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Introduction

Over the last decade, the field of quantum gas has been subjected to an exciting

growth accompanied by a rapid increase of both experimental and theoretical research

activities. This amazing development has been triggered by the first achievement

of Bose-Einstein condensation in 19951. The firsts Bose-Einstein condensates have

been first produced with a sample of87Rb [1], 7Li [2], and 23Na [3]. Further, other

atomic species have been employed, such as1H [4], 85Rb [5] , metastable4He [6, 7],
41K [8], 133Cs [9] and174Yb [10]. Up to now, more than fifty groups worldwide

are producing dilute-gas condensates, using different tricks and techniques. New

prospects using other atomic species are also under examination [11, 12, 13]. This

big interest is mainly due to the fact that a Bose-Einstein condensate (BEC) isa new

state of matter characterized by a macroscopic occupation of a single quantum state.

Indeed, when the de Broglie thermal-wavelength exceeds the mean spacingbetween

atoms,105-107 bosons arrange themselves in a single quantum state. This large oc-

cupation number together with the experimentally ability to manipulate atomic gases

opens the unique possibility to study, on a macroscopic scale, several quantum effects

enclosing many branches of physics [14, 15, 16].

Nevertheless, the field of quantum gases is not exhausted here !

In 1999 another crucial goal has been reached with the first production of a degenerate

Fermi gas of40K atoms [17]. Up to now, seven experimental groups have produced a

Fermi gas well below the temperature of degeneracy exploiting evaporative cooling

on two different spin-states of6Li [18, 19], or taking advantage from the sympathetic

cooling technique using a6Li-7Li [20, 21], a 6Li-23Na [22], and a40K -87Rb [23]

mixture.

Fermions exhibit a somehow opposite quantum behavior with respect to bosons mainly

due to their exchange properties. Indeed, indistinguishable particles aredescribed by

a many body wave-function which turns out to be symmetric under the exchange

1The Nobel Prize in 2001 was awarded to Eric Cornell, Wolfgang Ketterle, and Carl Wieman for

their work on BEC
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of two bosonic particles and anti-symmetric for fermions. Furthermore, fermions at-

tract much attention not only as natural antagonist of bosons but also fortheir peculiar

characteristics. First of all, the anti-symmetry of fermionic particles leads to thewell-

known Pauli exclusion principle which introduces in the system a sort of interparticle

repulsion. Indeed, fermions have to occupy one-by-one the quantum states and the

multiple-occupation of one state is forbidden. In the energy space, the fermions are

arranged in the so-called Fermi sphere whose radius, atT = 0, is fixed by the highest

energy level reachable (Fermi energy). For instance, a white dwarf and neutron stars

are mainly composed of fermions and the existence of a Fermi sphere with blocked

dimension yields to a "quantum pressure" which stabilizes the stars against the col-

lapse enhanced by strong gravitational forces.

In despite of the above discussion, fermions and bosons do not belong intwo com-

pletely separate classes of particles. The link between them is quite subtle andlies

in the possibility to produce a bosonic-like particle starting from two distinguishable

fermions. This is the basic idea of the BCS theory of the superconductivity:two

distinguishable electrons near the surface of the Fermi sphere are unstable against an

attractive perturbation and can form a pair, the so-called Cooper pair. It look like

quite natural to export the idea of Cooper pairs also to atomic Fermi gases. Recently

many efforts have been focused in this direction. First of all, distinguishable fermions

can be obtained from a mixture of fermions in two-spin states. Further, one can pro-

duce an interaction between particles by tuning the interstate scattering length via

Feshbach resonances [24]. In the limit of strong repulsive interaction,the system is

unstable with respect to the formation of molecules which can be eventually Bose

condensed (BEC regime) [25, 26, 27, 28]. In presence of a strong attractive interac-

tion, fermions could instead form Cooper pairs and the system behaves asan highTC

superconductor (BCS regime). Many experiments have been performedin the BCS-

BEC crossover [29, 30, 31, 32, 33], and, until now, a clear and indisputable evidence

of the achievement of the BCS regime has not yet been provided even if recent studies

on collective excitations seam to indicate the accomplishment of this regime [34, 35].

Another promising scheme to achieve the BCS regime is to use a Fermi-Bose mixture

in which bosons induce an effective attraction between the two fermionic spinstates

[36, 37]. Note that this method is the atomic analog of phonon-induced interaction

which is the underlying mechanism of superconductivity.

The otherhot topicof the quantum gases field concerns optical lattices. An opti-

cal lattice is a perfect periodic potential produced by a retroflected laserbeam in a

standing-wave configuration. In the last years, this periodic potential has been ex-
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tensively exploited with Bose-Einstein condensates giving rise to spectacular effects

at the border between different areas of physics. Experiments have explored effects

of quantum phase coherence by observing, for instance, a macroscopic tunneling of

condensed atoms through the lattice [38, 39, 40, 41] or a coherent emission of matter

wave from a condensate loaded in a vertical lattice [42]. Furthermore, thissystem

has also allowed the observation of phenomena ranging from the solid state physics,

such as Bloch oscillations [43, 44], to the physics of high correlated system, with the

evidence of a quantum phase transition from a superfluid to a Mott insulator[45], and

to the field of gases of reduced dimensionality [46, 47].

In our experimental work, we have the unique possibility to combine together the

Fermi gas and the optical lattice. Up to now, we are indeed the only experimental

group producing such kind of system [48], and, as far as we know, several groups

are now moving in this direction2. The interest to bind together the field of Fermi

gases with that of optical lattices is excited by different reasons. First ofall, the

tight resemblance between atomic fermions in an optical lattice and electrons in a

ions lattice pushes toward the extension of solid state effects to atomic Fermi gases.

Moreover, a Fermi gas in an optical lattice is aperfect systemcompletely free from

interactions. This feature opens the unique possibility to study single-particleco-

herence effects which are usually overwhelm by interaction [49, 50]. Indeed, in a

spin-polarized Fermi gas interatomic collisions are suppressed by the Pauliprinci-

ple and, a lattice, produced by laser light, is perfect in the sense that impurities or

phononic excitations are absent. This ideal system turns out to be the most appropri-

ate system to test the theory of transport in crystal in regimes not accessible neither in

solids nor in bosonic gases [51]. Secondly, if a non-uniform extra potential is added

to a Fermi gas in the lattice then is possible to detect phenomena of localization [52]

which provides promising application in quantum computation devices [53]. Another

potentiality of this system has been pointed out recently by several theoretical works:

two-component Fermi gases or Fermi-Bose mixtures in a lattice exhibit a peculiar

exoticphase diagram as a function of the interaction [54, 144, 145]. In addition, a

tight 2D-lattice can also be exploited to investigate the physics of Mott-transition in

a Fermi gas.

Finally, the optical lattice has recently been proposed as a tool to probe the fermionic

superfluidity in a strong interacting two-components Fermi gas [57]. The detection of

the BCS regime is indeed an open question whose resolution is of crucial importance.

2As far as we know, the group of Tilman Esslinger in Zurich and the one of Klaus Sengstock in

Hamburg are now starting to work on Fermi gases in optical lattices.
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The purpose of our experimental work, presented in this thesis, is to provide a testing

ground for the basic behavior of a Fermi gas in an optical lattice. In this sense, our

study on a non-interacting Fermi gas locates as the first step on the route towards a

superfluid fermionic gas in an optical lattice.

Outline of the Thesis

This thesis report on our experimental investigation on a non-interacting Fermi gas

in presence of an optical lattice. We find that the statistical distribution makes the

properties of such system highly non trivial also in the limit of zero temperature. In-

deed, on the one hand we will exploit the non-interaction of the system to observe

phenomena of single-particle coherence, such as Bloch oscillation, on a long time

scale, and on the other hand we use the broad energy distribution3 of fermions to

study localization effects in presence of an additional non-uniform potential. We also

study the transport of fermions from the non-interacting limit to the interacting one,

exploring regimes not accessible in solid state.

Our work of this thesis is organized as follow:

The first Chapter is devoted to the description of our experimental setup. In particular,

we produce a Fermi gas of40K atoms by using the technique of sympathetic cool-

ing with 87Rb bosonic atoms. The presence of the Bose gas, which can eventually

condense, gives us a twofold possibility: we can whether study interactioneffects be-

tween the two species or obtain a direct comparison between a Fermi and a Bose gas.

We also report on some effects exhibited by our strong interacting Fermi-Bose mix-

ture, such as the modification of the expansion and the collapse of the Fermi gas. In

Chapter 2, we give a brief overview on the theory of a particle in a periodicpotential,

with particular attention to the transport properties. The third Chapter is devoted to

the study of our Fermi gas trapped in a vertical lattice against the gravity. The force

of gravity induces a motion of fermions resulting in a Bloch oscillation and/or in a

Zener tunneling. Due to the non-interacting nature of the system, our measurements

provide the first experimental observation of long-lived Bloch oscillationswhich are

usuallykilled by interactions in common metals, or in semiconductors, or in Bose

gases. Thanks to this peculiarity, we employ such oscillation to perform a time-

resolved interferometric measurement of the force of gravity. We also discuss the

superiorness of fermions with respect to bosons in such kind of experiment. In Chap-

3We remind to the reader that the Fermi distribution is broad due to the Pauli principle which impose

a single-occupation of energy levels.
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ter 4, we address to the problem of a Fermi gas loaded in a combined parabolic and

periodic potential. We observe that the parabolic potential destroys the translational

invariance of the system leading to two different classes of states, named delocalized

and localized states. In particular, delocalized fermions are the equivalent of Bloch

particles whose dynamical evolution can be described in the framework of an effec-

tive mass theory. Localized fermions are instead related to Wannier-Stark states and

behave as an insulator under an external driven potential. In Chapter 5, we show how

the introduction of a collisional channel induces a transport on localized fermions.

The interactions are introduced in the system by adding bosons. We then compare

our findings with the Esaki and Tsu theory which usually applies for semiconductor

superlattices.





Chapter 1

Atomic Fermi gas

Dove c’è sfizio non c’è perdenza...

A. B.

Over last decade, fundamental goal has been reached in the field of atomic physics.

Above all, the achievement of Bose-Einstein condensation in neutral atoms [1, 2, 3,

4, 5, 6, 7, 8, 9, 10] has opened the exciting possibility to investigate quantumbehavior

on macroscopic scale. A Bose-Einstein condensate (BEC) is a new state ofmatter in

which 105-107 particles, below a critical temperature, go to occupy the same quan-

tum state. This "effective" attraction between bosons is a direct consequence of their

statistic and it turns out that all the particles can be described by a single macro-

scopic wave-function. However in nature particles divide in two different classes and

the naturalantagonistsof bosons are known as fermions. In 1999 another crucial

goal has been reached with the production of a degenerate Fermi gas of40K atoms

[17, 18, 20, 21, 22, 23]. This experimental result has attracted much attention in

the community since fermions, near degeneracy, behave in a somehow opposite way

with respect to bosons. First of all, while a phase transition separates the degenerate

and the classical regime for a Bose gas, a system of identical fermions undergoes a

smooth crossover between these two regimes. Secondly, Fermi particles experience a

effective repulsion due to their statistics which obliges a single occupation ofnearest

neighbor quantum states.

In this Chapter we will show some of the fascinating consequences arising from the

statistical nature of the Fermi gas.
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1.1 Outline

The aim of this Chapter is to discuss the main features of a non-interacting trapped

Fermi gas and to show how the behavior of the system is modified by the additionof

a collisional channel. Indeed we can produce a Fermi-Bose mixture which exhibits

a strong interspecies attraction leading to spectacular effects, such as thecollapse of

the Fermi gas.

We start to remind the properties of a trapped non-interacting Fermi gas (Sec. 1.2).

We then describe our experimental procedure to produce a degenerateFermi gas of
40K atoms (Sec. 1.3). In particular, our procedure to bring fermions into degeneracy

exploits the technique of sympathetic cooling in which a bosonic gas of87Rb atoms

acts as a refrigerator. Our40K -87Rb Fermi-Bose mixture is an extremely rich system

which gives us a twofold possibility: on the one hand, we can directly compare the

behavior of atomic gases obeying to two different quantum statistics and, onthe other

hand, we can investigate interspecies interaction effects (Sec. 1.4). In particular, our

Fermi-Bose mixture exhibits a large interspecies attraction which strong affects both

the density distribution and the dynamics of the system.

The main results reported in this Chapter on the Fermi-Bose mixture can be found in

our recent publications:

• Expansion of a Fermi gas interacting with a Bose-Einstein condensate, F. Fer-

laino, E. de Mirandes, G. Roati, G. Modugno, and M. Inguscio, Phys. Rev.

Lett. 92, 140405 (2004).

• Magnetic Control of the Interaction in Ultracold K-Rb MixturesA. Simoni,

F. Ferlaino, G. Roati, G. Modugno, and M. Inguscio, Phys. Rev. Lett.90,

163202 (2003).

• Mean-field analysis of the stability of a K-Rb Fermi-Bose mixture, M. Mod-

ugno, F. Ferlaino, F. Riboli, G. Roati, G. Modugno, and M. Inguscio, Phys.

Rev. A68, 043626 (2003).

• Collapse of a degenerate Fermi gas, G. Modugno, G. Roati, F. Riboli, F. Fer-

laino, R. Brecha, and M. Inguscio, Science297, 2240 (2002).

• Dipolar oscillations in a quantum degenerate Fermi-Bose atomic mixture, F. Fer-

laino, R. Brecha, P. Hannaford, F. Riboli, G. Roati, G. Modugno, and M. In-

guscio, J. Opt. B: Quantum Semiclass. Opt.5, S3 (2003).
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Figure 1.1:Fermi distributionf(ε) for different temperatures of the system:T = 0K (solid

line), T = TF (dashed line) andT =80nK (dotted line). The energyε is expressed in units

of 1/kB .

1.2 Trapped Fermi gas

While the bosonic degeneracy involves the formation of a Bose-Einstein condensate,

the fermionic degeneracy leads to a single occupation of quantum states. Atzero tem-

perature, the occupation number of each fermionic quantum state is equal toone up

to energies close to the Fermi energyEF , and is zero for larger energies. The Fermi

energyEF corresponds to the higher energy level occupied atT =0 K, and sets the

relevant energy scale of the system. This tight packing creates a Fermi sea of particles

where a minimum size is maintained by the so-called Fermi pressure. Furthermore,

additional particles can not penetrate into the Fermi sea and this gives rise tothe

Pauli blocking of collisions. It is interesting to note that all these features arise some-

how from the properties of symmetry of the fermionic wave-function. In particular,

a system composed byN identical fermions is described by a wave-function which

is antisymmetric under the interchange of any pair of particle coordinates. Onthe

contrary, a bosonic function is completely symmetric. This fundamental difference

leads to different statistical mechanics which govern these two classes of particles. A

Fermi gas obeys to the well-known Fermi-Dirac distribution

f(r,p) =
1

eβ[H(r, p)−µ] + 1
, (1.1)

whereβ is 1/kBT with kB the Bolzmann constant. The functionf(r,p) is the oc-

cupation probability of a state of energyε, whereH(r, p)ψ(r,p) = εψ(r,p). The

chemical potentialµ fixes the atom number in the gas. Equation (1.1) includes the

Pauli principle which forbids the multiple occupation of a single energy level. As
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shown in Fig. 1.1, the zero-temperature Fermi distribution (1.1) is equal to one for

energies lower thanEF = µ(T = 0K, N), and zero otherwise. The presence of

a finite temperature smooths the step-wise transition from one to zero occupation

numbers. In particular, a finite temperature a shell of amplitudekBT opens around

EF , and the unitary occupation is no more guaranteed. For such a distribution,only

fermions with energies in a shell near the Fermi surface provide a response of the

system to external perturbations. Thus, the ratio between the temperature Tand the

Fermi temperature,TF = EF /kB, defines the degree of degeneration of our system.

Note that the scenario is opposite in a Bose-condensed system where all the particles

participate in the response [14].

We produce experimentally a Fermi gas which is confined by a harmonic trap

with a cylindrical symmetry. The main quantities involved, such as temperature and

atom number, depend also on the trapping potential. We now briefly remember to

the reader the basic features of a harmonically trapped Fermi gas. A more detailed

description can be found in [58, 59].

The HamiltonianH(r, p) of a harmonically trapped Fermi gas is

H(r, p) =
p2

2m
+ VF (r), (1.2)

wherem is the atomic mass of the fermion andVF (r) is the harmonic trap. Our

harmonic potential exhibits a cylindrical symmetry along thez-axis, also named axial

direction. The trapping frequencies are(ω1, ω2, ω3) ≡ (ωr, ωr, ωz) with ωr,z the

radial and axial frequency, respectively. We introduce the aspect ratio of our trap

λ = ωz/ωr andVF is given by

VF (r) =
1

2
mω2

r (x
2 + y2 + λz2). (1.3)

The single particle levels are the familiar eigenvalues of the harmonic oscillator:

εnx,ny ,nz = ~ωr(nx + ny + λnz) with nx, ny, nz non-negative integers. If the ther-

mal energy far exceeds the level spacing (kBT >> ~ωr), we can replace the discrete

single-particle harmonic spectrum with a continuum one, whose density of energy

states is

g(ε) =
ε2

2λ(~ωr)3
. (1.4)

The chemical potentialµ is then given by the normalization condition for the total

number of fermionsNF in the trap

NF =
1

(2π~)3

∫

g(ε)dε

eβ(ε−µ) + 1
. (1.5)
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Eq. (1.5) also fixes the Fermi energyEF of the system [58]. Solving the integral, one

indeed finds

EF = ~ωr[6λNF ]1/3, (1.6)

which sets the relevant energy scale of the system. From the Fermi energywe can

define the typical size of a trapped degenerate gas

EF =
1

2
mω2

rR
2
F → RF =

√

2EF

mω2
r

= aho(48NF )1/6, (1.7)

where the harmonic oscillator length isaho =
√

~/mωho andωho = (ω2
rωz)

1/3.

From Eq. (1.7) follows that if the number of fermionsNF À 1, the size of the

trapped Fermi cloud is much greater thanaho: this is a consequence of the statistical

"repulsion" imposed by the Pauli exclusion principle. This effective repulsion be-

tween fermions in the trap is known as Fermi pressure, and leads to a biggersize of

the cloud with respect to the harmonic oscillator lengthaho. This is another important

difference with respect to both a "classical" gas and a Bose condensedgas. Indeed de-

creasing the temperature, the size of a classical gas continuously shrinksaccordingly

to the classical Bolzmann distribution. The size of a non-interacting Bose-Einstein

condensate is instead temperature-independent and atT =0 K it is exactly equal to

ar0 because they all occupy the lowest state of the harmonic oscillator. If one also

introduces the two-body repulsive interaction between condensed atoms,the radius

of the cloud also increases withNB. In particular, the radius of the condensateRB

scales withNB asN1/5 which is slightly different from the behavior found for a

Fermi gas,RF ∝ N
1/6
F [58]. Despite to a similar dependence on the atom number,

the dependence ofRB,F from NB,F has a very different physical origin.

1.2.1 Spatial and momentum distribution

For a temperature different from zero, the density distribution of a degenerate Fermi

gas has to be calculated numerically by integrating the distribution function (1.1)in

the momentum space. AtT = 0K, one instead finds an analytic expression:

n(r, T = 0) =
8λN

π2R3
F

[

1 − ρ2

R2
F

]3/2

, (1.8)

whereρ is the effective distanceρ = (x2 + y2 + λ2z2)1/2 defined for a harmonic

trap with a cylindrical symmetry. Another important quantity for our proposalis

the momentum distribution of the cloud. Indeed, in the experiments, most of the

information about the sample are obtained looking to the absorption signal of the
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cloud, after the sudden release from the trap (see Sec. 1.3.2). When theconfinement

is switched off, the cloud performs a rapid and adiabatic expansion and weare able to

measure the velocity distribution by imaging the atoms. The momentum distribution

(Thomas-Fermi distribution) at zero temperature is

n(p, T = 0) =
1

(2π)3

∫

d3rΘ(pF (r) − p), (1.9)

whereΘ(pF (r) − p) is the unit step function and the Fermi momentumpF =√
2mEF . The integral (1.9) gives [58]

n(p, T = 0) =
8N

π2p3
F

[

1 − p2

p2
F

]3/2

. (1.10)

Despite the spatial anisotropy of the trap, the momentum distribution of the degener-

ate Fermi gas is isotropic i.e. the momentum distribution depends only on the magni-

tude ofp. As we will discuss in the next section, this is an important difference with

respect to the case of a Bose gas.

1.2.2 Comparison with the Bose-Einstein condensate

A Bose gas shows a behavior somehow opposite with respect to the one exhibited

by fermions. The difference between these two systems arises entirely from their

different statistical nature. For lack of space, we will report just a brief discussion on

some characteristic features of the Bose gas which immediately clarifies the differ-

ence between the two gases. Above all, trapped bosons undergo a phase transition as

the critical temperatureTc is reached and all the atoms prefer to occupy macroscop-

ically a single state. Furthermore, differently from a gas of identical fermions, the

condensed bosons collide each other. Due to the low temperatures (T ≤ Tc ≈100

nK ) and the diluteness of the cloud, the interparticle interaction can be described

in a simple way. Indeed one can consider that each boson experiences amean field

potential produced by all the other particles on the gas [14, 15]. This approximation

is somehow justified by the fact that, at low temperature, just two-body collisions

survive. The interatomic potential can be written as aδ-function using the method of

the pseudo-potentials,

V (r′ − r) = gδ(r′ − r). (1.11)

The coupling constantg, at the first order of the perturbation, takes the form

gB =
4π~

2aB

m
, (1.12)



1.3 The intriguing issue of cooling a Fermi gas 15

whereaB is the boson-bosons-wave scattering length. We just mention here that this

interaction introduces in the system a sort ofrigidity which yields to the spectacular

phenomena of superfluidity observed in Bose-Einstein condensate [14].

For a large atom numberNB, the interaction energy is notably larger than the kinetic

energy. In this limit, one can neglect the latter contribution to the energy and thesys-

tem is known to be in the Thomas-Fermi regime. AtT =0 K, the density distribution

of a trapped condensate has an inverted-parabola shape

nB(r) =
R2

B

2g

[

1 − ρ2

R2
B

]

, (1.13)

whereRB is the maximum radius of the cloud

RB =

(

15λgNB

4π

)1/5

. (1.14)

The typical energy scale of a Bose gas is the zero-temperature chemical potentialµ

which scales with the atom number more rapidly than the Fermi energy (µ ∝ N
2/5
B

while EF ∝ N
1/3
F ). Another important difference is connected to the spatial and mo-

mentum distribution of the two clouds. Even if the two gases exhibit a similar spatial

distribution, their momentum distributions differ in a profound way. The momentum

distribution of both a thermal cloud and a Fermi gas turns out to be isotropic. On

the contrary, in a condensate,nB(p) anisotropic in a asymmetric trap due to the non-

linearity of the interparticle interaction1. Furthermore, the widths of the momentum

distribution scale in the opposite way:pF increases withNF , while the typical mo-

mentum for a condensed atom decrease with particle number, sincepB ∼ 1/RB due

to the Heisenberg uncertainty principle.

1.3 The intriguing issue of cooling a Fermi gas

We experimentally produce a Fermi gas of40K atoms well belowTF using the tech-

nique of sympathetic cooling with87Rb atoms [23].

In this section, we give a rapid overview on the experimental technique used to pro-

duce our atomic Fermi gas. The reader can find a more detailed description inthe

PhD thesis of Giacomo Roati [59].

Since the first achievement of Bose-Einstein condensation, the standardtechnique to

cool an atomic gas below the temperature of degeneracy consists of a pre-cooling

1As we will show in Sec.1.4.2, the different momentum distribution of the twoclouds leads also to

a completely different expansion evolution.
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phase based on laser cooling which carries the system atT ≈100 µK and of an

evaporative cooling phase [60]. The initial cooling phase for both alkalibosons and

fermions proceeds via laser cooling and magneto-optical trapping (MOT).The sub-

sequent cooling phase has instead to be different for the two species. Bosons can

indeed exploit techniques based on re-thermalization, while fermions can not collide

down toµK [61]. In particular, bosons are transferred from the MOT into a magnetic

trap, where a forced evaporative cooling is applied to bring the gas into degeneracy.

The evaporation of bosons is performed usually by using a radio-frequency signal

which remove selectively the hottest atoms from the trap. The key requirement for

the usefulness of this technique is clearly the existence of a large elastic collisional

rate between atoms which allows for an efficient thermalization of the gas. In general,

the elastic cross-section depends on the temperature. At very low temperature, the

only significant contribution to the collisional rate is given by the s-wave scattering

amplitude which is temperature-independent. The other contributes (p-wave, d-wave,

ecc...) are proportional to the temperature and thus suppressed down to 100 µK.

The situation is even more complicated for identical fermions because interatomic

collisions are completely suppressed in suc a system. As a consequence, the evapo-

rative cooling fails for spin-polarized fermions and another cooling procedure have

to be found. One can circumvent this problem using some form of mutual or sympa-

thetic cooling between two types of distinguishable particles, either two spin states

of the same atomic species or of two kind of atoms. In the first scheme, fermions

are simultaneously trapped in two different spin states and evaporating cooling is

then performed on both components [17, 21]. Thermalization is now assured by s-

wave collisions between these two spin states2. The other scheme exploits the idea

of to mix fermions with a gas of bosons which can be efficiently cooled using the

usual evaporative cooling . The Fermi gas decrease its temperature by colliding with

bosons which act like a refrigerator. This latter technique is known assympathetic

cooling and has been carried out with success at ENS (Paris) [20], at Rice (Texas)

[18], at MIT [22], and in our experiment [23].

In our experiment, we indeed adopt the sympathetic cooling scheme mixing together

two different atomic species, the fermionic40K and the bosonic87Rb. In the next

two subsections we will give a brief overview on our experimental apparatus and on

the main steps to produce the40K-87Rb mixture. The reader can find a more detailed

description in [59].

2Fermions loaded in two spin state are no more indistinguishable and can collide.
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Figure 1.2:Hyperfine structure of87Rb and40K . The light grey indicates the transition used

to cool the atoms while the white one is the repumper transition.

1.3.1 Experimental setup

• 40K and87Rb atoms:

Our Fermi-Bose mixture is composed by two stables isotopes of different alkali

atoms. The Fermi gas is composed of40K atoms while we employ87Rb atoms for

the Bose gas. The choice of these atomic species is suggested by severalreasons.

