
DOTTORATO DI RICERCA IN

INTERNATIONAL DOCTORATE IN ATOMIC AND
MOLECULAR PHOTONICS

CICLO XXXI

COORDINATORE Prof. Francesco Saverio Cataliotti

Self-bound quantum droplets in
Bose-Bose mixture

Settore scientifico disciplinare: FIS/03 Fisica della materia

Dottorando:
Giovanni Ferioli

Tutor:
Prof. Marco Fattori

Coordinatore:
Prof. Francesco Saverio Cataliotti

Anni 2015/2018



And why do we fall, Bruce? So we can learn to pick ourselves up..

Thomas Wayne, "Batman Begins" (probably about vacuum leaks)
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Abstract

Self-bound quantum systems appear in different physical scenarios. They result from the
balance between attractive and repulsive forces. Recently the existence of a new object
belonging to this class has been discovered. Using a bosonic mixture of ultracold atoms, it
is possible to generate a self-bound state resulting from the interplay between an attractive
mean-field energy and the repulsive first-order perturbative correction, the so-called Lee-
Huang-Yang term. This system is known as quantum droplet.
During my PhD we have experimentally observed and characterized this novel quantum
state. Thanks to an innovative technique, based on a time-averaged potential, we were able
to levitate the mixture and study for the first time the self-bound nature of quantum droplets
in 3D free space. We characterized their equilibrium properties, i.e. the size, the critical atom
number for their formation and the spin imbalance, finding a very good agreement with the
theoretical predictions.
Despite being extremely dilute, for large atom numbers quantum droplets enter a liquid-
like incompressible regime, highlighted by the formation of a bulk with uniform density.
We investigate the occurrence of this incompressible regime by studying collisions between
two droplets. This is indeed a powerful tool to gain information about the energy scales
characterizing the system. To this aim, we implemented an experimental sequence able to
create two separate quantum droplets and to imprint them a tunable relative velocity.
By characterizing the outcomes of the collisions for different values of velocities and atom
numbers in the droplets and comparing them with the results of energetic considerations and
numerical simulations, we obtained the first evidence of a crossover between compressible
and incompressible regimes.
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Chapter 1

Introduction

Everyday life is characterized by the presence of matter in different phases. In several systems
it is also possible to observe the transformations between two of such phases, i.e., a so-called
phase transition. A remarkable example in this sense is that of water, where gaseous, liquid
and solid phases and their corresponding phase transitions can be observed in easily acces-
sible ranges of pressure and temperature. From a physical point of view, it is not trivial to
understand the origin of a liquid phase. A first explanation was proposed in a pioneering
work of J. van der Waals in 1873. In the model he developed, the liquid phase results from
the presence of a repulsive and an attractive energy in the microscopic Hamiltonian describ-
ing the system. These two forces create an inter-particle potential that is repulsive for short
distances and attractive for large separations, thus presenting a minimum at a finite value
of the inter-particle distance. In this microscopic model, the long range attractive force is
provided by a dipole-dipole interaction or other weak forces, while the short-range repulsion
comes from the Pauli exclusion principle acting on the electrons of the external shells of the
atoms. Extending this idea, we could state that a liquid phase, characterized by a bulk with
a fixed saturation density, can be created as the result of the interplay between an attractive
and a repulsive force, generating a microscopic potential V (R) which displays an absolute
minimum for a finite value of the inter-particle distance R.
As the temperature is decreased, we usually find matter either in liquid or solid phases. Con-
versely to this standard picture, in the past few decades scientists have been able to create
gaseous ensembles of alkali atoms at extremely low temperatures, of the order of few tens of
nK [1, 2]. These ultracold and extremely dilute systems fulfil the condition of quantum de-
generacy between their constituents particles, thus forming either Bose-Einstein condensates
(BECs) or Fermi degenerate gases, according to their statistics. As a consequence of both
the diluteness and the low temperatures in these systems, the interatomic potential charac-
terizing their microscopic Hamiltonian is quite different from the van der Waals potential
introduced above. In terms of their mutual interactions, ultracold atoms can indeed be rep-
resented as hard spheres of size a, known as scattering length, which is much larger than the
position of the minimum in the van der Waals potential. For this reason, it is not possible to
reach a liquid regime in a conventional way [3]. In the years, different mechanisms have been
proposed to create a liquid-like phase in ultracold quantum gases, for example exploiting the
interplay between an attractive two-body interaction and a repulsive three-body term [4],
but none of them has been verified in an experiment so far.
In 2015 the physicist D. Petrov proposed an innovative method to create a quantum liquid
state starting from a quantum gas [5]. This new system, known as quantum droplet, is the
result of an attractive mean-field energy (MF) balanced by the repulsive energy provided by
the first-order perturbative correction to it, the so-called Lee-Huang-Yang (LHY) term. The
latter comes from the effect of quantum fluctuations, that create a finite leak from the ground
state to finite momentum states, even in a BEC at zero temperature. This fundamental leak
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is known as quantum depletion. In a single component BEC, the MF and LHY terms have
normally the same sign. Additionally, as a consequence of the diluteness of the BEC, the
LHY term is typically negligible with respect to the MF. In the case of a bosonic mixture,
the situation can change. It is indeed characterized by the presence of three different colli-
sional channels: the intra-species scattering lengths aii, describing the interaction between
atoms belonging to the same atomic species, and the inter-species interaction, governed by
aij and describing the interaction between different atoms. Properly choosing the three in-
teraction strengths and the relative density between the two species, Petrov pointed out that
it is possible not only to make the energy contributions provided by the MF and LHY terms
comparable in size, but they can also have opposite signs. The competition between these
two energies can then lead to the formation of self-bound liquid-like droplets [5].
Almost concurrently to Petrov’s theoretical work, it was discovered in an experiment the
existence of analogous quantum droplets in dipolar BECs [6]. The strong magnetic moment
of these atomic species introduces another collisional channel in addition to contact interac-
tions, i.e. the dipole-dipole interaction. The latter plays the same role as the inter-species
interaction in mixtures and it can be used to gently tune the MF energy to negative values,
by varying the aspect ratio of the trap. This tool can be used to form self-bound systems
stabilized by the same physical mechanism introduced above.
Despite the similar stabilization mechanism, the two quantum droplets present several differ-
ences. The most important is that the ones formed with dipolar atoms are elongated in one
direction, as a consequence of the anisotropic dipolar interaction. Conversely, the self-bound
systems created from Bose-Bose mixtures are spherical in free space. The excitation spec-
trum is thus expected to be different. In particular, it has been predicted that, under specific
conditions, spherical quantum droplets automatically evaporate excitations and cool down to
zero temperature [5]. This happens because the particle emission threshold is lower in energy
than any excitation mode, i.e. it is energetically favorable for the droplet to release atoms
than to be in an excited state. This peculiar and exotic property was not clearly observed so
far and it is certainly one of the most interesting outlooks of the present work.
Another interesting feature of quantum droplets is that, despite being extremely dilute, they
present liquid-like properties, closely analogous to those of classical liquids. When increasing
the atom number, the ground-state wavefunction reaches a saturation density, so that it de-
velops a bulk with uniform density and very weak compressibility [5].
Experimentally, quantum droplets have been first observed in dipolar BECs of Dysprosium
atoms, in Stuttgard in the group led by Tilman Pfau [7, 8], and with Erbium atoms, in
Innsbruck in Francesca Ferlaino’s group [9]. Shortly after, the first experiments have been
realized also with bosonic mixtures, in the group led by Leticia Taruell in Barcelona in con-
fined spatial geometries [10, 11] and in our group in Florence in three-dimensional free space
[12].
In general, the investigation of quantum droplets forming in ultracold atomic systems could
be a useful tool to understand complex quantum systems beyond the mean-field paradigm.
For example, another quantum self-bound state, that has been extensively studied from both
an experimental and a theoretical point of view [13, 14], is that of Helium clusters. The
challenging aspect in this kind of studies is that, due to the high density in these systems, it
is hard to find a simple microscopic theory able to reliably reproduce their properties. Quan-
tum droplets have densities 6 to 8 orders of magnitude smaller than those of Helium drops,
so that they constitute an analogous system much easier to describe at the microscopic level.

The thesis is structured as follows. In Chapter 2 I introduce the theory of quantum droplets
formed in bosonic mixtures, addressing, in particular, the conditions for their formation, their
equilibrium properties and some basic notions about their excitation spectrum. In Chapter
3 I describe in detail a key ingredient for the experimental study of droplets in 3D free space,

4



i.e. the compensation of gravity, which is realized by making use of a time-averaged optical
potential. The experimental results concerning the observation and characterization of a sin-
gle quantum droplet are reported in Chapter 4. Finally, in Chapter 5 I report on the study
of collisions between two quantum drops. By characterizing the outcomes of such collisions
as a function of the collision velocity and of the atom number in the droplets, we get insights
on the relevant energy scales in the system and we find a first hint of a crossover between a
compressible and an incompressible regime, driven by the total atom number. In Chapter 6
I summarize the results of the study about quantum droplets and discuss some future per-
spectives of this work.

In the first part of my PhD I participated in an experimental study concerning the dynamics
of a BEC in an optical double-well potential. The capability of tuning the interactions in the
system allows to study with great accuracy the interplay between tunneling and interaction
energies in the dynamics of a bosonic Josephson Junction. This kind of study paves the way
to the realization of a trapped atomic interferometer. Since the largest part of my PhD has
been dedicated to the experimental study of quantum droplets, this thesis is mainly dedi-
cated to that topic. Nonetheless, in Chapter 7 I report the results of the theoretical study I
have carried out to characterize the stability of the atomic interferometer we are planning to
realize in the near future.
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Chapter 2

Theory

In this chapter I present the theory that describes the formation of a quantum droplet and
its properties. After reporting the mean-field (MF) description of a single species BEC, I will
introduce the first-order perturbative correction, the so-called Lee-Huang-Yang (LHY) term.
I will then generalize the results obtained for a single species BEC to the case of a Bose-Bose
mixture, discussing the mechanism leading to the formation of quantum droplets. At the end
of the chapter I will describe some equilibrium and dynamical properties of the droplets.

2.1 Weakly interacting bosonic systems
A three-dimensional system made of N interacting bosonic particles in free space is described
by a many-body Hamiltonian:

Ĥ = − ~2

2m

N∑
i=1

d2

dr2 +
N∑
i=1

N∑
j=i+1

U(ri − rj) (2.1)

where U(ri−rj) is the inter-particle potential, m is the mass of the atom we are considering
and ~ is the Plank constant divided by 2π. In the context of ultracold atoms, one can
introduce the approximation:[15]

U(ri − rj) ' gδ(ri − rj) (2.2)

where the coupling constant g = 4π~2a
m . The approximation to a contact potential is valid

when both the average distance between particles, d = (V/N)1/3, and the thermal De Broglie
wavelength, λT =

√
2π~2/mkBT , are much larger than the range of the interatomic forces.

In typical experimental situations, both conditions are fulfilled. In this picture the only pa-
rameter that describes the strength of the interaction between two identical ultracold atoms
is the so called scattering length a. Thanks to magnetic Feshbach resonances [16], a can be
tuned in experiments by applying a uniform magnetic field, so that a = a(B). Using this
tool it is then possible to change the sign of the interactions, making it repulsive for a > 0,
attractive for a < 0 and create a non-interacting system for a = 0.
A more suitable way of treating the many-body problem is to use the formalism of sec-
ond quantization. In this framework, the many-body Hamiltonian in Eq. 2.1 becomes the
Hamiltonian of the quantum field theory:

H =
∫
drΨ†(r)(− ~2

2m∇
2)Ψ(r) + 1

2

∫
drdr′Ψ†(r)Ψ†(r′)U(r − r′)Ψ(r)Ψ(r′) (2.3)

where Ψ(r) and Ψ†(r) are the annihilation and creation operators respectively satisfying the
bosonic commutation rules and N =

∫
drΨ†(r)Ψ(r) is the atom number operator.
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2.1. Weakly interacting bosonic systems

Making use of the pseudopotential approximation introduced in Eq. 2.2, the previous second
quantization hamiltonian is simplified:

H =
∫
drΨ†(r)(− ~2

2m∇
2)Ψ(r) + g

2

∫
drΨ†(r)Ψ†(r)Ψ(r)Ψ(r) (2.4)

For a uniform gas occupying a volume V the field operators can be conveniently written as
the superposition of plane waves:

Ψ(r) = 1√
V

∑
p

ape
ipr/~ (2.5)

where ap is the operator annihilating a particle in the single-particle state with momentum
p. Using Eq. 2.5 it is possible to write the many-body Hamiltonian operator as:

H =
∑

p

p2

2ma†pap + g

2V
∑

p1,p2
a†p1a

†
p2ap1ap2 (2.6)

2.1.1 Mean-field energy and beyond-mean-field correction

Using the Hamiltonian in Eq. 2.6 it is possible to evaluate the ground state energy of a
weakly interacting Bose gas. This can be done by using the so-called MF approximation ,
which is based on the replacement of the operator ap=0 with a c-number, i.e.:

ap=0 =
√
N0 (2.7)

where N0 is number of particles with a momentum p = 0. This approximation is accurate
for a dilute gas at very low temperature, T ' 0. In this case the occupation number of
states with p 6= 0 is small. This means that, in the first approximation, all the creation and
annihilation operators of states with p 6= 0 can be neglected in the Hamiltonian in Eq. 2.6.
In this limit the ground state energy of a weakly interacting BEC in free space is:

E0 = g

2nN (2.8)

where n = N/V is the atomic density. The energy density associated to this is ε0 = g
2n

2.
This energy contribution is called mean-field energy because it is obtained by neglecting
the quantum or thermal fluctuations around the expectation value of the operator n0 =
a†p=0ap=0. Using the same approximation, several properties of the weakly interacting gas
can be calculated, as the quantum pressure P

P = −∂E0
∂V

= 1
2gn

2 (2.9)

that is different from zero also at T = 0 and positive for a system with repulsive interactions.
In the same way it is easy to obtain that the compressibility kT is also finite:

kT = ∂n

∂P
= 1
gn

(2.10)

The sound velocity c can be deduced from the compressibility using:

kT = 1
mc2 (2.11)

and so c =
√

gn
m .

Finally, it is possible to evaluate also the chemical potential µ of the system, as

µ = ∂E0
∂N

= gn = mc2 (2.12)
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2.1. Weakly interacting bosonic systems

This is the energy required to add one particle into the condensate or the energy gained by
subtracting one particle from it.
I will now extend the mean field results, by taking into account the field operators of states
with momentum p 6= 0. Since the collision between two ultracold atoms is elastic, in the
many-body Hamiltonian in Eq. 2.6 the terms containing only one field operator with p = 0
are not allowed by momentum conservation. If the temperature is small enough, we can
restrict the collision terms to the cases of interaction between one particle with p = 0 and
one particle with momentum different from zero. The Hamiltonian can be written as:

H = g

2V a
†
0a
†
0a0a0 +

∑
p

p2

2ma†pap + g

2V
∑

p

4a†0a†pa0ap + a†pa
†
−pa0a0 + a†0a

†
0apa−p (2.13)

In particular, the energy terms in the last sum in equation Eq. 2.13 takes into account the
collisions between particles with (i) p1 = 0, p2 = p and no momentum transfer, (ii) p1 = p,
p2 = 0 and again no momentum transfer, (iii) p1 = 0, p2 = p but a momentum transfer p
and finally (iv) p1 = p, p2 = 0 and momentum transfer −p. The two cases (i) and (ii) do
not involve the transfer of a momentum between two particles, for this reason they are called
direct terms. The other two cases (ii) and (iv), instead, involve the transfer of momentum
between two particles, so they are called exchange terms. Identical quantum particles are
indistinguishable, so we take into account all those direct and exchange terms.
As done before, it is now possible to replace the operator a0 with its expectation value

√
N

in the last term of Eq. 2.13. In the first term, instead, we use a normalization relation:

a†0a0 +
∑
p 6=0

a†pap = N (2.14)

or equivalently
a†0a
†
0a0a0 ' N2 − 2N

∑
p 6=0

a†pap (2.15)

where we neglect the hight order terms .
Substituting Eq. 2.15 into the many-body Hamiltonian reported in Eq. 2.13, we get:

H = 1
2gnN +

∑
p

p2

2ma†pap + 1
2gn

∑
p 6=0

(2a†pap + a†pa
†
−p + apa−p) (2.16)

where the third term represents the energy of the excited states due to the interaction, the
simultaneous creation of the excited states at momenta p and −p, and simultaneous annihi-
lation of the excited states respectively.
The Hamiltonian in Eq. 2.16 can be diagonalized using the so-called Bogoliubov transforma-
tions, [17]:

ap = upbp + v−pb
†
−p (2.17)

and
a†p = upb

†
p + v−pb−p (2.18)

The two parameters up and vp in Eqs. 2.17 and 2.18 are determined by imposing that the
two operators bp and b†p obey the bosonic commutation rules, as the field operators ap and
a†p. This assumption is fulfilled if:

u2
p − v2

−p = 1 (2.19)

or equivalently
up = cosh(αp) (2.20)

v−p = sinh(αp) (2.21)
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2.1. Weakly interacting bosonic systems

Imposing the condition on the bosonic nature of the two Bogoliubov operators b and b†, the
transformation matrix depends only on one parameter, i.e. αp. It is possible to chose it
such that the non-diagonal terms in Eq.2.16 become zero. With some calculations [18] it is
possible to prove that this condition is fulfilled for

coth(2αp) = −p
2/2m+ gn

gn
(2.22)

from which it is possible to determine uniquely the two coefficients of the Bogolubov trans-
formation up and v−p:

up, v−p = ±
√
p2/2m+ gn

2ε(p) ± 1
2 (2.23)

where ε(p) is the famous Bogoliubov dispersion relation:

ε(p) =

√(
p2

2m

)2
+ p2 gn

m
(2.24)

Finally, we can write the diagonalized hamiltonian:

H = 1
2gnN + 1

2
∑
p 6=0

(ε(p)− gn− p2

2m + m(gn)2

p2 ) +
∑
p 6=0

ε(p)b†pbp (2.25)

The results in Eq. 2.25 have a very deep physical meaning: the dynamics of an interact-
ing many-body Bose gas can be described using a Hamiltonian of a non-interacting quasi-
particles, representing the collective excitations of the system. These quasi-particles have
a dispersion relation given by ε(p). To understand better this picture it is possible to con-
sider two limits: as previously shown, the speed of sound of an interacting BEC is given by
c =

√
gn/m; the momentum related to it is then psound = √mgn. If p � psound, using the

expression for up and for v−p in Eqs. 2.17 and 2.18, we get that |up| ' |v−p| � 1 and so:

ap ' up(bp − b†−p) (2.26)

In this limit, a real particle described by the field operators ap and a†p is represented as
the superposition of the forward propagating of many quasi-particles upbp and the backward
propagating of v−pb

†
−p.

In the opposite limitp � psound, instead, we get that up ' 1 but v−p ' 0. In this case the
quasi-particle becomes indistinguishable from real one, i.e. ap ' bp

The ground state at T = 0 corresponding to the vacuum state for Bogoliubov quasi-particle,
i.e. for every p 6= 0 the ground state satisfies:

bp |0〉 = 0 (2.27)

The first-order perturbation correction to the mean-field energy has been calculated by Lee,
Huang and Yang (LHY) in [19, 20] and it can be obtained from the Hamiltonian in Eq. 2.25
as:

E = 1
2gnN(1 + 128

15
√
π

(na3)1/2) (2.28)

The related chemical potential is given by:

µ = gn(1 + 32
3
√
π

(na3)1/2) (2.29)

The LHY correction to the MF energy is proportional to
√
na3. For this reason, the LHY term

is typically negligible in the dilute system with an3 � 1 and it is thus difficult to be measured

9



2.1. Weakly interacting bosonic systems

in expereiments. A possibility in this sense is to work with divergent scattering length making
use of a Feshbach resonance. Strongly correlated system like this are usually called unitary
Bose gases [21, 22]. Experimental observation of the LHY perturbative correction have been
made so far using the equation of state of an unitary Bose gas [23] or probing the system
with RF spectroscopy [24, 25, 26, 27].

2.1.2 Quantum depletion

As shown in the previous section, a weakly-interacting BEC can be treated as a non-interacting
system made of quasi-particles. The effect of the interaction is to create a leak in the oc-
cupation of the ground state of the BEC even at zero temperature, this is called quantum
depletion. Mathematically this is a direct consequence of the Bogoliubov’s prescription, in-
deed the field operators of this quasi-particles obey Bose statistic. For this reason the mean
number of quasi-particles with momentum p must satisfy:

N excitations
p = 〈b†pbp〉 = 1

eβε(p) − 1
(2.30)

where β = 1/kBT . This number is different from the average number of real particles with
momentum p given by:

Np = 〈a†pap〉 = |v−p|2(1 + 〈b†−pb−p〉) + |up|2〈b†pbp〉 (2.31)

where we use the definition of the Bogoliubov operators and the fact that 〈bpb−p〉 = 〈b†pb†−p〉 =
0. Making use of the expression in Eq. 2.30, it is possible to prove that the number of atoms
in the BEC corresponds to:

N0 = N −
∑
p6=0

Np = N − V

(2π~)3

∫
dp(|v−p|2 + |up|2 + |v−p|2

eβε(p) − 1
) (2.32)

At T = 0, and so β → ∞, the second term in the integral vanishes but there is still a finite
leakage of particles with p = 0 due to the first term in the previous equation, even if the
occupation number < b†pbp >= 0. This fundamental leakage of atoms form the condensate is
called quantum depletion.
For temperatures larger than zero, the quantum depletion is negligible compared to the
thermal depletion provided by the second term in the integral of Eq. 2.32. Using Eq. 2.23,
it possible to evaluate the averaged number of real particles with p 6= 0 due to quantum
depletion:

NQD
p =

p2

2m + gn

2ε(p) − 1
2 (2.33)

For small momenta, this quantity is equal to
√
mgn
2p meaning that quantum depletion of an

interacting BEC decreases as 1/p. In the opposite limit of large momenta, it is possible to
prove that quantum depletion is negligible because it goes to zero as 1/p4.
Thermal depletion has instead a different dependence on the momentum p. In the limit of
small momenta, it goes as:

NThD
p = mkBT

p2 (2.34)

The divergence at small momenta is thus stronger than in the case of quantum depletion.
For large momenta thermal depletion goes to zero according to e−βε(p).
The different dependence on the momentum has allowed to distinguish the two kinds of
depletion in experiments [28, 29].
Integration of Eq. 2.32 gives at T = 0:

N0 = N(1− 8
3π (na3)1/2) (2.35)
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2.2. Quantum droplets of Bose-Bose mixtures

which means that the quantum depletion of the BEC depends on the same parameter
√
na3

of the LHY in Eq. 2.28.

2.2 Quantum droplets of Bose-Bose mixtures
In this section, I will describe the mechanism allowing for the formation of self-bound liquid
droplets in an ensemble of bosonic atoms. I will first discuss the general conditions an atomic
system needs to fulfill to form a liquid-like droplet, introducing a simplified toy model for a
quantum liquid (Sec. 2.2.1). I will then describe how these requirements can be satisfied by
considering the realistic case of an attractive Bose-Bose mixture (Sec. 2.2.2) and I will report
the analytical description of the resulting quantum droplet (Sec. 2.2.3), as first introduced
in [5]. Finally, I will discuss the excitation spectrum of the droplet (Sec. 2.2.4) and some
information we can deduce from a simplified model of it, based on a gaussian ansatz for its
wavefunction (Sec. 2.2.5).

2.2.1 Toy model for a quantum liquid

The idea first introduced in [30] to create a liquid-like state in an ultracold atomic sample
started from a simple assumption. Consider the mean-field and LHY energy terms introduced
in the previous sections and assume that there exist a situation where they have opposite
signs. Consider in particular the case where the mean-field energy is negative and the LHY
is positive. The energy density will then correspond to:

e(n) = −1
2αn

2 + 2
5βn

5/2 (2.36)

where the two parameters α > 0 and β > 0 depend on the microscopic interactions in the
system.
From the energy density e(n) it is possible to derive some thermodynamics properties. The
chemical potential is given by:

µ = de(n)
dn

= −αn+ βn3/2 (2.37)

The pressure is:
P = −e(n) + n

de(n)
dn

= −1
2αn

2 + 3
5βn

5/2 (2.38)

In order to have a stable liquid one needs P = 0, which occurs for n0 = (5α
6β )2 that is larger

than zero.
Evaluating the chemical potential at this density, we get:

µ(n0) = −1
6n0α < 0 (2.39)

A negative chemical potential is also a necessary condition for a self-bound state, because it
prevents the system from evaporation. A final condition is that the resulting state is stable
against collective excitations, which corresponds to: c2 > 0, where c is the speed of sound.
Using definition of compressibility and Eq. 2.10, we get:

mc2 = (dP
dn

)n=n0 = 1
4n0α > 0 (2.40)

We conclude that a system governed by the energy density of Eq. 2.36 fulfills all the re-
quirements necessary for the realization of a quantum liquid. As already said, in a single
component BEC the toy model presented here cannot be implemented: even if the MF and
the LHY terms have the proper dependence on density, they always have the same sign.
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2.2. Quantum droplets of Bose-Bose mixtures

A different situation occurs in a bosonic mixture. As Petrov pointed out in his proposal from
2015 [5], under certain conditions the two energy terms can have opposite signs and thus give
rise to a liquid phase.

