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Introduction

Strongly correlated gases of ultracold fermionic atoms in arbitrary shaped optical po-
tentials are extremely controllable and versatile quantum systems in which it is possible
to study many-body fermionic matter phenomena such as superfluidity and supercon-
ductivity. In these systems, the interparticle interactions can be tuned at will by means
of Feshbach resonances. This allows to explore different regimes of superfluidity from
the Bose-Einstein condensate (BEC) limit of strongly bound molecules to the Bardeen-
Cooper-Schrieffer (BCS) theory of long range weakly coupled Cooper pairs, and in
particular to reach a regime of universality in which correlations play a fundamental
role. In this regime, the interactions are the strongest possible in nature, as allowed
by quantum mechanics, and the properties of the gas do not depend on the detailed
characteristics of the constituents [1]. As a consequence, the thermodynamics of the
gas become universal and the properties of this low density strongly interacting Fermi
gas at nanokelvin directly relate, for example, to the physics of dilute neutron matter
in the crust of neutron stars or to the quark-gluon plasma created at several trillion
of Kelvin in the Early Universe. Moreover, by looking at critical temperatures, Fermi
gases in the BEC-BCS crossover share several characteristics with high temperature su-
perconductors: since the latter exhibit mechanisms which are not fully understood yet,
ultracold fermionic gases can act as powerful quantum simulators to better investigate
the essence of superconductivity, achieving the celebrated quantum computing origi-
nally proposed by Feynman [2] to overcome limitations of classical simulations.

In particular, a paradigmatic phenomenon of superfluid/superconducting state con-
sists in the possibility to sustain current flows remaining constant in time without being
driven by any external force. This is a well known phenomenon in solid-state super-
conductors [3, 4], originating from the application of a Aharonov-Bohm phase [5], and
this persistent charge oscillates with the magnetic flux [6] causing a quantization of the
magnetic flux trapped in the superconductor [7]. These persistent currents can also be
observed in normal mesoscopic systems [6, 8, 9], when the system size is sufficiently
small that the orbital motion remains quantum phase coherent throughout. The possi-
bility to detect these currents leads to a variety of applications, e.g. building quantum
devices (such as the very famous SQUIDs) which act as magnetometers or gradiome-
ters [10] that find their utility in a variety of scientific fields including medicine and
metrology.
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CHAPTER 0. INTRODUCTION

By employing ultracold quantum gases, the engineering of tailored optical poten-
tials [11, 12] allows the realization of a variety of tunable geometries. In particular,
persistent currents in ring-shaped traps can be excited by the application of arbitrary
optical potentials with a digital-micromirror-device (DMD) [13]. Stability and decay
of these supercurrents have thus been studied both in Helium superfluids and in thin-
wire superconductors [14], but still the decay mechanisms are not fully understood yet
[15]. More recently, a quantity of experiments have been performed studying widely
the persistent current phenomenon in Bose-Einstein condensates [16–22] by investigat-
ing kinds of dissipation due to barriers, temperature or vortex shedding, and pointing
out their extremely powerful applications also in atomtronics [23].

Persistent currents in fermionic systems are instead a very new field of investiga-
tion [24]. The interest lays on multiple reasons, from the more exotic possibility to
employ persistent currents in fermionic superfluids as ideal laboratory systems to sim-
ulate pulsar glitches [25], to the prospect of investigating fundamental phenomena of
fermionic superfluidity, for example using supercurrents as a powerful tool to probe
the BEC-BCS crossover [26]. Moreover, it is possible to investigate the decay mecha-
nisms arising when impurities of disordered potentials are inserted in the landscape of
the atomic motion. Another possibility is to use high resolution tailored optical poten-
tials to explore annular geometries in which the width of the ring is comparable with
or lower than the pair size of the fermions, and investigate the non-trivial fundamental
physical phenomena that arise.

In this thesis work, we report the first observation of persistent currents through the
BEC-BCS crossover, investigating also some possible decay mechanisms. We present
the phase imprinting technique together with interference detection as very powerful
methods that allow the manipulation both of the phase and of the density of the macro-
scopic wave function describing the gas. A full control of the order parameter of the
system is thus achieved, and this renews the interest to employ ultracold atomic Fermi
gases as quantum simulators for more complex systems. The employed techniques al-
lowed the characterization of the excitation, persistence, and decay of the currents, by
studying also the effects of Landau-like impurities in the flow and the consequence of
the application of random optical impurities. As a conclusion, we show that the re-
sults open the field to study the effects of quantum dynamical instabilities in a single
component fermionic superfluid.

The outline of this work will pursue the following structure. In chapter 1 we will set
the framework to introduce the systems employed in the experiments: we will present
the BEC-BCS crossover and the peculiarities of the gas at unitarity, and we will also
discuss some dissipation mechanisms (such as the Landau criterion) of the superfluid
phase. Finally, persistent currents in fermionic superfluids will be presented by under-
lying the strong analogies and differences with the world of solid state superconduc-
tors. A review of the state-of-art persistent flows in ultracold atoms is provided and the
chapter is concluded with a theoretic description of the rotation of a superfluid, up to
obtain the quantization condition for the superfluid velocity.
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Chapter 2 will instead provide the methods, main instruments, and techniques, em-
ployed during the work to generate and manipulate the gas, and to analyze the exper-
imental data. The chapter will begin with a description of the experimental apparatus:
the atoms will be followed from their evaporation in the oven, up to the science cham-
ber in which they are confined and cooled down to reach degeneracy. We will describe
the tool employed to obtain oblate uniform geometries and the possibility to imprint
high resolution arbitrary optical potentials with a digital micromirror device (DMD).
The description of the imaging setup will conclude the explanation of the experimental
apparatus. The chapter will continue with the presentation and the characterization
of the geometry we employed in the work, to arrive at the discussion on the phase
imprinting technique, which is the method used to excite currents: we present both
theoretic concepts and experimental realization of the technique. As a conclusion of the
chapter, we will provide a discussion on interference methods we use to obtain infor-
mation on the systems, and an explanation of the main issues coming out when dealing
with fermionic systems.

In chapter 3, the main results of this thesis work will be presented and discussed.
We will begin it providing expected and obtained interference pattern from the time-
of-flight expansion of the superfluids in our system. We will see that the result is a
pattern made of spirals, whose number we are able to link to the winding number of
the superfluid. Since the number of spirals is so important, we also provided some
quantitative methods to count them. This allowed us to study the effects of the phase
imprinting on the annular superfluid: we have thus related the time duration of the
imprinting to the applied phase gradient, and consequently to the excited circulations,
reporting the results for a quantized flow. It will be possible, at that point, to study the
persistence of the current in time across the BEC-BCS crossover for different imprinted
circulations, from zero to eight. A further step that we will be presented is studying the
decay mechanisms: firstly we will probe Landau criterion by adding a few number of
obstacles in the annular trap. Then, some random optical obstacles will be inserted to
study the effects of a disordered potential on the atoms.

Finally, in chapter 4, we will discuss some possible outlooks of our work. In particu-
lar, the attention will be focused on the study of dynamical instabilities in a double ring
geometry. Experiments to explore Kelvin-Helmholtz instability in a single component
superfluid will be proposed, and also the required analysis will be presented together
with some preliminary results.
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Chapter 1

Theoretical introduction

Superfluidity and superconductivity are fascinating phenomena, which regard respec-
tively mass and charge transport without dissipation in particular materials. These
phenomena usually take place when very low temperature are achieved. A lot of ef-
forts have been done during the years to explain with a suitable theory the related
phenomenology; in particular the research reached its peak in the 1956 with the ap-
pearance of the BCS (Bardeen-Cooper-Schrieffer) theory [27] for superconductors, and
in the 1970s with the study of the 4He superfluidity [28]. In this context, some discov-
eries led by the superfluidity in 3He, brought an always greater interest in studying
fermionic superfluidity.

In this chapter, it will be briefly presented the phenomenon of the superfluidity
in fermionic systems and its peculiarities in section 1.1, then the crossover between
the two main paradigms of superfluidity will be discussed in section 1.2. Finally, in
section 1.3, some attention will be paid in illustrating the phenomenon of the persistent
currents in circulating fermionic superfluids.

1.1 Introduction to fermionic superfluidity

After the experimental realization of a quantity of Bose-Einstein condensates [29], great
efforts have been done to achieve quantum degeneracy in atomic Fermi gases. The rea-
son of interests for fermionic systems is that most of the fundamental particles present
in nature are fermions (quarks, leptons, baryons); moreover understanding the physics
of quantum effects in Fermi gases is important for many systems, from transport prop-
erties of electrons in metals and semiconductors, to superconductors, superfluid 3He,
quark matter and neutron stars.