First of all, alkali atoms are well suited for cooling methods based both on laser light

and thermalization processes because of their internal energy-level structure and their

low probability of three-body collisions which could produce losses of atomsfrom

the trap. Furthermore the energy levels of such atoms are easy to handle since their

optical transitions can be excited by the available laser sources. Finally, Potassium

atoms have in nature two bosonic isotopes41K and39K (nuclear spinI = 3/2) and

one fermionic,40K (nuclear spinI = 4). Since Potassium combined with Rubidium

gives the unique possibility to study both a Bose-Bose mixture [8] and a Fermi-Bose

mixture [23]. Rubidium atom is instead present in nature in two bosonic isotopes :
85Rb and87Rb . The former is characterized by an interparticle attraction with a scat-

tering lengtha = −10a0, wherea0 is the Bohr radius. A negative scattering length

carries out instability in the system which could lead to the collapse of the system

[14]. Nevertheless it is possible to produce a stable condensed gas of85Rb atoms

tuning the scattering length by applying an homogeneous magnetic field which shifts

the atomic levels (Feshbach resonances) [63, 64]. The other bosonic isotope,87Rb

, has, on the contrary, a positive scattering lengtha = 99a0 [65] which guarantees
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Figure 1.3: Scheme of our experimental setup: atoms of both species are cooled and

trapped in the first MOT and then transferred in the second MOT, where they are magnetically

trapped.

a stability with respect to the Bose-Einstein condensation. We remind that87Rb has

been the first atomic species brought to the condensation in 1995 [1].

• Hyperfine structure of40K and87Rb :

In Fig. 1.2 we report the internal level structure of40K compared with the one of
87Rb . The internal states are labelled with the quantum number F which identify the

total angular momentum of the atoms3. Despite of the relatively small separation

between the excited states (Γ = 1 GHz) of 40K , we are able to reach Sub-Doppler

temperatures using laser cooling method with theD2 line (S1/2 → P3/2). Further-

more,40K exhibits a peculiar hyperfine structure with both the excited states and the

ground states inverted. This complete inversion is caused by its large nuclear spin

(I = 4) that points in the opposite direction with respect to the nuclear magnetic

moment. As a consequence, the ground state of40K has a large angular momentum,

f = 9/2; this implies the existence of many magnetically trapped Zeeman levels

(mF = 9/2; 7/2; 5/2; 3/2; 1/2). In Fig. 1.2, we also report the two optical wave-

length (known as cooling and repumper light) used for the laser cooling of the two

species.

• The cells:

3The total angular momentum isF = J+I, with J the total electronic momentum andI the nuclear

one.
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The heart of our experimental apparatus is composed by two cells which are joint

by a transfer tube surrounded by a magnetic guide, as is shown in Fig. 1.3.Each

cell is furnished with optical windows for the access of the different laser beams and

connected to a vacuum pump. The pumps are necessary to obtain a lifetime of the

mixture much longer than the characteristic time of collisions between the trapped

mixture and the background gas which determines the main loss process of our sys-

tem. The atoms are initially captured in the first cell where a ion pump maintains a

pressure of10−9 Torr. The atoms are then transferred into the second cell where the

pressure is fixed at10−12 Torr by another ion pump. The transfer tube is30 cm long

tube with radius of4 mm and maintains a differential pressure between the two cells.

• Laser sources:

The aim of our experiment is to cool simultaneously a Bose and a Fermi gas until the

degeneracy is reached. The production of a mixture introduce a higher complexity

in our apparatus with respect to the standard single specie set-up since thetwo gas

exhibit different optical and magnetic characteristic. In particular, the optical transi-

tions needed to cool the two gases are notably far one from the other, andwe have

to handle with different laser sources. As reported in Fig. 1.2, the coolingoptical

transitions for87Rb as a wavelength of780 nm, while the one for40K is at766.7 nm.

In the case of Rubidium, the splitting of the hyperfine levels in the ground state isso

large (∆ν = 6.85 GHz) that we are forced to use two diode lasers at780 nm, one

operating on the repumper and the other on the cooling transition. Both diode lasers,

home-made grating stabilized external cavity lasers, are locked to different atomic

reference signals of87Rb. The cooling light is splitted in two part: one part goes to

generate the frequency resonant with theF = 2 → F ′ = 2 transition needed for

the optical pumping of Rubidium, while the second one gives the frequency of the

MOTs, red detuned respect to theF = 2 → F ′ = 3 transition (the typical detun-

ing is ∆ ' −3Γ). Furthermore, a part of this latter beam is also used for the push

beam4 and/or for the imaging beam which is resonant with theF = 2 → F ′ = 3

transition. The repumper light (see Fig. 1.2) is instead produced by the other diode

laser. This laser light is resonant with theF = 1 → F ′ = 2 transition, and is

needed for the optical pumping sequence. The MOTs cooling and repumping lights,

with typical ratio between the two powers 3:1.

All the laser lights needed to manipulate Potassium atoms are instead obtained by a

4The push beam is needed to transfer atoms from the first to the second MOT, and has to be slightly

on the red of theF = 2 → F ′ = 3 transition
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single laser source combined with acusto-optic modulators (AOM). Indeed,differ-

ently from Rubidium, the hyperfine splitting of the Potassium ground state is only

1.8 GHz so that we are able to produce all the frequencies we need thanks to an

home-made Ti:Sa, pumped by a Nd:Yag (Millennia X, Spectra Physics). The beam

exiting from the Ti:Sa laser is splitted in two parts, one for the cooling and the other

for the repumping, with a controllable ratio typically of the order of 4:1. The cool-

ing part is then divided in other two beams, one for the MOT and the other forthe

imaging, push beam and the optical pumping. The cooling frequency for theMOTs

is red shifted respect to the closed transitionF = 9/2 → F ′ = 11/2. The light

for the imaging, is instead resonant withF = 9/2 → F ′ = 11/2, while the one

for the push beam must be slightly blue shifted respect toF = 9/2 → F ′ = 11/2.

Finally, the optical pumping light is resonant withF = 9/2 → F ′ = 9/2. We

generate the frequency for the repumper with three different AOMs thatproduce the

light resonant with theF = 7/2 → F ′ = 9/2 transition.

Our four laser beams (cooling-repumper for Rb and cooling-repumper for K) are in-

jected simultaneously in a semiconductor tapered amplifier (MOPA) which provides

the necessary power for the two magneto-optical traps (MOTs). The beams for Potas-

sium and for Rubidium have opposite polarization. This gives us the possibility to

choose the ratio between their powers using a halfwave plate displaced before the

MOPA.

1.3.2 Experimental procedure

The aim of our experiment is to cool40K atoms until the degeneracy is reached

(T < TF ). To achieve this regime, we first cool and trap87Rb and40K atoms in

a standard double magneto-optical trap. We then load the cold sample (∼ 50 µ K)

in a magnetic trap where a selective evaporative cooling is performed on Rubidium

atoms. At this point, the Potassium component is sympathetically cooled down to the

degenerate regime. Figure 1.4 shows a schematic representation of the main phases

of our experimental procedure and a brief discussion is reported below.

• 1◦ step: Loading87Rb atoms in the second MOT

At first, the background vapor of87Rb atoms in the first cell is loaded into the first

MOT. The first MOT is produced by combining a quadrupole magnetic field with

two pairs of retroflected beams along thex-y directions and two independent beams

along thez-axis, as shown in Fig. 1.4(a). The laser light is composed by a superpo-
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Figure 1.4: Sketch of the experimental sequence. Our procedure consists basically of 3

steps: (a) Transfer of bosons (87Rb ) from the first to the second cell using a continuous push

beam. (b) transfer of fermions (40K ) by a pulsed push beam. Both species are now magneto-

optically trapped (MOT 2) in the second cell. (c) Loading of the mixture in a magnetic trap

using a QUIC configuration of the coils (c.1). In this magnetic trap, we perform a radio-

frequency evaporative cooling of Rb atoms, which thermalize reaching lower temperature

(c.2).
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sition of red detuned (ωL < ω0) cooling and repumper beams. The quadrupole field5

splits the atomic levels in many position-dependent Zeeman sub-levels. The atoms

occupying a sub-level resonant with the laser light (ωmF
' ωL) experience a braking

force (F = −γv) produced by the radiation field which slows down its motion. In

the meanwhile, the atoms are transferred from the first to the second cell where they

are again trapped in the second MOT. The transfer is achieved using a continuous

pushing beam acting on the red of theF = 2 → F
′

= 3 transition. In about 25 s we

are able to transfer and then to recapture in the second MOT about109 Rb atoms at a

temperature of 50µK.

• 2◦ step:87Rb and40K atoms in the second MOT

After the first 25 s during which just the Rb atoms are loaded in the second MOT, we

rotate the mechanical halfwave plate to inject into the MOPA also the laser beams at

the Potassium frequency. In this stage the ratio between the K an Rb light is about

10:1. Potassium atoms, initially loaded in the first MOT, are transferred into thesec-

ond MOT thanks to a pulsed push beam, as reported in Fig. 1.4(b). We pulsethe push

beam every 200 ms, taking care the quadrupole field of the first MOT is switched off

during each shot. At the end of this procedure(10 s) also105 atoms of40K coexist

with 109 Rb atoms in the second MOT.

• 3◦ step: Magnetic trapping and evaporative/sympathetic cooling

While in the MOT phase the mixture are trapped and cooled at the meantime, in this

stage we trap the two gases using a magnetic field and we cool the87Rb atoms using

the usual technique of evaporative cooling [15]. The K atoms are insteadsympathet-

ically cooled because of the collisions with the Rb gas.

MAGNETIC TRAPPING: We trap the atoms in a conservative potential produced by

magnetic fields. The magnetic potential splits the hyperfine levels in Zeeman sub-

levels

E(~r) = E0 + mF gF µBB(~r), (1.15)

whereE0 is the energy of the unperturbed level,mF labels the Zeeman level,gF is

the Lande’ factor,µB is the Bohr magneton, andB(~r) the applied magnetic field.

Just the atoms occupying a Zeeman sub-level withmF gF > 0 can be magnetically

trapped because their energyE(~r) increases withB(~r) (Wing theorem) [60]. These

5This magnetic field is realized using two coils in anti-Helmholtz configuration.
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states are namedlow-field seekers. In our case we trap both Rb and K atoms in their

doubly polarized states, in which the nuclear and electronic spin componentshave the

largest possible values along the direction of the magnetic field. In particular, 87Rb

atoms are in the|2, 2〉 state, while40K atoms in|F = 9/2, mF = 9/2〉. Note that

the sample have to be completely polarized before transferring it into the magnetic

potential to avoid large losses of atoms (interstate collisions). This can be done by

using an optical pumping light which is selective on the Zeeman sub-level.

To realize the magnetic trap, we use three coils in the quadrupole Ioffe-Pritchard

configuration (QUIC) consisting of two coils which generate a radial quadrupole

field and a third one (pinch coil) orthogonal to the quadrupole axis which produce

a harmonic confinement (see Fig. 1.4(c.1)). The effective magnetic confinement ex-

perienced by the atoms depends on the first (∂B/∂z = B
′

) and second derivative

(∂2B/∂z2 = B
′′

) of the magnetic field

U(z, r) ∝
[

B0 +
1

2
B

′′

z2 +
B

′2

2B0
r2

]

, (1.16)

whereB0 is the bias field. Atoms experience a cylindrical harmonic potential with

different frequencies along the axial and radial directions. The frequency along the

axial pinch direction (weak axis of the trap) given by

ωz ∝
√

B′′

m
while in the radial direction ωr ∝

√

B′2

mB0
. (1.17)

The trap frequencies measured for the87Rb cloud areωz ' 2π × 16.3 Hz and

ωr ' 2π × 197 Hz and the ones for40K atoms areωz ' 2π × 24 Hz and

ωr ' 2π × 317 Hz. Difference in the trapping frequencies experienced by the

two species has to be ascribe to their different masses, indeed the ratio between the

frequency scales as
√

mRb/mK . We can typically transfer from the MOT to the

QUIC trap about 105 atoms of40K and 5×108 of 87Rb at a temperature of 100µK.

EVAPORATIVE AND SYMPATHETIC COOLING: Once the mixture is trapped in the

magnetic potential, we perform an evaporative cooling only on the Rb component.

The basic idea of this technique is to selectively remove the hottest atoms from a

trapped states to untrapped ones with a radio-frequency knife. This signal couples

indeed trapped Zeeman levels to untrapped ones6 We continuously remove atoms

with energy larger than the average energy while the remaining atoms equilibrates at

a lower mean temperature through elastic collisions, as schematized in Fig. 1.4(c.2).

6The Zeeman splitting between the Rb levels is of the order of tens of MHz for the typical magnetic

field applied (1 Gauss).
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One can stop the evaporation when we reach the Bose-Einstein condensation of the

Rb cloud to have a degenerate Fermi-Bose mixture or to continue until all the bosonic

atoms are removed to obtain a pure Fermi gas. We typically achieve the condensation

of 87Rb atT = 80nk with NRb ∼ 105. During all the evaporation ramp the Potas-

sium atoms thermalize with the colder Rb gas through elastic collisions and2 × 104

atoms reach the degenerate regime.

During the evaporation of bosons, the Bose and Fermi gases are in thermal equi-

librium each others. We have found the same temperature for both gases byfitting

their momentum profile with a Bolzmann distribution (T & Tc, TF ) 7. We have also

checked the thermal equilibrium during all the evaporation phase by measuring T as

a function of the radio-frequency signal applied. As we will discuss in Sec. 1.4.1, the

efficiency of the thermalization is also confirmed by the high interspecies scattering

length measured. Note that the thermal capacity of the Bose gas decreaseswith the

temperature as(T/Tc)
3 and in the deep degenerate regime (T << Tc), the thermal

capacity of bosons becomes smaller than the one of the Fermi gas. In this condition,

bosons can no more be considered as a thermal bath for the fermions and the evapo-

rative cooling is then stopped.

At the end of our procedure we obtain a Fermi gas of40K coexisting with a Bose-

Einstein condensate of87Rb well below the temperature of degeneracy, i.e.T <

TF , TC . The minimum temperature reached in our apparatus is 0.2TF . For our

experimental parameters, the Fermi temperature isTF =250 nK and the critical tem-

peratureTc=110 nK for a sample composed by 104 fermions and 2×104 bosons.

These atom numbers correspond to peak-densities of the order ofn ' 1014 cm−3

for Rb andn ' 5 × 1012 cm−3 for K.

• 4◦ step: Imaging the mixture

We observe the density distribution of the two clouds using the standard absorption

imaging technique. We switch off the magnetic trap and we let the mixture expand for

a suitable time to avoid problems related to the high density of the samples. We then

shine the mixture with a two-colors resonant probe beams delayed by an appropriate

time to have two spatially separate absorption images which are captured by a CCD

camera. From the analysis of these images, we can extract fundamental information

on the system such as the atom numbers of each specie, the temperature andthe

momentum distribution. The laser intensity revealed by the camera and the density

7Note that in the degenerate regime the two gases have a distribution which is nearly temperature

independent.
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Figure 1.5: Simultaneous onset of Fermi degeneracy for40K (left) and of Bose-Einstein

condensation for87Rb (right). The absorption images are taken for three decreasing temper-

atures, after 4.5 ms of expansion for K and 17.5 ms for Rb, and the sections show the profile

of the momentum distributions [23].

of each specie are connected by the following relation

IT (x, z) = I0(x, z) expσ

[
∫

dy n(x, y, z)

]

, (1.18)

where n is the atomic density,σ the cross section of absorption and integration is

made along the beam direction. The quantityσ [
∫

dy n(x, y, z)] is the optical den-

sity (OP) of the system which is directly measured in the experiment. Assuming that

the thermal contact between the two components is efficient also in the highly degen-

erate mixture, the temperature is determined by fitting the thermal tails of the Bose

gas.

In Fig.1.5, we show a series of absorption images of the mixture for three different

stages of the evaporation ramp taken after a ballistic expansion. As the temperature

is decreased belowTc, we observe the appearance of a narrow peak in the momen-

tum distribution of the Bose gas which is the signature of the condensation. When

instead the Fermi gas reaches the degeneracy we observe that, loweringthe temper-

ature, its width remains almost constant due to the Fermi pressure which is a direct

consequence of the their statistics. We fit the two clouds with a Thomas-Fermi distri-

bution [58, 14]. For instance, typical sizes of the trapped Fermi gas areRa = 52µm

andRr = 5.1µm in axial and radial direction, respectively. The BEC is completely

immersed in the Fermi sea due to its smaller dimension.
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1.4 Fermi-Bose mixture

The production of a Fermi-Bose mixture solves on the one hand the problem tocool

down a Fermi gas and on the other hand opens the exciting possibility to investigate

interspecies interaction phenomena. The first goal of such kind of studies is to de-

termine the interspecies scattering length which affects the behavior of the system in

several phenomena.

1.4.1 Measurement of the interspecies scattering length

We now report on our effort to characterize the dominant collisional mechanisms

between fermions and bosons. For theµK temperatures common in ultracold atom

traps, interactions are dominated by two-body s-wave scattering8. As mentioned

earlier, the two-body collisions between spin-polarized fermions are completely sup-

pressed down toµK-temperature, due to the Pauli principle. Fermions coexisting

with a Bose gas can instead collide with bosons and the interspecies scatteringlength

aBF is the relevant quantity governing collisional mechanisms. Note that the knowl-

edge ofaBF is not only crucial to determine the efficiency of sympathetic cooling

but also necessary to predict the regimes of stability and the phase separation/overlap

of the mixtures. In addition,aBF is needed to determine the occurrence of Feshbach

resonances, which allows to tune the zero-field scattering lengthaBF by applying a

homogeneous magnetic field [37].

We have measured the value ofaBF by studying the center-of-mass motion of both

gases when a dipolar mode is excited [66] of the mixture. We induce a dipolar motion

by displacing the minima of the magnetic potential. From the damping of the coupled

oscillations we estimate the interspecies scattering lengthaBF . This procedure has

been originally used for a Bose-Einstein condensate (BEC) loaded in two different

hyperfine levels [67] and then extended to a gas of fermions in two spin-states [68]

and to a mixture composed of different atoms [69]. The basic idea is that, while

in a pure harmonic potential, single gases undergo undamped collective oscillations,

two gases experiencing different trap frequency can exhibit a dampedout-of-phase

motion. From the damping rate we can extract quantitative information about the

scattering processes.

To perform these measurements we magnetically trap87Rb atoms in the|2, 2〉 state

and40K atoms in|F = 9/2, mF = 9/2〉. These doubly polarized states have the

8For typical collisions,kR << 1, where~k is the relative momentum andR is the range of the

interatomic potential.
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Figure 1.6:Coupled dipolar oscillations of 8×103 non-degenerate K (triangles) and 8×104

uncondensed Rb (circles) atoms along the axial direction atT=300 nK. The two samples os-

cillate at the same frequency with a collisional rateΓcoll=190 s−1 typical of a hydrodynamic

regime. The solid lines are the best fit to the model presentedin the text.

maximum coupling with the magnetic field and the two species experience the same

trapping potential. The axial and radial harmonic frequencies areωa = 2π × 24 s−1

andωr = 2π× 317 s−1 for K, while those for Rb are a factor(MRb/MK)1/2 ≈ 1.47

smaller. This different trapping frequencies allows one to induce a relative motion

between the two components.

Dipolar oscillations are excited by a sudden displacement of the trap minimum in the

axial directionz. This is easily done by changing the ratio of currents in the trap coils

which corresponds to modify the value of the bias fieldB0 (see Eq. (1.16)) . With an

appropriate choice of the amplitude and timing of such displacement we can excite

a quasi-pure dipolar oscillation9, with no apparent higher-order (shape) oscillations.

The amplitude of those oscillations is also chosen small enough to preserve theover-

lap of the two clouds even in the degenerate regime.

We perform the measurement using a non-degenerate K-Rb mixture at temperature

T = 300− 500 nK for which the collisional rate can be directly related to the elastic

cross-section. As shown in Fig. 1.6, due to the interspecies collisions, bothK and Rb

oscillations are damped, and the K motion is also frequency-shifted. To describe the

coupled center-of-mass motion of the two cloud, we use a classical model for two

9The typical mean relative velocity of K and Rb samples during the subsequent oscillations is
√

〈v2〉=5 µm/ms.
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harmonic oscillators coupled through a viscous damping. The coupled equations of

motion are

z̈Rb = −ω2
RbzRb −

4

3

MK

M

NK

N
Γcoll (żRb − żK)

z̈K = −ω2
KzK +

4

3

MRb

M

NRb

N
Γcoll (żRb − żK) , (1.19)

whereM is the total massmK + mRb, N the total number of atomsNK + NRb, and

Γcoll is the rate of K-Rb two-body elastic collisions. This model well describes cou-

pled dipolar motion of the two clouds, whereas all the microscopic damping mecha-

nisms are described by the quantityΓcoll. Assuming two Boltzmann distributions for

the gases, the collisional rate is related to the elastic cross-section

Γcoll = n̄σvth , (1.20)

wherevth =
√

8kBT/πM is the rms relative thermal velocity and the mean density

in the overval region is̄n = ( 1
NK

+ 1
NRb

)
∫

nKnRbd
3x. Finally, the collision cross-

sectionσ depends on the interspecies s-wave scattering length as

σ = 4πa2 . (1.21)

From Eq. (1.19), one find that the system has two normal modes, whose frequencies

ω and damping timesτ vary with the collisional rateΓcoll. We solve numerically

Eq. (1.19) for the typical ratio of atom numbers,r=NRb/NK=7.5. At low collisional

rate, in the so-called collisionless regime (ωRbτ, ωKτ ¿1), the two samples are pre-

dicted to oscillate at their bare frequencies (ωK ≈ 2π × 24 s−1, ωRb ≈ 2π × 16.3

s−1 ), and the ratio of the two damping times scale as the inverse ratio of the total

mass of each sample. As the collisional rate increases, the damping time of the two

normal modes decreases and their frequencies are shifted towards an intermediate

value. Here each sample oscillates at a combination of both normal modes. Finally,

at very high collisional rate (ωτ >1) the system enters in the hydrodynamic regime.

Here there is a mode at this intermediate frequency with low damping and a second

overdamped mode whose frequency rapidly decreases with increasingΓcoll. The lat-

ter corresponds to our experimental situation ( see Fig. 1.6): the two samplesoscillate

at the same frequency, almost in phase and with a long damping time. Note that, the

collisional rateΓcoll depends strongly on the relative phase gained by K and Rb atoms

during their motion. This dependence helps us to provide an accurate determination

of the experimentalΓcoll and then of s-wave scattering lengthaBF , since the phase of

the oscillations can be determined with relatively high accuracy. As already reported



1.4 Fermi-Bose mixture 29

in our previous work [70], one can extract the value of the collision cross-section

and hence ofaBF fitting the experimental data for the dipole oscillations with the

solution of Eq. (1.19). We have repeated this procedure by varying the temperature

in the rangeT=300-500 nK, the total number of atoms in the rangeN=104-5×105,

and the ratior from 2.5 to 7.5. From the above measurement, we find a large s-wave

scattering length between the Fermi and Bose gas

|aBF | = 410+80
−80a0. (1.22)

This value is in good agreement with the one reported in our previous work [69]

which was found from the measured41K-87Rb scattering length with a re-scaling

of mass. This result gives a signature of the strong interspecies interaction between

the two gases10. The value (1.22) is obtained by a weighted average of the different

measurements performed with different atom numbers and temperature. Theuncer-

tainty is dominated by a 40% a priori uncertainty in the number density. Note that

such large scattering length found also seems to indicate the attractive natureof the

interspecies interactions, since a positive one would be compatible only with a much

smaller magnitude. However, one can not extract the sign ofaBF by studying the

dipolar oscillations because of the square dependence ofaBF from the collisional

cross-section. Another method to measure directly the scattering length is based on

the study of rethermalization mechanism performed on a thermal Fermi-Bose mixture

[23]. The idea id to drive out the system from the initial equilibrium by modulating

the trapping potential at twice the radial oscillation frequency of just the Rubidium

atoms (ν ∼420 Hz). After this phase of selective heating, one can study the subse-

quent heating of the Potassium, mediated by the elastic collisions with the Rubidium

component and extract the scattering length. In principle this method provides also

information on the sign of the interaction by measuring the thermalization rate as a

function of the temperature of the mixture. This procedure has been followed in the

case of41K-87Rb [69]. In the case of40K -87Rb this method falls down because, due

to the large value ofaBF , the system is in the Wigner regime, i.e. the collisional

cross-section will not depend on the temperature. As we will see in the nextsec-

tions, the system exhibits phenomena which are peculiar only of a binary mixture

with attractive interspecies interaction.

10For comparison, note that the s-wave scattering length between bosons of the 87Rb cloud is

|aB | =99a0.
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1.4.2 Mean field approach

Atomic ultracold gases are also a well-suited system from a theoretical point of view.

Indeed, due to the diluteness of these atomic gases, the interparticle interactions are

relatively easy to handle, as already discussed in Sec. 1.2.2. In a Bose-Einstein con-

densate, the collisions between bosons are fully taken into account by a mean field

potential which depends on the s-wave scattering lengthaBB (zero-order pertuba-

tion). Considering this potential, the condensate is described by the well known

Gross-Pitaevskii equation (GPE) [14, 15], which is Schrödinger equation with an

extra non-linear term relative to the mean field potential. We now consider a Bose-

Einstein condensate coexisting with a Fermi gas. The interspecies interactioncan

again be described by a mean field potential proportional to the fermions density and

to the insterspecies s-wave scattering lengthaBF . One has thus to add the Fermi-Bose

potential to the GPE
[

− ~
2

2mB
∇2 + VB(r) + gBBnB(r) + gFBnF (r)

]

φ(r) = µBφ(r), (1.23)

where nB(r) is the bosons density,φ(r) is the condensate wave function. The

boson-boson and boson-fermion interactions are proportional to the coupling con-

stantsgBB = 4π~
2aBB/mB andgBF = 2π~

2aBF /mR, wheremB,F are the atomic

masses whilemR = mBmF /(mB + mF ) is the reduced mass. As already shown,

for our Rubidium-Potassium mixture, the values of the scattering lengths areaBB =

99 a0 andaBF = −410 ± 80 a0.