2.2.2 Bose-Bose mixture

In this section we will extend the results previously shown in Sec 2.1 for a single component
BEC to the case of a mixture. We will also discuss the specific situation where we can
recover the same energy density as in the toy model of Eq. 2.36. Let us start from the MF
contribution. For a mixture, the MF density can be written as:

eMF (n1, n2) = 1
2g11n

2
1 + 1

2g22n
2
2 + g12n1n2 (2.41)

where n1,2 are the densities of each species, gii the intraspecies coupling constant describing
the interaction between atoms belonging to the same speci, while g12 describes the inter-
species interaction. When all interactions are repulsive, two different phases could occur: the
miscible regime, when g12 < g (g = √g11g22), where the wavefunctions of the two species
are overlapped and immiscible regime, when g12 > g (g = √g11g22), where instead they are
separated. Both regimes have been experimentally observed for example in [31, 32]
Following [5] we will consider a mixture with positive intraspecies interactions, g11 > 0
g22 > 0, and attractive interspecies interaction, g12 < 0. In this case the MF energy is
positive, and thus the mixture is stable, only if |g12| < g. We consider the unstable case,
where the MF energy is slightly negative. we will consider a system with a slightly negative
MF energy. We can introduce δg = g12 + g < 0, and we take the case where it is small, i.e.
δg << g. Using this definition, we can rewrite the MF energy density as:

eMF (n1, n2) = −|δg|(n1n2) + g(n2
1 −

a22
a11

n2
2) (2.42)

The second term in the MF energy is minimized if the two species have the same density,
modulo a scale factor, i.e n2 =

√
a11/a22n1 = γn1, while the first term is minimized if

n1 + n2 → ∞, which corresponds to a collapse of the condensate. We can rewrite all the
energy density in terms of a total density n = n1 + n2 and of the parameter γ. Assuming
that the densities of the two clouds satisfy the condition n2 = γn1, the second term in Eq.
2.42 vanishes, and we obtain:

eMF (n) = −|δg| γ

(1 + γ)2n
2 (2.43)

The generalization of the LHY term to the case of a mixture case is not trivial. Here I just
report the results of the calculation, referring the interested reader to more technical papers
[33]. The LHY energy term for a homonuclear mixture is given by [5]:

eLHY (n1, n2) = 8m3/2

15π2~3

∑
±

(
g11n1 + g22n2 ±

√
(g11n1 − g22n2)2 + 4g2

12n1n2
)5/2 (2.44)

Note that imposing n1 = n2, g11 = g22 and g12 = 0, we can obtain the result already discussed
for a single species.
In the mean-field unstable regime, g12 +√g11g22 < 0 the square root in Eq. 2.44 satisfies the
inequality:√

(g11n1 − g22n2)2 + 4g2
12n1n2 > n1

√
g2

11 + 2γg11g22 + γ2g2
22 = n1(g11 + γg22) (2.45)

which means that the term with the minus sign in the sum∑
± of Eq. 2.44 is negative, adding

an imaginary term to the LHY energy.
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2.2. Quantum droplets of Bose-Bose mixtures

In order to solve this problem we use the same approximation discussed in [5]. In the limit
of |δg| << g we can neglect the small δg corrections and set, just for the LHY term, g12 =√
g11g22. In this limit the energy density provided by the LHY correction is given by:

eLHY (n1) = 8m3/2

15π2~3 (g11n1 + g22n2)5/2 (2.46)

If we assume again that the two densities are the same modulo a scale factor provided by the
minimization of the MF energy, we can simplify the last equation obtaining:

eLHY (n) = 8m3/2

15π2~3 (γg22)5/2n5/2 (2.47)

In this limit, since the MF and the LHY energy densities have a different sign, the Bose-Bose
mixture fulfills the conditions introduced in Sec. 2.2.1 and thus creates a liquid-like state.
From Eqs.2.43 and2.47 we can derive the two parameters α and β of Eq. 2.36:

α = 2|δg|γ
(1 + γ2) (2.48)

β = 2m3/2

3π2~3 (γg22)5/2 (2.49)

Both of them depend only on the inter and intra-species interactions that can be tuned, in
the presence of suitable Feshbach resonances, with an external magnetic field. Evaluating
the expected equilibrium density n0 = (5α

6β )2 and multiplying it for γ/(1 + γ) and 1/(1 + γ)
respectively, we obtain the equilibrium densities n1 and n2:

n0
i = 25π

1064
|δg|2

a11a22
√
aii(
√
a11 +√a22)5 (2.50)

which correspond to the results of [5].

2.2.3 Analytical solution

Following Petrov [5], we can define the wave function of each species as:

Ψi(r, t) = √niφ(r, t) (2.51)

where φ(r, t) is a scalar wave-function common to both species. It is convenient to work using
adimensional coordinates r̃ = r/ξ and t̃ = t/τ , where:

ξ =
√

3
2

√
g22 +√g11

m|δg|√g11n0
1

(2.52)

and
τ = ~

3
2

√
g22 +√g11

|δg|√g11n0
1

(2.53)

The energy density of the droplet is given by [5]:

ε(φ) = 1
2 |∇

2
r̃φ|2 −

3
2 |φ|

4 + |φ|5 (2.54)

where ~ = m = 1.
The scalar wave-fuction of the ground state can be obtained by solving a Gross-Pitaevskii

equation in the adimensional units for φ(t̃, t̃) = φ0(r̃):

µφ0(r̃) = (−1
2∇

2 − 3|φ0(r̃)|2 + 5
2 |φ0(r̃)|3)φ0(r̃) (2.55)
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2.2. Quantum droplets of Bose-Bose mixtures

Figure 2.1: Ground state wavefunction of the droplet for different values of Ñ . For large
atom numbers the pick density saturates to a fixed value, giving rise to a flat-top bulk.

The chemical potential is fixed by the normalization condition: Ñ =
∫
|ψ0|2d3r̃. Ñ is related

to the actual atom number by:
Ni = n0

i ξ
3Ñi (2.56)

Some examples of the ground state wave-functions obtained for different values of Ñ are
reported in Fig. 2.1. For small Ñ the shape of the wave-function is similar to a gaussian while,
for large Ñ , the ground state of the mixture is a spherical droplet of radius R̃ ' (3Ñ/4π)1/3

which displays a flat-top shape indicating a saturation density in the bulk.
Knowing the ground state wave-function, it is possible to evaluate the binding energy of the
droplet as a function of Ñ . In the adimensional units, this quantity is given by Ẽ =

∫
ε(ψ0)d3r̃.

In Fig. 2.2 it is reported how the binding energy changes as a function of the atom number
in the droplet.
Given the liquid-like nature of this self-bound droplet, we can write its total energy by
introducing the so-called liquid drop model, already used for example in the context of the
liquid Helium [34, 14]:

E(N)
N

= EB + ESN
−1/3 + ECN

−2/3 (2.57)

The first term is called bulk energy. It provides a contribution proportional to N and is the
dominant term in the expansion. The coefficient associated EB to it is negative because the
binding energy of a self-bound state is negative. The first correction to it is the surface energy
which is proportional toN2/3. This contribution is typically positive ES > 0 because breaking
the bulk has an energy coast. The surface tension can be calculated from the coefficient ES .
The last term in the model, the curvature term, is the one with less physical meaning. In
the limit of small atom number is primarily determined by the energies of small drops whose
central density is smaller than the liquid density. Note indeed that it is the smallest one and
for a droplet in equilibrium is typically negligible but negative EC < 0. If we are considering
an excited system it can assume also positive sign and in this case it is related to convexity
of the surface.
By fitting Ẽ(Ñ) in Fig. 2.2 with the energy functional of Eq. 2.57 with EB, ES and EC as
free parameters we note that the model well approximates the behavior of Ẽ(Ñ) in the whole
range of Ñ . However, the three terms in Eq. 2.57 have a clear physical interpretation only
in the large Ñ regime, where the distinction between the bulk and the surface is evident.
Recently a similar approach has been used also in the study of a quantum droplet [35].
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2.2. Quantum droplets of Bose-Bose mixtures

In classical liquids the quantity ES is related to the surface tension of the droplet σ by
σ = ES/(4πr2

0), where r0 is the unit radius of the liquid and it is defined as

r0 = [53〈r
2(N)〉]1/2N−1/3 (2.58)

where 〈r2(N)〉 is the mean-square radius of the cluster, i.e.
∫
d3r|ψ(r)|2r2.

From the fit in Fig. 2.2 we get EB ' −0.57, ES ' 1.89 and EC ' −0.81.
In Fig. 2.2 we also observe that for Ñ < 22.55 the binding energy becomes positive,

Figure 2.2: Droplet binding energy as a function of the atom number calculated as Ẽ =∫
ε(ψ0)d3r̃ (blue dots), in adimensional units. The red is a fit of the blue dots with the liquid

droplet model of Eq. 2.57.

meaning that a self-bound droplet is no more a stable solution. For 18.65 < Ñ < 22.55
the droplet can exist as a metastable state, while for Ñ < 18.65 = ÑC the droplet cannot
form at all. This behavior can be understood qualitatively by looking at the dependence
of the different energies contributions on the size of the cloud and on the atom number
Ñ . The kinetic energy scales as Ekin ∝ N/R2, the MF contribution as EMF ∝ −N2/R3,
while ELHY ∝ −N5/2/R9/2. As I show in Fig. 2.3, as Ñ decreases, the minimum of E(R),
corresponding to the droplet, first becomes positive and the global minimum of E(R) occurs
at R → ∞, where E(R → ∞) = 0: in this situation the droplet is a metastable states. For
even smaller atom numbers, the energy minimum at finite R disappears and the self-bound
state cannot exist.

Figure 2.3: E(R) for different values of Ñ . Decreasing the atom number the system passes
from a self-bound regime to a metastable one and then the liquid-like state disappears.
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2.2. Quantum droplets of Bose-Bose mixtures

2.2.4 Excitation spectrum

One of the most fascinating and peculiar properties of quantum droplets deals with their
excitation spectrum. In particular, it is interesting to compare the excitation modes with the
particle emission threshold, provided by the chemical potential with the opposite sign −µ̃.
This quantity represents the energy gained by the system by releasing a particle. Due to the
liquid-like nature of the quantum droplet, µ̃ < 0 and so the particle emission threshold is
positive. Note that, according to the liquid drop model, the chemical potential is given by:

µ̃ = EB + 2
3
ES

Ñ1/3 + 1
3
EC

Ñ2/3 (2.59)

In the limit of large atom numbers it goes asymptotically to EB ' −1/2, which also highlights
the liquid-like nature of the system.
In order to study the small-amplitude excitations, Petrov [5] solves the Bogoliubov-De Gennes
equation obtained from the linearization of the GPE in Eq. 2.55. In this way one can calculate
the energies of the collective exciations of the droplet, like the monopole, quadrupole and the
oscillations with increasing angular momenta.
The results are reported in Fig. 2.4. In the limit of large N, where the droplet enters the
incompressible regime, the excited states are expected to be surface modes (ripplons) and so
we can try to compare the results introduced above, with those obtained using the classical
results from the physics of liquid droplets and evaluated from the surface tension [36]:

ωl =
√

4π
3 l(l − 1)(l + 2) σ̃

Ñ
(2.60)

where l > 0 is the angular momentum. The l = 1 mode refers to the dipolar mode, i.e. to
a center of mass displacement of the droplet, and thus ω1 = 0. The l = 0 mode represents
the monopole mode and it cannot be calculated using Eq. 2.60, since it is a classical result
not valid in the limit of incompressible droplet [36]. The modes calculated with Eq. 2.60
are reported in Fig. 2.4 as the thin-dotted lines. Note that again we can use the results
of the liquid drop model to get the surface tension, obtaining essentially the same results
of Petrov. The two approaches give similar results for the surface modes, suggesting the
liquid-like nature of quantum droplets in the large N regime. As we can see from Fig. 2.4, for
a stable droplet with (Ñ − ÑC)1/4 > 1.5, the particle emission threshold is smaller than any
excitation mode up to (Ñ − ÑC)1/4 ' 3, which corresponds to Ñ ' 100, where −µ̃ becomes
equal to the quadrupole mode.
The peculiar relation between the excitation modes and the particle emission threshold gives
rise to the phenomenon of self-evaporation. In the limit of small atom number, the droplet
prefers to expel any excitations loosing atoms instead of occupying an excited state. The
droplet is thus an auto-evaporating object, since it has an internal mechanism to dissipate
energy and reach zero temperature. This property paves the way to a possible use of the
quantum droplet as a coolant for other system. The experimental observation of this is still
missing and it represents one of the most interesting perspectives in the investigation of
quantum drops. We will discuss again some aspects about self-evaporation in Section 2.3,
making use of a numerical simulation that is able to capture the dynamics of the system.

2.2.5 Gaussian Ansatz

An alternative way to derive the equilibrium properties of the droplet is to use a gaussian
ansatz (GA) for the wave-function of the ground state. This approach has been recently used
to described the oscillation mode of a droplet confined in a quasi-1D waveguide [37]. In this
approximation we can write the density of the system as:

n(r) = Ae−r
2/(2σ2) (2.61)
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2.2. Quantum droplets of Bose-Bose mixtures

Figure 2.4: The dash-dotted line corresponds to the energy per particle Ẽ
Ñ

analogously to
the one reported in Fig. 2.2. The thick dotted line represent −µ̃, i.e. the particle emission
threshold. The solid line is the monopole mode ω0, while the dashed are the higher angular
momentum modes ωl. The thin dotted lines are the corresponding modes calculated with the
surface modes approximation of Eq. 2.60. All these quantities are plotted as a function of
(Ñ − ÑC)1/4. Image taken from [5].

where A is a normalization constant. Its value is fixed the normalization condition Nat , i.e.∫∞
0 An(r)4πr2dr = Nat. Solving for A we get:

n(r) = Nat

2
√

2π3/2σ3 e
−r2/(2σ2) (2.62)

We assume that the associated wave-function is ψ(r, t) =
√
n(r, t) without considering phase

terms which are not relevant in the study of the equilibrium properties of the system. From
the definition of n(r) we can simply evaluate the kinetic energy functional:

Ekin(σ,Nat) = − ~2

2m

∫ ∞
0

4πψ(r) d
dr

(r2ψ′(r))dr = 3~2Nat

4mσ2 (2.63)

To calculate the MF and LHY terms we insert the gaussian ansatz for n in Eq.s 2.43 and
2.47. We can prove that:

EMF (σ,Nat) = − γ

(1 + γ)2 |δg|
N2
at

8π3/2σ3 (2.64)

and

ELHY (σ,Nat) = 8m3/2

15π2~3 (γg22)5/2 N
5/2
at

5
√

523/4π9/4σ9/2 (2.65)

Where again we assume n2 = γn1 and γ =
√
g11/g22. The total energy functional as a

function of σ and Nat is the sum of the Eq.s 2.63 2.64 2.65. To study the equilibrium
properties using a gaussian approximation, we proceed as follows. At a specific value of
the magnetic field and thus of the coupling constants gij , we search the value of σ0(Nat)
that minimizes Etot(σ,N) for different values of Nat. As expected, we find that the energy
minimum is negative for atom numbers larger than a critical number NC . We define NC
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2.3. Numerical simulations of the quantum droplet

imposing Etot(NC , σ0(NC)) = 0. We repeat the same procedure for different values of the
magnetic field. To compare the results obtained with the gaussian approximation with those
reported in the previous section from the analytical solution by Petrov, we need to convert
the latter in dimensional units. Using Eq. 2.56 and considering ÑC = 22.55, we find:

NC(B) = ξ(B)3(n0
1 + n0

2)22.55 (2.66)

The width of the gaussian density is related to the Petrov’s radius R̃ by:

σ0(B) = R̃ξ(B)√
2

= ξ(B)(3Ñ
4π )1/3 1√

2
(2.67)

where the factor 1/
√

2 is provided by the fact that the half width at 1/
√
e of the denisty

profile is
√

2 times smaller than that of the the wave-function, corresponding to R̃. The
comparison between the GA and analytical results is shown in Fig. 2.5 for the critical atom
number and σ0(NC).
The agreement between the two models is very good: the equilibrium properties of the

Figure 2.5: Comparison between the gaussian ansatz (black dots) and the solutions provided
by Petrov (continued lines) for the critical atom number NC (left) and the size σ0(NC) (right)
for different values of the magnetic field.

droplet are then well reproduced by a simple gaussian Ansatz model. The agreement is
expected to get worse as the atom number increases and the droplet wave-function deviates
from the gaussian shape.

2.3 Numerical simulations of the quantum droplet
Both the analytical model by Petrov and the GA solution introduced so far, were used to
describe the equilibrium properties of the droplet. None of these models can describe the
dynamical evolution of the droplet that we observe in the experiment. For this reason, in
collaboration with prof. Michele Modugno, we developed a numerical simulation able to
reproduce the dynamics of the experiment. The evolution of the mixture is described by
solving numerically a system of coupled GP equations modified by the addition of the LHY
term as discussed in [5]:

i~
δψj
dt

= (− ~2

2m∇
2 + Vext + µi(n1, n2))ψj (2.68)

where ψj is the wave-function describing the j-th hyperfine level and µi the associated chemical
potential:

µi = δei
δni

= giini + g12nj + δeLHY
δni

(2.69)
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2.3. Numerical simulations of the quantum droplet

Using the LHY energy density evaluated in the limit of |δg| � g, we can prove that:

δeLHY
δni

= 32
3
√
π
gii(aiini + ajjnj)3/2 (2.70)

This approach is valid in the limit of the local density approximation. The latter has been
recently considered for the description of the formation of macroscopic quantum droplets in
dipolar condensates [38, 39, 40].
In Chapter 4 we will use the numerical simulations to understand the dynamical evolution of
the droplet observed in the experiment. In this section, I will use them to better understand
some properties of the droplet, in comparison with the models introduced above.
First of all, I can evaluate the equilibrium size of the droplet, defined as the radius at 1/

√
e

of the density profile, for different values of the atom number. In Fig. 2.6 I compare the
results obtained from the simulation with the one predicted by the GA (black curve) and
Petrov’s analytical theory (green line). As we can see, the size of the system obtained is
well described by the GA for atom numbers smaller then 200x103 atoms, i.e., 5 times the
critical atom number. When, increasing the atoms numbers, the results deviate from the GA
prediction and converge the droplet radius predicted by Petrov for the large N regime.

Figure 2.6: Red dots: σ obtained from the simulation using different atom number measured
as the distance from the center such that the density assumes a value that is n0e

−1/2 where
n0 is the density at r = 0. Black curve: σ(N) evaluated using the gaussian ansatz explained
in the previous section. Green curve: σ(N) according the Petrov’s theory.

2.3.1 Monopole mode

The second aspect that numerical simulations can help us understand concerns with the
peculiar features of the droplet excitation spectrum, as introduced in Sec. 2.2.4. I performed
some simulations preparing the mixture out of its equilibrium configuration, i.e. at a size
larger than the radius of its ground-state, and looked at its dynamical evolution. If the initial
state maintains its spherical symmetry, we expect that the out-of-equilibrium preparation
excites a monopole mode in the droplet. We indeed observe an oscillation in the radius of the
droplet which gets damped after a certain time, indicating the effect of the self-evaporation
mechanism discussed above. We report in Fig. 2.7 the evolution of σ(t) − σ0(Ñ), where
σ0(Ñ) is the equilibrium size of a droplet with Ñ atoms, as a function of time for an atom
number that is 30, 40 and 50 times the critical one. I fit the data using a damped sinusoidal
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function Ae−t/T sin[2πft]. For N ' 40NC Petrov’s theory predicts that the monopole mode
should become energetically favorable with respect to the particle emission threshold. For
this reason, the damping coefficient T becomes larger as N increases (see Fig. 2.8).
We can try to be more quantitative using the adimensional units. The oscillation frequency

Figure 2.7: Monopole oscillation of a quantum droplet. Is there reported for N=30, 40 and
50 NC the temporal evolution of σ(t)−σ0(Ñ). The atom number crosses the point where the
monopole mode becomes energetically favorable respect to the particle emission threshold.
The crossover between this two regimes is highlighted by the increasing of the damping
coefficient.

obtained from the fit previously introduced can be converted in ω̃ as:

ω̃ = ν2πτ(B) (2.71)

while the damping coefficient is simply T̃ = T/τ(B). In Fig.2.8 I report the monopole mode
frequency ω̃mono and the relative damping rate as a function of Ñ . The red curve on the
left panel represents the particle emission threshold −µ evaluated using the Liquid Drop
Model explained before. One can see that, when ω̃mono(Ñ) ' µ̃(Ñ), the damping coefficient
increases exponentially.
We can interpret this damping mechanism as a genuine consequence of self-evaporation.
Since for Ñ < 45ÑC emitting particle is energetically favorable with respect to the monopole
excitation, the droplet evaporates the excess of energy by expelling particles and thus the
oscillation is damped. We can try to estimate the expelled atoms number using a simple
energetic argument. Suppose to have a droplet made of Ñ atoms out of equilibrium so
that the monopole mode is excited in a region where self-evaporation can occur. The total
energy of the system is given by Ẽin = Ẽ(Ñ) + ω̃(Ñ). Suppose for simplicity that the
monopole frequency does not depend on the atom number. After the evaporation the system
will be in equilibrium but with a smaller atom number: Ẽfi = Ẽ(Ñ ′) with Ñ ′ < Ñ . For
energy conservation ω̃(Ñ) = Ẽ(Ñ) − Ẽ(Ñ ′). From the definition of chemical potential, we
can approximate the energy difference as −µ̃(Ñ)∆Ñ and so: ω̃(Ñ) = −µ̃(ñ)∆Ñ . In first
approximation, we can thus conclude that the expelled atoms are given by:

∆Ñ = − ω̃mono(Ñ)
µ(Ñ)

(2.72)
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In the region where self evaporation occurs this quantity is larger but of the same order of 1.
Since the critical atom number is 22.5, we can conclude that the atom lost for self evaporation
is of the order of one percent of the starting atom number.

Figure 2.8: On the left: blue dots represent ω̃mono for different atom number while the red
line is the particle emission threshold calculated using the Liquid Droplet Model. On the
right: the simulated damping time as a function of N.

2.3.2 Three-body losses

In order to reproduce the behavior of our experimental system, in the numerical simulations
we also introduce a term describing three-body recombination effects. These can be modeled
by adding to the Hamiltonian a purely imaginary, phenomenological loss term:

H3BL = −i~K111
2 |ψ|4 (2.73)

where K111 is the three body recombination coefficient. This kind of approach has been
used successfully to describe the collapse of dipolar BEC [41]. Three-body losses leads to a
non-unitary dynamics where the wave function decay as

d

dt

∫
V
|ψ|2 = −K111

∫
V
|ψ|6 (2.74)

so proportionally to the density to the third power. This picture is correct assuming that the
products of recombination collisions leave the cloud without interacting with the remaining
atoms, i.e. neglecting the avalanche terms [42]. Indeed this term affects the losses in a dense
system and in principle could play an effect even in our system. A detailed comparison be-
tween the simulated and the experimentally observed dynamics will be presented in Chapter 4.

2.4 Quantum droplets in dipolar gases
In this section we will shortly introduce some concepts about another similar self-bound
system, stabilized by perturbative corrections to the MF energy, i.e. dipolar droplets, that
are actually the first kind of quantum droplets observed in experiments. In addition to the
usual contact interaction VC = 4π~2a

m , dipolar BECs possess another interaction channel, i.e.
the dipolar interaction:

Vdip = µ0µ
2 1− 3cos2(θ)

4πr3 (2.75)

where µ0 is the vacuum polarizability and θ is the angle between the direction of the polariz-
ability µ and the position between the dipoles r [43]. Dipolar systems are then characterized
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by two different length scales: the contact scattering length a and a length scale associated
to the dipolar interaction add = mµ0µ2

12π~2 . The ratio between these two quantities is defined as
εdd = add/a. The presence of these two different interaction terms, makes it possible to have
a situation analogous to that of attractive bosonic mixture, where the MF and LHY energies
have opposite signs. The role of the attractive inter-species interaction is here taken over by
the dipole interactions when the dipoles are properly oriented, while the repulsive term is
provided by the contact interaction.
It is possible to prove that the MF energy scales as:

EMF ∝
gn2

0
2 (1− εddf(k)) (2.76)

where f(k) is a function of the aspect ratio k of the atomic cloud and n0 is the averaged
density. Fixing the value of the magnetic field, and thus of g, it is possible to change the MF
interaction by opportunely tuning the aspect ratio of the trap. The MF energy can then be
made arbitrarily small and negative, so that the interplay with the repulsive LHY term can
arrest the collapse [41], this mechanism generates the quantum droplet. Note that in dipolar
gases the LHY correction maintains the same dependence on the density and on the contact
scattering length introduced in Section 2.1.1 [44]:

ELHY (0) = 128
15
√
π

√
na3Q5(εdd) (2.77)

where Q5 depends only on εdd.
Dipolar droplets have been observed with both Dysprosium [8, 6] and Erbium [9] BECs. The
main difference between the dipolar droplet and Bose-Bose mixture droplet is the shape of
the ground state wave-function. Indeed, due to the anisotropic nature of dipolar interac-
tion, the dipolar droplet is elongated in one direction differently from the Bose-Bose mixture
droplet which is spherical. This difference strongly modifies the excitation spectrum of the
two. Several properties of quantum dipolar droplets have been investigated by the group of
Tilman Pfau in Stuttgart [8, 6, 7, 45, 46, 47, 48]. Here we will only report the most relevant
results in comparison with our experiment.
One remarkable measurement performed with dipolar droplets concerns the validation of the
stabilization mechanism provided by the LHY correction with respect to a different one pro-
posed in [4] and [49], which relies on the interplay between two and three body interactions.
The two stabilization mechanisms predict different equilibrium densities for the droplet and
thus different lifetimes due to the three-body losses. Comparing the measured lifetimes with
the predicted one, the authors confirm that the stabilization mechanism responsible for the
formation of self-bound droplets is the one provided by the LHY correction [7].
Another peculiar property of dipolar quantum droplets, is the capability to create self-
organized states. It has been shown both theoretically [50] and experimentally [45], that,
increasing the harmonic confinement along the direction of the dipoles, the ground state of
the system passess from a single droplet to multiple-droplets. This observation arises ques-
tions about the possible super-solid nature fo this state. Super-solids are characterized by
a self-organized ground state with a periodic density profile that does not perturb the large
scale coherence. Similar system have been observed making use of solid Helium [51] and
recently also in the context of ultracold atoms [52, 53]. Even if dipolar quantum droplets
manifest a self-organized density profile, the authors could not observe any coherence from a
ToF expansion of the multiple droplet. This can be explained by the fact that the condensate
undergoes a modulation instability and for this reason the system is in an excited state. The
ground states could in principle manifest such super-solid behavior [50]. In a similar exper-
iment but, using a different trapping potential, it was recently observed coherence between
different stripes [54].
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Collisions between dipolar quantum drops have also been investigated. Several quantum
droplets are created in a waveguide, with the dipoles perpendicular to the the propagation
direction that creates the laser beam used for the waveguide. Applying an additional har-
monic confinement along the longitudinal direction of the waveguide, the droplets get closer
to each others. In this configuration one observes that the repulsive inter-droplet interac-
tions induces oscillations of the droplets inside the waveguide [46]. This oscillation is a direct
consequence of the repulsive dipolar droplet-droplet interaction and thus such collisions, dif-
ferently from the case we will consider, do not bring any information about the physics of
quantum droplets.
A very fascinating possibility would be to create a system in which both the discussed stabi-
lization mechanism are present, i.e. an attractive mixture of dipolar gases. The occurrence
of a self-bound state in such system has been recently proposed [55]. The candidate for the
experimental realization of this new kind of droplet is the new Er-Dy experiment in Innsbruck
[56].
Before concluding this section I would like to highlight that recently the existence of quantum
droplets has been proved also in photon fluids [57, 58].

