scattering is concerned.
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reduce the energy, correcting for discontinuities in a similar fashion. These two
procedures should converge. In the end, what we are going to find essentially is:

∆` = δ`(k → 0) − δ`(k →∞) 6= 0 (1.41a)
∆eff
` = tan

(
δ`(k → 0)

)
− tan

(
δ`(k → ∞)

)
= 0 (1.41b)

which means that ∆` is an integer multiple of π.
Let us start by considering a s-wave (i.e. ` = 0) scattering state, such as the one of
Eqs. (1.34). In this simple case, we can explicitly compute the internal logarithmic
derivative (see Eq. (1.13b))

L(1)
0 (k) = k̃0b cot(k̃0b) − 1 (1.42)

where k̃2
0 = k2

0 + k2, and we have set R0 = b. By inserting Eq. (1.42) into Eq. (1.40),
and by making use of the explicit form of j0 and n0 [35], one finds

tan
(
δ0(k)

)
=

k
k̃0

tan(k̃0b) − tan(kb)
1 + k

k̃0
tan(k̃0b) · tan(kb)

(1.43)

Defining A = tan−1 [ k
k̃0

tan(k̃0b)
]
and B = kb, and applying simple trigonometric

identities, we obtain

δ0(k) = tan−1
[
k

k̃0
tan(k̃0b)

]
− kb (1.44a)

where we leave open the possibility of adding or subtracting integer multiples of
π. Let us first examine the behaviour of Eq. (1.44a) as a function of k0 (that is
essentially the potential depth), taking the limit k → 0 (so k̃0 ' k0) and keeping b
fixed, see Fig. 1.3a (blue line). At low energies and for shallow potential depths, δ0
is a positive quantity (so the scattering length will be negative, as we have seen in
Fig. 1.2b). If we increase k0 up to k0b = π

2 we find that, while tan(k0b) diverges, δ0
“only” shows a finite discontinuity, passing abruptly from π

2 to -π2 . It is interesting
to notice that evaluating L(1)

0 = limk→0 L(1)
0 under the assumption k0b = π

2 yields
L(1)

0 = −1. This is the “accidental” condition L(1)
` = −(` + 1) which could have

made Eq. (1.23) ill-defined. As we learned in Sec. 1.4.1, k0b = π
2 corresponds to the

appearance of the first bound (s-)state in the square well, at zero binding energy.
When this happens, the scattering length diverges, whereas the total cross section
scales as k−2 (see Sec. 1.8): this situation is referred to as a zero-energy resonance.
If we keep increasing k0 until π

2 < k0b <
3
2π, far from boundaries we have

δ0(k → 0) ' kb

(tan(k0b)
k0b

− 1
)
−−−−→
k→0

0− (1.44b)

Thus, to make δ0 a continuous and monotonic function of k0, we must add a
contribution of π whenever a new s-wave bound state “enters” the well. Thereby
we obtain

lim
k→0

δ0(k) = N0 π (1.45a)

where

N0 = Floor

√2mb2V0
π2~2 + 1

2

 (1.45b)
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is the number of s-wave bound states supported by the potential, assuming that
none of them is at threshold. Conversely, when V0 is such that the (N0 + 1)-th
s-wave bound state is about to be supported, we have

lim
k→0

δ0(k) '
(
N0 + 1

2

)
π (1.45c)

Note that Eq. (1.45c) describes an anomalous low-energy phase shift, in the sense that
it does not approach 0 modulo π, thus violating Wigner’s law. As already pointed
out, this originates from the zero-energy logarithmic derivative being L(1)

0 = −1
when k0b is an odd multiple of π

2 . The resulting (corrected) behaviour of δ0(k) is
plotted in Fig. 1.3a (green line). A similar study can also be carried out for higher
angular momenta (` > 0). In particular, one finds [36]

lim
k→0

δ`(k) = N` π (1.45d)

where N` is the number of supported bound states with angular momentum ` > 0,
including those at zero binding energy. The generalization of this result to a broad
class of short-ranged two-body interaction potentials constitutes the Levinson’s the-
orem [33, 37].
We now turn to the investigation of the s-wave phase shift as a function of the
collisional energy. We choose (and fix) an arbitrary value for k0b, and we consider
the high-energy behaviour of δ0. We immediately realize that Eq. (1.44a) is not a
good starting point in this case, as it provides δ0(k → ∞) 6= 0 (unless, of course,
one takes the modulo operation). In this regard, Eq. (1.40) better suits our purpose,
as the numerator inside the square brackets vanishes for k →∞. As we decrease
the energy, δ0 increases smoothly. The only exceptions occur when the denominator
vanishes, i.e. whenever

L(1)
0 = ρ0

n0′(ρ0)
n0(ρ0) −→ ρ̃0 cot(ρ̃0) = −ρ0 tan(ρ0) (1.46)

with ρ̃0 = k̃0 b, see Fig. 1.3b (blue line). As we shall better examine in the next
section, when Eq. (1.46) holds, the s-wave scattering cross section is unitary-limited
(Ramsauer-Townsend “maximum”). In the present discussion, our goal is simply to
solve Eq. (1.46) numerically, in order to be able to correct for jumps in Eq. (1.40).
The outcome of such a procedure is plotted in Fig. 1.3b for k0b = 10 (green line)

Figure 1.3 – Phase shift δ0 for a square-well potential: (a) as a function of the trap depth,
in the low-energy limit; (b) as a function of the collisional energy, for fixed
trap depths. The blue and the green lines are obtained from Eqs. (1.40) and
(1.47), respectively. The red line shows an example of anomalous behaviour
when a bound state is at threshold.

(a) (b)
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and k0b = 5
2 π (red line). As one can appreciate, once jumps are removed, the

phase shift varies smoothly and monotonically with the energy. Most importantly,
δ0(k → ∞) −→ 0, as expected for a (nearly) free particle, while reaching at zero
energy the value predicted by Levinson’s theorem.
We conclude this section pointing out that, in the simple case of the square-well
potential, it is possible to write an analytic formula for δ0 that correctly reproduces
the results of the above methods, both as a function of k and k0:

δ0(k, k0) = tan−1
[
k

k̃0
tan(k̃0b)

]
− kb + Floor

[
k̃0b

π
+ 1

2

]
(1.47)

recalling that k̃0 =
√
k2

0 + k2 . Eq. (1.47) was found semi-empirically during the
study of this problem.

1.6 The Ramsauer-Townsend effect
The square well toy model can be further exploited to explore the regime of cold but
finite temperatures. Let us start by considering the scattering solutions (E > 0) of
Eq. (1.28), with V (r) given by Eq. (1.32). For each ` ≥ 0, in the inner region we have

U (1)
` (r) = A` ĵ`(k̃0r) (1.48)

where A` is a normalization constant. Therefore, from Eq. (1.13b), we obtain12

L(1)
` (k) = k̃0b

j`
′(k̃0b)
j`(k̃0b)

(1.49)

which, once inserted into Eq. (1.13a), yields

tan
(
δ`(k)

)
= ρ0 j`(ρ̃0) j`′(ρ0)− ρ̃0 j`

′(ρ̃0) j`(ρ0)
ρ0 j`(ρ̃0) n`′(ρ0)− ρ̃0 j`

′(ρ̃0) n`(ρ0) (1.50)

with ρ̃0 = k̃0R0 = k̃0b. Our interest is to study Eq. (1.50) as a function of k, keeping
the potential parameters fixed. In particular, for each `, we search for those values
of k that make either the numerator or the denominator vanish. In practice, they
can be obtained by numerically solving

ρ0
j`
′(ρ0)
j`(ρ0) = ρ̃0

j`
′(ρ̃0)
j`(ρ̃0) (num. = 0) (1.51a)

ρ0
n`
′(ρ0)

n`(ρ0) = ρ̃0
j`
′(ρ̃0)
j`(ρ̃0) (den. = 0) (1.51b)

When Eq. (1.51a) is satisfied, tan(δ`) = 0. Hence δ` is an integer multiple of π,
and we conclude from Eq. (1.19) that the corresponding partial cross section σ`
vanishes. This is commonly referred to as a Ramsauer-Townsend (RT) minimum.
Conversely, when Eq. (1.51b) holds, tan(δ`) diverges. In this case, δ` is an odd
multiple of π

2 , and the corresponding partial cross section reads σ` = 4π (2`+1) k−2.
This is the so-called unitary limit, which will be discussed in Sec. 1.8. Anyway, for
the moment, let us label this condition as a “RT maximum”.
In Fig. 1.4 we plot the first few partial cross sections as a function of k(T ), computed
12One could easily check that Eq. (1.49) reduces to Eq. (1.42) when ` = 0.
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starting from Eqs. (1.19) and (1.50), for V0/kB = 600 K (kB is the Boltzmann’s
constant), b ' 67 a0, and m being the reduced mass of the Li-Cr system (these
are just some arbitrary values). The most pronounced feature is the oscillatory
behaviour of the partial cross sections, each of them fluctuating between zero and
the corresponding unitary limit: this is the well-known Ramsauer-Townsend effect
[43, 44], first observed in electron scattering experiments. Anyway, it is worth
pointing out that RT maxima do not coincide with local maxima of σ`: the latter
are always found at a slightly lower temperature, owing to the additional k−2 factor.
We conclude this section by noting that, for a generic potential, Eqs. (1.51) read

L(1)
` (k) = ρ0

j`
′(ρ0)
j`(ρ0) = ` − ρ0

j`+1(ρ0)
j`(ρ0) (RT min.) (1.52a)

L(1)
` (k) = ρ0

n`
′(ρ0)

n`(ρ0) = ` − ρ0
n`+1(ρ0)
n`(ρ0) (RT max.) (1.52b)

where we used Eq. (1.11). In the limit of k → 0, to first order we have (see Eqs. (1.9))

L(1)
` ' ` (“zero-energy RT min.”) (1.53a)

L(1)
` ' − (`+ 1) (“zero-energy RT max.”) (1.53b)

These last results could also have been inferred starting from Eq. (1.23). One could
check that, for a short-range potential, Eq. (1.53b) describes the appearance of
a bound ` state at zero binding energy. Under this condition, scattering in the
`-th partial wave would in principle be resonant for k → 0 (zero-energy resonance).
Anyway, the centrifugal barrier strongly suppresses any ` > 0 contribution in the
zero-temperature limit, thus effectively preventing the observation of such resonances
in any ` 6= 0 channel.13

Figure 1.4 – Partial cross-sections as a function of the collisional energy, expressed in
temperature units. Dotted lines show the respective unitary limits (see
Sec. 1.8). Arrows and dots indicate RT minima and maxima, respectively.

13In other words, for ` > 0 the width of such resonances becomes vanishingly small as k → 0.
Nonetheless, they can be observed at finite temperatures, see Sec. 1.7.
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1.7 Shape resonances
Generally speaking, the partial cross sections σ`(k) are slowly-varying (oscillating)
functions of the scattering energy, see again Fig. 1.4. Anyway, a quite peculiar
behaviour is encountered if Eq. (1.52b) happens to have a solution for a small but
finite value of k, namely 0 < k < Kc, where Kc is the maximum height of the
centrifugal barrier14 (expressed as a wavevector). For the square-well potential of
Eq. (1.32), one has Kc b =

√
`(`+ 1) for any given `. In this case, it is clear that

0 < k < Kc may only be satisfied if ` > 0.15 Let us define

J(2)
` (k) = ρ0

j`
′(ρ0)
j`(ρ0) ; N(2)

` (k) = ρ0
n`
′(ρ0)

n`(ρ0) (1.54)

In Fig. 1.5a we plot these two quantities together with L(1)
` (k) (see Eq. (1.49)), after

having finely adjusted our square-well parameters in order to obtain the desired
solution (for the ` = 2 partial wave). Following the discussion on the RT effect,
intersections of L(1)

` (k) and J(2)
` (k) correspond to zeroes of the partial scattering

cross section σ`, whereas when L(1)
` crosses N(2)

` (k) one has a unitary-limited σ`(k)
(see Sec. 1.8). Note that J(2)

` (k → 0) = ` and N(2)
` (k → 0) = −(`+1) , in agreement

with Eqs. (1.53).
In most cases, L(1)

` (k) crosses alternatively J(2)
` (k) and N(2)

` (k). The peculiar solution
we are looking for is encountered when, at low energies, two consecutive intersections
with N(2)

` (k) occur. In particular, if one of these falls at k < Kc, the whole situation
has a simple physical interpretation [36]: our attractive potential is such that it
supports a metastable `-state, that is trapped behind the centrifugal barrier. Of
course, this is not a real bound state, as it acquires a finite lifetime owing to the
finite probability to tunnel out of the centrifugal barrier. Anyway, its existence
produces a sharp resonance feature in the corresponding partial cross section σ`, see
Fig. 1.5b. Typically, these resonance phenomena depend critically on the potential
parameters, so they are commonly referred to as shape resonances [36].
The characteristic lineshape of the (partial) scattering cross section near a shape
resonance can be derived from a simple argument [36, 49]. If the denominator of
Eq. (1.13a) undergoes a “sharp” zero-crossing, the corresponding phase shift rapidly
changes by π. Thus, in a small energy region

[
Er − Γ/2 ; Er + Γ/2

]
, and neglecting

the (slowly-varying) background contribution, we can approximate δ` as

δ`(k) ' tan−1
[ Γ/2

Er − E

]
(1.55)

reminding that E = ~2k2/2m is the collision energy. Hence, from Eq. (1.19) we have

σ`(k) ' 4π
k2 (2`+ 1)

Γ2/4

(E − Er)2 + Γ2/4
(1.56)

which is known as the (one-level) Breit-Wigner formula [45]. The lorentzian term
in Eq. (1.56) introduces a strong dependence of the scattering cross section on the
14Here with “centrifugal barrier” we mean the repulsive tail of the effective potential Veff(r), sum of
the interaction and centrifugal potentials, that arises for r & R0, see again Eq. (1.21) and the
initial discussion in Sec. 1.2.

15A toy model for a square-well potential with a built-in additional barrier is presented in Ref. [42].
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Figure 1.5 – (a) The quantities L(1)
2 (k) (blue), J(2)

2 (k) (violet), and N(2)
2 (k) (green) for

a square-well potential tailored to support a quasi-bound d-state (k0b '
130.4983π). (b) Resulting partial cross-sections as a function of the collisional
energy. Note the sharp resonance in the d-wave channel, well described by
Eq. (1.56).

(a) (b)

collisional energy. In particular, for E = Er (i.e. on top of the resonance), the partial
cross section σ` reaches its unitary-limited value (see Sec. 1.8).
Within the approximation of Eq. (1.55), the resonance width is given by

Γ = −2
[ (

∂ cot
(
δ`(k)

)
∂E

)∣∣∣∣∣
Er

]−1

(1.57a)

Further, if the resonance occurs at very low energies, we have (see Eq. (1.23))

Γ(Er → 0) ' 2~2

mb2

[
`− L(1)

`[
(2`+ 1)!!

]2 (
`+ 1 + L(1)

`

)
]
· ρ2`+3

r (1.57b)

where ρ2
r = 2mb2Er/~2. Consequently, Γ(Er) becomes narrower the more Er is

reduced (ρ2`+3
r goes to zero faster than (`+ 1 + L(1)

` (k → 0))), as already pointed
out at the end of the last section.

1.8 Unitary limit and effective range
It is important to realize that, while as may effectively diverge near a scattering
resonance, the total cross section actually does not, for any finite k value. This could
have already been inferred from Eq. (1.19), as it is clear that the contribution of
each partial wave has an upper bound of

σmax
` (k) = 4π

k2 (2`+ 1) (1.58)

which depends only on k = k(T ). In a more formal approach, one can always
define the s-wave scattering length as in Eq. (1.25a). However, when as → ±∞, the
approximation tan(δ0(k)) ≈ sin(δ0(k)) ≈ δ0(k) does not hold. Instead, going back to
the general expression for f(k, θ), i.e. Eq. (1.18b), and writing ei δ`(k) sin(δ`(k)) =
[cot(δ`(k))− i ]−1, in the limit of k → 0 one can expand

cot
(
δ0(k)

)
' − 1

k as
+ 1

2 k re + ... (1.59)
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where we have considered only the s-wave contribution. The parameter re, often
conveniently recast as re = −2R∗, is called the effective range.16 Following from
Eq. (1.59), the low-energy s-wave scattering amplitude can be expressed as

f0(k → 0, θ) = 1
k cot

(
δ0(k)

)
− ik

' − 1
as−1 + R∗k2 + ik

(1.60)

It should be emphasized that Eq. (1.59) is a legitimate expansion in the regime
of s-wave scattering: since typically re ∼ b (b is the potential range), the effective
range correction to the scattering amplitude is of relative order kb, whereas p-wave
contributions scale as (kb)3 [47].
Besides, note that the last expression in Eq. (1.60) has the characteristic form of a
Breit-Wigner resonance. This becomes apparent if we recast it in energy units:

f0(E → 0, θ) ' −
~√
2m γ̃

E − Er + iγ
√
E

(1.61)

with Er = −~2/(2mR∗as) and γ̃ = ~/(
√

2mR∗). Indeed, by using Eq. (1.61) in
Eq. (1.5b), one retrieves the Breit-Wigner formula (see Eq. (1.56)), with Γ2 = 4γ̃2E.
The parameter 2 γ̃

√
E/~ represents the decay rate of the quasi-bound state that

yields the scattering resonance [42]. Note that Er and γ̃ are entirely determined by
as and R∗ (and vice versa).
From Eqs. (1.5b) and (1.60), the total low-energy (i.e. s-wave) scattering cross
section can be written as

σ0(k) ' 4π a2
s

(1 +R∗k2as)2 + k2a2
s

(R∗= 0)= 4π a2
s

1 + k2a2
s

(1.62)

where the last expression is obtained setting R∗ = 0. Alternatively, and equiva-
lently, one can define a k-dependent scattering length that includes effective range
corrections [49]

a(k) = −
tan

(
δ0(k)

)
k

' as
1 + R∗k2as

(1.63)

where we used Eq. (1.59). With this definition, Eq. (1.62) reads

σ0(k) ' 4π a2(k)
1 + k2a2(k) (1.64)

From Eqs. (1.62) and (1.64), one realizes that σ0(k) has an upper bound of 4πk−2,
in accordance with Eq. (1.58). In the low-temperature regime, when the scattering
cross section takes this limiting value, the effects of the interaction are independent
from the details of the potential, and the system is said to be in the unitary limit
[46]. In particular, if R∗ = 0 the unitary limit occurs whenever as diverges, i.e. on
top of a scattering resonance. Conversely, when R∗ 6= 0, σ0(k) is unitary-limited for
R∗k2as = −1.
In general, a scattering resonance is said to be narrow if R∗ is large and positive
(R∗ � b) [42]. Under this condition, the unitary limit is always found on the so-called
“BCS” side of the resonance [46], namely for as = −1/(R∗k2) < 0.
16A detailed discussion on the role of R∗ can be found in Ref. [42].
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1.8.1 The zero-range and effective range approximations
In some sense, the two-body scattering problem essentially consists in determining
how the asymptotic wavefunction U (2)

` (r) is affected by its short-distance counterpart,
see again Eqs. (1.12) and (1.13). Anyway, if one is not directly interested in the inner
region solution of the Schrödinger equation, the so-called zero-range approximation
can be applied. Basically, one extrapolates the asymptotic wavefunction towards the
origin, and imposes a boundary condition at r = 0 that properly accounts for the
real scattering phase shift, thus effectively replacing Eq. (1.13a).17 Namely, given
Eq. (1.15), for each partial wave we have

U(0)
` (k) =

(
∂U

(2)
`
∂r

)∣∣∣∣
r=0

U (2)
` (r = 0)

= k cot
(
δ`(k)− `π

2
)

(1.65a)

These are known as the Bethe-Peierls (BP) boundary conditions. Conceptually, the
scattering problem may appear simplified, as one has merely to deal with a “free”
solution of the Schrödinger equation. Actually, knowledge of δ`(k) is still required, so
in principle Eq. (1.65a) is by no means easier to solve than Eqs. (1.7). However, in
the s-wave regime we can perform the effective range expansion given by Eq. (1.59),
so that the BP boundary condition (for s-wave scattering) reads

U(0)
0 (k → 0) =

(
∂U

(2)
0
∂r

)∣∣∣∣
r=0

U (2)
0 (r = 0)

' − 1
as

+ 1
2 k

2 re (1.65b)

Eq. (1.65b) definitely constitutes a great simplification: With no need for the entire
functional form of δ`(k), nor for the details of the scattering potential V (r) (as long
as it is short-ranged), the low-energy collisional properties of ultracold atoms can
be completely characterized by just two parameters, namely the s-wave scattering
length and the effective range.18 As a corollary, any arbitrary (pseudo-)potential
able to correctly reproduce the values of as and re can be used to solve the scattering
problem. Anyway, in most real-world situations, experimental input is unavoidably
required to determine these two key parameters.

17In the case of a square-well potential (see Eq. (1.32)), one can imagine to decrease the potential
range b down to 0, while constantly adjusting k0 in order to keep as unchanged: hence, the
name of zero-range approximation.

18The zero-range approximation that results from neglecting re in Eq. (1.65b) directly translates
into a radial dependence of the wavefunction of the kind k(r − as). This is precisely the form in
which we sought our solutions, see again Eqs. (1.30b) and (1.34b).
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1.9 Scattering of identical particles
Before taking into account more accurate potentials to model atomic interactions,
let us extend our framework to deal with indistinguishable19 particles. Generally
speaking, when one tackles a system of identical quantum objects, symmetry consider-
ations are fundamental. In our case, the two-particle wavefunction must be properly
symmetrized by taking into account the quantum statistics of the investigated atoms:

ψ(~r1, ~r2) = ε ψ(~r2, ~r1) where ε =
{

1 for bosons
−1 for fermions

In the two-body problem, exchanging the two particles corresponds to a parity
transformation: in other words, when identical particles are considered, it is not
possible to distinguish between the scattering angles θ and π − θ. Accordingly, a
properly symmetrized asymptotic scattering state takes the form

ψs(~r) '
1√
2
(
ei k z + ε e−i k z

)
+ 1√

2
[
f(k, θ) + ε f(k, π − θ)

] ei k r
r

(1.66)

By repeating the analysis of Sec. 1.1 with this wavefunction, we can straightforwardly
obtain the symmetrized differential cross section20

dσ
dΩ = 1

2
∣∣f(k, θ) + ε f(k, π − θ)

∣∣2 (1.67)

It is worth stressing that the sum of the scattering amplitudes is carried out before
the squared modulus: this leads to interference effects in the scattering cross section.
From Eq. (1.18b) and from the parity of spherical harmonics, it follows that[

f(k, θ) + ε f(k, π − θ)
]

=
∞∑
`=0

f`(k, θ)
[
1 + ε (−1)`

]
=

∞∑
`=0

f`(k, θ) · ε̃` (1.68)

having defined f`(k, θ) as the `-th term in the sum of Eq. (1.18b). Therefore, the
total elastic cross section for identical particles is given by

σel(k) = 4π
k2

∞∑
`=0

ε̃` (2`+ 1) sin2 (δ`(k)
)

(1.69)

where we used ε̃2
` = 2 ε̃`. Overall, the interference term in σel(k) arises from the

combination of quantum statistics and symmetry properties of spherical harmonics.
In the case of bosons (fermions), the factor ε̃` is equal to 2 for even (odd) partial
waves, whereas it cancels out for terms of the opposite parity. More explicitly:

σbos(k) = 8π
k2

∞∑
`

(even)

(2`+ 1) sin2 (δ`(k)
)

(1.70a)

σfer(k) = 8π
k2

∞∑
`

(odd)

(2`+ 1) sin2 (δ`(k)
)

(1.70b)

19For “indistinguishable” we mean two identical atoms in the same internal state. In this case, the
spin part of the wavefunction is necessarily symmetric under the exchange of the two particles. A
detailed treatment of collisions involving same species atoms in different internal states can be
found in Refs. [36, 48].

20Note that in this case, for the definition of the differential cross-section, one should refer to the
total incoming flux (towards the origin), which is still given by v = ~k/m. This accounts for the
factor 1/2 in Eq. (1.67).
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Ultimately, when two indistinguishable atoms undergo a collision event, only half
of the partial waves effectively contribute to the total cross section: the remaining
constitute symmetry-forbidden channels. In the case of identical fermions, this
implies that collisions will be fully suppressed in the zero-temperature limit, as long
as the interaction potential is short-ranged and Wigner’s threshold law holds. Thus,
an ultracold sample of identical fermionic atoms represents an exquisite realization
of an ideal Fermi gas.

1.10 More realistic atomic interactions
We now move to consider additional contributions to the atom-atom interaction, and
discuss their role in the context of (ultra)cold collisions. To introduce the notation,
let us remind that a single free atom has electronic spin ~s and orbital angular
momentum ~l, that are coupled (by the spin-orbit interaction) to the total electronic
angular momentum ~j = ~s+~l. The latter will in turn combine with the nuclear spin
~i to yield the total angular momentum of the atom ~f =~i+~j. Atomic states labeled
by the quantum number j (f) are called fine states (hyperfine states). If an external
magnetic field is applied, these states split into 2j + 1 (2f + 1) Zeeman sublevels,
each of which is labelled by the quantum number mj (mf). Generally speaking,
under a magnetic field f (or j, in the absence of the hyperfine interaction) ceases
to be a good quantum number, but it can be still retained as a label to specify the
adiabatically connected zero-field energy level. The true eigenstates for B 6= 0 will
be referred to as the Breit-Rabi states.
Let us examine how good atomic quantum numbers are modified by interatomic
interactions. We assume to deal with atoms having a non-zero nuclear spin (i.e. an
hyperfine structure), but clearly our results will hold for ~i1 = 0 and/or ~i2 = 0 as
well. When tackling a two-body collision event, one can distinguish between two
different regimes: two far-apart atoms are essentially free, and their internal state is
entirely described by |ψ〉 = |f1,mf1〉+ |f2,mf2〉. Conversely, when the particles get
close to each other, exchange and dipolar interactions break the hyperfine couplings,
leading to a direct coupling of the two electronic spins. In the case of alkali atoms
s1 = s2 = 1/2, so the total electronic spin ~S = ~s1 +~s2 is associated with the quantum
number S = 0, 1. States having S = 0 (S = 1) are called singlet (triplet) states. If
we consider instead heteronuclear collisions in the Li-Cr mixture, the two electronic
spins sLi = 1/2 and sCr = 3 can either couple to S = 5/2 (exaplet) or to S = 7/2
(octuplet).
Let us analyse more carefully the interaction between two neutral atoms that are
close together. At short interatomic distances, a more accurate hamiltonian to
describe the two-atom problem can be chosen as [50]

Ĥ = Ĥ0 + Ĥint (1.71a)
where

Ĥ0 = T̂kin + Ĥhf + Ĥzee (1.71b)
Ĥint = ĤvdW + Ĥex + Ĥdd (1.71c)

are the unperturbed and the interaction hamiltonians, respectively. The former is
the sum of three contributions, namely the relative kinetic energy, the hyperfine
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interaction and the Zeeman energy:

T̂kin = ~2k2

2m (1.72a)

Ĥhf = Ahf
1
~2 (~s1 ·~i1) + Ahf

2
~2 (~s2 ·~i2) (1.72b)

Ĥzee = − 1
~
[
µB gs(~s1 + ~s2) − µN (gi,1~i1 + gi,2~i2)

]
· ~B (1.72c)

with Ahf
q (q = 1, 2) being the atomic hyperfine constants, µB (µN) the Bohr (nuclear)

magneton, and gs ( gi,q ) the electronic (nuclear) g-factor. Eq. (1.71b) is basically
the sum of two independent single-particle hamiltonians, written in the center of
mass frame. Therefore, it is diagonal in the Breit-Rabi basis.
In the interaction hamiltonian, the first term essentially accounts for the attractive
(van der Waals) part of the Lennard-Jones potential (see Eq. (1.1)):

ĤvdW(r) = − C6
r6 −

C8
r8 −

C10
r10 + . . . (1.73)

where we are now considering a more accurate multipole expansion. We stress
that ĤvdW is spin-independent, so it cannot couple different internal states. In
the asymptotic limit, and in the absence of long-range dipolar interactions, C6/r6

is the leading term of the interatomic potential. Anyway, as we are aiming for a
better short-range description of the interaction, the “repulsive hard wall” term in
Eq. (1.1) needs to be replaced. To this end, the second term of Eq. (1.71c) represents
the exchange interaction, which arises from the anti-symmetrization of the total
electronic wavefunction. This term is strongly dependent on the overlap between
the single-atom electronic wavefunctions, so it becomes relevant at short interatomic
distances. It can be expressed as21

Ĥex(r) = Vex(r) (1 + 4~s1 · ~s2)
2 (s1 + s2) (1.74a)

with Vex(r) = Cex r
−βex e−r/rex (1.74b)

where Cex, βex and rex are constants that characterize the strength and the range
of the interaction, respectively. Being spin-dependent, the exchange hamiltonian
can couple different internal (hyperfine) states, although always conserving the total
electronic spin and the projection of the total internal angular momentum, namely S
and Mf = mf1 +mf2 , respectively.22 Hence, this interaction may induce transitions
between different internal states, that are commonly referred to as spin-exchange
collisions. They often result in atom losses, as it will be discussed in Sec. 1.14.
Anyway, we remark that owing to the conservation of Mf , the so-called stretched
states |f, mf = ±f 〉 are immune against transitions induced by Ĥex.
Lastly, the third term in Eq. (1.71c) accounts for dipolar interactions. It can be
further decomposed into spin-spin interaction and second-order spin-orbit coupling

Ĥdd(r) = Ĥss(r) + Ĥso(r) (1.75a)
21The normalization of the spin-dependent term in Eq. (1.74a) has been chosen such that, when at
least one of the two spins has a value of 1/2, Ĥex(r) = ± Vex(r).

22Owing to its central radial dependence, Ĥex conserves the relative orbital angular momentum `
and its projection m`.
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with
Ĥss(r) = V1(r) Vs(~s1, ~s2) (1.75b)
Ĥso(r) = V2(r) Vs(~s1, ~s2) (1.75c)

Note that the spin dependence is the same for the two contributions. The spatial one,
by contrast, is starkly different. Namely, the spin-spin interaction scales as r−3 (which
is the characteristic long-range behaviour of dipole-dipole interactions), whereas
V2(r) drops exponentially with increasing interatomic distance [50]. Generalizing
Eq. (1.2) to the case of arbitrarily oriented spins, we can take

Vs(~s1, ~s2) = −
[

[~r ⊗ ~r](2) ⊗ [~s1 ⊗ ~s2](2)
](0)

= ~s1 · ~s2 −
3 (~s1 · ~r) (~s2 · ~r)

r2 (1.76)

Note that this term arises from the combination of rank-2 spin and spatial tensors.
Therefore, to first order, Ĥdd can couple internal states that differ by either 0 or 2
units of spin S, and/or of orbital angular momentum `. By gathering together the
previous results, for large r we can write

Ĥdd(r) =
(
Css
r3 − Cso e−r/rso

) [
~s1 · ~s2 −

3 (~s1 · ~r) (~s2 · ~r)
r2

]
(1.77)

where Css, Cso and rso are constants that characterize the strength of the spin-spin
and of the spin-orbit interaction, and the range of the latter, respectively.