In Bose-Einstein condensates, the condensation of the bosons is detectable since a
phase transition occurs and the density distribution becomes bimodal. Instead, dealing
with Fermi systems, things get more complicated. In fact, by following the same ap-
proach as Bosons, one would proceed as follows: considering an ideal Fermi gas, the
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CHAPTER 1. THEORETICAL INTRODUCTION

System TC TF TC/TF
Metallic lithium at ambient pressure 0.4 mK 55 000 K 10−8

Metallic superconductors (typical) 10 nK 100 000 K 10−4

3He 2.6 mK 5 K 5 × 10−4

MgB2 39 K 6 000 K 10−2

High-TC superconductors 100 K 5 000 K 2 × 10−2

Neutron stars 1010 K 1011 K 10−1

Strongly interacting atomic Fermi gases 170 nK 1 µK 0.17

Table 1.1: Transition temperatures, Fermi temperatures, and their ratio TC/TF for a
variety of fermionic superfluids and superconductors.

Fermi energy is

EF =
h̄2

2m
(︁
3π2n

)︁2/3
(1.1)

where n is the density of the gas. It is straightforward defined a temperature scale in
which the density distribution deviates from the Maxwell-Boltzmann, namely TF =
EF/kB; in particular it happens when the phase-space density is

nλdB ≃ 1.504 . (1.2)

The problem is that, in difference with what happens in the bosonic case, fermions
do not condense at the Fermi temperature, since the Pauli principle prevents them to
macroscopically occupy the single-particle ground state. Thus, a different mechanism
for the condensation of pairs have been researched. This opened the field to the BCS
theory which explained the fermionic condensation mechanisms.

In the recent years, the interest in ultracold Fermi gases has moved to study systems
in which interactions are manipulated and changed by means of Feshbach resonances
(see Appendix A). In particular the a great interest has been captured by the inves-
tigation of strongly interacting fermionic gases, to access properties of the fermionic
superfluidity i.e. the BEC-BCS crossover, which will be discussed in section 1.2.

In particular, the phenomenon of the superfluidity in Fermi gases does not emerge
together with the condensation as in the bosonic case; instead it appears from the pair-
ing of fermions. This happens usually at temperatures well below the Fermi temper-
ature TF; it is indeed possible to distinguish between two main ranges: we reported
in table 1.1 the values for typical superfluid and superconducting systems: strongly
interacting Fermi gases are indeed in a superfluid state already at TC/TF = 0.017. Sur-
prisingly enough, these systems result to be more similar to extremely high density
and temperature neutron stars than metallic superconductors: scaled to the density of
electrons in metal, this kind of superfluidity would occur far above room temperature.

As said, superfluidity is the phenomenon emerging in a gas that flows without any
dissipation and, in Fermi system, it is indeed directly related to superconductivity. The
most common proofs of a superfluid behavior are the existence of a critical velocity
and the quantization of vortices, which we are going to discuss in section 1.2.3. Before
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1.1. INTRODUCTION TO FERMIONIC SUPERFLUIDITY

discussing of the strongly interacting regime, we will briefly report the main result
on the two paradigms for superfluidity; then we will arrive to describe the smooth
crossover linking the two limits.

1.1.1 Main paradigms

Historically speaking, BEC and BCS are the two main paradigms used to explain the
phenomenon of superfluidity, as it will be discussed in section 1.2.1. Here, the basic
knowledge of these two theory are taken for granted, just some of the main results
achieved will be recalled.

Both fermionic BEC and BCS are described by an order parameter which can be
written as

ψ =
√︁

N0 eiφ (1.3)

where N0 indicates the number of condensed pairs. The condensation implies the pres-
ence of a macroscopic quantum phase coherence, so the phase φ can be assigned to all
the atoms of the condensate.

BCS

For the BCS theory applied to fermion superfluidity, it is possible to employ mean
field theory to extract some useful quantities. One finds out that the chemical potential
equals the Fermi energy:

µ ≈ EF . (1.4)

Moreover, the gap near the Fermi surface is

∆ ≈ 8
e2 e−π/2kFa (1.5)

which is indeed exponentially small compared to the Fermi energy, meaning that the
Cooper pairing is very fragile.
It is also possible to write the ground state energy:

EG,BCS =
3
5

NEF −
1
2

ρ(EF)∆2 . (1.6)

There are two main contributes to the ground state energy: the first term is due to the
fact that the interaction is mediated by the Fermi sea, since 3

5 EF is the average kinetic
energy per fermion in the Fermi sea. The second term, instead, is the energy of the con-
densation; it is negative, pointing out that the condensed state is energetically favorable
compared to the normal one.

Since the gap ∆ is exponentially suppressed with the interaction parameter 1/kFa,
in order to experimentally achieve superfluidity in Fermi gases it is required to use
Feshbach resonances to increase the scattering length. By doing so, it is possible to
access the regime kF|a| > 1 where ∆ > 0.22EF.
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CHAPTER 1. THEORETICAL INTRODUCTION

BEC

It is possible to follow the same approach for BEC fermionic superfluids. The result for
the chemical potential is:

µ = − h̄2

2ma
+

πh̄2an
m

(1.7)

which is made of two terms. The first one is the binding energy per fermion in a tightly
bind molecule; instead, the second term is due to the repulsive interactions between
molecules in the gas, by considering a molecule with mass twice that of the fermions
m, and a density which is half the gas density n. Clearly, in equation 1.7, a stands for
the scattering length.
It is also possible to derive the quasiparticle energies

Ek ≈ |µ|+ εk +
4πh̄2

m
na (1.8)

where the last term is the mean field energy which a fermion experiences in a gas of
molecules.

It is worth to point out that these expressions do not take into account three and
four body interaction. Those interactions are indeed exponentially suppressed because
of the high binding energy with which molecules are bound together.

1.2 Across the BEC-BCS crossover: the unitary gas

1.2.1 Towards the unitary regime

Since early ages of superfluidity theory, it was clear that the two main paradigms were
not overlapping [1]: on the one side Bose-Einstein condensation (BEC) explains the
main mechanism for weakly interacting bosonic gases superfluidity, on the other side
Bardeen-Cooper-Schrieffer (BCS) theory describing long range fermion pairs. How-
ever, Schrieffer pointed out that BCS superfluidity is not Bose-Einstein condensation of
fermionic pairs, since these pairs do not obey Bose-Einstein statistics [27].

In a Fermi gas, there is just a temperature scale which is set by the Fermi energy:
TF = EF/kB. Lowering the temperature causes no phase transition, but a gradually
formation of the Fermi sea; it plays a central role in Cooper pairing, which is indeed a
many body effect mediated by the Fermi sea. Usually in superconductors the critical
temperature is described by TC ≃ h̄ωDe−1/ρF |V|, where ωD is the Debye frequency, ρF
is the density of states at the Fermi surface, and |V| is the strength of electron-phonon
coupling. Instead in Fermi gases TC is proportional to EF since the attractive contact
interactions are working through the entire Fermi sea; still the exponential suppression
is present, so

TC ≃ EFe−π/2kF |a| (1.9)

In this expression we have introduced the Fermi wavevector kF =
√

2mEF/h̄ and the
scattering length a. It is clear now that kFa represents the ratio between inter-particle

8



1.2. ACROSS THE BEC-BCS CROSSOVER: THE UNITARY GAS

Figure 1.1: The size of the pairs in the BEC-BCS crossover. In the BEC side, pairs are tightly
bound and the inter-particle distance 1/kF is much larger than the scattering length a, while
in the BCS limit a is large compared to 1/kF, so the pairs are very slightly bound and distant.
In between there is no singularity but a system in which the pair size is comparable with the
inter-particle spacing. Image taken from [33].

distance and the scattering length, and so it defines a characteristic parameter of the
gas: for energy below the Fermi energy EF, the pair size is much larger than the inter-
particle spacing, so thousands of fermions are in between any pair.

On the other hand, a weakly interacting Bose gas degenerates when the inter-particle
distance becomes comparable with the thermal de Broglie wavelength of particles:

λT =

(︄
2πh̄2

mkBT

)︄ 1
2

(1.10)

This corresponds to a degeneracy temperature TD ≃ h̄2n2/3/2m, below which bosons
start to condensate in the ground state. Despite the very first idea due to Fritz London in
the ’50s to unify the two regimes has revealed not correct, still it is clear that the BEC is
somehow connected with the fermionic superfluidity, namely it is in the regime of tight
bound Fermi pairs. This happens whenever the inter-particle distance is much greater
than the pair size, namely when 1/kFa ≫ 1: in this scenario the fermionic nature of any
two particles of a couple cannot play a role since the fermionic wave function is spread
out over many Fermi wavevector in momentum space, and therefore Pauli repulsive
force is not relevant.