2.5 Collisions between self-bound objects
The second part of the experimental characterization of quantum droplets reported in this
thesis concerns on the study of collisions between two droplets (Chapter 5). In this section
I will report some of the results found in literature about the collisions between self-bound
objects, which could help us as a guideline to understand the behavior observed in the colli-
sion of our quantum droplets.
Liquid drops. Collisions between classical liquid drops have been extensively studied from
both an experimental and a theoretical point [59] of view. The first pioneering work was made
by Rayleigh who considered the problem in order to explain the size distribution of rain drops
[60]. More recently, the collsion between droplets has played an increasing important role in
the study of formation of liquid jets [61] and in the understanding the physics of spays [62].
Several phenomena can occur when liquid drops collide: coalescence, i.e. the creation of a
single macro-droplet starting from two; droplets bounce or droplets separation. The distinc-
tion between the different regimes depend on two main parameters: the Weber number We
and the impact parameter b. The first one is defined as:

We = 2ρRv2

σ
(2.78)

where ρ is the density of the droplet, R the radius, v the relative velocity between the collid-
ing droplets and σ is the surface tension. It is possible to define a generalized Weber number
We∗ = Ekin/Es. The two definitions are connected by: We∗ = We/12. The impact param-
eter b is defined as the ratio of the projection of the center-to-center line onto the direction
perpendicular the relative velocity to the averaged droplet radius.
The typical phase diagram for the collision between classical droplets is reported in Fig. 2.9.
The coalescence region is limited by an upper and a lower bound depending on the impact pa-
rameter b. For large b, separation occurs because the macro-droplet is unstable with respect
to the rotational energy acquired in the impact. For this reason the separation is ”off-center”.
In the opposite limit, for small values of the impact parameter, the formation of a single
droplet is prevented for large We number by the excitation of large vibrational modes [63].
Considering the lower part of the phase diagram, close to b = 0, which is more relevant in
comparison with our case, we can deduce that coalescence occurs if the kinetic energy of the
collision is smaller then the energy scale defined by the surface tension, i.e., for sufficiently
small value of We.
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Figure 2.9: Results of the collision between two classical drops as a function of the We and
of the impact parameter b. Image taken from [64]

Atomic nuclei. Similar studies have been carried out for understand the the dynamics of
some nuclear reactions. As a matter of fact the most simple model to describe the binding
energy of a nucleus is the so-called liquid drop model which is based on the famous Bethe-
Weizsäcker formula. Within this model, the nuclear binding energy depends on five terms:
the first three are the bulk, surface and curvature terms (in the nuclear case the latter is
provided by the Coulomb interaction between protons), that can be found also in classical
droplets. The fourth term comes from the Pauli exclusion principle, while the last term,
called pairing term, takes into account the interaction between the spins of the nucleons.
Using the liquid drop model, it is possible to partially describe several nuclear reactions,
including fission, fusion of heavy nuclei and collisions between nuclei [65, 66].
The main difference between nuclear collisions and collisions between classical drops, is pro-
vided by the quantum nature of the nuclei. The two wave-functions representing the colliding
nuclei, could have different (coherent) phases and in principle this could play a dynamical
role, as it happens for instance in the Josephson effect. It has been recently discovered [67]
that the initial phase difference between two colliding nuclei has a negligible role as the sys-
tem becomes strongly interacting. When the two nuclei enter in contact, the authors observe
the establishment of a common phase. This phase locking mechanism, attributed to the su-
perfluid nature of the colliding objects, keeps the phases entangled even after the separation
of the nuclei. In the opposite limit of a weakly interacting system, the initial phase plays
instead a significant role [68] due to interference effects.
Matter − wave Solitons. Collisions between self-bound systems have been studied also
in the context of ultracold gases, in particular making use of matter wave solitons. Soli-
tons are localized solutions of a non-linear equation, that propagate without changing their
shape, as a result of the interplay between the attractive mean field energy and the kinetic
energy provided by the wave packet dispersion. Even if, by definition, a soliton exists only
in a 1D system, it is possible to prove the existence of a bright soliton-like solution also in
a cigar-shaped attractive BEC. Differently from the pure 1D case, the soliton-like solution
displays a maximum critical atom number NC above which the soliton-like system is unstable
to collapse. In a pure 1D system, solitons are ”stable” against collisions: they pass through
each other without changing the amplitude of the wavefuction, the shape and the velocity.
However the behavior observed during the collision depends on the phase difference between
the two. For a phase difference ∆φ ' 0 is observed an antinode in the density profile as a
result of a constructive interference between the colliding solitonic matter-wave. In the op-
posite case, ∆φ ' π, the interference is destructive and the antinode does not appear during
the collision. This two different regimes were observed in [69] and they are reported in Fig.
2.11.
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Figure 2.10: Collisions between two strongly interacting (left) and weakly interacting (right)
nuclei. In the strongly interacting case it is possible to observe the phase-locking mechanism.
Image from [67]

The situation changes dramatically when considering a BEC in a quasi 1D waveguide. In

Figure 2.11: Right side: collision between bright solitons with ∆Φ ' 0. Left side: collision
between solitons with ∆Φ ' π. Figure taken from [69].

this case merging and annihilation can occur for ∆φ ' 0. As reported in [70], this can be
understood by considering the energy dissipated via radiation losses and the decrease in the
binding energy that occur during the inelastic collision. If the sum of these two terms is equal
to or exceeds the initial kinetic energy of the collision, merging in energetically favorable and
annihilation occurs if N > Nc. It is then possible to calculate a critical velocity below which
merging occurs [70]. Merging and annihilation of the two matter-waves have been observed,
again this phenomena occur due to 3D nature of the systems. By a theoretical point of view,
merging between solitons occurs if the relative velocity is smaller than a critical vC that
depends on the waveguide geometry as well as on the atom number [70].

Helium Clusters. A very important class of self-bound systems is represented by He-
lium droplets which are expected to have properties very similar to our quantum drops.
Interesting results have been obtained in [71] where the authors make collide magnetically

25



2.5. Collisions between self-bound objects

levitated helium drops. During the early stages of the coalescence dynamics, a small contact
region between the two drops called neck grows rapidly. In classical liquid drops the power-
law increase of the neck diameter depends on the viscosity of the liquid bulk. In superfluid
systems, as Helium drops, the bulk, contrary to the surface, has no viscosity. For this reason
the coalescence of superfluid drops displays a peculiar power-low scaling which is a smoking-
gun of the superfluid flow occurring in the bulk [72].

Finally studies on the collisions between the atomic quantum droplets described in this Chap-
ter have been performed so far only for a pure 1D systems [73]. In this work the authors
show that colliding droplets may merge or suffer fragmentation, depending on their relative
velocity, phase and atom number. An experimental observation of quantum droplets in a
pure 1D system is anyway still missing.
Although these theoretical results can help us understanding the qualitative picture of the
different possible collisional outcomes, a quantitative comparison is not feasible since the
relevant droplets parameters are strongly affected by the dimensionality of the system.
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Chapter 3

Optical compensation of gravity

One of the most important issues concerning the experimental observation of quantum
droplets is related to gravity. To keep the self-bound state in the center of the high res-
olution imaging system, it is necessary to compensate for gravity after releasing the atoms
from the trap. Typically, in the ultracold atoms framework, gravity is compensated using
a magnetic gradient. An atom in a given hyperfine level possesses indeed a characteristic
magnetic moment, µ(B). A linear magnetic field thus creates a force on the atoms provided
by −µ(B)∇B. By tuning properly the magnetic gradient it is possible to cancel gravity.
This solution cannot be used in our case, since we are interested in studying a quantum
droplet formed by a Bose-Bose mixture and, in the region of magnetic field where the two
species satisfy the collisional properties necessary for the creation of the self-bound state, the
two components posses different magnetic moment. Indeed, applying a magnetic gradient
to such a system imposes, a different force to each component thus separating them as in a
Stern-Gerlach experiment.
For this reason we implemented an innovative technology that is able to compensate for grav-
ity in a homo-nuclear mixture of ultracold atoms. It makes use of the dipole force, i.e., the
conservative force provided by a far off resonance light on the atoms, that acts in the same
way on both species. To paint the linear gradient of light we use a time-averaged optical
potential.
Before starting to explain how the setup works, I want to briefly discuss what are the charac-
teristics that the levitating potential should have. Obviously we require that it creates a force
on the atoms opposite to gravity but, in addition, it should also introduce negligible residual
confinement in every direction. This condition is required mainly for two reasons: the first
one is that in order to probe the self-bounded nature of the droplet we need to observe it in
free space, ideally without any external trapping. Secondly, if we compress the droplet in a
trap we expect that its life time is reduced. This happens because the density of the in-trap
droplet would become larger than the equilibrium value and, in this case, three-body recom-
bination processes dramatically reduce the lifetime of the system. We can give an estimation
of the maximum frequency that the droplet can afford as follows. The droplets size is of the
order of 1-3 µm. It is well known that a harmonic potential has an associated length scale,
the so called harmonic oscillator length a0 =

√
~/2πmν where ν is the trapping frequency of

the potential. To a first approximation, we want that the harmonic oscillator lengths related
to the residual trapping frequencies are larger than the droplet size. For ν = 20 Hz, a0 = 3.6
µm thus we require residual curvatures to be smaller than 20 Hz.
This Chapter is organized as follows: in the first section we will introduce some theoretical
aspects about the time-averaged optical potential, finding what is the better design to com-
pensate for gravity. After that, in Section 3.2, I will present the setup we realized while in
Section 3.3 the lower and the upper bounds on the modulation frequency. Finally in Section
3.4 I will show the characterization measurements performed on the atoms, giving particular
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attention to those concerning the residual confinements.

3.1 Time-averaged optical potential
Time-averaged potentials can be used to create potentials with arbitrary shape [74].The great
advantage of this technique is the possibility of creating potentials for trapping Bose-Einstein
condensates, which are simultaneously dynamic, fully arbitrary, and sufficiently stable to
not heat the ultra cold gas. The setup that we implemented makes use of just one Acusto-
Optical-Modulator (AOM). This solution is much simpler than others using, for instance,
Spatial Light Modulators (SLM) [75] or Digital Micromirror Devices (DMD) [76] to crate
arbitrary potentials.
The idea of a time-averaged optical potential is simple: a far detuned laser creates an optical
potential that is proportional to the intensity of the laser light, i.e., Vopt(z, t) ∝ I(z, t) [77].
Suppose to have a gaussian beam with an intensity profile given by I(z, t) = I0e

−2(z−z0(t))2/w2
z ,

where the position of the center is periodically modulated in time using the AOM with period
T : z0(t+T ) = z0(t). If T is much smaller than the typical time scales of the atom dynamics,
the atoms experience a potential that is the time average of the modulated one:

V (z) = 1
T

∫ T

0
V0e
−2(z−z0(t)2/w2

z)dt (3.1)

Choosing an appropriate modulation function of the beam center z0(t), we can create an
arbitrary optical potential along z which is the vertical direction.
In our case, to move the position of the laser beam, it is sufficient to change the Radio-
Frequency (RF) applied to the AOM. In this way we can tune the Bragg angle and so the
propagation diraction of the diffracted beam. To do that, it is sufficient to play with the
voltage applied to the Voltage Controlled Oscillator (VCO) inside the AOM driver. In other
words, the position of the laser beam is a function of a voltage V , z(t) = f(V (t)), where f
depends on the optical system between the AOM and the atoms.
For our purpose we are interested in creating a linear potential that is able to cancel the
effect of gravity on the atoms. To create such potential we require

dt ∝ z0dz0 (3.2)

Calling t the a-dimensional time normalized by the period of the modulation τ = t/T , it is
possible to show that the function:

z0(τ) = δ(2
√
|2τ − 1| − 1) + offset (3.3)

satisfies the differential Eq. in 3.2. The quantity δ is the amplitude of the modulation.
The modulation ramp has the shape reported in Fig. 3.1. Using Eq. 3.3 and Eq. 3.1 it
is possible to calculate the time-averaged intensity. The linearity of the painted potential
critically depends on the modulation amplitude δ and on the waist of the beam wz. If
δ � wz, that is the waist of the beam along the z axes, the averaged potential is in a very
good approximation a linear potential. However, in order to cancel the gravity, the force
provided by the optical potential must equal to mg. Increasing δ increases the scanned area
and so, to keep the proper value of the averaged dipole force, it is necessary to increase
the laser power. The latter indeed imposes an upper bound to the amplitude modulation δ,
which is also limited by the maximum deflection angle that the deflector can reach. In our
setup we have a maximum available power of the diffracted beam ' 3W. The laser beam
has wz =' 23(3)µm while in the other direction wy = 1(0.05)mm, the laser wavelength is
1064nm. With these parameters it is possible to prove that we can compensate the gravity
using 2.7W of laser power and a modulation amplitude δ ' 50µm.
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Figure 3.1: z0(t) for wz = 20µm and δ = 50µm.

Figure 3.2: a) Profile of the time-averaged potential V (z). b) Profile of V (z) around z = 0
compared with gravity. c) Calculated curvature produced by the levitating potential along
the vertical direction.

In panel a) of Fig. 3.2, I report the expected profile for V (z) evaluated using the above
parameters. In b), we report a zoom of the time-averaged potential in comparison with the
linear gravitational potential for an atom of 39K. Finally, in panel c), we report the calculated
residual trapping frequency induced by the potential:

ωz(z) =

√∣∣V ′′(z)
m

∣∣ sign(V ′′(z)
m

)
(3.4)

29



3.2. Optical setup

using the convention that if the residual trapping frequency is negative the potential is anti-
confining.
We notice from Fig. 3.2 that the calculated ωz is of the order of a few Hz in the central part
of the potential and |ωz| < 20Hz on a region of 30µm.
I would like to point out that this is not the only solution for creating a linear optical potential.
As I will describe in the following, this solution is affected by some complications related to
the high harmonics components of the modulation function z0(t). Another possibility is, for
instance, to modulate linearly in time both the position and the amplitude of the laser beam.
This solution has the drawback of requiring more laser power than the one described here,
which is the reason why we choose this solution.

3.2 Optical setup
In this section I will describe the optical setup used to create the time-averaged optical po-
tential.
The laser source we use is a Mephisto Mopa laser with a wavelength of 1.064µm, with an
output power after the isolator of 20 W. After passing through a non-linear crystal for the
creation of light at 532nm used for the repulsive barrier in the collision experiment of Chapter
6, the residual infrared light is coupled into a high-power optical fiber. With a precise mode
matching we optimized the coupling up to 80%. At the fiber output we have a collimated
beam with a waist of ' 600 µm that goes directly inside the AOM. In the diffracted order
we have at maximum approximately 3W. The AOM has two main purposes: acting on the
frequency of the RF, we modulate the beam position and tuning the amplitude of the RF we
stabilize the beam intensity.
A pictorial representation of the reference frame as well as the non-modulated beam is re-
ported in Fig. 3.3. To obtain a good linearity of the potential, wz has to be as small as the
optical access to the atoms allows. The only accessible optical path require that the beam
passes through a 200mm lens (L3) with a focal plane on the atoms. This lens is located
in a box and the beam can access it by passing through a hole of 1cm in diameter. This
constraints limits wz to a minimum value of 20µm.
The optical setup is represented in Fig. 3.4. It is made of a cylindrical telescope (lenses L1

Figure 3.3: Non-modulated far detuned IR beam used for creating the time-averaged optical
potential.

and L2) that magnifies by a factor 5 in the z direction the starting input beam. On the other
direction, the y axes, the spherical lens L3 and the cylindrical lens L4 form another telescope
that increases the beam size up to have wy '1 mm. L1 and L2 are placed in specific positions
with respect to the AOM and to the last spherical lens L3. Indeed, if the distance between
L1 and the AOM is equal to f1 and if the separation between L2 and L3 is equal to the sum
of their foci f3 + 20 cm, the diffracted beams obtained by changing the diffracted angle are
parallel in the atom plane. We chose this solution because in this way the optical system
is able to convert a diffracted angle into a displacement along z at the atom position. This
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mapping is provided by dz = dθBraggf3/M where M is the magnification of the telescope in
the z direction. Additionally, the optical path creates a very asymmetric beam, in this way
we minimize the residual confinement in y direction.

Figure 3.4: Geometrical path for the time-averaged optical potential. The black line repre-
sents the beam non diffracted by the AOM, while the red one the first-order diffracted beams
using different Bragg’s angles. The blue arrows represent the lenses along z direction while
the green ones along y.

3.3 Modulation frequency
It is not trivial to understand what is the lower bound for the modulation frequency that we
can use. Obviously if the beam is modulated too slowly, the atoms would follow the beam
in its motion. To avoid micro-motion effects that would heat the sample [78, 79], we need to
modulate sufficiently fast.
The minimum modulation frequency is set by the timescales of the density oscillations of

the cloud in the unmodulated beam, which are determined by the trapping frequency. The
relevant one is that along the vertical direction which is close to 500Hz and which determines
density oscillation at 1KHz. In order to be more quantitative in the lower-bound limit of the
modulation frequency, we perform a simulation of a non interacting BEC in the time-averaged
optical potential and we study for different modulation frequencies the micro-motion and the
heating of the cloud. The first parameter is related to the cloud while the second to its size.
As it is possible to see in Fig. 3.5 both effects are negligible for modulation frequencies larger
than 1 kHz, which sets a lower bound. On the other side, while one would say that the best
option is to modulate as fast as possible, we need to consider some technical limitations to the
maximum reachable frequency. They are related to the bandwidth of the VCO in the AOM
driver and to the finite bandwidth of the AOM itself. These two aspects will be discussed in
the next two sections.

3.3.1 VCO bandwidth

Typically our AOM drivers working around 110 MHz use with a ROS150 VCO. This VCO
has a bandwidth of ν0 =100 kHz, which means that, if the modulation of the voltage has
some Fourier components at frequencies larger than ν0, the shape of the optical averaged
potential could be affected. To quantify this effect we perform the following calculation.
According to Fourier theory, a periodic even function f(t) with period T , can be written as:

f(t) = a0 +
∞∑
i=1

aicos(2πit/T ) (3.5)
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Figure 3.5: Upper panel: micro-motion of a not interacting BEC inside the time-averaged
optical potential, for different values of the modulation frequencies. Below it is reported the
simulated σ defined as the Thomas-Fermi radius.

where
ai =

∫ T/2

−T/2
f(t)cos(2πit/T )dt (3.6)

while
a0 =

∫ T/2

−T/2
f(t)dt (3.7)

In order to understand the effect of the finite bandwidth, we calculate the Fourier spectrum
of Eq. 3.3 using Eq. 3.6 and we convolve it with a first order low-pass filter with a cut-off
frequency of 100 kHz. With an inverse Fourier transformation, we can estimate the filtered
modulation function and we can use it to numerically evaluate the resulting time-averaged
potential. We perform the same analysis for different values of the period of the modulation
T . Results for z(t) and for some averaged optical potentials are reported in Fig. 3.6 together
with some intensity profiles acquired with a CCD camera before aligning the beam on the
atoms. As we can see, the ramp profiles change as T decreases. This calculation, even if
simplified, because the voltage VCO frequency transfer function has not been characterized
with great accuracy, well explains the experimental images acquired by the CCD as can be
seen by comparing the profiles in the central and right columns of Fig. 3.6. The effect on the
atoms of the modified optical profiles, is to increase the residual trapping potential even for
a modulation period of 1/5 kHz.
We solved this problem by changing the VCO in the AOM driver with another model

ROS-355-219+, which has a much larger bandwidth of 3MHz but with a central frequency of
355MHz. Since the AOM we use works at a frequency of 110MHz, the VCO output is mixed
with a fixed RF at 445MHz and then the signal passes through a lowpass filter with a cutoff
at 150MHz. In this way the RF that is amplified and then applied to the AOM is at 110MHz
and can be modulated with a larger bandwidth. Since we have implemented this new VCO
when the system was already mounted on the atoms, we could not acquire any CCD pictures
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3.3. Modulation frequency

Figure 3.6: Effect of the low pass filter effect of the VCO on the modulation function (left
column) and on the averaged optical potential (central column). In the right column we
report some experimental pictures of the intensity profile acquired with an auxiliary CCD.
In the first row the modulation frequency is 1 kHz, in the second 10 kHz and in the third
20 kHz. In the first two columns the calculated profiles in black are compared with the ideal
profiles in blue.

with the faster VCO. Based on the caluculated profiles we can anyway conclude that the
upper bound imposed by the VCO bandwidth has been shifted up to 100 kHz.

3.3.2 Intensity stabilization

The second effect that modifies the shape of the averaged potential is the intensity fluctuation
of the beam. Eq. 3.1 is valid if V0 is fixed, i.e., if the laser intensity is constant. As we will show
in the following, in order to move z0 by 50 µm we need to change the RF in the AOM by 7 MHz
and, in this region, the diffraction efficiency of the AOM is not flat, i.e. the intensity of the
diffracted beam is not constant. This intensity variation can be compensated by stabilizing
the output power with a feedback loop on a Proportional-Integrator (PI) controller but since
this effect is caused by the time modulation, the intensity fluctuations have the same frequency
components of the modulation function. We optimized the PI to have a measured bandwidth
of 100kHz, but, as we will see, this effect is still the one that mostly limits the performance
of the time-averaged potential setting an upper bound to the modulation frequency.
The AOM we use is a 3100-125 by Crystal Technology and it works around 110MHz, with a
bandwidth of 20MHz. To characterize the efficiency of the AOM we measure the output power
of the diffracted beam changing the RF frequency in a range of ±10 MHz. The efficiency
curve together with a polynomial fit E(dF ) where dF is the difference with respect to the
central frequency of 110MHz, is reported in Fig. 3.7.
Due to this effect the amplitude V0E(t) of the modulated beam varies during the periodic
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Figure 3.7: Red dots: measured efficiency of the AOM as a function of the RF frequency.
The blue curve is a polynomial fit to the experimental data

modulation. The time-averaged potential is thus:

V (z) = V0

∫ 1

0
E(τ)e−2(z−z0(τ)2)/w2

zdτ (3.8)

where again τ = t/T is the a-dimensional time and E(t) = E(dF (τ)). As we introduced
before, the position z0(τ) of the diffracted is proportional to F (τ), i.e., F (τ) has the same
dependence on time of z0(τ). In Fig. 3.8 I reported F (τ) and the corresponding E(τ),
evaluated from the polynomial fit of Fig 3.7.
The effect of the AOM efficiency on the shape of the potential is problematic because it

Figure 3.8: Upper pannel: dF (t), lower pannel E(t).

increases the residual trapping frequency, up to 50Hz in the central of the potential and it
also decreases the mean intensity of the optical potential. In Fig. 3.9 I reported the profiles of
the ideal time-averaged optical potential compared with the one obtained taking into account
the AOM efficiency, and the curvatures evaluated curvatures calculated according to Eq. 3.4.
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3.3. Modulation frequency

Figure 3.9: Left panel: ideal optical potential (blue curve) and the one obtained taking
into account the AOM efficiency. Right panel: residual curvature measured by the trapping
frequency along the vertical direction z.