1.10.1 Selection rules
As we have discussed the possibility for Ĥint to induce transitions between different
internal atomic states, we need to account for the appropriate selection rules, some
of which have already been introduced. We stress that, besides the quantum
numbers that characterize individual atoms, ` and m` – namely, the orbital angular
momentum associated with the incoming partial wave and its projection along the
magnetic field axis – have to be considered as well. As we have reviewed in Sec. 1.9, for
non-identical particles all possible values of ` are allowed. Conversely, for identical
bosons (fermions), only even (odd) partial waves yield non-zero contributions to the
scattering cross section, as a consequence of the (anti-)symmetrization of the total
wavefunction. In some sense, this constitutes a first selection rule.
Furthermore, summarizing the results of Sec. 1.10, we observe that:

- ĤvdW does not couple different states;
- Ĥex can induce transitions with

∆S = 0 ; ∆Mf = 0 ; ∆` = 0 ; ∆m` = 0 ;
- Ĥdd can induce transitions with

∆S = 0, ±2 ; ∆Mf = 0, ±1, ±2 ; ∆` = 0, ±2 ; ∆m` = 0, ±1, ±2 .

Anyway, we emphasize that these findings are only valid in the context of first-order
perturbation theory. To generalize, when the whole interaction hamiltonian is taken
into account, the only strict selection rule that has to be followed is the conservation
of the total angular momentum projection along the ~B field axis

Mtot = Mf + m` = mf1 + mf2 + m` (1.78)
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Thus we have: Mtot = M ′tot , where the prime denotes quantities evaluated after
the collision.
In the following we will investigate how Ĥint affects the scattering properties of
ultracold atoms. We will introduce the notion of scattering channel, and the so-called
molecular basis. In order to gather the whole discussion on selection rules together,
let us anticipate here some results to point out that, when a collision between two
identical bosons (fermions) is concerned, only molecular channels with even (odd)
values of orbital angular momentum are relevant for the problem. Besides, in a
scattering process involving distinguishable particles – although all possible values of
` are allowed – due to symmetry arguments, incoming even (odd) partial waves will
only couple to even (odd) molecular states and/or partial waves in the exit channel.

1.11 Feshbach resonances
We now present a brief introduction to the topic of Feshbach resonances, a rather
general quantum-mechanical phenomenon that in the context of ultracold atoms
provides a tool for tuning the scattering amplitude (and, correspondingly, the
interaction between the atoms) by means of an external homogeneous magnetic field.
Before that, we briefly introduce the notion of scattering channel.
Let us consider two atoms that are interacting via the interatomic pair potential (see
Sec. 1.10), and let us focus on their internal states. As we have already mentioned,
two far-apart atoms are entirely described by their respective hyperfine quantum
numbers (f and mf), together with the two quantum numbers associated with the
relative motion (` and m`). Accordingly, we can label this quantum state by means
of the scattering channel

α = { f1, mf1 , f2, mf2 , `, m` }

This is the so-called separated atom basis, that is essentially an extension of the
Breit-Rabi basis that includes orbital motion. Curly braces indicate that a proper
symmetrization must be chosen when dealing with identical particles [51].
On the other hand, when the two atoms approach each other, they experience an
interaction potential that is much stronger than the hyperfine interaction. As we
have discussed in Sec. 1.10, this leads to a direct coupling of the two electronic
spins. The standard way to treat the problem is to first couple the individual
electronic and nuclear spins to form ~S = ~s1 +~s2 and ~I =~i1 +~i2, respectively. Then,
the total electronic and nuclear spins are combined to get the total internal spin
~F = ~S + ~I. Lastly, ~F and ~̀ couple to give the total angular momentum of the
dimer, ~Ftot = ~F + ~̀.
The main point is that the quantum numbers that characterize the atoms at large
distances are different from those that properly describe them when they are close
together: in other words, the “molecular” interaction potential is not diagonal on
the basis of the hyperfine (or the Breit-Rabi) states. Thus, at short distances, a
convenient way to label a scattering channel is

A = {S, I, F, `, Ftot, Mtot }

which is often referred to as the molecular basis.
The scattering problem becomes particularly interesting when multiple molecular
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channels exist. The latter can be adiabatically connected to different sets of hyperfine
(free) states

∣∣f1
′,m1′

〉
and

∣∣f2
′,m2′

〉
, or in other words to different scattering

channels
α′ = { f1

′, m′f1
, f2

′, m′f2
, ` ′, m`

′ }
If the asymptotic energy of a given channel α′ is higher (lower) than (or equal to)
the scattering energy E, that channel is said to be closed (open), see Fig. 1.6.
Generally speaking, different scattering channels may be coupled by the hyperfine
interaction, or by some among the interaction terms discussed in Sec. 1.10. In
particular, the former case can be understood by conveniently recasting the hyperfine
and Zeeman hamiltonians (see Eqs. (1.72b) and (1.72c)) as

ĤBR = Ĥhf + Ĥzee = Ĥ(+) + Ĥ(−) (1.79)

where

Ĥ(+) = 1
2~2

(
Ahf

1 ~i1 +Ahf
2 ~i2

)
· ~S − 1

~
(
µB gs ~S − µN gi,1~i1 − µN gi,2~i2

)
· ~B (1.80a)

Ĥ(−) = 1
2~2

(
Ahf

1 ~i1 −Ahf
2 ~i2

)
· (~s1 − ~s2) (1.80b)

As one immediately realizes, Ĥ(+) is diagonal on the molecular basis, whereas Ĥ(−)

can couple states having different S.23 This, in turn, implies that two colliding atoms
will somehow experience the effects of different molecular potentials.24 Anyway, since
the involved couplings are typically weak, in most cases they just lead to some small
(perturbative) corrections. Nevertheless, the situation dramatically changes when
the scattering energy approaches that of a bound state supported by a closed channel.
In this case, scattering effects will be strongly enhanced, in a somewhat similar
fashion to the scattering resonances encountered before. This is actually a quite
general phenomenon in quantum mechanics, that takes the name of Fano-Feshbach
resonance (FR).25 FRs play a central role in atomic physics experiments, as they

Figure 1.6 – Sketch of open and closed scattering channels.

23In any case, ĤBR does not act on the spatial wavefunction.
24For instance, with regard to the Li-Cr mixture, this means that the exaplet and octuplet scattering
channels will be coupled.

25It should be noted, however, that FRs in ultracold gases slightly differ from those studied in
nuclear physics, in the sense that the former occur in the zero-energy limit when external fields
are applied, whereas the latter are typically investigated by varying the collisional energy.
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allow to enhance (or in some cases to suppress) the scattering cross section by means
of an external homogeneous magnetic field. This indeed becomes feasible since, in
general, different scattering channels have different magnetic dipole moments. Hence,
application of an external field effectively changes the relative energy detuning
between the (entrance) scattering channel and the bound states supported by the
closed channels. Ultimately, this can be exploited to experimentally adjust the
scattering length as (or, more generally, the scattering amplitude f`(k, θ)).
In the following, we will tackle an elementary toy model able to capture the main
features of Feshbach resonances.

1.12 Multi-channel scattering: a toy model
Let us consider a simple scattering problem in which only two different channels
exist. The open (entrance) channel is described by a potential well Vo(r) analogous
to the one introduced in Sec. 1.4, while the closed channel is modelled with an
infinite spherical well Vc(r). These two wells are assumed to have the same radial
width b, but different potential offsets (measured with respect to the asymptotic
potential energy of the open channel Vo(r =∞)):

Vo(r) =
{
−Vo for r < b

0 for r > b
with Vo = ~2k2

o

2m (1.81a)

Vc(r) =
{
−Vc for r < b
+∞ for r > b

with Vc = ~2k2
c

2m (1.81b)

The situation is depicted in Fig. 1.7a. In the trivial case in which the two channels
are decoupled, the problem reduces to solving two independent Schrödinger equations[

− ~2

2m∂2
r + Vo(r)− E

]
Uo(r) |O〉 = 0 (1.82a)[

− ~2

2m∂2
r + Vc(r)− E

]
Uc(r) |C〉 = 0 (1.82b)

This is essentially the same problem that we treated in Sec. 1.4. By contrast, if a
coupling between the two channels exists, the radial wavefunction can be sought as

~U(r) = αo Uo(r) |O〉 + αc Uc(r) |C〉 =
(
αo Uo(r)
αc Uc(r)

)
(1.83)

where |αo|2 + |αc|2 = 1. The Schrödinger equation then reads

∂2
r
~U(r) + Ŵ (r) ~U(r) = 0 (1.84a)

with

Ŵ (r) =


Ŵ1 =

(
k2 + k2

o Q
Q k2 + k2

c

)
for r < b

Ŵ2 =
(
k2 0
0 −∞

)
for r > b

(1.84b)

where we have assumed that the coupling is effective only for r < b (inner region).
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Thus, in the outer region, we straightforwardly have

∂2
r U

(2)
o (r) + k2 U (2)

o (r) = 0 (1.85a)
∂2
r U

(2)
c (r) − ∞U (2)

c (r) = 0 (1.85b)

Namely, r > b is strictly forbidden for the closed-channel component. The solutions
of Eqs. (1.85) are readily found (see also Eq. (1.34b))

U (2)
o (r) = Bo sin

(
k (r − as)

)
(1.86a)

U (2)
c (r) = 0 (1.86b)

On the other hand, the situation in the inner region is more complicated, as one has
to deal with a system of two coupled equations:

∂2
r U

(1)
o (r) + (k2 + k2

o)U (1)
o (r) + QU (1)

c (r) = 0 (1.87a)
∂2
r U

(1)
c (r) + (k2 + k2

c )U (1)
c (r) + QU (1)

o (r) = 0 (1.87b)

Eqs. (1.87) are easier to handle in the rotated basis that diagonalizes Ŵ1(r). In the
limit of small coupling

(
Q� k2

o , k
2
c , (k2

o − k2
c )
)
, one finds(

Ũo
Ũc

)
=
(

1 γ
−γ 1

) (
Uo
Uc

)
(1.88a)

W̃1 =
(
k2 + k2

o + γ Q 0
0 k2 + k2

c − γ Q

)
(1.88b)

where γ = Q/(k2
o − k2

c ) is the mixing parameter. The two resulting uncoupled
equations

∂2
r Ũ

(1)
o (r) + (k2 + k2

o + γ Q) Ũ (1)
o (r) = 0 (1.89a)

∂2
r Ũ

(1)
c (r) + (k2 + k2

c − γ Q) Ũ (1)
c (r) = 0 (1.89b)

can now be readily solved

Ũ (1)
o (r) = Ão sin

(√
k2 + k2

o + γ Q r
)
' Ão sin(ko r) (1.90a)

Ũ (1)
c (r) = Ãc sin

(√
k2 + k2

c − γ Q r
)
' Ãc sin(kc r) (1.90b)

Figure 1.7 – Scattering by two coupled channels (toy model): (a) sketch, showing also the
lowest ` = 0 bound states of the closed channel. (b) Low-energy (s-wave)
scattering length near a Feshbach resonance.

(a) (b)
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where the final result is obtained by considering the limit of weak coupling and
low-energy scattering (k, Q � ko, kc). Our interest lies mainly in the mixing
parameter γ. If we transform back to the original basis(

Uo
Uc

)
=
(

1 −γ
γ 1

) (
Ũo
Ũc

)
(1.91)

we can write

U (1)
o (r) ' Ão sin(ko r) − γ Ãc sin(kc r) (1.92a)

U (1)
c (r) ' Ãc sin(kc r) + γ Ão sin(ko r) (1.92b)

At this stage, we have to impose the boundary conditions at r = b. This is rather
straightforward for the closed channel, as the outer region is strictly forbidden

Ãc sin(kc b) + γ Ão sin(ko b) = 0 −→ Ãc = −γ sin(ko b)
sin(kc b)

Ão (1.93a)

For the open channel, after some algebra one can find(
1 + γ2)[

ko cot(ko b) + γ2 kc cot(kc b)
] =

tan
(
k (b− as)

)
k

(1.93b)

and, by taking once again the limit of k → 0 and γ � 1

1
(b− as)

= ko
tan(ko b)

+ γ2 kc
tan(kc b)

(1.93c)

This last relation links as to the characteristic parameters of the potential: as one
can appreciate, both channels yield a contribution. We can define the background
scattering length as the solution (for as) of Eq. (1.93c) when γ = 0:

abg = b

(
1 − tan(ko b)

ko b

)
(1.94)

where we immediately recognize our previous result for the finite square well, see
again Eq. (1.35b). Then we can recast Eq. (1.93c) as

1
(asb − 1) = 1

(abg
b − 1)

− γ2 kc b

tan(kc b)
(1.95a)

or, alternatively

as = b + (abg − b)
tan(kc b)

tan(kc b)− γ2kc(abg − b)
(1.95b)

In most cases, the closed channel contribution to the (open channel) scattering
length will be small, as the coupling is weak. Nonetheless, when kc b ' nπ the
second term on the right hand side of Eq. (1.95a) may actually diverge. As one
can easily check, the condition kcb = nπ corresponds to the n-th bound state of the
(uncoupled) infinite well having exactly zero energy (relatively to the asymptotic
value of Vo(r)). Consequently, in the low-temperature limit such a bound state is
resonant with the scattering energy, thus greatly affecting the collision process.
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This toy model qualitatively describes the FR phenomenon. The characteristic
behaviour of as, given by Eqs. (1.95), is shown in Fig. 1.7b. It is interesting to note
that for kcb = nπ the scattering length is actually finite, having a value equal to b.
The resonance pole is instead found at kcb = nπ + δres, where

δres = (nπ) γ2 (abg − b)
b

(1.96)

is sometimes called the resonance shift, and represents the difference between the
unperturbed position of the bound state (i.e. kcb = nπ) and its actual location when
a coupling γ 6= 0 between the two channels exists. Some units of δres away from
the resonance pole, the scattering length approaches its background value: on one
side of the singularity, this leads to a zero-crossing of as, as shown in Fig. 1.7b.
Note that, since b can be interpreted as the closed channel scattering length (see the
final remark in Sec. 1.4), the result of Eq. (1.96) is consistent with the analysis of
Ref. [53].

1.13 Magnetic tuning of Feshbach resonances
In general, the scattering energy will not be resonant with any bound state of
the closed channels: namely, the condition kc b ' nπ will not be automatically
satisfied. Indeed, the rare exceptions found in nature (133Cs being one of the most
notable examples [50]) should be considered as accidental coincidences. Anyway,
since different channels typically have different magnetic moments, the application
of an external magnetic field actually introduces a relative Zeeman shift between
them, thus effectively tuning the bound states energies with respect to the scattering
energy E of the open channel. To describe this effect, let us consider again our toy
model and, for sake of simplicity, let us assume that the magnetic moments of the
two channels are µo = 0, and µc 6= 0, respectively. Hence, application of a static
magnetic field B changes the energy of the closed channel as

Vc
′(r) = Vc(r) − µcB (1.97a)

(kc′)2 = 2m
~2

(
Vc − µcB

)
(1.97b)

Let us suppose that kc′ b = nπ for a certain magnetic field Bres. Then, in a small
field region around Bres, we can write

kc
′ b ' nπ + α (B− Bres) with α = − mb2

nπ~2 µc (1.98)

By defining the resonance magnetic pole and the resonance magnetic width as

B0 = Bres + ∆B (1.99a)

∆B = −γ2 kc
(abg − b)2

αabg
(1.99b)

we can recast Eq. (1.95a) as a function of B, retrieving the familiar form

as(B) = abg

(
1− ∆B

B− B0

)
(1.100)
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Hence, near a FR the scattering length exhibits a dispersive lineshape, with abg
representing its off-resonant value (note that abg is also the value of as when γ = 0
in Eq. (1.100)). Both abg and ∆B can be either positive or negative quantities [46].
Note that, in analogy with Eq. (1.55), the resonant contribution to the phase shift
near a FR can be expressed as [49]

δ`(B) ' tan−1
[ ΓB/2

B0 − B

]
(1.101)

where ΓB = Γ/δµ, and δµ is, in general, the differential magnetic moment between
the closed and the open channel, i.e. δµ = µc − µo. Using Eq. (1.101) in Eq. (1.25a),
and comparing the result to Eq. (1.100), we obtain ΓB = −2 k abg ∆B. Finally,
taking into account the relations between Γ, γ̃ and R∗ (see Sec. 1.8), we find

R∗ = ~2

2mabgδµ∆B
(1.102)

which is the same result reported by Petrov in Ref. [42]. Accordingly, given the
reduced mass, whether a magnetic FR is large (i.e. R∗ ∼ b) or narrow (i.e. R∗ � b) is
determined by the background scattering length, the differential magnetic moment,
and the resonance magnetic width. Note that the product abg δµ∆B is always a
positive quantity.

1.14 Inelastic collisions and loss mechanisms
The study of elastic collisions is of great importance in the field of ultracold atoms,
as it lays the ground for the optimization of evaporative cooling stages, and for few-
and many-body studies based on quantum gases. Anyway, in real-world situations,
atoms will also experience inelastic collision events, i.e. scattering processes in which
the relative kinetic energy is not conserved. Such processes are connected with
an internal state change of at least one of the two atoms (or, in other words, the
entrance and the exit channels do not coincide). In most cases, the kinetic energy
gain is by far larger than the trap depth, so inelastic collisions often lead to atom
losses.
Generally, loss mechanisms are grouped according to the number of ultracold particles
involved in the process: the main contributions arise from one-, two-, and three-body
losses. The former are due to background-gas collisions, i.e. collisions between
one atom of the sample and one atom/molecule of the residual gas in the vacuum
chamber. These may actually be even elastic collisions, but occurring at a very large
kinetic energy, as the background gas is in thermal equilibrium with the chamber
walls. Being one-body processes (only the number of cold particles is counted), they
are independent from the presence of a Feshbach resonance, and in general from the
value of the scattering length.
As already mentioned, two-body losses arise from inelastic two-body collisions: the
kinetic energy gain resulting from the change of the internal state (or, in other words,
from the decay into a lower energy scattering channel) is typically larger than the
trap depth. It is worth stressing again that atoms prepared in the lowest internal
state are immune to two-body losses.
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Lastly, yet importantly, a collision involving three atoms can produce a dimer and a
free atom, the latter carrying away (part of) the released binding energy as kinetic
energy. Note that, due to energy and momentum conservation, molecule/dimer
formation is forbidden for two-body collisions. Once again, in most cases the released
kinetic energy is greater than the trap depth, thus resulting in the loss of each of
the three involved particles.
By combining these three loss mechanisms, we can write a differential rate equation
for the number of trapped atoms. For instance, for a sample containing only one
atomic species, we have

Ṅ(t) = −K1N(t) − K2

∫
d~r n2(~r, t) − K3

∫
d~r n3(~r, t) (1.103)

where n(~r, t) is the spatial density of the atomic cloud, and Kj is the (thermally-
averaged) j-body loss coefficient. The latter can vary by many orders of magnitude
depending on atomic species (and isotopes), even if no FRs are present. Moreover,
these quantities are strongly affected by the external magnetic field, as they depend
on the scattering length: for instance, the three-body coefficient K3 scales as a4

s for
bosonic gases [46].

1.14.1 Feshbach loss spectroscopy: an introduction
Generally speaking, the resonant enhancement of the scattering cross section leads
to an increase of atom losses. Indeed, inelastic loss spectroscopy has proven to be
one of the most effective techniques to detect Feshbach resonances in ultracold gases.
Near a FR, inelastic collisions are greatly enhanced as a consequence of the strong
coupling between Feshbach bound states and “inelastic” exit channels [46]. For
instance, in the case of alkali atoms, the spin-exchange rate Kex

2 from channel α to
α′ is given by [52]

Kex
2 = 4π (at − as)2 vf

∣∣ 〈f1
′, mf1

′, f2
′, mf2

′∣∣ ~s1 · ~s2 |f1, mf1 , f2, mf2〉
∣∣2 (1.104)

with as (at) being the singlet (triplet) s-wave scattering length, and vf the relative
final velocity

vf =
√

2
m

(~2k2

2m + Ehf,1 + Ehf,2 − E ′hf,1 − E ′hf,2

)
(1.105)

where Ehf,j is the hyperfine energy of the j-th atom, and the prime denotes quantities
evaluated after the collision.
On top of that, three-body losses are also strongly enhanced near a FR. Nonetheless,
while this is a well-established fact for bosonic species, the situation concerning
fermionic atoms is more complicated, owing to Pauli suppression effects [46, 54].
Generally speaking, in most cases a FR is accompanied by a loss feature. However,
some fermionic systems characterized by broad resonances exhibit a remarkable
stability in the regime of strong interactions [46], a delightful, unexpected discovery
that has laid the ground for many fascinating and intriguing studies on strongly
interacting fermions.
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Chapter 2

Experimental setup
In this chapter I concisely illustrate the experimental setup that allows
us to produce ultracold Cr-Li mixtures, mainly focusing on the optical
part. A more detailed description of the PoLiChroM apparatus, which
was already set up at the beginning of my lab activity, can be found
in Refs. [55, 56]. For instance, Fig. 2.1 depicts the vacuum chambers
and magnetic coils setups. About those, here I just highlight the choice
of employing two different ovens and Zeeman slower (ZS) tubes, owing
to the rather different sublimation temperatures of the two elements
(roughly 400 ◦C for Li and 1500 ◦C for Cr, respectively). Furthermore,
interspecies collisional properties of Li and Cr atoms were not known at
the time the machine was being designed. Besides, the magnetic setup
also features two different sets of coils, namely the “MOT” and the “FB”
coils, the role of which will be better clarified in Chapter 3.
In the following, I provide a basic overview of the optical setup, focusing
on the progress and improvements developed during the period of my
thesis. Specifically, the first part of the chapter is devoted to the descrip-
tion of the challenging optical scheme needed to produce cooling lights
for lithium and chromium samples. As an introduction to this topic, the
relevant optical properties of Li and Cr atoms are briefly summarized
(useful additional information can be found in Refs. [59, 60]).
Secondly, I illustrate the optical setup that surrounds the experimental
cell, where most of the cooling lights converge. In particular, the last
section describes the bichromatic optical dipole trap (BODT) setup, a
part of which has already been subject of a publication [58].

Figure 2.1 – Overview of the vacuum and magnetic coils setups of the PoLiChroM machine.
Figure taken from Ref. [56].
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2.1 Lithium
Lithium, having atomic number Z = 3, is the lightest alkali metal. It is found in
nature as a mixture of the two stable isotopes, 6Li and 7Li (with relative abundances
around 8 % and 92 %, respectively); the former (latter) – being formed by three
protons, three (four) neutrons, and three electrons – is a composite fermion (boson).
With regard to optical properties, the ground state electronic configuration reads
1s2 2s1: in spectroscopic notation, this corresponds to a 2S1/2 state. The first
excited level is actually a fine structure doublet, whose states can be classified as
2P1/2 and 2P3/2, respectively. Optical transitions that connect the ground state to
these two fine states are historically referred to as D1 (λD1 = 670.992 nm) and D2
(λD2 = 670.977 nm), respectively.1 The interaction between the nuclear spin and
the total electronic angular momentum further splits the fine levels into hyperfine
manifolds. In the case of 6Li, the nuclear spin being iLi = 1, the ground state
splits into a doublet, whose levels (separated by 228.2 MHz) are labeled by the total
angular momentum quantum number f = 1/2, 3/2, respectively. On the other hand,
the energy splittings of the excited 2P levels are definitely smaller: for instance,
those relative to the 2P3/2 state entirely lie within the natural linewidth of the D2 line
(γD2 = 5.87 MHz).
The optical transitions exploited to perform laser cooling on our samples of 6Li atoms
are sketched in Fig. 2.2. The first cooling stages rely on the D2 line, namely on the
2S1/2 |f = 3/2〉 −→ 2P3/2 |f ′ = 5/2〉 transition. However, due to the aforementioned
small hyperfine splittings of the excited state, a not perfectly polarized light may

Figure 2.2 – Fine and hyperfine levels of 6Li (not to scale). Red arrows show the transitions
employed for standard laser cooling procedures, while blue arrows refer to
the grey molasses stage. Figure taken from Ref. [56].

1The specified wavelengths are referred to 6Li [59]. We also report here that the saturation intensities
of these two lines are ILi,D1

sat = 7.59 mW/cm2 and ILi,D2
sat = 2.54 mW/cm2, respectively [59].
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also drive undesired |f = 3/2〉 −→ |f ′ = 3/2〉 population transfers, which in turn
could bring atoms out from the cooling cycle. For this reason, a repumper beam
addressing the |f = 1/2〉 −→ |f ′ = 3/2〉 transition is required.
Moreover, while being loaded into the optical dipole trap, 6Li atoms are further
cooled by means of a gray molasses stage, exploiting the D1 line [64]. A description of
this additional sub-Doppler cooling mechanism, together with a first characterization
of the related experimental parameters (in free-space), can be found in Ref. [57].

2.2 Chromium
Chromium (atomic number Z = 24) is a transition metal with four stable isotopes:
50Cr, 52Cr, 53Cr and 54Cr. The present discussion is mainly focused on 53Cr (relative
abundance 9.5 %), which is the only fermionic one among those.
The ground state electronic configuration of Cr reads [Ar] 3d54s1: following Hund’s
rules, this leads to a spectroscopic 7S3 ground state. An interesting property of this
state is the relatively large (compared to alkali metals) magnetic dipole moment
of 6µB. Such a sizeable moment enables strong magnetic confinement, and could
possibly allow for the study of dipolar effects in the ultracold/degenerate regime
[60, 65].
The fine and hyperfine structures of 53Cr (nuclear spin iCr = 3/2), shown in Fig. 2.3,
are both quite rich: accordingly, a more involved laser cooling scheme (compared
to the Li one) is required. In particular, besides the cooling light that relies on
the strong 7S3 |f = 9/2〉 −→ 7P4 |f ′ = 11/2〉 transition (λ = 425.55 nm in vacuum,
natural linewidth γCr = 5.02 MHz, and saturation intensity ICr

sat = 8.52 mW/cm2

[60]), up to three blue repumpers (denoted by R1, R2, and R3) are needed for an
optimum working of the magneto-optical trap (MOT) stage. Furthermore, owing to a

Figure 2.3 – Fine and hyperfine levels of 53Cr (not to scale). Solid blue arrows indicate the
transitions employed for laser cooling. Red dashed arrows show possible leaks
to metastable 5D states. Red solid arrows indicate the transitions exploited
to pump 5D-state atoms back into the cooling cycle. Figure adapted from
Ref. [56].
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finite spontaneous decay probability towards metastable 5D states,2 three additional
red repumpers (denoted by RR1, RR2 and RR3, and working at λ1 = 663.2 nm,
λ2 = 654.0 nm and λ3 ' λ1, respectively) are employed to bring atoms back into
the cooling cycle, exploiting the 7P3 level [56, 65].

2.3 Lithium laser setup
The optical setup that provides the light beams employed to cool and manipulate
Li atoms is sketched in Figs. 2.4 and 2.5. The main sources of laser light are two
independent commercial diode lasers (Toptica TA-Pro, λ = 671 nm, Pout ∼ 200 mW),
that generate the optical frequencies for the D1 and D2 atomic transitions, respectively.
First, a small fraction (about 10 mW) of each beam is sent to the locking scheme,
assembled on a dedicated spectroscopy breadboard. A detailed description of this
scheme can be found in Ref. [55]. Here I just report the two locking transitions,
namely 2S1/2 |f = 3/2〉 −→ 2P1/2 |f ′ = 1/2〉 (D1) and 2S1/2 |f = 3/2〉 −→ 2P3/2 (D2),
respectively, and the fact that, before entering the spectroscopy cell, the D1 (D2)
light is sent through a double-pass acusto-optic modulator (AOM), which sets the
frequency detuning to −2 × 87 MHz (−2 × 140 MHz) with respect to the related
atomic transition. Besides, I also mention that a pickup of the D2 light is sent to a
Fabry-Perot cavity, which is in turn employed for the locking scheme of chromium’s
red repumpers (see Sec. 2.4.1).
The largest parts of the two master beams, prepared with orthogonal polarizations,
are overlapped on a polarizing beam-splitter cube (PBS 1), and then coupled to a
fiber that delivers them to the amplification stage. In order to select and control
the desired light during the experiment, two single-pass AOMs (both working at
+80 MHz, and essentially acting as fast switches) are placed before the PBS.
At the fiber output, the optical path is split into two branches: one for the cooling
and one for the repumper light. Both beams are sent through double-pass AOMs
(whose working frequencies are centred around +2 × 80 MHz and +2 × 200 MHz,
respectively), and then injected into two different commercial tapered amplifiers
(Toptica BoosTA), each of which delivers about 300 mW of optical power. By

Figure 2.4 – Sketch of the Li optical setup: laser sources for D1 and D2 lights.
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2The natural linewidths of the involved intercombination transitions are Γ(7P4 −→ 5D4) ' 127 Hz
and Γ(7P4 −→ 5D3) ' 42 Hz, respectively.



2.3 Lithium laser setup 37

Figure 2.5 – Sketch of the Li optical setup: amplification and preparation of lights.
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properly adjusting the two aforementioned AOM frequencies, the relative detuning
between cooler and repumper can be set to 228 MHz, i.e. matching the ground state
hyperfine splitting of 6Li.
The two amplified beams are recombined onto a 50:50 non-polarizing BS, so that the
latter, in turn, also immediately splits the optical path into MOT and ZS/imaging
branches. Two mechanical blade shutters allow for a selective blocking of each path
during the experimental cycle. The MOT light is directly delivered to the science
chamber by means of three fibers. As it will be better discussed in the following,
the optical configuration of our magneto-optical trap is realized by three, mutually
orthogonal, retro-reflected beams. On the other hand, the ZS (imaging) path includes
one (five) additional AOM(s). In particular, the ZS AOM also acts as a switch to

Figure 2.6 – Preparation of Li cooling lights: ZS and MOT lights relying on the D2 line
(a), and D1 transitions employed for the grey molasses stage (b).

(a) (b)
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direct light either into the ZS or the imaging fiber, when its frequency is set to
−85 MHz or to −110 MHz, respectively. The imaging AOMs are instead exploited to
produce the optical frequencies needed to probe Li atoms at high magnetic fields
(see Sec. 2.3.1).
A schematic illustration of the various steps followed in the preparation of Li cooling
lights is shown in Figs. 2.6a and 2.6b.