Similarly, also the Thomas-Fermi equation describing the Fermi gas have to include

the interspecies mean field term [71, 72]

nF (r) =

√

2m3
F

3π2
[µF − VF (r) − gFBnB(r)]3/2, (1.24)

whereµF is the chemical potential,nF the Fermi-cloud density andVB,F the har-

monic trapping potential for the two species.

From Eq. (1.23-1.24), it turns immediately out that the density distribution of both

gases are modified due to their mutual interaction. The study of such modification

will provide a clear indication and a test for the mean field approach. We have nu-

merically solved the two coupled equations (1.23) and (1.24) for our typicalnumber

of atoms, our nominal trap frequencies and foraBF = −410a0 [73]. Our result is

reported in Fig. 1.7 where we show the new ground state of the trapped mixture. The

atom number considered here are104 and3 × 104, for Potassium and Rubidium re-

spectively. The dotted curves show the calculated density profiles along the direction
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Figure 1.7:Density profile of the Bose-Einstein condensate and of the Fermi gas in trap. The

dotted lines correspond to the non-interacting case (aBF = 0). The higher density profile is

the one of the condensate. The effect of the strong interspecies attraction (aBF = −410a0) is

an increase of the density of both species in the overlap region (continuous lines). The curves

are the result of the mean-field calculations.

of the gravity of both the clouds in non-interacting case (aBF = 0). Also in this

case the two distributions are not concentric due to a gravitational sag between the

two clouds, which affects both the horizontal and vertical directions, dueto a small

misalignment of the magnetic trap with respect to the direction of the gravity11 [74].

The peak-density of the Fermi gas is much lower than the one of the condensate. In-

deed, the Fermi pressure stabilizes the fermionic system to a much larger shape and

consequently lower density respect to the BEC. If we now switch on the attractive

interactionaBF = −410 a0, the situation notably changes, as clearly appear from

the continuous lines in Fig. (1.7). From the attractive nature of the interspecies inter-

action follows the absence of any phase-separation between the two clouds: they still

keep good spatial superposition, despite of the gravitational sag, and in particular,

with the condensate completely immersed in the Fermi "sea".

Furthermore, we observe a large increase of the density of both the species in the

overlap region. This increase is evident for both the components, but even larger in

the case of Potassium since the effective influence of the interaction depends from

the density of the other specie, and the mean density of a Bose-Einstein condensate

11We can consider the relative gravitational sag between the two clouds and thus the Fermi cloud will

experience a trapping potentialVF (x) = 1

2
mF

[

ω2

F⊥(x2 + (y − y0)
2) + ω2

Fz(z − z0)
2
]

. The values

of the displacement between the two potential centers arey0 = 3.6 µm andz0 = 20 µm.
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Figure 1.8: Modification of the expansion of a K Fermi gas due to the interaction with

a Rb BEC. The radial-to-axial aspect ratio of a cloud of4 × 104 fermions evolves more

slowly in presence of3.5×104 condensed bosons (solid circles) than in presence of a similar

number of uncondensed bosons (open circles). Each data point is the average of five or six

measurements. The dashed line is the calculated expansion of a pure Fermi gas, while the

solid line is the prediction for an interacting Fermi gas.

(n ' 1014) is typically two orders of magnitude larger than the one of a Fermi gas

(n ' 1012).

The deformed ground state of the system is predicted to affect also the dynamics

of the mixture leading to a modification of the frequencies of collective excitations

[75, 76] and of the expansion of the two clouds from the trap [77]. We have actually

observed a modification of the expansion of both the condensate [23] andthe Fermi

gas [78].

1.4.3 Expansion of the Fermi gas

The study of the expansion of an ultracold gases is one of the major tools to study

the interactions between atoms. As we switch of the confinement, the atoms freely

expand and the interaction energy starts to be converted into kinetic energy. From

the knowledge of the expansion velocity, one can traces back to the interaction field.

For instance, the anisotropic expansion exhibited by a condensate gave the first di-

rect evidence of the role of the boson-boson interaction [1, 2, 3]. Recently, a large

anisotropic expansion has also been observed in a two-component Fermigases at

Feshbach resonances [79, 80, 81] which has revealed the high collisional rate of the

mixture [82, 83]. Similarly, in order to observe the effect of their large mean-field

interaction, we have studied in detail the expansion of our Fermi-Bose mixtureby
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Figure 1.9:Modification of the expansion of a Rb condensate due to the interaction with a K

Fermi gas. The radial-to-axial aspect ratio increases morerapidly with time for condensates

created with K (solid circles) than for pure condensates (open circles).

suddenly switching off the magnetic confinement [23, 78]. The expansionof a non-

interacting Fermi gas exhibits an isotropic expansion and, despite to the anisotropic

magnetic confinement, the cloud tends to a symmetric shape withRa = RZ , simi-

larly to a classical gas. When we switch on the interactions between the Fermi and

Bose gas, the situation notably changes. The first quantity which gives important

information on the interspecies interaction is the radial-to-axial aspect ratio of the

cloud, defined asRr/Ra. In Fig. 1.8 and Fig. 1.9 , we report the evolution of the

aspect ratio of both the Fermi gas and the BEC. It is evident from the data point that

the Fermi gas exhibits an aspect ratio always smaller than the one measured for a

Fermi gas coexisting with a dilute thermal cloud of bosons [78] (see Fig. 1.8), while

the condensate, on the contrary, inverts its aspect ratio more rapidly in presence of

the Fermi gas [23] (see Fig. 1.9). This opposite behavior is somehow surprising be-

cause both gases are subjected to a similar interspecies interaction. The reason of

such difference has to be found on the different atomic densities and on the different

weight of interaction energy respect to the other energy (boson-boson interaction for

the condensate and the kinetic energy for the fermions). On the one hand,the ex-

pansion of bosons reveals the expected enhancement of density in trap (see Fig. 1.7)

which corresponds to a effective tighter confinement which tends to speed up the

evolution of the aspect ratio during the expansion. On the other hand, the behavior of

the Fermi gas gives evidence that the mutual attraction felt by the two speciesin the

first moment of the expansion also plays a crucial role in the subsequent dynamics.

Indeed, during the early stage of the expansion, each of the two gases experiences a
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Figure 1.10:Radial momentum distribution of the Fermi gas, detected after 12 ms of ex-

pansion, for different atom number in the mixture. ForNF = 2 × 104, (a) we observe that

below NB = 6 × 104 the distribution is slightly affected by interspecies potential, while

(b) aboveNB = 6 × 104 a bimodal structure appears. (c) After the collapse, the remaining

1.2× 104 fermions coexisting with7.4× 104 bosons exhibit a narrower distribution than the

non-interacting gas (dotted line).
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time-dependent trapping potential produced by the other species. In this phase the

negative interaction energy is converted into kinetic energy which, in general, can

be unevenly distributed between the two samples. Indeed, the Fermi gas is taking a

large part of the interaction energy, which results in a largely reduced kinetic energy

in the radial direction, and therefore in the slower evolution of the aspect ratio12, as

shown in Fig. 1.8. This interpretation is also confirmed by the observed dependence

of the expansion of the Fermi gas on the atom numbers in the mixture [78]. In par-

ticular, the aspect ratio decreases by increasing the effective overlapregion between

the two species. We can increase density in the overlap region by increasing NB at

constantNF . In this case, we observe the appearance of a double distribution in the

radial profile of fermions with a narrow peak surrounded by a broaderdistribution, as

illustrated in Fig. 1.10. We attribute the narrow distribution to the fermions trapped

into the condensate while the broader distribution is occupied by the more energetic

atoms outside the overlap volume which can expands freely. Note that we areable

to observe the bimodal distribution only in the radial direction, confirming that the

interaction energy between the two clouds is exchanged mainly in the more tightly

confined direction. From the observed behavior of the expanding Fermigas, we can

conclude that the momentum distribution reflects somehow the spatial distribution in

the trap.

1.4.4 Collapse of the Fermi gas

The modified expansion of the Fermi gas can be completely described in the frame-

work of the mean-field approximation [76, 82]. Although the atom numbers in the

mixture are increased above some critical value, the situation changes dramatically.

We have observed instabilities in the system which are driven by the interspecies

attraction. As we will discuss in this section, such instabilities can not more be de-

scribed using a mean field approach.

In general, both the non-interacting Fermi gas and the Bose-Einstein condensate are

stable systems. The stability of the fermionic gas is indeed assured essentially by

the Fermi pressure which arranges the fermions in the trap in a relatively large spa-

tial distribution compared to the one of a Bose-Einstein condensate. Note thatthis

12The theoretical curve has been obtained by a numerical simulation provided by X.J. Liu for our

experimental parameters. The numerical calculation are performed with aBF = −330a0 instead of

aBF = −410a0, which is the value that better fits also the expansion of bosons, as discussed in

Ref. [77].
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Figure 1.11:Evolution of the number of Potassium atomsNK (A) during the final stage of

the evaporation of condensed Rubidium atoms (B). When the number of condensed atoms

NRb is increased above105 (highlighted region), we observe a sudden decrease ofNK .

pressure acts as a repulsive force on the fermions and it is a general property of any

degenerate Fermi system, also present in white dwarfs and neutron stars. The sta-

bility of a Bose-Einstein condensate is instead guaranteed by the positive sign of the

interspecies scattering length, which corresponds to a net repulsive interaction be-

tween the atoms. In the case of a Fermi-Bose mixture, the stability of the system

depends essentially by the interspecies mean fieldUB,F = gBF nF,B. As we have

already discussed, such interaction tends to squeeze the spatial distribution in trap of

both species increasing the peak-density. The potentials which ensure themixture

stability, i.e. the kinetic energy for the Fermi gas and the boson-boson interaction for

the BEC, have instead a repulsive nature. Since these latter dominate with respect

to the interspecies attraction, the mixture is stable with a lifetime of the system of

about a second. When instead the numbers of atoms are increased abovea critical

value, the repulsive energies of both gases cannot balance the attractions UF , UB,

and the system can lower indefinitely its energy by increasing further both fermion

and boson densities [70, 73]. Indeed, the onset of instability is characterized by an

indefinite growth of central densities which triggers the simultaneous collapseof the

two species. We have experimental observed the collapse of the Fermi gasas a sud-

denly drop of the fermions atom numbers to less than half its original value, asshown

in Fig. 1.11. As long as the condensate is forming, we observe inelastic losses of K

atoms on the same time scale of the evaporation. When the condensed atoms reach a

critical threshold (at 0.6 s of the evaporation ramp), the number of K atoms suddenly
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Figure 1.12:Region of stability of the Fermi-Bose mixture, as a functionof the number of

atoms. The black dots are the experimental points; lines arethe theoretical prediction for the

boundary between the stable (left) and collapse (right) regions, for three values of the inter-

particle scattering length:aBF = −380 a0 (dotted line),aBF = −395 a0 (continuous line),

aBF = −410 a0 (dashed-dotted line). The marked dots are found very close to the instability

(see text).

drops to a lower value with a duration much shorter than the time scale of the other

loss mechanisms observed. Indeed, when we try to span the time interval between

0.55 and 0.6 s, the small shot-to-shot fluctuations of the atom numbers resultsin ei-

ther a large (NK = 2×104) or a small (NK < 104) Fermi gas, i.e. we are not able to

follow the dynamics during the collapse which seems to happens on a timet <<50

ms. Note that the theory predicts the simultaneous collapse of both species. However

in the experiment, we have observed only a marginally change in the atom number

of the condensate. Indeed, in correspondence of the collapse of the Fermi gas, the

depletion of the condensate is only of the order of2 × 104 atoms. We ascribe this

behavior to the 3-body K-Rb losses which alt the collapse of the mixture reducing

the number of atoms below the critical values [70]. It is possible to determine experi-

mentally the critical values of the atom numbers at the onset of the collapse [70]. We

have found the threshold to be atNK ' 2 × 104 andNRb ' 105. These values are

compatible with the ones predicted by the mean-field theory withaBF = −410 a0

[72, 73]. Due to the strong dependence of the critical atom number with scattering

length, the onset of the collapse also provide an alternative way to determineaBF

using a mean-field model. Accordingly to the study reported in Refs. [72, 84], we

can study numerically found thestableground state of the mixture. In our model,

the signature of the instability is the failure of the convergence procedure during the
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Figure 1.13:Evolution of the aspect ratio of the Fermi gas (solid triangles) and of the number

of bosons (empty circles) and fermions (solid circles) at the collapse [70]. During the final

stage of the bosons evaporation, the aspect ratio decreases, and suddenly drops to a much

lower value after the collapse (highlighted region). The aspect ratio is measured at5 ms of

expansion and the error bars are the standard deviation of different measurements.

iterative evolution toward the ground state of the system [73]. To compare the predic-

tions of the mean-field model to the experimental findings on the instability, we have

built a stability diagram, shown in Fig. 1.12. Here we report in the planeNB − NF

the condensate and fermion atom numbers that we were able to measure in the ex-

periment forstablesamples, and compare them with the calculated critical line for

instability for differentaBF around the nominal value. Note that the position of the

critical line depends quite strongly on the value ofaBF . In the experiment we have

observed the collapse of the Fermi gas for number pairs close to the two marked data

points.

Finally, we have studied the aspect ratio of the Fermi gas at the occurrence of the

collapse. We have observed that, after the collapse, the aspect ratio of the remaining

fermions results up to30% lower than the one expected for a pure Fermi gas and of

the same order of the one measured for a stable mixture with comparable atom num-

bers, as reported in Fig. 1.13. Indeed, increasingNB we first observe a small decrease

of the aspect ratio followed by a jump to a lower value just in correspondence to the

collapse. The aspect ratio then slowly tends to the unperturbed value as theBEC is

completely evaporated. This indicates that after the collapse the system has reached

a new equilibrium distribution in the same time scale of the collapse in which most of

the fermions are immersed in the condensate feeling a large interspecies interaction

during the expansion from the trap. This observation is somehow surprising, since
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one could expect that during the collapse exactly the fermions in the high density

region within the condensate are lost through inelastic processes while the remaining

fermions are mostly located in the outer region. This would correspond eitherto a

faster expansion with a larger aspect ratio, or to an oscillating Fermi gas strongly out

of the equilibrium which we do not observe in the experiment.

1.4.5 On the route toward the BCS transition

As already mentioned, Fermi gases are attracting more and more interest in thecom-

munity of quantum gases. This interest lies in the possibility to achieve, in such

fermionic systems, a superfluid regime similar Cooper pairs in superconductor met-

als. The underlying physics of the usual superconductor metals is well described

by the Bardeen-Cooper-Schrieffer (BCS) theory: two distinguishableelectrons near

the surface of the Fermi sphere are unstable against an attractive perturbation and

can form a pair, the so-called Cooper pair. The same instability is expected totake

place in a dilute gas of fermions at very low temperatures, typically much lower than

the Fermi temperature of the system [85]. At these ultralow temperatures, collisions

are strongly suppressed and the pairing can be achieved only through s-wave inter-

action. Since in the case of identical fermions this scattering process is inhibited,

we have to consider a system composed by two different fermionic species, as, for

example, the case of fermions in two different Zeeman levels. Note that the criti-

cal temperatureTBCS expected for Cooper pairing is typically of the order of some

fraction of the Fermi temperature for the system, which is hardly achievable experi-

mentally. Nevertheless,TBCS is expected to increase exponentially by increasing the

interstates s-wave scattering lengtha. The now well-tested method to tune the scat-

tering length is based on the Feshbach resonances technique which consists to apply

an homogeneous magnetic field which shifting the Zeeman levels [24, 86]. With this

technique, one can range from negative to positive scattering length, where different

physical phenomena are expected. In the limit of strong repulsive interaction, the

system is unstable with respect to the formation of molecules. These molecules have

been recently observed both in the normal phase and Bose condensed (BEC regime)

[25, 26, 27, 28]. In the other limit i.e. in presence of a strong attractive interaction,

one expect that fermions near toEF could instead form Cooper pairs. In this case,

the system behaves as an highTC superconductor (BCS regime). Many experiments

have been performed in the BCS-BEC crossover [29, 30, 31, 32, 33], and, until now,

a clear and indisputable evidence of the achievement of the BCS regime has not yet

been provided even if recent studies on collective excitations seam to indicate the
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accomplishment of this regime [34, 35].

Another promising scheme to achieve the BCS regime is to use a Fermi-Bose mixture

in which bosons induce an effective attraction between the two fermionic spinstates

[36, 37]. Indeed, a large boson-fermion interaction affects not only the stability of

the system [70], as we have presented above, but it also play a relevant role in the

mechanisms of Cooper pairing [36] by introducing an effective attractiveinteraction

between the fermions. This is the atomic analog of phonon-induced interactionwhich

is the underlying mechanism of superconductivity, where the coupling between two

electrons is provided by the exchange of lattice phonons. Our mixture composed by
40K-87Rb atoms seems particularly interesting from this point of view, due to their

large fermion-boson scattering length (see Sec. 1.4.1). By using the results of [36],

one can estimate the40K-40K effective interaction (aFBF ). At zero field, we know

that the40K-87Rb scattering isaBF = −410 a0, the Rb-Rb isaBB = −100, a0. For

these values, we find that the boson-induced scattering lengthaFBF at zero-field is

∼ −1700 a0 [70, 37]. This value is very large compared to the "bare" repulsive in-

teraction between Potassium atomsaFF = 174 a0. From the valueaFBF , we obtain

that the critical temperature for the BCS-transition turns out to beTBCS = 0.1TF ,

which is a temperature experimentally achievable.



Chapter 2

Quantum gas in a periodic

potential

Il particello...

H. O.

Recently, a great attention has been devoted to understand the general properties

of a quantum gas in a periodic potential. The problem of an electron moving in ape-

riodic potential has been exhaustively investigated in solid state physics to describe

systems such as conductors or semiconductors [87]. The presence ofa periodic po-

tential strongly modifies the free-particle energy spectrum and gives the well known

energy bands. The energy bands arise merely from the periodicity of thepotential and

the generality of this result suggests that such kind of phenomenology should also be

present in ultracold atomic gases subjected to a periodic potential. For instance, the

atomic gases has been successfully exploited to observe some typical solid-state phe-

nomena such as the Wannier-stark ladders [88] and its dynamical consequence, the

Bloch oscillation [89], the Zener tunneling [90] and the Rabi oscillation between

Bloch bands [91].

In this Chapter we will give an overview on the basic phenomenology exhibited by a

single particle into a periodic potential. The aim is to remind to the reader the single-

particle behavior in order to supply the basis to understand the behavior ofan atomic

gas observed in our experiment and reported in the subsequent Chapters. The starting

point of this Chapter is to describe the standard way to produce a periodic potential

for an atomic gas (Sec.2.1). We then remind the well-known Bloch theorem fora

particle in a periodic potential, and we analyze some general features of theeigen-

functions and eigenvalues of the Mathieu equation. Particular attention will begiven
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to the Wannier eigenfunctions and to the energy dispersion which exhibits a band

structure (Sec. 2.2). In the case of a sinusoidal potential, the Schrödinger equation

for our problem is known as the Mathieu equation (Sec. 2.3) which is not analytical

solvable in the general case, while numerical solutions are well-known. Finally, we

report on an overview of the dynamics of a particle into the lattice when subjected to

an external static force (Sec. 2.4). The most spectacular phenomena is the so-called

Bloch oscillationwhich corresponds to an oscillating motion of a particle when a

static external force is applied.

2.1 A periodic potential for quantum gases

In the last years, ultracold atoms in an optical lattice have been the subject ofintensive

and rich research activities providing a straight link between two different areas of

physics which are usually separated. On the one hand, cold atoms trappedby laser

beams fall in the domain of atomic physics and quantum optics. On the other hand,

the periodicity of the optical potential provides a strong connection with solid-state

physics. Furthermore, typical solid-state effects can be investigated in such systems

with the advantage that the optical lattice behaves like "perfect periodic potential".

The usual imperfections of traditional crystalline materials such as impurities, missed

ions or thermal vibrations (phonons) have no equivalent in the optical lattice.

In this section, we report the basic ideas for the production of a periodic potential for

atomic gases using laser beams.

2.1.1 The optical lattice

The optical lattice is produced by two laser beams propagating along thez-axis in

opposite direction, with a time-independent frequencyω and phase differenceϕ:

E→ = κ̂LE1 cos(kLz − ωt)

E← = κ̂LE2 cos(kLz + ωt + ϕ), (2.1)

wherekL = 2π/λ is the wave number andλ is the wavelength of the laser light.

The total intensity is given by

I(z, ϕ) = 2ε0c|E→ + E←|2 = 2ε0c
[

E2
1 + E2

2 + 2E1E2 cos(2kz + ϕ)
]

. (2.2)

The interference term gives the spatial modulation to the intensity with nodes sepa-

rated byd = λ/2. The atoms subjected to a laser field experience the dipole potential

Uopt = −1

2
〈p · E〉, (2.3)
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Figure 2.1:Sketch of the periodic potential experienced by the atoms. The dashed curves

represent the harmonic potential in each lattice site with frequencyω = ~kL
√

s.

wherep = αE is the electric dipole induced by the light andα is the complex

polarizability. If we consider an atom as a simple oscillator subjected to a classical

radiation field, Eq. (2.3) takes the form [92]

Uopt =
3πc2

2ω3
0

Γ

δ
I(z) (2.4)

whereω0 is the frequency of an atomic transition,Γ the spontaneous decay rate of

the excited level andδ = ω − ω0 the laser detuning.

Another important quantity is the photon scattering rateΓsc which account fot the

heating of the systems:

Γsc =
3πc2

2~ω3
0

(Γ

δ

)2
I(z). (2.5)

Note that if the laser frequency is smaller thanω0 (red detuningδ < 0), thenUopt

is negative and the potential minima have the maximum intensity while, above the

resonance (blue detuningδ > 0), the potential minima correspond to minima of

intensity. Furthermore, the dipole potential scales asI/δ, whereas the scattering rate

scales asI/δ2. The optical potential is therefore chosen with large detuning and high

intensity to keep the scattering rate as low as possible for a given potential depth.

Combining Eq. (2.2) and (2.4), we finally get the periodic potential experienced by

the atoms

Uopt =
U0

2

[

1 − cos

(

2πz

d

)]

. (2.6)
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The potential depthU0 is usually expressed in units of the single-photon recoil energy

U0 = sEr where

Er =
~

2k2
L

2m
, (2.7)

with m the mass of the atomic species considered. In Fig. 2.1, we report a schematic

representation of the optical lattice. The procedure used to calibrate suchpotential is

reported in Appendix A.

2.2 One-Dimensional periodic potential

We now discuss some general features arising from the periodicity of the potential.

In particular we will report on the Bloch theorem and on its main consequences.

2.2.1 Useful definitions

We start introducing some definitions which could be useful for the subsequent dis-

cussion.

1. The Bravais lattice: A fundamental concept in the description of any crys-

talline structure of lattice sites is the Bravais lattice which can be viewed in

terms of an infinite array of discrete points with a regular arrangement and a

fixed orientation. A one-dimensional Bravais lattice consists of all points with

positionZ = md, with m ∈ N.

2. The reciprocal lattice: Consider a set of pointsZ constituting a Bravais lat-

tice, and a plane wave,eikz. For generalk, such plane wave will not have, of

course, the periodicity of the Bravais lattice, but for certain special choices ofk

it will. the set of all wave vectors K that yield plane wave with the periodicity

of a given Bravais lattice is known as its reciprocal lattice. Analytically,K

satisfies the following relation:

eiK(z+Z) = eiKz, (2.8)

for anyz, and for allZ in the Bravais lattice. From the condition (2.8), we find

K = l 2π
d , wherel ∈ N.

3. The first Brillouin zone: The first Brillouin zone is a primitive cell of the

reciprocal lattice which fills all the z-axis without overlapping when it is trans-

lated through the lattice. The Brillouin zone centered onk = 0, extends from

−kB to kB, wherekB = π
d is usually known as Bragg momentum.
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Figure 2.2:Wave functions along the periodic potential associated to different energy levels.

The dashed lines are the modulating sine curves.

2.2.2 Bloch theorem

The one dimensional single-particle Hamiltonian for an atom in a periodic potential

is given by:
{

Hopt = p2
z

2m + Vopt(z)

Vopt(z ± md) = Vopt(z) ∀ m ∈ N
(2.9)

The Hamiltonian is periodic in space, with period given by the inter-well distanced.

The problem is completely solved if we find the stationary statesψ which satisfy the

Schrödinger equation

Hoptψ = Eψ. (2.10)

As a general consequence of the periodicity ofVopt, the stationary solutions obey to

the Bloch theorem :

Bloch theorem: the eigenstatesψ of the Hamiltonian (2.9) can be expressed as the

product of a plane wave and a function with the periodicity of the lattice:

ψn,k(z) = eikzun,k(z) (2.11)

whereun,k(z ± md) = un,k(z) ∀ m ∈ N andn is a positive integer. The Bloch

theorem demonstrates that if the potential shows a periodicity then the eigenfunctions

have also to exhibit a similar periodicity. There are several important and non trivial

consequences arising from this theorem.

1. Bloch theorem introduce a wave vectork. With appropriate boundary condi-

tion on the wave functionψn,k
1, one can demonstrate that the vectork must

1We can choose the Born-von Karman boundary condition:ψn(z + Nd) = ψn(z), whereN is
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be real and represents a good quantum number for the problem. The quantity

~k is known as thequasimomentumof a particle in a periodic potential which

is not proportional to the particle momentump. This is a crucial point that

immediately shows the difference with respect to the free-particle case. The

wave functionψn,k is not an eigenstate of the momentum operator(~/i)∇ :

~

i
∇ψn,k(z) = ~kψn,k + eikz ~

i
∇un,k(z). (2.12)

The k vector determines the behavior of the wave function under translation

and, as we will discuss in the next section, the different meaning ofk andp/~

involves that the system does not have completely translational invariance in

the presence of a nonconstant potential.

2. Any vector of the reciprocal latticẽk = k + l 2π
d , with l ∈ N, gives the same

value of the wave function becauseei(k±l 2π
d

)md = eikmd. This means that the

wave vectork can always be confined in the first Brillouin zone.

3. For a givenk, the Schrödinger equation (2.10) allows for an infinite family of

solution with discretely spaced eigenvalues (n is a positive integer). This gives

rise to the wee-known band structure of the energy levels. The different eigen-

values and its corresponding eigenfunctions are labelled by the band index n.