Therefore a question arises: how are these two regimes connected? What is in be-
tween the limit of Bose-Einstein condensate of strongly bound fermionic pairs - which
appears when repulsive interactions between fermions at 1/kFa ≫ 1 take place - and
the formation of Cooper pairs for weak attractive interactions when 1/kFa ≪ −1? Dur-
ing the 1960s some firsts attempts were made in order to find an answer: a first ob-
servation was that the wave function of the BCS, was not only suitable for long-range
condensation of Cooper pairs, but also for tightly bound pairs of a Bose-Einstein con-
densate [30–32].

In particular, Eagles discovered the formation of the pairs at a temperature above
the critical temperature TC: he held constant the scattering length (positive or negative

9



CHAPTER 1. THEORETICAL INTRODUCTION

Figure 1.2: Phase diagram of the BEC-BCS crossover. Pairs form under the temperature T∗,
while the system condensates below the temperature TC; it decays exponentially in the BCS
side, and recovers the value for Bose-Einstein condensate of tight bound pairs in the BEC limit
varying smoothly across the region in which a → ∞. Image from [35]

accordingly) and varied the inter-particle spacing. It brought to the 1980, when Leggett
[34] showed (by using a generic two body potential) that BEC and BCS limits are con-
nected in a smoothly crossover: he kept instead fixed the inter-particle distance, and
varied the scattering length; in that case the pairs change from having a strong binding
energy and a small size in the BEC side, to be far and with small binding energy in
the BCS side (ref fig 1.1). Between these two regimes there is no singularity, instead
a system in which the inter-particle spacing become comparable with the pair size. It
happens when a → ∞, so 1/kFa = 0 and therefore the system enters in a universal
regime of scale-invariance in which the only energy scales that matter are the Fermi
energy and the temperature.

Before entering deeper in the characteristics of this regime, it is worth to mention
the work by Nozières and Schmitt-Rink [36] which extended the Leggett model for fi-
nite temperature: they showed that the critical temperature for superfluidity TC decays
exponentially in the BCS limit, in which it is very small and equal to the pair breaking
temperature T∗. Moreover TC, as shown in fig 1.2, varies smoothly across the crossover
to reach, in the 1/kFa ≫ 1 limit, the value for Bose-Einstein condensate of tightly bound
molecules.

We are now going to describe more in details the features of the regime in which the
scattering length diverges, which takes the name of ”unitary regime”.

10



1.2. ACROSS THE BEC-BCS CROSSOVER: THE UNITARY GAS

1.2.2 The unitary gas

As we have just explained, between the two well known regimes of BEC and BCS, there
is a smoothly crossover through a regime very peculiar in which the scattering length a
diverges. The gas in this condition is called unitary Fermi gas (UFG), and has peculiar
characteristics.

Since a → ∞, it means that the interactions are the strongest possible, as allowed
by quantum mechanics. As a consequence, it follows that 1/kFa = 0, meaning that
the inter-particle spacing is of the same magnitude order of the pairs size. This implies
that the bond length of the pairs plays no role in the description of the gas: the only two
magnitude scales are fixed by the spacing between particles in the gas n−1/3 - associated
indeed with an energy scale which is the Fermi energy -, and the de Broglie wave length
λT, which is straightforward to relate to the temperature.

These characteristics allow the gas to enter in a universality class so that it can be
described as a scale invariant system where the only parameter that matters is the di-
mensionless parameter q = βµ = µ/kBT; so, also the thermodynamics becomes uni-
versal: it means for example that the thermodynamic properties of the gas are directly
correlated with those of an non-interacting Fermi gas by a function of T/TF; therefore
at zero temperature, the equation of state and the properties of these two gases have to
be the same. It is also possible to calculate the mean free path λ of the particles inside
the gas when the scattering length diverges: λ = (nσ)−1, and therefore λ ∼ 1/kF. It
means that the mean free path is the shortest possible, namely as short as the inter-
particle distance, which means that the strongly interacting fermionic gas of atoms at
nanokelvin is a ”perfect liquid”. Surprisingly enough, there’s another physical system
which satisfies the same condition, which is the quark-gluon plasma at extremely high
temperatures (trillions of Kelvin).

As we said, as a result of the scale-invariance, the properties of the UFG can be de-
rived by those of the non-interacting Fermi gas; it happens by means of a parameter ξ,
called Bertsch parameter. It has been measured for zero temperature spin balanced gas
for which the value is ξ = 0.37 [37]. It is possible therefore to write [33] the chemical
potential µ of the UFG related to the Fermi energy µ = ξEF which, for harmonic trap-
ping, becomes µ =

√
ξEF. It is also possible to derive the equation of state (EoS) of the

unitary Fermi gas. We are interested mainly in the density EoS, since it is accessible by
directly imaging the atomic sample; it is possible to write it as:

n =
1

λ3
T
· fn(q) (1.11)

where λT is the already defined de Broglie wavelength, and fn(q) is a generic function
which depends on the invariance parameter q = µ/kBT. The functional form of fn(q)
depends on the range of q values, and it can be derived with different methods:

• q < −1.5 for low q it is possible to perform a virial expansion in the gran canoni-
cal ensemble.

11



CHAPTER 1. THEORETICAL INTRODUCTION

• q > 3.9 for high values of q the main contribution to the excitation spectrum is
due to the phonons, so a phonon model can be employed.

• −1.5 ≤ q ≤ 3.9 for values of q in between, it is experimentally accessible.

The result is a parametric equation of state that can be written as follows [38]:

fn(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

4

∑
s=1

s bs esq if q < −1.5

−Li3/2(e−q)F(q) if − 1.5 ≤ q ≤ 3.9

4
3π

[︄(︃
q
ξ

)︃3/2

− π4

480

(︃
3
q

)︃5/2
]︄

if q > 3.9

(1.12)

where bs are the virial expansion coefficient, known up to the 4th order, Lin(z) is the
polylogarithm function of order n, and F(q) is experimentally interpolated.

Concluding the treatment of the unitary regime, a discussion is provided to remark
the difference in physics phenomena taking place across the crossover: the different na-
ture of the fermionic superfluids play a significant role in determine the relative prop-
erties, such as excitation (as we will see in section 1.2.3), pair size, and so on.
The spatial wave function of the crossover regimes can be derived, and it clearly ex-
hibits different features. In the BCS limit, Cooper pairs form close to the Fermi surface,
thus with a momentum k = kF, so the spatial wave function has a strong modulation at
hte inverse wave vector 1/kF. It is possible to write therefore:

ψ(r) =
kF

πr2
∆

h̄vF
sin(kFr)K0

(︃
r

πξBCS

)︃
(1.13)

where vF is clearly the Fermi velocity, r = |r1 − r2|, while K0(kr) is the modified Bessel
function and decays exponentially when argument goes to infinity. Instead, ξBCS is
the characteristic size of the Cooper pair that corresponds, in BCS, to the two particle
correlation length. It can be computed as

ξ0 ≈ ξBCS ≡ h̄vF

π∆
(1.14)

In the BEC limit, on the other side, the wave function decays exponentially as

ψ(r1, r2) =
e−|r1−r2|/a

|r1 − r2|
(1.15)

which is trivially the wave function for a molecule of size a. As a consequence, the
two-particle correlation length reads: ξ0 = a. From equation 1.15 follows that the BEC
spatial wavefunction broadens as the pairs become more and more tightly bound.
The unitary features can thus finally be extracted by smoothly interpolating the two
regimes [34] and the results can be seen in fig. 1.3.
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1.2. ACROSS THE BEC-BCS CROSSOVER: THE UNITARY GAS

(a) Evolution of the spatial pair wave function ψ(r) for dif-
ferent values of 1/kFa. In the insets, the Fourier transform
of ψ(r) is shown: in the crossover, pairing affects the en-
tire momentum distribution from a localized one near the
Fermi surface, to broader ones with more tightly bound
pairs. Adapted from [1]

(b) Evolution of the pair size from
tight bound molecules to long
range Cooper pairs. At the res-
onance (in dashed line) the pair
size is comparable to the inter-
particle spacing. Image from [1]

Figure 1.3: Evolution of the spatial pair wave function (a) and of pair size (b) in the
BEC-BCS crossover, from the Legget ansatz.

1.2.3 Condensation and superfluidity in the crossover

As a conclusion of the discussion about the crossover in fermionic superfluids, it is pre-
sented here a remark on the difference between condensation and superfluidity in these
systems (we will restrict the discussion to the three dimensional regime, since when
lower dimensions are achieve different phenomena takes place such as the Berezinskii-
Kosterlitz-Thouless transition [39, 40]): we will see that in the three different regimes,
the relative condensed versus superfluid fraction are different and a 100% superfluid
behavior can take place also when condensed fraction is very low.