2.3.1 High-field imaging
In the course of our standard experimental routines (see Chapter 3), we regularly
employ high magnetic fields (up to 1500 G) to confine and manipulate Li (and Cr)
samples. In particular, our interest is mainly directed towards three specific fields,
namely 300 G, 690 G, and 830 G. The last two are characterized by remarkably
broad FRs involving the three lowest spin-mixtures of 6Li, whereas the first one
corresponds to local maxima (in absolute value) of their respective off-resonant
scattering lengths.
During my first days in the lab, I took part in the realization of a high-field absorption
imaging setup for Li atoms. The optical scheme, sketched in Fig. 2.7 and physically
assembled on a dedicated breadboard, consists of a combination of four AOMs, the
interplay of which yields the imaging frequencies for different spin-mixtures of Li, at
the three aforementioned magnetic fields, as well as at 0 G. The imaging light is
delivered by the ZS beam, as soon as the corresponding AOM frequency is set to
110 MHz (see again Fig. 2.5). Both the 0th and the −1st diffraction orders, as well as
both cooler and repumper lights, are exploited.
First, the two ZS AOM diffraction orders are overlapped on a PBS, which in turn
immediately splits the optical path into zero- and high-field branches. The former
essentially consists of a sole additional AOM (0), which is employed to compensate
the red detuning of the ZS light. On the other hand, the high-field branch includes
three different paths, each of which is designed to provide the imaging light for a
particular magnetic field. In practice, light is first sent to a 350 MHz AOM (1), which

Figure 2.7 – Optical scheme for the high-field imaging of Li.
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simultaneously works both in single- and in double-pass mode. This AOM’s frequency
needs to be adjusted according to the spin mixture that has to be imaged (see below).
To prevent possible misalignments arising from such an operation, the modulator
is aligned in a so-called cat-eye configuration, where – after the first pass – light
is focused on the surface of a retro-reflecting mirror. After the second pass, both
the 0th and the −1st diffraction orders are collected. The former provides the 300 G
light, so it is immediately coupled to the imaging fiber. Conversely, the latter is
first sent through a double-pass AOM (2) working at −2× 90 MHz, and subsequently
split into the 690 G and 830 G paths. The first of these two is then directly coupled
to the fiber, whereas the second one is first sent to the last AOM (3), which operates
in single-pass at −196 MHz.
Several λ/2 waveplates are employed to guide the laser beam into the proper optical
path. Once the latter is chosen, the remaining are blocked, in order to avoid any
undesired light during the imaging pulses.

Before reporting the comprehensive list of working parameters, let us show how
the appropriate imaging frequencies can be practically computed. As we discussed
in Sec. 1.10, under an external magnetic field, atomic (hyperfine) states split into
Zeeman components. In the case of alkali metals, the energy splittings of the ground
state hyperfine manifold are given by the celebrated Breit-Rabi formula [61, 62]

∆EBR(B) = Y (B) − hAhf
4

[
1 ∓

(
2I + 1

)√
1 + 2mf

I + 1
2
X(B) + X2(B)

]
(2.1a)

where

X(B) = (gj − gi)
hAhf

(
I + 1

2
)µB B ; Y (B) = gimfµB B (2.1b)

with h = 2π~, Ahf being the atomic hyperfine constant, and gi the nuclear g-factor
relatively to µB.3 In the square brackets of Eq. (2.1a), the + (−) sign refers to states
with f = 1/2 (f = 3/2). Anyway, it should be noted that there exists a “sign problem”
for the |f = 3/2, mf = −3/2〉 stretched state. Namely, for B > B∗, where

B∗ = hAhf |mf |
µB (gj − gi)

 1 +
√

1−
(2I + 1

2mf

)2
 (2.2)

the − sign should be replaced by +. We stress that Eq. (2.1a) only applies to the
electronic ground state of a j = 1/2 atom: in any other case, the energy shifts have
to be computed numerically. However, as far as the 2P3/2 state of 6Li is concerned,
due to its small hyperfine splittings, we can approximate the exact result with4

∆EZee(B) = gjmjµB B (2.3)

which is the usual expression for the Zeeman shift, neglecting the hyperfine structure.
A plot of Eqs. (2.1a) and (2.3) is shown in Fig. 2.8. Additionally, we also exploit
3The nuclear g-factor is typically small (for 6Li: gi ' 4.5 · 10−4). As such, one could even safely
neglect it in calculations.

4The introduced error is on the order of the natural linewidth γD2, so it can be easily corrected
experimentally.
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Figure 2.8 – Breit-Rabi diagrams for 6Li: (a) ground state energy shift (exact formula, see
Eq. (2.1a)), (b) 2P states energy shift (approximate formula, see Eq. (2.3)).

(a) (b)

Fig. 2.8a to introduce our notation to refer to Li spin states: they are labeled by
Li |n〉 (n = 1, 2, 3, . . . ) in order of increasing energy in an external magnetic field.5
By taking the difference between Eqs. (2.3) and (2.1a), one can compute the light
frequencies needed to probe Li atoms at different fields. In particular, our interest
lies in the three lowest spin states (namely Li|1〉, Li|2〉, and Li|3〉), and in their
possible binary combinations. Hence, as already mentioned, the imaging setup is
devised to provide – upon minimal changes – the appropriate lights for each of these
spin mixtures, relatively to the four magnetic fields of interest (including 0 G).

We now report the full list of working parameters. The following settings are kept
fixed among each configuration:

- Spectroscopy AOM: 140 MHz ;
- Shutter AOM: 80 MHz ;
- Zeeman slower AOM: 110 MHz ;

- Imaging AOM 0: 110 MHz
- Imaging AOM 2: 90 MHz
- Imaging AOM 3: 196 MHz

On the other hand, Tabs. 2.1, 2.2, and 2.3 report the specific settings for each
spin-mixture.

Table 2.1 – Imaging settings for the Li|1〉-Li|2〉 mixture.
Imaging AOM 1: 357 MHz
− Li|1〉: Repumper, −1st ord. ZS AOM
− Li|2〉: Cooler, 0th ord. ZS AOM

B [G] Rep. AOM (Li|1〉) Cool. AOM (Li|2〉)
828.5 199.0 MHz 106.0 MHz

689 199.0 MHz 106.0 MHz
∼ 310 199.0 MHz 106.0 MHz

0 214.0 MHz (same as Li|1〉)

5A completely analogous convention is adopted for the internal states of Cr.
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Table 2.2 – Imaging settings for the Li|1〉-Li|3〉 mixture.
Imaging AOM 1: 343 MHz
− Li|1〉: Repumper, −1st ord. ZS AOM
− Li|3〉: Cooler, −1st ord. ZS AOM

B [G] Rep. AOM (Li|1〉) Cool. AOM (Li|3〉)
828.5 185.0 MHz 106.0 MHz

689 185.0 MHz 106.0 MHz
∼ 320 185.0 MHz 106.0 MHz

0 214.0 MHz 99.0 MHz

Table 2.3 – Imaging settings for the Li|2〉-Li|3〉 mixture.
Imaging AOM 1: 357 MHz
High fields:
− Li|2〉: Cooler, 0th ord. ZS AOM
− Li|3〉: Cooler, 0th ord. ZS AOM
Zero-field:
− Li|2〉: Repumper, −1st ord. ZS AOM
− Li|3〉: Cooler, −1st ord. ZS AOM

B [G] Cool. AOM (Li|2〉) Cool. AOM (Li|3〉)
828.5 106.0 MHz 65.0 MHz

689 106.0 MHz 64.5 MHz
∼ 310 106.0 MHz 64.5 MHz

B [G] Rep. AOM (Li|2〉) Cool. AOM (Li|3〉)
0 214.0 MHz 99.0 MHz

2.4 Chromium laser setup
The optical setup devoted to the production of Cr cooling and trapping (blue) lights
is sketched in Fig. 2.9. Laser light is provided by a commercial diode laser (Toptica
DL) working at λ = 851 nm, with a typical (maximum) output power of 30 mW
(150 mW). The beam is readily injected into a home-made tapered amplifier (TA),
which increases the optical power up to 3 W. The outgoing beam shape is adjusted
by means of a cylindrical telescope and, subsequently, light is first sent through a
Faraday isolator (FI), and then injected into a home-made frequency doubling cavity.
The latter is realized in a bow-tie configuration, and relies on a LBO crystal for
the second harmonic generation (SHG) stage: with an overall conversion efficiency
of about 30 %, the cavity delivers roughly 600 mW (when seeded with 2 W) at
λ = 425.5 nm.
First, a pickup of the blue light is sent to the locking scheme, which implements
a modulation transfer spectroscopy (MTS) configuration on a commercial hollow
cathode lamp. The reader is again referred to Ref. [55] for the description of this
scheme, together with the one employed for the SHG cavity lock. Here I just mention
that the locking transition is actually the 7S3−→ 7P4 line of the (most abundant)
bosonic isotope 52Cr.
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Figure 2.9 – Sketch of the Cr optical setup to produce cooling, repumping, and imaging
lights.
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Secondly, after passing through a mechanical shutter (that allows to entirely block
any blue light on the atoms during the evaporative cooling stage, see Chapter 3),
the main optical path is divided into cooler and repumper branches. Cooling light is
further split into ZS, MOT and transverse cooling (TC) beams, respectively: Each
of them passes through a different AOM, in order to allow for independent choices
of the detunings. In particular, ZS light is injected into a single-pass AOM working
at +212 MHz, whereas MOT and TC lights are sent through double-pass AOMs
working at approximatively +2× 120 MHz. Once prepared, each beam is coupled to
a dedicated optical fiber, and delivered either to the science chamber (ZS, MOT) or
to the chromium oven (TC). Before this, MOT light is actually split into “x”, “y”
and “z” beams (as in the case of Li), while a small fraction of TC light is extracted
to realize the zero-field imaging.
In the repumper branch, a series of three AOMs in cascade configuration provides
the three blue repumper beams (namely: R1, R2, and R3). In particular, the first
AOM (−70 MHz) produces the optical frequency for R1. Part of this light is directed

Figure 2.10 – Preparation of Cr cooling lights (Cr MOT loading stage).
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towards the second AOM (−2 × 119 MHz), which in turn yields R2. Eventually, a
fraction of R2 light is sent to the third AOM (−169 MHz), thereby generating R3.
Once prepared, R1 and R2 are recombined on a PBS, and subsequently split into
hyperfine pumping (HP) and MOT repumper beams. The former is directly coupled
to a fiber and delivered to the chromium oven, while the latter is first recombined
with R3, and then brought to the science chamber by another optical fiber. Lastly,
the 0th diffraction order of the R2 AOM is employed for the high-field (830 G) imaging
of Cr absolute ground state (i.e. Cr|1〉, or |f = 9/2, mf = −9/2〉). This is accomplished
by means of a double-pass AOM (−2× 420 MHz), after which the high-field imaging
path is recombined with the TC pickup (zero-field imaging), before being coupled
to the imaging fiber. Fig. 2.10 schematically depicts the preparation of Cr cooling
lights for the MOT stage.

2.4.1 Cr red repumpers
As anticipated in Sec. 2.2, even with the combined action of the three blue repumpers
(R1, R2, and R3), the 53Cr cooling transition remains slightly leaky. This owes to
the presence of metastable 5D states, that can be populated via spontaneous decay
from the excited 7P4 level. A set of three “red” repumpers (RR1, RR2, and RR3) is
used to bring atoms back into the cooling cycle, exploiting the 7P3 level (see again
the 53Cr level scheme in Fig. 2.3).
The optical setup that provides these three repumper lights is sketched in Fig. 2.11.
The light sources are two independent diode lasers (Toptica DL-Pro), operating
at λ1,3 = 663 nm (5D4−→7P3) and λ2 = 654 nm (5D3−→7P3), respectively. The
former is employed to generate both RR1 and RR3, while the latter is used to produce
RR2. First, at the two laser outputs, a fraction of each light is sent to the locking
setup. This relies on a Fabry-Perot (FP) transfer cavity (L = 5 cm, FSR = 1.5 GHz,
Finesse > 200), which is actively stabilized exploiting the (already locked) lithium D2
line as a reference. In short, D2 light is modulated with an electro-optic modulator
(EOM), and then injected into the cavity. The reflection from the FP is monitored
with a photodetector (PD), and the cavity is locked to a resonance peak. Red
repumpers lights are injected from the opposite side, and their reflection is recorded
on a different PD. Two distinct current modulations on the master sources allow to

Figure 2.11 – Sketch of the optical setup that provides Cr red repumpers.
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separate the two signals by electronic means. The two optical frequencies are then
locked to the nearest cavity mode. Note that, before entering the FP, each light
passes through two double-pass AOMs in cascade configuration (see Fig. 2.11 for the
working frequencies), which compensate for the frequency offset with respect to the
locking point. A more technical description of this locking scheme, involving also
the electronics, can be found in Ref. [55].
The largest part of the two master beams is sent to the atoms. In particular, RR1
and RR2 are recombined on a PBS, and then coupled to a fiber that delivers them
to the experimental cell. A single-pass AOM (+80 MHz) is placed before the fiber,
to be possibly employed as a fast switch. Actually, as the timescale to repump
5D states is rather slow (tens of ms), we eventually found no need for such a fast
switch. Anyway, this AOM has been kept in the setup, as its frequency shift helps
in the realization of the locking scheme. Importantly, before recombining RR1 and
RR2, a fraction of the former is extracted to produce RR3. The appropriate optical
frequency is reached by means of a double-pass AOM working at −2× 80 MHz. For
convenience, this light is brought to the science cell via a different, dedicated fiber.

2.5 The MOT optical setup
The various fibers injected with Li and Cr lights converge towards the main optical
table, which hosts the two ovens, the whole vacuum and magnetic coils setups, as well
as the ODT box (see Sec. 2.6). Here, each beam is properly shaped and aligned on the
experimental cell, as described in the following. A schematic in-plane visualization
of the optical setup that surrounds the science chamber is shown in Fig. 2.12.
First, I illustrate the Li part of the setup. The ZS beam, prepared with σ+ polariza-
tion, is first magnified with a 1:3 telescope to reach a beam waist of approximatively
5 mm, and then directed towards the Li oven. The telescope is slightly uncollimated,
in order to focus light onto the oven nozzle. This beam carries 70 mW (25 mW) of

Figure 2.12 – Sketch of the Li-Cr cooling/trapping optical setup. The vertical direction,
which includes the MOT-z beams and the vertical imaging, is not shown in
this picture.
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cooling (repumping) light, which yields I/ILi,D2
sat ' 70 (I/ILi,D2

sat ' 25).6
As previously anticipated, our MOT is realized by three mutually-orthogonal retro-
reflected beams (labelled “x”, “y” and “z”, respectively). The three Li MOT beams
exit their respective fiber collimator with a beam waist of roughly 1 mm. Each one
is prepared with σ− polarization, and magnified with a 1 : 6 telescope. They are
then directed towards the science chamber, where they cross at approximatively 90◦
angles. Power in the horizontal plane is evenly distributed among x- and y- beams,
with 25 mW (I/ILi,D2

sat ' 17) of cooling and 12 mW (I/ILi,D2
sat ' 8) of repumping

light. Along the vertical (z) direction, instead, we employ 20 mW (I/ILi,D2
sat ' 14)

and 10 mW (I/ILi,D2
sat ' 7) of cooling and repumping light, respectively.

The Cr part of the optical setup is more involved than the Li one. The ZS beam,
which in this case contains solely 26 mW of cooling light (I/ICr

sat ' 5.4), is prepared
with σ+ polarization and magnified by means of a 1:2 telescope, providing a final
beam waist of 5 mm. It is then directed towards the Cr oven with the help of an
in-vacuum mirror.
To increase the 53Cr flux, a stage of transverse cooling (TC) and hyperfine pumping
(HP) is implemented at the oven output. This is essentially a 2D optical molasses
(only one dimension is shown in Fig. 2.12), realized by a pair of retro-reflected beams.
The two TC (HP) beams employ 14 mW (10 mW) of total optical power, and their
shape is adjusted with a cylindrical telescope in order to maximize the interaction
with the atomic flux.
The three Cr MOT beams leave the fiber collimators with a waist of roughly 2.6 mm,
which is magnified by a 1 : 3 telescope on each axis. The in-plane beams have a
total power of 4.5 mW, while the vertical beam has a power of 3 mW. They are all
prepared with σ− polarization, and overlapped with the corresponding Li beams on
dichroic mirrors. When the bichromatic MOT beams leave the experimental cell,
red and blue lights are again split by dichroic mirrors, before being retro-reflected.
In this way, Li and Cr beams can be aligned and adjusted independently, and
monochromatic waveplates can be used, thus improving polarization control.
As introduced in Sec. 2.2, up to six repumper lights are needed to completely close
the 53Cr cooling transition. The three blue repumpers (R1, R2, and R3) are delivered
to the main optical table via a single fiber (aside from the fraction of R1 and R2 that
realizes the HP stage at the oven), whereas two different fibers are employed for
red repumpers (one carries RR1 and RR2, the other RR3). The beam containing
R1, R2, and R3 is sent to the experimental cell, after which it is retro-reflected.
Such a 1D configuration avoids the formation of a bosonic 52Cr MOT on top of the
fermionic one,7 while still providing a good repumping efficiency. RR1 and RR2 are
superimposed to the blue repumpers by means of a dichroic mirror, after which
they all follow the same optical path. RR3 is instead overlapped on a PBS with the
Li MOT-y beam.
Fig. 2.12 also shows the horizontal absorption imaging path. This is typically em-
ployed to image Li atoms, but (upon minimal changes) it can also be used for Cr. The
imaging is performed with a Stingray camera, with an overall 2:1 demagnification.

6As a reminder: the average intensity of a collimated gaussian beam can be expressed as I0 =
2P/(πw2

0), where P is the total power, and w0 the beam waist [89].
7As shown in Fig. 2.10, R1 is (nearly) resonant with the 52Cr cooling transition.
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The probe beam has a waist of roughly 5 mm, with a typical power of 1 ÷ 2 mW
(providing I/ILi,D2

sat ' 1 for Li). The vertical imaging path, instead, is not shown
in Fig. 2.12. It is assembled on the breadboard that hosts the optics for the two
MOT-z beams, which is installed above the science chamber. In this case, light
is collected onto a low-noise Andor camera, with the chip cooled down to −50 ◦C.
As such, we usually employ this imaging path to probe Cr samples, as their signal
is typically weaker than the Li one. Again, upon minimal changes (i.e. merely
exchanging two fibers) Li atoms can be imaged in the vertical direction as well.
Besides the two absorption imaging paths, a simple fluorescence imaging performed
with a CCD camera (controlled by a RaspberryPi, which also acquires the data)
provides a real-time, in-situ monitoring of the double MOT.
Lastly, Fig. 2.12 also shows the BODT path. The optical setup that realizes our
bichromatic dipole trap is described in Sec. 2.6. Here I just mention that, after
passing through the experimental cell, a pickup of the two high-power beams is sent
to a Thorlabs camera, and serves as a monitor for the beams quality. The largest
part of the two lights is instead safely directed to a beam dump.

2.6 Bichromatic optical dipole trap
In our Li-Cr mixture, we reach ultracold temperatures by sympathetically cooling
53Cr atoms via forced evaporation of 6Li, where the latter is prepared in a spin-
mixture of the two lowest Breit-Rabi states (i.e. Li|1〉 and Li|2〉), and the magnetic
field is conveniently chosen near the corresponding 832 G Feshbach resonance. Evap-
oration is performed in a bichromatic optical dipole trap, the description of which is
the subject of this section.
First, as already mentioned, the choice of an optical dipole trap (and, accordingly,
of an all-optical approach towards the ultracold/degenerate regime) allows us to
select a convenient magnetic field (i.e. characterized by good Li-Li and Cr-Li col-
lisional properties) where to carry out the evaporation stage. Secondly, we opted
for a bichromatic trap, realized by overlapping an infrared (λIR = 1070 nm) and
a green (λGR = 532 nm) laser beam, in order to enable a selective control of the
trap depth for each species. In fact, the infrared (IR) light, being red-detuned with
respect to both Li and Cr lowest optical transitions, acts as a trapping potential
for both species.8 By contrast, the green (GR) light strongly confines Cr atoms,
while anti-confining Li. By adjusting the ratio between IR and GR powers, one can
optimize the evaporation trajectory in order to efficiently cool Cr atoms, with as few
losses as possible.9
To ensure a good spatial overlap between lithium and chromium density profiles, the
trap is designed such that the two ODT beams feature the same waist (w0 ' 45 µm)
on the atomic clouds (i.e. at the focus position). The choice of the beam waist results
from a compromise between a good trapping volume (which scales as w2

0 zR ∼ w4
0/λ,

where zR = πw2
0/λ is the Rayleigh length) and a not-too-shallow trap depth (which,

8The IR light alone provides a trap depth roughly 2.5 times deeper for Li than for Cr atoms [55],
which by itself is not convenient for the sympathetic cooling stage.

9Indeed, initial Cr samples are typically much smaller than Li ones. Thus, given the remarkable
efficiency with which lithium atoms can be evaporatively cooled, they are exploited as a cooling
agent for the chromium component.
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for a fixed power, scales as ∼ 1/w2
0).10 Besides, a trap with a small beam waist

(w0 . 20 µm) may suffer from astigmatism, which can reduce the overall confinement
and introduce artifacts in the trapping potential.
The ODT optical setup is also devised to minimize the so-called thermal lensing
effect. The latter arises as a consequence of the inhomogeneous heating to which
optics are subjected when hit by a non-uniform (high-)intensity profile. The resulting
local deformations cause each element to act as an effective lens, thereby producing
a time- and intensity-dependent thermal focal shift. Such an undesired effect is
particularly detrimental in a BODT (especially if one of the beams is anti-trapping),
as thermal lensing – being strongly wavelength-dependent – can significantly alter
the effective trapping potential experienced by different atomic species, resulting in
a sizeable reduction of the density overlap, and hence in a serious decrease of the
sympathetic cooling efficiency. A detailed characterization of the thermal lensing
effects in our setup, together with the approach followed to minimize them, can be
found in Ref. [58].
Another issue concerning the simultaneous trapping of two different atomic species
lies in the different gravitational sags, that in turn can considerably reduce the density
overlap in the ultracold/degenerate regime (i.e. when the trap depth is shallow).
This problem can be addressed with a small magnetic field gradient, exploiting
the different ratios between magnetic moment and mass of the two species. An
accurate study of this effect, combined with a simulation of an optimum magnetic
field gradient, can be found in Ref. [57].
In the following, the optical scheme that realizes our trap (shown in Fig. 2.13),
is described. Generally speaking, as any optical material unavoidably introduces
some degree of thermal aberrations, the number of optics is kept as low as possible.
Besides, all lenses mounted on the setup are realized in UV fused silica, with an
anti-reflection “V-coating” at 1064/532 nm.
The IR source is a high-power multimode fiber laser (IPG Photonics YLR-300), which
can deliver up to 300 W of optical power, with an output beam waist of 2.2 mm
(and negligible ellipticity). The GR source is instead a high-power single-mode
CW fiber laser (IPG Photonics GLR-50), providing a maximum power of 50 W, with
an output beam waist of 1.1 mm (again with negligible ellipticity). In order to
finely control the optical power during the experimental cycle, each beam passes
through a dedicated AOM. The two 1st diffraction orders are employed for the ODT,
whereas the 0th orders are directed to a beam dump.11 Adjusting the RF modulation
amplitude allows one to control the diffraction efficiency, thus providing a tool to
rapidly and precisely tune the trap depth.12 However, during the initial stages of

10With a 45 µm beam waist, given the maximum output powers of our laser sources (see below),
one can achieve trap depths on the order of 1.5 mK, well suitable to capture atoms directly from
the MOT cloud, where T ∼ 200÷ 300 µK.

11This actually refers to the “old” 1D setup, see the final remark of this section.
12The IR laser power can also be controlled by changing the current via the computer program.
However, there is a minimum power of roughly 13 W below which lasing is not sustained. Thus,
tuning the AOM efficiency provides a way to reach shallower trap depths.
I also mention here that a similar strategy is not directly applicable to the 532 nm source, as its
switch-on time and its response to changes in the current are extremely slow, on the order of
several seconds. Therefore, we decided to keep this laser always switched on at 40 W, employing
a flippable mirror to send light to a water-cooled beam dump when not needed on the atoms.
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loading, a relatively high optical power is demanded. As such, in order to maximize
the diffraction efficiency (with respect to input power), before entering the AOM
each beam passes through a demagnifying telescope that reduces the two waists by
a factor of 4. After the AOM, the GR beam passes through a second 1:1 telescope,
with which the final beam waist can be properly adjusted.
Lastly, the IR and GR beams are recombined on a dichroic mirror, and directed
towards the last (common) lens (f = 250 mm), which focuses them on the atoms.
The overlap between the two beams is found to be a rather critical parameter.
Accordingly, the last lens of the GR path (before the dichroic mirror) is installed on
a kinematic mount, acting also as a tilter to finely align the 532 nm beam, in order
to precisely match the IR path.

As a final note, while this thesis was being written, the ODT setup has been modified
to implement a (bichromatic) crossed ODT. The two supplementary beams are
delivered by the 0th diffraction order of each AOM. In complete analogy to the scheme
described above, they pass through two additional AOMs (where first diffraction
order is collected), before being sent to the atoms. Such a trap configuration provides
a much stronger confinement in the (former) “axial” direction, greatly increasing
the density of trapped atoms, and thus ensuring a better spatial overlap between
the two clouds.

Figure 2.13 – Sketch of the bichromatic ODT setup.
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Chapter 3

Production of ultracold Li-Cr
mixtures

This chapter outlines the experimental procedures, devised during this
thesis work, that we follow to produce ultracold samples of fermionic
6Li and 53Cr atoms.
In the first section, I describe the sequential loading of our double-
species MOT, and the subsequent laser cooling stages that we employ to
further decrease its temperature. The discussion here is kept separate
between lithium and chromium, although many of these stages occur
simultaneously.
Secondly, I present our method to efficiently transfer atoms into the
BODT, directly from the steady-state MOT. In particular, I focus on
three critical steps needed to obtain large and polarized samples.
Lastly, in Sec. 3.3, I illustrate the evaporation trajectories that bring our
samples down to ultracold temperatures. This represents the starting
point for any experiment in the ultracold regime with the Cr-Li mixture. I
also report here the experimental routines to produce degenerate samples
of 6Li, which we initially took as a reference to optimize the evaporation
stage.

3.1 Loading of the Li-Cr MOT
Our strategy to load the Li-Cr MOT relies on a 8 seconds-long duty cycle, where we
perform a sequential loading of the two species. In the first 6 s, lithium atoms are
collected in the trap in the absence of chromium. Then, the Li ZS field and lights are
switched off, and the Cr MOT is loaded in roughly 2 s. The two clouds are further
cooled and squeezed by means of compressed MOT (CMOT) stages, where the laser
intensities and the detunings are decreased.
In the following subsections, the entire loading routine is described in more detail.

3.1.1 Loading of the Li MOT
The experimental procedure to load the 6Li MOT is depicted in Fig. 3.1. As the cycle
begins (texp = 0), the ZS and MOT lights are switched on, initially prepared as shown
previously in Fig. 2.6a. The relative intensities of cooling and repumping beams are
set to 100 % (P ' 25 mW, I/ILi,D2

sat ' 17) and 50 % (P ' 12 mW, I/ILi,D2
sat ' 8),

respectively. At the same time, the Li ZS field is also switched on, and current in
the MOT coils, operating in anti-Helmholtz (A-H) configuration, is raised to 25 A,
providing an in-plane gradient of ∼ 14 G/cm at the quadrupole center.1

1The MOT coils have a relatively large inner radius of 7.2 cm, designed to match the ZS magnetic
field in order to optimize the collection efficiency (see Ref. [55] for more details). However, as a
drawback, their complete switch-off time is rather long, on the order of ∼ 50 ms.
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After a loading time on the order of 6 s, the Li ZS lights and field are switched off: at
this point, the Cr MOT loading begins (see next subsection). Lithium atoms are held
in the trap for the entire duration of the process (∼ 2 s), without significant losses.
Given the loading parameters, the MOT temperature is found to be relatively high, on
the order of 3 mK. Accordingly, when the atom number is saturated, we further cool
our cloud by reducing the intensities and the detunings of the MOT beams. Speaking
of Li, this is realized by means of two consecutive CMOT stages, namely CMOT1 and
CMOT2. The former starts approximatively at texp = 7.9 s, and lasts for 100 ms. The
latter immediately follows, with a duration of 6.7 ms. During CMOT1, the detunings
of cooling and repumping lights are set to δcool = −2.7 γD2 and δrep = −6.5 γD2,
respectively, and the repumper intensity is reduced to Irep = 30 %. During CMOT2,
instead, we set δcool = −1.0 γD2 and δrep = −0.5 γD2, with Icool = 5.5 % and
Irep = 2.3 %, respectively. This allows us to reach temperatures on the order of
200÷ 300 µK, with peak spatial densities of a few 1011 cm−3.
Two more aspects of this loading routine should be pointed out. First, towards the
middle of the CMOT1 stage, we transfer the atoms in the field generated by the
FB coils, which – due to their lower inductance – can be switched off significantly
faster. The transfer is accomplished by a 20 ms-long linear ramp, where we lower

Figure 3.1 – Schematic representation of the experimental sequence to load the Li MOT
(axes are not to scale).

texp0 6 s 7.9 s 8 s

Li MOT loading
(~6  )s

Li CMOT1
(100     )ms

Li CMOT2
(6.7     )ms

HF pumpingµs(30    )
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the current in the MOT coils, while simultaneously increasing that in the FB coils.
Secondly, note that, during the cooling cycle, Li atoms are continuously removed
from their hyperfine ground state by the action of the repumper beam, see again
Fig. 2.2. To populate the |f = 1/2〉 state back, we perform, at the end of CMOT2,
a 30 µs-long pulse of hyperfine pumping (HP), simply realized by switching off the
repumper light before the cooling one. The net effect is an optical pumping of Li
atoms in the lowest hyperfine level, without significant heating.
At texp ' 8 s (actually, during the CMOT2 stage), we start to load atoms into the
ODT. The entire ODT loading procedure is the subject of Sec. 3.2. However, I
anticipate here that, after CMOT2, lithium D2 lights are switched off, together with
the quadrupole field. Subsequently, a gray-molasses stage operating on the D1 line
is employed to further cool the Li cloud, see Sec. 3.2.1.

3.1.2 Loading of the Cr MOT
As already mentioned, the Cr MOT loading starts at texp ' 6 s, following the Li one.
The process, schematically represented in Fig. 3.3, lasts for roughly 2 s, as the
Cr atom number saturates rather quickly owing to strong light-assisted collisions.
During the loading time, Cr cooling and repumping lights are prepared as shown
previously in Fig. 2.10, and as reported with more detail in Tab. 3.1.
Similarly to the case of Li, once the atom number is saturated, the Cr cloud is
further cooled by means of a (single) CMOT stage: intensities of the MOT and blue
repumper beams are decreased to 25 % and 3 % of their initial value, respectively,
and the detuning of the former is set to −1.3 γCr. This stage lasts for 4 ms, and its
end coincides with that of Li CMOT2. As better discussed in the next section, a
20 µs-long HP pulse at the end of Cr CMOT is employed to transfer atoms in the
|f = 9/2〉 manifold.
Lastly, during the entire loading sequence, the three red repumper lights (RR1, RR2,
and RR3) are kept always on. They are switched off a couple of ms after the end of
the Cr CMOT stage.
Fig. 3.2 shows a typical absorption image of the chromium MOT cloud, with NCr =
1.2 × 107 atoms. To the best of our knowledge, based on what is reported in the
literature [65], this is the largest 53Cr MOT ever produced (by more than a factor of
∼ 100). This notable improvement owes to the reduction of light-assisted collisions,
which is achieved by employing small intensities and relatively large detunings.