These effects can be reduced by implementing the intensity stabilization mentioned above.
The PI controller we use has a bandwidth of 100 kHz, which means that the noise introduced
by the AOM efficiency is not completely compensated. The Fourier components of E(t) are
larger than 100 kHz even for modulation frequency of 5 kHz. We can try to get an estimation
of the residual trapping frequency and the modified profiles as follows. We model the PI as
a high-pass filter with a cutoff at 100 kHz. This is obviously a brutal approximation but
as we will see it works well. As before we evaluate the Fourier spectrum of E(t) and we
convolve it with the PI gain function. Applying the inverse Fourier transform, we get a new
function EPI(t) that takes into account the PI correction. In Fig. 3.10 are reported the
residual curvatures for different modulation frequencies. As it is possible to see, the residual
frequencies are smaller than 20Hz in a region sufficiently larger than the typical droplet size
for modulation frequencies smaller than 10kHz.
Considering the upper bound to the modulation frequency discussed here and the lower bound
introduced above we decide to work at 1/T=3 kHz. The main limitation of the system is

Figure 3.10: Residual curvature, measured by the modulus of the trapping frequency, intro-
duced by taking in account the AOM efficiency and the PI correction.

related to the AOM efficiency. To solve this problem we could change the AOM in the setup
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3.4. Calibration on the atoms

with an Acusto-Optical-Deflector (AOD). This device is characterized by a very flat efficiency
inside the operation bandwidth and the problem discussed in this section should be reduced
significantly.

3.4 Calibration on the atoms

3.4.1 Alignment

Here I will present the calibration measurements performed on the atoms. In the first one we
verified the proportionality between the displacement of the beam at the atom position and
the voltage applied to the VCO. Let us start with a ”theoretical” prediction of this quantity.
Using the VCO and a spectrum analyzer we measure the linear dependence between the
applied voltage and the RF, finding that:

F (MHz) = 110.2− 0.065MHz
mV V in(mV) (3.9)

The AOM maps the frequency difference dF = F − 110.2MHz into an angle deviation dθ of
the diffracted beam. The relation between the two quantities is provided by the Bragg Law:

dθ = λ
dF

vs
(3.10)

where λ is the wavelength of the laser radiation, 1.064µm, and vs is the speed of sound in
the crystal. Since the AOM we use is made of TeO2, vs is known and it is equal to 4260 m/s.
Using Eq.s 3.9 and 3.10 it is possible to evaluate a constant of proportionality between the
applied voltage variation dV and dθ:

dθ = −1.610−5

mV dV (mV) (3.11)

The optical setup we implemented maps dθ into a displacement dz on the atoms plane. More
precisely dz = −dθf3/M where M is the magnification of the telescope, that in our case is
M=5. We get:

dz = 0.64 µm
mV

dV (mV ) (3.12)

In order to check if this theoretical estimation is correct, we perform the following measure-
ment: we modulate the position of the beam with a function dV (t/T ) = (−50(2

√
|2t/T − 1|−

1)+4)mV, a modulation frequency 1/T =50Hz and a phase φ ' 0.1 radiants and we measure
the vertical position of the BEC trapped in the potential, as function of time. Since the mod-
ulation frequency is slow, the BEC follows the beam in its motion. In Fig. 3.11 we report
the experimental data in blue and the theoretical prediction of the position of the beam in
red (see Eq. 3.12).
The error bars in Fig. 3.11 are estimated as half of the variance σz/2 of the gaussian fit of
the density profile n(z) = n0e

−z2/(2σ2
z). The experimental data are in good agreement with

the theory, confirming that the setup is well aligned and validating our prediction on the
characteristics of the levitating potential.

3.4.2 Residual trapping frequency

In this section I will describe the measurements performed on the atoms to get an estimation
of the residual trapping frequency along the vertical direction introduced by the optical
compensation of gravity. Since the residual curvature defined as in Eq. 3.4 has a peculiar
dependence on z, it is not so easy to measure. Two different measurements are possible: a
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3.4. Calibration on the atoms

Figure 3.11: Calibration of the movable beam on the atoms. Blue points represent the
experimental data of the position of a BEC that follows adiabatically the moving beam. In
red the theoretical prediction obtained from equation 3.12.

local one where we measure the residual trapping frequency f(z0) at a certain position z0,
and a global measurement, where the result is a residual trapping frequency averaged in a
finite spatial domain z0 ± δz. We performed both of them.
The local measurement we made is the following. We measured the trapping frequency of the
radial beam (a beam that propagates along x with a waist of 10µm; see next chapter for more
details) with a very small oscillation amplitude (' 1µm) cancelling gravity with the optical
levitation. The measured measured trapping frequency will result from the actual trapping
frequency of the radial beam frad plus f(z0) provided by the gravity compensation:

fmis =
√
f2
rad + f(z0)2 (3.13)

The measured trapping frequency could be even smaller than the one provided by the radial
beam alone if the optical levitation beam introduces a residual anti-confinement on the atoms,
i.e. f(z0)2 < 0.
We repeat the same measurement cancelling gravity via magnetic levitation making use of
two coils in Anti-Helmotz configuration. Since the residual magnetic curvature is negligible,
this measurement provides an estimation of frad. Notice that we measured the radial trapping
frequency cancelling the gravity in order to remove the shift in the potential minimum position
caused the the gravitational force. The results of the two measurements are reported in Fig.
3.12.
To measure the trapping frequency, we load a BEC in |1, 0〉 state in the radial trap with

gravity cancelled magnetically or optically, we then switch off the magnetic or optical gradient
for a small time δt during which the atoms fall down with respect to the initial equilibrium
position. When gravity compensation is turned on again, the atoms starts to oscillate in
the beam at the frequency of the trapping potential. The falling time δt determines the
value of the amplitude oscillation A0 that we set to A0 ' 1µm. The errors bars in the
position measurements are obtained repeating the experimental sequence 3-5 times. We fit
the data with a function A0cos(2πft+ φ) +B. The frequencies we measured are fmagnetic =
129(1) Hz and foptical = 128(2)Hz. The error bars come from the χ2 estimation between the
experimental data and the fitted model. The main result is that the two measured frequencies
are compatible within the error bars. One can then conclude that we can set an upper limit
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3.4. Calibration on the atoms

Figure 3.12: Measurement of the local residual trapping frequency of the optical levitation.
The blue and red points represent the measured vertical position of the BEC oscillating inside
the radial beam in presence of magnetic or optical gravity compensation respectively. The
curves correspond to the fitting functions described in the text to deduce the values of the
trapping frequency fmagn and fopt.

for the curvature in the system, which is given by the discrepancy in the measurements and
corresponds to |ν < 16|Hz.
The second measurement we perform on the atoms predict information about a global

Figure 3.13: Global measurement of the residual trapping frequency. Expansion of a BEC in
the levitating potential (orange dots) vs free space (purple dots). We measure the Thomas
Fermi radius along the vertical direction after releasing a BEC from its dipole trap. The
purple points correspond to the free-space evolution, while the orange ones to the expansion
in the levitating potential. The theoretical curves are the result of the evolution calculated
from the Gross-Pitaevskii equation in free-space (solid purple) and with a vertical confinement
of 12Hz (dashed orange)

curvature. We compare the expansion of a Bose-Einstein condensate in |1, 1〉 with a =7.5 a0
in the levitating potential and in free space. In figure 3.13 we report the measured Thomas-
Fermi radius of the cloud along the vertical direction, as a function of the expansion time.
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3.4. Calibration on the atoms

We compare them to the theoretical curves corresponding to the expansion of the BEC in free
space and in a harmonic potential V (z) = 1/2mω2

zz
2. When the Thomas Fermi radius in the

vertical direction becomes larger then 30 µm we observe a deviation between the expansion
in free fall and in the levitating potential. We then numerically simulate the expansion
of the cloud in a harmonic trap for different values of ωz. We observe a good agreement
between the data taken in the optical levitating potential and the expansion where we set
ωz = 2π12Hz. This measurement is mostly sensitive to the curvature at large distances, so
that it also provides only an upper bound to the effective confinement experienced by the
droplets around z = 0. Consider in addition that the droplet size is much smaller than 30
µm. The residual confinement along the other two directions is very weak and it can be
calculated considering the time-averaged potential at z = 0:

V (x, y, z = 0) = V0e
−2y2/w2

y

∫ 1

0
dte−2(z0(t)2/w2

z) ' 1
3V

e
0 −2y2/w2

y (3.14)

Considering the experimental parameters wy = 1mm, wz = 23µm and P = 3 W, we find that
ωx = 2π × 3 Hz and ωy = 2π × 2 Hz.
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Chapter 4

Experimental realization of a single
quantum droplet

In this chapter I will discuss the results concerning the experimental realization and charac-
terization of a quantum droplet made with a mixture of atoms in two hyperfine levels of 39K.
Most of the results presented here have been published in [12]. In the first part of the Chapter
I will shortly recall some details about the experimental sequence we use to reach quantum
degeneracy, after that, in Sec. 4.2, I will present all the steps used to create the quantum
droplet. In Section 4.3 I will discuss the optimization of the imaging used to probe dense
atomic clouds. In Sections 4.4 and 4.5 we will report the experimental results we obtained in
comparison with Petrov’s theory and with numerical simulations.

4.1 Production of the degenerate gas
In our laboratory we produce a degenerate gas of 39K atoms using essentially three cooling
stages. A schematic view of the experimental apparatus is reported in Fig. 4.1. The first
cooling stage is performed making use of a 2D+ Magneto Optical Trap (MOT) that is used
to collect atoms from the background and to create a cold atomic beam toward the second
chamber. The second stage is the 3D MOT where the atoms are trapped and successively
cooled below the Doppler limit to a few tens of µK. Atoms are then trapped in a magnetic
quadrupole trap provided by a couple of anti-Helmotz movable coils that we use to magneti-
cally transport the atoms into the final cell, the so called science chamber. A more detailed
explanation of the first two cooling stages can be found in [80, 81, 82].
After the magnetic transport the atomic cloud is spin polarized because the only low-field

seeker state of the ground state many-fold F = 1 is |1,−1〉. The last cooling stage to reach
Bose-Einstein condensation cannot be performed in a quadrupole trap, due to the presence of
a Ramsauer minimum in the elastic cross section of 39K, which occurs for collision energies
of 400 µK. For this reason, once the atoms reach the last chamber, we trap them in a very
deep optical trap provided by a IPG-photonics YLR-100-LP-AC ytterbium fiber laser. This
laser can provide up to 100 W of laser power at a central wavelength of 1064 nm, with an
emission linewidth of 2 nm. The laser is focused close to the center of the magnetic trap,
keeping a small displacement in order to avoid losses caused by Majorana spin-flips. Before
starting the evaporation, the optical trap is turned on for 2s with a power of '30 W that
optimizes the trapped atom number to a maximum value of ' 30 106. The atomic cloud is
then evaporatively cooled to quantum degeneracy. The evaporation sequence last 3 seconds
with the power of the IPG varying from 30 W to about 5 mW and tuning the inter-particle
interactions with the magnetic Feshbach resonance centred at 33.6 G. In the first 2 s the
IPG is turned on at the maximum power, the scattering length is set to a = 16 a0. While
decreasing the power we ramp the interaction up to ' 150 a0. To increase the trapping
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4.1. Production of the degenerate gas

Figure 4.1: Schematic view of the experimental set up, including the three chambers and the
three ion pumps. Image taken from [83].

confinement along the longitudinal direction of the IPG beam, we use a magnetic curvature
. At the end of the evaporative sequence we successfully create a BEC with an atom number
N ' 106 and a negligible non-condensed part (smaller than 10% of the total atom number).
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4.2 Experimental sequence
After the creation of a BEC, we increase the value of the magnetic field up to ' 55 G
turning off the magnetic curvature used during the evaporation. The BEC is transferred into
a more isotropic optical trap descibed in Sec 4.2.1. Finally we set the magnetic field B to
a specific value we create a 50%-50% mixture in the levels |1,−1〉 and |1, 0〉 by applying a
radio frequency RF pulse (Sect 4.2.3).

4.2.1 Trap geometry

The BEC is trapped using three far-detuned infrared beams (see Fig. 4.2). The first one
is called Radial beam and it propagates along the x direction perpendicular to the imaging
direction (y) and it has a waist of 10 µm. The second one is the IPG beam used for the
evaporation. It propagates in the x-y plane with an angle of about π/4 with respect to the
imaging beam and the radial one. Finally, in order to load the atoms in an isotropic trap, we
add an elliptical beam propagating in the vertical direction (z) with waists of wx = 39(3)µm
and wy = 105(5)µm. The Radial and the vertical beams are provided by the same laser
source, i.e. a Mephisto MOPA. Interference between them is prevented because the two
beams are diffracted on different orders of their AOMs. In addition to these beams we add
also the levitating potential introduced in the previous chapter. The latter propagates along
the x direction, superimposed to the Radial beam.
For the experiment explained in this chapter the measured trapping frequency on the
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Figure 4.2: Schematic representation of the laser beams composing the optical trap. All the
beams used here are far-detuned infrared beam at 1064 nm.

resulting crossed trap are the following:

ωx =
√
ω2
V ert + 1

2ω
2
IPG = 2π × 195(10)Hz (4.1)

ωy =
√
ω2
Rad + 1

2ω
2
IPG = 2π × 180(10)Hz (4.2)

ωz =
√
ω2
Rad + ω2

IPG = 2π × 220(10)Hz (4.3)

In the experimental sequence we transfer adiabatically the atoms from the IPG to the crossed
dipole trap, while switching off the magnetic curvature used during the evaporation and
tuning the homogeneous Feshbach field in the target region around ' 56G. At the end of the
sequence the atom number in the BEC is ' 500× 103.

42



4.2. Experimental sequence

4.2.2 Collisional properties of 39K

Collisional properties of 39K have been well characterized from both an experimentally and
theoretically point of view in [84].
The condition of negative MF energy and |δg| << g = √g11g22 are simultaneously fulfilled
working with the states |1,−1〉, called state 2, and |1, 0〉, called state 1, below a critical
magnetic field of BC ' 56.86 G. In panel a) of Fig. 4.3 all the scattering lengths for the
two states are reported in a magnetic field range close to BC . While a22 and a12 remain
essentially constant in the considered region, a11 varies due to a Feshbach resonance centered
at ' 59.3G.
In panel b) of Fig. 4.3, we report the expected phase diagram for the Bose-Bose mixture as
a function of the magnetic field and of the atom number, obtained according to the theory
presented in Chapter 2. For magnetic field larger than the critical one, the system is stable
according to the MF and it is in a miscible gaseous phase. For B < BC the phase of the
system depends on the atom number: if N > NC(B) the self-bound state can form, otherwise
the system is again gaseous but it is stabilized by the LHY term against the collapse. We
refer to that phase as LHY gas. The line describing the critical atom number is evaluated as
NC = 22.55(n0

1(B) + n0
2(B)ξ(B)3).

Fig. 4.3 b) shows why 39K is an appropriate candidate for studying quantum droplets.

Figure 4.3: (a) Intra- and interspecies scattering lengths between the hyperfine states |1, 0〉
and |1,−1〉 of 39K. The resulting MF energy of the mixture is proportional to the effective
scattering length δa which becomes negative below B ' 56.88 G. (b)Phase diagram for the
mixture as a function of the atom number N and of the magnetic field B.

Up to now, it is the only system where mixture droplets could be studied. The drawback
of this atomic species is related to three-body losses in the state |1, 0〉, as we will discuss
in the following. Mixture droplets could also be investigated using heteronuclear mixtures.
A possibility in this sense could be the bosonic mixture 87Rb-39K both atoms in the states
|1,−1〉. It was proved experimentally [85] the existence of a Feshbach resonance for the
interspecies interactions close to B = 117.56 G that could be used to achieve the correct
interaction to form the droplet. Another system recently proposed is the mixture 23Na-39K.
In this case it has been experimentally observed [86] that in broad region of magnetic field
between B ' 115 G and B ' 135 G δg < 0 and small compared to gNa−Na and gK−K . The
main advantage of the heteronuclear solution is that the lifetime of the system is expected to
be much larger than in our case.

43



4.2. Experimental sequence

4.2.3 Creation of a Bose-Bose mixture

A crucial step in the formation of quantum droplets it the creation of the mixture. After
loading the BEC in state 2 in the crossed trap, we transfer half of the atoms in state |1, 0〉 us-
ing a π/2 pulse, achieved coupling the two states with an RF signal. Note that this procedure
is in general not adiabatic and creates excitations in the sample. Despite that we choose this
technique because it is faster with respect to adiabatic transfer which is crucial in order to
limit the effect of three-body losses during the formation of the mixture. With the RF pulse
we can create a balanced mixture in a few tens of µs. The π/2 pulse is applied using an RF
generator and an attenuator, driven by a TTL, that we use as switch. Note that although
the rising time of the RF is very fast, the complete switching off of the RF occurs in about
50µs. An experimental measurement of the switching off time is reported in Fig. 4.4. To
measure the transferred fraction we perform a Stern-Gerlach (SG) experiment: we separate
the two species by applying a magnetic gradient. The force acting on each hyperfine level is
opposite due to the opposite magnetic moments of |1, 0〉 and |1,−1〉.
After the pulse the mixture is in a coherent superposition of the two hyperfine states:
|1,−1〉+|1,0〉√

2 . To measure the Rabi frequency, as well as the coherence time, we measured
the transferred fraction as a function of time, keeping the coupling on, and we fit the data
with a damped sinusoidal oscillation (Fig. 4.4 a-b). We measured a Rabi frequency of the
order of 10 KHz and a coherence time of 450 µs. We conclude that the coherence does not
play an important role in the long-time dynamics of the system which evolves for up to 20
ms.
RF spectroscopy is also used to calibrate the magnetic field. Note that, since the proper-

Figure 4.4: (a) Rabi oscillation between the two internal states. (b) Measurement of the
coherence time in the mixture. (c) Measurement of the switching off time of the RF pulse.
P is the ratio between the transferred atoms and the total atom number N1/(N1 +N2).

ties of the droplet critically depend on the scattering length and thus on the magnetic field,
we need to calibrate it with great accuracy taking in account collisional shift [87]. We can
roughly estimate its effect: as already pointed out in the fist chapter, the MF energy density
of a Bose-Bose mixture is given by

eMF = 4π~2

m
(1
2a11n

2
1 + 1

2a22n
2
2 + a12n1n2) (4.4)

From Eq. 4.4 we can calculate the chemical potential of both components:

µ1 = δe

δn1
= 4π~2

m
(a11n1 + a12n2) (4.5)
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µ2 = δe

δn2
= 4π~2

m
(a22n2 + a12n1) (4.6)

The collisional shift can be estimated as:

∆f12 = µ2 − µ1 = 2~
m
n(a22 − a11 + f(2a12 − a11 − a22)) (4.7)

where n = n1 + n2 is the total density and f = (n1 − n2)/n. Note that during the transfer,
the value of f passes form f = 1 when n1 = n to f = 0 when the mixture is balanced. The
collisional shift for f = 0, depends only on (a22 − a11) while for the initial condition, f = 1,
on 2(a12−a11). In the magnetic field window where the droplet is expected, this second term
is larger then the first. For this reason we evaluate the collisional shift for f = 1, considering
that as the most relevant. Considering the geometry of the trap described before and using
400 103 atoms, we get a collisional shift of about 10 KHz. To confirm this result we perform
RF spectroscopy on a BEC and on a thermal cloud at the same magnetic field. Note that
in principle, at the same density, the thermal cloud is affected by a collisional shift larger by
a factor 2 respect to the BEC where we have an anti-bunching effect due to Bose statistic.
Experimentally the shift is much smaller in the thermal cloud because the density is generally
one order of magnitude lower than the BEC. For this reason the transition measured using
the thermal cloud is not significantly affected by the collisional shift. In Fig. 4.5 we report the
collisional shift measured in our experimental condition at a magnetic field B ' 56.56G. The
blue curve is a Lorentzian fit to the data acquired with a thermal cloud, while the black data
and curve are related to the measurement with a BEC. The shift between the two resonances
is 11 KHz compatible with the estimation described above.
Note that the collisional shift could depend in general also on the LHY energy. This could

Figure 4.5: Measurement of the collisional shift. The blue points and the relative Lorenzian
fit are obtained with the RF spectroscopy on a thermal cloud while the black data and curve
correspond to the BEC. The measured shift is 11 KHz. Again P is the ratio between the
transferred atoms and the total atom number N1/(N1 +N2)

be a suitable tool to study the beyond-mean-field contribution, as recently pointed out in the
theoretical paper [88].

4.3 Absorption imaging of dense atomic clouds
The equilibrium density of a quantum droplet reaches values of 1014−1015cm−3 that is larger
than the typical density of the BECs. To make a comparison, consider that the density of
400 103 atoms in the Thomas Fermi approximation (as = 34a0 which is the case of state
2) trapped in an harmonic potential of 200Hz, is two orders of magnitude smaller. In this
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4.3. Absorption imaging of dense atomic clouds

section, after briefly discussing how absorption imaging works, I will describe how we can
adapt the absorption imaging technique to probe such a dense system. Note that, in principle,
to probe systems characterized by high optical density, other imaging techniques like phase
contrast [89] or Faraday rotation [90] are in general more appropriate.

4.3.1 Absorption imaging and saturation effects

In the limit of low density and in the rotating wave approximation, an atomic cloud is
characterized by a complex index of refraction given by [91]:

nref = 1 + σ0nλ

4π ( i

1 + δ2 −
δ

1 + δ
) (4.8)

where σ0 = 3λ2/2π is the resonant cross section for a two level atom, δ = 2(ω − ω0)/Γ is the
detuning of the probe light from the atomic resonance ω0 in units of half linewidth Γ and
n is the atomic density. Integrating the previous equation along the imaging direction one
obtains the well-known Lambert-Beer law for the transmissibility of the light through the
atomic sample:

T = ln[Iout/I0] = −ncolσ0
2

1
1 + δ2 (4.9)

where ncol(x, z) =
∫
n(x, y, z)dy is called column density. Note that light absorption depends

only on the imaginary part of the refractive index. The real part of the latter, that is
equal to zero for resonant light, imprints on the probing light a phase difference that is
used in the non-destructive techniques cited above. Absorption imaging works by directly
measuring the quantity T introduced in Eq. 4.9. This is done acquiring three different images:
Iw(x, z) detects the intensity of the probe light in the presence of the atomic cloud, Iwo(x, z)
without atoms and Idark(x, z) measures the background signal without both light and atoms.
According to the the Lambert-Beer law we have T =

4.3.2 Optimization of the imaging system

In the following I describe the main problems we had to solve before using this partial
transfer absorption imaging technique to accurately detect the droplet density profiles. Before
introducing them, I would like to stress that understanding the interaction between near
resonant light and a dense atomic samples is challenging and it is subject of specific of
experimental [92, 93] and theoretical studies [94]. The measurements performed and reported
here do not have the purpose of studying these phenomena. Our goal is to optimize the
imaging sequence to perform reliable measurements of the droplet size.

4.3.2.1 Heating effect

The first parameter to optimize is the duration of the repumper pulse τrep. To study it we
measure the size of the droplet as a function of τrep. Results are reported in Fig. 4.6. The size
increases on pulse duration larger than 10µs while for smaller values the dependence from the
pulse duration seems negligible. The observed effect can be explained, at least qualitatively,
by considering heating effects due to the spontaneous emission of photons when the atoms
decay from the F ′ = 2 state, that are reabsorbed by the neighboring atoms [95, 96]. For each
scattering event, an atom acquires a random kick in momentum space given by prec = ~k,
where k = 2π/λ with λ the wavelength of the radiation. The atom, of mass m, thus acquires
a recoil velocity of vrec = ~k/m, in a random direction. This leads to a Brownian motion in
momentum space, with a root mean square velocity transferred to the atoms given by:

vrms = vrec
3
√
Nphotons (4.10)
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4.3. Absorption imaging of dense atomic clouds

Figure 4.6: Comparison between the experimental data (blue points) describing how the
droplet size changes as a function of the duration of the repumper pulse and the two models
described in the text. The red curve describes the heating effect given by Eqs. 4.13 while
the black one by Eq.4.15 ( calculated for I ' 10Isat and ∆ = 260 MHz, which are the
experimental parameters used for the repumper beam).

where Nphotons(t) is the number of photons scattered in the time interval t. This leads to an
average displacement of each atom given by:

∆xrms = vrms
3 τrep (4.11)

The scattered number of photons Nphotons(τrep) can be estimated as:

Nphotons = τrepγ (4.12)

where 1/γ is the lifetime of the excited state [95]. This expression assumes that every re-
emitted photons is re-absorbed by the atoms. In this limit the increase in the cloud size
scales as τ3/2

rep and it does not depend on the intensity of the probe beam:

dxrms = 1
3
√
Nphotonsvrecτrep = 1

3
√
γvrecτrept

3/2 (4.13)

Since we are interested in the recoil heating produced by the repumper light, that in our case
is far from resonance, the expression 4.12 is probably an overestimation of the number of
scattering events per atom.
To better estimate the number of scattering events, we can assume that the number of atoms
excited is Γscatteringτrep where:

Γscattering = Γ
2

I

1 + I + 4∆2/Γ2 (4.14)

where I is the intensity of the probe beam in units of the saturation intensity.
The photon produced by the decay of the excited atom is resonant according to the dressed
picture of atom-light interaction. In this second limit the increase in size of the atomic cloud
is given by:

dxrms = 1
3
√
Nphotonsvrec∆t = 1

3
√

Γscatteringγvrecτ2
rep (4.15)

In this second approximation, the increase in size of atomic cloud depends on the intensity
of the probe beam. Both models presented here are reported in Fig. 4.6. As we can see the
second model fits better the experimental data for small duration of the repumper pulse.
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4.3. Absorption imaging of dense atomic clouds

Even if we cannot write down a model that exactly represents the experimental data on the
whole range of τrep, these models help us to have at least a qualitative idea of the observed
effect. To our purpose it is sufficient to know that below τrep = 10µs this heating effect is
negligible. We adopt exactly τrep = 10µs to maximize the signal-to-noise ratio.