In a infinite periodic potential, each energy levelεn(k) is a continuous function

of the quasimomentumk.

4. The energy dispersionεn(k) also shows properties of periodicity

εn(k ± l
2π

d
) = εn(k). (2.13)

As a consequence, the full set of energy levels can be described withk re-

stricted to the Brillouin zone without losing generality.

5. As shown in Fig. 2.2, the exponential function of the (2.11) gives a sinusoidal

modulation toψn,k. Note that the nodes ofψn,k can occur for two different

reasons: on account of those present inun,k and on account of those introduced

by the exponential function.

the total number of primitive cells. We findk = mπ

Nd
, with −N ≤ m ≤ andm ∈ N. Imposing this

condition, we have2N + 1 possible value ofk.
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2.2.3 Momentum eigenfunction and Wannier function

The Bloch theorem gives general properties of the eigenfunctions of Eq. 2.10. The

complete knowledge ofψn,k(z) can be obtained just by using a numerical approach

(see. Sec. 2.3). Nevertheless we can extract some of the general properties ofψn,k(z)

without any computational method. From the Bloch theorem (Eq. 2.11), we known

thatun,k(z) satisfies the following condition:

un,k(z ± md) = un,k(z) ∀ m ∈ N. (2.14)

Thus, we can express the function in term of its Fourier transform in thek-space:

un,k0
(z) =

∑

ki

fn(k0 + ki)e
i
~
(k0+ki)z, (2.15)

where the Fourier coefficientsfn(k0 + ki) are also periodic in the reciprocal space.

Note that we have different wave functions associated with the various energy bands,

indicated by the labeln on theu- andf -function but for each energy band, there

is a single functionf(k) which gives complete information on all the spatial wave

functions of this band. One can demonstrate that the momentum functionf(k)

is the solution of the Schrödinger equationHf(k) = Ef(k), where the operator

H is to be found from the ordinary Hamiltonian by replacing the coordinatez by

−(~/2πi)(∂/∂z) [93].

The momentum eigenfunctionsfn(k) are normalized and exists an orthogonality re-

lation between thef -functions associated to different bands:

∑

ki

fm(k0 + ki)fn(k0 + ki) = δm,n. (2.16)

We can easily pass from the space-eigenfunctionsun,k(z) to the momentum ones

vn(k) using the following inverse relation to Eq. (2.15):

fn(k) =
1

Ω

∫

dzun,ke
− i

~
kz, (2.17)

where the integration is to be taken over a unitary cell of volumeΩ, andk equals

one of the vectorsk0 + ki. The momentum eigenstates allows us to introduce a

new function of great importancean(z − zi), known as theWannier function[94].

As we will discuss in Chap. 4, these functions are of great utility when the transla-

tional invariance of the optical lattice is destroyed by some additional potentialor

impurities. Indeed, a change on the invariance properties of the system is always

accompanied by the appearance of a localization. The eigenfunction relative to this
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problem are usually built up from the Wannier functions (see Sec. .2.4.3).Indeed,

the functionan(z − zi) is localized in the neighborhood of theith lattice site, in the

nth band. The Wannier functions can be directly obtained by the coefficientsof the

Fourier-transformfn(k). Using the formula (2.15), we can also writeun,k in term of

an(z − zi):

un,k(z) =
√

Ω
∑

zi

e
i
~

kzian(z − zi). (2.18)

Equation (2.18) means that a particle in a periodic potential can be describedby a

combination of localized functionsan(z − zi) in each cell, multiplied by an appro-

priate factor. Analogously, the Wannier function is a linear combinations of all the

Bloch waves of a given band

an(z − zi) =

√
Ω

~3

∫

dke−
i
~

kziun,k(z). (2.19)

More in general, the Wannier functions obey to the following theorem [95]:

For each band exists one and only one Wannier functionan(z−zi) which has all four

of the following properties:

1. an(z − zi) is real.

2. an(z − zi) is either symmetric or antisymmetric about eitherz = 0 or z = d/2.

3. an(z − zi) is a short range function, i.e. it falls off exponentially in thez-space.

4. an(z − zi) andun,k(z) can be expressed in term of one another.

We can conclude that the sets of Bloch and Wannier functions are two equivalent

basis in the z-space. In Ref.[96], it is shown that the more practical way tofind a

Wannier function is to find the momentum eigenfunctionfn(k) and then its Fourier

transform.

2.2.4 Energy band in one dimension

The Bloch theorem tells us that the energy spectrum of a particle in a periodicpoten-

tial exhibits a band structure (εn(k) with n ∈ N). The nth band is separated by the

(n+1)th band by an energy gap∆εn(k) which depends on the band and on the quasi-

momentum. For lows, the band gap start to open in the neighborhood of the Bragg

quasimomentumkB and ofk = 0. Due to the periodicity ofεn(k) in the reciprocal

lattice (see Eq. (2.13)), we can solve numerically the Mathieu equation restricting our

attention to the first Brillouin zone (reduced-zone scheme) without loosing generality.

The typical band spectrum, in units of the recoil energyEr, is reported in Fig. 2.3

for different values of the lattice depth. As shown in Fig. 2.3(a), for a shallow lattice
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Figure 2.3:Energy dispersionEn(k) and effective massm∗ in units ofEr, for atoms in a

lattice with (a)U0 = Er, (b) U0 = 4Er, and (c)U0 = 8Er.

the energy dispersion has a behavior similar to the free-electron parabolaand a dis-

tortion arises only at the edge of the Brillouin zone. As we increases, the first band

becomes more and more flat straying from the free-particle case. The energy gap and

the zero-point energy increases (Fig. 2.3(b-c)).

A useful quantity derived by the bands structure is theeffective massm∗, which is

defined through the curvature of the lowest energy band (n = 0)

1

m∗(k)
=

1

~2

∂2ε(k)

∂k2
. (2.20)

Under appropriate conditions, a particle in the lattice behaves like a free particle

but with its inertial properties changed by the presence of the periodic potential

(m → m∗). For small lattice depth the effective massm∗ approaches the bare value

(Fig. 2.3(a)). Increasing the height of the periodic potential,m∗ is strongly enhanced

with respect tom (Fig. 2.3(b-c)) and particles with different quasimomentum will

have different effective masses.
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2.3 The Mathieu equation

A part from the Bloch theorem and its consequences, the numerical approach to solve

the problem of a particle in an one-dimensional periodic potential is well-known. For

the specific case of a sinusoidal potential, the Schrödinger equation is known as the

Mathieu equation whose solutions have been extensively studied by the mathemati-

cians [97]. The Mathieu equation

− ~
2

2m

d2ψ(z)

dz2
+

U0

2

[

1 − cos
(2πz

d

)

]

ψ(z) = Eψ(z) (2.21)

is numerically solvable for anyU0. Furthermore, an analytic solution can be found in

two limiting cases where approximate methods can be used providing useful infor-

mation on the problem. The former is calledtight binding or atomic approximation

and it is used in the limit of a deep optical potential. In this case, the one-site wave

function hardly overlap with the ones in the neighbor sites and consequentlythe tun-

neling probability through the lattice sites is small. The opposite limit is known

asweak binding or free-electron approximationappropriate for shallow lattice: the

atoms move so fast that their wave function is not far from a plane wave. Inseveral

physical situations however the atoms are described by a wave function ofthe type

intermediate between the range of validity of these two approximations. For these

cases, one has to solve numerically Eq. (2.21). An instructive way to get the physical

meaning of these two approximations is to study the behavior of the energy spectrum

as a function of the lattice heightU0 = sEr. We write the Schrödinger equation

(2.21) in term of dimensionless variables, to simplify the notation:

w =
πz

d
, ε =

E

Er
. (2.22)

In terms of these quantities, we can express (2.21) in the alternative forms

−d2ψ(w)

dw2
+

s

2

[

1 − cos(2w)
]

ψ(z) =
√

sεψ(w). (2.23)

In Fig. 2.4 we show the widths of the energy bandsε of the one dimensional

problem as a function of the lattice heights. For large enough values ofs, the band

become indefinitely narrow and the wave function in each lattice site do not overlap

appreciably. The energy levels approach the harmonic oscillator limit with value

(εn = 2n + 1). In fact, for larges each lattice well can be approximated with an

harmonic potential (see Fig. 2.1) of frequencyω defined by

sEr
π

d
=

1

2
mω2. (2.24)
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problem. The curve A represents the height of the potential barrier between the lattice sites.
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As the lattice depth increases, the energy levels decrease before the broadening into

bands becomes appreciable. If we write the potential as a power-law expansion then

the quadric term gives the parabolic potential while the higher order of the expansion

act like a perturbation to the harmonic oscillator problem. This terms are responsible

for the decrease of the energy levels. As the lattice becomes more and more shallow,

the energy levels begin to broaden into bigger bands and the energy gap disappears

ass goes to zero.

2.4 Transport through the lattice

So far we have studied the stationary solutions of the single-particle Schrödinger

equation (2.21). We now address our attention on the motion of a particle into the

lattice under an external force of strengthF . The evolution of such particle can be

described using either a semiclassical model or a quantum-mechanical approach. In

general, we know that a particle in thenth band with quasimomentumk moves in the

k-space with the mean velocity [87]

vn(k) =
1

~

∂εn(k)

∂k
. (2.25)

The energy levelsεn(k) are stationary solutions of the Schrödinger equation in pres-

ence of the full periodic potential. Eq. (2.25) tells us that, in absence of external force,

a particle with energyεn(k) moves forever without any degradation of its mean ve-

locity, if the initial mean velocity is different from zero (i.e.k 6= 0 andk 6= ±2π
d ).

The collisions with a perfect lattice are not able to degrade the velocity of the particle,

because the interaction with the periodic array has been fully taken into account ab

initio in the Schrödinger equation solved by Bloch wave functions. Thus, the con-

ductivity of the system is infinite.

In nature, electrons in crystals never behave like a perfect conductor. Metals indeed

have always an electrical resistance because no real solid is a perfect crystal. In such

systems, the periodic potential is produced by the ions and there are always impuri-

ties, missing ions or other imperfections that can scatter electrons even at very low

temperature. In addition, also in absence of imperfections, the conductivityremains

finite because of the thermal vibrations of the ions i.e. the phonons, which produce

temperature-dependent distortions to the periodic potential which are able toscatter

the electrons. As we will see in the next chapters, the situation is different when we

deal with an atomic gas in a periodic potential produced by light. First of all, theopti-

cal lattice behaves like a perfect periodic potential where dissipative mechanisms due
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to missing ions or phonons are not present. Further, the collisional properties of the

atoms in the gas strongly depend on the statistical nature of such gas. For instance, an

atomic Bose gas exhibits onlys-wave collisions while collisions between fermions

are forbidden by the Pauli principle. Note that a Fermi gas in a optical lattice satisfies

all the requirements to be a perfect conductor (see Chap.3).

2.4.1 Semiclassical model and Bloch oscillation

We start to describe the simpler and more intuitive model to study the dynamics of

a particle in presence of an external force. This model is known assemiclassical

model. Clearly, the main goal of this approach is to bind the band structure definedin

quasimomentum space with the transport in real space. This model is semiclassical

in the sense that the external potential applied so varies slowly over the dimensions

of the atomic wave packet that can be treated classically, while the periodic potential

obeys to the quantum mechanic. Note that this model does not take into account pos-

sible collisional mechanism and its predictions are based on the complete knowledge

of the band structure. Given the functionεn(k), the semiclassical model associates

with each particle a positionz, a wave vectork and a band indexn. In presence of an

external forceF , the position, the wave vector and the band index evolve according

to the following rules:

1. The band indexn is a constant of the motion. This is a first approximation of

the model implying that interband transitions are forbidden.

2. The time evolution of the position is described by the equation of motion

ż = vn(k) =
1

~

∂εn(k)

∂k
. (2.26)

This is the relevant equation of the semiclassical model which connect the

motion inz-space with the evolution ink-space. In particular, if the particle is

described as a wave packet of Bloch functions centered atk thenvn(k) play

the role of the group velocity of the wave packet.

The behavior ofvn=0(k), is shown in Fig. 2.5. The velocity is linear ink just

near the band minimum, it reaches a maximum value as the boundary of the

Brillouin zone is approached, and then drops back down, going to zero at the

zone edge. Note that the region of linearity decrease increasingU0 andv0(k)

becomes more and more flat, according to the intuitive idea that the higher is

the inter-well potential the slower is the motion through the lattice. In the limit
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Figure 2.5:Mean velocityv0(k) in the fundamental band for different value of the lattice

height (a)U0, (b) U0 = 4, and (c)U0 = 8.

U0 → ∞, the particles are completely localized in a lattice site andv0(k) = 0

everywhere.

3. The model provides also the equation of motion for the wave vectork

k̇ =
1

~
F (z, t). (2.27)

Eq. (2.27) has formally the same structure as the one for free particles. How-

ever, in the latter case, the rate of change of the momentum is given by the total

force acting on the particle, while for a particle in the lattice,k̇ depends only

on the field applied externally and not on the periodic field.

Under these assumptions, the semiclassical model well describe the system response

to a homogeneous and static external potentialU = Fz (i.e. a DC electric field for

metals). In particular, an external static forceF yield an oscillatory rather than uni-

form motion of the particles known asBloch oscillation. Bloch oscillation represents

the major result of the semiclassical theory.

We now derive the oscillating behavior of the particle in the framework of the semi-

classical theory. The stationary Schrödinger equation (2.21) in presence of a static

external forceF , becomes

− ~
2

2m

d2u(z)

dz2
+

U0

2

[

1 − cos

(

2πz

d

)]

u(z) + Fzu(z) = Eu(z). (2.28)

We can study the evolution of the system described by Eq. (2.28) using the semiclas-

sical model if the applied force is weak enough to not induce interband transitions

i.e. one assumes that the external force behaves as a perturbation to the system which

does not modify much the eigenfunctions and eigenvalues of the Hamiltonian (2.21).

According to Eq. (2.27), the evolution of the quasimomentum is

k(t) = k(0) +
Ft

~
. (2.29)
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Due to the periodicity of the systems, the quasimomentumk(t) changes linearly with

time until it reaches the boundary of the Bloch band (kB) where it is Bragg reflected.

The quasimomentumk(t) is thus periodic in time with periodTB = 2π~

|F |d . This pe-

riod, known as Bloch period corresponds to the time required to the quasimomentum

to scan a full Brillouin zone. Note that also the mean velocity (2.29) exhibits an

oscillatory behavior in time

vn(k(t)) = vn(k(0) +
Ft

~
) (2.30)

. This result is in striking contrast with the free-particle case, wherev is proportional

to k and grows linearly in time. As a consequence of Eq. (2.29), a particle prepared

in a well-defined quasimomentum in thenth band will also oscillate in thez-space

with an amplitude δn

2|F | , whereδn is the energy width of thenth band.

Using the tight binding approximation is possible to derive explicitly the equationsof

motion. In the limit of deep lattice the lowest energy bandε(k) can be approximated

with a simple cosine function, i.e.

ε(k, t) = −δ

2
cos(k(t)d), (2.31)

whereδ is the width of the first band.

The cosine dispersion of the first band yields

v(t) =
1

~

∂ε(k)

∂k
=

δd

2~
sin(k(0)d − ωBt), (2.32)

where

ωB =
Fd

~
(2.33)

is the so-called Bloch frequency. Under a static force, a particle oscillatesin the real

space

x(t) =
δ

2F
cos(k(0)d − ωBt) (2.34)

with amplitude proportional to1/F . We can conclude that the linear growth ofk(t)

and the periodicity ofε(k) transform the static stimulusF into an oscillating re-

sponse.

We remind that the semiclassical model does not include collisions and consequently

all dissipative mechanisms that could degradev(k) andk̇ are absent. For instance, in

metals the scattering time of the electrons with lattice defects is remarkably shorter

than the time needed tok for scanning the Brillouin zone (τB), and the Bloch oscilla-

tions have never been observed. Recently the Bloch oscillations have been observed

with electrons in semi-conductor superlattices [98], cold atoms in optical lattices[99],

and light in photonic structures [100].
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2.4.2 Zener tunneling

The semiclassical model well describes the dynamics of a particle into a tilted lattice,

provided that interband transitions are negligible. If this is not the case thenas soon

as a particle reaches the edge of the Brillouin zone during its Bloch oscillation has

a finite probability to be transmitted to higher bands. This phenomena is known as

Zener tunneling which is a quite relevant effect when one works with an atomic gas

in shallow lattice. For a fixed force acting on atoms, the interband tunneling rate

depends on the lattice height. Tunings we can indeed completely suppress the tun-

neling or to deplete the lattice in one Bloch period.

It could be useful to summarize now the procedure to derive the rate of Zener tun-

neling. In general, at each band cycle, the particles can go to occupy thehigher band

with a transmission rateR

R =
ωB

2π
|T |2, (2.35)

where|T |2 is the transmission amplitude. In the general case this amplitude can be

derived just within a numerical approach nevertheless, under appropriate approxi-

mation, it is also possible to derive an analytical expression. Since the transmission

probability is maximum at the lower energy gap∆E, we will focus at the edge of the

Brillouin zone (q = qB). We first require that the potential dropFd per lattice site be

small compared to the lattice depthUopt. If this is not the case, the initially occupied

band will be emptied on a time scale comparable to the Bloch periodTB = 2π/ωB,

so the concept of the Bloch oscillation becomes questionable.

For sake of clarity, we rewrite the eigenvalue equation already reported inChap. 2
(

− ~
2

2m

d2

dx2
+ Vpot(x)

)

ϕ(x) = (E − Fx)ϕ(x). (2.36)

In order to derive the transmission amplitude, we have to construct approximate

eigenstatesϕ(x) of the biased lattice by gluing together the unperturbed Bloch states

corresponding to thelocal energiesE − Fx. This procedure, that we don’t want to

discuss in detail here [101], corresponds to construct a function of local wavenumber

kn(E−Fx) which determinesϕ(x). The individual functionskn(E−Fx) then have

to be analytically connected through the band-gaps to yield one overall functionk(x)

defined for allx. The new eigenstates, which are Bloch waves with slowly varying

wavenumber, can be written as

ϕ(x) = exp

(

i

∫ x

x0

dx′k(x′)

)

ũk(x)(x), (2.37)

wherex0is some arbitrary reference point, andũk(x)(x) is the Bloch function associ-

ated withk(x).
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Once the functionk(x) is known within a gap, we can calculate the transition ampli-

tude from the following equation

|T |2 ≈ exp

(

− 2

∫

dx|Imk(x)|
)

, (2.38)

where the integral is made over the gap region. At the end of this procedure we finally

find an analytic expression for the transmission amplitude. In presence of the force

of gravityF = mg, one finds

|T |2 = exp

(

−∆E2λ

8~2g

)

, (2.39)

where∆E is the energy gap between the ground state band and the continuum at the

edge of the Brillouin zone.

2.4.3 Wannier-Stark states

In the semiclassical model, the motion of particles in the periodic potential under an

external static force is investigated looking at the energy dispersion relation and no

information about the eigenstates of the system is given. The static force is treated

as a perturbation and the key approximation of the model lies in the substitution of

the quasimomentum with the momentum of the particle. Nevertheless, also for small

F , the potentialFz diverges as|z| → ∞ and we can not considerFz as a small

perturbation in the usual sense: we have to deal with asingular perturbation. The

singularity of the perturbation manifests itself in the fact that it changes the nature

of the unperturbed spectrum of the HamiltonianHopt. As far asF → 0, the energy

spectrum is continuous. In particular, this means that the eigenstates associated are

not square integrable functions, i.e. the Bloch eigenfunctions are delocalized along

the whole infinite periodic potential. In a pure periodic potential, the translational

invariance lets each energy level of each local lattice well to be degenerate with all

other level. As a result, the eigenfunctions of a periodic system form bands of delo-

calized state which extend over the entire lattice. As an external force is applied, the

system is no more invariant with respect to a simple translation in thez-space and the

degeneracy of the energy levels is somehow removed. IfTd is the translation operator

(z → z + d) andHF the biased Hamiltonian

HF = Hopt + Fz, (2.40)

we find that the commutation relation is not zero

[HF , Td] = FdTd. (2.41)
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However, Wannier has demonstrated that also in the presence of a static force, the

system preserves a periodicity in the following sense [102]:

Wannier Theorem: If a solution of the one-electron Schrödinger equation in a

periodic potential and a static force exists for some energyE, then the wave function

ψE(z) satisfies

ψE(z) = ψE+Fd(z + d). (2.42)

Thus, the system is invariant for a appropriate combined translation in the energy and

z-space. In the one-band model, the existence and the uniqueness ofE is guaran-

teed. Eq. (2.42) leads to the so-calledWannier-Stark ladders: under the influence

of an external potentialFz, each unperturbed energy band split into a sequence of

resonances equally spaced in energy

En,j(k) = εn(k) + jFd, (2.43)

with j ∈ N.

The single-particle states associated to the ladder structure are localized functions,

known as theWannier-Stark functions. We have to emphasize that the existence of

these Wannier-Stark ladders is quite a subtle problem which has been debated over a

period of almost three decades [103]. If one neglects the transition between different

zero-field bands, it is possible to shown that the stationary problem with the Hamil-

tonian (2.40) admits for Wannier-Stark ladders as eigenvalues and the corresponding

eigenfunctions are the localized Wannier-Stark states. The real controversial point is

whether the Wannier-Stark ladders survive with the inclusion of the interband transi-

tion 2. The doubt is well founded since a particle moving in the lowest band experi-

ences a periodically varying energy separation from the first excited band and comes

closest to it at the edges of the Brillouin zone where it could perform Zener tunneling.

Indeed, when the particle knocks at the higher band (once per Bloch cycle) is partially

transmitted with a transmission amplitudeT , already reported in Eq. (2.39). As we

will show in Sec. 3.3.1, this problem is particulary relevant in atomic Fermi gases.

For instance, if the Fermi energyEF lies in the band gap, several fermions occupy

states close to the band-edge and could tunnel in higher bands. From a mathemat-

ical point of view, the bands are thus not exactly decoupled, and the Wannier-Stark

ladders have to be understood as well-definedresonancesi.e. long-lived states of the

system, rather than eigenvalue of the HamiltonianHF .

The Wannier-Stark stateψ(k) are immediately found solving the Schrödinger equa-

tion in the quasimomentum space within the one-band approximation (we skip the

2The survival of the ladder structure has been questioned in several works [104].
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band indexn):
[

ε(k) + iF
d

dk

]

ψ(k) = E(k)ψ(k), (2.44)

whereε(k) is the eigenvalue of the HamiltonianHopt corresponding to the funda-

mental band. Solving Eq. (2.44) for the eigenstates which are periodic in thek-space,

with period2π/d, one directly found the quantized Wannier-Stark ladders:

Ej =

∫ b/2

−b/2
ε(k)dk + jFd (2.45)

To derive explicitly the eigenfunction and the eigenvalues of the problem weneed

to know the unperturbed energy dispersion of the first band,ε(k). In the tight bind-

ing regime,ε(k) is a cosine function of the quasimomentum (Eq. (2.31)) and the

Schrödinger equation can be written
[

− δ

2
cos(kd) + iF

d

dk

]

ψ(k) = E(k)ψ(k). (2.46)

The Wannier-Stark stateψj(k) are found by integration the Schrödinger equation

which is a first-order differential equation

ψj(k) =

√

d

2π
e−i[jkd+γ sin(kd)], (2.47)

with j ∈ N andγ = δ/2dF . We note that the equation of motion fork(t) (Eq. (2.29)

can also be derived applying the time evolution operator to the Wannier-Starkfunc-

tion (2.47) [105].

We want just to mention here that is possible to derive the Wannier-Stark function in

the z-space by a linear combination of Wannier statea(z − zi) (see Sec. 2.2.3) with

the Bessel functionJi−j(γ) as coefficients

ψj(z − zj) =
∑

i

Ji−j(γ)a(z − zi). (2.48)

From the properties of the Bessel function, we known thatJi−j(γ) is mainly local-

ized in the interval|i−j| < γ and consequently the Wannier-Stark states extend over

an intervalL = δ/F . Outside this interval, the Bessel functions decay asJi(γ) ∼ γi.

In Chapter 3, we will show that a fermion in a tilted lattice belongs in a superposition

of Wannier-Stark states whose extension set the degree of localization ofthe parti-

cle. We just recall that the Wannier-Stark functions have already been used in solid

state physics to discuss spatial localization of particles. For instance, thesefunctions

have been chosen to describe the localization due to attractive impurities that bind an
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electron or magnetic phenomena with localized magnetic moment, and, in general,

they are useful to derive the motion of particles when the semiclassical theory of the

transport of Bloch particles breaks down.



Chapter 3

Fermi gas in a vertical lattice

Attenta agli obiettivi. Tra un obiettivo

ed un altro ci passa la vita.

C. T.

As discussed in Chap.2, an external static stimulus yields to a periodic motion of

a particle through the first energy band, known as Bloch oscillation. This prediction

arises from a theory of single-particle in which the lattice is considered to beperfect

and no dissipative mechanisms are present. The scenario can change notably when

we deal with real physical systems such as metals. For instance, Bloch oscillations

are never been observed in usual metals because of the high collisional rate of elec-

trons with phonons or crystal impurities. Indeed, in such system the scattering timeτ

is much shorter with respect to the Bloch periodTB and an electron moving in a band

is back-scattered without reaching the edge of the Brillouin zone. In the field of di-

lute ultracold atomic gases the typical scattering times involved are much larger with

respect to the ones encountered in solids. In particular the collisional time turns out

to be longer than the Bloch periodTB (τ & TB) and phenomena as Bloch oscillation

and Zener tunneling can be observed. So far this kind of study has beenperformed in

a gas of thermal atoms [99] and a Bose-Einstein condensate [42]. However, collisions

are still present in both systems reducing the observation time of these effects.