Figure 3.2 – Absorption image of a 53Cr
MOT with 1.2× 107 atoms.

Table 3.1 – Chromium MOT parameters dur-
ing the loading stage.

Beam P [mW] δ/γCr

ZS 26 −7.0
MOT-x, y 4.5 −3.4
MOT-z 3.5 −3.4
R1(MOT) 9.0 −1.0
R2(MOT) 4.0 −0.8
R3(MOT) 4.0 −1.0
TC-x′, y′ 7.0 −0.8
R1(HP)-x′, y′ 5.0 −1.0
R2(HP)-x′, y′ 5.0 −0.8
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Figure 3.3 – Schematic representation of the experimental sequence to load the Cr MOT
(axes are not to scale).
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Cr MOT loading
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3.2 Loading of the BODT

This section describes our approach to load the optical dipole trap, where we perform
evaporative cooling, directly from the steady-state MOT. A schematic representation
of the whole sequence in shown in Fig. 3.4.
The ODT is switched on during the Li CMOT2 and Cr CMOT stages. With a
3 ms linear ramp, power in the IR and GR beams is raised to 130 W and ∼ 2 W,
respectively. Once the CMOT stages are accomplished, the quadrupole field is quickly
switched off, and a small bias field is applied. Shortly after, a gray-molasses stage
is performed on Li atoms, helping to further cool the cloud, thereby improving the
loading efficiency. Then, as soon as all cooling lights are switched off, the GR power
is raised to 35 W, to provide a better confinement of the Cr component.
Three critical aspects of this loading routine deserve a dedicated discussion. First,
the strong IR beam induces a “dangerous” light shift of the Cr cooling transition,
causing the CMOT lights to shift towards the blue (i.e. closer to resonance), and
thus greatly increasing the light-assisted collisional loss rate. To overcome such a
detrimental issue, the initial intensity of the 532 nm beam is carefully adjusted to
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compensate for this shift, thus creating an effective “dark spot” (see Sec. 3.2.2).
While the light-shift compensation has turned out to be remarkably efficient, the
initial trap depth provided by such a combination of infrared and green light is
unfavourable for our sympathetic cooling purposes, being deeper for lithium than for
chromium. Accordingly, once Cr CMOT lights are switched off, the GR power has to
be increased to obtain a more suitable starting point for the evaporation stage. As
anticipated, before that, we perform an additional cooling stage on Li, which lasts
approximatively 600 µs and relies on the D1 line. The optimum parameters for this
latter stage, and for the ODT power at loading, are discussed in Sec. 3.2.1.
Lastly, yet importantly, for many applications it is desirable to work with a polarized
sample, i.e. with atoms in a well-defined |f, mf〉 state (or mixture). In particular,
we carry out evaporative cooling with lithium atoms prepared in a spin-mixture of
Li|1〉 (|1/2, 1/2〉) and Li|2〉 (|1/2, −1/2〉), and chromium atoms mostly polarized in the
Cr|1〉 state (|9/2, −9/2〉). While the Li spin-mixture is readily prepared with a short
HP pulse, the task of polarizing the Cr sample has turned out to be more challenging
than we expected, but, at the same time, also quite interesting. This topic is the
subject of Sec. 3.2.3.

Figure 3.4 – Schematic representation of the experimental sequence to load the ODT (axes
are not to scale).
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3.2.1 Optimization of gray-molasses and ODT loading power
To provide a more favourable starting condition for the evaporation, a gray-molasses
cooling stage,2 exploiting the D1 line, is applied on Li atoms. It starts roughly 3 ms
after the end of CMOT2, lasting for 600 µs. D1 cooling lights are prepared as shown
in Fig. 2.6b: The cooler and repumper beams are blue-detuned by 5.8 γLi and 5.6 γLi,
respectively, closely matching the Raman condition ∆Raman = δcool − δrep = 0 [63].
Relative intensities are set to Icool = 100 % and Irep = 12.5 %, respectively. Similarly
to the CMOT2 stage, when the gray-molasses is accomplished, a 30 µs-long HP pulse
is applied to transfer atoms in the lowest hyperfine state (i.e. the f = 1/2 manifold).
When all D1 lights are finally switched off, the GR laser power is raised to 35 W, in
order to provide a stronger confinement for the Cr component.
As previously mentioned, a first characterization of the optimal parameters for the
gray-molasses stage (operated in free-space) was carried out in Ref. [57]. During
my work period in the lab, I participated in a subsequent optimization of those
parameters, aimed to efficiently apply D1 cooling in the presence of the BODT. The
optimization involved laser intensities and detunings, as well as the time duration of
the process and its location within the loading cycle. The final optimum parameters
are those already reported above.
At the same time, we also monitored the Li atom number and temperature as a
function of the IR loading power, see Figs. 3.5a and 3.5b. As a comparison, the
figures also report the results obtained with “old” (free-space) D1 parameters, with
which the gray-molasses stage in the ODT barely has any effect. Conversely, after
optimization, we were able to reduce T by a factor of ∼ 2, losing less than 50 % of
the atoms.3 Indeed, with PIR = 130 W, we get 3.2(2)× 106 atoms at T ' 200 µK,
which represents a reasonable starting point for the evaporation stage.
In any case, we found that the 532 nm light has negligible effects on the D1 cooling
efficiency, thus the GR loading power can safely be optimized looking at Cr atoms
only (see Sec. 3.2.2).

Figure 3.5 – Optimization of the initial trap depth: Li atom number (a) and temperature
(b) as a function of the IR loading power. Lines are merely a guide to the eye.

(a) (b)

2Gray-molasses are sub-Doppler cooling stages that combine the Sisyphus effect with a velocity-
selective coherent population trapping (VSCPT) technique. A theoretical analysis applied to
fermionic Li atoms can be found in Ref. [64].

3For a thermal gas in a harmonic potential, at fixed trap depth the phase-space density (PSD) scales
as ∼ N/T 3. Hence, reducing both T and N by a factor of 2 yields a 4-fold increase in PSD.
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3.2.2 Compensation of Cr light shift: the “dark” spot
As anticipated above, the high-power IR beam employed for the ODT induces a
detrimental light shift of the Cr cooling transition, causing the CMOT light to shift
towards the blue, and thus increasing light-assisted collisional losses. Interestingly,
owing to the existence of a 533 nm transition involving the excited 7P4 state of the
cooling cycle, we found that a relatively small amount of GR light can be used to
(over-)compensate for the IR-induced light shift, thereby enabling an efficient loading
directly from the steady-state MOT.
As a proof of principle, we measured the light shifts induced by IR and GR lights
on the Cr imaging transition. In practice, we imaged the chromium cloud in-situ
in the presence of either 210 W of IR power (and no GR light), or 520 mW of GR
power (and no IR light). In each case, the light shift is measured by scanning
the imaging frequency, and comparing the peak signal with the one measured in
free-space (i.e. with both IR and GR lights off). The outcome is shown in Fig. 3.6a:
with PIR = 210 W and PGR = 0, we measured a (trap-averaged) shift of −4.5(5) MHz
(i.e. the cooling transition shifts towards the red, hence the CMOT lights relatively
move towards the blue). On the other hand, with just PGR = 520 mW and PIR = 0,
the (trap-averaged) shift reads +4.0(5) MHz (hence, opposite in sign). Accordingly,
a relatively small GR power can be effectively used to (over-)compensate for the
IR-induced light shift, thereby allowing the Cr CMOT stage to be operated in the
presence of the ODT, and thus greatly enhancing the loading efficiency.
The optimal parameters are ultimately found by measuring the number of Cr
atoms loaded in the ODT (with 130 W of IR) as a function of the GR power,
see Fig. 3.6b. The optimum is found at PGR ' 2 W, which corresponds to an
effective −12 MHz = −2.3 γCr detuning of the CMOT light. Thanks to this light-shift
compensation, we are able to obtain samples of up to 1.5 × 106 Cr atoms in the
BODT, measured 150 ms after loading.
A totally different loading strategy, which relies on abruptly switching on (“flashing”)
the IR beam at 210 W , after all blue lights are turned off, yields instead Cr samples
smaller by a factor of 4.

Figure 3.6 – Dark-spot for Cr atoms: light shift of the Cr cooling transition (a), and Cr
atom number as a function of the GR power, with 130 W of IR light (b).

(a) (b)
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3.2.3 Polarization of Cr via spin-exchange collisions

In many cases, it is desirable to work with polarized samples, i.e. with atoms
in a well-defined |f, mf〉 state (where the latter, in the presence of a magnetic
field, has to be intended merely as a label to identify the adiabatically-connected
Breit-Rabi state). For instance, Feshbach loss spectroscopy requires well-defined
scattering channels in order to avoid potential misassignments of loss features. On
the other hand, evaporative cooling of fermionic atoms needs at least two different
(i.e. distinguishable) kinds of particles to ensure thermalization. As anticipated,
our route towards the ultracold/degenerate regime relies on evaporative cooling
of lithium (in a 50 % − 50 % spin-mixture of Li|1〉 and Li|2〉), with simultaneous
sympathetic cooling of chromium. To prepare the Li spin-mixture, we perform a
30 µs-long HP pulse at the end of the gray-molasses stage, completely analogous
to the one that follows CMOT2. A similar technique is also applied on Cr, with a
20 µs-long HP pulse at the end of the CMOT stage, realized by switching off the
cooling lights before the three blue repumpers (note that the roles of cooler and
repumpers are exchanged with respect to the Li case, see again Figs. 2.2 and 2.3).
However, as the |f = 9/2〉 hyperfine level contains 10 Zeeman components, which in
principle could be equally populated, the HP pulse alone is not enough to guarantee
a polarized chromium sample. To this end, early attempts to realize an optical
mf -pumping stage were unfortunately not successful. Nonetheless, we empirically
found that, at a particular magnetic field of about 10 G, spin-exchange collisions (i.e.
two-body inelastic collision events where angular momentum is exchanged, bringing
atoms towards energetically-lower spin-states) are remarkably enhanced, similarly
to what observed in K-Li mixtures [66]. For such a small field, the released kinetic
energy is lower than the trap depth (given the initial intensities of the ODT beams),
thus atoms undergoing spin-changing collisions remain confined in the optical trap.
The process has a timescale on the order of ∼ 1 s, and features a rather peculiar
resonance-like behaviour with respect to the magnetic field. Indeed, we later found
(see Chapter 4) that these features are connected to Feshbach resonances in the
Cr|3〉+Li|2〉 and Cr|2〉+Li|2〉 scattering channels.
As a first step, we checked whether the initialmf populations in the ODT showed some
“spontaneous” degree of polarization. Given a total of roughly 1.5× 106 Cr atoms,
we measured the atom number in the three lowest spin states (i.e. Cr|1〉= |9/2, −9/2〉,
Cr|2〉= |9/2, −7/2〉 and Cr|3〉= |9/2, −5/2〉), 300 ms after the standard loading routine
(i.e. ramping up the ODT beams in 3 ms, with an optimized “dark spot”). In practice,
Ntot is measured at zero field, whereas the mf populations, Ni, are measured with
spin-selective imaging at B > 0. Results are reported in Tab. 3.2: the initial Cr
polarization is actually quite favourable, as essentially only the three lowest spin
states are populated. While the reasons behind this finding are not entirely clear,
we can exclude that such a behaviour is due to some “magic effects” during the
dark spot stage, as a similar trend is observed also for a “flashed” IR trap (although

Table 3.2 – Relative population of Cr mf sublevels after loading into the ODT.

State Ni/Ntot [ % ]
Cr|1〉 60(6)
Cr|2〉 40(7)
Cr|3〉 < 13
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Figure 3.7 – Spin-exchange stage to polarize the Cr sample: (a) population of the lowestmf
states as a function of the magnetic field, for a fixed hold time ∆thold = 1 s; (b)
Cr|1〉 population growth as a function of the hold time, for a fixed B ' 10 G.

(a) (b)

with lower atom numbers). Rather, we ascribe such a favourable polarization of
the sample to the MOT light, which is expected to drive mostly σ− transitions. We
then investigated the behaviour of the system when held in the trap for a fixed
∆thold = 1 s, at different magnetic fields. Our hope was to find a convenient field at
which atoms would undergo spin-exchange collisions (also referred to as “purifying
collisions”): hence, large enough to appreciably split the mf sublevels, but, at the
same time, small enough such that the released kinetic energy would not exceed the
trap depth.
In practice, to generate a constant magnetic field, when the MOT quadrupole field
(provided by the FB coils) is turned off, we switch the MOT coils from A-H to
Helmholtz (H) configuration, and then set an appropriate current. The optical trap
for these measurements is provided by 130 W of IR and 35 W of GR light, as it
follows from the standard loading routine.
The scan results are shown in Figure 3.7a: surprisingly, we observe a rather clear
resonance-like feature, appearing as an enhancement of Cr|1〉 atom number, and as
a dip in Cr|2〉 and Cr|3〉 populations. It is worth noticing that, while the Cr|1〉 trend
can be explained in simple terms (i.e. the spin-exchange rate initially grows with
B, but, at high fields, atoms acquire enough kinetic energy to leave the trap, hence
there is no gain in the ground state population), the behaviour of Cr|2〉 and Cr|3〉 is
less obvious: there is no apparent reason, based on the simple argument above, for
the sudden increase of their population, back to their B = 0 levels, for B > 10 G.
Rather, such a trend points towards a resonant enhancement of two-body losses.
At the same time, we also monitored the atom number in the two spin-states of Li
(not shown in the figure). Based on energy and angular momentum conservation,
we expect Li|2〉 to be the preferential partner for spin-exchange collisions, via
Li|2〉+Cr|n〉−→Li|1〉+Cr|n− 1〉 (n = 2, 3). As supposed, we found that the Li|2〉
population decreases, whereas the number of Li|1〉 atoms remains constant within
the error bars. This yields an effective population imbalance in the Li mixture, the
effects of which are better discussed in Sec. 3.3.3.
Generally speaking, mf -polarization of Cr via the spin-exchange stage works nicely,
enabling us to more than double the population of the absolute ground state, and
yielding almost perfectly pure samples. However, as it could be potentially hazardous
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(both in the short, as well as in the long run) to keep more than 150 W of (nearly)
focused light on the experimental cell for long times, we investigated the timescale
characterizing these spin-changing collisions, aiming to optimize the time duration of
this stage. In practice, for a fixed field B ' 10 G (corresponding to the peak gain in
Cr|1〉 population), we measured the Cr|1〉 atom number as a function of ∆thold, see
Fig. 3.7b. Fitting data with an exponential growth function, we find a time constant
τsp.ex = 470(100) ms, with an asymptotic two-fold relative increase of the population.
Accordingly, as the atom number is already close to saturation after roughly 800 ms,
we decided to set the duration of the spin-exchange stage to 750 ms.

3.3 Evaporation trajectories
In this section I present the evaporation trajectories that we follow to attain ultralow
temperatures.
During my first period in the lab, the chromium oven was being repaired by the
manufacturer, so a flux of Cr atoms was not available for the experiment. Accordingly,
the ODT evaporation ramps were initially tested on Li atoms only, employing solely
the IR beam. To this end, the first step has been the production of a Li crossover
superfluid, on top of the 832 G Li|1〉-Li|2〉 Feshbach resonance. Secondly, we realized
a degenerate Fermi gas (DFG), ramping the field down to 300 G during the final
stages of evaporation. Lastly, as soon as the Cr oven came back to the lab and the
high vacuum was restored, we re-optimized the evaporation stage in the presence of
the GR beam, aiming to an efficient sympathetic cooling of the chromium component.

3.3.1 Production of a Li crossover superfluid
The first step taken in the degenerate regime has been the production of a Li crossover
superfluid (CSF), which was attained in the lab shortly before the beginning of my
thesis. I provide here an outline of the employed experimental routine.
The Li MOT is loaded as described in Sec. 3.1.1, including the two CMOT stages,
but allowing for a slightly longer loading time (roughly 7 s). Starting 8 ms before
the end of CMOT1, we switch the IR ODT on, ramping the power up to 150 W
in 3 ms. The GR beam is not employed in this case. At the end of CMOT2 we
apply the first HP pulse, then we switch the quadrupole field off and set the coils
to H configuration. Subsequently, we perform the gray-molasses stage, with the
second 30 µs-long HP pulse in the end. Once cooling lights are switched off, we ramp
the magnetic field up to 830 G in 50 ms, and then start evaporating. The selected
evaporation ramps are exponential functions in the form

P (t) = A ·
(
et/τ − 1

)
+ B (3.1a)

with
A = Pin − Pfin

1− e∆t/τ and B = Pin (3.1b)

where Pin and Pfin are the initial and final powers, respectively, τ is the characteristic
time constant, and ∆t is the time duration of the ramp. To produce Li crossover
superfluids, we employ two different ramps: The first one is relatively fast, to
avoid high intensities impinging on the vacuum windows for long times, and results
from lowering the injection current of the IR source. The second one is slower and
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smoother, ensuring a good thermalization of the sample, and it is realized by tuning
the IR AOM diffraction efficiency. The two ramps are plotted in Fig. 3.8, and their
parameters are reported in Tab. 3.3. Fig. 3.9 displays a series of time-of-flight (TOF)
absorption images of the final sample, containing up to N = 4× 105 superfluid pairs,
showing the characteristic inversion of the aspect ratio.

Figure 3.8 – Evaporation ramps employed to produce a 6Li crossover superfluid.

Table 3.3 – Evaporation ramps employed to produce a 6Li crossover superfluid.

Pin [W] Pfin [W] ∆t [ms] τ [ms]
Ramp 1 (current) 150 32.5 200 − 30
Ramp 2 (AOM) 32.5 0.06 5600 − 800

Figure 3.9 – Time of flight images of a 6Li crossover superfluid with 4× 105 pairs.



60 3. Production of ultracold Li-Cr mixtures

3.3.2 Production of a Li degenerate Fermi gas
After the realization of the crossover superfluid, the second step was the production
of a Li degenerate Fermi gas (DFG). The first part of the experimental routine,
from the MOT loading to the beginning of the evaporation stage, is completely
analogous to the one employed for the CSF (see Sec. 3.3.1). The main differences
are the evaporation ramps and the final magnetic field. In particular, in this case
we apply four different exponential ramps, plotted in Fig. 3.10 (left), the parameters
of which are reported in Tab. 3.4. Between the third and the fourth one, we lower
the magnetic field down to 300 G, a value that yields a Li|1〉-Li|2〉 scattering length
of −250 a0 [67]. Note that the overall time duration of the evaporation stage is
longer compared to the CSF case, as the magnitude of the scattering cross section
at B = 300 G is lower than its resonant (i.e. unitary-limited) value. Lastly, we
image our sample (at B = 300 G), before switching the magnetic field off. A typical
long-TOF absorption image of a Li|1〉 DFG is shown in Figure 3.10 (right). The
spherical shape signals the filling of the Fermi sphere.

Table 3.4 – Evaporation ramps employed to produce a 6Li degenerate Fermi gas.

Pin [W] Pfin [W] ∆t [ms] τ [ms]
Ramp 1 (current) 150 30 200 − 30
Ramp 2 (current) 30 13.3 550 − 800
Ramp 3 (AOM) 13.3 6.7 550 − 800
Ramp 4 (AOM) 6.7 0.7 8500 − 2000

Figure 3.10 – Evaporation ramps employed to produce a 6Li DFG (left), and long-TOF
absorption image of the sample (right).
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3.3.3 Production of ultracold Li-Cr mixtures
I present here the evaporation trajectories that we follow to produce ultracold
LiCr mixtures. The double-species MOT and the BODT are loaded as described
in Secs. 3.1 and 3.2, respectively. Once the spin-exchange stage is accomplished
(i.e. at texp ' 8.75 s), we ramp the magnetic field up to 830 G, and we start the
evaporation stage. As previously discussed, the initial trap depth provided by 130 W
of IR and 35 W of GR light is unfavourable for our sympathetic cooling purposes,
being deeper for Li than for Cr. Accordingly, we perform a first, relatively fast
evaporation ramp where we decrease the IR power only, keeping the GR power
fixed. Then, once the optimum ratio PIR/PGR is reached, subsequent ramps are
designed to keep such ratio fixed. The evaporation ramps are plotted in Fig. 3.11,
and their parameters are reported in Tab. 3.5. After the third ramp, the mixture
is thermalized at T = 5 µK. Further decreasing the temperature below this point,
while keeping good atom numbers, has turned out to be rather challenging. The
reasons might lie in a reduction of the overlap between the two density distributions
(for which a crossed ODT has been implemented in the lab, see the final remark in
Sec. 2.6), as well as in the Li spin population imbalance caused by the spin-exchange
stage. Indeed, we found that the number of Li|2〉 atoms is essentially zeroed after
the third ramp. While such a scenario might be even regarded as convenient for
subsequent Feshbach spectroscopy scans, the optimum strategy to further decrease
the temperature is currently under investigation in the lab.
It should be emphasized that the total temporal duration of the three ramps in

Figure 3.11 – Evaporation ramps employed to produce ultracold Cr-Li mixtures.

Table 3.5 – Evaporation ramps employed for the sympathetic cooling stage.

Pin [W] Pfin [W] ∆t [ms] τ [ms]

Ramp 1 IR (current) 130 53 200 − 30
GR 35 35 200 −∞

Ramp 2 IR (current) 53 24 550 − 800
GR (AOM) 35 15 550 − 800

Ramp 3 IR (AOM) 24 4.7 3000 − 600
GR (AOM) 15 3.0 3000 − 600
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Tab. 3.5 is comparable to those performed on Li atoms only (at B = 830 G), for the
same final temperature (i.e. trap depth), see again Fig. 3.8. This means that the
sympathetic cooling stage is rather efficient (i.e. the mixture thermalizes relatively
fast), a fact that points towards good interspecies collisional properties.
Fig. 3.12 shows two typical absorption images of ultracold Li and Cr clouds, containing
up to NLi = 1× 106 and NCr = 3× 105, respectively, at T = 5 µK.

Figure 3.12 – Ultracold lithium-chromium sample with NLi = 1× 106 and NCr = 3× 105,
at T = 5 µK.
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Chapter 4

Feshbach loss spectroscopy
In this Chapter, I report on the experimental results obtained by perform-
ing extensive Feshbach loss spectroscopy on our ultracold Li-Cr mixtures.
First, I outline the preliminary steps that we take to prepare the sample
for Feshbach magnetic scans. Here, the starting point is provided by
our standard duty-cycle to produce ultracold Li-Cr mixtures, already
described in the previous Chapter. Secondly, I briefly discuss the most
relevant loss mechanisms that are involved in our experiments, recalling
a few earlier results from Chapter 1. I then present the results of our
spectroscopic measurements, which involve up to six different scattering
channels, reporting the data in the magnetic field regions of interest, and
listing the empirical parameters that we use to label the loss features.
Lastly, in Sec. 4.4, I discuss a couple of phenomenological models that
can be used to fit the observed lineshapes, reporting the results of the
analysis compared with current theoretical predictions.

4.1 Sample preparation and typical experimental
conditions

This section outlines the main steps to prepare the ultracold sample for Feshbach loss
spectroscopy. The starting point for all the measurements presented in this chapter
is an ultracold cloud of lithium and chromium, containing on average NLi ' 106 and
NCr ' 105 atoms, respectively, thermalized at T ' 5 µK. At this stage, following
our standard BODT loading routine, Li and Cr atoms are almost entirely polarized
in their lowest spin states (i.e. Li|1〉= |f = 1/2, mf = 1/2〉, and Cr|1〉= |9/2, − 9/2〉,
respectively). The procedure to obtain our initial sample is described in Chapter 3.
After the end of the evaporation stage, the first step is to switch off the GR laser beam,
in order to ensure a better spatial overlap between the two density distributions.
Indeed, at low powers, a not perfect overlap of the two BODT beams could introduce
artifacts in the lithium trapping potential. The GR power is thus lowered to 0 W
with a 200 ms-long linear ramp. Simultaneously, to increase the confinement, the IR
power is raised to 9.4 W. This configuration provides a trap depth of roughly 200 µK
for Li, and 70 µK for Cr. A side effect of the trap depth increase is a slight heating
of the sample. We measured the temperature via time-of-flight imaging after the
two 200 ms-long ramps, and we found T ' 10 µK. The typical sample conditions
and trap parameters are reported in Tab. 4.1.

Table 4.1 – Typical experimental conditions for our Feshbach scans. T is the temperature,
N is the atom number, U0 is the trap depth, νr (σr) and νz (σz) are the radial
and axial trapping frequencies (1/√

e half-widths of the density distributions),
respectively, while n0 is the peak atomic density.

T [µK] N U0 [µK] νr [Hz] νz [Hz] σr [µm] σz [µm] n0 [cm−3]

Li 10 106 215 4260 25 4.4 750 4.5× 1012

Cr 10 105 72 825 5 7.6 1250 ∼ 1011
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Figure 4.1 – Magnetic field dependence of the lowest Zeeman levels of 6Li (a) and 53Cr
(b), schematically showing the relevant fields for RF transitions.

(a) (b)

In order to prepare the mixture in different atomic spin states, i.e. to investigate
different Li+Cr scattering channels, we employ a sequence of radiofrequency (RF)
pulses, each time setting an appropriate value for the magnetic field, so that the
energy splitting between the involved Zeeman sublevels matches our RF antenna
at 76.3 MHz. Namely, to transfer Li atoms in the |2〉 state, we apply a 600 µs-
long π-pulse at B = 846.5 G. On the other hand, for Cr atoms, we lower the
field down to B ' 40 G, crossing the two atomic resonances (Cr|1〉−→Cr|2〉 at
B ' 47 G, and Cr|2〉−→Cr|3〉 at B ' 45 G, respectively) in a few ms. By switching
the RF field on in correspondence of these crossings, we realize one (two) Landau-
Zener adiabatic passage(s), obtaining a polarized Cr|2〉 (Cr|3〉) sample. Fig. 4.1
schematically illustrates the RF population transfers. Each RF pulse is only applied
when required.
Once the desired spin mixture is prepared, the magnetic field is set to the (variable)
value selected for the measurement, and the sample is held in the trap for a given
time thold, adjusted between 0.5 and 5 seconds according to the signal strength (a
typical value is thold = 4 s). After the holding time, the magnetic field is quickly
ramped to a suitable value to perform spin-selective imaging of the leftover Cr cloud,
the number of remaining Cr atoms being the quantity that we measure to detect
(resonantly-enhanced) losses. Indeed, as better discussed in the following, given our
experimental conditions (i.e. NLi � NCr), the Li sample is much less sensitive to
atom losses involving collisions with the Cr component.

4.2 Relevant loss mechanisms
In the following, I provide a basic overview of the main loss mechanisms involved
in our measurements. Phenomenological models to analyze the line shapes are dis-
cussed in Sec. 4.4.
In our measurements, we experimentally investigated six different scattering chan-
nels, namely all the binary combinations involving the two lowest spin states of
6Li (i.e. Li|1〉 and Li|2〉), and the three lowest spin states of 53Cr (i.e. Cr|1〉, Cr|2〉,
and Cr|3〉). Following the discussions in Secs. 1.10.1 and 1.14, the main sources of
losses are spin-exchange collisions, spin-spin (or dipolar) relaxation, and three-body
recombination processes. In particular, spin-exchange collisions are caused by the
exchange interaction Ĥex(r) (see Eqs. (1.74)), which conserves the total electronic
spin, S, and the projection of the total internal angular momentum, Mf = mf1 +mf2 .
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Table 4.2 – Mf values for the six investigated scattering channels.

Cr|1〉 Cr|2〉 Cr|3〉
Li|1〉 − 4 − 3 − 2
Li|2〉 − 5 − 4 − 3

Accordingly, these collisions only affect the Li|2〉+Cr|2〉 and Li|2〉+Cr|3〉 scattering
channels (see Tab. 4.2), via Li|2〉+Cr|n〉−→Li|1〉+Cr|n− 1〉 processes.1 Since the
exchange interaction is strong (at small interatomic distances), we expect to observe
strong loss features connected with spin-exchange collisions in these two scattering
channels.
By contrast, spin-spin (lossy) collisions arise from the dipolar term Ĥdd(r) (see
Eqs. 1.75), and they are expected to yield weaker and narrower loss features. Here,
the conserved quantity is the total angular momentum projection, Mtot = Mf +m`,
while ∆` = 0, ±2 and ∆Mf = 0, ±1, ±2. Accordingly, these collisions affect all the
investigated scattering channels, except for the lowest in energy, i.e. Li|1〉+Cr|1〉.
Fig. 4.2 summarizes the allowed two-body inelastic decays for our mixtures.
Lastly, as discussed in Sec. 1.14, three-body losses are due to collisions involving
three ultracold particles, two of which form a bound state (i.e. a molecule), while
the third one carries away (part of) the released binding energy as kinetic energy.
Recombination processes affect every scattering channel, and, in particular, they are
the only source of losses in Li|1〉+Cr|1〉 collisions (neglecting N>3-body higher-order
contributions). Since we deal with binary Li-Cr mixtures, three-body recombination
processes can occur both via Li-Li-Cr and Cr-Cr-Li collisions.

Figure 4.2 – Schematic illustration of the allowed two-body inelastic decays in the six
investigated scattering channels. Thick lines denote spin-exchange collisions,
while thin lines refer to spin-spin (dipolar) processes.

1At ultralow temperatures of T ' 10 µK, for B > 0.1 G the inverse processes are forbidden by
energy conservation.
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4.3 Feshbach scans
I now report the results of our Feshbach scans, organized according to the scattering
channels. In particular, we began our studies by investigating Li|2〉+Cr|3〉 and
Li|2〉+Cr|2〉 collisions, where we expected to find the strongest loss features, owing
to the allowed spin-exchange mechanism. Then, we moved to the other channels
featuring two-body losses, in which we expected to find fewer (and generally weaker)
loss features. Lastly, we explored the lowest energy channel, namely Li|1〉+Cr|1〉,
where losses are solely due to three-body collisions. In all these measurements, our
main goal was to locate as many FRs as possible, in order to provide a suitable
experimental input for refined theoretical models. In particular, the latter involve
coupled-channel calculations (CCC) [46] carried out by our theory collaborator,
Prof. A. Simoni (University of Rennes), and an asymptotic bound-state model (ABM),
adapted to the Li-Cr mixture by one of our team members, Dr. A. Trenkwalder. In
the early stages, both models require information about the experimentally observed
positions of several FRs. Subsequently, the roles are reversed, as the models acquire
predictive power over the scattering properties of the investigated atoms. Currently,
both models are under refinement.
Since we expected some among the loss features to possibly be rather narrow, we
initially scanned the magnetic field regions of interest with a resolution of ∼ 150 mG
(“brute force scans”). We then adopted a different approach, which allowed us
not only to considerably speed up the measurements, but also to prevent possible
“misses” of narrow features due to unfortunate sampling. In practice, exploiting
our two sets of magnetic coils, rather than keeping the strength of the magnetic
field fixed, we applied a small linear ramp (∆B ' 0.6 G), lasting for the entire hold
time. This allowed us to decrease the sampling density during extensive scans, while
maintaining a good sensitivity to Cr atom losses. Whenever a resonance candidate
was found, we switched the magnetic ramp off, re-investigating the candidate region
with the “brute-force” method. In the following, I present our experimental results.