As well-known, condensed fraction is related in BEC to the presence of off-diagonal
long range order (ODLRO) in the one-particle density matrix. When dealing with
fermionic gases, the one-particle density matrix can never have a macroscopic matrix
element, since Pauli principle prevents the occupation number of a particular quantum
state from exceeding unity. Indeed, for fermionic superfluids the long range order ap-
pears in the two-particle density matrix. We report the formula obtained for condensed
fraction in BCS regime to be compared with the one of the superfluid fraction we will
write later in the text. In BCS regime it reads [1]:

n0 =
mkF

8πh̄2 ∆ =
3π

16
n

∆
EF

(1.16)

so the condensed fraction exponentially decreases like the gap, with the interaction
strength. This strong depletion is - as said - due to the Pauli principle.
Anyway this depletion does not prevent the system to exhibit superfluid behavior, since
it is linked to the macroscopic coherence of the wave function phase.
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CHAPTER 1. THEORETICAL INTRODUCTION

Figure 1.4: Observation of vortex lattice in strongly interacting Fermi gas. Different kinds of
fermionic superfluids are put in rotation by two laser beams; after a time-of-flight expansion an
ordered lattice of vortices is created. Image from [41]

Superfluid fraction in a fermionic ultracold gas, is indeed the fraction of the fluid
which exhibits superfluid behavior. In general, it is not directly related to the condensed
fraction, e.g. two-dimensional Bose gas can be superfluid although the Mermin-Wagner
theorem prevents it to exhibit off-diagonal long range order, or on the other side a
non-interacting BEC can be condensed but not superfluid. The basis of the models for
superfluids and superconductors lies in the distinction between normal density nn and
superfluid density ns which bring to a two-fluid hydrodynamic description. Here, ns
can be found from the total density trivially as ns = n − nn. In the BCS regime, for
T ≪ TC, it holds:

ns = n

(︄
1 −

√︄
2π∆0

kBT
e−∆0/kBT

)︄
(1.17)

from which it is visible that at low temperatures the contribution of the quasiparticles
is suppressed, as it is characteristic for gapped excitation spectra.
By comparing equations 1.16 and 1.17, it is clear the difference in the dependence from
physical quantities. We presented the BCS regime because it is the clearest example: at
zero temperature the condensed fraction is very low (tends to zero with the interaction
strengths) while the superfluid one is 100%.

A directly evidence of superfluidity across the main regimes of fermionic superflu-
ids was obtained at MIT [41] and shown in figure 1.4: three pictures are shown of the
three different superfluid regimes of 6Li atoms in the BEC-BCS crossover. The gas is
stirred with two laser beams e put into rotation, and after a time-of-flight expansion, a
vortex lattice forms. The uniformity of the lattice spacings is a sign of the quantization
of the vortex charge [29], and thus a striking evidence of superfluid behavior.

More recently, it was measured the superfluid fraction of a unitary Fermi gas (see
section 1.2.2) by looking at the second sound [42]. It is indeed possible to describe
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1.2. ACROSS THE BEC-BCS CROSSOVER: THE UNITARY GAS

(a) Superfluid fraction in unitary gas. Blue
dots show the measured superfluid frac-
tion for different temperatures with their
uncertainties (shaded region); green solid
line is fraction for Helium II, while red
dashed line represents the condensed frac-
tion expected for an ideal Bose gas. Image
from [42]

(b) Condensed fraction for fermionic su-
perfluids. The condensed fraction of differ-
ent fermionic superfluid regimes has been
measured (diamonds and circle points)
in function of the interaction parameter
1/kFa from Josephson effect; the lines rep-
resent some different theoretical predic-
tions. Image from [43]

Figure 1.5: Comparison between superfluid and condensed fraction in fermionic super-
fluids. The second sound measurement (a) allows to access at the superfluid fraction
since the two phases - thermal (normal) and superfluid - oscillate with opposite phases.
On the other side a Josephson experiment (b) accesses directly to the condensed frac-
tion, since the Josephson current is proportional to it.

superfluid gases as two-mixture systems: the first mixture is made of a normal com-
ponent, while the second is a superfluid gas with zero viscosity and zero entropy. The
second sound is an entropy wave where the two components (normal and superfluids)
oscillate with opposite phases.

In fig 1.5a the results of the study are represented: the measured superfluid fraction
is plotted against temperature in units of the critical temperature TC, and it is compared
to the expected condensed fraction of an ideal Bose gas (red dashed line). It is clear
that the system is entirely superfluid at temperatures of 0.6T/TF when the condensed
fraction is instead almost an half. This condition is thus expected to be satisfied for all
the fermionic superfluids that we are talking about in these thesis. On the other side,
very recent experiments have measured the condensed fraction of different fermionic
superfluids. It showed up [43] that in the unitary gas, regardless the kind of trap used,
the condensed fraction is much lower; in particular at T = 0 it was found a mean
condensed fraction of 0.47 ± 0.07.

In particular, also at T=0, when for BEC condensed fraction is 100% just as super-
fluid one, in UFG and BCS regime the two percentage do not correspond. It follows that
this is another criterion distinguishing the different regimes in the BEC-BCS crossover:
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a zero temperature unitary gas is just half percent condensed but still exhibit superfluid
behavior as strikingly proven by the vortex lattice shown in fig. 1.4.

We have presented two different experiments probing superfluid and condensate
fractions, by measuring the second sound mode and by looking at the Josephson cur-
rent respectively. The experiment we will present in this thesis will provide instead a
more unique quantity across the BEC-BCS crossover, which is the persistence of cur-
rents. From the results we will report, we confirm that the phenomenon is independent
from the condensed fraction and instead fully lies on the superfluid behavior of the
fermionic systems.

Landau criterion for superfluidity

We will further investigate quantization of vortices in the section related to circulat-
ing superfluid. Now we want to remark another feature which will be useful in the
proceedings.

It has been mentioned before, that one of the evidences for superfluidity is the pres-
ence of a critical velocity. As a matter of fact, it happens that a superfluid flows without
dissipation only if its velocity is lower than a critical velocity vc. The first theoretic
explanation is due to Landau [44], who linked the dissipation with the creation of ex-
citations: if the superfluid is moving faster then vc, it is energetically favorable to it to
transfer momentum from the moving superfluid to excitations. As a result of the loss
of momentum, superfluid flow is damped. Let’s consider an excitation carrying plane-
wave momentum h̄k: to be created it must satisfy energy and momentum conservation
laws. It means

Mvi = Mv f + h̄k (1.18)
1
2

Mvi =
1
2

Mv f + εk (1.19)

where M is the mass of the whole fluid. By simplification of the equations and assuming
mass of the fluid big enough to ignore motion of center of mass (it is also possible to
release this assumption by considering the rest frame) it is straightforward to obtain:

εk = h̄vi · k = h̄vikcosϑ ≤ h̄vik . (1.20)

It means that for an excitation to be created the condition vi ≥ εk/h̄k must be satis-
fied. It follows the Landau criterion for superfluidity which states that in order the fluid
to flow without dissipation, it must move with a velocity lower than a critical velocity
vc defined by:

vc = min
k

[︂ εk

h̄k

]︂
(1.21)

where the minimum value is taken over all the possible excitation, including both col-
lective and single-particle excitations.

It is thus clear that the critical velocity depends on the excitation spectrum, and
therefore on the kind of superfluid we’re dealing with: e.g. in the BEC regime rel-
evant excitations correspond to Bogoliubov sound waves [33] with speed of sound
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Figure 1.6: Critical velocity in the BEC-BCS crossover. In the BEC side, lowest excita-
tions are Bogoliubov waves (Bog.) which are usually referred as Bogoliubov-Anderson
waves (Bog.-And.) in the BCS regime; here actually the lowest energy excitations are
single-particle due to the breaking of Cooper pairs. Image taken from [33].

cs =
√︁

µ/m = vF√
3π

√
kFa. On the other side, in the BCS regime critical velocity can

be lower, since the first excitations are single particle ones involving the breaking of
Cooper pairs. Instead, at the resonance, an interplay of the two natures causes the crit-
ical velocity to be the highest, therefore to obtain the most robust system.

In fig. 1.6 it is shown the critical velocity across the BEC-BCS crossover: the evo-
lution from Bogoliubov (Bog.) waves in the BEC to the pair breaking in the BCS is
smooth. Here (at the resonance), the critical velocity assumes its maximum value, and
therefore at unitarity the superfluid is the most stable.

1.3 Persistent currents in fermionic superfluids

It is possible in superfluids and superconductors, that currents flow without a driven
external force remaining constant in time. These flows are thus called ”persistent cur-
rents”, since they can resist for timescales much longer than the experimental sample
itself. They were first observed [3, 4] and predicted in the field of superconducting ma-
terials, in which a lot of remarkable properties take place, but then they were discovered
also in superfluid phases [45–47]. Since there are many analogies between what hap-
pens in superconducting systems and in fermionic superfluids, it is useful to take an
insight of some remarkable properties discovered in the field of superconductivity.