3.1 Outline

In this Chapter, we report our experimental observation of Bloch oscillation (Sec. 3.4)

and Zener tunneling (Sec. 3.3) in a Fermi gas trapped in a vertical optical lattice under

the influence of gravity (Sec. 3.2). The interest of such extension lies in the fact that
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a Fermi gas in a optical lattice is the first system completely free from interactions

which can be produced experimentally [48]. Indeed, in addition to the suppression

of collisions between fermions, an optical lattice is a perfect periodic potential in

which lattice phonons or impurities are absent. As a consequence, a Fermi gas in a

lattice performs a Bloch oscillation under the influence of the gravity which could, in

principle, persists forever. In our experimental apparatus, we are able observe Bloch

oscillation of fermions on a time scale which is one order of magnitude bigger that

the one found for an interacting Bose-Einstein condensate (Sec. 3.4). Indeed, interac-

tion between atoms dramatically affects an interferometric measurement, giving rise

to a shift or decay of the signal. The comparison between the behavior of these two

system proves the superiorness of non-interacting fermions with respect to condensed

bosons, which is somehow a counterintuitive result. Furthermore, from a quantum

mechanical point of view, Bloch oscillation arises from the single-particle interfer-

ence between the eigenstates of the tilted lattice (Sec. 3.5) and this equivalence offers

us the possibility to exploit the long-lived Bloch oscillations as an interferometric

scheme to measure forces with microscopic spatial resolution. In particular,we adopt

this scheme to get a sensitive determination of the acceleration of gravity ( Sec. 3.6).

The main results reported in this Chapter can be found in our recent publication:

• "Atom interferometry with trapped Fermi gases", G. Roati, E. de Mirandes,

F. Ferlaino, H. Ott, G. Modugno, and M. Inguscio, accepted in Phys. Rev.

Lett., cond-mat 0402328 (2004).

3.2 Production of an atomic Fermi gas in a vertical lattice

We now describe our procedure to load a degenerate Fermi gas in an optical lattice

vertically aligned. We employ a fermionic sample of40K atoms which are brought to

quantum degeneracy (T < TF ) using the technique of sympathetic cooling, already

described in Sec.1.3. In particular, during the last stage of cooling, the Fermi gas

is held together with a Bose gas of87Rb in a cigar-shaped harmonic trap. We then

perform an evaporative cooling on bosons which also leads to a cooling of fermions

via interspecies elastic collisions. To produce a Pure Fermi gas, we completely re-

move bosons from the trap by mean of a rf-knife which transfers the bosons in un-

trapped Zeeman sublevels. At the end of this procedure, we obtain a pureFermi gas

of about 3×104 atoms spin-polarized in theF=9/2, mF =9/2 state. Typical temper-

ature reached isT=0.3 TF , whereTF =330 nK is the Fermi temperature. We then

switch on adiabatically an optical lattice which is aligned along the vertical direc-
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50 mm {

(a)

(b)

Figure 3.1:Schematic setup of the experiment. (a) Initially the atomiccloud is magneti-

cally trapped in the second cell and exhibits a cigar shape typical of a cylindrical harmonic

confinement. (b) We then superimpose a counter-propagatingred-detuned laser beam along

the vertical direction. Atoms arrange themselves in a regular lattice of pancake-like atomic

subensembles.
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tion (axial), as schematized in Fig. 3.1. Our one-dimensional lattice is created by a

retroreflected laser beam in standing-wave configuration. The incoming beam and

the reflected one interfere each other giving rise to a spatial modulation of the laser

intensity with nodes separated byd = λ/2. The vertical lattice experienced by the

atoms is then

Uopt(z) =
U0

2

[

1 − cos

(

2πz

d

)]

. (3.1)

The radial confinement is instead provided by the gaussian profile of the laser beams

in this direction. The atoms are thus subjected to the following total potential

UL(z, r) = Uopt(z)e−
r2

w2 , (3.2)

wherew is the beam waist of the laser beam.

Using different intensities for the two beams we obtain a radial trap depth of about

10ER, with a typical trapping frequency of2π × 30 s−1.

We chooses a laser wavelength far detuned to the red of the optical atomic transitions

(λ=873 nm) to avoid photon scattering which leads to a heating of the sample. In a

red-detuned lattice, atoms are axially confined in the antinodes of the standing-wave,

resulting in a regular one-dimensional lattice of pancake-like atomic subensembles.

We adjust the depth of the potential in the rangeU=1-4ER, whereER is the recoil

energy

ER = h2/2mλ2. (3.3)

For our parameters, the recoil energyER = kB×310 nK. Note thatER turns to

be similar to the Fermi energy, which is the other fundamental energy scale ofour

system. SinceER ' EF , the atoms are loaded mostly in the first Bloch band of the

lattice. From an experimental point of view, the calibration of the lattice constitutes

an important and ticklish question since most of the measurable quantities depend on

the lattice depth. A precise tool to measure the effective optical potential is provided

by Bragg diffraction of atoms from a grating of laser light. This calibration procedure

is described in Appendix A.

3.3 Bloch oscillations and Zener tunneling

As already mentioned in Sec. 2.4, when subjected to a static external force,a particle

can cycle through the first band experiencing a periodically varying energy separation

from the first excited band. The energy separation has its minima at the edgeof the

Brillouin zone (qB = 2π/λ). At qB, the particle has a finite probability to be Bragg
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Figure 3.2: Scheme of the typical single-particle dynamics in a tilted lattice. A particle

performing Bloch oscillation in the lowest band can be either Bragg reflected or transmitted

via Zener tunneling when the edge of the Brillouin zone is approached.

reflected and a finite one to be transmitted in the second band, as we have schema-

tized in Fig. 3.2. When reflected, the particle continues to scan periodically thefirst

Brillouin zone giving rise to an oscillation in both the quasi-momentum and the po-

sition space at the Bloch frequencyωB = mgλ/2~. Particle performing interband

transition, goes instead to occupy the first excited band and hardly feels the peri-

odic potential. As a consequence, it escapes from the lattice and can freely expands.

Dealing with a gas of particles, we will observe a finite fraction of atoms which os-

cillates in the fundamental band and a fraction which performs interband transition.

This transition to higher bands is known as Zener tunneling and has alreadybeen

observed using a Bose-Einstein condensate by Kasevich group [42] while Bloch os-

cillations have been detected in a gas of thermal atoms by Salomon and coworkers

[99]. It is important to stress that Bloch oscillations and Zener tunneling arise from

the single-particle coherence in the lattice, the extension to a cloud of atoms obliges

also to introduce inter-particle interaction effects which could in principle affect the

observability of such phenomena. For instance, condensed atoms arrange themselves

in a narrow distribution in the quasi-momentum space and the single-particle picture

seems to be preserved. Nevertheless bosons interact each other during the motion into

the band and the observed behavior can substantially stray from the single-particle

one described in Chap. 2. One of the purposes of our experiment is to understand how
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Figure 3.3: Zener tunneling of a Bose-Einstein condensate induced by the gravity. (a)

Scheme of the experimental procedure to load the atoms into the vertical lattice. (b) Ab-

sorption image of the condensate after18 ms of expansion ats = 1. Bosons performing

interband transition escape from the confining lattice and evolve following a ballistic expan-

sion. Notice that, after18 ms of expansion, atoms trapped into the lattice are still present

(atoms in z=0).

the interactions affect the dynamics of particles loaded into the optical lattice. Our

experiment allows us to tune the interaction between particles since we can produce

independently a Bose-Einstein condensate, a gas of identical fermions ora mixture

of these two species. In brief, exploiting the versatility of our apparatus, we have

the unique possibility to range from an interacting gas (Bose-Einstein condensate or

Bose-Fermi mixture) to an ideal gas (Fermi gas) and thus to investigate transport phe-

nomena reaching collisional regime which are not accessible in solid state physics.

3.3.1 Zener tunneling

Particles trapped in the first band start to scan periodically the band with a Bloch fre-

quencyωB as soon as a linear force is applied. The dynamical behavior of the system

can be described both in semiclassical approximation and using a quantum mechan-

ical description based on Wannier-Stark function (see Sec.2.4.1-2.4.3, respectively).

However, if the band gap∆E is smaller compared to the external potential applied

we are in the Zener tunneling regime: atoms can "jump" into higher bands. In this

case, the two single-band descriptions are no more valid. Indeed, one needs to take

into account both particles in the higher band and the depletion of the initial level. In

Sec. 2.4.2, we have shown that the population of the first band decreases exponen-
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Figure 3.4:Zener tunneling of a Bose time for increasing temperatures.(a) At T << Tc,

the atoms are Bose condensed providing highest visibility the effect of the different matter-

pulses. (b-e) If we increase the temperature up toT >> Tc the train of pulses is still present

although the contrast tends to zero with the temperature. (e) ForT >> Tc the different pulse

are no more well-distinguishable.

tially with time. In the semiclassical picture, particles scanning the lower band can

be partially transmitted into higher band as the edge of the Brillouin zone is reached.

In this sense, the atomic gas acts as a matter laser, emitting one pulse of matter per

Bloch period.

To investigate the Zener tunneling regime, we choose a lattice depth which satisfy the

condition∆E . dmg, whered = λ/2 andm the mass. The experimental procedure

is schematized in Fig. 3.3(a). We adiabatically ramp up the vertical lattice (over50

ms) while the magnetic confinement is switched off. Note that the adiabatic switching

on of the lattice assures that atoms populate the bottom of the fundamental bandwith

a well defined quasi-momentumk. The atoms are therefore trapped in a pure vertical

periodic potential and experience a constant force provided by the gravity. The parti-

cles start to oscillate in the lower band at the Bloch frequencyωB and we detect the

fraction of atoms escaping from the lattice as soon as the Bragg quasi-momentum is

reached. In Fig. 3.3, we report the observation of Zener tunneling of aBose gas well

below the critical temperatureTC . Each atom-pulse corresponds to bosons escaping

from the lattice at one Bloch cycle. Indeed, the excited energy levels consist of a

continuum of bands: excited particles are no more trapped by the lattice and thus

start to expand ballistically. It seems clear that Zener tunneling gives an alternative

evidence of Bloch oscillations in term of out-coupled atoms arranged as atom-pulses.

Since the gas is loaded into the minimum of the first band, i.e. the atomic distribution
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Figure 3.5: Study of the Zener tunneling of a BEC as a function of the interatomic-

interaction time in the lattice. (a) Scheme of the experimental procedure. (b) Optical density

of the train of pulses for different holding time∆1.

is centered around the zero quasi-momentum, one can exploit Zener tunneling to es-

timate the Bloch periodTB which correspond to the delay time between two pulses1.

Note that fors =1, we are able to produce a train of about 15-16 pulses before the

initially trapped population was depleted. The observation time is then limited af-

fecting the accuracy onTB. As we will discuss in Sec. 3.4, in the case of fermions,

a better estimate of the period is obtained to studying directly Bloch oscillations of

trapped particles in the time-domain.

Note that the size of each pulse gives a signature of the mean field interactionbe-

tween bosons (see Fig. 3.3). Although the distribution of the trapped sample isvery

narrow in quasi-momentum, during the first stage of the expansion the boson-boson

interaction is rapidly converted into kinetic energy giving rise to a larger momentum

distribution of the expanding pulses. Note that an increase of temperature,on the one

hand leads to a small mean field interaction between the atoms but on the other the

1By measuring the spatial separation between two subsequent atom-pulses, we can directly obtain

the period of the Bloch oscillation in trap
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Figure 3.6: Atoms performing Zener tunneling for different holding time in the vertical

lattice. The measurements are performed on a bosonic sampleat T < TC (a)-(b), and using

a Fermi gas atT > TF (c)-(d).

number of quasi-momentum states occupied in the band increases. In Fig. 3.4, we

study the behavior of atoms performing Zener tunneling as a function of the temper-

ature. We find that atom-pulses continue to be detectable also a temperature higher

thanTC . However the contrast of the signal decreases increasingT since the spread

of the momentum distribution of atoms in trap∆q is approaching2qB. As∆q > 2qB,

the bosons flow continuously out of the lattice and the pulses are no more observable.

Note that the survival of Bloch oscillations also forT > TC demonstrates that such

phenomena arise just from single-particle coherence and no macroscopic coherence

is required. Condensate properties are needed only to get a better visibilityof the

effect. Our observation removes the ambiguity introduced in [42] by the twofold in-

terpretation given in term of both Bloch and Josephson a.c. oscillations.

Another important point is related to the boson-boson interaction which couldsome-

how deteriorate the brightness of our atomic source. To investigate the role of the in-

teractions, we have repeated the measurement reported in Fig. 3.3(a), letting now the

condensed atoms to interact for a longer time (∆T1). The experimental procedure is

shown in Fig. 3.5(a). We now rise up the optical lattice to a value larger than before to

suppress Zener tunneling. We leave the atoms in such deep potential for a time∆T1.

During this time, bosons can cycle through the band and collide each other. We then

decrease the lattice depth to a sufficiently low value to have a high probability ofin-
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Figure 3.7: Evolution of the interference pattern of the Fermi gas for increasing holding

times in the vertical lattice. The spatial distribution of the cloud detected after 8 ms of free

expansion reflects the momentum distribution in the trap at the time of release.

terband transition (s =1). We observe the atoms escaping by suddenly switching off

the lattice, and we take an absorption image after 8ms. In Fig. 3.5(b), we report the

optical density of the matter-pulse train for different interaction times (∆T1 = 0−10

ms). We find that the visibility of the pulses washes out rapidly increasing∆T1. This

corresponds to a decoherence of Bloch oscillations. The decay is evenmore clear

looking at the absorption image of Fig. 3.6(a)-(b). After just 10 ms, the output sig-

nal consists of a continuum overflow of atoms from the lattice (Fig. 3.6(b)) and the

pulsed behavior (Fig. 3.6(a)) is completely destroyed. This seems to indicatethat,

during this 10 ms, boson-boson collisions change the momentum of particles giving

rise to a spread of the distribution in trap which corresponds to a band nearly filled. In

other words, the mean field interaction between bosons modifies the chemical poten-

tial of atoms in each lattice site by an amount which depends on the position breaking

the translation symmetry of the system and leading to a dephased output. Note that

the decay of Bloch oscillations are not accompanied to an heating to the system.In

fact, the radial size of the atom distribution of Fig. 3.6(b) is comparable to the one of

atom pulse in Fig. 3.6(a).

As shown in Fig. 3.6(c-d), the behavior is completely different if we deal with fermions.

Due their non-interacting nature, fermions are completely unsensitive to the time

spent in the lattice. Indeed, after10 ms, we find the same space-resolved matter

pulses of∆T1 = 0 ms. As we will see in the next section, this result suggests a

longer survival of the Bloch oscillations in trap.

3.4 Bloch oscillations of a Fermi gas

This section is devoted to the study of a Fermi gas in a tilted potential when the

Landau-Zener tunneling is negligible and one can use the single-band approxima-

tion. Under this condition, we have observed time-resolved Bloch oscillationsof the

Fermi gas.

We start with a brief description of the procedure adopted in our experiment. The
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Figure 3.8:Bloch oscillation of the Fermi gas driven by gravity: the peak of the momentum

distribution of the sample scans periodically the first Brillouin zone of the lattice. More than

100 oscillations can be followed with large contrast.

fermions are trapped in the vertical lattice against the gravity. The lattice power is

risen up adiabatically in50 ms. We then let the fermions to evolve in such potential

for a variable holding time. The lattice depth is then lowered to zero in about 50µs,

a time scale longer than the oscillation period of the atoms in each lattice well. The

adiabatic release allows to study the evolution of the momentum in the first Brillouin

zone. Finally, we probe the cloud by absorption imaging after a 8-ms ballistic ex-

pansion, which maps the initial momentum distribution into a position distribution.

Fig. 3.7 shows the time-evolution inq space detected in the experiment which cor-

responds to the Bloch oscillations of the Fermi gas. Indeed, we can clearlysee the

vertical motion of the peak of the distribution which is initially centered inq=0 at

t=2 ms. It gradually disappears as it reaches the lower edge of the Brillouinzone at

t=2.8 ms, while a second peak builds up at the upper edge and then scans thewhole

Brillouin zone as the first one. This behavior is completely in agreement with the

semiclassical idea of an atomic cloud that moves uniformly inq space under the in-

fluence of the gravity and is gradually Bragg reflected each time it reachesthe band

edge. Indeed, the periodicity of the effect amounts to about 2.3 ms, in agreement with

the expectedTB=2h/mgλ. Note that we use a tighter lattice with respect to the one

used for the previous measurements to avoid Zener tunneling to higher band. This

also allows us to keep the atoms oscillating in the lattice for a very long times. If

we follow the vertical position of the peak of the distribution in Fig. 3.7, we get the

periodic motion shown in Fig. 3.8, which has the peculiar sawtooth shape expected
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Figure 3.9: a) Momentum distribution of fermions at two different holding times in the

lattice: 1 ms (continuous line) and 252 ms (dashed line). b) Momentum distribution of bosons

at 0.6 ms (continuous line) and 3.8 ms (dashed line). The muchfaster broadening for bosons

is due to the presence of interactions.

for Bloch oscillations. We can follow the oscillations for more than 250 ms, that cor-

respond to about 110 Bloch periods, and only at later times the contrast is degraded

by a broadening of the momentum distribution. This is to our knowledge the longest

lived Bloch oscillator observed so far in all kinds of physical systems.

Note that for our parameters (EF ≈ ER) the initial halfwidth of the wavepacket is

δq ≈ 0.75qB, which fulfills the requirement of a momentum distribution narrower

than the first Brillouin zone of the lattice to observe the interference. DuringBloch

oscillations the distribution broadens steadily and eventually fills completely the first

Brillouin zone. The reduction of contrast is illustrated in Fig. 3.9a.

3.4.1 Bosons vs fermions: decoherence of Bloch oscillation

The long-lived Bloch oscillation observed with a Fermi gas is somehow a surprising

result because, due to the Fermi statistic, the atoms occupy several quasi-momentum

state and their large distribution could in principle affect the visibility of such oscilla-

tions. One can thus expect to get a benefit from the brightness of a BEC source in the

observation such kind of effects. However, the coherence properties of a condensate
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Figure 3.10:Comparison between the momentum distribution of fermions and bosons at

different holding time in the lattice. We also report the respective optical density of the

interference peaks.

have not to undeceive the reader. Despite to their narrow distribution in momentum

space, condensed atoms interact each other. The interparticle potential introduces a

decoherence time which can affect the single-particle phenomena under investigation.

As we have already discussed in Sec. 3.3.1, the pulsed behavior of bosons perform-

ing Zener tunneling is completely destroyed as soon as we let the atoms to interact

for a longer time. It is therefore interesting to compare the behavior of fermions and

bosons which perform Bloch oscillation in trap. As already noticed, the versatility

of our apparatus allow us to simply repeat the experiment with a BEC of rubidium

atoms. We use a sample of typically 5×104 atoms, at temperaturesT <0.6Tc. The

condensed bosons are transferred into the lattice with the same procedureused for the

Fermi gas and described in Sec. 3.4. The lattice depth is in the range 2-4ER, where

the recoil energy for rubidium parameters isER=kB×150 nK. As expected, the gen-

eral phenomenology that we observe is analogous to that found for fermions: bosons

perform a Bloch oscillation with a period which is nowTB ≈1.2 ms i.e. nearly half of

the one measured for fermions in accordance to the different mass of the two atomic

species. Nevertheless two striking differences appear, as shown in Fig. 3.9b-3.10.

First of all, at very short times the width of the momentum distribution of the BEC

is comparable toqB and therefore even larger than one exhibits by fermions. This
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result may seem in contrast with the expectation of a much narrower momentum dis-

tribution for the BEC. In reality, we detect the atomic cloud at fixed time after the

release from the lattice. During the early stage of the expansion, the boson-boson

interaction energy is rapidly converted into kinetic energy giving rise to a faster ex-

pansion with respect to the case of non interacting particle. As a consequence the

momentum distribution detected after a time-of-light (texp =8 ms) is much larger

than the one detectable in trap. Furthermore, the evolution of bosons is also affected

by interparticle interactions whereas they are trapped in the lattice. On the onehand,

interactions spread the atomic distribution in trap, and on the other hand can carry

the condensate in regions of instability. Indeed, as soon as the external force drives

the system far from the "parabolic" region of the band, non-linear effects could arise

eventually destroying the visibility of Bloch oscillations. Note that we have observed

aa similar degradation of the signal in the Zener tunneling experiments performed

on a condensate. Such kind of phenomena has already been observedin presence

of gravity [106] and in combination with magnetic traps [127]. In our experiment,

we detect the decay of Bloch oscillation as a very rapid broadening of the momen-

tum distribution, which tends to wash out the visibility of the incoming and reflected

peak. As shown in Fig. 3.9, in a lattice with depthU=2ER, the momentum distribu-

tion fills completely the Brillouin zone after typically 4 ms. We have checked that

the decay time for the contrast gets shorter with an increasing lattice depth andra-

dial confinement, as expected because of the larger density of the sample and thus

an higher interatomic interaction. The longest decay time measured for condensed

bosons is of about 10 ms, with a lattice depth of 1.5ER and an almost absent radial

confinement. For this low lattice height we can no more neglect the Zener tunnelling

which reduce the lifetime of trapped atoms to a timescale comparable to the decay

time of the contrast.

We have also repeated the experiment with a cold but uncondensed cloud of bosons

at T ≈ 250 nK. Due to the low density of bosonic thermal samples, the interatomic

interaction are reduced with respect to the case of BEC. We again observe a steady

broadening of the distribution. In this case the contrast degrades on a longer timescale

of about 10 ms, which is still much shorter than the one observed for fermion. This

comparison proves the superiorness of noninteracting fermions with respect to bosons

to observe single-particle effects.
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Figure 3.11:Momentum distribution of a coherent superposition of Wannier-Stark states.

Although the single state fills completely the first Brillouin zone (thin line), the interference

of several states gives narrow momentum peaks. Shown are thecases of a phase difference

between successive states of∆φ=0 (continuous line) and∆φ=π (dashed line). The inset

shows the square of Wannier-Stark wavefunctions calculated for 40K atoms in a lattice with

U=2ER subjected to gravity (for clarity, the states shown are separated by four lattice sites).

3.5 Interference between Wannier-Stark states

In Chap. 2 we have shown that a particle in a lattice tilted by a homogeneous poten-

tial U = Fz can be described by using both a semiclassical picture and the quantum

mechanical formalism based on Wannier-Stark states. As we know, in the semiclassi-

cal approach, a particle evolves in the tilted potential performing a Bloch oscillation

in momentum space (see Sec. 3.4-2.4.1). In the quantum mechanical approach, the

particle is instead described by a superposition of Wannier-Stark states. This super-

position yields to interference peaks in the quasi-momentum space. In this section,

we will show that the evolution of such interference peak are the analogous of Bloch

oscillations. We now start to remind to the reader which kind of eigenfunctionsand

eigenvalues solve the tilted-lattice problem. Under the influence of an external static

forceF , the system maintains properties of invariance with respect to an appropriate

translation in both energy and z-space (see Sec. 2.4). One finds that each energy band

splits into a sequence of equally spaced resonances, known as Wannier-Stark ladders

which directly depends on the applied force. In the case of a gravitationalforce [94],

the ladders are equally spaced by

∆E = mg
λ

2
. (3.4)
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The corresponding single-particle states are the Wannier-Stark functions which are

localized in both momentum and z-space. Note that these functions differ in a pro-

found way from the unperturbed Bloch states which describe particles delocalized in

the whole lattice. The spatial extension of a Wannier-Stark state gives the degree of

localization with respect to the lattice height considered. For instance, we find that,

for s = 2, a Wannier-Stark state extends over about ten lattice sites.

In single-band approximation, Wannier-Stark states are eigenfunctions of the tilted

potential and a particle loaded in such potential finds itself in a coherent superposi-

tion of ΨWS functions. As reported in the inset of Fig. 3.11, the gravitational poten-

tial tilts the lattice leading to a constant energy difference between atoms loadedin

different lattice sites (see Eq. (3.4)). As a consequence, two wave-functions centered

in neighbor sites evolve in time with a phase difference∆φ= ∆Et/~:

ΨWS
n (z, t) + ΨWS

n+1(z, t) = ΨWS
n (z, 0) + ΨWS

n+1(z, 0)ei∆Et
~ . (3.5)

A particle, prepared in a linear combination ofΨWS(z, t), exhibits therefore an

interference pattern in momentum space which is periodic in time, with a period

TB=h/∆E. In Fig. 3.11 we compare the momentum distribution of a single Wannier-

Stark state with a superposition of those states. In the former case, the momentum

distribution fills completely the first Brillouin zone while a superposition of Wannier-

Stark states yields to an interference pattern with narrow equally spaced momentum

peaks. In particular, if the force applied is the gravity, the peaks move in momentum

space with constant velocity, accordingly toq̇=mg. This motion corresponds to the

semiclassical Bloch oscillation. The peaks spacing is the inverse of the spatial period

of the lattice, and can be written as 2qB, whereqB=h/λ is the Bragg momentum.

Therefore only one or two peaks appear at the same time in the first Brillouin zone

of the lattice[−qB, +qB], as shown in Fig 3.11. The above discussion shows the

equivalence between the semiclassical Bloch oscillations and the motion of interfer-

ence peak in the momentum space. This twofold description allows us to exploit the

macroscopic Bloch oscillations as an interferometric scheme to measure force, as we

will discuss in the next section.

We just mention now that also Zener tunneling can be studied in term of Wannier-

Stark functions with some extra specifications. Since Zener tunneling is an interband

transition effect, we have to consider the full band spectrum and the Wannier-Stark

function are no more eigenfunctions of the tilted lattice. Indeed, out from a single-

band approximation, these functions are metastable states, also known as resonances.

One can explicitly the depletion of the first band by adding an imaginary term onthe
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Wannier-Stark ladders Eq. (2.43))

En,j(k) = εn(k) + jFd − i
Γn

2
, (3.6)

wheren is the band index,Γn the decay rate andj ∈ N. The decay rateΓn defines

the lifetime of the Wannier-Stark states, and exhibits a rather nontrivial dependence

on the static force [107]. For a given force and lattice height, we have shown in

Sec. 2.4.2 that the first band is depleted exponentially with time.

3.6 Atom interferometry with trapped Fermi gas

In this section we will focused on an interferometric scheme exploiting the long-lived

Bloch oscillation observed with a trapped Fermi gas. Fermi gases have never been

used as an atomic source in such kind of high-precision measurements. In our setup,

we measure the force of gravity acting on the atoms along the lattice from the period

of the Bloch oscillations. Our choice of the atomic source goes in the direction to

take advantage from the non-interacting nature of this system: collisions areindeed

suppressed in a sample of identical fermions. It is important to stress that thesame

Pauli principle that forbids collisions also limits the phase-space density of fermions

to unity. These two effects arising from the Pauli principle affect in opposite way the

sensitivity of our interferometer. We will therefore discuss whether this constitutes

an obstacle to precise measurements.