Li|1〉+Cr|3〉 channel
In the Li|1〉+Cr|3〉 channel, we selectively scanned a small region around 200 G,
where preliminary results from theoretical models suggested the presence of a FR.
As shown in Fig. 4.3, we indeed found a loss feature at B0 ' 194 G, the parameters
of which are reported in Tab. 4.3.

Figure 4.3 – Heteronuclear Feshbach reso-
nance in the Li|1〉+Cr|3〉 scat-
tering channel. Lines are
merely a guide to the eye.

Table 4.3 – Feshbach resonance in the Li|1〉
+Cr|3〉 channel. The position
B0 is extracted with a model-
independent analysis, by looking
at the zero-crossing of the signal
first derivative. The error takes
into account also the magnetic
field stability. The width ∆Bloss
is the FWHM of the loss feature,
extracted directly from the data.

B0 [G] ∆Bloss [G]
194.2± 0.2 0.4
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Li|2〉+Cr|3〉 channel
In the Li|2〉+Cr|3〉 channel, we scanned the magnetic field region from 0 to 270 G,
where we located 12 FRs. The observed loss features are shown in the panels of
Fig. 4.4, whereas their positions and widths are reported in Tab. 4.4.

Figure 4.4 – Heteronuclear Feshbach resonances in the Li|2〉+Cr|3〉 scattering channel. The
horizontal axis is the magnetic field B expressed in G, while the vertical axis
is the Cr|3〉 remaining fraction fCr|3〉. Lines are merely a guide to the eye.

Table 4.4 – Feshbach resonances in the Li|2〉+Cr|3〉 channel. The positions B0 are extracted
with a model-independent analysis, by looking at the zero-crossing of the signal
first derivative. Errors take into account also the magnetic field stability. The
widths ∆Bloss are the FWHMs of the loss features, extracted directly from the
data.

B0 [G] ∆Bloss [G]
0.62± 0.12 0.35
1.56± 0.14 0.7
12.2± 0.2 2.9
19.8± 0.5 4.4
31.6± 0.1 0.4
51.5± 0.4 ∼4

B0 [G] ∆Bloss [G]
54.8± 0.5 ∼4
63.4± 0.5 7.1

105.8± 0.1 0.2
200.9± 0.1 0.35
222.2± 0.1 0.4
267.0± 0.1 0.4
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Li|2〉+Cr|2〉 channel
In the Li|2〉+Cr|2〉 channel, we thoroughly investigated the magnetic field region
from 0 to 600 G, and a selected interval around 1460 G, disclosing a total of 16 FRs.
The observed loss features are shown in Fig. 4.5, with their positions and widths
reported in Tab. 4.5.

Figure 4.5 – Heteronuclear Feshbach resonances in the Li|2〉+Cr|2〉 scattering channel. The
horizontal axis is the magnetic field B expressed in G, while the vertical axis
is the Cr|2〉 remaining fraction fCr|2〉. Lines are merely a guide to the eye.

Table 4.5 – Feshbach resonances in the Li|2〉+Cr|2〉 channel. The positions B0 are extracted
with a model-independent analysis, by looking at the zero-crossing of the signal
first derivative. Errors take into account also the magnetic field stability. The
widths ∆Bloss are the FWHMs of the loss features, extracted directly from the
data.

B0 [G] ∆Bloss [G]
0.73± 0.11 0.6
1.95± 0.14 1.0
12.9± 0.2 1.3
15.5± 0.2 2.5
21.1± 0.2 2.2
62.8± 0.3 1.0
64.9± 0.3 1.5
81.1± 0.4 2.1

B0 [G] ∆Bloss [G]
167.8± 0.1 0.35
244.2± 0.1 0.3
361.9± 0.1 0.25
438.0± 0.2 0.55
455.9± 0.1 0.3
469.5± 0.1 0.2
535.4± 0.2 0.6

1465.4± 0.2 1.0
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Li|2〉+Cr|1〉 channel
In the Li|2〉+Cr|1〉 channel, we thoroughly investigated the magnetic field region
from 0 to 600 G, and a selected interval around 1460 G, overall identifying 10 FRs,
as shown in Fig. 4.6. The positions and the widths of the observed loss features are
reported in Tab. 4.6.

Figure 4.6 – Heteronuclear Feshbach resonances in the Li|2〉+Cr|1〉 scattering channel. The
horizontal axis is the magnetic field B expressed in G, while the vertical axis
is the Cr|1〉 remaining fraction fCr|1〉. Lines are merely a guide to the eye.

Table 4.6 – Feshbach resonances in the Li|2〉+Cr|1〉 channel. The positions B0 are extracted
with a model-independent analysis, by looking at the zero-crossing of the signal
first derivative. Errors take into account also the magnetic field stability. The
widths ∆Bloss are the FWHMs of the loss features, extracted directly from the
data.

B0 [G] ∆Bloss [G]
1.8± 0.2 0.4
3.1± 0.2 0.3

20.8± 0.2 1.5
24.1± 0.2 1.2
54.3± 0.2 0.8

B0 [G] ∆Bloss [G]
55.6± 0.2 0.7

225.7± 0.2 1.0
457.0± 0.1 0.2
531.1± 0.2 0.6

1461.2± 0.4 0.7
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Li|1〉+Cr|2〉 channel
Also in the Li|1〉+Cr|2〉 channel, as for the Li|2〉+Cr|2〉 and Li|2〉+Cr|1〉 ones, we
investigated the magnetic field region from 0 to 600 G, plus a selected interval around
1420 G, unveiling the presence of 5 FRs. The observed loss features are shown in
Fig. 4.7, with their positions and widths reported in Tab. 4.7.

Figure 4.7 – Heteronuclear Feshbach resonances in the Li|1〉+Cr|2〉 scattering channel. The
horizontal axis is the magnetic field B expressed in G, while the vertical axis
is the Cr|2〉 remaining fraction fCr|2〉. Lines are merely a guide to the eye.

Table 4.7 – Feshbach resonances in the Li|1〉+Cr|2〉 channel. The positions B0 are extracted
with a model-independent analysis, by looking at the zero-crossing of the signal
first derivative. Errors take into account also the magnetic field stability. The
widths ∆Bloss are the FWHMs of the loss features, extracted directly from the
data.

B0 [G] ∆Bloss [G]
65.0± 0.1 0.16

135.65± 0.10 0.10
139.55± 0.10 0.12
483.5± 0.1 0.45

1418.1± 0.4 0.75
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Li|1〉+Cr|1〉 channel
In the Li|1〉+Cr|1〉 channel, which represents the absolute ground state of our system,
we performed Feshbach spectroscopy scans within the magnetic field region from 0
to 1000 G, plus a selected interval around 1415 G. There, we unveiled 5 FRs in total.
The observed loss features are shown in Fig. 4.8, with their positions and widths
reported in Tab. 4.8.

Figure 4.8 – Heteronuclear Feshbach resonances in the Li|1〉+Cr|1〉 scattering channel. The
horizontal axis is the magnetic field B expressed in G, while the vertical axis
is the Cr|1〉 remaining fraction fCr|1〉. Lines are merely a guide to the eye.

Table 4.8 – Feshbach resonances in the Li|1〉+Cr|1〉 channel. The positions B0 are extracted
with a model-independent analysis, by looking at the zero-crossing of the signal
first derivative. Errors take into account also the magnetic field stability. The
widths ∆Bloss are the FWHMs of the loss features, extracted directly from the
data.

B0 [G] ∆Bloss [G]
204.7± 0.1 0.15
477.6± 0.2 0.5
501.0± 0.1 0.25
687.4± 0.1 0.17

1414.0± 0.4 0.7
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4.4 Analysing loss data
In this section we present a phenomenological rate-equation model to describe and
interpret inelastic losses in our Li-Cr mixtures. The model, combined with lineshape
analysis reported in the literature [68, 70], allows us to extract information not
only about the position of the resonances, but also about the differential magnetic
moments and the loss-rate coefficients, from the experimental data presented in
Sec. 4.3.
In order to familiarize with the problem, let us first consider the (simpler) case of
single-species experiments, retrieving a few well-known results. In the presence of
only one- and two-body losses, we can write a local rate equation describing the
time evolution of the atomic density

ṅ(~r, t) = − γ1 n(~r, t) − 2β2 n
2(~r, t) (4.1)

where γ1 and β2 are the overall coefficients characterizing one- and two-body losses,
respectively (typically measured in 1/s and cm3/s, respectively). For a thermal gas
in a cigar-shaped harmonic trap

n(~r, t) = N(t)
(2π)3/2 σ2

r σz
exp

(
− x

2 + y2

2σ2
r

− z2

2σ2
z

)
(4.2)

where N is the total atom number, while σr and σz are the radial and axial (1/√e
half-)sizes of the atomic cloud, respectively. The latter two quantities are given by

σr =
√

kB T

mω2
r

and σz =
√

kB T

mω2
z

, (4.3)

with ωr and ωz being the corresponding trapping frequencies. In loss spectroscopy,
one typically measures the total number of atoms remained in the trap after a
given amount of time (thold). Accordingly, by integrating Eq. (4.1) over the spatial
coordinates, we obtain

Ṅ(t) = − γ1 N(t) − β̃2 N
2(t) (4.4)

with β̃2 = β2/(4π3/2 σ2
r σz). Given the initial condition N(t = 0) = N0, the general

solution to Eq. (4.4) reads

N(t) = − γ1

β̃2

1[
1 −

(
1 + γ1

β̃2 N0

)
eγ1 t

] (4.5)

If one among the two loss coefficients is negligible, Eq. (4.5) reduces to

N(t) = N0 e−γ1 t (β̃2 = 0) (4.6a)

N(t) = N0

1 + β̃2N0t
(γ1 = 0) (4.6b)
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In these two simplified cases, information about the non-vanishing loss coefficient
can be extracted from

γ1 = − 1
thold

ln
(
f0
)

(β̃2 = 0) (4.7a)

β̃2 = 1
N0 thold

( 1
f0
− 1

)
(γ1 = 0) (4.7b)

where f0 = N(thold)/N0 is the remaining fraction of atoms. In the general case,
(at least) two independent measurements are often required to determine γ1 and
β2 . In particular, in single-species experiments, the one-body loss rate γ1 does
not vary with the magnetic field, as it is essentially determined by background-gas
collisions. On the other hand, the two-body loss coefficient β2 is sensitive to the
value of the scattering amplitude, and it is thus strongly enhanced near a Feshbach
resonance. For instance, in a situation in which γ1 = const 6= 0 and β2 = β2(B), with
a negligible off-resonant value βoff

2 ' 0, information about the two loss coefficients
can be obtained in two steps. First, far from any FR, one measures the lifetime
of the sample, which provides knowledge of γ1 . Then, from Eq. (4.5), defining
the rescaled remaining fraction f = N(thold)/(N0 e−γ1 thold) (i.e. relatively to the
background level), information about β̃2 is acquired from

β̃2 = 1
N0thold

[
γ1 thold

1− e− γ1 thold

] ( 1
f
− 1

)
(4.8)

to be compared with Eq. (4.7b), with the factor inside square brackets taking into
account the finite background lifetime of the sample.

4.4.1 Two-body losses in ultracold Li-Cr mixtures
We now turn to the analysis of two-body losses in our heteronuclear Li-Cr mixtures.
On the lines of the treatment in Ref. [69], we consider the two coupled equations

ṅCr(~r, t) = − γbg nCr(~r, t) − KLC
2 nLi(~r, t)nCr(~r, t) (4.9a)

ṅLi(~r, t) = − γbg nLi(~r, t) − KLC
2 nLi(~r, t)nCr(~r, t) (4.9b)

where γbg and KLC
2 are the loss rates due to (one-body) background-gas collisions,

and inelastic two-body Li-Cr collisions, respectively. γbg is assumed to be the same
for the two species, which is a fairly good approximation in our experiments. Further,
since NLi ∼ 10NCr (and n0,Li ∼ 50n0,Cr, see Tab. 4.1), we neglect the effect of
Li-Cr lossy collisions on the lithium atom number, i.e. the second term on the
r.h.s. of Eq. (4.9b). Under these assumptions, the solution of Eq. (4.9b) is simply
nLi(~r, t) = n(0)

Li (~r) · e− γbg t, with n(0)
Li (~r) being the initial density profile of the lithium

cloud. If we consider gaussian density distributions as in Eq. (4.2), integrating
Eq. (4.9a) over the spatial coordinates yields

ṄCr(t) = − γbg NCr(t) −
(
qLC n0,LiK

LC
2
)

e− γbg tNCr(t) (4.10a)

where n0,Li is the initial peak density of Li, and

qLC =
(

1 +
σ2

r,Cr
σ2

r,Li

)−1

·
(

1 +
σ2

z,Cr
σ2

z,Li

)−1/2

(4.10b)
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is a density-density overlap factor. By defining the rescaled atom number NCr(t) =
ÑCr(t) · e− γbg t, Eq. (4.10a) can be conveniently recast as

˙̃
NCr(t) = −

(
qLC n0,LiK

LC
2
)

e− γbg t ÑCr(t) (4.11a)

which can be readily integrated, yielding

ÑCr(t) = N0,Cr · exp
[
− qLC n0,LiK

LC
2

γbg

(
1− e− γbg t

)]
(4.11b)

hence

NCr(t) = N0,Cr · exp
[
− qLC n0,LiK

LC
2

γbg

(
1− e− γbg t

)]
· e− γbg t (4.11c)

In our experiments, we measure the remaining fraction of Cr atoms (with respect to
the background level) after a given hold time thold, namely

fCr = NCr(thold)
N0,Cr · e− γbg thold

(4.12)

Hence, if γbg is known, information about the KLC
2 coefficient can be extracted from

our loss measurements through

KLC
2 = − 1

n0,Li thold

[
γbg thold

qLC
(
1− e− γbg thold

) ] · ln (fCr
)

(4.13)

where the factor inside square brackets takes into account the finite (background)
lifetime of the sample and the density-density overlap. Given our typical experimental
conditions (thold = 2−4 s, γbg ' 0.1 s−1, and 1/

√
e half-widths as reported in

Tab. 4.1), this factor is roughly on the order of 10.
For a fixed hold time, the behaviour of KLC

2 , as a function of the magnetic field near
a Feshbach resonance, can be described by analogy with photoassociation lineshapes
[68]. Assuming that (N > 2)-body losses are negligible, and that one deals with
narrow resonances with energy width γE → 0, following the discussion in Ref. [68],
the lineshape of the (thermally-averaged) two-body loss coefficient K2(B) reads

K2(B) ' A2 ·
[ e(
`+ 1/2

) δµ (B − B0
)

kBT

]`+1/2

· exp
(
− δµ (B− B0)

kBT

)
(4.14a)

where A2 is a constant (with appropriate units, e.g. cm3/s), B0 is the resonance
position, ` is the orbital angular momentum of the entrance channel, and δµ is the
differential magnetic moment between the two colliding atoms and the molecular
state associated with the FR. This function is peaked at a field

Bpk = B0 + kBT

δµ

(
` + 1/2

)
(4.14b)

where it reaches its maximum value K2(Bpk) = A2. Note that δµ can be either
positive or negative. Further, it is assumed that K2(B) = 0 when δµ · (B− B0) < 0,
i.e. on the “BEC” side of the resonance.
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Table 4.9 – Fit results using photoassociation lineshapes, and comparison with CCC and
ABM predictions. Regarding the fit results, δµ(i) is the differential magnetic
moment obtained for ` = i (blank spaces denote a poor fit result), while
B0 is the average over different ` values. Numbers in parentheses are the
uncertainties of the last digit(s).

Fit CCC ABM

Channel B0 [G] δµ(0) [µB] δµ(1) [µB] δµ(2) [µB] Kmax
2 [cm3/s] B0 [G] ` m` B0 [G] ` δµ [µB]

Li|2〉+Cr|3〉 0.9(1) −1.8(4) −2.1(4) 1.0(5)× 10−12

2.0(1) −0.7(2) −1.0(2) 1.0(5)× 10−12

13.6(4) −0.20(5) −0.25(6) 1.7(5)× 10−12

22.3(5) −0.12(6) −0.16(7) 1.8(5)× 10−12

31.4(1) 0.8(2) 1.3(2) 1.5(2) 7(1)× 10−13

48.7(4) 0.09(2) 0.13(3) 1.4(4)× 10−12

53.4(6) 0.18(4) 0.21(4) 1.0(5)× 10−12

59.9(7) 0.08(1) 0.10(1) 1.3(4)× 10−12

105.7(1) 2.1(2) 3.3(3) 4.3(4) 2.5(5)× 10−12 94 3.2
200.7(1) 1.6(4) 1.9(3) 2.4(3) 3(1)× 10−12 189 3.1
222.0(2) 1.3(5) 1.4(3) 1.8(4) 1.4(6)× 10−12 222.8 0 0 227 1 1.5
267.9(3) 1.8(4) 2.7(5) 3.1(6) 4(2)× 10−12 288 2 3.5

Li|2〉+Cr|2〉 1.0(1) −1.0(3) −1.2(3) 4(2)× 10−13

2.4(1) −0.5(1) −0.7(1) 1.0(5)× 10−12

13.1(5) −0.7(3) −0.6(2) 2(1)× 10−12 12.8 1 0
17.0(2) −0.2(1) −0.3(1) 2(1)× 10−12 13.9 1 1
22.2(5) −0.3(1) −0.4(1) 1.3(6)× 10−12 22.9 1 −1
62.3(1) 0.4(1) 0.6(1) 4(2)× 10−13 62.2 1 −1
63.6(4) 0.3(1) 0.3(1) 4(2)× 10−13 64.9 1 1
80.3(4) 0.3(1) 0.4(1) 1.5(5)× 10−12 83.2 1 0

167.6(2) 2.1(5) 2.7(4) 2.9(4) > 3× 10−12 168.6 0 0 156 0 3.0
244.1(2) 2.3(4) 3.0(4) 3.9(3) > 3× 10−12 252 2 3.6
361.9(1) 2.2(4) 3.8(4) 5.1(5) 1.7(6)× 10−12 363.2 0 0 343 0 1.9
437.8(3) 1.1(2) 1.5(3) 1.7(3) 8(2)× 10−13 419 0 1.9
455.8(2) 1.4(3) 2.0(4) 2.3(6) 5(3)× 10−13

469.4(1) 1.5(2) 2.4(4) 3.3(6) 4(1)× 10−13

535.2(3) 0.9(2) 1.1(2) 1.4(2) 1.1(4)× 10−12 535.7 0→2 524 2 1.7

Li|2〉+Cr|1〉 2.1(2) −0.4(2) −0.5(2) 6(3)× 10−14

3.3(3) −0.5(2) −0.7(3) 1.0(5)× 10−13

21.3(2) −0.4(1) −0.5(1) 1.2(4)× 10−12 20.3 1 1
24.5(2) −0.4(2) −0.5(3) 5(3)× 10−13 25.1 1 −1
54.1(2) 1.1(3) 1.9(5) 3(1)× 10−13 54.1 1 −1
55.4(2) 0.9(3) 1.2(4) 5(2)× 10−13 56.0 1 1

225.4(3) 0.8(2) 1.1(3) 1.2(3) 2(1)× 10−12

456.9(2) 1.4(3) 2.3(4) 2.7(5) 6(2)× 10−13 457.3 0→2
531.1(3) 0.8(2) 0.7(3) 1.1(3) 6(4)× 10−12 520 2 1.8

Li|1〉+Cr|2〉 64.9(1) 1.7(3) 2.9(4) 3.6(5) 6(1)× 10−13 66.0 0 0 51 0 2.2
135.6(1) 3(1) 6(2) 8(2) 3.0(7)× 10−13 126 0 2.7
139.5(2) 3.1(6) 5.0(7) 7(2) 7(1)× 10−13

483.3(3) 0.8(2) 1.1(3) 1.5(3) 1.4(9)× 10−11 409 2 2.0

Figure 4.9 – Examples of fits with photoassociation lineshapes, for different ` values:
(a) Li|2〉+Cr|2〉 channel, doublet feature around 65 G, and (b) Li|2〉+Cr|3〉
channel, triplet structure around 50÷ 70 G.

(a) (b)
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In the scattering channels where two-body losses are allowed, i.e. in all but Li|1〉+Cr|1〉,
and, in particular, in the magnetic field regions where one expects strong spin-
exchange and spin-spin induced trap losses (B . 1000 G), we fit the observed loss
features with the model described above. In practice, taking T = 10 µK and trying
different ` values (` = 0, 1, 2 – kept fixed during the procedure), we fit − ln

(
fCr(B)

)
obtained from our data with Eq. (4.14a). The free parameters are B0, δµ, and
Afit, a dimensionless constant that plays the role of A2. Then, from Eq. (4.13),
taking max [− ln (fCr)] = Afit, we estimate the KLC

2 coefficient at the loss peak. The
complete results of this analysis are reported in Tab. 4.9, together with theoretical
predictions based either on CCC or on the ABM, whereas two fit examples are shown
in Fig. 4.9. Concerning the positions B0, the agreement between the experimental
data and the CCC results (for the FRs included in the calculations so far, i.e. those
listed in the table) is quite satisfactory. At small fields, some discrepancies may
arise from higher-order terms in the interaction hamiltonian, such as second order
spin-orbit and spin-rotation couplings, not included in the computations yet [73].
Besides, in general, slight mismatches could also be due to experimental errors in the
magnetic field calibration and/or in the determination of the temperature. Further,
although at the present stage of development the experiment-theory comparison is
uniquely focused on the resonances positions B0, the best-fitted δµ values, possibly
extracted from (future) targeted measurements, could provide additional useful
information for the theoretical models.

4.4.2 Three-body losses in ultracold Li-Cr mixtures
On the basis of the rate-equation model presented in Sec. 4.4.1, we carry out a
similar analysis also for three-body processes. In particular, we are mainly interested
in the case of Li|1〉-Cr|1〉 mixtures, where two-body losses are entirely absent. Hence,
we can write the two coupled equations

ṅCr = − γbg nCr − KLLC
3 n2

Li nCr − 2KCCL
3 nLi n

2
Cr (4.15a)

ṅLi = − γbg nLi − 2KLLC
3 n2

Li nCr − KCCL
3 nLi n

2
Cr (4.15b)

where we omitted the radial and temporal dependence of the density profiles to
simplify the notation. In Eqs. (4.15), KLLC

3 and KCCL
3 are the three-body inelastic

loss rates for Li-Li-Cr and Cr-Cr-Li processes, respectively. Similarly to the treatment
for two-body losses, under the condition NLi � NCr, we neglect the last two terms
on the r.h.s. of Eq. (4.15b), retrieving the simple exponential decay nLi(~r, t) =
n(0)

Li (~r) e− γbg t. Inserting this solution into Eq. (4.15a) and integrating over the spatial
coordinates, assuming again gaussian density profiles, we find

ṄCr(t) = − γbg NCr(t) −
(
qLLC n

2
0,LiK

LLC
3

)
e− 2 γbg tNCr(t)

− 2
(
qCCL n0,LiK

CCL
3

)
e− γbg tN2

Cr(t)
(4.16)

where

qLLC =
(

1 +
2σ2

r,Cr
σ2

r,Li

)−1

·
(

1 +
2σ2

z,Cr
σ2

z,Li

)−1/2

(4.17a)

qCCL = 1
8π3/2 σ2

r,Cr σz,Cr

(
1 +

σ2
r,Cr

2σ2
r,Li

)−1

·
(

1 +
σ2

z,Cr
2σ2

z,Li

)−1/2

(4.17b)
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are the two density-(squared-)density overlap factors. Eq. (4.16) is simplified if
expressed in terms of the rescaled atom number ÑCr(t):

˙̃
NCr(t) = − e− 2 γbg t

[ (
qLLC n

2
0,LiK

LLC
3

)
ÑCr(t) + 2

(
qCCL n0,LiK

CCL
3

)
Ñ2

Cr(t)
]

(4.18)

Further, if Li-Li-Cr processes dominate, i.e. if we can neglect the other contribution,
we have, in analogy to Eq. (4.11c)

NCr(t) = N0,Cr · exp
[
−
qLLC n

2
0,LiK

LLC
3

2 γbg

(
1− e− 2 γbg t

)]
· e− γbg t (4.19a)

from which

KLLC
3 = − 1

n2
0,Li thold

[
2 γbg thold

qLLC
(
1− e− 2 γbg thold

) ] · ln (fCr
)

(4.19b)

with fCr defined as in Eq. (4.12). On the other hand, in the presence of Cr-Cr-Li-type
processes only, by integrating Eq. (4.18) one finds

NCr(t) = N0,Cr e− γbg t

1 + N0,Cr qCCL n0,Li γ
−1
bg K

CCL
3

(
1− e− 2 γbg t

) (4.20a)

with

KCCL
3 = 1

2N0,Cr n0,Li thold

[
2 γbg thold

qCCL
(
1− e− 2 γbg thold

) ] · ( 1
fCr
− 1

)
(4.20b)

Finally, partially resembling Eq. (4.5), the general solution of Eq. (4.18), expressed
directly in terms of NCr(t), reads

NCr(t) = − α̃3
N0,Cr e− γbg t[

1 − (1 + α̃3) e x̃3(t) ] (4.21a)

where

α̃3 = qLLC n0,LiK
LLC
3

2 qCCLN0,CrKCCL
3

and x̃3(t) =
qLLC n

2
0,LiK

LLC
3

2 γbg

(
1− e− 2 γbg t

)
(4.21b)

Thus, in terms of the rescaled remaining fraction( 1
fCr
− 1

)
=
(
e x̃h

3 − 1
)
·
(
1 + α̃−1

3
)

(4.22)

with x̃h
3 = x̃3(thold). In this form, Eq. (4.22) straightforwardly reduces to Eqs. (4.19b)

and (4.20b) when KCCL
3 = 0 and KLLC

3 = 0, respectively.
Our solutions for NCr(t), namely Eqs. (4.19a), (4.20a), and (4.21a), are more easily
understood in the limit of γbg → 0. Indeed, in this case, they respectively simplify to

NCr(t) = N0,Cr · e− γeff ·t (Li-Li-Cr) (4.23a)

NCr(t) = N0,Cr
1 + βeff N0,Cr · t

(Cr-Cr-Li) (4.23b)

NCr(t) = − γeff
βeff

1
1 −

(
1 + γeff

βeff N0,Cr
) e γeff t

(both) (4.23c)



78 4. Feshbach loss spectroscopy

with γeff = qLLC n
2
0,LiK

LLC
3 and βeff = 2 qCCL n0,LiK

CCL
3 playing the role of effective

one- and two-body loss coefficients, respectively (see again Eqs. (4.5) and (4.6)).
Hence, the essential point is that, relatively to the Cr atom number, Li-Li-Cr
recombination processes resemble one-particle losses, whereas Cr-Cr-Li-type losses
feature a two-body-like behaviour. Given our experimental conditions (i.e. NLi �
NCr), we expect the former processes to be more likely.
The experimental loss spectra dominated by three-body processes can be further
analysed by following the theoretical model developed in Ref. [70], that describes
three-body recombination in a thermal gas near a (infinitely) narrow Feshbach
resonance. The latter is simply treated as a bound molecular state, at energy
Emol(B) = δµ (B − B0) that, for Emol(B) > 0 (i.e. B > B0 if δµ > 0), is weakly
coupled to a continuum of scattering states, thermally-populated at positive energies.
In this framework, three-body recombination events are regarded as being originated
from a two-step, pairwise process [70]: Two colliding atoms at a given energy
E > 0 can first turn into a (virtual) closed-channel molecule, located at the same
(positive) energy. Such a virtual molecule can then decay towards deeply-bound
molecular levels, by further colliding with a third particle, releasing an energy greatly
exceeding the trap depth of the confining potential, thereby leading to an overall
atom loss. Based on such a physical picture, that follows a quantum Langevin
model for reactions [71, 72] and exploits the properties of van der Waals atom-dimer
interaction potential, one expects a magnetic-field dependence of the three-body
recombination rate coefficient that reads2

K3(B) = (2`+ 1)Kpole
3 · exp

(
− δµ (B− B0)

kBT

)
(4.24)

Here, ` is the partial wave characterizing the FR, δµ is the differential magnetic
moment of the Feshbach dimer, and T is the temperature of the atomic gas. Further,
Kpole

3 (T ) is a (temperature-dependent) maximum recombination rate, that is reached
at the resonance pole (B = B0), and that depends upon the rate scale for atom-dimer
interaction, evaluated in Ref. [70] within a van der Waals potential.
The above result is similar, though not identical, to the trend of Eq. (4.14a) for
two-body inelastic processes: First, within this framework, three-body losses take
place only on the “BCS” side of the resonance, where closed-channel molecules
lay above the atomic threshold. Second, the magnetic-field dependence of K3(B)
is characterized by an exponential tail that solely depends upon δµ and the gas
temperature. However, differently from Eq. (4.14a), the partial-wave order of the
Feshbach resonance enters the above three-body rate coefficient only via a (2`+ 1)
multiplicative constant, thereby not affecting the functional form of K3.
Therefore, as for the case of two-body losses, the analysis of three-body loss spectra
may yield information about the differential magnetic moment of the molecular
state that causes the resonance, which can serve as a further, relevant experimental
input for theoretical models. In practice, under the assumption of dealing with
FRs with narrow character, and in the experimentally relevant regime NLi � NCr,
i.e. considering Li-Li-Cr processes only, by inserting Eq. (4.24) into Eq. (4.19a) (in
2We refer the interested reader to Ref. [70] for details on the derivation of the results.
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Figure 4.10 – Examples of fits with Ref. [70] model: (a) Li|1〉+Cr|1〉 channel, below 1000 G,
and (b) family of resonances around 1420 ÷ 1460 G. Results are plotted
against B− B1/e to ease the comparison.

(a) (b)

place of KLLC
3 ), we obtain

fCr(B) = exp
[
−
qLLC n

2
0,Li

(
1− e− 2 γbg thold

)
2 γbg

· (2`+ 1)Kpole
3 e−

δµ (B−B0)
kBT

]
(4.25)

having defined the (rescaled) remaining fraction fCr as in Eq. (4.12). Therefore, at
B = B0, the quantity Kpole

3, ` = (2`+ 1)Kpole
3 is given by Eq. (4.19b). Further, as a

function of the magnetic field

ln
[
− ln

[
fCr(B)

]]
= ln

[
− ln

[
fCr(B0)

]]
− δµ

kBT

(
B− B0

)
= − δµ

kBT
(B− B1/e)

(4.26)

with fCr(B1/e) = 1/e. Hence, to extract the differential magnetic moments of the
Feshbach dimers, we fit ln

[
− ln (fCr)

]
obtained from our data with this linear model,

on the BCS tail of each loss feature. The results are shown graphically in Fig. 4.10.
Knowing the temperature, the fit returns the values of δµ and B1/e. Note that, in
general, i.e. even for a linear scale fit with Eq. (4.25), it is not possible to obtain

Table 4.10 – Fit results using Ref. [70] model, and comparison with CCC and ABM predic-
tions. In the second column, B0 is the value extracted with the first derivative
method, see Sec. 4.3, here to be intended merely as a label. Numbers in
parentheses are the uncertainties of the last digit(s).