1.3.1 A remark on superconductors

The phenomenon of persistent flow is one of the most remarkable properties of macro-
scopic quantum systems. It takes its genesis in the world of superconductors. In 1911
Kamarlingh Onnes first discovered this phenomenon by studying the resistivity of a
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mercury sample at low temperatures: he observed that the resistance dramatically
drops below 4.2K. Clearly, since the resistance becomes very low below the critical
temperature, the flow of the electric current is damped very slowly, and the decay rate
is so big to become often experimentally inaccessible. For example by taking into ac-
count a superconducting ring below TC, the insertion of a magnet causes a variation of
the magnetic flux which induces a current; this current decays as

I(t) = I0e−Rt/L (1.22)

where L is the inductance and R the resistance. By taking into account this method it
was estimated that the passage trough the critical temperature causes the resistance to
reduce its value by 16 magnitude orders at least.

Persistence currents are actually a phenomenon observed also in normal meso-
scopic systems [48, 8, 9] where the system size is sufficiently small that the orbital
motion remains quantum phase coherent throughout. This persistent charge oscillates
with the flux and it is generated by the Aharonov-Bohm (AO) phase factor [6]. The
AO effect [5] consists in the fact that the electromagnetic vector potential influences the
quantum-mechanical orbital motions of electrons, even if the particles move in a region
with vanishing electric and magnetic fields. This is a purely quantum-mechanical effect
which manifests itself trough the acquisition of the AO phase factor that can change the
boundary condition on the orbital wave function.

Another related phenomenon regarding superconducting materials is the quanti-
zation of magnetic flux. This effect was first predicted by London in 1950 [49] but
observed only in 1961 [50]. The effect consists in the fact that in a superconducting ring
the value of the magnetic flux is quantized in unities of h/2e. Actually the prevision
by London was qualitatively correct but inexact since he didn’t assume the factor 1/2.
In figure 1.7, the results from a 1971 paper are shown: it is plotted the trapped flux in
a superconducting cylinder against the magnetic field in which it is cooled below its
transition temperature. It emerges clearly that the curve is made of steps, indicating
indeed the quantization of the flux. The explanation of the phenomenon follows the
consequences of another superconducting effect which is the Meissner effect. Indeed,
the definition of a superconductor is not related to the presence of persistence currents
(since - as said - they can be present also in the normal phase) neither to the quantization
of the flux. A superconductor is instead defined by the presence of the Meissner effect,
which is the expulsion of the magnetic field from the sample, during its transition to
the superconductive state when it is cooled below the critical temperature.

The Meissner effect thus implies that the magnetic induction B inside a supercon-
ductor below TC is always zero, even if an external field is applied. As a consequence,
the probability current vanishes: J = 0. Since it is possible, as we mentioned for
fermionic gases, to write the wave function as

ψ(r) =
√︂

ρ(r)eiϑ(r) , (1.23)

we can write the probability current per minimal coupling, and it follows:

∇ϑ =
q
h̄

A (1.24)
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Figure 1.7: Quantization of the magnetic flux. Trapped flux in a superconducting thin
cylinder is plot against the magnetic field in which it is cooled down below its critical
temperature. Image from [7]

where A is the magnetic potential vector. Now by integrating over a close circuit and
using Stokes theorem it is straightforward to derive the follow relation:

ΦB = n
h
q

(1.25)

The charge here is the one of the Cooper pairs, so q = 2e and we find the equation for
the quantization of the flux.

In the so-called second type superconductors, quantization of the flux plays an im-
portant role: it does exist indeed a critical external magnetic field that - if exceeded -
causes the field to penetrate into the superconductor even at temperatures below TC.
When it happens, the field is carried by normal conducting islands with a thin filament
shape, called Abrikosov vortices. Each of these vortices carries a quantum of flux Φ0,
and their number increases with the increment of the applied field. Nowadays, it is
also possible to observe the disposition of these structures in superconductors thanks
to scanning electron imaging techniques [51]. Each vortex consists of a normal core,
which is indeed a non-superconducting cylinder with a normal phase and it has a di-
ameter that corresponds to the superfluid correlation length ξ: the magnetic field lines
use this channel to pass through the sample, and thus the core of the vortex plays the
role of a hole in the superconducting phase.

1.3.2 Persistent currents in quantum fluids

Concerning quantum fluids, during the recent years an increasing attention has been
paid to the generation of persistent flows in condensates. The most exploited and easy
geometry in which excite currents in the annular one, i.e. a ring-shaped condensate.
It was first proposed in 2005 [52] to experimentally realize a 1D closed optical lattice
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with the possibility of adding a tunable boundary phase twist in order to further study
persistent currents. In that paper it was proposed to use a Laguerre-Gaussian laser
beam, experimentally available by using computer generated holograms, and exploit
its rotational symmetry to generate a ring-shaped potential for the atoms.

This method has been used in the recent years to excite persistent currents in bosonic
condensates [16–18] to obtain an annular geometry. Then persistent current are usually
excited with one of these two methods: a possibility is employing two-photon Raman
transfer [19, 14] to give angular momentum to the condensate. Another very common
way is achieved by ”stirring” the condensate with a far off-resonance laser beam [53, 20]
for enough time to make the atoms rotate.

Once excited the currents, their decay it has been also studied in Bose-Einstein con-
densates. In fact, it is possible to induce the decay of a persistent flow by tuning the
temperature [21] or by adding different kinds of tunable barriers or weak links [16].
Studies on persistent flows find a lot of interest also in the field of atomtronics and
quantum technologies, e.g. it has been demonstrated their utility in creating an atomic
version of the superconducting quantum interference devices (SQUIDs) [22] during
very recent years. So their usage has been proven to be helpful in quantum application
but also it has been proposed [26] to further investigate physics of fermionic system e.g.
probing the BEC-BCS crossover (see sect. 1.2).

Instead, the realization of persistent current in fermionic systems is still a great chal-
lenge, and only in 2021 the very first realization has been done [24]. It is reported in that
work the creation of currents around a mesoscopic ring of ultracold fermionic 6Li atoms
trapped by optical potential. They are in condition in which the currents are long-lived
(≳ 10 sec) and with the possibility of tune the interaction strength by means of Fesh-
bach resonances (see Appendix A). This feature allows to reversibly drive the system
in and out the superfluid phase by going a bit far in the BCS side (since, as seen in sect.
1.2.1, the critical temperature TC decays exponentially with the interaction strength in
the BCS regime). The idea of the experiment is thus to excite a current by stirring the
superfluid, then to change the magnetic field which sets the interaction strength going
into the normal phase, and at the end return into a molecular BEC (mBEC) superfluid
to study the probability of survival of the current. In that paper, the persistence of the
current after the sweeping out-and-in the superfluid phase, is attributed Hess-Fairbank
effect.

What is most interesting is the way the current is detected. As shown in fig. 1.8,
the circulation of the atoms is detected by looking at the topological defect which arises
in the middle of the cloud. Before explaining how it happens, it is worth to briefly
describe advantages and disadvantages of this method. Clearly detecting a vortex is
a simple and efficient way, since it is only necessary to confirm or not the presence
of a hole inside the cloud. On the other hand it gives only a partial information on
the current: as a matter of fact, it is not possible to understand the direction of the
circulation (clockwise or anticlockwise). Moreover, as we will now see the possible
number of circulations is quantized, but it is not possible to distinguish if more than

20



1.3. PERSISTENT CURRENTS IN FERMIONIC SUPERFLUIDS

Figure 1.8: First realization of persistent currents in fermionic systems. Evolution of
the density profile after absorption imaging is shown here; the current is detected by
looking at the presence of a topological defect inside the cloud. Image taken from [24].

one circulations are applied. During this thesis I will present instead some methods of
detection which require a better visibility but give more information on the system.

Quantized circulation in rotating superfluids

One of the most remarkable properties of superfluid and superconducting systems re-
gards the quantization of the circulation which causes phenomena such as the creation
of vortex lattices as seen in sect. 1.2.3. We will now show that the quantization of the
circulation is an effect that directly follows the existence of a macroscopic wave function
of the system.