4.3.2.2 Switching-off of the magnetic field

As already mentioned, in order to perform absorption imaging we need to switch-off the mag-
netic field, so that both hyperfine states in the droplet become resonant with the imaging
light. During the switching-off of the magnetic field the inter and infra-species scattering
length in the mixture change due to the presence of Feshbach resonances. The switching-
off time is however finite and during this time the atomic system evolves changing its size.
Indeed, the switching-off of the magnetic field acts differently on the two hyperfine levels.
The state |1,−1〉 passes through a Feshbach resonance centered at B ' 35 G , thus reaching
extremely large values of a22, which leads to an expansion of the cloud. On the other side,
a11 becomes negative, so that the cloud is expected to contract.
In previous experiments performed with the same experimental apparatus[97, 98, 99], a
switching time of tswitch ' 500µs was required before all magnetic fields were completely
turned off. Given the much lower densities of the BECs studied in those experiments, the
long switching time of the magnetic field did not have a significant effect on the measured
size. In the case of the droplet, because of the small size and higher density, a significant
effect was instead observed.
We experimentally reduce tswitch to 80 µs identifying and removing the major sources of eddy
currents. In this condition we measure the size of a mixture as a function of the ratio between
the two species. Results are reported in Fig. 4.7. To experimentally creates the mixture with
a tunable ratio N1/Ntot, we apply to the BEC in the state |2〉 a resonant RF pulse of different
duration.
In order to better understand the effect of the switching-off of the magnetic field, we per-

Figure 4.7: a) Simulated size after switching off the magnetic field in 500 µs (blue) and 80 µs
(red) as a function of the population imbalance N1/Ntot. b) Experimental data for the same
quantity compared to the simulation performed, with tswitch = 80µs.

formed a numerical simulation of the evolution of a BEC mixture for different values of the
parameter N1/Ntot after ramping linearly in time the Feshbach field from a typical working
value, B = 56.45G, to zero. In panel a) of Fig. 4.7 we report the results of the simulation for
the two different durations of the ramp, T1 = 500µs and T2 = 80µs. As expected in system
is mostly in the state |1〉 a the measured size is smaller than the initial one. In the opposite
limit the effect of the magnetic field is to increase the system size. The effects is much larger
on the state |2〉 that crosses a Feshbach resonance. Both these effects are much more evident
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if the magnetic field is turned off in 500 µs.
In panel b) of Fig. 4.7 we report the measured size after switching off the magnetic field in
T2 and we compare it with the simulated curve. The simulation is based on a time dependent
two-components Gross-Pitaevskii equation.
In conclusion, performing the imaging sequence with a switching-off time of 80 µs after
switching-off the magnetic field, a systematic error on the measured size of the atomic cloud is
introduced. This effect depends on the fraction of atoms in the two states composing the mix-
ture, and it results to be negligible in the typical droplet configuration, where N1/Ntot ' 0.4
.

4.3.2.3 Resolution of the imaging system

The expected sizes of the droplets are pretty small, ranging from 1-3µm in the region of
the magnetic field we consider. The measured width of a gaussian density profile is always
increased by the imaging resolution δ defined as the 1/

√
e of the point spread function (PSF),

as.
σ2
meas = σ2

real + δ2 (4.16)

This derives from the convolution of the cloud with the PSF of the imaging system, which
defines its finite resolution:

nimg(x, z) = nreal(x, z) ∗ PSF (x, z) (4.17)

The droplet size can be then deduced as:

σreal =
√
σ2
meas − δ2 (4.18)

The nominal resolution of the imaging system depends on the numerical aperture of the
microscope objective used as the first lens of the imaging system. It has been estimated
performing ex-situ measurements of the minimum observed distance between two nanoscale
objects and it corresponds to δnom = 0.6µm. The actual resolution of the imaging system is
larger than the nominal one because it is sensitive to optical misalignments. To get an upper
bound of the actual resolution, we load a weakly interacting cloud into a strong confining
optical trap and we measure its size along the most compressed direction. Fitting the density
distribution with a gaussian function we achieve a minimum variance σ equal to 0.8±0.1µm.
We decided to use this values for the estimation of the resolution of our imaging system,
which is defined as δres = 0.8+0.1

−0.2µm.

4.4 Experimental results
A first characterization of the mixture is performed by exploring the phase diagram of Fig.
4.3 b). We prepare the mixture as explained in Sect. 4.2.3. At the end of the RF pulse we
switch on the optical levitation and we switch off the optical trap and we let the mixture
expand in free space. We detect the density profiles after a variable waiting time and measure
the averaged size of the cloud σ = √σxσy. In Fig. 4.8 we report the evolution of the mixture
in the three different regions of the phase diagram. We observe that both the repulsive MF
and the LHY gas expand in time (upper raw of the density). Oppositely in the droplet region
the cloud remains self-bound (lower raw).
We want to characterize the droplet phase measuring three observables: the size σeq, the

critical atom number NC and the ratio N1/N2 between the two states composing the self-
bound cloud. These three quantities depend on the inter and intra-species interactions, and
thus on the magnetic field. To measure the atom number as well as the composition between
the two states, we perform a Stern-Gerlach (SG) experiment. In this way we can fit the two
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Figure 4.8: a) Intra- and interspecies scattering lengths between the hyperfine states |1,−1〉
and |1, 0〉 of 39K, tuned by an external magnetic field B via Feshbach resonances. The
resulting MF energy of the mixture is proportional to the effective scattering length δa ,which
becomes negative at BC = 56.86G. (b)Phase diagram for the mixture as a function of the
atom number N and of the magnetic field B. (c) Evolution of the cloud in free space for
three different points of the phase diagram in (b). The upper rows show the difference
between the evolution of the density profiles in the gas and droplet phases. Inset: Schematic
representation of the geometry of the experiment.

atomic clouds separately, and measure the atom numbers N1 and N2. During this process
the uniform Feshbach magnetic field is also increased. This is done so that the Stern-Gerlach
separation occurs at a magnetic field where the mixture is out of the droplet phase and the
splitting is easier, due to the reduced attractive interaction. The experimental sequence for
both the SG experiment is summarized in Fig. 4.9 b.
Typical experimental results for the three observables under study are reported in Fig. 4.10
for a magnetic field of 56.45(0.1)G. As it is possible to see in panel a), the size of the system
σ, after a fast reduction in the first milliseconds of dynamics, remains more or less constant
up to a critical time tC that in that case is close to 7ms. For t > tC the system expands.
This behavior can be understood comparing the evolution of the system size to the one of the
total atom number N(t) = N1 + N2 reported in panel b). The droplet quickly loses atoms
for t < tC , due to the three-body recombinations affecting essentially state 1. The losses in a
mixture are provided by four channels. As reported in Appendix one we estimate all of them
finding that the largest is K3111 = 5× 10−27cm6/s. The other three are more then one order
of magnitude smaller then K3111.
At t ' tC the atom number of the system becomes smaller then NC , the critical atom
number required to create a quantum droplet. The system naturally experiences a liquid-to-
gas transition and exits from the droplet phase, as it is highlighted in the inset of Fig. 4.10
b), where the arrow shows the trajectory of the system in the phase-diagram.
Three-body recombination is not the only loss channel affecting the quantum droplet. The
other mechanism that is necessary to take into account is indeed the stabilization of the
ratio N1/N2. As described in the Chapter 2, the system forms a quantum droplet if the
atom number of the two components satisfies a well defined ratio: N1/N2 =

√
a22/a11. In

general this value depends on the magnetic field, but changes very slowly with it and it is
always ' 0.7. The system can sustain small variations of the population imbalance up to a
maximum deviation of δNi/Ni ' |δa|/aii. Any excess of atoms beyond this threshold is not
bound to the droplet, and expands like a gas. The theoretical population imbalance, as well
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Figure 4.9: Experimental sequence for both measurement schemes performed. a) measure-
ment of the droplet size: after having performed the evaporation in the optical trap, the
BEC in |1,−1〉 is transferred into an isotropic dipole trap (red), the magnetic field is ramped
to a value that fulfills the collisional constrains necessary to reach the droplet phase. We
then create the mixture making use of a π/2 RF pulse. At the end of it we switch off all
the traps and we acquire the density profile after a variable time tmeas. b) SG experiment.
The sequence is the same as in a) until t = tmeas, at this time we increase the magnetic
field going out from the droplet regime and we shine a magnetic gradient to separate the two
clouds. Absorption imaging is performed after 2.5ms from tmeas, at this time the two clouds
are spatially separated.

as the maximum deviation, is reported in panel c) of Fig. 4.10. Taking into account this
mechanism we can better understand the evolution of the atom number. We start from a
balanced mixture with a population imbalance ' 1 and so larger than the equilibrium one.
This value has been chosen in order to maximize the lifetime of the system. Due to the
three-body losses, N1 drops quickly and for this reason the population imbalance becomes
smaller than 0.7. At this point also this second losses channel comes into play: the droplet
releases atoms in state 2 to keep the population imbalance close to the equilibrium value. The
difference between the two losses mechanisms is that in the three-body losses atoms acquire
a huge momentum in the inelastic collision and so are expelled from the system, while the
second one forces atoms in state 2 to evaporate away from the droplet appearing as a thermal
cloud around the self-bound state. For this reason we fit the density profile acquired in both
the droplet expansion and SG measurements procedure with a double gaussian distribution:

n(x, z) = A1e
−(x−x0)2/2σ2

x−(z−z0)2/2σ2
z +A2e

−(x−x0)2/2Σ2
x−(z−z0)2/2Σ2

z (4.19)

where σ = √σxσz represents the measured droplet size while Σ =
√

ΣxΣz is the size of the
unbounded thermal cloud. The droplet atom number is estimated by the integral of the fitted
gaussian function and for this reason, it is proportional to A1σxσy.
In principle the self-bound state should be affected by another loss channel provided by the
so-called "self evaporation" described in Chapter 2. According to this mechanism a droplet
is expected to expel atoms to dissipate the excitation energy. Atoms released in this way
should increment the cloud surrounding the self-bound state. However, since three-body
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Figure 4.10: Time evolution of σ(t) (a), N (b), and the ratio N1/N2 (c) in the droplet phase
at B=54.45 G. The inset in (a) reports the density profile of the droplet after some expansion
time, together with the fitted bimodal function described in the text. In the inset in (b), we
draw a sketch of the trajectory followed by the system in the mixture phase diagram during
the time evolution, due to three-body losses. The dashed line in (a) is the average of σ on
the plateau identified by the rectangle. The dashed line in (b) is the critical atom number
NC , measured as the average of N for t > tC . In (c), the solid line represents the theoretical
equilibrium value N1/N2 =

√
a22/a11 , and the green area between the dashed lines includes

the allowed deviations δNi/Ni(see the first chapeter). The error bars represent the statistical
uncertainty and correspond to one standard deviation.

losses denominate the loss dynamics observed so far, it has not been possible to clearly
distinguish a self-evaporation contribution.
When the system exits from the droplet phase, all the losses mechanism are stopped. As

it is possible to see in Fig. 4.10, as well as in Fig. 4.11, after tC the atom number and the
population imbalance remain constant. For this reason, in order to compare the experimental
data with the equilibrium properties described in Petrov’s paper, we can define the following
variables. The critical atom number is measured as the averaged of N(t) for t larger then
tC . The equilibrium population imbalance is obtained on the average of N1/N2(t) for t
larger than tC . The droplet equilibrium size is measured as the averaged size during the
plateau highlighted by the rectangle in Fig. 4.10 and Fig. 4.11. The boundaries of the
plateau are defined as those points where the size at the next/previous time exceeds the
average on the plateau by more than its standard deviation. In Fig. 4.12 we report the
experimental data describing the equilibrium properties defined here, above in comparison
with the Petrov’s theory. In particular in the panel a) the measured size is compared to the
theoretical expectations for NC ≤ N ≤ 2NC (red colored area). In panel b) we plot the
measured critical atom number and the theoretical NC for stable (solid line) and metastable
droplet (dashed line), i.e. Ñ = 22.55 and Ñ = 18.65 respectively. Finally in panel c)
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Figure 4.11: We report here the experimental data acquired for different values of the mag-
netic field. In the upper raw are reported the evolutions of the droplet size, in the central
one Ntot(t) while in the bottom raw the dynamics of the population imbalance.

we compare the equilibrium population imbalance obtained from our experimental data to
the theoretical one N1/N2 =

√
a22/a11 taking into account the allowed deviation δNi/Ni '

|δa|/aii.
As it is possible to see, we find a good agreement with the theoretical predictions, which
provides the first experimental confirmation of the theoretical model proposed in [5]. In
addition the results presented here represent the first observation of a self-bound mixture in
3D free space. The successful creation of symmetrical quantum droplets is confirmed by the
measured aspect ratio σx/σz of the order of 1 (see Fig. 4.12 panel a) which is always close
to 1.
Before concluding this section, I would like to mention that the experimental sequence we

use is slightly different for different values of the magnetic field. For B ≥ 56.54G we switch
off the trap at the end of the RF pulse. For smaller values of B, i.e. 56.39 and 56.46G,
the cloud is released from the trap before the end of the RF pulse. In this way the mixture
completes its formation out of the trap. This is done in order to slow down the dynamics
and better characterize the droplet properties. Indeed, for lower magnetic field values the
effective scattering length |δa| becomes larger and for this reason the system experiences a
very fast contraction. As the density increases the losses due to three-body recombination are
also increased, so that slowing down the contraction allows to increase the droplet lifetime.

4.5 Dynamical evolution of the droplet
In Fig. 4.11, we observe a dynamical evolution of the size also during the droplet phase before
tc. The mixture is indeed prepared out of equilibrium, the initial size being larger than the
droplet nominal size. In addition to that, N is decreasing due to losses, so that σ needs to
decrease to preserve the droplet equilibrium density. To understand the timescales of this
dynamics and verify if what we observe is compatible with the predictions of Petrov’s model,
we perform a numerical simulation, using the model introduced in Section 2.3.
To reproduce the preparation of the mixture of the experiment, we start from a condensate
in state |2〉 in the ground state of the external trapping Vext, corresponding to the crossed
dipole trap of the experiment, and then we transfer half of the population to state |1〉, at
t = 0. The subsequent evolution is obtained by solving Eq. 2.68. We observe the evolution
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Figure 4.12: Measured values of σ (a), NC (b) and N1/N2 (c) as a function of the magnetic
field B. In (a), we also report the aspect ratio σx/σy (diamonds). The colored area in (a)
corresponds to the theoretical prediction for σ NC ≤ N ≤ 2NC . The curves in (b) correspond
to the predicted critical atom number for the metastable (dashed) and stable (solid) self-
bound solutions. In (c), the theoretical curves are obtained as N1/N2 =

√
a22/a11 taking

into account the allowed deviation δNi/Ni ' |δa|/aii. The vertical error bars correspond to
the statistical uncertainty. The horizontal ones are due to the uncertainty in the magnetic
field calibration. All error bars correspond to one standard deviation.

of the mixture, and we fit the density profiles as in the experiment. As shown in Fig. 4.13,
in the first part of the evolution, up to more or less 8 ms, we find a very good agreement
with the data. At larger times, while in the experiment we observe a transition to the gas
phase, the mixture is still self-bound in the simulation. A better agreement at large times is
obtained by increasing the value of K111 to twice its measured value (dotted line), which is
still compatible with the error bar in the measurement of the loss rate (see Appendix 1).
We also compare the observed evolution with the equilibrium droplet size predicted in Petrov’s
theory. We calculate the droplet radius R/

√
2, where R is defined according to Chapter 2, as

a function of the measured atom number at each time (dashed line). The behavior of σ(t) is
thus explained by a contraction of the mixture to its equilibrium size plus an oscillation on
top of that.
Interestingly, despite the limited lifetime, the contraction dynamics is fast enough to allow
us to observe the droplet close to its equilibrium configuration. This justifies the comparison
with the results of Petrov’s theory performed in the previous section.
In Fig. 4.14 we also report the comparison between the data for σ(t) and the result of the
numerical simulations for all the measured values of B. When the mixture is created in the
dipole trap, i.e. for B > 56.5G, the simplified model used in the simulations does not take
into account the fast initial contraction of the cloud which happens during the RF transfer.
For this reason we need to introduce a shift ∆t to superimpose at short times the theoretical
curve on the experimental data. It is typically ∆t ' 1ms. For the smallest fields, where the
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Figure 4.13: Evolution of the droplet size σ for B=56.54(1) G compared with the numerical
simulation for N = 250(50) 103 atoms, K111/3! = 9x10−28cm6/s (colored area), N = 250
103 and K111/3! = 18x10−28cm6/s (dotted line). The dashed line is the equilibrium size
according to Petrov’s theory, calculated as explained in the text.

mixture is formed out of the trap, ∆t = 0 due to the slowest initial contraction.
While in the initial part of the time evolution the simulations always reproduce pretty well
the dynamics observed in the experiment, we find that at large times the agreement changes
as a function of the magnetic field B. For the smallest B, the result of the simulation
is compatible with the experimental data within the error bars (Fig. 4.14 a). For larger
magnetic fields, we need to increase the value of K111 in the simulations to reproduce the
droplet-to-gas transition observed in the experiment. For the data shown in Fig. 4.13 (B=
56.54(1)G), as well as for B=56.46(1)G, Fig. 4.14 b, and B=56.50(1), Fig. 4.14 c, we obtain
a good agreement with the data by setting K111 to a value which is still compatible with the
uncertainty in the experimental measurement of the loss rate. For the largest B, however,
even setting K111 to the largest value within the experimental error bars is not sufficient to
reproduce the final expansion.
We conclude that a proper modeling of the losses in the system would require a detailed
measurement of all the three-body loss rates in the mixture as a function of the magnetic
field and also as a function of the density. The densities in the droplet are indeed so large
that avalanche effects as described in [42] might come into play. Such a detailed analysis is
certainly demanding and far beyond the purposes of this work. Numerical simulations are
mainly used here to characterize the typical time scales in the droplet dynamics, which are
only slightly modified by losses.
A possible additional source of losses could also be related to the time-averaged optical
levitation. The modulation frequency used so far is only slightly larger than the minimum
threshold for heating, discussed in Section 3.3. Further investigations on this issue would be
necessary to verify the possible relevance of this effect on the lifetime of the droplet.
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Figure 4.14: Evolution of the size σ(t) for different values of B compared with the results of the
numerical simulations for the experimental atom number N (considering also the experimental
uncertainty) and K111/3! = 9x10−28cm6/s (colored area). The dotted lines correspond to
the simulations for the experimental N and K111/3! = 14× 10−28cm6/s in b) and K111/3! =
18× 10−28cm6/s (c-d).

4.6 Quadrupole oscillations
The measurements reported so far were done for characterizing the equilibrium properties of
the droplet. We would like to address the dynamical behavior of this system. The first thing
we tried was to measure its collective excitations.
The observation of the monopole mode is complicated by the occurrence of self-evaporation.
Indeed for this phenomenon we expect a significant damping of the oscillation in clouds with
atom numbers up to 40 times the critical atom number. Since we typically work with smaller
clouds, the monopole mode is expected to be always damped. For this reasons in the data
previously shown, we can not see any clear oscillation.
We have then also tried to study higher angular momentum modes, such as the quadrupole
mode.
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Figure 4.15: Quadrupole oscillation: the system created in an anisotropic trap undergoes
oscillation of the aspect ratio. We can clearly observe an inversion of the aspect ratio but we
never observe any complete oscillation.

To excite the quadrupole mode we create the initial BEC in state |2〉, in an-isotropic
trap. We then prepare the mixture as usual and we release the system from the trap. In
Fig. 4.15 we report the measured values of σx, σy and of the aspect ratio σx/σz. We clearly
observe an inversion of the aspect ratio and this suggests that the system oscillates under
a quadrupole-like oscillation. We cannot characterize a full oscillation, because its period is
larger than the lifetime of the system: at t = 8ms the aspect ratio is inverted but at t = 10ms
the liquid-to-gas phase transition occurs and the system starts to expand.
In conclusion, the quantum droplet realized using a mixture of 39K BECs in free space seems
not to be a suitable choice to explore the peculiar excitation spectrum predicted for the self-
bound system. The three-body losses indeed dramatically affect the lifetime of the system,
preventing a complete characterization of such phenomenon. Maybe working in a pure 1D
system could help in this sense since the three-body correlation function is reduced with
respect to the 3D case [100], so that the expected lifetime should be larger. In 1D anyway
the peculiar feature of self-evaporation should not be present, so that one should try to work
in 3D with a different atomic species.
Nevertheless, in the next Chapter, we will show that, despite the large limitation coming
from the three-body losses, there are still other possible ways to explore the dynamics of
quantum droplets: one only needs to find a probe that works on a timescale faster than that
of three-body losses.
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Chapter 5

Collisions between quantum
droplets

In this chapter I report on the experimental study about collisions between two quantum
droplets. This kind of experiments are interesting in order to address some properties of the
colliding objects, like their energy scales and their liquid-like nature.
To study collisions between quantum drops we implemented on the experimental system a
new optical setup that makes use of a repulsive barrier to create two spatially separated
BECs (see Sect. 5.1). In Sect. 5.2 I report the experimental sequence used to imprint a
controlled and tunable relative velocity to the separate clouds. After that I introduce the
experimental results obtained for the collisions (see Sect 5.3). The discussion of the results
and the comparison with theoretical predictions is discussed in Sect. 5.4.

5.1 Creation of two colliding droplets

5.1.1 Green barrier

To create a repulsive barrier able to split the initial condensate into two parts, we use green
light at 532nm obtained doubling infrared (IR) light at 1064nm, by second harmonic genera-
tion. The optical setup is depicted in Fig. 5.1. The IR light coming from a Mephisto Mopa,
after passing through an optical isolator, is focused by a f = 50mm lens inside a non-linear
crystal. After optimizing the coupling of the input IR light in the crystal as discussed in a
previous thesis [101], we obtain up to 2 W of green light, starting with ' 18W of IR light.
The green and the IR light are then collimated by a second lens with f = 50mm and then the
two wavelengths are separated by two dichroic mirrors. The IR light is coupled into a high
power optical-fiber for the optical gravity compensation described in Chapter 3. The green
light instead passes through an AOM used for intensity stabilization and then it is coupled
into another optical-fiber. At the fiber output the beam waist is ' 900µm. The optical setup
for the realization of the barrier is very simple: with two cylindrical lenses we magnify the
beam along one direction by a factor 8, obtaining a waist of 7mm in the largest direction.
The beam is then focused on the atoms by a 300mm cylindrical lens.
The green barrier propagates vertically (z axis) parallel to the vertical IR beam, and it is
focused along the x axis (Fig. 5.2 b ). The expected waist is wx 'x 10µm. Along the other
horizontal direction (y) the beam has a large waist wy ' 1 mm.
The last lens that focuses the beam on the atoms is mounted on a translational stage, that we
use to position accurately the focus of the beam onto the atoms. To verify the alignment of
the beam on the atoms we perform the following measurement: first we measure the trapping
frequency of vertical IR beam along the x direction finding ωIR = 2π × 73(3)Hz. Then we
rise up the barrier splitting the BEC in two parts and we measure the trapping frequencies
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in each of the two wells, finding on average ωDW = 2π × 147(2)Hz. From the knowledge of
the power in the two laser beams we can deduce the effective waists at the atoms position.
We estimate wIR ' 40µm and wgreen = 14(5)µm. The deviation from the expected value
con be due to a non perfect alignment on the atoms, which is compatible with the precision
of our alignment technique. This discrepancy could also be caused by aberrations of the lens
we use.

Figure 5.1: Optical set up for the creation of the green barrier as explained in the text

5.1.2 Preparation of two droplets

The sequence to produce two separate droplets is similar to that of a single droplet described
in Chapter 4, with the addition of the double-well potential. We start from a BEC in state
|1,−1〉 in the IPG beam. After reaching condensation, we adiabatically turn off the magnetic
curvature while rising up the radial beam and the double-well potential provided by the com-
bination of the vertical IR and of the green barrier. After that we, switch off the IPG so that
the harmonic confinement along the x axis is provided only by the vertical beam, resulting
in a shallower trapping frequency. The chemical potential of the BEC in the Thomas-Fermi
regime is then smaller and it is easier to split the cloud in two parts. The drawback is that
the residual confinement in the vertical direction is not sufficient to prevent the atoms from
falling out of the trap under the effect of gravity. To solve this we optically compensate for
gravity during the switching off of the IPG beam, by ramping up the optical time-averaged
potential. The experimental sequence used to load the double-well potential as well as a
schematic representation of the trap is reported in Fig. 5.2.

At the end of this sequence the geometry of the trap is a double-well potential along x
plus a radial confinement in the y-z directions. The trapping frequency in each well depends
on the exact value of the barrier height and it ranges between 100 and 170Hz. While the
radial trapping frequency is ωrad ' 2π × 200Hz. While loading the atoms in the double-well
potential, the magnetic field is ramped to a desired target value and finally the mixture is
created on both sides of the double-well, by applying the same RF pulse described in Section
4.2.3.
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5.1. Creation of two colliding droplets

Figure 5.2: a) Experimental sequence for the creation of the two spatially separated BECs.
b) Pictorial representation of the trap geometry.