Fit Eq. (4.19b) CCC ABM

Channel B0 [G] B1/e [G] δµ [µB] Kpole
3, ` [cm6/s] B0 [G] ` B0 [G] ` δµ [µB]

Li|1〉+Cr|1〉 204.7 204.7(1) 0.94(15) 5(2)× 10−25 204.8 0→ 2 200 2 3.7
477.6 477.9(2) 0.89(13) 6(2)× 10−25 473 2 1.8
501.0 500.9(2) 0.55(16) 2.0(6)× 10−25 506 1 3.9
687.4 687.4(1) 1.3(2) 2.0(6)× 10−25 686.9 0 667 0 4.0

Li|1〉+Cr|1〉 1414.0 1413.5(2) 0.18(6) 6(2)× 10−25 1413.7 0 1370 0 2.0
Li|2〉+Cr|1〉 1461.2 1461.4(2) 0.67(17) 6(1)× 10−25 1417 0 2.0
Li|1〉+Cr|2〉 1418.1 1418.5(3) 0.44(14) > 7(3)× 10−25 1440 0 2.0
Li|2〉+Cr|2〉 1465.4 1465.6(2) 0.65(15) 6(2)× 10−25 1484 0 2.0
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separate information about B0 and Kpole
3, ` from this model,3 as the fit algorithm

necessarily returns only a combination of the two parameters. Accordingly, with the
help of Eq. (4.19b), for each resonance we estimated a lower bound for Kpole

3, ` using
the minimum measured value for fCr. This analysis was carried out for all the FRs
in the Li|1〉+Cr|1〉 scattering channel, as well as for the entire family of resonances
around 1400 G, where we expect a substantial contribution from three-body losses.
The obtained numerical results are reported in Tab. 4.10, together with predictions
from the CCC and the ABM. Contrarily to the case of two-body losses (see again
Tab. 4.9), we observe here a strong mismatch between the fitted and the predicted
δµ values. While the reasons behind this discrepancy are currently not entirely
clear, and thus they will be the subject of upcoming investigations in our lab, such a
striking mismatch strongly suggests the fact that (at least) one of the assumptions of
Ref. [70] model, namely to deal with ultra-narrow resonances, does not apply to our
system. In turn, the fact that the observed FRs are possibly “broad” undoubtedly
constitutes a promising starting point for future few- and many-body studies with
degenerate Li-Cr mixtures.

4.5 Final remarks
In summary, in this chapter of my thesis I reported on the first observation of about
50 heteronuclear Feshbach resonances in novel ultracold Li-Cr mixtures, uniquely
available in our lab worldwide. The Li-Cr Feshbach spectrum appears rather rich
when compared to alkali-alkali combinations [50, 51, 52, 62], but it is apparently
non-chaotic, as starkly opposed to the Feshbach spectra of lanthanide systems, such
as Dy-Dy [74], Er-Er [75], Er-Dy [76], and Er-Yb [77], as well as of alkali-lanthanide
mixtures [78]. This experimental effort, which constitutes one among the main
achievements of my thesis work, represents a fundamental input for a quantum
collisional model that is currently being developed by our theory collaborator,
Prof. A. Simoni, based on coupled-channel calculations. Although such a theoretical
framework still requires some fine adjustment in order to become quantitatively
accurate over the whole Feshbach spectrum, based on an optimized fit of the observed
s-wave FRs only, it currently predicts the values a5/2 ∼ 14 a0 and a7/2 ∼ 42 a0 for
the exaplet and octuplet background scattering lengths, respectively. Based on the
present assignment, most of the observed low-field loss features appear connected
to p-wave FRs, whereas those around 1400 G are interpreted as s-wave resonances.
Notably, very recent characterizations of the elastic scattering near one of these
high-field resonances, not discussed in the present thesis work, confirm its s-wave
nature, pointing to a magnetic field width ∆Bexp ∼ 1 ÷ 2 G, thus to a sizeable –
though not anomalously large – effective range parameter R∗ ∼ 1000÷ 3000 a0.
Further and more accurate investigations are required in the next future to fully
characterize these high-field features, but our work already shapes the Li-Cr mixture
as an optimally-suited system for the production of ground state bi-polar molecules,
as well as for the investigation of the variety of few- and many-body quantum
phenomena in mass-imbalanced fermion systems.

3Unless some further assumptions are made, e.g. that losses are exactly zeroed on the BEC side
of the resonance. This can be included in the model by introducing a Heaviside step function
ϑH(B− B0) as a multiplier of Eq. (4.24).
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Chapter 5

Design of a bichromatic
high-resolution objective

This chapter describes the design and simulation of a bichromatic high-
resolution imaging system for our lithium-chromium mixture, which I
carried out as a side project during my initial period in the lab. The
objective relies on only six low-cost catalogue lenses, and its achromatic
(i.e. blue-red) correction can be adapted to different pairs of wavelengths,
making the design potentially appealing also for other ultracold mixtures.
First, I briefly contextualize the problem of designing high-resolution
objectives for ultracold atom experiments, explaining why the majority
of state-of-the-art systems reported in the literature are not suitable for
our specific case, nor for many other experiments involving ultracold
mixtures of different atomic species. In this introduction, I also list the
challenging target specifications that our imaging system should reach,
as well as the various constraints imposed by our experimental setup.
The mathematical frameworks behind geometric and wave optics, the
theory of aberrations, and image formation are extensively reported in
many textbooks, see e.g. Refs. [79, 80, 81, 82, 84, 86, 87]. A detailed
review of the subject is well beyond the scope of this chapter. However, to
evaluate and characterize the performances of an imaging system, several
specific figures of merit play a fundamental role. The most relevant ones
are summarized in Sec. 5.1.
In Sec. 5.2, I briefly describe the basic concepts of longitudinal chromatic
aberrations and color correction. A simplistic thin-lens model is used
to derive the well-known achromatic condition for the realization of
cemented achromats, while the case of air-spaced doublets is treated
more carefully.
In Sec. 5.3, I outline the general methods and procedures that I followed
during the entire design process. I also report the main settings employed
for the optical simulations with the ray-tracing software OSLO.
Lastly, in Sec. 5.4, I present the most promising objective designs that
were found with the simulations, reporting in detail their specifications
and figures of merit.

Several future investigations with degenerate Li-Cr mixtures will benefit from an
imaging system with a high spatial resolution. Unfortunately, commercially available
systems often do not meet the requirements of modern ultracold atom experiments,
and custom designs commissioned to specialized companies are generally quite
expensive. Nonetheless, the task of designing a so-called quantum gas microscope is,
to some extent, easier than designing usual microscopes, as the number of different
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wavelengths employed to probe the atomic sample is rather low, in most cases
only one. Indeed, several examples of “home-made” monochromatic high-resolution
objectives for quantum gases exist in the literature [92, 93, 94, 95, 96, 97]. Many of
these systems rely on a small number of catalogue lenses, making their realization
considerably cheaper than commercial, custom-made solutions. Furthermore, most
of them can be easily adapted to work with a wavelength different from the design
one, by merely adjusting the air spacings between the single elements. However,
none of them can provide an effective color-correction, i.e. simultaneous operation
with more than one wavelength (unless they are relatively close in the spectrum
[94]), as the various lenses are all realized with the same optical glass.
Given this framework, the question arose in the lab whether a similar “home-made”
optical system could be realized for our mixture. The answer is not straightforward,
as the two imaging wavelengths (λLi = 671 nm and λCr = 425.5 nm, respectively)
lie quite far apart in the visible spectrum. Moreover, several constraints and
requirements have to be satisfied, thus making the design process rather challenging:

- The final spatial resolution should be on the order of, or possibly below, 1 µm.
As discussed in the following, this requires operation at a sizeable numerical
aperture (NA) of 0.3÷ 0.4.

- The entire size of a typical in-situ ultracold/degenerate atomic cloud should
be at focus. Accordingly, the diffraction-limited field of view (better defined
later) should be on the order of ± (150÷ 200) µm.

- The system must operate at a relatively large working distance (WD) of
roughly 30÷ 35 mm, due to geometrical constraints of our vacuum cell. This,
combined with the requirement on NA, implies necessarily the use of large
(i.e. 2”-diameter) optics.

- To achieve the desired performances, the objective must be corrected for image
aberrations. The main contributions arise from the large numerical aperture,
and from the 8 mm-thick silica window of the vacuum cell, through which the
imaging light passes before entering the objective.

- Further, the system must also be corrected for the axial chromatic focal shift (i.e.
longitudinal chromatic aberration, or longitudinal color), with respect to Li and
Cr imaging wavelengths (λLi = 671 nm and λCr = 425.5 nm, respectively), in
order to provide a simultaneous in-situ imaging of the two ultracold/degenerate
clouds. As discussed above, this represents a stark difference with respect to
the most common “home-made” quantum gas microscopes.

- Lastly, yet importantly, the objective will be installed along the vertical
direction of the experimental setup: hence, the twoMOT-z beams will inevitably
pass through the system. Accordingly, one must find a way to split MOT and
imaging lights, retro-reflecting the former towards the science chamber without
affecting too much the beam quality.

On the other hand, one simplification comes from the availability of two different
cameras to image Li and Cr atoms, respectively, thus requiring color-correction only
in the object plane (provided the two imaging lights are split at some point in the
optical path).
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During the initial discussions, a first possible solution was proposed. The scheme,
sketched in Fig. 5.1, relied on a simple combination of achromatic doublets, dichroic
mirrors, and beam splitters. In short, light is collected by a f = 75 mm achromat,
and then split between red (Li) and blue (Cr) components by means of a dichroic
mirror. In each path, a PBS further separates MOT and imaging lights. The
former ones, after passing through a second f = 75 mm achromatic doublet, are
retro-reflected towards the science chamber (the two achromats essentially act as a
1:1 telescope, thereby ideally not changing the MOT beams divergence and diameter).
The latter are instead focused on the two cameras with two distinct f = 1500 mm
achromats, providing a final magnification of 20.
It was soon realized that such a simple optical scheme would have not satisfied
the resolution requirements, as the achromats are not designed to correct for the
window aberrations. Furthermore, the chromatic focal shift was estimated to be on
the order of 150 µm, hence much larger than the typical in-situ size of a degenerate
atomic cloud.1 Consequently, in the first period of my thesis, I tackled the problem
of trying to design a suitable high-resolution objective for our mixture. The entire
design process and performance evaluation were carried out using the ray-tracing
software OSLO, developed by Lambda Research Corporation, a licence of which was
provided to me by Dr. Giacomo Roati (Lithium lab, LENS). This chapter describes
the optimization procedures and the final results of the simulations. Unfortunately,
due to time constraints and technical problems with the objective case, an actual
test of the system was not carried out in this work, being however on the schedule
of future pursuits in our group.

Figure 5.1 – Sketch of the first proposal for the new imaging system (not to scale).

f=75 mm

dichr. mirror

λ/4

f=1500 mm

1These results were found performing simulations with OSLO, see below.
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5.1 Introduction
The theories behind geometric optics, aberrations, and diffraction, which lie at the
heart of microscope designing, are well-established and extensively reported in many
textbooks, see e.g. Refs. [79, 80, 81, 82, 83, 84, 85, 86, 87]. However, concerning
high-resolution imaging systems, several specific figures of merit play a fundamental
role in the entire design process, as well as in the characterization of the final
performance. In this section, I provide a basic introduction for the most relevant
features that must be taken into account, and optimized, when attempting to design
such a high-resolution optical setup.

Numerical aperture and magnification
The numerical aperture (NA) of an optical system, working at finite conjugate ratio,2
is defined as the product between the sine of the maximum aperture angle and the
refractive index of the medium surrounding the system, i.e. NA = n · sin(θmax), see
Fig. 5.2. Generally speaking, numerical apertures in the object and image planes
can be different, and their ratio directly yields the system magnification M [81, 82]

M = NAobj
NAimg

(5.1)

As we shall discuss in the following, NAobj is a key quantity to determine the resolu-
tion limit of an optical system (see Eq. (5.2)): the larger NA, the smaller are the
structures than can be resolved with an appropriate objective design. Furthermore,
the numerical aperture determines the system irradiance: a large NA improves the
signal-to-noise ratio (S/N), allowing the detection of objects with weak emissions [82].
However, as we shall discuss in the following, increasing the numerical aperture also
has a major drawback, as it typically introduces a sizeable amount of aberrations,
which, if not corrected for, can significantly lower the image quality.

Figure 5.2 – Numerical aperture of an optical system. Figure adapted from Ref. [88].

object side image side

n n'

θ θ'

NAimg = n' sin(θ')NAobj = n sin(θ)

2The definition of numerical aperture fails for infinite conjugates, i.e. when light is collimated on
(at least) one side of the optical system. In that case, the relevant quantity is instead the f-number,
defined as F# = f/φ, where f is the effective focal length, and φ is the aperture diameter
illuminated by light. The f-number can also be defined for finite conjugates, being related to NA
as [82]: F# = 0.5/NA.
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Resolution
In the simplest form of geometric optics, i.e. within the paraxial approximation, the
image can be a perfect replica of the object: namely, a point source can produce a
point image. Nonetheless, due to the wave-like nature of light, diffraction effects
will always be present in the image plane, degrading the image quality, and thus
limiting the system resolution. It is generally accepted that a reasonable estimate of
the maximum achievable resolution for a monochromatic optical system is given by
the Rayleigh’s criterion [79, 82, 88]:

R = 0.61 λ

NA
= (∆z)Ar (5.2)

where λ is the wavelength of the imaging light. Strictly speaking, the resolution
given by Eq. (5.2) can be thought as the system’s ability to distinguish between two
different objects that are close together, the minimum resolvable distance being R.3
Further, the value of R is also a measure of the Airy disk radius (∆z)Ar.4
According to Eq. (5.2), given an imaging wavelength λ, to achieve a good spatial
resolution one should work with a large NA. However, Rayleigh’s criterion solely
accounts for diffraction effects, thus providing the effective resolution only for ideal
diffraction-limited systems,5 and representing the resolution limit for any real system.
In fact, in practical applications, increasing the numerical aperture also increases the
amount of aberrations, which are essentially deviations from paraxial optics. In the
presence of aberrations, the image quality is degraded, and the effective resolution is
lowered.

Aberrations
The formation of perfect images is practically impossible. Aside from diffraction
effects, any real optical system shows some degree of aberrations. Hence, the main
goal of optical design is to reduce such aberrations to a level which is satisfactory
for the desired performances.
Generally speaking, aberrations are essentially deviations from paraxial optics, which
accurately describes only rays with infinitesimal heights and angles, relatively to
the optical axis. In particular, monochromatic aberrations originate from the non-
linearity of Snell’s law, whereas chromatic aberrations are a direct consequence of
dispersion, i.e. the wavelength dependence of the refractive index, n = n(λ). A
detailed theory of aberrations can be found in nearly every optics textbook, see e.g.
Refs. [79, 80, 81, 82, 84, 87].
Without providing all the mathematical framework here, the essential point is that
aberrations can be expressed as a Taylor sum over paraxial coordinates, typically
aperture (i.e. ray height) and field (i.e. ray angle). The symmetry properties of the
system restrict the possible combinations of polynomials in the expansion [82, 87],
3Formally, a spatial resolution should be defined as an inverse length [90], i.e. Eq. (5.2) actually
expresses the inverse resolution. Nonetheless, it is a common practice to interchange the two terms:
accordingly, a high resolution denotes a low R, and vice versa.

4The Airy disk is the area in the image plane contained within the principal (m = 0) order of
the diffraction pattern produced by a point source, when the latter is imaged through circular
apertures, see e.g. Refs. [79, 81].

5An optical system is said to be diffraction-limited if diffraction dominates over wave aberrations,
thus resulting the ultimate factor limiting the resolution.
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providing also a natural way to classify aberrations. For instance, the so-called
primary (or Seidel) aberrations can be identified as spherical aberration, coma,
astigmatism, field curvature, and distortion, see the references indicated above for
more details.
In general, image aberrations strongly increase with the numerical aperture. For
instance, in the case of a thin spherical lens, it can be shown that spherical aberrations
scale as the cube of NA [81, 88]. For composite systems, the total amount of
aberrations can be expressed as a sum over the contributions from every single
surface. Each of these contributions possesses a sign and, therefore, aberrations can
be substantially reduced with a proper system design [82].

Spot diagram
A spot diagram is a geometrical structure that provides an intuitive graphical
representation of the image quality. It is formed by the intersection points between
the image plane and a given set of rays, which are traced starting from a single, fixed
point on the object. Spot diagrams are entirely computed by means of geometric
optics, hence not considering the wave-like nature of light. Nonetheless, they are
rather sensitive to all transverse aberrations, providing a fairly good estimate for
the broadening of a point image when diffraction effects can be neglected [84]. In
fact, as a rule of the thumb, if (∆z)abs is the spot size generated by aberrations, the
effective image spot size (including diffraction effects) can be estimated by [82]

(∆z)tot '
√

4(∆z)2
Ar + (∆z)2

abs (5.3)

Thus, for a diffraction-limited system, (∆z)tot is essentially given by the Airy
diameter, with the geometric spot diagram entirely lying well inside the Airy disk.
The opposite occurs if the system is far from being diffraction-limited, i.e. if wave
aberrations dominate over diffraction. Accordingly, spot diagrams are meaningful
objects only when aberrations play an important role in determining the image
quality. For diffraction-limited systems, more significant figures of merit are provided
by the point spread function, the modulation transfer function, and the wavefront
error (see below).
It is generally accepted that, for a comprehensive description of the performance of
an optical system, the spot diagram should be presented as a function of the image
height (or field angle) and of the defocus, as well as of the wavelength [82].

Point Spread Function and Strehl ratio
From a physical point of view, the point spread function (PSF) is defined as the
image of an ideal point source, generated by the optical system under investigation.
In the language of linear systems theory, the PSF is essentially the (spatial) impulse
response function, and in mathematical language it is the Green’s function of the
optical system [87]. For instance, for a completely ideal system, the PSF is the Dirac
delta function. Of course, since diffraction effects are always present, no such system
exists in reality. For a diffraction-limited (i.e. free from aberrations) system with axial
symmetry (i.e. circular apertures), the PSF is given by the well-known Airy function
[87]. In general, the PSF is a rather complicated object (which can in principle be
computed from diffraction integrals), that carries information about any aberration
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Figure 5.3 – Deformation of the point spread function in the presence of aberrations, and
definition of the Strehl ratio. Figure taken from Ref. [84].

present in the system, taking into account also diffraction effects. In particular, it
can be shown that spherical aberrations induce ring patterns, astigmatism produces
diamond-shaped figures, and coma yields comet-like distributions [82]. Hence, the
profile of the PSF is an essential criterion to evaluate the quality of the optical
system under investigation: A complete knowledge of the PSF allows to determine
the system output (i.e. image formation) for any given input (i.e. object) [87].6
Nonetheless, from a practical point of view, it is often convenient to define a single
parameter that quantitatively encodes the behaviour of the PSF. This parameter is
usually taken to be the Strehl ratio Sr, which is defined as the reduced height of the
PSF central peak in the presence of aberrations, relatively to the ideal (aberration-
free) case, see Fig. 5.3. As such, Sr can only take values between 0 and 1, the
latter corresponding to an ideal system, and it can be regarded as a normalized
aberration measure. Indeed, it can be shown that any wave aberration degrades the
PSF, thus lowering the Strehl ratio [84]. However, it is clear that all the information
contained in the real structure of the PSF is somehow washed out when everything
is reduced to a single number: accordingly, the Strehl ratio as a figure of merit only
makes sense in the regime of low aberrations, i.e. when Sr > 0.6 [84]. Despite this
limitation, Sr is widely regarded as a fundamental parameter in the characterization
of an imaging system: By convention, an objective is said to be diffraction-limited if
Sr ≥ 0.8 [82, 84].

Contrast and Modulation Transfer Function
The contrast is a measure of how well the system is able to resolve details and
nuances of the object. In other words, the contrast provides an indication of how
effectively the intensity maxima and minima are transferred from the object to the
image. When the object is a target grid made of equally-spaced dark and bright
lines, characterized by a certain spatial frequency f (typically expressed in line pairs
per mm, or lp/mm), the contrast is defined as the ratio [82]

C = Imax − Imin
Imax + Imin

(5.4)

6The output field distribution results from the convolution of the input one with the PSF.
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where Imax and Imin are the image intensity maximum and minimum, respectively.
Arbitrarily shaped objects can be modelled as a sum over different Fourier com-
ponents, each of which accounts for structures characterized by the corresponding
spatial frequency. Anyway, as a general rule, every optical system acts as a low-pass
filter, so the image contrast is reduced as the spatial frequency is increased. The
function that describes this trend is the modulation transfer function (MTF) gMTF,
which is essentially a plot of the contrast versus the spatial frequency.7 For an ideal
diffraction-limited system with a circular pupil, the MTF has a simple analytical
representation [82]

gMTF(ν̃) = 2
π

[
arccos(ν̃) − ν̃

√
1− ν̃2

]
(5.5)

where ν̃ = f/f0 is a normalized spatial frequency, with f0 = 2NA/λ being the
limiting frequency, i.e. gMTF(ν̃) = 0 for f ≥ f0. A plot of Eq. (5.5) is shown in
Fig. 5.4 (right).
As a general rule, given NA and λ, the MTF of an optical system always lie below
the ideal curve described by Eq. (5.5), as any aberration degrades the performances.
Similarly to the case of the PSF, while accurate knowledge of the MTF provides
several information about aberrations, it is generally convenient to introduce a single
parameter to characterize the MTF behaviour. We take this parameter to be the
cutoff frequency fcut, defined as the value of the spatial frequency corresponding to a
contrast of 0.2 (this is generally considered to be the minimum contrast that yields
acceptable images [90]). Accordingly, an estimate of the effective resolution R∗ of
an optical system is given by

R∗[µm] = 1000
fcut [lp/mm]

(5.6)

where the subscripts inside square brackets specify the units of measurement. For a
diffraction-limited system, R∗ is roughly 20 % greater than the resolution given by

Figure 5.4 – Effects of contrast and resolution on the image quality (left), and modulation
transfer function for a diffraction-limited system (right). Figures taken from
Ref. [84].
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7In the framework of Fourier optics, the MTF is the modulus of the optical transfer function [82, 84].
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Rayleigh’s criterion (namely, R∗ ' 0.73λ/NA). The spatial frequency corresponding
to the inverse of Eq. (5.2) would instead provide a contrast of just 9 %.
In any case, it should be kept in mind that resolution and contrast are two different
parameters to evaluate an objective performances: A high contrast delivers a bright
image, while a high resolution allows to resolve sharp edges and fine details, see
Fig. 5.4 (left).

Depth of focus and field of view
The depth of focus (DOF) is defined as the maximum defocus that still provides
diffraction-limited images (i.e. with Sr > 0.8), see Fig. 5.5 (left).8 It can be shown
that, for a diffraction-limited system [97]

DOF = λ ·
√
n2 − NA2

NA2 ' λ

NA2 (5.7)

where n is the refractive index of the surrounding medium, and the final result is
obtained in the limit of small NA, assuming n = nair = 1. For large numerical
apertures, the DOF is rather small: in other words, the more a beam is focused, the
faster it will diverge when moving away from the focus position. For instance, in
the visible range and for NA = 0.4, the DOF is on the order of a few microns. The
final application determines whether or not a small DOF constitutes a limitation.9
In any case, owing to the stronger dependence on NA, the DOF of a high-resolution
objective can be increased by slightly stopping down the system, without drastically
affecting the resolution.
The DOF essentially quantifies the diffraction-limited working range along the optical
axis. In the transverse direction, a similar role is played by the field of view (FOV),
which is defined as the maximum radial distance (in the object plane) from which

Figure 5.5 – Illustration of the depth of focus (left), and of the fundamental parameters of
an imaging system (right). Figures taken from Refs. [84, 90].

8Some authors distinguish between the depth of field, defined on the object side, and the depth of
focus, defined instead on the image side. Here, we are mainly interested in the DOF in the object
side.

9For instance, quantum gas microscopes for single-site-resolved imaging of atoms in optical lattices
take advantage of their small DOF, as typically only one lattice plane is at focus, while the
remaining ones yield a signal background that can be filtered out [97].
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light produces diffraction-limited images, see Fig. 5.5 (right). In some cases (e.g. for
an infinite conjugate ratio), the FOV can be expressed in angular units (angular
FOV, or AFOV). The relation that links these two quantities is [90]

FOV = 2WD · tan
(AFOV

2

)
(5.8)

where WD is the working distance, defined as the distance between the object and
the first optical surface of the imaging system.

Wavefront error
In the ideal case of perfect image formation, all rays traced from a given point
on the object should converge to a unique point on the image, meaning that they
should be perpendicular to a reference sphere centred on this latter. The wavefront
error (WFE) measures the deviation of the real wavefront from this reference sphere,
providing a further way to account for aberrations. It is usually measured in units
of length, by converting the deviation into an optical path difference (OPD). The
latter, in turn, is typically expressed in units of λ.
As figures of merit, the two key quantities are the peak-to-valley WFE and its
root-mean-square (r.m.s.) value Wrms [82, 84]. By convention, an optical system
is considered to be diffraction-limited if the peak-to-valley WFE is less than 0.25
waves (i.e. less than λ/4), with a corresponding r.m.s. error Wrms < 0.07 λ [84].
Indeed, it can be shown that these requirements lead to a Strehl ratio greater than
0.8, e.g. with the empirical Mahajan’s formula [91, 99]

Sr '
1

e(2πWrms/λ)2 (5.9)

or with the Maréchal criterion, which yields Wrms < λ/14 [83].
When evaluated off-axis, the WFE is a fundamental parameter to determine the
maximum diffraction-limited field of view.

Figure 5.6 – Graphical representation of the wavefront error. Figure taken from Ref. [84].
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5.2 Chromatic aberrations and color correction
In this section, I discuss chromatic aberrations and the key points of achromatic
(i.e. two-colour) correction in optical systems composed by two or more lenses.
First, every optical medium exhibits a dispersion-like behaviour, i.e. its refractive
index is a function of the wavelength: n = n(λ). The dispersion relation is not
linear, and it is typically steeper in the blue region of the spectrum. It is often
convenient to rely on a single parameter to quantify the amount of dispersion in the
medium under investigation. The choice typically falls on the Abbe number, defined
as [81, 82]

VA = nD1 − 1
nF − nC

(5.10a)

where the subscripts denote the Fraunhofer lines that were historically taken as
references (λD1 = 589.6 nm, λF = 486.1 nm, and λC = 656.3 nm, respectively). The
Abbe number quantifies the inverse dispersion in the visible spectrum, providing a
rudimentary way to classify optical media: As a rule of the thumb, glasses with a high
refractive index have low Abbe numbers (flint glasses), hence high dispersion, and
vice versa (crown glasses). However, it should be noted that the value of VA is actually
strongly influenced by the choice of the “red” (i.e. longer) and “blue” (i.e. shorter)
wavelengths, while being less sensitive to the “central” one.10 Accordingly, to better
account for dispersion effects, one can introduce a generalized V-number

V = nc − 1
nb − nr

(5.10b)

where nb, nr, and nc are the refractive indexes for λb, λr, and λc, respectively. In
the following, we will always refer to V -numbers calculated for λb = λCr = 425.5 nm,
λr = λLi = 671 nm, and λc = 550 nm. Tab. 5.1 reports a comparison between Abbe
numbers computed with the Fraunhofer lines and V -numbers relative to our imaging
wavelengths, for some among the most common optical glasses.
In optical systems working with polychromatic light, dispersion effects cause a
degradation of the image quality. In general, every monochromatic aberration has
its own chromatic analogue [84]. However, to simplify the analysis, one typically

Table 5.1 – Comparison between Abbe and V -numbers for some common optical glasses.
VA is the Abbe number calculated with the standard Fraunhofer lines. VLiCr
is instead the V -number calculated for λr = 671 nm, λb = 425.5 nm, and
λc = 550 nm.

Glass VA VLiCr

N-BK7 63.8 37.3
SF5 32.2 18.0
S-LAH64 47.5 27.2
N-BAF10 47.2 26.8
N-SF6HT 25.4 14.0

10Within the visible region of the spectrum, VA (or, more generally, V ) varies only by a few percent
when λc is varied in the range [λb;λr]. Here and in the following, the subscripts r, b and c are
abbreviations for “red”, “blue”, and “central”, respectively.
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classifies chromatic aberrations in lateral (or transverse) and longitudinal (or axial).
The transverse chromatic aberration (TCA, or lateral color) can be understood as a
wavelength-dependent magnification. It can detrimentally affect the image quality
of photographic lenses, but in practice it does not represent a serious problem for
our specific system, as Li and Cr atoms are imaged with different cameras. On the
other hand, the longitudinal chromatic aberration (LCA, or longitudinal color) is
essentially the chromatic variation of the focus (or, more generally, of the image
plane) position along the optical axis. Since our bichromatic objective must collect
light from two overlapped degenerate atomic clouds, with typical in-situ sizes on the
order of 10 µm, the LCA should be highly corrected for λLi and λCr. The following
discussion in mainly centred around this topic.
Longitudinal color ultimately originates from the chromatic variation of the effective
focal length. Namely, the chromatic focal shift of an optical system is defined as [82]

∆fcfs = fb − fr (5.11)

where fb and fr are the effective focal lengths for λb and λr, respectively. As we
shall see shortly, for an ordinary singlet lens, one has |fb| < |fr|. Accordingly, we
call the chromatic focal shift normal (anomalous) when it has the opposite (same)
sign of the effective focal length.
The longitudinal chromatic aberration is closely related to ∆fcfs, but in practice their
values do not necessarily coincide. For a thin singlet, this can be easily understood
with the paraxial imaging equation [81, 88]

1
p

+ 1
q

= 1
f

(5.12)

where p and q are the object and image distances (along the optical axis) from the
center of the lens, respectively (see Ref. [88] for sign conventions). In general, the
LCA is given by qb − qr, which coincides with fb − fr only for pb = pr =∞.11
For compound systems, or for elements with non-negligible thickness, the relation
between ∆fcfs and the amount of LCA is not straightforward. The reason is that the
effective focal length is usually defined relatively to a principal plane (and principal
planes for different wavelengths generally do not coincide), while longitudinal color
is also influenced by the marginal ray height at each refractive surface [81].
In the following, we study the chromatic focal shift and the LCA for a few simple
systems.