As we’ve already seen, a fermionic superfluid can be described by a macroscopic
wave function ψ(r); it plays the role of order parameter, so it is zero valued in the
normal phase and non-zero in the superfluid one. It can be written as:

ψ(r) = |ψ(r)|eiφ(r) (1.26)

which is normalized so that ∫︂
dr|ψ(r)|2 = N0 (1.27)

where N0 is the number of condensed pairs (i.e. Cooper pairs in the BCS regime) form-
ing the superfluid. It is thus possible to write the current density operator in the usual
form

J(r) = − ih̄
2m∗ (ψ

∗(r)∇ψ(r)− ψ(r)∇ψ∗(r)) = n0
h̄

m∗∇φ(r) (1.28)

where n0 is the density of condensed pairs. Moreover, since we’re dealing with fermionic
superfluids, the mass which appears is the mass of the bosonic couples which is double
of the mass of each fermion m∗ = 2m.

Now a superfluid velocity can be defined in the common way since usually J = nv,
and so the superfluid velocity reads:

vs(r) =
h̄

m∗∇φ(r) (1.29)
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from which follows that the velocity field is irrotational. From this point it is possible to
derive the Onsager-Feynmann quantization condition [54–56]. It is indeed possible to
integrate eq. 1.29 around a close loop inside the superfluid: since the phase φ is defined
modulo 2π, it follows that

Γ =
∮︂

vs · dl =
h̄

m∗ ∆φ = n
h

m∗ (1.30)

where n, here is a positive integer value, and Γ is the circulation.
By looking at eq. 1.30, it is clear that in case of a simply connected region of space in

which the loop lies, we must have n = 0 if the superfluid wave function has no nodal
lines in the loop. Otherwise, solutions with n ̸= 0 are possible with the formation
of topological defects i.e. vortices. If a vortex forms, the superfluid wave function
vanishes in the vortex core, and has there its nodal lines. In this way the superfluid is
able to carry angular momentum.

Assuming that the flow is only dependent on the angular coordinate in a cylindrical
coordinates frame, and by taking into account uniform flow (meaning |ψ| = const in-
side the superfluid) it is possible to derive the expression for the phase of the superfluid,
which happens to be linear with the angular coordinate ϑ:

φ(ϑ) = nϑ + const . (1.31)

Under the same assumptions it follows that the superfluid velocity around the topolog-
ical defect is inversely proportional to the core distance:

vs(r) = n
h̄

m∗
1
r

êϑ . (1.32)

Analogy between superconducting systems and fermionic superfluids

It becomes clear so far a strong analogy between what happens in superconductors and
the phenomena related to the persistent flows in fermionic superfluids. Both the phe-
nomenology and the physical drivers are comparable: in the first case there is a quan-
tize quantity that is the magnetic flux trapped in the superconductor, which is driven
by a gradient of the phase of the superconducting wave function. The phase is indeed
associated to the external applied magnetic field thanks to the magnetic potential vec-
tor. On the other side, in case of fermionic superfluids, the quantized quantity is the
circulation, and it is related to the gradient of the phase of the superfluid wave function
through the superfluid velocity. In both cases (focusing on type-II superconductors in
detail) the phenomenology brings to the formation of topological defects in which the
order parameter vanishes, through which the superfluid/superconducting phase can
carry the associated quantity (angular momentum/magnetic flux).

These analogies also confer a greater relevance in the study of fermionic superflu-
ids: they are often extremely controllable system in which it is possible to investigate
deeply the physics which underlies also the mechanisms driving different kind of su-
perconducting materials.
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Chapter 2

Methods

In this chapter we are going to discuss the methods to create, manipulate, and study
ultracold quantum fermionic gases. Atoms have to be evaporated and cooled to reach
degeneracy, then they are manipulated by means of optical potentials; finally an ab-
sorption imaging is taken to have a direct picture of the gas. We will proceed by de-
scribing the experimental apparatus which permits the creation of fermionic superflu-
ids of 6Li. Then a characterization of the system will be provided, discussing interest-
ing way to manipulate and the atoms in desired geometries. Once trapped, a current
can be imprinted on the atoms with the phase imprinting technique and finally it will
be explained how interference methods can be employed to obtain information about
fermionic condensates.

2.1 Experimental apparatus

An exhaustive description of the experimental apparatus used in this work, has already
been performed [57–59], so we will limit ourselves in recalling the fundamental steps
in creating and cooling the gas. The basic process consists of the procedure described
in the following. First of all, Lithium-6 is evaporated in the oven and then expelled by
a thin nozzle; here the atoms enter in the Zeeman slower, where their velocity indeed
reduces to arrive in the science chamber. Now, a magneto-optical trapping is performed
before using evaporative cooling to reach temperature around tenth of nanokelvin. At
this point, the gas is loaded in an oblate geometry and then it is manipulated with
optical potential imprinted thanks to a digital micromirror device (DMD). Finally, the
measurements consists in taking a picture of the gas with an high resolution imaging
system.

In figure 2.1, a picture of the experimental apparatus is show; we will proceed the
narration following the image from left to right i.e. from the genesis of the atoms to the
effective measurements of the gas properties.
Clearly everything happens in ultra-high-vacuum (UHV) conditions, using a system
isolating cold atoms from hot thermal background ones.
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Figure 2.1: Picture of apparatus for production of ultracold fermionic gases. An over-
all view of the ultra-high-vacuum system is given: first lithium atoms are loaded in
the oven (a), then expelled through a nozzle; they are then decelerated in the Zeeman
slower (b) in order to be trapped in the science chamber (c). Image from [57]

2.1.1 Genesis of the gas

Oven Lithium at room temperature is in a solid state. To obtain a significant vapor
pressure it needs to be heated up to temperatures above 400 °C. In our system samples
of artificially enriched 6Li is held in a cup at 430 °C. The vapor flow is then collimated
and expelled through a thin nozzle. In order to avoid obstructions, the nozzle is heated
up to 460 °C. The flow is then collimated further by a cooper cold finger.

Zeeman slower Atoms need now to be decelerated in order to enter the science cham-
ber and be trapped by the magneto-optical trap (MOT). Intending to achieve strong de-
celeration, we employ a Zeeman slower [60, 61], which is able to decrease atom velocity
from 800 m/s ca. to a final velocity of 30 m/s.

Figure 2.2: Image from [57]

A representation of the structure of the Zeeman slower is given in figure 2.2: it
is a tube wrapped in 9 coils carefully designed to obtain a spatially inhomogeneous
magnetic field. The idea is to combine the action of a counter propagating laser beam
resonant with the D2 transition (see Appendix A), with that of the magnetic field. The
task of the magnetic field is to always keep the atoms resonant with the incoming laser
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beam, which propagates in the opposite direction with respect to the lithium flow. It is
needed because the deceleration causes a different intensity of the Doppler shift along
the tube.

The Zeeman slower in the apparatus is in a spin-flip configuration: in fact, the mag-
netic field profile passes through zero value, causing some atoms to depolarize and
forces the usage of a repumper light to recover those atoms. In this way, at the end
of the tube, the atoms are off-resonant with the laser beam and ready to enter in the
science chamber.

MOT Once atoms are inside the science chamber, they are trapped by a magneto-
optical trapping system (MOT). A pair of coils in anti-Helmholtz configuration are used
to generate a quadrupolar magnetic field: by combining it with three pairs of counter
propagating laser beams (one for each direction), at the same time a trapping and a
cooling of the atoms will take place [62]. During this stage it is usually possible to trap
around 109 atoms with a temperature of the order of 500 µK. This process is 7-9 sec
long. Still, there is a lower theoretical bound for cooling atoms in the MOT, which is the
Doppler temperature. For our 6Li atoms, this value is TD = 140 µK. Therefore, another
cooling process takes place right after switching off MOT laser beams, which consists of
gray molasses acting on the D1 transition to achieve a sub-Doppler cooling [59]. After
this process the gas temperature is around 50 µK.

In order to adjust spatial position of the gas with regards to the next optical traps,
some compensation coils are also placed. There is a pair of coil in a similar Helmholtz
configuration for each direction, in order to make possible to shift the center of the MOT
in any direction.

Crossing trap and evaporative cooling The next step is the loading the gas in a Opti-
cal Dipole Trap (ODT) generated with an IPG laser. This high power (max 200 W) beam,
having 1070 nm wavelength, enters in the science chamber with an angle of 7 degrees
respect to the MOT beam. Once IPG is on, a fast modulation of the central frequency
and the amplitude of the IPG’s AOM is performed, in order to catch more atoms from
the MOT.

Once atoms are loaded in the IPG, a second stage of gray molasses is performed in
the trap; then we ramp the magnetic field (generated by some Feshbach coils) up to 834
G, which is the top of the |1⟩ − |2⟩ resonance. Here it is then performed evaporation
in order to produce fermionic superfluids. Finally, the IPG is crossed with a Mephisto
ODT, which has an angle of 14 degrees respect to the IPG, and a wavelength of 1064
nm. The so-built trap assumes indeed a cigar shape which contains 100-200 thousand
atoms at temperatures of the order of 20 nK.