5.1.3 Relative velocity

In order to study collisions, we need to imprint a controlled relative velocity to the droplets.
After creating the two separate drops as described above, we turn off all the trapping po-
tentials except for the vertical IR beam. We keep the two clouds in this shallow harmonic
trap (ωx = 2π× 93(5)Hz) for a variable time ∆T , during which they accelerate towards each
other due to the opposite forces that attract them towards the center of the trap. After ∆T
the vertical beam is turned off, so that the droplets keep moving along x at constant velocity
and eventually collide. The experimental sequence is schematically reported in Fig. 5.3. We
can then tune the velocity by changing ∆T : the longer ∆T the larger vx, as long as ∆T is
smaller than a quarter of the oscillation period: ∆T < 1/4νIR ' 2.5ms.

Figure 5.3: Experimental sequence for imprinting a relative velocity to two quantum droplets.
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5.2. Results of the collisions

5.2 Results of the collisions

5.2.1 Merging vs separation

The outcomes of the collision are mainly two:

• merging: for small velocities, the two droplets stay together after the collision, forming
a larger droplet. An example of merging is reported in Fig. 5.4 a).

• separation: for larger velocities, after the collision the two droplets separate again
and keep moving in opposite directions, passing through each other. An example of
separation is reported in Fig. 5.5 a). We can identify two different situations belonging
to this category: elastic scattering when the output velocity is essentially equal to the
input one and inelastic scattering where the final velocity is smaller than the initial
one.

To characterize the relevant parameters of the collision, we fit the density profiles obtained
from absorption imaging, using either a two dimensional double-gaussian function:

n(x, z) = A1e
−(x−x1)2/2σ2

x,1−(z−z1)2/2σ2
z,1 +A2e

−(x−x2)2/2σ2
x,2−(z−z2)2/2σ2

z,2 (5.1)

,if it is possible to identify two separate density peaks, or a 2D single gaussian function.

n(x, z) = Ae−(x−x0)2/2σ2
x−(z−z0)2/2σ2

z (5.2)

In the case of two separate droplets we estimate the average sizes as σL = √σx,1σz,1 and
σR = √σx,2σz,2, the distance d(t) = x1(t) − x2(t) and the atom number from the integral
of the two gaussians, Ni ∝ σi,zσi,xAi (See Appendix 2 for the discussion of atom number
calibration). In the case of merging, the average size is σ = √σxσz, N ∝ A

√
σxσz while

d = 0.
In light of these definitions we can discuss with more details the different regimes reported in
Fig. 5.4 and 5.5. In Fig. 5.4 after the collision the measured relative distance, represented in
the panel b) by the blue diamonds, is compatible with zero. In Fig. 5.5 the distance between
the droplets reaches d = 0 at the collision time, but then it increases again indicating the
following separation. For both cases, we also monitor the evolution of the averaged size σ.
This measurement is important to verify if the mixture is still in the self-bound phase during
the whole collisional dynamics. From panels c) of both Fig 5.4 and 5.5, we see that there is a
finite window between the collision and the droplet-to-gas transition where we can distinguish
the outcome of the collision. Finally in panel d) we report the evolution of N(t) that we use
to define the atom number at the collision.
In order to characterize the outcomes of the collision as a function of N and v, we need to
measure both quantities. We define the atom number at the collisionNcoll as the atom number
at the time when the centers of the two colliding drops are superimposed. To measure it we
perform a linear fit of the distance as a function of time during the first part of the collisional
dynamics, when the droplets are approaching each others and we can clearly distinguish two
peaks in the density profile. From this we can get an estimation of the relative velocity vcoll
and of the starting distance d0. The collision time is then given by tc = d0/vcoll. We estimate
Ncoll = N(tC) by performing a linear interpolation between the two closest data points.

5.2.2 Measurement of the relative velocity

In order to have an independent measurement of the relative velocity, where the trajectory
followed by each droplet is not influenced by the presence of the other, we use the following
strategy (sketched in Fig. 5.6). The basic idea is to repeat the sequence of Fig. 5.3, but
having a single droplet at a time. In order to load the BEC in a single well, we increase the
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5.2. Results of the collisions

Figure 5.4: Example of a collision between quantum droplets belonging to the merging regime.
In the column on the right a) we report some density profiles showing the collisional dynamics
typical for the merging case. In the upper panel b) is reported the measured distance during
the collision (blue diamonds) in comparison with the one obtained measuring the position
of a single droplet at time (red dots). In the central panel c) is depicted the system size
evaluated from a gaussian fit of the density profile. In the lower panel d) we can find the
measured values of the atom number. Here vcoll = 2.3mm/s

height of the green barrier and we move it away from the center of the harmonic confinement
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5.2. Results of the collisions

Figure 5.5: Example of a collision between quantum droplets belonging to the separation
regime. The panels report the same data as the corresponding ones in Fig. 5.5. Here
vcoll = 3.5mm/s.

provided by the vertical IR beam. In this way the resulting double well potential obtained
is imbalanced and all the atoms occupy a single well of the potential but its position is
superimposed to that of the corresponding well in the previous configuration (left column of
Fig. 5.6). At this point, we follow the same procedure as in the collision measurement. Using
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5.2. Results of the collisions

the same vertical trapping potential and the same ∆T , the velocity provided to each droplet
will be the same as in the collision (central and right columns of Fig. 5.6).
We measure the position of each droplet as a function of time, as reported, for example, in

Figure 5.6: a) experimental sequence that we use to study the collision between two droplets.
In b) and c) we load the un-balanced double well potential with the BEC that occupies
respectively the left and the right well. Changing the barrier high we move the BEC until
it is in the same position of the left or right minimum of the potential used in the collision
experiment.

Fig. 5.7. Here, t= 0 corresponds to the moment in which the vertical trap is switched off.
We evaluate the distance d(t) = xR(t) − xL(t) (L for the left-side droplet, R for the right
one) and we estimate the value of the relative velocity vrel by performing a linear fit to the
data. A typical measurement of the relative velocity between the two clouds is reported in
Fig. 5.7. In the specific case of Fig. 5.7, ∆T =1ms and the measured vrel = 2.8µm/ms. The
red dots of panel a) of both Fig. 5.4 and 5.5 represent the experimental distance measured
using the technique described above.
The relative velocity we can access ranges from 0.5 to 6 µm/ms, changing ∆T between 0.4
and 1.5ms. The velocity acquired depends not only on ∆T but also on the barrier height:
increasing it corresponds to placing the droplets further away from the center of the harmonic
potential, so that the force provided by the potential is larger.
We calibrate the dependence of the relative velocity on the intensity of the green barrier
and on ∆T . Before switching off the barrier, each droplet is displaced by a distance x0
from the minimum of the potential provided by the vertical IR beam. Assuming that x0 is
small compared to the waist of the IR beam, we can assume that the potential is harmonic:
VIR(x) = 1

2mω
2x2. This approximation is expected to be valid, since typically x0 ' 5−10µm,

while the waist of the IR beam is ' 40µm. The motion of each droplet inside this potential
is then described by the following equation of motion: x(t) = x0cos(ωt) for the position and
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5.2. Results of the collisions

Figure 5.7: An example of measurement of the relative velocity using ∆T = 1ms. The fitted
velocity is 2.8µm/ms

x′(t) = −x0ωsin(ωt) for the velocity, where ω is the harmonic trapping frequency associated to
the vertical IR beam along x in absence of the green repulsive barrier. As long as ∆tω << 1,
the velocity of each droplet is v = x0ω

2∆T .
The relative velocity between the two droplets is then given by:

vrel = 2x0ω
2∆T (5.3)

It scales linearly with ∆T and x0 while it scales quadratically with the trapping frequency
ω. In the experiment we fix the value of ω = 2π × 93(3)Hz and we change ∆T and x0 to
tune the relative velocity. The starting position can be tuned via the barrier height g. The
double-well potential along the x direction can be written as:

V (x, g) = −VIRe−2x2/w2
IR + ge−2x2/w2

green (5.4)

where VIR is the potential depth provided by the IR vertical beam, that we keep constant
in the experiment. With a bit of algebra it is possible to calculate the positions of the two
potential minima:

x0 = ±

√√√√1
2ln( gw2

IR

VIRw2
green

)
w2
greenw

2
IR

w2
IR − w2

green

(5.5)

That can be simplified as:
x0 = ±α

√
ln(βg) (5.6)

where the two constants α and β only depend on the waists of the beams and on the intensity
of the IR beam. In the last equation, g is in arbitrary units since we can include all the physical
constants in the definition of β. For simplicity we use the analog signal in the feedback loop
for the intensity stabilization of the green light as a convenient unit to measure the barrier
height. In Fig. 5.8 we report the experimental measurement of the initial distance between
the two clouds 2x0 as a function of the barrier height. The blue curve is the result of a fit to
the data using Eq. 5.6. We observe that the experimental data are well reproduced by the
model introduced above.
We can now study the dependence of the relative velocity on ∆T . In Fig. 5.9, I report

the experimental data for the measured relative velocities obtained with different ∆T . The
three colors correspond to three different values of the barrier height. The lines represent the
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5.2. Results of the collisions

Figure 5.8: Red points: experimental measurement of the separation between the two droplets
as a function of the barrier height keeping the harmonic confinement provided by the vertical
IR beam constant.

corresponding expected velocities evaluated with Eq. 5.3 where x0 is calculated using the
fitted parameters of Fig. 5.8. The error bars in Fig.5.9 are the statistical uncertainties coming
from different repetitions of the same measurement. Also in this case the experimental data
well reproduces the model discussed above, indicating that we have a good control on the
imprinted relative velocity.
At this point we have two different estimations of the relative velocity. The first one is

Figure 5.9: Calibration of the relative velocity as a function of ∆T . The three different
data set are measured for different values of the barrier height. The lines are the calculated
velocities between the two clouds coming from the simple harmonic oscillator model discussed
in the text.

provided by vcoll, obtained from the first ms of the collisional dynamics and vrel measured
with the technique explained here. The two measurements do not always give the same
results. The discrepancy between these two measurements could be generated by several
effects such as a drift between the two laser beams forming the double-well potentials. Since
we do not observe any systematic deviation between the two measurements which could be
attributed to a deviation in the droplets trajectory due to the presence of the other during
the collision measurement, we conclude that vcoll provides a better estimation for the actual
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5.2. Results of the collisions

velocity during the collision. We use the measured vrel to estimate the uncertainty on vcoll.
Defining the velocity discrepancy as ∆v = (vcoll − vkick)/vcoll, we attribute an error to the
measurement of vcoll by fitting with a gaussian distribution the histogram of ∆v and using
as estimator of the error of vcoll the variance of this gaussian. The result does not depend on
the binning of ∆v and it is of the order of 20% of vcoll. The histogram of the relative velocity
as well as the related fit is reported in Fig. 5.10.

Figure 5.10: Histogram of ∆T and the relative gaussian fit from which we estimate the
uncertainty on vcoll.

5.2.3 Critical velocity

The results of Section 5.2.1 suggest the existence of a critical velocity separating the two
observed regimes: merging for v < vC and separation for v > vC . In order to detect the
position of the threshold and maybe its dependence on the relevant energies scales of the
system, we take several datasets as a function of the velocity vcoll and of the collision atom
number N . Note that, due to strong three-body losses in the system, we can tune the number
of atoms at the collision time, Ncoll. For example, in order to have the same Ncoll in spite
of the different v, the distance at t = 0 can be increased proportionally to vcoll. In order to
explore a broader range of atom numbers, we can also tune an additional parameter, i.e., the
magnetic field B. As a matter of fact, if we consider the rescaled units introduced in [5]:

τ = ~
3
2

√
g11 +√g22

|δg|n0
1
√
g11

(5.7)

ξ =
√

~τ
m

(5.8)

and
n0

1 = 25π
1024

(a12 +√a11a22)2

a11a22
√
a11(√a22 +√a11)5 (5.9)

that is the equilibrium density of atoms in the state 1, we can define a rescaled atom number
as:

Ñ = N

n0
1(1 +

√
g11/g22)ξ3 (5.10)

which depends on the magnetic field via the intra and inter species coupling constants gij .
The parameter Ñ is the one that defines the shape of the colliding wavefunction and for this
reason it is the parameter that actually distinguishes the compressible regime, characterized
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5.3. Discussion of the results and comparison with theory

by a gaussian-like density profile, from the incompressible one where the system displays
instead a clear flat-top profile. For this reason we decide to describe the outcomes of the
collision as a function of the adimensional units. The velocity between the clouds is then
rescaled as:

ṽ = v
τ

ξ
(5.11)

The experimental results for different values of the droplet velocity ṽ, defined as ṽcoll/2e, and
the total atom number at the collision Ñ is reported in Fig. 5.11. The blue dots represent
the separation regime, according to the definition reported in Section 5.2.1, while the red
ones represent the occurrence of the merging. We can clearly observe the existence of a
critical velocity vC that in general depends on the atom number. In particular for small
atom numbers vC is an increasing function of the atom number. This behavior continues up
to Ñ ' 130, where this dependence seems to be inverted.
The error bars are calculated as follows. For the measurement of the atom number Ñ the

Figure 5.11: Collision regimes as a function of the rescaled velocity ṽ and atom number Ñ .
Reds corresponds to merging, blue to separation.

error budget takes into account the systemic error provided by the definition of Ncoll, the
calibration of the atom number with the detuned repumper and finally of the an uncertainty
on the magnetic field of about 14mG. For the velocity instead, we consider the systematic
error due to the difference between vcoll and vrel, already discussed in Section 5.2.2 and the
uncertainty on magnetic field which enters in the definition of ṽ.

5.3 Discussion of the results and comparison with theory
In this final section, we will discuss the comparison between the experimental data and the
theory. I would like to stress that all these considerations are preliminary and under investi-
gation.
Despite this, the change in the dependence of ṽC on Ñ we observed is very clear and it has
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5.3. Discussion of the results and comparison with theory

interesting implications that I would like to discuss. I will first try to justify the observed
behavior using simple energetic considerations and then I will introduce the ongoing com-
parison with numerical simulations. Finally I will mention one effect that could affect the
collisional dynamics and that will probably require further consideration.

5.3.1 Energetic considerations

In this section I will present a very simple and intuitive picture to justify the observed behavior
of ṽC(Ñ) in Fig. 5.11, based on energetic considerations.
Let us first discuss the regime of large atom number. In this limit, the droplet reaches
its saturation density and then it develops an incompressible bulk with uniform density
distinguished from a surface where the density decreases to zero (see sketch in Fig. 5.11). I
will consider all the quantities in adimensional unities but, for simplicity, I will write them
without the ∼. The initial energy of the two separated colliding droplets is provided by the
binding energy plus the kinetic energy relative to their motions

Ein = 2Ebind(N/2) + EKin (5.12)

where N is the total atom number and Ebind the binding energy introduced in Section 2.3.
If the two droplets merge in a single one, we expect that the final energy will be given by the
binding energy of the merged droplet plus some excitation energy. Since we are considering
incompressible droplets, we suppose that the excitation of the droplet will correspond to some
surface modes, whose energy will depend on the surface energy ES (see Section 2.2.4). We
thus have:

Efin = Ebind(N) + Eexc(ES) (5.13)
As already introduced in Section 2.2.3, we can decompose the binding energy according to
the liquid-drop model: Ebind(N) = EBN + ESN

2/3 + ECN
1/3. Neglecting the curvature

term, that is negligible in the limit of large N , and by imposing energy conservation we get:

2EB(N/2) + 2ES(N/2)2/3 + EKin = EB(N) + ES(N)2/3 + Eexc(ES) (5.14)

The contribution of the bulk energy is cancelled because EB(N) = 2EB(N/2). We can then
conclude that the relevant energy scales in the large N regime are just the kinetic energy and
the surface energy. We can thus use the same Weber number criterion already introduced in
the context of classical drops (see Section 2.5) to predict the critical condition for merging.
Imposing Ekin ' ESN2/3, we get the following scaling of the critical velocity with N:

vc(N) ∝ N−1/6 (5.15)

This scaling is represented by the dotted line in Fig 5.11.
Concerning, instead, the case of small N , energetic considerations are a bit more difficult.
Indeed, in this regime, the liquid-drop model is no longer valid and the excitation spectrum
of the droplet is not trivial. In order to justify the increasing trend of vC with Ñ , we can
first consider the simple case of the scattering between a single atom and the droplet. In
this picture, due to its negative chemical potential, the droplet plays the role of an attractive
potential well for the incoming atom. The probability that it gets trapped in the self-bound
state depends on its velocity. Increasing the atom number inside the droplet corresponds to
a deeper potential well, so that the atom needs a larger velocity to be able to escape from
the droplet. More quantitatively, we can say that in this regime the relevant energy scales
is the total binding energy. We can thus guess that the critical velocity can be obtained by
imposing Ekin ' Ebind which means

vc(N) =

√
2Ebind(N)

N
(5.16)
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which is represented by the dashed line in Fig. 5.11.
Although the discussion reported here represents a very simplified model of the complex
collisional dynamics, we observe that these energetic considerations reproduce pretty well
the experimental data of Fig. 5.11, meaning that at least the qualitative outcomes of binary
collisions are mainly driven by these energy scales.

5.3.2 Numerical simulations

In order to better understand the complex phenomenon of the collision between two quantum
droplets, we perform dynamical simulations of the system in collaboration with the theoretical
group of Trento (Dr. A. Gallemì, Dr. A. Recati). These simulations have been performed

Figure 5.12: Merging fraction in the phase diagram ṽ , Ñ

using the a-dimensional modified Gross-Pitaevski equation from [5]:

i
∂

∂t
φ = (−1

2∇
2 − 3|φ|2 + 5

2 |φ|
3)φ (5.17)

We prepare two quantum droplets with Ñ/2 atoms each, separated by a certain distance d̃ to
ensure that there is no overlapping between their wavefunction. We provide them a certain
velocity ṽ, so that they move towards each other. We let them evolve according to Eq. 5.17
and then we observe the result of the collision. The velocity is inserted as a phase kx with
k such that 1/2mNv2 = ~2k2/2m. In the rescaled units of Petrov (using the definition of τ
and ξ of Eqs. 5.7 and 5.8) we have kx = ṽx̃. The initial wave-function is thus provided by:

φ(x̃, ỹ, z̃) = φ0(Ñ2 , x̃− d̃/2, ỹ, z̃)e
iṽx̃ + φ0(Ñ2 , x̃+ d̃/2, ỹ, z̃)e−iṽx̃ (5.18)

where φ0( Ñ2 ) is the ground state wave-function for a quantum droplet with Ñ/2 atoms. In
order to distinguish between the merging and separation regimes, we compute the fraction
of atoms that remain in the center of mass of the collision, that we identify as the ”merged
fraction”. A color plot of the merged fraction is reported in Fig. 5.12.
The theoretical phase diagram clearly shows two different scaling of ṽc, analogously to the ex-
perimental results, but the crossing over between the compressible and incompressible regime
occurs at larger atoms number Ñ ' 200. Trying to deduce an a-priori criterion for the onset
of the incompressible regime, we could look at the dependence of the chemical potential on
the atom number Ñ . In the incompressible regime one indeed expects that the chemical
potential scales as Ñ−1/3. According to the liquid drop model discussed in Chapter 2, this
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condition is fulfilled for atom numbers larger than Ñ ' 200, in good agreement with the
theoretical results of Fig. 5.12. In this limit indeed the energy contribution provided by the
curvature term ECÑ

1/3 becomes negligible with respect to the energy hosted by the surface
and the bulk of the droplet.
Interestingly, in this limit quantum droplets behave analogously to a classical liquid and the
Gross-Pitaevskii equation fully recovers the hydrodynamic evolution observed in the colli-
sion between classical drops. In the simulations we indeed observe the same stages of the
collisional dynamics as observed for example in [59] (see Fig. 5.13): the formation of a neck
connecting the two drops, the stretching in the direction perpendicular to the collision axis
and finally depending on whether the surface tension is large enough to balance the velocity
flux created in this stage or not, merging or separation occur.
Differently from simulations, experimental data display a maximum of ṽc around Ñ '130.

Figure 5.13: Above some snapshoots of a simulations where the two colliding drops pass
through each other. As it is possible to see, the kinetic energy flow is not compensated by
the surface tension and for this reason appears an hole in the density profile. As a consequence
the merging is prevented. Oppositely, below the kinetic flow is compensated by the surface
tension and thus no toroidal profile appears in the dynamics , i.e. the two drops merge.

In order to understand this discrepancy we need to characterize the effect of the three body
losses . We then inserted in the GPE of Eq. 5.17 a dispersive term provided by −K|φ|4.
We choose the value of K that better reproduces the experimental decay. This is certainly
an approximation for the actual loss dynamics described in Chapter 4, where different loss
channels for the two species were identified, but it could help us to understand the effect of
losses during the collision.
We analyzed the result of the simulations in the presence of three-body recombinations

with the same qualitative criterion used in the experiment to distinguish between merging
and separation. The corresponding results are reported in Fig. 5.14, in comparison with the
experimental ones. We observe that the addition of three-body losses in the simulation is
sufficient to shift the onset of the incompressible regime to values of Ñ comparable to the
experimental one and the overall behavior of ṽc is in this case in very good agreement with
the experimental results.
Although this first preliminary comparison between the experiment and the numerical simu-
lation seems to confirm the qualitative picture obtained with the energetic consideration of
the previous section, a more detailed analysis is still under way. The effect of losses, for ex-
ample, requires some careful considerations. We are currently performing more quantitative
estimations of their effect in order to exclude that the decrease of ṽc at large atom number is
justified by an increase in the three-body losses corresponding to the increased density and
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Figure 5.14: Comparison between experimental data and numerical simulations including
three-body recombination. The filled blue or red points represent the experimental data,
while the empty ones are the numerical simulation.

not to the actual onset of the incompressible regime. In addition to this, we would like to
introduce in the simulations the quenched preparation of the droplets typical of our experi-
mental procedure, in order to consider the possible effects of the collective excitations already
present in the two colliding droplets.
A more refined comparison between experiment and simulations along the direction men-
tioned here should allow us to provide conclusive results about the explored dynamical prop-
erties of the droplets and hopefully to report a first evidence of a liquid-like behavior.