Singlet lens
For a thin spherical singlet with refractive index n, one can easily derive an approxi-
mate relation between the V -number and ∆fcfs; then, from the latter, the LCA can
in turn be estimated. The starting point is the well-known lens maker’s equation [81]

1
f

= (n− 1) ·
( 1
R1
− 1
R2

+ (n− 1)
n

tc
R1R2

)
' (n− 1) · k (5.13)

11Actually, the LCA of a thin singlet accidentally coincides with ∆fcfs also for pb = pr = f/2, see
Eq. (5.16), but this is not relevant for the present discussion.
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where R1 and R2 are the two curvature radii describing the lens surfaces,12 tc is the
central thickness, and f is the resulting focal length. The last result is obtained
for tc � |R1|, |R2|, i.e. in the case of a thin lens, having defined the geometric
coefficient k = R−1

1 − R
−1
2 . For conventional optical glasses nb > nc > nr, hence

|fr| > |fc| > |fb|.
From Eq. (5.13), fq (with q = r, b) can be expressed as

1
fq
' (nq − 1) · k = (nq − 1)

(nc − 1) ·
1
fc

−→ fq '
(nc − 1)
(nq − 1) · fc (5.14)

where fc is the focal length for λc. Thus, we can write the chromatic focal shift as

∆fcfs = fb − fr ' fc (nc − 1)
( 1
nb − 1 −

1
nr − 1

)
' − fc

V
(5.15)

where the last result is obtained by approximating (nb − 1) · (nr − 1) ' (nc − 1)2 at
the denominator. Eq. (5.15) directly links ∆fcfs with the (nominal) focal length via
the reciprocal of the V -number, providing a fairly good approximation for singlets.
The minus sign implies that the chromatic focal shift of a singlet is always normal.13
In practice, since the highest V -numbers for optical glasses lie around the value of
100 (in the visible range), for a singlet lens ∆fcfs is typically on the order of a few
percent of the (nominal) focal length. For many polychromatic applications, this
constitutes a strong limitation to the final image quality.
As previously pointed out, chromatic focal shift and longitudinal color do not
necessarily coincide, although being closely related. In particular, for a thin singlet,
∆fcfs corresponds to the total amount of LCA only if the lens is working at infinite
conjugate ratio. Conversely, for a finite object distance, assuming pb = pr = p (i.e. no
axial color on the object side), from Eq. (5.12) one finds

LCA '
(

p

p− f

)2
∆fcfs (5.16)

having approximated (p − fb) · (p − fr) ' (p − f)2 at the denominator. Hence,
the LCA of a thin singlet has the same sign of ∆fcfs, but it is scaled by a factor
(1− f/p)−2.14 Accordingly, a positive (negative) singlet is always under-corrected
(over-corrected) with respect to longitudinal color, i.e. LCA < 0 (LCA > 0) [82].
Lastly, yet importantly, it is worth noticing that, given an object distance p, ∆fcfs
and LCA depend only on f and V , and not on the geometrical shape of the lens.
This allows for an independent optimization of the latter, with respect to minimizing
spherical aberrations (e.g. via lens bending, see Ref. [84] for details).

Cemented doublet
Let us now consider a doublet composed by two adjacent thin lenses, with nominal
focal lengths f1 and f2, and refractive indexes n1 and n2, respectively. The total
effective focal length F is given by [86, 88]

1
F

= 1
f1

+ 1
f2

(5.17)

12See Refs. [81, 88] for sign conventions.
13V -numbers are positive quantities for glasses with normal dispersion relations.
14For p = f , the LCA diverges, as the image forms at infinite distance, i.e. the output light is
collimated. Near p = f , Eq. (5.16) might fail, in particular when (p− fb) · (p− fr) < 0.
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With respect to λq (q = r, b), from Eqs. (5.14) and (5.17) we have
1
Fq

= 1
f1,q

+ 1
f2,q

' n1,q − 1
n1 − 1 ·

1
f1

+ n2,q − 1
n2 − 1 ·

1
f2
≡ A1,q

f1
+ A2,q

f2
(5.18)

where we dropped the c subscript denoting the central/nominal values for n and
f . In Eq. (5.18), the last passage defines the coefficients Ai,q (with i = 1, 2 and
q = r, b), numerically close to 1. Therefore, noticing that Ai,b − Ai,r = 1/Vi, the
chromatic focal shift of a cemented doublet can be estimated by

∆Fcfs = Fb − Fr ' f1 f2 ·
(

1
A2,b f1 +A1,b f2

− 1
A2,r f1 +A1,r f2

)
'

' −F 2 ·
( 1
f1 V1

+ 1
f2 V2

) (5.19)

having approximated (A2,b f1 + A1,b f2) · (A2,r f1 + A1,r f2) ' (f1 + f2)2 at the
denominator. Further, by two consecutive applications of Eq. (5.12), under the same
conditions that yielded Eq. (5.16), after some algebraic manipulations one finds

LCA ' − F 2

(1− F/p)2 ·
( 1
f1 V1

+ 1
f2 V2

)
= ∆Fcfs

(1− F/p)2 (5.20)

i.e. a relation between longitudinal color and chromatic focal shift essentially analo-
gous to the one of a thin singlet. Nevertheless, the main point of doublets is that,
with a proper lens combination, ∆Fcfs (and, hence, the LCA) can be eliminated for
two selected wavelengths. In particular, if the two lenses are made with the same
optical glass (n1 = n2 = n) or, more generally, if they have the same V -number
(V1 = V2 = V ), Eq. (5.19) reduces to

∆Fcfs ' −
F

V
(5.21)

in complete analogy to Eq. (5.15). In this case, ∆Fcfs = 0 has only the trivial
solution F = 0. On the other hand, for V1 6= V2, Eq. (5.19) shows that the chromatic
focal shift can be eliminated even for a non-vanishing F . This yields the celebrated
achromatic condition for the realization of (cemented) achromatic doublets

f1 · V1 = − f2 · V2 (5.22)
Since for common glasses V -numbers are positive quantities, Eq. (5.22) requires
f1 = −f2 to be satisfied. For instance, in the case of a positive achromat (i.e. F > 0),
the only possible combination consists in a positive lens (f1 > 0) realized in a crown
glass, and a negative element (f2 < 0) realized in a flint glass, with f1 < |f2| and
V1 > V2. Indeed, by combining Eqs. (5.17) and (5.22), one finds

f1 = F

(
V1 − V2
V1

)
; f2 = −F

(
V1 − V2
V2

)
(5.23)

Importantly, Eqs. (5.22) and (5.23) do not explicitly depend on the three curvature
radii of the cemented doublet, which can thus be optimized to minimize spherical
aberrations. It can be shown that, given f1 and f2 from Eq. (5.23), four different
geometries exist to simultaneously correct for axial color and spherical aberration [84].
However, we remark that the achromatic condition only allows for color-correction
with respect to two specified wavelengths. Any other colour exhibits some degree of
LCA, an effect known as secondary spectrum [79].
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Air-spaced doublet
Let us now consider a system of two thin lenses separated by a certain distance d.
In this case, the effective focal length is given by [86, 88]

1
F

= 1
f1

+ 1
f2
− d

f1f2
(5.24)

Following a procedure analogous to the one that yielded Eq. (5.19), we now obtain

∆Fcfs ' −F 2 ·
[ 1
f1 V1

+ 1
f2 V2

− d

f1f2

( 1
V1

+ 1
V2

)]
(5.25a)

having approximated A1,bA2,b−A1,rA2,r ' V −1
1 +V −1

2 . We explicitly note here that,
for V1 = V2 = V , Eq. (5.25a) reduces to

∆Fcfs ' −
F

V

f1 + f2 − 2d
f1 + f2 − d

(5.25b)

Further, following the steps that led to Eq. (5.20), one finds

LCA ' − F 2[
1 − F

p

(
1− d

f2

) ]2 ·
[

1
f1 V1

+ 1
f2 V2

·
(

1− d

f1

(
2− f1

p

)
+ d2

f2
1

(
1− f1

p

)2)]
(5.26a)

which, for an object at infinite distance, becomes

LCA(p→∞) ' −F 2 ·
[

1
f1 V1

+ 1
f2 V2

(
1− d

f1

)2 ]
(5.26b)

The case of air-spaced doublets is richer than those encountered before, as the air
layer introduces one additional degree of freedom.15 First, we note that, for any
finite d, longitudinal color is not simply proportional to the chromatic focal shift.
Therefore, a vanishing ∆Fcfs does not guarantee correction for the LCA. In fact,
according to Eq. (5.26b), the generalized achromatic condition (i.e. LCA = 0) for an
air-spaced doublet (working at infinite conjugate ratio) reads

(1− µ12)2 · f1 V1 = − f2 V2 (5.27)

with µ12 = d/f1. In general, for positive V -numbers, Eq. (5.27) still requires
sign(f1) 6= sign(f2) to be satisfied. However, differently from cemented achromats,
some particular solutions exist also for V1 = V2. Namely, under this condition,
Eq. (5.27) is satisfied for

d± = f1 ·
(

1 ±
√∣∣∣∣f2

f1

∣∣∣∣
)

(5.28)

With the physical constraint of a positive distance, Eq. (5.28) has always at least
one acceptable solution for F < 0, whereas for F > 0 a solution only exists if the
positive element is the first lens. In any case, however, the image is always virtual,
15With respect to monochromatic aberrations, the additional degrees of freedom are two, as the
two facing curvature radii need not to be the same.
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i.e. it forms before the second lens. Requiring a real image yields no solutions for
V1 = V2, i.e. two different glasses are needed to correct for axial color in real images.
As a final remark, let us comment on the elimination of the chromatic shift. From
Eqs. (5.25), one can easily find the specific distance d that yields ∆Fcfs = 0. Namely,
d = (f1 V1 + f2 V2)/(V1 + V2), which becomes simply d = (f1 + f2)/2 for V1 = V2.
Although not being corrected for axial color, such a scheme provides a fairly good
correction for lateral color (i.e. TCA) [81, 86]. In particular, the single-glass doublet
with d = (f1 + f2)/2, firstly proposed by Huygens in 1661 (and since then known as
the Huygens eyepiece), was historically the first system to show some degree of color
correction.16

Multi-lens systems
For a system composed by N adjacent thin lenses, the total focal length reads

1
F

=
N∑
i=1

1
fi

(5.29)

and Eq. (5.19) simply generalizes to

∆Fcfs = −F 2 ·
N∑
i=1

1
fi Vi

(5.30)

with a relation between ∆Fcfs and axial color analogous to Eq. (5.20).
On the other hand, if finite air gaps between the (thin) lenses are included, the
analysis becomes more complicated. In Ref. [98], the author derives an exact formula
for the effective focal length of such a system, with arbitrary singlet focal lengths and
air spacings. As in the case of air-spaced doublets, the relation between chromatic
focal shift and axial color is not straightforward. Nonetheless, for an object free
from LCA, it can be shown that on the final image [81]

LCA = − 1
u2
N

N∑
i=1

y2
i

fi Vi
(5.31)

where yi are the marginal ray heights at the position of each lens, while uN = yN/qN
is the paraxial angle on the image side. For instance, in the case of an air-spaced
doublet with no internal focal points, one has y2 = y1 (1 − d/q1). Further, for an
infinitely distant object, one has q2 = F (1− d/f1) = F (1− µ12). Therefore, from
Eq. (5.31) one retrieves Eq. (5.26b). Hence, the factor (1− µ12)2 essentially takes
into account the different marginal ray heights at the positions of the two elements,
which in turn affect longitudinal color.
Lastly, we stress that Eq. (5.31) only applies to a system composed by thin lenses.
If the glass thicknesses cannot be neglected, the sum must be performed over every
single refracting surface, and the final expression becomes more complicated, see
e.g. Ref. [81].
16At that time, the dispersive properties of glasses were not known. About two years later, Newton
began the study of this topic. Then, in 1729, C. Hall accidentally invented achromatic doublets,
laying the ground for the realization of optical systems free from axial color [81].
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5.3 Simulations with OSLO
OSLO is a ray-tracing software developed by Lambda Research Corporation. A
free educational version is available on the company website, but for most practical
applications it results rather unsuitable, as many functionalities are strongly limited.
A licence for the professional version was provided to me by Dr. Giacomo Roati,
head of the Lithium lab at LENS. Dr. Lorenzo Marconi and Dr. Francesco Scazza
(from the K-Rb and the Lithium lab, respectively) explained to me the fundamentals
of this software, delivering also some useful advice for the design process.
In this section, I briefly report on the general methods, program settings, and
optimization routines that I found more suitable to carry out the simulations. This
will not be a comprehensive guide to use OSLO, nor to design a microscope objective,
but rather a minimal description that allows for an independent user to check and
reproduce the obtained results.

General methods
1. First, when designing a microscope objective, it is a common practice to start

from the optimization of the reversed system, i.e. to study the (equivalent)
problem of properly focusing a light beam into a tiny spot [96]. Although it
might initially appear counterintuitive, this technique actually offers several
advantages. For instance, optimization via software turns out to be more
straightforward for a reversed objective, as most of the optimization routines
rely on the production of a clean spot in the “image” plane. Focusing and
defocusing, as well as the impact of aberrations, are also quite easier to
visualize and understand. On top of that, optimization of the reversed system
is particularly suitable for infinity-corrected objectives, i.e. optical systems
where light is first collected and collimated by the front lens (or lens group,
referred to as the objective lens), and then focused onto the camera by the
so-called tube lens. Infinity-corrected objectives are quite common in modern
scientific experiments, as the space between the objective lens and the tube lens
(infinity space) can be exploited to introduce polarization optics or dichroic
mirrors, without affecting the image quality. Furthermore, they effectively
decouple the problems of collecting light from the object and focusing it onto the
image plane, thereby allowing extreme flexibility to change the magnification.
Indeed, the following relation holds [96]

M = ftube
fobj

(5.32)

where ftube and fobj are the focal lengths of the tube and the objective lens,
respectively.

2. To increase the probability of success in finding a suitable design, one should
start with a reasonable and realistic guess for the system, which of course may
be difficult to find. While direct experience in the field is arguably the most
helpful tool in choosing the initial design, useful inspiration can be taken by
analysing existing models described in the literature. In the worst case, i.e. in
the absence of any initial hints, one can start by optimizing a positive singlet
lens. Then, a second element is included, and the system is re-optimized.
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The process is iterated until the desired performances are achieved. This last
method is often the least effective, as the optimization routine is likely to get
stuck on a local minimum of the error function.

3. Generally speaking, the basic idea underlying the optimization routine is that
the thickness and radii of curvature of each element, as well as the air spacings
between consecutive optics, are initially fitting variables. During the various
iterations, once the desired performances are achieved, the element that is
found to be more similar to a catalogue lens gets replaced by the latter, with its
parameters kept fixed in the subsequent optimization stages. This replacement
procedure is repeated until a complete convergence to a set of catalogue lenses
is found. In the very last step, only the air spacings are optimized.

4. In principle, following the above point, for the first optimization runs one
wishes to have as many free parameters as possible. However, sometimes the
algorithm fails to find a good solution if it has to deal with a large number of
fitting variables. Accordingly, in the first stages, it may be more convenient
to optimize iteratively single elements, or better couples of elements (e.g. a
positive and a negative lens) at a time. When a stable, working configuration
is found, the system can be optimized as a whole.

5. Since the most common optical glass in catalogues is N-BK7 (for the visible
range), we initially choose this material for every singlet lens. However, as
pointed out in Sec. 5.2, one should keep in mind that longitudinal color in real
images cannot be corrected with a system made of a single type of glass. To
this end, unfortunately, 2”-diameter negative lenses realized in flint glasses
lack in commercial catalogues, preventing an intuitive correction of LCA based
on the idea underlying achromatic doublets (see again Eq. (5.22)), and thus
posing additional constraints in the design process.

Program settings
We report here the main global settings of the program:

- In the Setup menu, one should fix the Image NA and the Maximum field
angle (which ultimately determine the resolution limit and the field of view,
respectively). We found this more convenient than working with a fixed
Entrance beam radius (which is the default option), as in this way the target
resolution and FOV are kept fixed during optimization.

- In the Wavelength menu, OSLO needs three different wavelengths (namely λ1,
λ2, and λ3, which correspond to “green”, “blue”, and “red”, respectively) in
order to properly evaluate chromatic aberrations. In our specific case, one
should set λ2 = 425.5 nm, λ3 = 671 nm, and an arbitrary λ1 that satisfies
λ2 < λ1 < λ3 (λ1 is not important for the blue-red color correction).

- In the Variables menu, one should set reasonable bounds for the optimization
variables, especially for the lens thicknesses (the default values are too large).

- In Optimize→Optimization conditions, one should set a large value (e.g. 107)
for the Weight of boundary conditions violation (the default value is too small).
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Figure 5.7 – OSLO settings to generate the error function.

Another group of fundamental settings are those used for the generation of the
error function, which is arguably the most critical object of the entire optimization
algorithm: an improper choice of the error function may lead to an undesired outcome,
meaning that the system will not be optimized according to its original purposes.
For sake of clarity, the complete OSLO error function settings (Optimize→Generate
Error Function→OSLO Spot Size/Wavefront) are reported in Fig. 5.7 as they appear
in the user interface.

5.4 Simulations results
In this section we report on the results obtained from the ray-tracing simulations
with OSLO. To better explain the process that led to the final designs, we start by
briefly discussing the first steps taken in the study of this problem, which ultimately
provided fundamental hints towards the solution.
Initially, we tried to re-optimize some among the objective lenses for quantum gases
presented in the literature [92, 93, 94, 95, 96, 97], trying to adapt them to the
lithium-chromium mixture and to our experimental setup. Most of these systems
are essentially different implementations of the original Alt’s scheme [92]. This
objective exploits solely four singlets: the first three are positive lenses, while the
last one (the so-called field lens) is negative. In particular, in most implementations,
the first two elements are positive meniscus or plano-convex lenses, the third one
is double-convex, whereas the field lens is plano-concave. It was argued that this
represents the minimal system of spherical lenses that is able to correct for the
spherical aberrations introduced by the vacuum window [92, 94]. However, since in
every implementation the various lenses are all realized with the same optical glass,
these systems cannot correct for longitudinal chromatic aberrations, as pointed out
in Sec. 5.2 (and by the authors themselves).
These initial attempts of re-optimization consisted firstly in varying the air spacings
between the singlets, as suggested by the authors, subsequently allowing for more
degrees of freedom if an acceptable solution was not found. In short, in some
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cases we were able to obtain relatively good corrections for spherical aberrations,
reaching diffraction-limited operation for at least one of the two imaging wavelengths
(λLi = 671 nm and λCr = 425.5 nm, respectively). However, as expected, every
solution we found suffered from a sizeable amount of longitudinal color, on the order
of 1.5÷ 2 mm. Such a large LCA could not be corrected – in the very last step of
optimization – by adjusting the position of the tube lens. For compactness, these
re-optimized designs are not reported here, their overall performances (especially
those concerning color correction) being rather far from the desired ones.
After a careful examination of the similarities in the schemes discussed above, and
following the discussion in Sec. 5.2, the first idea to try to achieve axial color
correction was simply to introduce a negative lens made with a dispersive glass.
In particular, the natural choice would be to replace the field lens in Alt’s design
with an analogous plano-concave flint lens, to implement a color-correction scheme
conceptually analogous to the one used for achromatic doublets (see again Eq. (5.22)).
Unfortunately, the scarcity of 2” plano-concave flint lenses in commercial catalogues
forced us to abandon this solution.17
The second attempt relied instead on a totally different variation of Alt’s scheme:
namely, replacing the double-convex lens with an achromatic doublet. Ultimately,
this turned out to be a successful intuition,18 leading to the first scheme (Design #1)
able to provide a relatively good, simultaneous correction for spherical aberrations
and longitudinal color, with respect to λLi and λCr. In particular, at least on a
qualitative level, correction for spherical aberrations in this design can be understood
on the basis of the similarities with Alt’s scheme, namely the geometrical shape of
the lenses, and the correspondences between curvature radii of different surfaces.
On the other hand, the blue-red longitudinal color correction originates from the
combined action of the achromatic doublet and the field lens, which (to a very rough
approximation) act as a low-power (i.e. long focal length) positive element, with a
large and anomalous chromatic focal shift (i.e. a significantly over-corrected LCA).
On the lines of Eqs. (5.15) and (5.21), an optical system with an anomalous CFS can
be thought as an “effective” lens with a negative V -number. Such a peculiar system,
when in turn combined with the remaining two positive lenses of Design #1 (which
act as a normal positive element), can fulfil an (approximate) achromatic condition
similar to Eqs. (5.22) and (5.27), thereby enabling correction for longitudinal color.19
With regard to the optimization routines, the introduction of an achromatic doublet
poses some additional constraints on the fitting variables. In fact, commercial
achromats are realized with several different combinations of crown and flint glasses,

17As previously noted, a diameter of 2” is required to achieve good numerical apertures, given the
large working distance of roughly 30 mm (constrained by the geometry of our vacuum chamber).

18We later found that a conceptually similar achromatized scheme was already implemented in
Ref. [99]. However, despite employing merely three elements (the details of which are not
reported by the author), this design relies on two aspheric surfaces, which significantly increase
manufacturing difficulties and costs.

19Strictly speaking, Eqs. (5.22) and (5.27) are not particularly accurate in this case, as the glass
thicknesses are not always negligible, and the generalization of these formulae to a system composed
by more than two lenses turns out to be less obvious than expected, see e.g. the results for the
effective focal lengths in Ref. [98]. On the other hand, as discussed in the following, Eq. (5.31)
provides better results. Anyway, the main point here is that an effective negative V -number
allows for more sign combinations of focal lengths in the fulfilment of an achromatic condition.
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but typically for each combination only a few different lenses are available. For
this reason, it results rather inconvenient to optimize the system with the achromat
parameters as fitting variables, meaning that – while very good solutions can indeed
be obtained – in the end it will be nearly impossible to find a matching doublet
in commercial catalogues. Accordingly, aiming to converge to a set of catalogue
lenses for the final design, to carry out the simulations we kept the achromat “fixed”,
picking one among those available in commercial catalogues, and we optimized the
remaining lenses and air spaces. This procedure was carried out for different initial
choices of the achromatic doublet.
The first design of this kind that converged to a set of catalogue lenses (namely,
Design #1) relied on a f = 80 mm achromatic doublet (Thorlabs, AC508-080) as a
starting point. Although not completely reaching the desired performances (having
a quite narrow field of view), nor totally fulfilling the initial requirements (its main
drawback being the rather inconvenient position of the MOT beams focus), Design
#1 is nonetheless briefly illustrated in the following, as it represents the fundamental
building block for subsequent schemes.

5.4.1 Design #1
As anticipated above, the first design that featured an acceptable degree of color
correction, together with diffraction-limited operation, was based on Alt’s scheme [92].
The core idea has been the replacement of the double-convex lens with an achromatic
doublet. As shown in the following, such a combination of lenses can provide a
relatively good, simultaneous correction for (monochromatic) wave aberrations and
longitudinal color, relatively to two design wavelengths.
The final design for this objective lens is sketched in Fig. 5.8, with the surface data
reported in detail in Tab. 5.2, following the conventions adopted by OSLO. Note that
the vacuum window thickness is slightly over-estimated (10 mm instead of 7.94 mm,
see the following designs), as the precise value was not known when this scheme was
firstly being optimized (it was measured later).
The overall performances and the relevant figures of merit (for the objective lens
system, i.e. not including a tube lens) are summarized in Tab. 5.3. On axis,
the objective reaches diffraction-limited operation (with Sr > 0.95, WFE < 0.25,
Wrms < 0.07) up to a numerical aperture NA = 0.35, providing a theoretical resolution
close to 1 µm for both wavelengths. Further, the longitudinal chromatic aberration
between λCr and λLi is on the order of a few tens of microns, considerably lower
than in the aforementioned re-optimized systems (even though still not perfectly
zeroed). The main limitation regarding the imaging performances lies in the rather

Figure 5.8 – Design #1: plan and solid drawings with ray caustics.
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Table 5.2 – Surface data for Design #1. For each element, F is the nominal
focal length. Then, for each refracting surface, R is the curvature
radius, while tc is the central thickness of the subsequent layer,
whose medium is specified in the last column. Following the
convention adopted by OSLO, a null curvature radius denotes a
plan surface.

Element F [mm] R [mm] tc [mm] Medium

[OΣ] SLB-50.8-90NM − 90 0.00 3.00 N-BK7
46.71 4.94 Air

[TL] AC508-080-A 80
54.90 16.00 N-BAF10
− 46.40 2.00 N-SF6HT
− 247.20 47.93 Air

[EO] 32-975 150 77.52 9.00 N-BK7
0.00 24.67 Air

[OΣ] SLB-40-70NM 70 36.33 8.00 N-BK7
0.00 9.50 Air

Window − 0.00 10.00 Silica
0.00 16.00 Vacuum

TL stands for Thorlabs, OΣ for OptoSigma, and EO for Edmund Optics.

narrow AFOV, which in practice restricts the off-axis diffraction-limited operation to
a region of merely some tens of microns. It was later realized that this originated
from a wrong setting in the OSLO Setup menu, which was corrected in subsequent
designs.
Nevertheless, it is interesting to try to understand, at least at a qualitative level,
how this scheme implements longitudinal color correction. Although the glass
thicknesses are not entirely negligible, we apply Eq. (5.31) to the system, considering
the achromatic doublet as two distinct singlets. Lenses are labelled by i = 1, ..., 5
from left to right in Fig. 5.8. First, with OSLO, the nominal focal lengths of the two
elements forming the achromat (f2 = 39.9 mm and f3 = −70.7 mm, respectively)
can be readily obtained. The V -numbers for the three glasses of this design can
be found in Tab. 5.1, while the air spacings di,i′ between the singlets are specified
in Tab. 5.2. Hence, our main goal is to determine the (relative) heights yi at the
position of each element. As we shall see, we can express any yi in units of y1, and
in the end the latter will simplify from the calculation. In the reversed system (see
Fig. 5.8), the entrance beam is parallel to the optical axis. Therefore, with simple
geometric considerations, y2 = y1 · (1 + d1,2/|f1|). Inside the achromatic doublet,

Table 5.3 – Design #1: Figures of merit. The nominal focal length is F = 55.3 mm,
and the working distance is WD = 35.5 mm. At NA = 0.35, the longitudinal
chromatic aberration is LCA = +28 µm.

λ [nm] NA AFOV Sr fcut [mm−1] f−1
cut [µm] R [µm] DOF [µm] WFE0 Wrms,0 WFEff Wrms,ff

671.0 0.35 ±0.025◦ 0.95 725 1.4 1.2 ±2.2 0.186 0.038 0.241 0.051
425.5 0.35 ±0.015◦ 0.96 1175 0.85 0.74 ±1.4 0.133 0.034 0.236 0.050

NA is the maximum numerical aperture, at which the other quantities are evaluated. AFOV is the
diffraction-limited angular field of view. Sr is the monochromatic Strehl ratio at best focus. fcut is the
frequency cutoff of the monochromatic MTF. R is the Rayleigh resolution limit. DOF is the diffraction-
limited depth of focus (on-axis). WFE andWrms are the peak-to-valley wavefront error and its r.m.s. value
(in units of λ), respectively, with the subscripts ‘0’ and ‘ff’ specifying whether they are evaluated on-axis
or at full-field, respectively.
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light travels again almost parallel to the optical axis, so we can take y3 ' y2. Rays
emerge from the doublet rightmost surface forming an image at a distance q123. With
OSLO, we can readily obtain q123 ' 543 mm for the central wavelength λc = 550 nm.
Hence, y4 ' y3 · (1− d3,4/q123). Repeating this procedure for the following singlet,
we obtain q1234 = 108.2 mm and y5 ' y4 · (1 − d4,5/q1234). Lastly, if we remove
the vacuum window, the final image forms at a distance q12345 = q5 = 32.1 mm
from the rightmost surface of the last lens, thus u5 ' y5/q5. Adding up all the
contributions as in Eq. (5.31), we eventually get LCA ' 8 µm, i.e. a value essentially
close to 0. Although the precise value extracted with OSLO (when the vacuum
window is removed) is LCAOSLO = −34 µm, the thin-lens model is able to provide
a relatively good understanding for the axial color correction in this design. The
small discrepancy likely arise from the finite thickness of the lenses, as well as from
the effective air spacings being affected by the curvature radii. For instance, light
does not travel parallel to the optical axis inside the last two singlets, so y4 and
y5 are slightly over-estimated by the simple geometrical method outlined above,
and the distances di,i′ are not simply those measured along the optical axis, as for
y 6= 0 they are affected by the surfaces curvature. Nonetheless, the main point
is that the achromat and the field lens behave as a positive element with a large
over-corrected LCA, whereas the last two singlets act as a normal positive lens, hence
with an under-corrected LCA. With a proper combination of these two contributions,
longitudinal color can be corrected in the final image.

MOT beams focus
As anticipated, the major drawback of Design #1 consists in the rather inconvenient
position of the MOT beams focus, which lies in the middle of the objective, as shown
in Fig. 5.9. To carry out this analysis, we reversed the entire system, including the
vacuum window, and we considered (for each wavelength) a collimated entrance
beam with a diameter of 10 mm.
There are basically two different ways to retro-reflect such a beam: The first one
consists in placing a (flippable) mirror at the focus position, similarly to a cat-eye
configuration. The second one relies on collimating the divergent output beam with a
positive lens, and then retro-reflecting such a collimated beam. Both these solutions
were tested in OSLO, and were found, at least in principle, to work properly. In
particular, the LCA at the MOT focus position, on the order of 1 mm, does not
prevent an appropriate retro-reflection, meaning that the two reflected beams are
nearly-collimated over the length scale of the science chamber. However, from a
practical point of view, these two methods may suffer from technical problems. For
instance, retro-reflecting the MOT beams at the focus position requires a flippable
mirror, which in turn is not directly employable with a standard design of the
objective tube. At the same time, using two different tubes would presumably affect

Figure 5.9 – Design #1: plan drawing with ray caustics showing the MOT beams focus.
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the mechanical stability of the system, making also the alignment more challenging.
On the other hand, collimating the output beam requires a minimum of work space:
In a fixed setup, MOT lights must first be divided from the imaging ones, and the
most conceivable way to accomplish this is by means of a 2” PBS (MOT beams optics
should not clip imaging lights).20 An alternative is to install the collimating lens and
the retro-reflecting mirror on a flippable mount (typically, the time interval between
the MOT switching off and the imaging pulse is on the order of 5÷10 s). In any case,
the divergent MOT beams will exceed a diameter of 2” only 9 cm away from the
field lens (in free-space), thus requiring a rather compact optical setup to achieve a
proper retro-reflection. Unfortunately, the geometry of our experimental setup does
not allow for such a close-packed arrangement of optics along the vertical direction.
Accordingly, having in mind the basic working principles of Design #1, we started a
second “stage” of the design process, aiming to find a more suitable configuration.
In particular, the underlying idea was to try to shift the MOT beams focus outside
the objective, at a position where a flippable mirror could be more easily installed.
The first attempts relied on trying different achromatic doublets as starting points
for analogue Alt-like schemes. In short, we were able to obtain new working
configurations, with simulated performances and figures of merit comparable to
those of Design #1. In particular, it was found that reducing the focal length of
the achromat yields more compact schemes, i.e. with smaller air spacings, and vice
versa. However, the shortest focal length for 2”-diameter commercial achromats is
f = 75 mm, hence not much different from the f = 80 mm achromat of Design #1.
The design obtained starting with this shorter f (essentially analogous to Design
#1 regarding the imaging performances, and thus not reported here for the sake of
compactness) features a MOT beams focus that lies inside the achromatic doublet.
Clearly, such a focus position is even more inconvenient than the one of Design #1.
A totally different approach, which ultimately turned out to be successful, relied
instead on increasing the number of optics. In particular, it was realized that the
MOT beams focus could have been shifted towards the outside by introducing an
additional negative lens between the achromatic doublet and the nearest plano-convex
lens. To keep the total focal length unchanged, the focal length of the field lens has
to be increased (in magnitude) accordingly. As a starting point, we split the field
lens into two f = −150 mm elements, placing one of these two after the achromat,
as described above. However, the resulting curvature radius of this “new” field lens
is, in turn, increased, and starkly differs from the one of the first surface of the
achromatic doublet. Such a mismatch introduces a substantial amount of spherical
aberrations, and makes the whole design extremely sensitive to small variations of
the parameters, e.g. the air spacings. To overcome this problem, we simply split the
achromatic doublet into two adjacent doublets, keeping the total focal length the
same.21 This approach has laid the ground for the “second generation” of designs,
which are reported in the following.