Once the evaporation is over, it is possible to change the field applied by the Fesh-
bach coils in order to change the interaction strength by acting on the scattering length
(see Appendix A); it is thus possible to explore different regime across the BEC-BCS
crossover (in fig. 2.3, some examples of cigar trapping plus TEM0,1 for UFG and BEC
are shown).
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Figure 2.3: Images of fermionic superfluids in harmonic trap. The density distribution
of the gas is shown in the Unitary (upper) and BEC (lower) regime. Gas are captured
in the crossing trap and then loaded in the TEM0,1; at the end, a vertical absorption
imaging is taken.

2.1.2 Loading in the TEM0,1

During recent years, increasing interest has showed up in studying ultracold gases in
homogeneous traps. Indeed, in the usual harmonic trap the translational symmetry is
broken, and moreover the nonuniform density can undergo spatially variations in en-
ergy and length scales. This is actually a non negligible problem in studying critical
phenomena for which the correlation length diverges. To overcome this problem uni-
form trapping potentials seem to be a good solution, and they’ve been used to create
both uniform Bose-Einstein condensates [62–65] and fermionic gases [66].

In order to create quasi homogeneous fermionic gas in our experimental setup, we
employ two main methods: concerning the vertical direction, we apply a TEM0,1 beam
to squeeze the atoms, and then we shape them with a digital micromirror device. For
both the methods we employ a 532 nm light originating from a Coherent Verdi V-8 laser,
which acts as a repulsive potential for 6Li atoms.

The TEM0,1 beam is designed to squeeze the gas in the vertical direction; by varying
the power of the beam, different regimes are available to be explored. It is thus possible
to vary from an oblate regime to a quasi 2D regime at high power (2 W). This beam has a
waist of σ = 8.73 µm in the z direction, and a 400 µm waist in the y direction. The beam
profile is shown in figure 2.4a: by providing confinement in the vertical direction, it
also helps in compensating the residual harmonic trap produced by the Feshbach field
of about 8 Hz (at high power).

The effect of the TEM0,1 on the atoms is shown in figure 2.4b: acting as a repulsive
beam, the atoms gets trapped inside the intensity node and so the gravity is defeated.
The condition in which TEM0,1 is used in this work is the low power regime, in which
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(a) (b)

Figure 2.4: TEM0,1 beam profile (a) is shown: since the 532 nm light act as a repulsive
potential, the atoms are squeezed in the vertical direction resulting in a density profile
(b) which is Gaussian with a waist of σ=8.73 nm

the gas is oblate and a good number of atoms is preserved without interfering in the
homogeneity of the density profile.

2.1.3 High resolution objective

It is possible to manipulate the obtained superfluid it by means of optical potentials. An
essential tool to achieve this goal is the presence of an high resolution objective which
allows to reach the sub-micrometer precision in spatial resolution. For the characteris-
tics of the objective and the setup we refer to [38]. This is a fundamental tool also for the
imaging technique: indeed, both DMD and imaging beams pass through the objective
which focuses the light on the atomic cloud.

The objective we employ is custom made by Special Optics, and its optical proper-
ties are listed in tab. 2.1. It is designed to feature the same focal point for both resonant
light at 671 nm and blue-detuned light at 532 nm, so that it can be employed not only
for imaging in absorption the atomic cloud at high resolution, but also for imprinting
optical potentials from the DMD defined over a micrometer length scale.

In particular, to compute the resolution of the objective, a good practical quantity
to be calculated is the full width at half maximum (FWHM) of the point spread func-

Numerical Aperture (NA) 0.45
Effective focal length 47 mm

Field of view 0.33 mm
Working distance 25.1 mm

AR coating 670 nm, 532 nm, 1064 nm

Table 2.1: High-resolution microscope objective optical properties.
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tion (PSF), which fully characterizes any composite imaging system. This definition
extends the validity of the Rayleigh criterion also in presence of aberration. It is possi-
ble to compute the FWHM as FWHM = 0.51 λ

NA . The resulting expected FWHM for the
microscope objective is thus 760 nm for λ=671 nm, and 603 nm for λ=532 nm. It is pos-
sible to also characterize experimentally the objective features and the following results
have been found: the resolution of the objective is observed to be almost constant over
a region of about 150 µm radius, which is compatible with the nominal field of view of
300 µm of the objective. The measured resolutions are instead 630(10) nnm for λ=532
nm and 830 at the wavelength of λ=671 nm. Both the resolutions agrees with the nom-
inal ones within 10%. It has been also verified that the focal length of the objective is
the same at 532 nm and 671, and finally the total magnification of the composite optical
system is measured to be M = 21.8.

2.1.4 DMD for arbitrary optical potentials

As mentioned, arbitrary optical potentials are applied thanks to a digital micromirror
device; the structure of the device is shown in figure 2.5: it consists of a 1024 × 768
array of pixel, where each pixel is a square micromirror of pitch 13.68 µm. It is possible
to control the inclination of each micromirror by the application of external voltage: as
a consequence, the pixel changes its status. Three states are available, as depicted in
figure 2.5(b): when the DMD is OFF, and no external field is applied, the pixels are not
tilted and stay in the rest mode, otherwise +12° and -12° configurations are allowed,
corresponding respectively to ON and OFF states. When a pixel is ON, the incident
light is reflected to the atoms, otherwise it is not.

Figure 2.5: DMD structure. The device consists mainly of a chip which is composed of
a 1024 × 768 array of pixel. Each pixel is a digital micromirror in which three configu-
rations are available (b): rest, ON, and OFF. In case an external voltage is applied, the
desired micromirror tilts to shine - or not - the light on the atoms. The desired poten-
tial is given in input to the DMD as a binary image which is then reflected (a) on the
sample.

The arbitrary optical potential is passed to the DMD as a binary image (e.g. the smile
in fig 2.5(a), and the reflected image is projected on the atomic cloud. Since the light
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source is blue-detuned beam at 532 nm, it acts as a repulsive potential for the atoms.
As a matter of fact, the laser beam has a Gaussian shape, and the DMD acts as a mask
in reflection, thus also the potential applied to the atoms result in a Gaussian profile.
Since in usual application this light profile is not suitable (e.g. for moving an obstacle,
shaping the cloud, or adding a barrier), a feedback program is needed to overcome
this problem and obtain uniform potential. The idea is to shine the light on a camera
first, and then adjust the state of the pixel by the comparison between the obtained
image and the target one. To achieve the goal, a pixel-by-pixel error correction matrix
is applied on the on the DMD mirror array configuration, so that the error between the
two images is minimized: the result is an homogeneous profile over a large area ( 120
µm).

One of the most useful properties of the DMD is the possibility to create also dy-
namical potentials. The DMD has indeed two modalities in which it can be run: a static
image can be applied or a dynamical sequence of images can be given as input. The
input can be an arbitrary long sequence of images which are triggered by an input set
to the device by the control program. The time between two different images is called
Picture Time (PT). The maximum frame rate allowed in the running modality is 22 kHz,
corresponding to a minimum PT of 44 µs. Anyway the Picture Time can be tune will-
ingly from its minimum value to any desired timing with regards to the potentials to
be applied.

(a) Florence skyline: from left to right the Florence cathedral is vis-
ible, with Giotto’s Campanile and Brunelleschi’s Dome, Palazzo
Vecchio and Ponte Vecchio bridge.

(b) Arbitrary heart
shaped atomic cloud
with arbitrary text.

Figure 2.6: Arbitrary optical potential with the DMD. Thanks to the high resolution
achieved, it is possible to generate arbitrary uniform optical potential on the atoms, in
order to create the desired shapes and geometries.

Therefore it is possible by combining TEM0,1 beam and the DMD, to produce arbi-
trary uniform optical potential: after the gas is loaded in the cigar trap, it is squeezed
vertically by the TEM0,1 and then the DMD is ramped on with the desired image. Some
examples are shown in figure 2.6: it is possible to generate a Florence skyline atom
density distribution or any other desired shape. Moreover an iris is placed before the
high resolution objective so that it is possible to tune the spatial resolution and obtain
smoother or sharper optical potentials.
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2.1.5 Imaging technique

All the measures that we are able to extract from the sample, such as number of atoms,
temperature or density distribution, are derived by analyzing the image of the atomic
cloud. In order to take an image, an high intensity absorption imaging is performed.
The image of the sample is acquired shining high power resonant light to the atoms
and then collecting the resulting shadows. By using two different optical paths, it is
possible to perform horizontal or vertical imaging.

The horizontal one is less sophisticated and used mainly for calibrations. It has a
magnification of 6.87 and it runs in Fast Kinetic Series (FKS) mode, so that it is able
to capture three images with the short delay time of 200 µs, by using one third of the
chip dedicated to each image. The camera pixels are 16× 16 µm, so taking into account
the magnification they correspond to 2.3 µm side square on the atoms. Another low
magnification (0.5) camera can be placed manually in the optical path in order to check
the loading of the gas in the MOT.