5.3.3 Effect of the impact parameter

In the model presented in Sect. 5.1.3 and in 5.2.2, to characterize the technique used to
imprint a relative and controllable velocity to the droplets, we neglected any possible mis-
alignment of the trapping beams. Here we will evaluate the effect on the impact parameter b
of a finite angle α different from π/2 between the direction of the imaging and the direction
of the tight confinement in the elliptical trap provided by the vertical IR beam. We will also
take into account the effect of a finite displacement of the center of the trap provided by the
latter beam.
We will make use of two different reference frames. The first one has as main axes the radial
beam and the imaging beam, we call these two direction as x and y respectively. The second
one is provided by the two main axes of the vertical IR beam, we will call these x1 and x2.
A sketch of the system is reported in Fig. 5.15.
The two systems of coordinates are related by:

x1 = xcos(α)− ysin(α) +A (5.19)

x2 = xsin(α) + ycos(α) +B (5.20)
where A and B represent the displacement between the centers of the two reference systems.
In the limit of small displacement of the droplet from the center of the trap, we can approx-
imate the potential provided by the vertical IR beam as:

V (x1, x2) = −V0 + 4π2 1
2mx

2
1ν

2
1 + 4π2 1

2mx
2
2ν

2
2 (5.21)
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Figure 5.15: Sketched of the geometry of the system, we also report the two different reference
systems introduced in the text.

where ν1 and ν2 are the trapping frequencies along the two axes of the trap. They are related
by ν1/ν2 = w2/w1 ' 3 since the two waists of the IR beam are 39µm and 105µm respectively.
Substituting Eq. 5.19 and 5.20 into Eq. 5.21, we can calculate the optical potential in the x-y
coordinates, which are those used to described droplet dynamics. In the limit of ∆T � 1/ν1,
we can calculate the relative velocity along x and y. Supposing that the two droplets are
located at t=0 at (±x0, 0), we get

vRx = Fx(x0, 0)
m

∆T − Fx(−x0, 0)
m

∆T = ∆T (2ν2
1x0cos2(α) + 2ν2

2x0sin2(α)) (5.22)

vRy = Fy(x0, 0)
m

∆T − Fy(−x0, 0)
m

∆T = 2∆T cos(α)sin(α)(ν2
1 − ν2

2) (5.23)

We notice that the displacement between the center of the two reference systems (A,B) does
not modify the relative velocity. From an auxiliary vertical imaging we can set an upper-
bound of 10 deg to the angle α. For this reason and considering the ratio between the two
waists, we can approximate in Eq. 5.22 cos2(α) ' 1 and ν2

2/ν
2
1sin2(α) ' 0, recovering Eq.5.3

of the ideal model.
Using the same approximation in Eq. 5.23 we can estimate the distance along y between the
two droplets at the collision, which corresponds to:

dy = sin(2α)x0
ν2

1 − ν2
2

ν2
1

(5.24)

Considering 10 deg and a value of x0 between 5−7.5µm, we get dy in the range of 1.5−2.3µm.
To estimate the impact parameter, we need to compare dy with the droplet diameter D.
Defining a proper value of D is not trivial because it changes in time and it also depends on
the specific value of B. We can anyway obtain an upper bound to the impact parameter b,
defined as in the classical drops framework, i.e., b = dy/D, by considering an averaged diam-
eter of 6µm, which correspond to a b ranging from 0.2 to 0.35. As reported in Section 2.5 an
impact parameter different from zero should increases the critical velocity. Despite this the
system still remains in the crossing over between coalescence and near head-on separation.
The effect on the critical velocity should be anyway of the order of 10% which is anyway
smaller then the error of measurement of vC we perform.
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Chapter 6

Conclusions and future perspectives

In this thesis I have described the experimental realization and characterization of a quan-
tum droplet composed by a mixture of bosonic atoms. Thanks to an innovative technique
to compensate for gravity, which makes use of a time-averaged optical potential, we were
able to observe the formation of this new self-bound state in free space. This allowed to
perform a direct comparison between our experimental data and Petrov’s theory, which was
developed in homogeneous free space. In particular, we verified the existence of this state in
the predicted region of inter and intra-species interactions and we found a very good agree-
ment with theoretical predictions. This provides the first experimental confirmation of the
theoretical model proposed in [5], proving that the attractive mixture is stabilized by the
effect of quantum fluctuations.
Despite being extremely dilute, for large atom numbers, quantum droplets enter a liquid-like
incompressible regime, highlighted by the formation of a bulk with uniform density. In the
second part of this thesis we explored the crossover between compressible and incompressible
regimes by observing the outcomes of the collision between two quantum droplets. For this
purpose we implemented an experimental sequence aimed at creating two separate quantum
droplets and at imprinting a relative velocity between them. The experimental results sug-
gest the existence of a critical velocity vc below which the colliding drops merge into a single
one, while for larger velocities they separate after the collision. This critical threshold in
general depends on the total atom number N and it was found to be an increasing function
of N in the compressible regime, while it decreases with N in the opposite incompressible
limit. Observing the two different scalings of the critical velocity with the atom number and
comparing them with the results of simple energetic considerations and of accurate numeri-
cal simulations, we were able to get an insight on the relevant energy scales of the quantum
droplets and to obtain the first evidence of their liquid-like behavior in the large N regime.
A detailed analysis of these collision measurements is still ongoing and a precise comparison
with theory will allow us in the near future to get conclusive results about the explored dy-
namical properties.
Since the investigation of quantum droplets is a very recent topic in the ultracold atoms
community, the experimental observation of several predicted properties is still missing. One
of the most interesting and peculiar among them is the so-called self-evaporation. This exotic
phenomenon is related to a property of the excitation spectrum of the droplet in the small
atom number regime, where the discrete collective excitations are much higher in energy than
the particle emission threshold, so that the droplet is expected to automatically evaporate
excitations and cool down to zero temperature. The observation of such phenomenon could
pave the way to the use of quantum droplets as coolant of other atomic systems like, for ex-
ample, a fermionic impurity [102]. During my thesis, we tried to study collective oscillations
of a quantum droplet to explore its excitation spectrum. The main limitation in our system
is related to three-body recombinations, which reduce the lifetime of the droplet before it
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undergoes a liquid-to-gas transition when its critical atom number is reached. Due to this
effect, the available time window is too short to observe a complete collective excitation of
the droplet, as shown at the end of Chapter 4. Other mixtures, like the heteronuclear K-Na
mixture studied in [86], could be suitable candidates for the study of such phenomena, due
to possibly reduced three-body loss rates. Note that in this case the compensation of gravity
would be challenging because it would require to use laser light at a magic wavelength or to
implement combined optical and magnetic gradients.
It would also be interesting to investigate the effect of a Rabi coupling between the two
components of the mixture. It has been theoretically predicted that the coupling affects the
properties of the system and that there exists an energetic instability above a critical Rabi
frequency that provokes the evaporation of the droplet [103]. This state has not been ob-
served so far and it can be easily accessed with our setup.
Another promising perspective of our work is to study the formation of quantum droplets
in reduced dimensionality. Several theoretical studies have been carried out about this topic
discussing the condition for the droplet formation in a pure 1D or 2D systems [104, 105]. In
reduced dimensionality the system could have a longer lifetimes, thanks to the reduction of
the three-body correlation g3 in 2D or 1D with respect to the 3D case [100].
An open question regarding the physics of quantum droplets concerns their superfluid prop-
erties. Since it is composed by a mixture of BECs, one would guess that the quantum droplet
maintains its superfluid nature. Nevertheless the problem is still challenging from both a the-
oretical and an experimental point of view, because of the finite size of the system. Several
techniques, already applied to BECs, could be used to probe the superfluid nature of quan-
tum droplets, like stirring [106] and vortex enucleation [107]. The difficulty in the application
of such techniques is related to the very small size of the droplets, which is of the order of
1-3µm. Another possibility to study the superfluid properties is provided by investigation of
the early stages of the merging between two droplets. The dynamics of the merging indeed
depends on the viscosity of the bulk and it is thus speeded up in the case of superfluid bulks,
as already observed with helium clusters [72]. In addition to this, the collisional dynamics
between two droplets could be affected by very interesting phenomena related to the inter-
play of two superfluid components, such as the Andreev-Bashkin effect [108, 109], which were
theoretically predicted but so far never tested in experiments.
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Chapter 7

Sensitivity function of an atomic
interferometer

We are currently working on the realization of an optical lattice with large effective spacing.
We can use this system for several proposes, ranging from atom interferometry to the gener-
ation of non-classical states.
A fundamental question is to understand how the environmental noise affects the performance
of the interferometer. Introducing the so-called sensitivity function g(t) we will estimate the
effect of the noise on the system caused by vibrations and frequencies fluctuations of the
trapping lasers.
In the first section I will introduce the experimental schemes that we want to implement in
order to create non classical states and to realize a trapped atom interferometer. In the sec-
ond section, I will define g(t) and calculate if for both the experiment considered. Finally, in
the last parts of the Chapter, I will apply these functions to some real noise spectral function
discussing the sensitivity of our setup.

7.1 Trapped atom interferometry
In this section I will shortly discuss the theory of a BEC in a double well potential.

7.1.1 Two mode approximation

It is well known that a quantum harmonic oscillator has discrete eigenvalues equally separated:
En = ~ω(n+ 1

2). The effect of rising up a barrier is to reduce the energy difference between
the ground state and the first excited one.The two-mode approximation [110, 111] consists
in supposing that all other levels will have a very low population with respect to the two
low-lying ones. This is valid if all the energy scales of the system (temperature, interaction
energy, tunneling energy) are much lower than the separation from the other excited levels,
separation which is of the order of the harmonic oscillator energy for the original trap. Using
this approximation it is possible to write the many body Hamiltonian:

Ĥ =
∫
dxΨ̂†(x)(−~2∇2

2m + Vext(x))Ψ̂(x) + 1
2

∫ ∫
dxdx′Ψ̂†(x)Ψ̂†(x′)Vint(x, x′)Ψ̂(x)Ψ̂(x′)

(7.1)
assuming that the field operator Ψ̂ is restricted to work just on the first and the second energy
levels, i.e.:

Ψ̂ = Ψgâg + Ψeâe (7.2)

where Ψg,e are the wave function of the ground state and of the excited state, âg,e are the
destruction operator of a particle in the ground state or in the first excited one and g = 4π~2a

m

76



7.1. Trapped atom interferometry

where a in this case is the scattering length describing the interaction between two atoms. A
picture of the double well potential and of its ground state and first excite one is reported in
Fig. 7.1.
A more suitable base to describe the system is obtained using the wave function localized

Figure 7.1: Double well potential and its ground state and first excited one. The energy
difference between this two levels is the one particle tunneling J.

in the right or left well:
Ψr,l = 1√

2
(Ψg ±Ψe) (7.3)

âr,l = 1√
2

(âg ± âe) (7.4)

Using the two mode approximation in the localized basis the many body Hamiltonian in Eq.
7.1 assumes the form:

Ĥ = ∆Ĵz −KĴx + UĴ2
z (7.5)

where ∆ = ER − EL is the potential imbalance between the right and left well, K =
−2
∫

ΨR(x)(− ~2

2m∇
2 + V (x))ΨL(x)dx is called the tunneling term and physically represents

the energy gain that the system acquires if an atom hops from one well to the other. Finally
U = g

∫
|Ψl,r(x)|4dx is the interaction energy. The operators in the previous Hamiltonian are

obtained as a combination of the creation and annihilation operators:

Ĵz = â†LâL − â
†
RâR

2 (7.6)

Ĵx = â†LâR + â†RâL
2 (7.7)

Ĵy = â†LâR − â
†
RâL

2i (7.8)

this three operators represents the group SU2 (or SO3) since i[Ĵi, Ĵj ] = εijkĴk.

7.1.1.1 Generation of non-classical states - BEC splitter

Several protocols for the generation of non-classical states use the Hamiltonian reported in Eq.
7.5. Such schemes are indeed very simple: it is possible to generate non-classical states such
as squeezed stated by splitting a BEC with positive or negative non linearities [112, 113, 114].
Some of them has been also realized experimentally, making use of internal degrees of freedom
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7.1. Trapped atom interferometry

of the BEC [115]. For this reason the first sequence that we will consider is provided by the
simple splitting of the BEC, that occurs in a time T1 followed by a waiting time T2 that
can be used to study the robustness of the non-classical state. Since we are interested in
the evaluation of the environmental noise that affects such scheme, we will consider a non-
interacting system loaded in an harmonic trap and we will study the phase fluctuations after
cutting it in two parts with a barrier. As the barrier height increases, the tunneling between
the two wells goes to zero. We will consider for simplicity a tunneling K(t) that goes linearly
to zero in a time T1 starting from a value that is equal to the trapping frequency of the
initial harmonic trap K, i.e. K(t) = K0(1 − t/T1). We finish this sequence by measuring
the relative phase between the two clouds letting the system expand and measuring the
interference pattern created by the two BECs.

7.1.1.2 Ramsey atom interferometer

Another promising application of a BEC in a double well potential is the realization of a
trapped atom interferometer. In this sense a possible scheme is a Ramsey type interferome-
ter. The latter is composed by a beam splitter (BS), followed by an interrogation time Tint
where the system acquire an interferometric phase and another BS. In the context of trapped
atoms, the BS is realized in the following way [97]. We load the BEC in one well of the
double well potential. If the tunneling is not negligible the atoms starts to tunnel to the
neighboring well. When the population imbalance between the two wells goes to zero, the
tunneling is brutally reduce to zero so that he Rabi oscillation is stopped. Now, if the system
is influenced by an external force, the phase of the two clouds evolves differently and it can
be measured from the population imbalance after a second BS. The phase acquired during
equals to ∆Φ = mLaTint/~ where L is the separation between the two wells, ma the linear
external force and Tint the interrogation time.

7.1.2 Breaking down of the adiabaticity

Both the sequences described before are characterized by a change in the Hamiltonian. We
need to be sure that this modification does not introduce any excitations in the system, i.e.
we require that the Hamiltonian changes slowly enougth.
In quantum mechanics an adiabatic process is characterized by a gradual modification in the
Hamiltonian of a system from Hi to Hf in such a way that if the system occupies the n-th
eigenstate of Hi, it will occupy the n-th eigenstate of Hf . This is known as adiabatic theorem
and a demonstration of this results can be found in [116]. If the system is initially in the
ground state and we brutally change its Hamiltonian of the system, we easily populate the
excited state.
The breaking down of the adiabaticity in a quantum system is associated to the reduction
of the energy gap between different states. Consider for instance one of the experimental
proceedure under study: the splitting of the BEC. Suppose that at the begin the BEC is
in the ground state of the harmonic potential. The Hamiltonian is symmetric at every time
against an inversion respect to the barrier, for this reason I will only take in account even
eigenfunctions. Solving the Schodinger equation it is possible to study the energy difference
between the ground state and the first symmetric excited state. The result is plotted in Fig.
7.2 for a starting tunneling rate K0 = 2π150.
As it is possible to see, the energy gap present a minimum for a given value of the barrier

height dEmin. By a naively point of view one can expect to break down the adiabaticity of
the system ramping up the barrier in a time smaller than h

dEmin
. For the value K0 chosen we

get Tadiabaticy = 5.3 ms.
To check this value, we perform a numerical simulation. We prepare the system in the ground
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7.1. Trapped atom interferometry

Figure 7.2: Energy difference in Hz between the ground state and the first symmetric excited
state as a function of the barrier hight in nK.

state of an harmonic trap with trapping frequency given by K0, then we ramp up the barrier
to a residual tunneling of 5Hz. For some sampling time ts we evaluate the probability of the
system to be in the ground state during the splitting time. We report in Fig. 7.3 the results
for different rising times of the barrier.
As it is possible to see, the naive explanation given before seems to work: using ramping

Figure 7.3: Probability of find the state in the ground state, red curve, or in the first excited
one, blu curve for a rising time of: a) 1ms b) 2ms c) 5ms and d) 10ms

time larger than Tadiabaticy the system remains in the ground state of the system for every
time. For shorter time the system get excited: for instance in the case of a ramping time of
1ms we have ' 0.1 of probability to excite atoms above the first excited states.
This analysis sets a lower bound to the splitting time T1 that corresponds to 10ms for initial
trapping frequency of 150Hz in a double well of spacing 5 µm.
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7.2. Sensitivity Function and weight function

7.2 Sensitivity Function and weight function
In this section we will introduce the so called sensitivity function and we will discuss how it
can be use to evaluate the effect of an environmental noise in a general measurement scheme.
After that, we will discuss in detail the two sequences introduced before, i.e. the BEC splitter
and the Ramsey interferometer.

7.2.1 Power spectral density

A random process x(t) is characterized by several statistical parameter. The most important
are the average 〈x〉 and the variance σ2

x = 〈x2〉 − 〈x〉2 where the average here is performed
over all the possible realization of the random variable. If the process is ergodic the ensemble
average can be substituted with a temporal one. Supposing that the mean value of x(t) is
zero, we can calculate the variance of an ergodic process as

σ2
x = lim

T→∞

1
2T

∫ T

−T
x(t)2dt = lim

T−∞

1
2T

∫ T

−T
dt

∫ ∞
−∞

Fx(ω)eiωtdω
∫ ∞
−∞

Fx(ω′)eiω′tdω′ (7.9)

where Fx(ω) is the Fourier transform of the signal x(t). Exchanging the integration order
and using the property of the Dirac’s Delta it is possible to demonstrate that

σ2
x = 1

2

∫ ∞
−∞

dω
1
T
|Fx(ω)|2 (7.10)

The power spectral density PSD Sx(ω) is define as

Sx(ω) = lim
T→∞

|Fx(ω)|2
T

(7.11)

we can calculate the variance of the random process x(t) using just the positive frequencies,
that have physical meaning and can be measured. Using the definition in Eq. 7.11 in Eq.
7.10 we obtain:

σ2
x =

∫ ∞
0

Sx(ω)dω (7.12)

The previous calculation represents an ideal situation: in a more realistic case the average
of an observable can be measured in a finite time. How this fact modifies the previous
relation? A k-sim realization of the random process x(t) is defined as the measure of x(t)
from a beginning time tk for a time τk. In this case we can define a new random process y(t)
satisfying:

y(t) =
∫ ∞
−∞

dt′h(tk − t′)x(t′) (7.13)

where h(t′ − tk) = 1 if tk ≤ t′ ≤ tk + τk and 0 otherwise. This new random process has by
definition the same statistical proprieties of x(t) but is defined in an infinity time domain, so
we can use the result obtained before.

σ2
x,k = σ2

y =
∫ ∞

0
dωSy(ω) (7.14)

The PSD of the random process y(tk−t) can be written as a function of the PSD of x(t) using
the convolution theorem. In fact y(t) is nothing else the convolution of x(t) with h(tk − t) so
Fy(ω) is the product of Fx(ω) and Fh(ω), we get finally

σ2
x,k =

∫ ∞
0

dωSx(ω)H(ω) (7.15)

where H(ω) = |Fh(ω)|2 is called transfer function. This function takes in account of the
finite duration of the measurement. In a more suitable way, as we will see, it can contain
information about the sensitivity of an instrument.
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7.2. Sensitivity Function and weight function

7.2.2 Sensitivity Function

The sensitivity function g(t) has been used for example to estimate the sensitivity of a fre
fallinging Mach-Zehnder atom interferometer [117]. The interferometric phase is measured
from the phase or in general from an observable η. Suppose that during the interferometric
sequence a perturbation occurs at time t. We will consider a perturbation provided by a kick
φĴz that physically represents the effect of some kind of noise creating a potential imbalance
between the two wells δ(t). These two random variable are related by dφ(t) = δ(t)dt/~ The
variable φ related to the noise affecting the system, has not to be confused with the phase
Φ that is the quantity that is measured by the interferometer. If the unperturbed sequence
gives as result η0, the effect of the noise kick is to modifies it to η(t). We can define the
sensitivity function g(t) as:

gη(t) = lim
φ→0

η(t)− η0
φ

(7.16)

It follows from the definition of sensitivity function that:

δη =
∫ ∞
−∞

gη(t)dφ(t) (7.17)

and thus
δη =

∫ ∞
−∞

g(t)δ(t)dt (7.18)

Expression in Eq. 7.18 is similar to the one in Eq. 7.13 where the function h(t − tk) is
replaced by g(t). For this reason we can use the results obtained before to get the variance
of the measured quantity η:

σ2
η =

∫ ∞
0

dωSδ(ω)G(ω)dω (7.19)

where G(ω) = |Fg(ω)|2 is called the weight function related to the variable η. Note that in
the BEC splitter and in the Ramsey interferometer the observables η we are involved in the
measurements are the phase Φ and the population imbalance z rispectly.
By an experimental point of view, is difficult to access to the random variable δ(t). Several
physical effects create a potential imbalance in a double well potential ranging from the vi-
brational motion of the reflecting mirrors to the frequency fluctuations of the laser sources.
For almost every noise source is possible to measure the PSD and to determinate how it
affects the stability of the double well potential.

7.2.3 Sensitivity function of a BEC splitter

We will now discuss the first measure scheme considered. Tunneling as function of time is
given by:

K(t) =
{
K0(1− t

T1
) 0 ≤ t ≤ T1

0 T1 ≤ t ≤ T1 + T2
(7.20)

The initial state vector is represented by (1,0,0) in the Bloch sphere since both the initial
phase and imbalance are null. We will start considering the time during which the barrier
is raised up. The evolution is basically divided in three parts: during the first, that goes
from t = 0 to t = t∗ when the perturbation occurs, the Hamiltonian is just provided by the
tunneling term. Since the starting state vector is an eigenstate of the Hamiltonian there is
no temporal evolution. In the second part t∗ ≤ t ≤ t∗ + dt, during which the perturbation
occurs, both Jx and Jz determine the dynamics of the system; in the last part from t∗ to
the end of the sequence, again the Hamiltonian is again proportional to Jx. If the duration
of the perturbation dt is infinitesimal, we can neglect the commutator between the different
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7.2. Sensitivity Function and weight function

terms in the Hamiltonian that scale as dt2 and we can evaluate the state at the end of the
sequence as:

|ψfinal〉 =

1 0 0
0 cos(θ2) sin(θ2)
0 −sin(θ2) cos(θ2)


cos(φ) −sin(φ) 0
sin(φ) cos(φ) 0

0 0 1


1 0 0

0 cos(θ1) sin(θ1)
0 −sin(θ1) cos(θ1)


1

0
0


(7.21)

where θ1 = 2
∫ t∗

0 dtk(t) and θ2 = 2
∫ T
t∗ dtk(t). With a little of algebra:

|ψfinal〉 =

 cos(φ)
cos(θ2)sen(φ)
sin(φ)sin(θ2)

 (7.22)

At the end of the sequence we can measure the phase difference between the two clouds. For
this reason according to the definition of the sensitivity function in Eq. 7.16, we get:

gΦ = Cos(θ2) = Cos(2
∫ T

t
k(t′)dt′) (7.23)

Note that the sensitivity function fo the BEC splitter depends only on the time after the
perturbation. This is caused by the fact that before the perturbation occurs, the system is
in an eigenstate of the Hamiltonian.
The second part of the interferometric sequence is simpler: if the tunneling is 0 any per-
turbation of the imbalance between the two wells has dramatic consequence on a phase
measurement and by definition gΦ = 1 for T1 ≤ t ≤ T1 + T2.
The sensitivity function of the phase gΦ(t) and of the population imbalance gz(t)with the
tunneling introduced in Eq. 7.20, are reported in Fig. 7.4 below for T1 = T2 = 100 ms.
To estimate the standard deviation of a phase measurement after the splitting, we have

Figure 7.4: Sensitivity function for a phase measurement in a BEC splitting sequence. The
curve is evaluated for T1 = T2 = 100ms.

introduced in Section 2.2 the weight function GΦ(f) defined as the Fourier transform of the
sensitivity function gΦ(t) (see Eq. 7.19). For the case under study, is possible to evaluate
analytically GΦ(t). An example of a weight function is reported in Fig. 7.5. As it is possible
to see, the behavior of the splitting scheme acts as a low pass filter with a cut-off frequency of
the order of K0/2π. For frequencies smaller than the cut-off the weight function is a plateau.
It is possible to demonstrate that its value depends on (T1−T2)2 plus an offset that depends
only on T1. To minimize the low frequency component of a given PSD, if it is possible, the
suitable choice is to take an observation time T2 equal to the beam splitter duration T1. In
the high frequencies limit, the cut off acts as |GΦ|2 ∝ 1/f2.
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7.2. Sensitivity Function and weight function

Figure 7.5: Weight function GΦ(f) for T1 = T2 = 100ms and a starting tunneling K0 =
2π150Hz.

7.2.4 Sensitivity function for Ramsey interferometer

Now we will calculate the sensitivity function for the Ramsey sequence introduced in Section
1. According to the Bloch picture, the BS is represented by a rotation of π/2 along the x
direction. The phase acquisition is instead represented by a rotation of ∆Φ along the vertical
axes. The final state is then given by:

|ψfinal〉 =

1 0 0
0 0 1
0 −1 0


cos(∆Φ) −sin(∆Φ) 0
sin(∆Φ) cos(∆Φ) 0

0 0 1


1 0 0

0 0 1
0 −1 0


1

0
0

 =

sin(∆Φ)
0

cos(∆Φ)


(7.24)

As before in order to calculate the sensitivity function we need to evaluate the effect of a
perturbation provided by a rotation φ along the z direction that occurs at a time t. Without
reporting all the calculations it is possible to prove that the sensitivity function of a Ramsey
sequence is given by:

gZ(t) =


Sin(2

∫ t
0 K(t′)dt′) 0 ≤ t ≤ T1

1 T1 ≤ t ≤ T2

Cos(2
∫ t
T2
K(t′)dt′) T2 ≤ t ≤ T3

(7.25)

and zero otherwise where T1 is the duration of the BS, T2 = T1 + Tint and T3 = Tint + 2T1.
Similar expression has been found in [118]. We can calculate the weight function Gz(f) from
the expression reported in Eq. 7.25, obtaining [117]:

Gz(f) = 4iΩR

(2πf)2 − Ω2
R

sin
(
πf(Tint + 2T1)

)(
cos(πf(Tint + 2T1)) + ΩR

2πf sin(πfTint)
)

(7.26)

This last expression in valid if the tunneling K(t) = K0 = ΩR = π/(2T1) is constant during
the BS.
Indeed we have generalized the results reported there for any time function describing the
tunneling between the two wells. In the free falling interferometer the tunneling is constant
and it is provided by the Raman beams, for this reason the time during which the tunneling
pass from a finite value to zero is negligible because depends on the switching on-off time of
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a laser beams. Instead in a trapped atom interferometry this time could be much larger and
even comparable to the interrogation time.
We can try to understand the effect of the finite ramp time considering this simple case.
Suppose to have a tunneling that start from a finite value, of 2π20Hz, and goes linearly to
zero K(t) = K0(1−t/TBS). In order to provide a correct BS the duration of the ramp is fixed:
TBS = π/(2K0). We can compare the sensitivity function obtained whit this tunneling with
an "ideal" one provided by a step-function tunneling. The results for the sensitivity function
are reported in Fig. 7.6, as it is possible to see no substance differences are observed between
the two functions.
Evaluating the weight function Gz for both the sensitivity function considered, we obtain
similar results. In both cases the system starts to filter noise for frequency larger then K0.
In the high frequency limit |G(g)|2 ∝ f−4 differently from the case of the BEC splitting.
Additionally in the limit of small frequencies Gz ∝ f . The weight function of a Ramsey
scheme is thus similar to a band-pass filter. Some weight functions are reported in Fig. 7.13.
Another very useful scheme used in fre fallinging atom interferometers, is the Mach-Zehnder

Figure 7.6: a,b) tunneling function as described in the text, c) sensitivity function evaluated
with both of them.

interferometer. This works essentially as two Ramsey scheme performed consequentially, i.e.
it is composed of a π/2 - π -π/2 pulses divided by two interrogation times Tint. In this case
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the sensitivity function is given by:

gZ(t) =



Sin(2
∫ t

0 K(t′)dt′) 0 ≤ t ≤ T1

1 T1 ≤ t ≤ T2

Cos(2
∫ t
T2
K(t′)dt′) T2 ≤ t ≤ T3

−1 T3 ≤ t ≤ T4

−Sin(2
∫ t

0 K(t′)dt′) T4 ≤ t ≤ T5

(7.27)

and zero otherwise where T1 is again the duration of the BS, T2 = T1 +Tint, T3 = Tint + 3T1,
T4 = 2Tint + 3T1 and T5 = 2Tint + 4T1.
The expression obtained is exactly the same as in [117, 119] in here extended for a general
temporal dependence of the coupling between the two modes during the BS. Note that weight
function Gz(f) is the same for the both Ramsey and Mach-Zehender interferometers.