In the last decade, atom optics and interferometry blend together giving rise to a

new exciting field of investigation:atom interferometrywhich is mostly based on ma-

nipulation of neutral atoms with laser beams. The development of atom interferome-

try keeps up with the improvement of cooling techniques because of the dependence

of the sensitivity from the atomic source used. During the years, interferometric mea-

surement has been performed using a thermal source of atoms , a fountainof laser

cooled atoms and finally awell-collimatedsource of condensed atoms. In particular,

the advent of BECs was expected to produce in atom interferometry the samedra-

matic progress faced by photon interferometry after the invention of laser.A BEC is

the brightest atom source with all the particles in the same quantum state, hencelead-

ing to an increase of the contrast of the interference signal [62, 42, 108, 109, 110].

However, despite to the largest brightness, condensed bosons interact each other and,

how we have already discussed in Sec. 3.4.1. This also could affect dramatically

interferometric measurements, giving rise to a shift or decay of the signal. This lim-

itation can be somehow avoided performing measurements with samples in free fall
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where interactions are weaker [109]. Nevertheless, this leads to a shorter observation

times with respect to the one attainable with trapped samples. A alternative route is

to adopt an atomic system free from interaction as a Fermi gas or a condensate with

aB = 0.

We will now start to describe a general scheme of interferometer and to compare it

with our scheme using a fermionic source.

3.6.1 Scheme for an atom interferometer

The most fruitful applications of interferometric techniques with ultracold bosonic

gases concern high-precision measurements of fundamental constants [109, 111, 113]

and the detection of rotational properties [112]. Atom interferometers fallbasically in

two different classes: those exploiting different atomicinternalstates [114] and those

in which the interference occurs between different paths of the atomic center-of-

mass (i.e.externalmomentum states) [115]. We will focus mainly on the latter case

where atom-light interaction change the momentum of the atoms without altering

their internal state. Different schemes of interferometer have been proposed. Typical

examples are the atomic analog of an optical Mach-Zender interferometer [116, 114]

or a Young’s double-slit [117] or a contrast interferometer [109]. Nevertheless, in the

working of an atom interferometer, we can always distinguish 3 fundamental step:

• Step 1: Coherent creation of distinguishable atomic states (so-calledpath) from

a single atomic source.

• Step 2: Evolution over some time of these different states.

• Step 3: Recombination and detection of the interference pattern of the atoms.

While in step 1 and 3 we have to manipulate the atomic source to get the desired

states, step 2 is the one of physical interest because, in this phase, the atomic states are

subjected to the forces that we would like to measure as the gravitational or electric-

dipole force. From an experimental point of view, most of the work to produce a

meaningful interferometer usually comes from trying to cancel, during step 2, any

kind of force different from the one of interest. Note that the use of a single inter-

nal state, instead of multiple states, can reduce several interaction which perturbs the

system. For instance, ac-Stark shift will not result in the type of systematic errors

that occur when interference is measured between different internal atomic states.

Another important point is related to the choice of a proper way to manipulate the

momentum of our "one-level" system. Optical standing waves can be used to modify
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Figure 3.12:Scheme of a Mach-Zender interferometer. Three Bragg pulsesare sent to a

free-expanding BEC. Paths 1 and 2 are in states|0~k > and|2~k > for equal lenghts of time

T .

momentum states in a very controlled manner and allows to create arbitrary interfer-

ometer geometries (paths). Indeed, when an atom scatters a photon, it recoils due to

the momentum exchanged with it. This mechanism also set the fundamental energy

scale of the process: the recoil energyER. The manipulation is thus efficient if the

thermal energykBT of atoms is smaller with respect toER. As already discussed in

Sec.?? for Bragg scattering, an optical standing waves (also konw as optical grating)

is created from a counter-propagating laser beam which constrains an atom to change

its momentum in multiples of2~k, wherek is the wavevector associated to a single

photon.

As an example, we now briefly discuss a simple scheme of interferometer based on

Bragg process which is known as Mach-Zender configuration. This procedure has

been already used with a thermal beams [118] of atoms and with a BEC [119].A

BEC is initially prepared in a magnetic trap and then released from it. The subse-

quent experimental phases are reported in Fig. 3.12:

• Step 1: Beginning with atoms at rest, we apply a firstπ/2-Bragg-pulse which

acts as a beamsplitter. The atomic cloud is thus 50-50 divided into two different

momentum states:|0~k > (at rest, path 2) and|2~k > (in motion, path 1).

• Step 2: We let the atoms in different arms to evolve during a timeT with a

relative velocity of 2 photon recoils.
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• Step 3: After a timeT , a π-pulse is applied and atoms in|0~k >-state are

transferred into the other momentum-state. The third pulse is needed for the

detection of the contrast signal projecting the phase of the atomic interference

pattern onto the fractional population of the two momentum state.

Any interaction placed differentially on one arm of the interferometer would be

picked up by the phase difference between the two paths which gives riseto the

interference signal. Thus Mach-Zender interferometer can be used to measure ro-

tational phases, gravitational phases, electric polarizability, or index of refraction of

gases [120].

While Mach-Zender interferometer uses atoms in free-expansion, in our interferome-

ter scheme fermions are trapped in a optical lattice and, in principle, one can follows

the evolution (step 2) for a time comparable to the lifetime of the sample increasing

the sensitivity of our measurement. The basic idea of our scheme is to derivethe ac-

celeration of gravityg by measuring the periodTB of the periodic motion performed

by the atoms into the lattice. Let now to identify the 3 steps necessary to producean

interferometer:

• Step 1: Starting with a magnetically trapped Fremi gas, we adiabatically load

the atoms in the tilted lattice2. Now each atom is in a coherent superposition of

Wannier-Stark states. The interference between such states gives riseto narrow

peaks in the momentum space.

• Step 2: We let the interference peaks to evolve under the force of gravityfor

variable holding times.

• Step 3: We switch off adiabatically the lattice to map the momentum distribu-

tion of atoms into a quasi-momentum distribution which extends over the first

Brillouin zone. After 8 ms of expansion, we probe the cloud by absorption

imaging.

Repeating the measurement for different holding time in the lattice, we observea

vertical motion of the peak of the distribution i.e. the Bloch oscillation driven by the

gravity (seeFig. 3.8). As we will discuss in the next section, this scheme allows us to

extract a value ofg.

2We remind to the reader that the optical potential in tilted due to the presence ofthe gravity.



3.6 Atom interferometry with trapped Fermi gas 81

3.6.2 Measurement ofg

We have already shown the vertical motion of the interference peaks. From the period

of the Bloch oscillations we measure the force of gravity acting on the atoms along

the lattice3 as

g =
2h

TBmλ
. (3.7)

We fit the experimental data of Fig. 3.8 with a sawtooth function and we find a Bloch

periodTB=2.32789(22) ms. If we assume that the only uniform force acting on the

atomic sample is gravity, we immediately determine a local gravitational acceleration

asg=9.7372(9) m/s2. Note that, at this level of sensitivity, the relative uncertainty on

g is just the same as onTB, since bothh andm are known with a high accuracy and

alsoλ can be accurately determined [121]. The evolution of the interference peaks

develops on a micrometrical scale and thus our interferometer based on trapped atoms

opens the possibility of probing forces with a high spatial resolution.

We note that the vertical size of the sample in the present experiment is substantially

determined by the initial size in the magnetic trap, which in principle can be reduced

by increasing the vertical confinement. The minimum possible size is instead setby

the extension of a single Wannier-Stark state, which also corresponds to the amplitude

of the Bloch oscillations in real space. AtU=2ER this amounts to about 4µm, and

decreases further for increasing depths as 2δ/F , where 2δ is the width in energy of

the first Bloch band of the lattice.

As already pointed out, the usefulness of an interferometer is strictly connected to

the possibility to cancel any kind of undesired additional forces acting to thesample.

Clearly, the use of a tight optical lattice to trap the sample might affect the accuracy

of a measurement of forces. In particular, any axial gradient in the intensity of the

lattice beams will result in an additional force on the sample. In the experiment we

have checked the absence of a dipole force at the level of our present sensitivity, by

repeating the experiment with a 50% larger intensity of the lattice beams. This did

not produce a noticeable change of the Bloch period.

Another possible source of systematic error is connected to the presenceof spurious

magnetic fields. Indeed, since the fermions have a magnetic moment, the Bloch

period is sensitive also to magnetic forces

F = mg + gF mF µBB, (3.8)

3In general one can measure any kind of force applied on the system during step 2. Thus the force

is F=2h/TBλ.
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Figure 3.13:Comparison between Bloch oscillation driven by gravity performed by a cloud

of condensed Rubidium atoms with respect to the one observedfor a Fermi gas of Potassium

atoms. The two measuredg are compatible within an accuracy of10−3.

wheregF is the Landé factor,mF labels the hyperfine level andµB is the Bohr mag-

neton. On the one hand Eq. (3.8) indicates that our interferometric scheme can be

used to estimate magnetic force acting on the atoms during step2, while, on the other

hand, it shows that undesired fieldB affects the measurement ofg. Furthermore, in-

homogeneities in the magnetic field can also produce residual forces. In general, one

can control this effect by repeating the measurement with two atomic states with dif-

ferent magnetic moment. Thanks to our experimental apparatus, we can study Bloch

oscillation using different atomic species which have a different mass and magnetic

moment. We repeat the measurement of Fig. 3.8 with both potassium and rubidium

atoms. As shown in Fig. 3.13, the values ofg measured in the two case for same

conditions are compatible. This result demonstrates the absence of extra magnetic

forces at the level of 10−3. This accuracy is limited by the short measurement time

achievable for bosons (see Sec. 3.4.1). Note that during the measurement reported

Fig. 3.8, we kept a small and known homogeneous magnetic field (about 1 G)to

avoid spin-flips, which would produce distinguishable particles which couldcollide

each other. Data of Fig. 3.13 are instead free from this additional magnetic field.

The sensitivity reached with our apparatus is limited to 10−4 mainly by the 250-

ms time interval available for the measurement. Fig. 3.14 together with Fig. 3.9 a

clearly demonstrate the degradation of our interference measurement at long time. In

Fig. 3.14 we plot the relative height of the two peaksA1,2 as a function of time which

decreases with time. Since the atom number is constant during the measurement,this

behavior corresponds to a broadening of the atomic distribution. The timescale of this
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Figure 3.14:Relative height of the two interference peaks at short (empty triangles) and

long time (filled triangles). Since the atom number remains nearly constant, the data clearly

show a broadening of the peaks which reduces the contrast of the atomic signal.

broadening is much shorter than the characteristic time forp-wave collisions [122]

which exceeds 100 s for our experimental conditions. Thus we can not ascribe this ef-

fect to a collisional mechanism. The main sources of the broadening are presumably

intensity and phase noise in the lattice beams. Also ergodic mixing of the radial and

axial motions, a finite axial curvature of the lattice intensity and a residual scattering

of the lattice photons could contribute to the observed broadening. All theseeffects

could be reduced by using active stabilization of the lattice, a proper beam geometry

and a larger detuning. This improvement should allow to extend the observation time

to several seconds, with a corresponding increase of the sensitivity. The sensitivity

can be increased also by using a larger atom number and/or a longer wavelength for

the lattice. Both operations tend to broaden the momentum distribution with respect

to qB: on the one hand in a Fermi gas the momentum spread increases with the atom

numberN according toδq ∝ N1/6, and on the other the Brillouin zone shrinks for

increasing wavelengths asqB ∝ 1/λ. One could however compensate for both these

effects by using a looser radial confinement of the atoms, which would reduce the

momentum spread without affecting the axial size of the cloud.

Possible applications of our interferometric scheme can be the study of forces close

to surfaces and at the sub-millimeter scale, recently motivated by the possibility of
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new physics related to gravity [123].



Chapter 4

Localization in a combined

periodic and harmonic potential

Oscilla o non oscilla ?

A me oscilla ...

F. F. e L. P.

As discussed in Chap.3, a Fermi gas in a pure optical lattice exhibits a Bloch os-

cillation as soon as a linear potential (U = Fx) is applied. The observation of such

phenomena establishes a tight connection with usual system of solid-state physics,

such as electrons in a crystal when an uniform static electric field is applied [87].

Note that one can strictly speaks about Bloch oscillations only if the applied exter-

nal force turn out to be constant both in space and time. In general, as soon as the

translational invariance of the system is destroyed or modified, localization effects

take place depending on the perturbation applied. One can change the translational

properties both adding an external force or by introducing some imperfections to the

lattice. For instance, in presence of a constant forceF , delocalized Bloch particles

are mapped into Wannier-Stark states (Sec. 2.4.3) which extend over a spatial interval

δ/F . Another kind of localization observed in metal is the Anderson localization1

which is observed when a ion crystal exhibits a disorder, for instance when the spac-

ing between the atoms is slightly irregular with small, random perturbations. In the

field of atomic gases, a localization due to the presence of an extra potential iseasier

achievable since one can manipulate the gases by applying magnetic fields. Since

atomic gases are usually harmonically trapped (see Sec. 1.2-1.3.2), the first natural

extension with respect to the linear case is to study a gas subjected to a combined

1Phil Anderson won the Nobel prize in 1977 for his investigations into this issue.
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periodic and parabolic potential.

In this Chapter, we report on the behavior of both a Fermi and Bose gas ina com-

bined periodic and harmonic potential which we have observed in our experiment.

We summarize below the major results of this investigation.

4.1 Outline

In this Chapter, we move from a quantum gas trapped in a pure optical lattice (Chap. 3)

to a gas loaded in a combined parabolic and periodic potential. We find that the

quadratic external potential introduces a localization in the system which affects both

the density of states and the transport properties of our unperturbed system. In par-

ticular, we observes that localized particles are nailed on the sides of the parabolic

potential, and can not reach the minimum of the potential. We study this effect using

both a theoretical and experimental approach. For sake of clarity, we report first on

the theoretical description of our system which provides the single-particleenergy

spectrum of the combined parabolic and periodic potential (Sec. 4.2). Thisspec-

trum admits two classes of solutions, corresponding to particles delocalized along

the lattice and to particles localized on the sides of the potential. We are able to ad-

dress experimentally atoms in localized states by using a novel method based ona

rf-spectroscopy (Sec. 4.3). This technique is selective in energy and, thanks to the

fact that delocalized particles occupy the bottom of the energy spectrum, we can re-

move only atoms in this class of states. In this way, we can thus study just localized

atoms which reveal highly non-classical features both in their energy distribution and

in their expansion dynamics. We then study the dynamical response of localized

fermions to a dipolar excitation . The center-of-mass motion reveals that localized

fermions act as aninsulator under a driven potential. On the contrary, the trans-

port properties of delocalized atoms indicate the conducting nature of suchstates

(Sec. 4.5). We can directly study the motion of delocalized states by using a Bose-

Einstein condensate. Due the their narrow energy distribution, condensed bosons can

indeed occupy only low-energetic delocalized states (Sec. 4.5).

The reader can find most of the results presented here in our recent publications listed

below:

• Radio Frequency Selective Addressing of Localized Particles in a PeriodicPo-

tential, H. Ott, E. de Mirandes, F. Ferlaino, G. Roati, V. Türck, G. Modugno,

and M. Inguscio, cond-mat/0404201 (2004).
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• Insulating Behavior of a Trapped Ideal Fermi Gas, L. Pezzé, L. Pitaevskii,

A. Smerzi, S. Stringari, G. Modugno, E. de Mirandes, F. Ferlaino, H. Ott,

G. Roati, and M. Inguscio, accepted in Phys. Rev. Lett. , cond-mat/0401643

(2004).

• Production of a Fermi gas of atoms in an optical lattice, G. Modugno, F. Fer-

laino, R. Heidemann, G. Roati, and M. Inguscio, Phys. Rev. A68, 011601(R)

(2003).

• Collective Excitations of a Trapped Bose-Einstein Condensate in the Presence

of a 1D Optical Lattice, C. Fort, F. S. Cataliotti, L. Fallani, F. Ferlaino, P. Mad-

daloni, and M. Inguscio, Phys. Rev. Lett.90, 140405 (2003).

4.2 Periodic plus harmonic potential: A new problem

In our experiment, bosons and/or fermions are trapped in a 3-D harmonic potential

with a cylindrical symmetry. The 1D optical lattice is superimposed along the weak

axis of the parabolic potential (the axial direction isx). The total Hamiltonia is thus

H =

(

p2
x

2m
+

1

2
mω2

ax
2 +

s

2
Er(1− cos4πx/λ)

)

+

(

p2
z + p2

y

2m
+

1

2
mω2

r (z
2 + y2)

)

.

(4.1)

Note that the 3-D problem turns out to be decoupled along the three directions and

can thus be separated in three one-dimensional problems. We focus only on the

stationary single-particle Schrödinger equation along the lattice direction:
[

− ~
2

2m

∂2

∂x2
+

1

2
mω2x2 +

s

2
Er(1 − cos4πx/λ)

]

ψ = Enψ. (4.2)

We remaind to the reader thats denotes the depth of the optical potential in units of

the recoil energyEr = ~
2k2/2m.

Although many experimental studies have been performed in this combined potential

during the last years, the solution of Eq. (4.2) is attracting big attention just in the

last months [124, 125, 126]. This missed attention to Eq. (4.2) is mainly due to

the properties of the atomic sample usually used in such kind of problem. Indeed

most of the experiments with optical lattice are made on a trapped Bose-Einstein

condensate, which exhibits a very narrow distribution both in the coordinateand

momentum space. Since condensed bosons occupy just a narrow regionat the bottom

of the first energy band, one can still describe the system by introducingan effective
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Figure 4.1: (a) Spectrum of the Hamiltonian: representation of the 1D spectrum of the

single particle Schrödinger equation for a combined periodic and parabolic potential. Each

line represents one eigenstate of the system, which is plotted as density profile in grayscale

(see (b)). The vertical position of the profile corresponds to the energy of the eigenstate. The

potential parameters were chosen to beω = 2π×16Hz, λ = 830 nm ands = 3 and the mass

is that of87Rb.
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Figure 4.2:Delocalized functions together with their density distribution |ψ|2 for s =3. The

eigenfunctions calculated from Eq. 4.2 are relative to the first (a), second (b) and third (c)

energy level of the combined potential. Note that the shape of the wave-functions is due to

the harmonic confinement while the fast modulation is due to the optical potential.

massm∗ which takes fully into account the different inertia of the condensate2, due to

the lattice [40, 128, 129]. The scenario changes completely when we dealwith a gas

of particles occupying several excited states of the system. In this condition, one has

to take into account also the harmonic trap which brings new features to the already

interested pure-periodic potential. This is the case of a cloud of thermal atomsand

of a Fermi gas which exhibit a broad energy distribution. For instance, in the latter

system, the Pauli principle enforces indeed fermions to occupy one by onethe energy

levels and higher energetic state are reached.

4.2.1 Localized vs delocalized states

An atomic gas in the combined potential looses its translational invariance due to

the quadratically trapping potential necessary to confine the gas. As discussed in

Chap. 2-3, a change in the translation property of the system is always accompanied

to the appearance of localized states. For instance, a particle in a lattice is described

by localized Wannier-Stark states as soon as a linear driven potential is applied. It

turns out natural to expect localization phenomena also in presence of a parabolic

2This model is appropriated to study the dynamics of a condensate only in thelimit of small external

perturbation, as discussed in our work [40, 127]
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Figure 4.3:Density distribution|ψ|2 for s =3 of the 121th (a), 122th (b) localized states and

(c) first delocalized state in the second band.

potential. To test this expectation one has to solve Eq. (4.2). Without any approxi-

mation, Eq. (4.2) can not be solved analytically and a numerical approach isneeded.

The Hamiltonian (4.2) has been recently studied in tight binding approximation in

[124, 125]. In particular, these works lie in a single-band approximation while in our

system also higher band can be occupied.

We solve numerically the eigenvalue problem (4.2) for our typical experimental pa-

rameters. Starting from Eq. (4.2), the numerical procedure is based on adiscretization

of the Hamiltonian along thex-axis (∼ 1000 spatial-step). The second derivative in

the kinetic term can thus be replaced by the differential increment. At this point we

diagonalize the discrete Hamiltonian to find the eigenvalues of the problem, which

are used to get the eigenfunctions directly from the eigenvalue problem. The full

energy spectrum found is reported in Fig. 4.1a which shows a density plotof the first

1000 eigenfunctions. Each line in Fig. 4.1a corresponds to a density plot of the wave

function in coordinate space, as sketched in Fig. 4.1b. This spectrum is clearly dif-

ferent from the one obtained with a pure harmonic trap or with a pure opticallattice.

The shape of the single-particle energy spectrum reveals the existence of two dis-

tinct class of solutions. For low energies we find delocalized states that spread sym-

metrically around the potential minimum. These states are the analogous of Bloch

states, introduced in Sec. 2.3. Typical delocalized functions are shown inFig. 4.2 to-

gether with their density distribution|ψ|2. Note that the shape of the wave-functions

is similar to the corresponding eigenstates of a pure harmonic oscillator while thefast

modulation is due to the optical potential. Above a threshold energy, the second class

of solution appears. These eigenstates go to zero around the trap minimum result-

ing in a localization over just few lattice sites. Typical localized states are drawn in

Fig. 4.3(a)-(b). These eigenstates are no more symmetric with respect to thecenter

of the trap and become localized on both sides of the potential. Particles have indeed
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maximum probability to be in the left (Fig. 4.3(a)) or in the right (Fig. 4.3(b)) ofthe

potential. These localized states are the analogous of the Wannier-Stark states found

in presence of a linear force (see Sec. 2.4.3).

If we look at even higher energies, a second group of eigenfunctionsappears, centered

again around the trap minimum. These states correspond to particles delocalized on

the bottom of the second band where they experience again an harmonic-like poten-

tial (see Fig. 4.3(c)). By further increasing the energy, we will again find localized

states but now related to the second band. The spectrum of Fig. 4.1 exhibitsclearly

a shell-like structure and from the first to the last energy level we can recognize a

sequence of delocalized and localized state. It is straightforward to identify this spec-

trum with the well known band picture for a pure periodic potential3, as comes out

from the energy spectrum reported in Fig. 4.1. Despite of the analogy with the band

structure, ourbent-tubespectrum exhibits new important features. For a given posi-

tion, not all the energy are allowed because a spatially varying gap opensin presence

of a parabolic confinement. The accessible energy values stay in an intervalEbw with

an extension equal to the bandwidth2δ calculated for a pure sinusoidal potential. We

also found a one-to-one correspondence between the forbidden energy interval and

the usual band gapEgap. As a consequence, in presence of a harmonic potential,

we can no more speak about an absolute energy gap but we have to refer to a spatial

energy gap. The behavior of our new energy spectrum suggests the possibility to

investigate, in a selective way, localized states which are never been observed so far.

4.2.2 Experimental setup

We start to describe our experimental procedure to produce an ultracoldatomic gas

in a combined parabolic and periodic potential [48].

As reported in Chap. 1, our apparatus allows to prepare either a fermionicsample

of 40K atoms, either a bosonic one of87Rb atoms. After the laser cooling phase

(pre-cooling stage), the atomic sample is initially loaded into a harmonic trap with

cylindrical symmetry along thez-axis (axial direction). We perform on trapped Rb

atoms a selective evaporative cooling using radio-frequency radiation.K atoms are

instead sympathetically cooled through elastic interspecies collisions. Both species

are trapped in their doubly polarized spin states,|F = 9/2, mF = 9/2〉 for K and

|2, 2〉 for Rb. In these states, the two samples experience the same trapping potential,

with axial and radial harmonic frequenciesωa = 2π×24 s−1 andωr = 2π×317 s−1

3Note that, the band spectrum is usually referred to the quasi-momentum space while our energy

spectrum is obtained in the realx-space.
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Figure 4.4:Sketch of the 1D harmonic plus periodic potential experienced by the atoms.

The harmonic magnetic potential is produced by means of two coils in quadrupole-Ioffe con-

figuration and one pinch coil. The periodic potential is instead optically produced by two

counter-propagating laser beams in standing wave configuration.

for K, while those for Rb are a factor(MRb/MK)1/2 ≈ 1.47 smaller. Typically we

can produce5 × 104 fermions at about 0.3TF (TF =430 nK) and a condensate of Rb

with a similar atom number atT < Tc=150 nK. In general, we stop the evaporation

when the desired temperature is reached. When the evaporation is mostly finished we

superimpose along a 1D optical lattice the axial direction. To optimize the loading,

the lattice power is raised adiabatically in about 500 ms reaches its final value at the

end of the evaporative cooling stage.nThe total potential experienced bythe atoms is

drawn in Fig. 4.4. The lattice is produced by a far-detuned, retroreflected laser beam

with a typical beam waist of 500µm. The wavelength of our laser beam is chosen to

be far detuned with respect to all the optical transitions of K and Rb atoms to avoid

heating mechanism of the sample. For instance, if the laser light is blue-detuned, the

lattice potential is repulsive with maxima at the antinodes of the standing wave (for

red-detuned is the viceversa). The potential height of the optical standing wave can

be adjusted between0 < s < 10, wheres is the lattice height in unit of the recoil

energyER = ~
2k2/2m with k = 2πλ andm is the atomic mass.

4.3 rf-Spectroscopy of localized states

As shown in Fig. 4.1, particles with energy lower than the bandwidthEbw = 2δ

(2δ ' 0-80nK for s =3) are delocalized in the bottom of the first band. To study

localization, we need to load in such combined potential an ultracold atomic gas with

energies up to2δ. Good candidates to address particles in such localized states are a
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(a)

(b)

Figure 4.5:Observation of localized states. (a) Cloud of bosons without rf field and (b) with

rf field after 1.5 ms time of flight.

0 ms 400 ms 700 ms 1000 ms 1300 ms 1500 ms

Figure 4.6:Decay of localization due to interatomic collisions. Absorption images of bosons

left in the combined trap for different holding time. Localized bosons slowly move toward

the center of the magnetic trap on a time scale of the order of1 s. The measurements are

taken with an optical depth ofs = 6.

thermal cloud of bosons or a degenerate Fermi gas, because of their broad momentum

distribution. For definiteness, we concentrate our effort on a bosonic thermal cloud,

although the spectral features are equally valid for fermions.