20A more compact solution could be obtained by employing a wire-grid polarizer. However, these
devices can significantly lower the image quality, and they cannot be simulated with OSLO.

21Power splitting consists in replacing a singlet with focal length fs with a doublet formed by
two adjacent lenses with f1 = f2 = 2 fs [84]. The net effect is that the effective focal length is
unchanged (see Eq. (5.17)), while the amount of spherical aberrations is reduced. Intuitively, this
owes to the smaller angles of incidence at each surface, see Ref. [84] for more details.
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5.4.2 Design #2a
Following the idea outlined at the end of Sec. 5.4.1, aiming to move the MOT beams
focus outside the objective, we included two more lenses in our scheme, essentially
power splitting the field lens and the achromatic doublet. As a starting point, we
chose two identical f = 150 mm achromats (Thorlabs, AC508-150) to replace the
doublet of Design #1. We then split the field lens into two negative elements,
inserting one of these two in the space between the last achromat and the first
plano-convex lens. We then optimized the whole system, keeping only the achromats
parameters as fixed values. By progressively replacing each optimized singlet with the
most similar catalogue lens, we eventually converged to a set of commercial elements,
referred to as Design #2a. The final optical scheme is sketched in Fig. 5.10, and, as
shown in Fig. 5.11, the (reverse) system features a MOT beams focus that lies roughly
16 mm after the field lens. The complete surface data of this design are reported in
Tab. 5.4, and its simulated performances are summarized in Tab. 5.5, omitting a
more detailed discussion. In fact, when we contacted the company manufacturing
the f = −300 mm meniscus, they informed us that the item was out of stock, and
not on their schedule of future productions. As such, the manufacturing cost for
the element would have been basically the same as those for a custom lens, hence
nearly ten times higher. Anyway, since the objective performances were rather good,
we decided not to discard this design, but, given the unavoidably increased price,

Figure 5.10 – Design #2a: plan and solid drawings with ray caustics.

Figure 5.11 – Design #2a: reverse plan drawing showing theMOT beams focus, successfully
moved outside the objective.
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Table 5.4 – Surface data for Design #2a. For each element, F is the nominal focal
length. Then, for each refracting surface, R is the curvature radius,
while tc is the central thickness of the subsequent layer, whose medium
is specified in the last column. Following the convention adopted by
OSLO, a null curvature radius denotes a plan surface.

Element F [mm] R [mm] tc [mm] Medium

[NP] KPC073AR.14 − 150 0.00 2.50 N-BK7
77.52 1.10 Air

[TL] AC508-150-A 150
83.18 12.00 N-BK7
−72.12 3.00 SF5
−247.70 0.10 Air

[TL] AC508-150-A 150
83.18 12.00 N-BK7
−72.12 3.00 SF5
−247.70 9.45 Air

[UN] UF1129K-A − 300 −101.41 5.00 N-BK7
−300.00 3.92 Air

[OΣ] SLB-50.8-100PM 100 51.90 9.60 N-BK7
0.00 7.09 Air

[TL] LE1418-A 150 47.87 7.29 N-BK7
119.32 10.88 Air

Window − 0.00 7.94 Spectrosil-2000
0.00 18.00 Air

NP stands for Newport, TL for Thorlabs, UN for Unice, and OΣ for OptoSigma.

Table 5.5 – Design #2a: Figures of merit. The nominal focal length is F = 57 mm,
and the working distance is WD = 36.8 mm. At NA = 0.4, the longitudinal
chromatic aberration is LCA = +0.6 µm.

λ [nm] NA AFOV Sr fcut [mm−1] f−1
cut [µm] R [µm] DOF [µm] WFE0 Wrms,0 WFEff Wrms,ff

671.0 0.35 ±0.12◦ 0.967 720 1.4 1.2 ±2.5 0.118 0.026 0.145 0.032
425.5 0.35 ±0.20◦ 0.997 1150 0.87 0.74 ±1.7 0.037 0.009 0.127 0.025

NA is the maximum numerical aperture, at which the other quantities are evaluated. AFOV is the
diffraction-limited angular field of view. Sr is the monochromatic Strehl ratio at best focus. fcut is the
frequency cutoff of the monochromatic MTF. R is the Rayleigh resolution limit. DOF is the diffraction-
limited depth of focus (on-axis). WFE andWrms are the peak-to-valley wavefront error and its r.m.s. value
(in units of λ), respectively, with the subscripts ‘0’ and ‘ff’ specifying whether they are evaluated on-axis
or at full-field, respectively.

we took the opportunity to further improve the system, by re-optimizing it with
the meniscus parameters as fitting variables. This procedure yielded Design #2b,
an improved version of Design #2a, which is presented in more detail in the next
section.



5.4 Simulations results 107

5.4.3 Design #2b
Design #2b, sketched in Fig. 5.12, is an improved version of Design #2a. As
anticipated, since the f = −300 mm meniscus was not available from the company
(Unice), we decided to re-optimize the system, allowing the parameters of this
element (i.e. curvature radii and central thickness) to be optimization variables. Air
spacings were optimization variables as well, except the thinner one (between the
field lens and the first achromat), which – to simplify future assembly – was kept
fixed at the value corresponding to an edge air thickness of 0.5 mm (that is, the
smaller thickness of commercial lens spacers, namely Newport’s Delrin spacers). The
remaining elements were kept fixed.
The final list of lenses employed for this design is reported in Tab. 5.6. In the
following, we present in detail the simulated results for the objective performances.

Figure 5.12 – Design #2b: plan and solid drawings with ray caustics.

Table 5.6 – Surface data for Design #2b. For each element, F is the nominal focal
length. Then, for each refracting surface, R is the curvature radius,
while tc is the central thickness of the subsequent layer, whose medium
is specified in the last column. Following the convention adopted by
OSLO, a null curvature radius denotes a plan surface.

Element F [mm] R [mm] tc [mm] Medium

[NP] KPC073AR.14 − 150 0.00 2.50 N-BK7
77.52 0.81 Air

[TL] AC508-150-A 150
83.18 12.00 N-BK7
−72.12 3.00 SF5
−247.70 0.10 Air

[TL] AC508-150-A 150
83.18 12.00 N-BK7
−72.12 3.00 SF5
−247.70 7.09 Air

[SP] Custom − 300 −95.00 3.50 H-K9L
−244.60 0.50 Air

[OΣ] SLB-50.8-100PM 100 51.90 9.60 N-BK7
0.00 13.46 Air

[TL] LE1418-A 150 47.87 7.29 N-BK7
119.32 8.00 Air

Window − 0.00 7.94 Spectrosil-2000
0.00 18.00 Air

NP stands for Newport, TL for Thorlabs, SP for Solid Photon, and OΣ for OptoSigma.
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Spot diagram
In Fig. 5.13, we plot the geometrical spot diagram for the two imaging wavelengths
(λLi in red, and λCr in blue, respectively) versus the field angle and the defocus.
Black circles represent the Airy disk for λLi. On axis and at best focus, for numerical
apertures up to 0.4, the spot diagram entirely lies well inside the Airy disk, a first
sign pointing to a generally good correction for aberrations. This holds true also
at full field (±0.12◦), and up to a ±2 µm defocus, even though some aberrations
start to appear. In particular, for high field values in the image plane, one can
notice the presence of a small degree of coma, while defocusing introduces mainly
spherical aberrations (i.e. a circularly symmetric increase of the spot size). For λCr,
the trend is not symmetric around the best common focus, with negative defocus
values having a larger impact on the spot size.
Besides, with increasing field angles, one also notices a small lateral color, on the order
of 1 µm at full field. As pointed out in Sec. 5.2, transverse chromatic aberrations
do not affect the performances our imaging system, as the two wavelengths are
eventually recorded on different cameras.

Figure 5.13 – Design #2b: spot diagrams as a function of the field angle and of the
defocus.
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Point spread function and Strehl ratio
The two monochromatic PSFs at best focus are shown in Fig. 5.14, for NA = 0.35
and different field values, up to ±0.12◦. For both wavelengths, the Strehl ratio is
always close to 1, i.e. the objective can be considered diffraction-limited.

Figure 5.14 – Design #2b: monochromatic PSFs versus the field angle, at best common
focus. The maximum value of each color scale corresponds to the (on-axis)
Strehl ratio.

Modulation transfer function
For NA ≤ 0.4, the two monochromatic MTFs at best focus, plotted in Fig. 5.15
for different field values, are essentially coincident with the respective diffraction-
limited curves. The best compromise between resolution and contrast is obtained
for NA = 0.35, with two cutoff frequencies being 725 lp/mm (Li) and 1150 lp/mm
(Cr), respectively.

Figure 5.15 – Design #2b: monochromatic MTFs at best focus, for NA= 0.35 and different
field values. Black lines represent the diffraction-limited curves.
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Wavefront error

In Fig. 5.16 we present the results of the wavefront error analysis, which in turn
confirms a diffraction-limited operation for both wavelengths. The analysis is carried
out at each respective monochromatic best focus (i.e. monochromatic MIN OPD,
field averaged in OSLO). These two points are separated by −0.4 µm along the
optical axis, a value that we can consider as the effective LCA (and, essentially,
coincident with 0). In both cases, performances are evaluated for the maximum
NA (NALi

max = 0.4 and NACr
max = 0.35, respectively) and field angle (±0.15◦) that

yield a peak-to-valley WFE and a r.m.s. error – at full field – that are lower than
the diffraction-limited thresholds by a factor of 2. This safety margin has been
included to account for possible imperfections and system tolerances in the practical
realization and assembly of the objective.

Figure 5.16 – Design #2b: WFEs for the two imaging wavelengths, as a function of the
field angle. Simulations are carried out at each monochromatic best focus.
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Ray analysis
In Fig. 5.17, we present a detailed ray analysis that provides an overall overview
of the objective performances. In the left half of the picture, we show the OPD
curves for λLi (red) and λCr (blue), evaluated at each monochromatic best focus
for different field angles. For both wavelengths, the peak-to-valley OPD is always
below 0.25 waves, corroborating the diffraction-limited performance. In the right
half, we report the behaviour of other aberrations. In particular, the system exhibits
negligible astigmatism and distortion, and a small amount of lateral color (below
2 µm), as already noticed from the spot diagrams. Further, the chromatic focal
shift is rather corrected over the entire visible range, with a maximum secondary
spectrum on the order of 100 µm. We stress that the CFS of a multi-lens system
does not coincide with the actual amount of LCA. The latter is instead shown in
the Longitudinal Spherical Aberration plot, which represents the variation of the
image position for the two wavelengths, as a function of the pupil height (i.e. of
the numerical aperture). For 0.2 ≤ NA ≤ 0.35, longitudinal color is always below
1 µm (in absolute value), allowing simultaneous operation of the system with the
two imaging lights.

Figure 5.17 – Design #2b: ray trace analysis, showing OPD curves and aberrations plot.
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MOT beams focus
Fig. 5.18 shows the position of the MOT beams focus, which lies approximatively
2 cm outside the objective, providing enough space to install a small flippable mirror.

Figure 5.18 – Design #2b: reversed sketch and ray caustics showing the MOT beams focus,
lying roughly 2 cm outside the objective.

Figures of merit
Gathering all the previous results together, Tab. 5.7 reports the figures of merit for
the objective lens system. In the case of λCr, the maximum numerical aperture and
field angle have been reduced to 0.35 and 0.12◦, respectively, in order to guarantee a
safety margin of a factor of 2 on the WFE at full field.
The complete system includes also the two tube lenses that focus the imaging lights
onto the two cameras. These are two f = 1500 mm plano-convex lenses, which
provide a final magnificationM ' 26. The pixel size of the two detectors is nominally
13 µm, thus an area of 1 µm2 in the object plane is mapped on a 2 × 2 array of
pixels. When the two tube lenses are included, the performances of the objective (as
a whole) slightly increase for each wavelength. Besides, for finite conjugates, OSLO
provides the FOV in length units (as opposed to afocal systems, where only the AFOV
is a meaningful quantity). We obtain FOVmax = ±150 µm for both wavelengths (for
NALi = 0.4 and NACr = 0.35, respectively), always considering the safety margin on
the WFE at full field.

Table 5.7 – Design #2b: Figures of merit for the objective lens system. The nominal
focal length is F = 57 mm, and the working distance is WD = 34 mm. At
NA = 0.35, the longitudinal chromatic aberration is LCA = +0.4 µm.

λ [nm] NA AFOV Sr fcut [mm−1] f−1
cut [µm] R [µm] DOF [µm] WFE0 Wrms,0 WFEff Wrms,ff

671.0 0.40 ±0.15◦ 0.996 825 1.2 1.0 ±2.0 0.056 0.010 0.112 0.024
425.5 0.35 ±0.12◦ 0.985 1125 0.89 0.74 ±1.6 0.067 0.019 0.105 0.024

NAmax is the maximum numerical aperture. AFOV is the diffraction-limited angular field of view (for
NA=NAmax). Sr is the monochromatic Strehl ratio at best focus. fc is the frequency cutoff of the
monochromatic MTF. R is the Rayleigh resolution limit (given NAmax). DOF is the diffraction-limited
depth of focus. WFE and Wrms are the peak-to-valley wavefront error and its r.m.s. value, respectively,
with the subscripts ‘0’ and ‘ff’ specifying whether they are evaluated on-axis or at full-field, respectively.
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5.4.4 Design #3
We also searched for solutions to replace the f = −300 mm meniscus in Design
#2a that did not require custom optics. In particular, owing to the scarcity of
2”-diameter meniscus lenses in commercial catalogues, we opted for a (negative)
double-concave element. Concerning the optimization, this removes one degree of
freedom, as the two curvature radii of the new singlet coincide in modulus. Hence,
while re-optimizing the system, we also allowed the field lens parameters to change.
Air spacings were set as fitting variables as well, while the remaining elements were
kept fixed. Eventually, we managed to converge to a new set of catalogue lenses,
referred to as Design #3. The prototype is sketched in Fig. 5.19, with lens and
surface data reported in Tab. 5.8. In the following, we present the results for the
simulated performances.

Figure 5.19 – Design #3: plan and solid drawings with ray caustics.

Table 5.8 – Surface data for Design #3. For each element, F is the nominal focal
length. Then, for each refracting surface, R is the curvature radius,
while tc is the central thickness of the subsequent layer, whose medium is
specified in the last column. Following the convention adopted by OSLO,
a null curvature radius denotes a plan surface.

Element F [mm] R [mm] tc [mm] Medium

[CVI] LPK-50.0-64.8-C −125 0.00 3.00 N-BK7
64.8 2.00 Air

[TL] AC508-150-A 150
83.18 12.00 N-BK7
−72.12 3.00 SF5
−247.70 0.10 Air

[TL] AC508-150-A 150
83.18 12.00 N-BK7
−72.12 3.00 SF5
−247.70 13.93 Air

[OΣ] SLB-50.8B-300NM −300 −311.40 3.00 N-BK7
311.40 0.10 Air

[OΣ] SLB-50.8-100PM 100 51.90 9.60 N-BK7
0.00 3.666 Air

[TL] LE1418-A 150 47.87 7.29 N-BK7
119.32 16.00 Air

Window − 0.00 7.94 Spectrosil-2000
0.00 18.00 Air

CVI stands for CVI Laser Optics, TL for Thorlabs, and OΣ for OptoSigma.
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Spot diagram
In Fig. 5.20, we plot the geometrical spot diagram for the two imaging wavelengths
(λLi in red, and λCr in blue, respectively) versus the field angle and the defocus.
Black circles represent the Airy disk for λLi. On axis and at best focus, for numerical
apertures up to 0.35, the performances are comparable to those of Design #2a, with
the spot diagrams lying almost entirely well inside the Airy disk (for λLi, a fraction
of marginal rays actually fall outside, but the spot size r.m.s. radius is nonetheless
on the order of the Airy radius). As for Design #2a, increasing the field angle
introduces a bit of coma (aside from 1 ÷ 2 µm of lateral color), while defocusing
introduces spherical aberrations. However, the overall performances in this case are
slightly worse.

Figure 5.20 – Design #3: spot diagrams as a function of the field angle and of the defocus.
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Point spread function and Strehl ratio
In Fig. 5.21, we plot the monochromatic PSFs for the two wavelengths, for NA = 0.35
and different field values, up to ±0.12◦. Although Sr is always well above 0.8, the
performances for λLi are a bit worse compared either to λCr or to Design #2a.

Figure 5.21 – Design #3: monochromatic PSFs versus the field angle, at best common
focus. The maximum value of each color scale corresponds to the (on-axis)
Strehl ratio.

Modulation transfer function
In Fig. 5.22, we plot the MTFs for λLi and λCr (left and right panels, respectively),
for NA = 0.35 and different field values (up to ±0.12◦). In general, the performances
are rather good, with the simulated curves lying quite close to the ideal, diffraction-
limited ones. However, also here one can notice that the system behaves slightly
worse for the lithium wavelength.

Figure 5.22 – Design #3: monochromatic MTFs at best focus, for NA= 0.35 and different
field values. Black lines represent the diffraction-limited curves.
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Wavefront error
The wavefront error analysis, carried out as for Design #2b, is presented in Fig. 5.23.
The two monochromatic best focuses are in this case separated by roughly −1 µm.
To keep the safety margin on the WFE at full field, we had to decrease the numerical
aperture for λLi down to 0.3 (being however able then to increase the AFOV up to
±0.15◦). In this configuration, the system is diffraction-limited, and it can operate
simultaneously with the two imaging wavelengths.

Figure 5.23 – Design #3: WFEs for the two imaging wavelengths, as a function of the
field angle. Simulations are carried out at each monochromatic best focus.
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Ray analysis
Fig. 5.24 shows the results of OSLO’s ray analysis. Under the same conditions
of the WFE analysis, the OPD curves always feature a peak-to-valley difference
smaller than λ/4. Further, Design #3 is also essentially free from astigmatism and
distortion. Lastly, differently from Design #2a, longitudinal color is highly corrected
for NA ≤ 0.27, while it increases for larger apertures.

Figure 5.24 – Design #3: ray trace analysis, showing OPD curves and aberrations plot.

MOT beams focus
Fig. 5.25 shows the position of the MOT beams focus, which also in this case lies
approximatively 2 cm outside the objective, thus providing enough space for installing
and operating a flippable mirror.

Figure 5.25 – Design #3: reversed sketch and ray caustics showing the MOT beams focus.
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Figures of merit
Gathering all the previous results together, Tab. 5.9 reports the figures of merit for
the objective lens system. The objective satisfies the initial requirements, although
its performances are slightly worse than Design #2a

Table 5.9 – Design #3: Figures of merit for the objective lens system. The nominal focal length is F = 57 mm, and the
working distance is WD = 42 mm. At NA = 0.35, the longitudinal chromatic aberration is LCA = +2.5 µm.

λ [µm] NAmax AFOV Sr fc [lp/mm] 103/fc [µm] R [µm] DOF [µm] WFE0 Wrms,0 WFEff Wrms,ff

0.671 0.30 ±0.15◦ 0.997 625 1.6 1.4 ±3.6 0.034 0.008 0.111 0.025
0.425 0.35 ±0.12◦ 0.985 1150 0.87 0.74 ±1.6 0.083 0.019 0.124 0.029

NAmax is the maximum numerical aperture. AFOV is the diffraction-limited angular field of view (for NA=NAmax). Sr is the monochromatic
Strehl ratio at best focus. fc is the frequency cutoff of the monochromatic MTF. R is the Rayleigh resolution limit (given NAmax). DOF
is the diffraction-limited depth of focus. WFE and Wrms are the peak-to-valley wavefront error and its r.m.s. value, respectively, with the
subscripts ‘0’ and ‘ff’ specifying whether they are evaluated on-axis or at full-field, respectively.

5.5 Final remarks
In this chapter, I described the design and simulation of a bichromatic high-resolution
imaging system for our Li-Cr mixture. Two different prototypes are proposed: The
former (Design #2b), involving a custom meniscus, exhibits in general remarkably
good performances, with all the relevant figures of merit pointing towards diffraction-
limited operation. The latter (Design #3), relying on commercial lenses only, still
satisfies our initial requirements, although with slightly worse performances for the
lithium wavelength, which can anyway be considerably improved by moderately
decreasing the numerical aperture.
In Tab. 5.10 we compare our two designs with other Alt-like schemes reported in
the literature. Albeit still lacking a practical realization, which is on the schedule
of near-future pursuits in our group, results from our ray-tracing simulations are
certainly promising.

Table 5.10 – Comparison between different objectives.

λ [µm] NA R [µm] FOV [µm] F [mm] WD [mm] tw [mm] Ref.

0.852 0.29 1.8 ±500 36 37 5.00 [92]

0.780 0.36 1.3 ±180 47 35 5.00 [93]

0.852 0.29 1.8 ±440 67 65 6.40 [94]

0.780 0.44 1.1 ±105 53 36 5.00 [95]

0.589 0.52 0.71 ±170 41 23 9.53 [96]

0.461 0.44 0.63 ±100 25 18 3.13 [97]

0.671 0.40 1.0 ±150 57 34 7.94 [#2b]0.425 0.35 0.74 ±120

0.671 0.30 1.4 ±150 57 42 7.94 [#3]0.425 0.35 0.74 ±120
λ specifies the design wavelength(s), NA is the numerical aperture, R is the resolution, FOV
is the diffraction-limited field of view, F is the effective focal length, WD is the working
distance, and tw is the vacuum window thickness.
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Conclusions
My thesis work has encompassed three main activities: the first realization of ul-
tracold 6Li-53Cr Fermi mixtures, the investigation of their interspecies scattering
properties via Feshbach loss spectroscopy, and the design of a bichromatic high-
resolution objective.

To attain ultralow temperatures in our novel system, we have devised and optimized
an all-optical strategy, loading atoms into a bichromatic optical dipole trap directly
from the steady-state double-species MOT. Our procedure starkly differs from the
ones previously employed to cool chromium samples [65] – one of the key points
being the IR light-shift compensation via 532 nm light – and it allowed us to attain
more than a 100-fold increase in the number of cold Cr atoms, relative to previous
studies. In the BODT we perform a sympathetic cooling stage, relying on highly-
efficient evaporative cooling of the two lowest Zeeman states of 6Li near the 832 G
homonuclear Feshbach resonance. In turn, the remarkable efficiency with which the
sympathetic cooling stage works constitutes a first indication for favorable Cr-Li
interspecies collisional properties, and it represents an optimum starting point for
future studies in the degenerate regime.

With our ultracold samples we have performed extensive Feshbach loss spectroscopy,
exploring up to six different Li+Cr scattering channels. Our experimental effort
was primarily targeted at the detection of heteronuclear Feshbach resonances, the
(magnetic) positions of which constitute the fundamental input for quantum colli-
sional models. The main outcome of our investigation is a set of about 50 Li-Cr FRs,
pinpointed within a magnetic field region that spans from 0 to 1500 G.
On the theoretical side, the coupled-channel model developed by our collaborator,
Prof. A. Simoni, still requires some fine adjustment in order to become quantitatively
accurate over the whole 6Li-53Cr Feshbach spectrum, and possibly over those of other
isotopic combinations as well. According to the current assignment, however, it
already reliably predicts the values a5/2 ∼ 14 a0 and a7/2 ∼ 42 a0 for the exaplet and
octuplet background scattering lengths, respectively. Further, most of the observed
low-field loss features appear connected to p-wave FRs, whereas those around 1400 G
are interpreted as s-wave resonances.
Notably, on the experimental side, a very recent characterization of the elastic scat-
tering near one of these high-field resonances, not discussed in this work, confirms
its s-wave nature, pointing to a magnetic field width ∆B on the order of ∼ 1÷ 2 G.
Our work lays the ground for a wealth of next-future experimental studies in the
quantum-degenerate regime: From the investigation of exotic few- and many-body
phenomena in resonantly interacting, mass-imbalanced Fermi mixtures, to the real-
ization of quantum gases of CrLi ground-state bi-polar molecules.

Lastly, the design and simulation of the high-resolution imaging system was a
totally independent side project, that I carried out during my initial period in
the lab, when the Cr oven was temporarily unavailable. The final optical scheme
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is the result of subsequent implementations of the original Alt’s design [92], a
starting point for many “home-made” high-resolution objectives for ultracold atom
experiments. The introduction of achromatic doublets has enabled the achievement
of an almost perfect correction for longitudinal chromatic aberrations, relatively
to our two imaging wavelengths (λLi = 671 nm and λCr = 425.5 nm), an essential
requirement to take simultaneous images of our two atomic samples. According
to ray-tracing simulations, the system that I designed is diffraction-limited up to
numerical apertures on the order of 0.35÷ 0.40, and over a field of view of about
250÷ 300 µm in size, with overall performances completely comparable to similar,
but monochromatic, Alt-like schemes reported in the literature.
On the practical side, the next challenges are the design of a suitable objective case
to firmly hold the lenses in place, accommodating the tight tolerances of this kind of
systems, and the subsequent assembly and test of the prototypes. If the simulated
performances will be confirmed and attained with the real objective, the latter will
be installed on our experimental setup, allowing us to increase our current optical
resolution by a factor of 10.
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[84] H. Gross, H. Zügge, M. Peschka, F. Blechinger, Handbook of optical systems,
Vol. 3: Aberration Theory and Correction of Optical Systems, Wiley-VCH
(2007)

[85] H. Gross, F. Blechinger, B. Achtner, Handbook of optical systems, Vol. 4:
Survey of Optical Systems, Wiley-VCH (2008)

[86] F. A. Jenkins, H. E. White, Fundamentals of Optics, 4th ed., McGraw-Hill
(2001)

[87] A. Ghatak, K. Thyagarajan, Contemporary Optics, Springer (1978)

[88] Fundamental Optics, CVI Melles-Griot technical guide (2009)

[89] Gaussian Beam Optics, CVI Melles-Griot technical guide (2009)

[90] Imaging Resource Guide, Edmund Optics

[91] V. N. Mahajan, Strehl ratio for primary aberrations in terms of their aberration
variance, J. Opt. Soc. Am. 73, 6 (1983)

[92] W. Alt, An objective lens for efficient fluorescence detection of single atoms,
Optik 113, 3 (2002)

[93] L. M. Bennie, P. T. Starkey, M. Jasperse, C. J. Billington, R. P. Anderson, L.
D. Turner, A versatile high resolution objective for imaging quantum gases,
Optics Express 21, 7 (2013)

[94] J. D. Pritchard, J. A. Isaacs, M. Saffman, Long working distance objective
lenses for single atom trapping and imaging, Rev. Sci. Instrum. 87, 073107
(2016)

[95] X. Li, F. Zhou, M. Ke, P. Xu, X.-D. He, J. Wang, M.-S. Zhan, High-resolution
ex vacuo objective for cold atom experiments, Applied Optics 57, 26 (2018)

[96] M. W. Gempel, T. Hartmann, T. A. Schulze, K. K. Voges, A. Zenesini, S. Os-
pelkaus, An adaptable two-lens high-resolution objective for single-site resolved
imaging of atoms in optical lattices, Rev. Sci. Instrum. 90, 053201 (2019)

https://doi.org/10.1017/CBO9781139644181
https://doi.org/10.1002/9781119302773
https://doi.org/10.1016/C2009-0-22069-1
https://doi.org/10.1007/978-1-4684-2358-7
https://www.edmundoptics.com/knowledge-center/industry-expertise/imaging-optics/imaging-resource-guide/
https://doi.org/10.1364/JOSA.73.000860 
https://doi.org/10.1364/JOSA.73.000860 
https://doi.org/10.1364/OE.21.009011
https://doi.org/10.1063/1.4959775
https://doi.org/10.1063/1.4959775
https://doi.org/10.1364/AO.57.007584
https://doi.org/10.1364/AO.57.007584
https://doi.org/10.1063/1.5086539
https://doi.org/10.1063/1.5086539


Bibliography 127

[97] I. H. A. Knottnerus, S. Pyatchenkov, O. Onishchenko, A. Urech, F. Schreck,
G. A. Siviloglou, Microscope objective for imaging atomic strontium with 0.63
micrometer resolution, arXiv:1906.07167 [physics.optics] (2020)

[98] G. J. C. L. Bruls, Exact formulas for a thin-lens system with an arbitrary
number of lenses, Optik 126, 6 (2015)

[99] F. Serwane, Deterministic preparation of a tunable few-fermion system, PhD
Thesis, University of Heidelberg (2011)

https://arxiv.org/pdf/1906.07167.pdf
https://arxiv.org/pdf/1906.07167.pdf
https://doi.org/10.1016/j.ijleo.2015.01.035
https://doi.org/10.1016/j.ijleo.2015.01.035
http://ultracold.physi.uni-heidelberg.de/files/thesis%20friedhelm%20serwane.pdf

	Introduction
	Atom-atom interactions
	Elements of scattering theory
	Low-energy scattering
	Scattering by a square potential barrier
	Scattering by a square potential well
	Bound states of the square potential well

	Levinson's theorem applied to the square well
	The Ramsauer-Townsend effect
	Shape resonances
	Unitary limit and effective range
	The zero-range and effective range approximations

	Scattering of identical particles
	More realistic atomic interactions
	Selection rules

	Feshbach resonances
	Multi-channel scattering: a toy model
	Magnetic tuning of Feshbach resonances
	Inelastic collisions and loss mechanisms
	Feshbach loss spectroscopy: an introduction


	Experimental setup
	Lithium
	Chromium
	Lithium laser setup
	High-field imaging

	Chromium laser setup
	Cr red repumpers

	The MOT optical setup
	Bichromatic optical dipole trap

	Production of ultracold Li-Cr mixtures
	Loading of the Li-Cr MOT
	Loading of the Li MOT
	Loading of the Cr MOT

	Loading of the BODT
	Optimization of gray-molasses and ODT loading power
	Compensation of Cr light shift: the ``dark'' spot
	Polarization of Cr via spin-exchange collisions

	Evaporation trajectories
	Production of a Li crossover superfluid
	Production of a Li degenerate Fermi gas
	Production of ultracold Li-Cr mixtures


	Feshbach loss spectroscopy
	Sample preparation and typical experimental conditions
	Relevant loss mechanisms
	Feshbach scans
	Analysing loss data
	Two-body losses in ultracold Li-Cr mixtures
	Three-body losses in ultracold Li-Cr mixtures

	Final remarks

	Design of a bichromatic high-resolution objective
	Introduction
	Chromatic aberrations and color correction
	Simulations with OSLO
	Simulations results
	Design #1
	Design #2a
	Design #2b
	Design #3

	Final remarks

	Conclusions