7.3 Noise sources
In this section we will estimate the effect of some noise sources on the BEC splitting process
described in the Section 1, using the weight function obtained in Section 2.3. We will consider
two superimposed retro-reflected laser beam with wavelength 10 and 20 µm creating an array
of double wells potential separated by 10µm where the wells are separated by 5µm. Although
the realizability of such lattices with large spacing seems unrealistic, new ideas on the creation
of effective large spacing optical lattices are under investigation.
The two main noise sources that we will consider are provided by the vibration of the reflecting
mirror and by the lasers frequencies fluctuation.

7.3.1 Vibrational noise

In our case the motion of the mirror shifts the lattice position. Even if this effect does not
modify the shape of the potential, it creates an effective phase shift dφ between the two
modes of the interferometer. Indeed this phase shift is proportional to the acceleration of the
mirror a(t):

dφ(t) = ma(t)Ldt
~

(7.28)

Where L is the distance between the two wells of the double well potential.
Using Eq. 7.28 in the definition of sensitivity function reported in Eq. 7.18, we get:

δΦ =
∫ ∞
−∞

gφ(t)dφ(t)
dt

dt =
∫ ∞
−∞

g(t)φ
mLa(t)

~
dt (7.29)

Where gφ(t) is the sensitivity function of the BEC splitter derived in Section 2.2. We can
estimate the vibration effect considering Eq. 7.29 in the frequency domain, i.e. :

σ2
Φ =

∫ ∞
0
|GΦ(f)|2Sφ(f)df = 2π

∫ ∞
0

(mL
~

)2|GΦ(f)|2Sa(f)df (7.30)

The PSDs we use to estimate the standard deviation in the measure of the relative phase
after the splitting are reported in Fig. 7.7. The red curve has been measured in our lab
while the blue one in Syrte Laboratory in the group of Dr. Franc Pereira Dos Santos. The
vibrational noise in the second case is passively reduced. Using these PSDs, we get the
standard deviation as a function of the waiting time T2 reported in Fig. 7.8, for different
values of T1.
The most relevant part of the spectral noise is the one at low frequency since in that

region the weight function does not filter any components. To better understand what is the
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7.3. Noise sources

Figure 7.7: Typical PSD of vibrational noise, we use two spectra for the estimation of this
noise

Figure 7.8: Standard deviation of a phase measurement as a function of the interrogation
time T2 for different values of T1: a) 10ms, b) 100ms and c)1000 ms.

frequency range that mostly affects the sensitivity of system, we can consider the integral
function σΦ(f) defined as:

σΦ(f) =
√

2π
∫ f

0
df ′(mL

~
)2GΦ(f)Sa(f)df ′ (7.31)

the results for the two PSD considered are reported in Fig. 7.9. As it is possible to see, the
most important components of a vibrational noise are the one between 10 and 100 Hz.
To reduce the effect of the vibrational noise in an interferometric measurement, several

solutions are available. In a fre falling atomic interferometer methods for reduce actively
vibrational noise has been developed [120]. We are planning to install in our setup, an
isolating platform from Minus − K that is able to reduce passively the vibrational noise
for frequencies larger than about 1Hz. For the dimensions of the platform, the possible
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7.3. Noise sources

Figure 7.9: Plot of the integral function σΦ(f) for the two PSD considered. Every plot
contains the results for T1 = 10, 100, 1000 ms

candidates that can be easily installed in our experiment are the models LC-4 and BM-10.
The model LC-4 seems to have better performances for both horizontal and vertical plane
because the peak frequency is at 0.5Hz while for BM-10 is at 1.5Hz.
To have an estimation of the platform effect in our setup I convolve the noise measured with
the transmissibility curve of the desired platform. It is possible to get an analytic expression
of the transmissibility from the physics of the dumped harmonic oscillator. The equation of
motion of this system is given by:

m
d2x

dt2
= −kx+ c

dx

dt
+ Fext(t) (7.32)

This equation can be solved for any external forces Fext(t). The dynamics of the system is
governed by just one a-dimensional parameter, the so called damping ratio:

ζ = c

2
√
mk

(7.33)

If ζ > 1 the motion is called over-damped and the system returns to the steady state without
oscillating; if ζ = 1, the motion is called critically dumped and the system return to the
steady state without oscillation in the fastest way; ζ < 1 is the under dumped case and the
system oscillate with an amplitude that gradually decay to zero. According to the producers,
a Minus −K platform acts as an under-dumped oscillator with a damping ration between
ζ = 0.05 and ζ = 0.1 and a characteristic frequency f0 ' 0.5Hz (f0 =

√
k/m). Suppose now

that the external force is provided by an harmonic oscillator with a frequency ω = 2πf . In
our case it represents an external vibrational noise at a given frequency, i.e. Fext = ma0e

iωt.
Using Eq. 7.32 and the definition of damping ratio, we get that:

dx2

d2t
+ 4πf0ζ

dx

dt
+ (ω0)2x = a0e

iωt (7.34)

Assuming a solution that oscillates at the same frequency of the perturbation x(t) = Aeiωt+ψ

and substituting it in the equation of motion it is possible to prove that{
ωAζω0 = a0sin(ψ)
A(ω2

0 − ω2) = a0cos(ψ)
(7.35)

combining the two previous equations it is possible to get how the amplitude of the external
force is dumped by the platform:

A = a0√
(ωω0ζ)2 + (ω2 − ω2

0)2
(7.36)
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7.3. Noise sources

Since the amplitude of the external acceleration is given by ω2A, we define the transmissibility
T (f) as:

T = A

a0
= 1√

(ω0
ω ζ)2 + (ω

2−ω2
0

ω2 )2
(7.37)

the theoretical transmissibility for a Minus−K platform is reported in Fig. 7.10. In order

Figure 7.10: Theoretical transmissibility of a dumped harmonic oscillator with f0 = 0.5 and
a dumping constant ζ = 0.075

to evaluate the improvement in the sensitivity provided by the use of a passive Minus−K
platform, we have convolved the PSD measured with the transmissibility function reported in
Fig. 7.10. Convolving the noise measured in our system with the transmissibility of aMinus−
K platform and using this new PSD for evaluate the standard deviation of a phase measure,
we get the results reported in Fig. 7.11. As it is possible to see the standard deviation is
smaller of a factor ' 10 respect to the one in Fig. 7.7. This is due to the fact that the
most important components in the evaluation of the standard deviation was the frequencies
between 10 and 100Hz, this components are well dumped by a Minus − K platform. To
better understand the effect of this platform, will be necessary in the future measuring the
vibrational noise PSD for frequencies smaller than 2Hz: the peak of the transmissibility at
0.5Hz could have an important effect.

7.3.2 Frequency noise

The second noise source comes from frequency fluctuation of the lattice lasers. Since the
effective large spacing optical lattice we are planning to realize, use frequency around 1064nm,
we will consider as PSD of the frequency fluctuation the one provided by the specification of a
Mephisto laser from Coherent. The PSD can be approximated as S∆ν = 104

f Hz/
√
Hz. This

behavior is indeed verified up to 10KHz, while for frequency higher that this the frequency
PSD assumes a constant value a part from the appearance of some pecks corresponding to
the piezoelectric resonances that are present up to 500−600 KHz. For even larger frequencies
the frequency PSD is filtered by the laser cavity resonance and can be considered negligible.
The effect of a frequency shift δν is to displace the interference pattern by:

∆x = ∆Lδν
ν

(7.38)

where ∆L is the difference in the optical path of the two interfering laser beams, in our
case this is of the order of 20 cm. As explained in a previous case, an atom interferometer
that uses trapped atoms is sensible to the acceleration of the interference pattern and not

88



7.3. Noise sources

Figure 7.11: Standard deviation of a phase measurement as a function of T2 for different
splitting time T1. The PSD considered in this section has been convolved with the theoretical
transmissibility of a dumped harmonic oscillator with f0 = 0.5 and a dumping constant
ζ = 0.075. This is a representation of the effect of a Minus−K platform model LC-4.

to the displacement. For this reason we can use the results in Eq. 7.29 and its version in
the frequency domain Eq. 7.30 simply substituting to the acceleration the random variable
∆L δν′′ν .
The PSD of the random variable ∆ν ′′(t) is related to the one of ∆ν(t) by:

S∆ν′′(ω) = ω4S∆ν(ω) (7.39)

this expression could be easily obtained using the definition of PSD in Eq. 7.11, introduced
in the first paragraph, and some simple properties of the Fourier transform.
Using now the PSD of the frequency noise provided by the Coherent and the weight function
GΦ(f) for our BEC splitter evaluated as in Section 2.2, is possible to calculate the standard
deviation of a phase measurement associated to this noise source. The term ω4 that appear
in the evaluation of S∆ν′′ has a crucial effect: for its presence S∆ν′′ ∝ f2 . This dependence
reduces a lot the contribution of the low frequency components but increases the role of higher
part of the noise spectrum because this components are not filtered by the weight function.
For frequency larger than K0, indeed, GΦ(f) ∝ 1

f2 , i.e. the integrand does not depend on
the frequency so the integral is proportional to f . The integral extended to ∞ diverges but
for physical reason I have evaluated the integral for the standard deviation up to a frequency
fmax = 1GHz, for larger frequency the frequency PSD is expected to be negligible.
Despite from this, evaluating the quantity:

σΦ = mL∆L(2π)
~ν

√∫ fmax

0
f4Sν(f)|GΦ(f)|2df (7.40)

it is possible to observe that the standard deviation is of the order of 10−4 rad. Results for
three different splitting time T1 are reported in Fig. 7.12.
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7.4. Comparison with free-fall interferometers

Figure 7.12: Standard deviation for a phase measurement taking in account the free fluctu-
ation of the Mephisto frequency . The standard deviation is evaluated as a function of the
interrogation time T2. The three plots represent three different splitting time T1: a) 10ms,
b) 100 ms and c) 1000ms.

The effect of the frequency noise seems to be negligible compared to the one caused by
vibrations. However for future upgrade of our experimental setup, we will have to work with
lasers with performances comparable to the Mephisto laser, which is a metrological laser.

7.4 Comparison with free-fall interferometers
In this section we will use the second scheme considered in Section 1, i.e. a Ramsey in-
terferometer. Our aim is to compare the performance of an atom interferometer that use
trapped atom with the scheme with a standard fre fallinging atom interferometer. Typically
the latter uses a Mach-Zehender scheme, despite from this, as reported in Section 2, Ramsey
and Mach-Zehender posses the same weight function Gz(f) so we can directly compare the
two schemes. Having in mind the results concerning the BEC splitter discussed in Section 3,
we will concentrate our analysis to the vibrational noise which seems to be the largest noise
source.
The main differences between the two interferometers are provided by the time scales of
the BS and the interrogation time Tint. Indeed the Rabi frequency in the case of free-fall
interferometers is of the order of some tens of KHz and can not be reduced because of the
temperature of the sample [119]. In the case of trapped atom interferometer instead it is of
the order of tens of Hz, this means that the low-pass filter behavior of the weight function
starts for smaller frequencies in this second case.
In addition in the trapped atom interferometer the tunneling during the BS is not brutally
reduce to zero but using an adiabatic ramp. Actually, as reported in Fig. 7.6, the different
tunneling as a function of time seems to introduce negligible effect. For simplicity we thus
consider as weight function for both the interferometers the one reported in Eq. 7.26.
The other difference is that the two techniques are sensitive to different physical quantity.
In the case of vibrational noise, the free-fall interferometers is affected by the velocity of the
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7.4. Comparison with free-fall interferometers

mirror while the trapped atom interferometer to its acceleration. Indeed it is possible to
prove in the case of the free-fall interferometer that [117]:

δΦ =
∫ ∞
∞

gz(t)keff
dz(t)
dt

dt (7.41)

Where z is the mirror position and keff is the effective wavenumber of the Raman beams,
in the case of counter-propagating beams keff = 2klaser. Equivalently in the Fourier domain
we get:

σfrefallingΦ =
√∫ ∞

0
|Gz(f)|2keff

Sz′′(f)
f2 df (7.42)

where we use the relation between velocity and acceleration PSDs Sz′ = Sz′′/f
2. We will

consider for this comparison, typical performances of both the interferometers: for the free-
fall Tint = 150ms and a BS duration of 100µs; for the trapped one instead Tint = 100ms and
a Rabi frequency of 20Hz. We report the two weight function Gz evaluated according to Eq.
7.26 in Fig. 7.13. As it is possible to see, the two weight finctions are essentially the same
for small frequencies, instead at large frequencies, the low-pass filter behavior starts before
in the trapped atom interferometer.
To better understand the different effect that the vibrational noise introduces on the two
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Figure 7.13: Gz for a typical performances of a free-fall atom interferometer (Blue curve) and
for a trapped atom interferometer (Red curve).

interferometric techniques, we can consider the signal to noise ratio. For simplicity we will
consider a measurement of the gravity g. In the case of a free-fall atom interferometer
the phase acquired in this measurement is given by ΦFF = keffgT

2
int. The phase acquired

by a trapped atom interferometer is instead given by Φtrap = mLg
~ Tint. For the free-fall

interferometers, using Eq. 7.42, we get for the signal-to-noise ratio:

∆g
g

= ∆Φ
Φ =

√∫ ∞
0

df |Gz(f)|2keff
Sz′′(f)
f2

1
keffT

4
intg

2 =
√∫ ∞

0
dfSz′′(f)χFF (f) (7.43)

where
χFF (f) = |Gz(f)|2 1

keffg2T 4
intf

2 (7.44)

In the case of trapped atom interferometer instead using Eq. 7.30, in the case of a Ramsey
interferometric scheme and thus substituting Gz to GΦ, we get:

∆g
g

= ∆Φ
Φ =

√∫ ∞
0

df |Gz(f)|2Sz
′′(f)

g2T 2
int

=
√∫ ∞

0
dfSz′′(f)χtrap(f) (7.45)
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where
χtrap(f) = |Gz(f)|2 1

T 2
intg

2 (7.46)

The two χ functions have the physical meaning of an effective weight function. Indeed we can
just convolve them with a certain acceleration PSD to get the expected signal-to-noise ratio.
We report bothχFF and χtrap for the specific case considered in Fig. 7.14. As it possible
to see, the f2 that is present in the definition of χFF make the free-fall interferometer much
sensitive to the noise component at very small frequencies. Contrary the trapped scheme
seems to be more affected by the part of the spectrum around 10Hz, close to the Rabi
frequency.
Using the acceleration PSD provided by the Syrte group, we get that the signal-to-noise ratio
∆g/g = 0.7 10−6 for the fre falling interferometer while for the trapped one is almost 10
time larger, 5 10−6. Note that this is due to the fact that the signal in the fre falling case is
more then 1000 times larger then in the trapped atom interferometer. Indeed the standard
deviation is much smaller in this second case.
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Figure 7.14: χ(f) for a typical performances of a free-fall atom interferometer (Blue curve)
and for a trapped atom interferometer (Red curve).

7.5 Conclusion
In conclusion in this Chapter we have introduce a mathematical formalism that is able to
recover the sensitivity function for different experimental schemes. In particular we are
interested in the cases of the splitting of a BEC, which could be use for the generation
of non-classical states, and of a trapped atom interferometer that makes use of a Ramsey
scheme.
We then apply such functions to some realistic PSDs of two different noise source: the
vibration noise of a retro-reflecting mirror and the frequency fluctuation of the laser sources.
We discover that we are mainly limited by the first effect even if it can be reduce a lot using
a anti-vibration platform.
Finally we compare the performance of an atom interferometer that use a free-fall Mach-
Zhender scheme with a trapped atom interferometer. We found that the two sequences are
mainly affected by different frequency-regions of the PSDs: the free-fall is indeed limited by
the low frequencies component, smaller then 1Hz. Instead the trapped atom interferometer
by the components in the region 10-20Hz.
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Appendix A

Three-Body losses

In this appendix I will shortly describe the measurements performed in order to characterize
the three-body recombination rate in all different channels involved in the Bose-Bose mixture
we are using.
Three-body recombination is the process where two atoms form a compound while interacting
with a third atom. This process is the main cause of atom losses in ultracold samples. It is
possible to prove that [121]:

dN

dt
= −K3 < n2 > N (A.1)

In presence of three-body recombination the temperature increase is due to the preferential
removal of atoms in the high-density region around the trap center:

dT

dt
= K3

3 < n2 > T (A.2)

where < n2 >= 1/N
∫
n(r)3d3r is the mean square density that depends on the system under

study.

A.1 Three-Body losses in a thermal gas
The simplest case is a thermal gas in an harmonic trap. In this case it’s possible to calculate
the mean square density and solve the previously introduced coupled differential equations
[122]. The solutions are the following:

N(t) = N0

(1 + 3β2N2
0

T 3
0
√

27K3t)1/3
(A.3)

T (t) = T0(1 + 3β2N2
0

T 3
0
√

27
K3t)1/9 (A.4)

where β = (mω2/2πkB)3/2 is a constant that depends only on the trapping frequency of the
harmonic confinement.
By an experimental point of view, trapping frequencies are known with a good accuracy,
σω/ω ' 5/200. On the contrary, the starting atom number and temperature are measured
with larger uncertainties, which has the most significant effect on the uncertainty in the
measurement of three-body loss rates. In the case of a single-species thermal cloud, it is
possible to simplify the system of equations in Eqs. A.3-A.4, by introducing the quantity
α(t) = T 3(t)/N2(t). With some calculations it is possible to prove that:

α(t) = T 3
0 /N

2
0 + 3K3

β2
√

27
t (A.5)
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From a linear fit of this quantity it is then possible to directly measure the three-body
recombination coefficient knowing the trapping frequency.
We measure the evoultion of both the atom number and the temperature for single-species

Figure A.1: Atom number, temperature and the parameter α for the internal state |1,−1〉.

thermal samples in the two hyperfine states of interest, |1, 0〉 and |1,−1〉, at a magnetic
field B=56.5 G. The temperature is measured from a time-of-flight expansion from σ(tof) =√
σ2

0 + kBT
mK tof

2, where σ0 is the initial size of the cloud. The thermal cloud in state |1, 0〉 is
produced from the one in state |1,−1〉 with an RF π pulse, performed at a magnetic field B0
where the intra-species scattering lengths are equal so as to optimize the trasfer efficiency.
The magnetic field is then adiabatically ramped to 56.5G.
For state |1,−1〉, the results are reported in Fig. A.1. We measure a three-body recombination
coefficient K−1−1−1 = 1.4× 10−28cm6/s, with an uncertainty of a factor 2 (mainly due to a
25% uncertainty on the atom number). This value is compatible with the background three-
body recombination of 39K.
The losses in the other state are instead much larger since it is closer to a Feshbach resonance
[84]. Results are reported in Fig. A.2. In this case we measure K000 = 5.2 × 10−27cm6/s,
again with an uncertainty of a factor 2, which is more than one order of magnitude larger
than K−1−1−1.
We verify the results of these measurements also using BECs.

A.2 Three-Body losses in a BEC
It is possible to analytically calculate the evolution of the mean square density due to three-
body losses also for a BEC in the Thomas-Fermi limit. In this case it is possible to prove
that [123]:

N(t) = N0

(1 + 4/5KBEC
3 N

4/5
0 c3t)5/4

(A.6)
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Figure A.2: Atom number, temperature and the parameter α for the internal state |1, 0〉.

where c3 = 7/6(152/5mω/14π~
√
a). The three-body recombination coefficient KBEC

3 =
K3/3!, where the reduction by a factor 3! is due to the anti-bunching effect related to
Bose statistic [124].
Results are reported in Fig. A.3 for both internal states at a magnetic field of 56.5

G. The BEC in state |1, 0〉 is produced as before using a RF π pulse. In this state we
measure K000 = 6KBEC

000 = 3.5 × 10−27 cm6/s. In the |1,−1〉 state we instead measure
K−1−1−1 = 6KBEC

−1−1−1 = 1.1× 10−28 cm6/s. Both measurements are in good agreement with
the ones obtained using the thermal clouds.

A.3 Three-body losses in a mixture
Finally we want to characterize the mixed channels, i.e. the three-body losses due to scat-
tering between two atoms in state |1,−1〉 and one in |1, 0〉 and viceversa. The associated
coefficients are K−1−10 and K−100 respectively.
Studies about three-body losses in a mixture have been so far performed in a hetoronuclear
mixture [125], but the conditions they had there and that significantly simplified the analysis
are not analogously valid in our case. We will anyway try to estimate at least the orders
of magnitudes of K−1−10 and K−100. In the mixture case the loss process is characterized
by three coupled differential equations, describing the decay of the atom number in the two
states and the increase of temperature, that we assume to be the same for the two species
since they thermalize. For a homonuclear mixture we have:

dN−1
dt

= − β2
√

27T (t)3 (K−1−1−1N
3
−1 + 2

3K−1−10N
2
−1N0 + 1

3K−100N−1N
2
0 ) (A.7)

dN0
dt

= − β2
√

27T (t)3 (K000N
3
−1 + 2

3K−100N
2
0N−1 + 1

3K−1−10N
2
−1N0) (A.8)
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A.3. Three-body losses in a mixture

Figure A.3: Decay of a BEC in the Thomas Fermi limit due to three-body recombination.
Above the measurement for the state |1,−1〉 below for the |1, 0〉.

dT

dt
= − β2
√

27T (t)2(Ntot(t))
(K000N

3
−1+K−100N

2
0N−1+K−1−10N

2
−1N0+K−1−1−1N

3
−1) (A.9)

We solve numerically the system of these three coupled differential equations using the values
ofK−1−1−1 andK000 measured with the single-component thermal clouds, for different values
of K−1−1,0 and K−100. We then choose the parameters that minimize the standard deviation
from the experimental data. Results are plotted in Fig. A.4. The results depend critically
on the values of K−1−1−1 and K000. We find that the mixed channels are of the same order
of magnitude of K−1−1−1.
In conclusion, we find the most relevant loss channel is the one associated to K000 which

seems to be at least one order of magnitude larger than the other three.
In the future it could be interesting to characterize with better accuracy the dependence of
the three-body recombination coefficient on the magnetic field. In addition, a more careful
analysis of the losses behavior at large density is still missing. For instance it could be
interesting to investigate if the droplet is affected by avalanche terms that could introduce
additional losses in the system.
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A.3. Three-body losses in a mixture

Figure A.4: In the above row is the decay of the atom number in state |1,−1〉 (left) and
|1, 0〉 (right) for a thermal mixture. In the bottom row is the increase of temperature. The
experimental data are reported together with the result of the system of coupled differential
equations, as explained in the text.
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Appendix B

Calibration of the atom number
with detuned repumper light

In this appendix we discuss the method we implemented to count the atom number in the
droplet, used in the droplet collision experiment.
The atom counting in our set up has been calibrated using resonant repumper light ∆ = 0.
As already described in Chapter 4, we use in the imaging sequence detuned repumper light
in order to reduce the optical density of the system. For the experiment concerning the study
of a single droplet, the measurement of the atom number has been performed in TOF during
the Stern-Gerlach measurement, so that densities were sufficiently low to properly count
the atom number using resonant repumper light. Here we calibrate the detuned imaging
technique in order to be able to count the atoms during the collisions measurements, even at
high densities.
To do it we create a BEC in state |1,−1〉 and we let it expand for 8ms. After that we count
the atom number with a resonant and calibrated absorption imaging, measuring N∆rep=0

BEC

with an uncertainty ∆N provided by the uncertainty in the imaging calibration and by
the fluctuations of N due to the noise in the preparation of the BEC. We repeat the same
procedure changing the rempumper detuning and measuring N∆rep

BEC for every value of ∆rep.
As the detuning increases the signal becomes smaller compared to the noise. To increase it
we reduce the TOF so that the optical density of the cloud is larger. Since we are observing
the same BEC prepared in the same way, the atom number has to be the same for every
value of ∆rep. The ratio between N∆rep=0

BEC and N∆rep

BEC gives a constant α(∆rep) = 〈N∆rep=0〉
〈N∆rep 〉

that we use to get the atom number from a detuned absorption imaging.
In Fig. B.1 is reported the experimental measurement of α(∆rep) for different values of

∆rep. The mean value 〈α(∆rep)〉 is obtained as

〈α(∆rep)〉 =
〈N∆rep=0〉
〈N∆rep〉

(B.1)

where 〈N∆rep〉 is the mean atom number measured with a given value of the repumper detun-
ing, obtained by averaging over 10 experimental realizations. To every 〈N∆rep〉 is associated
an uncertainty ∆N∆rep . To evaluate the uncertainty in the estimation of α(∆rep), we use a
standard result in the error propagation theory for a variable that is evaluated as the ratio
between two stochastic variables

∆α(∆rep) =
√

(∆N∆=0
δα

δN∆=0
)2 + (∆N∆

δα

δN∆
)2 (B.2)

The calibration performed here is valid if the intensity I∆ of the repumper beam with a given
detuning ∆ does not change during the measurement acquisition. We monitor it to make

98



Figure B.1: Experimental measure of α(∆rep) with the relative error bar. Note that the
detuning used in the measurement reported in Fig. 4.7 does not appear here. Although,
the repumper intensity was also changed in the two measurements, so that in Fig. B1 the
point at 120MHz corresponds to the same scattering rate of the repumper light as in the
measurement in Fig. 4.7.

sure that it is constant over the whole measurement. We have then obtained the calibration
for the atom numbere acquired via the detuned imaging as: N = (α∆ ±∆α∆)N∆.
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