4.3.1 Experimental technique

To fulfill the requirement ofE > 2δ, we stop the evaporation of Rb atoms when

the sample reaches a temperature which ranges from 500 to 600nK. Note that this

temperature is well above the critical temperature for Bose-Einstein condensation.

The optical lattice used for these set of measurements has a wavelengthλ = 830 nm.

We choose an optical heights which leads to a bandwidth2δ much smaller than the

average energy of the atoms, thus providing a high population in localized states.

Since the periodic potential affects only axially the system, the particles occupy pure

harmonic oscillator states in the two radial directions.

To study localized states we use a spectroscopic technique based on the selective

removal of delocalized bosons from the trap. After the end of the evaporation and the
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adiabatic switch on of the optical potential, we apply a radio frequency (rf)field in

order to induce spin flip transitions between trapped and untrapped states.Because

of the magnetic radial confinement this removes all atoms whose wavefunctionhas a

spatial overlap with the magnetic field shell where the resonance condition

hν = µBB(r)/2 (4.3)

is fulfilled. In a pure quantum mechanical description the resonance condition for

the involved Zeeman transitions is given byhνmF=2→1
= EmF=2

− EmF=1
, and

hνmF=1→0
= EmF=1

, whereEmF=2,1
are the energies of the single particle states in

the |F = 2, mF=2,1 > state (we have set the energy of the|F = 2, mF=0 > state

to zero). The radio frequency is periodically modulated (1 kHz) within an interval

∆ν = νup − νlow (see again Fig. 4.1) to address a spatial region in which the atoms

are removed from the potential. After 100 ms of rf field we image the atoms which

are left in the potential.

In Fig. 4.5 we show an absorption image of the atomic cloud after1.5 ms od expan-

sion without and with rf field. In the latter case we remain with two clouds, located

at the edges of the original cloud. Looking at the energy spectrum, this nearly corre-

sponds to a removal of atoms with energy lower than2δ. We are thus able, using this

spectroscopic method, to transfer just delocalized atoms in untrapped Zeeman levels

! Figure 4.5(b) shows the new equilibrium distribution of our system composed now

only by localized bosons. Note that even if we leave on the rf field for one second we

still end with two separated clouds. After switching off the rf field, we hold bosons

in the combined potential for a variable time to check the timescale of localization

process. For high lattice height (s >3), we have observed long-lived localization

with the peculiar two peaks pinned on the sides of the combined potential. On the

contrary, if we perform the same measurement with atoms in a pure harmonic poten-

tial, we observe a complete removal from the trap due to the applied rf-field. This

removal takes place on a timescale comparable to the re-thermalization time (some

ten of ms). In presence of a tight lattice, the two peaks remain instead on the two

sides of the potential for a very long time. In Fig. 4.6, we show absorption images of

bosons ats = 6 for different holding times. Bosons decay toward the trap center on a

time scale of1 s. This decay is due to collisions between bosons which allow a hop-

ping between different states, as will be discussed in detail in Chap. 5. However, if

we repeat the measurement using a shallow lattice we observe a substantial decrease

of the two-peak lifetime. Note that if we repeat the same experiment using a cloud of

spin-polarized fermions this effect is obviously absent.

The usefulness of our spectroscopic method is connected to our ability to remove
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Figure 4.7:Energy distribution of localized states. Scan of the rf fieldthrough the cloud

of thermal bosons. The indicated frequencies are the upper frequencyνup of the rf field, the

bandwidth of the field is 3 kHz. The images are taken after 1,5 ms time of flight.
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Figure 4.8:Momentum distribution of the localized states. Fourier transform of the eigen-

states of Fig. 4.1. The red states lie within the first band, the green state is the lowest state of

the first excited band. The blue curves describe localized states.

selectively the undesired states with the rf-knife. In Fig. 4.7 we report a series of

absorption images where we have scanned the rf field fixing the frequency interval

∆ν = 3 kHz. Increasing the rf frequency we start to remove atoms from the center of

the trap. The hole in the spatial distribution deepens, until the lower frequency bound

is higher than the resonance frequency at the trap bottom: atoms in the centerare no

longer removed from the potential and we observe three clouds. The central cloud

corresponds to delocalized atoms in the bottom of the first band while the lateral

cloud are due to particles localized in the higher energy state. By further increasing

the frequencies, the displaced peaks disappear and the cloud is again unaffected by

the rf-knife.

These measurements clearly prove that the atoms in the two clouds are trappedin

localized states and that the rf field addresses the atoms in a defined spatial region.

As we will discuss in next sections, we are also able to detect the localization of the

atoms by looking at the center of mass of the whole cloud [50, 51, 48].

So far we have investigated the spatial distribution of atoms. Equation 4.2 gives

also the possibility to study the momentum distribution of the localized states which

provide useful information on the system. For a potential depth ofs = 3 we have cal-

culated the Fourier transform of the eigenstatesψ(x). Our findings are summarized in

Fig. 4.8 which shows the momentum distribution for selected eigenstates within the

first and second band. The lowest eigenstate shows the well known peak distribution

at multiples of twice the Bragg momentum. As shown in Fig. 4.9, this momentum

distribution can be directly observed using an expanding Bose-Einstein condensate4.

4After a long expansion time, the imaged profile corresponds to the momentum distribution of the

cloud in trap.
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Figure 4.9:Interferogram of a Bose-Einstein condensate loaded in the combined potential

with a lattice heights = 5. A) Absorption image of the cloud after29.5 ms of expansion.

B) Experimental momentum distribution (crosses) obtainedfrom the absorption image. The

wings of the central peak result from a small thermal component. The continuous line cor-

responds to the calculated density profile for the expanded condensate for the experimental

parameters [130].

Indeed condensed particles fulfills the requirement of macroscopic occupation of the

lowest energy state which is clearly delocalized. The width of each peak is larger

with respect to the one expected from Fig. 4.8 because of the boson-boson mean filed

interaction which spread the distribution in momentum space.

Coming back to Fig. 4.8, as soon as atoms occupy upper energy levels, these

peaks broaden and develop a substructure. For even higher eigenvalues, we found

again localized states, whose distribution in momentum space spreads over thefirst

Brillouin zone (±pB). All localized states arrange themselves in a similar way, re-

gardless the energy of the state. Eigenfunction at the bottom of the secondband are

again delocalized and their Fourier transform exhibits narrow peaks in themomen-

tum space shifted by the Bragg momentum with respect to the ones found for the

ground state (349 eigenstate in Fig. 4.8).

The optical lattice provides to the system an extra confining energy only in theaxial

direction while in the the radial direction the cloud has a pure harmonic momentum

distribution. Consequently, localized clouds are expected to exhibit an anisotropic

expansion. In Fig. 4.8 (b) we show an absorption image of a localized cloudafter
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s 3= s 9=
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Figure 4.10:Absorption image of a cloud of atoms which was prepared with our rf technique

after 10 ms time of flight (a) fors = 3 (b) for s = 9.

10 ms time of flight fors = 3 ands = 9. For s = 3, we measure a radial-to-axial

aspect ratio of2.5 which is notably different from the one found for a harmonically

trapped cloud (Rr/Ra ' 1). This value confirms the high anisotropy of the system in

presence of an optical lattice and indicates the nonclassical momentum distribution

of the localized states. Fors = 9 the cloud expands much faster in the direction along

the lattice (horizontal direction) revealing the larger ground state energy.Indeed we

calculate a 2 times larger momentum distribution fors = 9 with respect tos = 3

which leads to a nearly isotropic expansion.

4.3.2 Localization and addressability

The degree of localization of particles is a crucial point for the possible applications

of our spectroscopic method. This kind of information can be extracted by looking

directly at the extension of such localized states. In general, the extensiondepends

both on the local gradient provided by the parabolic confinement and on the lattice

height. Since our theoretical model gives the possibility to scan a large interval of lat-

tice heights, we can investigate the behavior of bosons/fermions starting from a weak

binding regime up to a Mott insulator one. In Fig. 4.11a, we plot the behavior of such

extension as a function of the lattice height for three different energies which corre-

spond to three different potential gradients. For low lattice, our states arelocalized

in space over several lattice sites (the size of a lattice site is aboutλ/2 ' 0.4 µm).

Increasings, the number of sites involved decreases until just one site is occupied.

Fig. 4.11 (a) also shows that localization is enhanced at high temperature. This result

is somehow counterintuitive if one misses the knowledge of the energy spectrum.

Note that interband transitions reduce the degree of localization of our states. In

particular, tunneling process between bands are strongly enhanced in shallow lattice.
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Figure 4.11: (a) Extension of the localized states in the first band in dependence on the

lattice height for three energies (kB×100 nK, kB×200 nK, andkB×300 nK). (b) Tunneling

between the bands: density distribution of the 594th eigenstate for a potential withs =0.3.



100 Localization in a combined periodic and harmonic potential

As an example, we report in Fig. 4.11 (b) the density distribution of an excitedstate

for s =0.3. It turn out that a particle in such a state exhibits substantially contribu-

tions from both the first and the second band. On the one hand indeed this particle

has a finite probability to be localized on the right side of the first band while on

the other hand it also has a probability to be delocalized in the bottom of the sec-

ond band. The latter effect yields to an increase the extension of our states. States

like the one reported in Fig. 4.11 (b) can no more be identified with those of the two

classes reported above, and one should run back to the concept of resonances (see

Sec. 2.4.3). These results provide a tight link with Wannier-Stark resonances which

are completely localized until the probability of transition to higher band can be ne-

glected and stretch themselves for high interband tunneling rate (low s). Notethat for

even weaker lattices, the eigenstates become one of a pure harmonic oscillator.

Increasing the depth of the optical lattice, the extension of the localized state shrinks

(Fig. 4.11a) and the smallest possible extension is given by the ground statein each

lattice site. For our parameters we find that fors = 30 the eigenstates are mainly lo-

cated within a single lattice site. This result is of particular interest because it shows

that a localization of the particles within one lattice site is possible without a repul-

sive interaction which was need in the Mott insulator experiment [45] . Indeed, if an

atomic Fermi gas is loaded in this combined potential an occupancy with exactly one

atom per lattice site can be achieved due to the localization imposed by the harmonic

potential [53].

Another intriguing consequence of the localization is the addressability of single lat-

tice sites. The gradient of the parabolic potential let to different resonance conditions

for an atomic transition in dependence of the lattice site considered. In our setup the

magnetic potential leads to a spatially varying Zeeman splitting within the|F = 2 >–

manyfold and thus a very weak radio frequency should allow — in principle –for the

manipulation of the atoms within one lattice site. To get a reasonable discrimination

and a sufficiently high Rabi frequency, the resonance condition between adjacent

lattice sites should be shifted by something about 10 kHz which would require agra-

dient of 300 G/cm5. Thereby a linear potential is more favorable than a parabolic

one where the frequency shift is changing along the lattice. For well defined exper-

imental conditions it would be also desirable to have an optical confinement in the

radial direction because otherwise particles with lower axial but higher radial energy

might also be resonant with the radio frequency.

5For this gradient, the required lattice height for a localization within one lattice siteand a simulta-

neous suppression of Zener tunnelling iss > 10.
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4.4 Insulating behavior of fermionic localized state

So far we have investigated both experimentally and theoretically the stationarystates

of an atomic gas trapped in a combined parabolic and periodic potential. In this sec-

tion, we will instead study the response of such a system to an external perturbation.

In particular, we look at the center-of-mass oscillation of a Fermi gas whensubjected

to a sudden displacement of the harmonic trap. To describe the time-evolution of

our delocalized/localized states, we adopt a semiclassical approach whichprovides

a more physical insight on the problem. All the measurements reported below are

referred to a spin-polarized Fermi gas, well belowTF . Whereas the statistical na-

ture of our atomic sample would not introduce modification on the single-particle

energy spectrum, the dynamical properties are strongly affected by possible inter-

species collisions acting as a dissipative channel which could carry the system out of

localization, as we will show in Chap.5.

For sake of clarity, we will introduce at first the semiclassical model used todescribe

the system and then our experimental procedure and finding.

4.4.1 Semiclassical model

As already stressed, a spin-polarized Fermi gas is a completely non-interacting sys-

tem. The many-body Hamiltonian can be thus simply written as a sum of single-

particle Hamiltonians (see Sec.4.2). As usual, we restrict ourself to the 1D axial

problem to study the dynamics along the lattice. In a semiclassical approach6, the

effects of the periodic potential can be taken into account just by a renormalization of

the atomic mass (m → m∗ and thusp2
x

2m → ε(px)) while the harmonic confinement

generates a driving field. Using this one-dimensional semiclassical model, Eq. (4.1)

becomes

H0 = ε(px) +
1

2
mω2

ax
2. (4.4)

Starting from Eq. (4.4), we are interested on the response of a Fermi gasto a sudden

displacementxd of the harmonic trap center. The new Hamiltonian with the displaced

harmonic trap is thus

H = ε(px) +
1

2
mω2

a(x − xd)
2. (4.5)

6This approach can be used provided that the harmonic oscillator length is much larger than the

lattice spacingd = λ/2
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Figure 4.12:Phase trajectories for a trapped 1-D Fermi gas in a lattice atT = 0, just before

and after the displacement of the trap (figs. A and B, respectively), and their dynamical

evolution (figs. C and D). The ordinate and abscissa are in units of pχ ≡ Pxd/2~ and

χ ≡
√

mω2
xx2/4δ.

If the displacementxd is small compared to the size of the atomic cloud, we can

neglect the quadratic term inxd. In the linear regime of perturbation

1

2
mω2

a(x − xd)
2 ' 1

2
mω2

ax
2 − mω2

axxd, (4.6)

and the total Hamiltonian can be written as a sum of the unperturbed and perturbed

Hamiltonian:

H(x, px, t) = H0(x, px) + Hpert(x, t). (4.7)

Since we suddenly switch on the perturbation att = 0, the perturbed Hamiltonian

Hpert(x, t) corresponding to this excitation is:

Hpert(x, t) = mω2
aΘ(t)xxd, (4.8)

whereΘ(t) is the unit step function. As soon as the parabolic trap is displaced, the

center-of- mass〈x̂(t)〉 of our gas starts to oscillate in the combined potential. The

equation of motion for〈x̂(t)〉 can be derived by applying a first order perturbation

theory (i.e. linear perturbation) to the well-known Liouville equation

∂f

∂t
+ {H, f} = 0, (4.9)

wheref ≡ f(x, px, t) is the distribution function of our Fermi gas.

If we consider the unperturbed system, Eq. (4.9) leads to an equilibrium distribution

functionf0(x, px). In the linear regime of perturbation, we can consider solution of

the type:

f(x, px, t) = f0(x, px) + g(x, px, t), (4.10)
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whereg(x, px, t) is a small time-dependent correction to the equilibrium distribution

f0. By introducing the ansatz (4.10) in the Liouville equation (4.9) and expanding

the Poisson bracket, one finally finds [131]

∂g(x, px, t)

∂t
+

∂ε(px)

∂px

∂g(x, px, t)

∂x
+mω2

ax
∂g(x, px, t)

∂px
−mω2

aΘ(t)xd
∂f0(x, px)

∂px
= 0.

(4.11)

The Liouville equation becomes thus a differential equation whose solution provides

the perturbed density distributiong. Oncef(x, px, t) is found, one can study the

center-of-mass motion of the gas according to the equation

〈x̂(t)〉 =

∫ +∞

−∞
dx

∫ +∞

−∞
dpx

1

2π~
xf(x, px, t). (4.12)

The problem is clearly simplified if we deal with a single-band system in tight binding

approximation. In this limit, the energy dispersion for a pure periodic potentialtakes

the simply expression

ε(px) = 2δsin2(
pxd

2~
), (4.13)

whered = λ/2 and2δ is, as usual, the bandwidth. If one introduces Eq. 4.13 in

the Liouville equation, it is possible to findf(x, px, t) and thus the evolution of the

center-of-mass. However, one can also extract several useful information by looking

at the energyE of the system. In particular, one can get the isoenergetic trajectory

diagram in phase space. In presence of the parabolic potential, the energy

E = 2δsin2(
pxd

2~
) +

1

2
mω2

ax
2 (4.14)

is a constant of motion, i.e. no dissipative mechanism is present in our non-interacting

system. One can thus draw the isoenergetic orbits in the (x,px) plane. Such a sin-

gle particle orbits are reported in Fig. 4.12, for our experimental parameters. We

can distinguish two different kinds of trajectories corresponding to the twoclasses of

states found by solving numerically the full-Hamiltonian (4.2). These two kinds of

orbits are separated by the dashed orbit with energyE = 2δ. A particle with energy

within the first band (E < 2δ) occupies aclosedorbit in the phase space. A fermion,

moving in such a trajectory, starts to oscillate inx-space around the trap minimum

as soon as the harmonic trap is shifted. Indeed, in closed orbits, the kinetic energy

can be fully converted in potential energy and viceversa. In the full many-body ap-

proach (see Sec. 4.2.1), a particle in a closed orbit corresponds to the delocalized

particle, described above. On the contrary, ifE < 2δ a localization take place and

particles move in phase space alongopenorbits which are the semiclassical analo-

gous of localized states. Particles in these open orbits can just oscillate on one side of
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the potential without passing throughx = 0. The kinetic energy can never be com-

pletely converted in potential energy. Localized oscillations are equivalent to Bloch

oscillations observed when a linear driven potential is applied, as we haveshown in

Chap. 3.

Note that, in general the oscillation frequency of both kinds of orbits showsa strong

dispersion with energy.

As shown in Fig. 4.12A, the Fermi gas atT = 0 uniformly fills the phase space re-

gion with energy belowEF . A sudden displacement of the center of the harmonic

potential corresponds to a shift of the center of the phase space (see Fig. 4.12B). The

blue region contains particles that are still in equilibrium in the new configuration of

the trapping field. The red and yellow regions, containing particles moving onclose

and open orbits respectively, are instead out of equilibrium and give rise to a collec-

tive dipole motion. The phase space region opens and melts during the dynamics as

a consequence of the energy dependence of the single particle oscillationfrequency

(see figs. 4.12 C, D), yet leaving constant the phase space volume (because of the

Liouville theorem) and therefore preserving the Pauli principle.

As we will discuss in next section, the center-of-mass motion of the Fermi gasis

damped due to dephasing between atoms. In particular, red orbits dephaseon a

longer time scale with respect to the yellow ones. Therefore, the relaxation and the

frequency of the oscillation mode are dominated by the particles moving aroundthe

center of the phase space, in the red region. Note that yellow orbits remain open dur-

ing all the system evolution. This leads to a trapping the center of mass of the system

on one side of the harmonic potential.

In the one-dimensional semiclassical model, the damping of the oscillation disap-

pears in the linear limit (small initial displacement) atT=0. To describe the dynam-

ics of the Fermi gas produced in our experiment, we need a three dimensional model

[50]. The step described above to derive the center-of-mass motion canbe extended

to the 3D case. A full description can be found in [131].

4.4.2 Center-of-mass dipolar oscillation

We now report on the observed behavior of a Fermi gas when the harmonic trap

minimum is shifted in the direction of the lattice. We also compare our finding with

the 3D semiclassical model developed by S. Stringari and coworker [131, 50].
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xd

Figure 4.13: Sketch of the experimental procedure to induce a dipolar oscillation in the

combined periodic and harmonic potential.

Experimental procedure

All the measurements reported below are performed with a Fermi gas in the combined

harmonic and periodic potential. Our sample is composed typically by2.5 × 104

atoms of40K at a temperature that can be varied between0.2 TF andTF , where the

Fermi temperature isTF ≈ 300 nK. The lattice has here a wavelength of863 nm.

The lattice height can be adjusted in the rangeU = 0.1−8ER, whereER/kB = 317

nK. To excite a dipolar mode, we displace the harmonic trap minimum along the axial

direction [132], as illustrated in Fig. 4.13. The cloud is thus out of equilibriumand

start to oscillate. The typical displacement isxd=15µm which is much smaller than

the 1/e2 radius of the cloud (110µm). After a variable evolution time in the trap the

atoms are released from the combined potential. We detect the position of the center

of mass of the cloud by absorption imaging after a ballistic expansion of 8 ms.

The figure (4.14) shows the dipolar oscillation of the Fermi gas both in presence of

a lattice withs=3 (solid circles) and with a pure harmonic trap (open circles). To-

gether with our experimental data, we also report the theoretical predictionof the

semiclassical theory (solid line) which well describes our finding. The comparison

between these two set of measurements reveals the strongly modified behavior of the

system when an optical lattice is switched on. In presence of the lattice, an offset

appears in the oscillations. According to the above discussion on the phasespace,

we ascribe this offset to the significant fraction of particles moving along open or-

bits. For the given parameters the Fermi energy is indeed larger than the bandwidth

2δ ≈ 0.4EF . This localized fraction of fermions behaves macroscopically as an in-

sulator, because its center of mass does not move under the harmonic force but stays

trapped on one side. The fraction of the gas occupying closed orbits caninstead os-

cillate in the harmonic potential, and has therefore a conducting nature. A damping

appears as expected because of the dephasing between different orbits. Also, the os-

cillation frequency is reduced because of the larger effective mass of the atoms in
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Figure 4.14:Dipole oscillations of the Fermi gas of40K atoms atT = 0.3TF in presence

(filled circles and full line) and in absence (empty circles and dotted line) of a lattice with

heights =3. The lines are the theoretical predictions, the circles are the experimental results.

The horizontal dot-dashed line represents the trap minimum.

the lattice. As discussed in Sec. 4.4.1, a fermion can oscillate or stays trappedin

one side of the potential whether its energy is smaller or larger than2δ. Experimen-

tally we can adjust2δ by changing the height of the optical potential. In this way

the Fermi energy moves within the energy gap between the first and secondband of

the lattice. We have therefore performed a series of measurements by keeping the

atom number and temperature of the Fermi gas constant, and varying just thelattice

height. In Figs. 4.15-4.16 we plot the measured dependencies of the offset, damping

rate and oscillation frequency from the lattice heights. In particular, Fig. 4.15 shows

the crossover from a conducting behavior in low lattices (most of the fermions has

an energyE < 2δE) to an almost completely insulating behavior in higher lattices

(E > 2δE). The relative oscillation offset defined asxosc/x0, wherexosc is the cen-

ter of oscillation of the system in the lattice, increases by increasing the lattice height.

Note how the relative offset, which represents the insulating fraction of theFermi gas,

stays small as long as 2δ < EF , and then raises quite rapidly towards unity. Since in

the present experimentEF ≈ ER, an insulating fraction appears already with low lat-

tices; the theory however shows that the threshold for the insulation moves tohigher

lattices in case of smaller Fermi energies (dashed line in Fig. 4.15). The disagreement

between experiment and theory at low lattice heights,s < 3, can arise from the pop-

ulation of higher bands due to the finite temperature and/or Landau-Zener tunnelling.

Indeed, the semiclassical model is built up in single-band approximation. Increasing

s, the energy gap between bands increases, and the single band calculations become
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Figure 4.15: Relative offset of the oscillations of a Fermi gas in the lattice (normalized to

the initial displacement) as a function of the lattice height. The circles are the experimental

data and the continuous line is the theoretical prediction for 3×104 atoms atT =100 nK. The

dashed line is the prediction for a Fermi gas of 2.5×103 atoms atT=0.

more realistic. In Fig. 4.16 we instead show the observed features of the conducting

fraction of the gas. The damping rate of the oscillation (Fig. 4.16a) also increases

with the lattice height, because of an increased dispersion of the oscillation frequen-

cies of atoms in closed orbits7. In Fig. 4.16b, we report the oscillation frequency of

this oscillating which is close to that expected for a particle moving at the bottom of

the band with a renormalized mass.

As a consequence of the Pauli principle, which keeps the energy distribution

broad, a spin-polarized Fermi gas exhibits an insulating behavior even atT=0. Note

that the phenomenology observed with a Fermi gas only weakly depend on the gas

temperature, at least in the region 0.2-1TF that we have explored so far in both exper-

iment and theory, and in general we observe an increase of both offset and damping

for increasing temperatures, as expected because of the broader energy distribution.

As we will see in Chap. 5, this behavior is somehow opposite to the one exhibited

by thermal bosons in which interparticle collisions enhance the conduction intothe

system.

4.5 Delocalized states: Bose-Einstein condensate

The Pauli principle keeps the energy distribution of spin-polarized fermions broads

in the combined potential even at zero temperature. As a consequence, in tight bind-

7fermions are in several closed orbits corresponding to different oscillation frequencies which con-

tribute to the dipole motion in different way
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Figure 4.16:A) Comparison between theory (line) and experiments (circles) for the damping

rate of the dipole oscillations of the Fermi gas as a functionof the lattice height. B) Oscillation

frequency of the Fermi gas as a function of the lattice height. The line is the expectation for

a particle oscillating at the band bottom.

ing regime, a fraction of fermions will always occupy localized states while theother

fraction will remain in delocalized ones. The dynamics of the whole system is thus

affected by both components which behave differently, as discussed in the previous

section. To investigate the transport properties of just delocalized state, i.e. to probe

the renormalization-mass theory, a good approach is to use a Bose-Einsteinconden-

sate as atomic sample. Indeed, due to its narrow distribution in both momentum and

coordinate space, condensed bosons occupy only energy levels withE < 2δ (delo-

calized states) experiencing a harmonic potential with a frequency modified by the

presence of the lattice [128, 129].

To confirm this expectation we have studied the modification of the low-lying col-

lective modes of a harmonically trapped BEC due to the presence of a 1D periodic

potential. In particular, we examine the axial dipole and quadrupole mode. Inthe un-

perturbed system, these excitations correspond respectively to the eigenfrequencies

ωD = ωa andωQ =
√

5
2ωa [14], as comes out from the hydrodynamics equation

of a superfluid [133]. Stringari and coworkers have shown that the hydrodynamics

equation can be still applied also in presence of an optical lattice. This extension

is possible by substituting the atomic massm with an effective massm∗ which ac-
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Figure 4.17:In the upper part we show absorption images taken after exciting the quadrupole

mode of a condensate in the combined trap withVopt = 3.4 Er and waiting different evo-

lution times (10,40,60,80 and 100 ms) before switching off the trap and letting the cloud

expand for 29 ms. In the lower part we show the evolution of theAspect Ratio (R⊥/Rz) of

the condensate obtained from the absorption images together with a sinusoidal fit to extract

the frequency of the mode.

counts for the modified inertia of the gas due to the lattice. In the linear regime of

small amplitude oscillations, the new frequencies in presence of an optical lattice are

simply obtained by replacing the axial magnetic trap frequencyωa with ωa

√

m/m∗:

ωD =

√

m

m∗
ωa (4.15)

ωQ =

√

m

m∗

√

5

2
ωa.

Note that, modes occurring in the direction perpendicular to the one of the optical

lattice are clearly unaffected by the lattice. In our experiment, we can directlytest this

theory by measuring the frequency of the dipole and quadrupole mode as afunction

of the optical potential depths.

Dipole and quadrupole mode

To perform measurements on these low-lying excitations, we employ a Bose-Einstein

condensate of87Rb atoms inF = 1, mF = −1. The axial and radial frequencies of

the harmonic trap are nowωa = 2π × 8.70 Hz andωr = 2π × 85.7 Hz, respectively.
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Figure 4.18:Frequency of the quadrupole mode of a condensate trapped in the combined

potential (harmonic magnetic trap + 1D optical lattice) as afunction of the dipole mode

frequency measured for different values of the optical lattice depth from 0Er to 4.1Er. The

frequencies of both the modes, characterized by a dynamics along the optical lattice, show

a marked dependence from the optical potential depth. The line represent a linear fit with a

slope of1.57 ± 0.01.

The wavelength of the optical lattice is chosen to be far detuned with respectto all

the atomic transition (λ = 757 nm).

We induce a dipolar oscillation, by suddenly displacing the position of the trap min-

imum alongx and observing the center-of-mass motion as a function of time [39].

Typical initial displacement used is∼ 30 µm. The quadrupole mode is instead ex-

cited by perturbing the magnetic bias field [134]. This is done by applying fivecycles

of resonant sinusoidal modulation at a frequency close to
√

5/2νD. The quadrupole

mode is a zero angular momentum mode corresponding to an in-phase oscillation

of the width along the radial direction and an out-of-phase one alongx. Typical

quadrupole oscillation is represented in Fig. 4.17 where, in the upper part,we show

images of the expanded condensate taken at different times after the excitation pro-

cedure and in the lower part we report the measured aspect ratio together with the

sinusoidal fit. SinceνD andνQ are expected to scale in the same way with the optical

potential depth (see Eqs. (4.15)), we report in Fig. 4.18 the quadrupolemode fre-

quency as a function of the dipole mode frequency varying the lattice heights. From

a linear fit of the data we obtain a slope of1.57 ± 0.01 in very good agreement with

the theoretical prediction of
√

5/2 = 1.58. These measurements demonstrate that

the transport properties of a trapped BEC in the presence of a periodic potential can
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Figure 4.19:Effective mass values extracted from the dipole mode frequency (open circle)

and from the quadrupole mode frequency (closed circle) as a function of the optical lattice

height. The continuous line represent the theoretical curve from [128] obtained neglecting

the role of the mean field interactions, while dashed and dotted lines corresponds to the

values obtained in [135] numerically solving the Gross-Pitaevskii equation and evaluating

the effective mass from the quadrupole and the dipole mode frequencies.

be described generalizing the hydrodynamic equations of superfluids.

Following Eqs. (4.15), from our data we can also extract the value of the effective

massm∗ as a function ofVopt. The results obtained from both the dipole mode and the

quadrupole mode frequencies are reported in Fig. 4.19, together with the theoretical

predictions reported in [128] (continuous line). Even if this theoretical curves have

been obtained neglecting the mean field interaction and the magnetic confinement,

the agreement with our data is very good. In fact, in the regime ofVopt explored in

our experiment, the effect of interactions is negligible as also confirmed by the direct

solution of the Gross-Pitaevskii equation (dashed and dotted line in Fig. 4.19) [135].

For "large" amplitude oscillation, the system shown an instability resulting from the

interplay between dispersion and nonlinearity [127, 136, 137].





Chapter 5

Conduction of a Fermi gas in the

combined potential

Analogy denotes a resemblance not between

thinks but between the relation of things.

W. S. Javons

In the previous Chapter, we have investigated the features of a non-interacting

atomic Fermi gas in a combined periodic and harmonic potential. In particular, we

have demonstrated both experimentally and theoretically that such combined poten-

tial admits two different classes of solutions, named delocalized and localizedstates.

Under an external driven force, fermions in localized states act as an insulator system.

This result provides a straightforward link with the well-known theory of conduction

in metals. Indeed, electrons subjected to a linear potential occupy localized Wannier-

Stark states (see Chap.2) and this localization yields again to an insulating behavior.

In the absence of interactions, electrons in Wannier-Stark state cannot change their

quantum state and the whole system behaves like an insulator for DC currents. How-

ever, this scenario is far from the real physical situation encountered inmetals in

which electrons strongly interact with lattice phonons and impurities. Indeed,the

localization is somehow "destroyed" by collisional mechanism and a macroscopic

current is established. In particular, at the onset of interactions, an increasing colli-

sional rate is expected to favor a current through the lattice whereas at high collisional

rate the current is hindered by collisions. The latter regime is the usual one for solids

where the conductivity decreases linearly with increasing collisional rateswhile the

limit of low collisonal rate, where the role of collisions is reversed, is experimentally

not accessible in solids. Nevertheless, this regime can be achieved by employing
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semiconductor superlattices which exhibits the spectacular phenomena of negative

electric conductivity [138, 139, 140, 141].

The aim of our experimental work reported here is to study the transport of a Fermi

gas subjected to an external force when collisional channel is present(i.e. bosons).

This investigation allows us on the one hand to go further in the comparison of our

atomic system with a solid state one and on the other hand gives the possibility to

reach low-collisional regime not accessible in the physics of solids. For sake of clar-

ity, we summarize below our main results while a detailed discussion can be found

in the sections.

5.1 Outline

In this Chapter, we move from an ideal Fermi gas, already described in Chap. 4,

to a cloud of fermions interacting with a Bose gas (Sec. 5.2.1). We observe that the

behavior of our Fermi gas changes dramatically in presence of the dissipative channel

provided by collisions with bosons. In particular we will show that, under anexternal

driven force, a dc fermionic current can be established only in presence of interactions

(Sec. 5.2.2). Furthermore, the dependence of the transport velocity onthe collisional

rate gives evidence of the two regimes of negative and positive conductivity already

expected but never observed in metals. Finally, we also report the comparison of our

findings with a model first introduced for electrons in superlattices which reveals the

importance of dissipative mechanism on the transport (Sec. 5.2.3).

The main results reported here can be found in our publication:

• "Collisionally Induced Transport in Periodic Potentials", H. Ott, E. de Miran-

des, F. Ferlaino, G. Roati, G. Modugno, and M. Inguscio, Phys. Rev.Lett. 92,

160601 (2004).

5.2 Transport of localized states assisted by collisions

5.2.1 Experimental procedure

The experimental procedure to produce a mixture of ultra cold fermionic40K and

bosonic87Rb atoms in a combined periodic and harmonic potential has been already

described in Sec. 1.3.1 and 4.2.2.

All the measurement reported below are carried out with mixture of fermions and

bosons at temperatures between300 and400 nK. The number fermions can be varied
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between2×104 and105 which corresponds to a Fermi temperature of300−400 nK.

Since we want to add interspecies collisions in a controllable way, we need to adjust

the number of bosons in the mixture by changing the final ramp of the radio frequency

evaporation. We can also remove bosons using a sweep below the trap bottom. Note

that the temperature of the mixture is always above the critical temperature forBose-

Einstein condensation. We use a laser light to produce the lattice with a wavelength

λ = 830 nm, corresponding to a recoil energyEr = ~
2k2/2m '160nK, in unit of

kB. Since we want to study the evolution of localized states in presence of a colli-

sional mechanism, the temperature of the samples is chosen to be comparable to the

recoil energy which yields a significant occupation of the localized states.The typ-

ical 1/e2-radius of the cloud in the direction of the lattice is100 µm corresponding

to roughly 250 lattice sites. We remind that, in the two radial directions, the atoms

occupy the radial harmonic oscillator states.

In order to study the transport of the particles along the lattice, we excite a dipolar

mode in the Fermi gas. The magnetic trap is thus suddenly shifted in the direction

of the lattice by a fraction of the extension of the cloud (displacementxd). As al-

ready discussed in Sec. 4.4, the harmonic confinement acts like an quadratic driving

potential (see Fig. 4.13). Finally, we monitor the dynamic of the Fermi gas by taken

absorption images of the cloud for different holding times in the combined potential

and we obtain the center-of mass (CM) position of the cloud by fitting the observed

atomic distribution.

5.2.2 Center-of-mass dipole oscillations

The evolution of the CM for an initial displacement ofxd = 35µm is shown in

Fig. 5.1b. The open circles show the motion of a pure fermionic sample. The filled

squares show the evolution of the fermionic sample in the presence of105 bosons. As

showed in Sec. 4.4, non-interacting fermions in a combined potential behaveas an

insulator (open circles) and their evolution is characterized by the followingfeatures:

1. Offset: The offset is due to fermions in localized states (open orbits) which

stay trapped in one side of the potential after the displacement. These fermions

can not change their quantum state since any dissipative mechanism is absent.

2. Damping: The damping is due to fermions which still occupy delocalized states

(closed orbits) and can thus oscillate until dephasing mechanism washes out the

motion. The dephasing, which set the timescale of the damping, arise from the

different frequencies of fermions in different orbits.
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Figure 5.1:Evolution of the center of mass (CM) position of a cloud of fermions. A pure

fermionic sample (circles) does not move to the trap center,whereas an identical sample with

an admixture of bosons reveals a current through the potential (squares). The data are fitted

with a sum of an exponential decay and an initial damped oscillation as described in the text

(continuous lines). The expansion time of the cloud is8 ms and the lattice height iss = 3.

The temperature and the atom number of the fermions areT = 300 nK andN = 5×104, the

number of admixed bosons isNB = 1 × 105.

3. Frequency: The oscillation frequency of delocalized fermions is reduced with

respect to the trap frequency due to the large effective mass experienced by

atoms in the lattice.

Note that for such a non-interacting system, only Landau-Zener tunnellingwould be

able to modify the behavior of localized atoms. Nevertheless, for our experimental

parameter, this effect is negligible. The offset cannot vanish and the system is insu-

lating.

As soon as we introduce in the system a mechanism which allows fermions to change

their quantum state, the dynamical behavior of the gas strays dramatically from the

one just illustrated. We add to the system a cloud of bosons which interact attrac-

tively with the Fermi gas. Interspecies collisions allow the fermions to hop between

different localized states. The fermions rapidly move towards the equilibriumposi-

tion of the potential1. This macroscopic transport corresponds to a DC current. To

quantify this current, we fit an exponential decay to the long time tail of the data. For

fermions in the mixture we find a decay time ofτ = 260 ± 30 ms, whereas for the

1Due to a heating of the radial degrees of freedom the axial extension of the cloud in the mixed

system increases. Because an existing anharmonicity of the trapping potential shifts the center of mass

for increasing temperatures, the cloud remains slightly above the equilibrium position.
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Figure 5.2:Decay timeτ of a cloud of fermions in a mixture with bosons in dependence

on the collisional rate (dots). The number of fermions isN = 50 000 with a temperature

of 350nK. The number of bosons was changed over more than one order of magnitude.

The lattice height for the two species wassK = 3 andsRb = 9, the initial displacement was

xd = 35µm. The solid line is a drift time, calculated from Eq. (5.1) for a linear potential with

Bloch oscillation frequencyωB = 2π × 35 s−1 (see text). For comparison, the theoretical

curve is multiplied with a factor of three.

pure fermionic sample the decay time is longer than5 s which is comparable to the

lifetime of the atoms in the optical potential. This experiment proofs that in a per-

fect lattice interactions between the particles are needed to establish a macroscopic

current under an external force.

5.2.3 The Esaki and Tsu theory works here ?

Fig. 5.1 clearly shows that collisions with bosons drive the Fermi gas towarda lo-

cal equilibrium into the minimum of the potential. To investigate this mechanism in

more detail, we can repeat the same experiment for different number of bosons in the

mixture which also yields to a change in the collisional rate. In Fig. 5.2 we report

the decay time of the offset of the fermionic cloud as a function of the collisional

rate. The number of bosons is changed from2.5× 104 to 3× 105 corresponding to a

change in the interspecies collisional rate between40 s−1 and550 s−1. The average

collisional rate is calculated taking into account the spatial overlap of both clouds

in the combined potential. Increasing collisional rate, we observe a faster decay of

the offset which corresponds to a decrease of the decay time. This is what one ex-

pects if the collisions assist the hopping between different localized states.For high

collisional rates, the experimental data show a slight increase of the decaytime with
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increasing collisional rate. In this regime the number of bosons is much higherthan

the number of fermions and the bosons can be regarded as a thermal bath for the

fermions. The fermions exhibit a drift motion and the collisions with the bosons im-

pede the current through the potential like in a electric conductor.

A similar behavior has been observed in semiconductor superlattices [138,139]. Dif-

ferently from usual metals, the period of a superlattice turn out to be smaller than the

electron mean field path. One may expect to observe in these systems strong energy

dispersion effects which are hidden by collisional mechanisms in common metals.

In semiconductor superlattices, the current through the potential decreases when the

applied voltage is increased and the system exhibits a negative differentialconduc-

tivity (NDC). This is due to the tighter localization of the electron wave function

which reduces the transition probability of a hopping event between the localized

states [142, 143]. In our experiment, we do not change the transition probability

between quantum states but the rate of transition inducing collisions. Despite the dif-

ferent physical mechanism, the drift velocity depends only the product of the Bloch

frequencyωB, i.e. the transition probability, and the collisional rate determines the

final hopping rate. This formal identity allows us to compare our experimentaldata

with the theoretical model that was introduced by Esaki and Tsu [138] to describe

NDC. The authors calculate the drift velocity of electrons in a periodic potential un-

der a constant external force. They introduce a phenomenological scattering rateγ

(relaxation-time approximation) and show that the drift velocity depends on the ratio

of the Bloch oscillation frequency in the linear potentialωB and the scattering rateγ:

vd = v0/4
ωB/γ

1 + (ωB/γ)2
, (5.1)

with v0 = λ∆E/~ being the tunnelling speed through the potential and∆E being

the width of the first band. A direct adaptation of the above equation to our dynamics

is rather complicated because we have a spatially varying Bloch oscillation frequency

ωB(x) and an inhomogeneous system. Note that the spatial dependence of the Bloch

frequency arises from the driven force applied which is linear in spacerather than

constant (F = mω2
az andωB(x) = F (x)d/~). However, we can compare the initial

velocity vi of the center of mass observed in the experiment with the drift velocity

calculated from Eq. (5.1) for a uniform system in a linear potential. To determine

the Bloch oscillation frequency in this potential, we take the force that initially acts

on the center of mass after the displacement and we identify the scattering rateγ

with the average collisional rate between the fermions and the bosons. Because the

initial velocity of the center of mass is connected to the decay time of the offset by
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Figure 5.3:Decay time of a cloud of bosons for different lattice heights. The initial displace-

ment wasxd = 10µm. The continuous line is an exponential fit to the data. The exponent is

given bye−s/1.6.

τ = xd/vi we can also compare the decay timeτ with the inverse of the drift velocity

vd. The curve arising from Eq. 5.1 is shown in Fig. 5.2 (solid line).

The issue of the identification of our damping mechanism with the one considered

in the Esaki and Tsu model deserves some discussion. In semiconductor superlat-

tices, the phenomenological scattering rateγ describes dissipative scattering pro-

cesses, where the electrons can arbitrarily exchange energy and momentum with an

external thermal bath, such as a bath of lattice phonons. In our system, theonly

scattering process present is due to collisions between fermions and bosons. Indeed

no energy exchange with the lattice is possible because our optical lattice is free of

impurities or excitations and momentum can only be transferred to the lattice in mul-

tiples of the Bragg momentum via umklapp scattering processes. Nevertheless, in

the limit NB > NF , bosons can be regarded as a thermal bath providing a dissipa-

tive scattering channel. For small numbers of admixed bosons and for pure bosonic

samples, where the assumption of having a thermal bath is questionable, we find

however the same phenomenology predicted by the NDC model. This indicates that

also in this case a dissipative mechanism is still present, possibly related to the cou-

pling to the two radial degrees of freedom. We can conclude that, in spite of the

simplifications and differences, the Esaki-Tsu model for semiconductor superlattices

reproduces well our experimental finding for an atomic Fermi gas interacting with a

Bose gas in a combined periodic and parabolic potential.
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5.2.4 Decay and localization

From the above discussion comes out that the transport properties of our Fermi gas

are determined by the competition between localization and collisions. In Sec.4.3.2,

we have shown that the degree of localization increase with the lattice heights (see

Fig. 4.11). We now demonstrate that, for a given sample of bosons, the transport

of fermions into the combined potential, is slowed down by increasings. At this

purpose, we have measured the dependence of the decay time on the lattice height

s. Our finding are reported in Fig. 5.3. The data show a rapid increase of the de-

cay time with increasing lattice height. This can be explained with a reduction of

the tunnelling probability between neighboring lattice sites with increasing lattice

height. In expression (5.1) the tunnelling speed appears as a scaling factor for the

drift velocity. Even if one takes into account a spatially varying Bloch oscillation

frequencyωB(x) and an inhomogeneous scattering rateγ(x), the role ofv0 does not

change. Thus, we can write for each single particle a differential equation of the form

ẋ/v0 = f(ωB(x), γ(x)), whose solution scales in the time domain withv0. Conse-

quently, also the behavior of the center of mass scales withv0 and the decay time

must be proportional to the inverse of the bandwidth. For a sinusoidal potential, the

bandwidth can be expressed in terms of Mathieu functions and we find that for s < 10

the bandwidth is well described (the maximum error is smaller than 10 percent) with

an exponential drop of the form∆E = Ere
−s/3.8. One therefore expects an expo-

nential increase of the decay time with increasing lattice height. The exponential fit

in Fig. 5.3 demonstrates well that this dependence is accomplished. We find a numer-

ical value for the factor in the exponent of the fit of1.6. For other experimental data

sets with different temperatures and initial displacements we derive values ranging

from 1.5 to 4.5.

All the results reported in this Chapter allow us to conclude that two crucial pro-

cesses are needed for the macroscopic transport through a periodic potential in the

presence of an external force. The first one is the tunnelling from onelattice site

to the next one. However, the coherent nature of the tunnelling processleads to a

localization of the particle. Therefore an additional dissipative process isneeded to

destroy the localization of the particle wave function. If one of these two mechanisms

is missing, the system is insulating, as we observe it for non-interacting fermions and

in the limit of deep lattices.



Conclusions

In this thesis, we concentrate our attention on the behavior of a non-interacting atomic

Fermi gas in presence of an one-dimensional optical lattice. A Fermi gas is already

interesting in its own right, including an optical lattice makes the system even reacher.

Our domain of investigation ranges indeed from single-particle coherenceeffects

such as Bloch oscillations to localization effects, and transport phenomenatriggered

by collisional mechanisms.

Two sets of experimental studies have been reported in the thesis. The first con-

cerns the development of a new atomic interferometer scheme which exploits the

absence of interactions in a spin-polarized Fermi gas. The second involves the study

of localization effects arising when the periodicity of the lattice is modified by super-

imposing a parabolic confinement, and the destruction of such localization when the

Fermi gas is coupled with a collisional channel.

We have demonstrated an atom interferometer using identical fermions confined

by a one-dimensional optical lattice aligned along the gravity. We have shownthat

the evolution of the interference pattern is the analogous of the semiclassicalBloch

oscillation. The forces applied on the atomic sample can be directly determined by

the frequencyωB of such oscillation. The novelty of our scheme consists in employ-

ing a non-interacting Fermi gas. The absence of interactions allows to followthe

time-evolution of the interference for a long time (more than 100 periods), whereas

in a condensate the interference is very rapidly washed out by the interactions. As

an example, we have determined the local gravitational accelerationg using both

a Fermi gas and a Bose-Einstein condensate. The comparison between these two

values reveals at list a one order of magnitude higher precision using a fermionic

sample, which could be however improved in future experiment. Our measurements

demonstrate an interferometric scheme based on trapped fermions which provides a

high-precision accessible just with Bose-Einstein condensate in free-expansion. As

a consequence, our method gives the unique possibility to achieve a sensitive deter-

mination of forces with high spatial resolution. Possible applications are the study
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of forces close to surfaces and at the sub-millimeter scale where a modification of

newtonian gravity could be present [123].

In the second part of the thesis, we have investigated both the ground stateand

the transport properties of our Fermi gas in presence of a combined periodic and

parabolic potential. We have observed that an inhomogeneous periodic potential ex-

hibits a qualitatively different phenomenology compared to a homogeneous system.

As soon as the translational invariance is destroyed by adding the parabolic poten-

tial, the atoms can stay localized out of the minimum of the combined potential. In

particular, we have shown that two different classes of states exist: delocalized and

localized states. We have developed a technique based on a radio frequency field

which induces spatially resolved transitions to remove selectively delocalizedparti-

cle. This technique allowed us on the one hand to get an evidence of a new localiza-

tion mechanism which is independent from the interaction, and on the other hand to

demonstrate a scheme to spatially address particles. Going further with our investi-

gation, we have induced a center-of-mass dipolar motion on the system by displacing

the parabolic potential. We have observed a dramatic difference between the dynam-

ical response of delocalized and localized atoms which behave as a conductor and

as an insulator, respectively. The conducting-delocalized fermions perform dipolar

oscillations around the trap minima, while the insulating-localized ones stay trapped

on one side of the combined potential. Indeed, localized fermions can move intothe

combined potential just by changing their energy level. In absence of interactions,

fermions can not hop between different states due to the conservation ofenergy and

the center-of-mass of the cloud remains pinned out of the equilibrium position. As

soon as an interaction is introduced in the system, we have observed a DC atomic

current of localized fermions mediated by collisions. In particular, we haveobserved

that fermions rapidly move towards the equilibrium position of the potential. We have

investigated the dependence of the transport velocity on the collisional rateand on the

lattice height. A comparison with the semiclassical Esaki and Tsu model [138] intro-

duced for electrons in superlattices reveals a good qualitative agreementalthough the

microscopic dissipative mechanism is different.

Our experimental investigation represents the first study on a Fermi gas in acom-

bined parabolic and periodic potential. Our results could open different perspectives

for future investigations and applications. First of all, recent theoreticalstudies pre-

dict the existence of anexotic quantum phases diagram which involve interacting

fermions in a three-dimensional lattice [144, 145]. A Mott insulator scheme has also

been recently proposed by using such a interacting system [45]. Furthermore, the
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existence of a localization in a non-interacting Fermi gas suggests the possibility to

create a single lattice occupancy which has important implications in the field of

quantum computing for the implementation of a qubit register [53]. Our spectro-

scopic technique to address selectively localized particles could also be extended to

manipulate particles in single lattice sites which would constitute a major progress

in "quantum engineering" with ultra cold atoms. Moreover our studies on the trans-

port of a non-interacting Fermi gas constitutes above all the foundations for further

investigations on interacting Fermi gas in an optical lattice. Using fermions in two

different spin states and Feshbach resonances to tune their interaction,one could in-

deed reach both normal and superfluid phase. The achievement of this latter regime is

exactly our main goal for future experiments !. In the superfluid phase, one indeed ex-

pects a clear modification on the transport along the lattice in analogy with superfluid

Josephson-like oscillations already observed with a Bose-Einstein condensate [39].

The optical lattice could thus play the important role of probe for the superfluidity

[146, 147].





Appendix A

Calibration of the optical lattice

From an experimental point of view, the calibration of the lattice constitutes an im-

portant and ticklish question since most of the measurable quantities depend on the

lattice depth. A precise tool to measure the effective optical potential is provided by

Bragg diffraction of atoms from a grating of laser light. Usually, Bragg scattering

is referred to the diffraction of an electromagnetic wave interacting with a crystal of

ions. The underlying physical mechanism of Bragg diffraction embed in a quantize

transfer of the momentum between a photon and a ion of the crystal. A photon can

indeed transfer to the crystal just a momentum which satisfies the following relation:

nλ = 2dsin(θ), (A.1)

whered is the distance between different plane of the crystal andn is the order of the

diffraction.

In our case the roles are somehow reversed: we study the momentum transferred

between a matter wave (for instance a BEC or a Fermi gas) and a grating of light.

Due to its optical nature, Bragg diffraction can be also viewed in term of a two-

photons transition from a initial ground state to a final ground state with opposite

momentum1. This provides a close connection with a Raman transition where an

atom oscillates between this two momentum states with an effective Rabi frequency

ΩRabi =
Ω1Ω2

2δ
, (A.2)

whereΩ1 ' Ω2 are the frequencies of the two transitions andδ the detuning with

respect to the atomic resonance. It is possible to show that from Eq. (A.2)one can

1A n-order Bragg diffraction corresponds to a 2n photons transition.
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Figure A.1: Calibration procedure of the optical potential based on induced Bragg tran-

sition between a state of momentum~kB and one with−~kB . The relative population of

the diffracted peak is plotted as a function of the Bragg pulse duration. The effective Rabi

frequency is extracted by fitting the experimental points.

experimentally determine the lattice height

ΩRabi =
|Udip|
2~

. (A.3)

In unit of the recoil energy (U0 = sER), the lattice depths can be expressed as

s =
2~ΩRabi

ER
. (A.4)

Experimentally we measure the Rabi frequency using the following procedure. After

producing a condensate in the center of the magnetic trap, we suddenly displace the

trap along thex-direction by a distance∆x = h/(mλωx) which provide a maximum

momentum to the atoms resonant with the Bragg momentum~kB A.1. At this point,

we switch off the magnetic confinement and we turn on the optical standing wave

for a timeτ . We then image the atoms after a fixed expansion time. As shown in

Fig. A.1, the relative populationNB/(N0 +NB) is then recorded as a function of the

pulse durationτ , whereNB is the number of atoms which have absorbed the Bragg

momentum2~kB. By fitting the experimental data, we extract the Rabi frequency

and then the depth of the optical lattice, accordingly with Eq. (A.4).

As an example, we also report a typical image of a 2D-Bragg diffraction in Fig. A.2.

Here we turn on two Bragg pulses both in thex- andz-directions.
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Figure A.2:Absorption image of a two-dimensional Bragg diffraction process. The Bragg

pulse is sent simultaneously along thex- andz-directions.
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