The vertical imaging is indeed the most sophisticated one. As for the DMD, the high
resolution objective is implemented to focus the light on the atoms. It allows to reach
a sub-micrometer resolution in the imaging setup (where the resolution is defined as
the minimum distance for which two objects appear separated in the imaging plane).
The total magnification achieved with the optical setup for the vertical imaging is 21.8;
since the camera pixel are 13 × 13 µm, each pixel corresponds to a 0.6 µm square on
the atoms. Also in the vertical direction, the camera is used in FKS acquisition mode
by capturing three images with a very short delay time. This procedure is necessary to
obtain information from the images, since from the Lambert-Beer law it is clear that the
atomic density (integrated over the vertical direction) depends on incident and trans-
mitted intensities:

n2D(x, y) = − α

σ0
ln
(︃

Iout

Iin

)︃
+

α

β

1
σ0

Iin − Iout

Is
. (2.1)

In equation 2.1, σ=
3λ2

2π is the ideal value of the absorption cross section, while α
and β are parameters which relate the saturation intensities to ideal and effective cross
section respectively. Is is the intensity of the resonant light which we shine on the atoms.
Finally Iin and Iout are incident and transmitted intensities. It is possible to obtain them
by analyzing the three images: we remove the third image (the background) from the
other two, then the incident intensity is obtained from the second image (just light
without atoms), and the transmitted light is the one collected in the first image i.e. the
part of the beam which is not absorbed by the atoms.

A representation of the main discussed features acting in the science chamber is
given in figure 2.7: both vertical imaging and DMD share the same final optical path to
reach atomic sample, thanks to the high resolution objective which focuses both reso-
nant light at 671 nm and blue-detuned light at 532 nm. More details on objective and
imaging setup can be found in ref [38].
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Figure 2.7: Representation of the science chamber. On the left panel a 3D scheme is
show: around science chamber MOT coils and Feshbach coils are winded, while laser
beams can enter thanks to openings on the sides and on the top/bottom of the cham-
ber. The high resolution objective is places in the optical path of both DMD beam and
vertical imaging. On the right panel a more schematic representation of the laser beams
inside the chamber is given (above a view from the top while below a section seen from
the side): a first confinement is due to the 3-dimensional MOT beams after the atoms are
decelerated by the Zeeman slower. Then the gas is trapped by a crossing of Mephisto
and IPG laser beams, before being loaded in an oblate geometry thanks to the TEM0,1.
Once in the oblate geometry, arbitrary optical potentials can be applied by the DMD,
and the atomic cloud is finally imaged by integrating vertically the absorption light.
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2.2 Ring geometry and characterization

The main focus of this work concerns a particular geometry in which atoms are shaped,
that is the annular one. By employing the DMD and the TEM0,1 beam, it is possible to
imprint any desired shape on the atomic cloud. A very interesting geometry in which
it is possible to study persistent currents is the annular one, i.e. a ring-shaped geom-
etry. Actually the ring geometry is very interesting for investigate different fields of
superfluidity, such as Josephson effect, phase fluctuations, high-precision Sagnac or
gravitational interferometry [67], and also Kibble-Zurek mechanism [68]. Some other
fancy applications regard the construction of a mode-locked atom laser [69] and the cre-
ation of sonic black holes in tight ring-shaped condensates [70]. The investigation is led
both experimentally and theoretically [71–73]; indeed this is the most practical geom-
etry in which periodic boundary conditions can be really implemented, making closer
the possible theoretical calculations with experimentally accessible physical quantities.

The goal of this section is thus to explain how we generate a ring geometry on the
atoms. Since in a ring shape, the first excitation modes concern the rotation of the atoms,
some space will be dedicated to show how we prepare a very still cloud of atoms.

(a) 3.7 µm width ring. (b) 10.3 µm width ring.

Figure 2.8: Realization of tunable annular fermionic superfluids. Thanks to the use of
the DMD it is possible to manipulate the atoms to obtain tunable ring geometries, from
a 1D-like (a) to ticker ones (b).

As we explained, thanks to the DMD it is possible to generate arbitrary optical po-
tentials on the atoms (see sect. 2.1.4). Moreover, we employ a TEM0,1 beam which helps
to obtain an uniform confinement (see sect. 2.1.2). In this way we are able to create tun-
able ring geometries as shown in fig. 2.8: it is possible to create very thin rings (2.8a)
which mimic a 1D geometry with periodic boundary conditions very well; on the other
side we can decide to work with more atoms in ticker rings, in which the radial motion
is not completely suppressed.

In order to perform a characterization, some information are needed about the ring;
for example the DMD center should be fixed, but it can undergo to day-to-day fluctua-
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Figure 2.9: Image processing to detect the center of the ring. First some blur is applied
(a) to the image in order to denoise and process the edges, then it is transformed in
binary image (b), in order to detect the contours and save them (c). Finally, chosen
the right contours, it is possible to fit them with two circumferences and average the
obtained centers.

tions. Moreover, the ring’s width is set in DMD pixel units, and it is not straightforward
the exact conversion since a bit of resolution is loss due to the closure of the iris 1. Find-
ing the center of the ring is very useful also in order to unwrap it, which is a basic step
for many procedures as we will see in a while and in chapter 3.

In order to find the center and the radius of the ring, we perform some image post-
production as shown in fig. 2.9: first, a median 5 × 5 blur is applied, meaning that
each pixel is replaced by the median value over a square of 5 × 5 pixel around it. This
step is used for processing the edges while removing the noise. Then another simple
blurring with a larger kernel (7×7 pixels) is applied to further smooth the image and
prepare it to edge detection. The result of these two blurs is show in figure 2.9(a).
Then, a threshold is carefully chosen and applied, so that the image con be converted
to a binary image (fig. 2.9(b)). It is now possible to detect the contours by using the
findContours function from OpenCV library in Python, and obtain an array with the

contours of the image (fig. 2.9(c)). Just the first two contours are needed, i.e. those
delimiting the ring, and they can be fitted with two circumferences. The final center is
obtained by averaging the centers of the obtained circles (red and blue crosses in fig.
2.9(d)) and the width of the ring is given by the subtraction between the two radii.

It is now possible to unwrap the ring from its center and transfer the radial and
angular coordinates into Cartesian ones. An example is provided in fig. 2.10. The ring
shown in figure corresponds to the geometry used in this work, with the following
characteristics: the inner radius is 9.94 µm wide, the external one has a width of 20.22
µm, resulting in a ring width of 10.28 µm. In fig. 2.10 it is also shown the radial density
profile at different angular cuts. A black line represents the average over all the cuts,
and it is possible to see that a quasi-homogeneous annular geometry is achieved.

The final question we have to discuss is the creation of the trap. First of all, in
order to perform detection methods based on interference, a reference is needed. As

1We decided to keep the iris close (see sect. 2.1.4) for reason that will be explained later in section 2.3.
We loss a bit of resolution but we confirmed the no result depend on the iris closure ar opening.
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Figure 2.10: Annular geometry characterization. In the left panel the final chosen ring
for measurements is shown, whose width is about 10 µm. In the central panel it is
visible the unwrapping of the ring in Cartesian coordinates. On the right panel the
radial density profile is plotted for cuts at different angles: each color stands for an
angle and the average is represented as a black solid line.

a reference, we add a disc inside the ring, separated with a 2.4 µm barrier which -
we verified - creates an hole in the density. The barrier width is tunable, therefore
to perform some kind of measurements it has been used a larger barrier i.e wide 6
µm. Since it is very easy to excite rotational movement in an annular geometry, we
optimized a method to load the atoms in the trap so that at the end of the procedure
the gas is very still. The procedure is represented in fig. 2.11 and it consists of the
following steps. First the gas is loaded in two hemispheres which are separated by
a 2.4 µm wide barrier. The height of the barrier is well above the chemical potential,
so there is effectively an hole in the density profile. At this point a circular barrier
is ramped up adiabatically in order to avoid creation of any kind of excitations. The
time-step used is 0.1 ms, which is the delay time of DMD’s action of switching images
(PT) (see sect. 2.1.4), and 15 steps are employed to reach the final barrier height. After
waiting 40 ms, the next step is performed, so the stopping barrier which used to divide
in the the cloud is ramped down. Also in this case the operation is done adiabatically,
with a PT of 5 ms. This operation requires 15 steps to be completed and, at the end, the
gas is still in the trap and ready to be further manipulated.

The methods we employ to verify that no rotational movement takes place at the
end of the loading in the trap, is the one based on interference and will be explained
in chapter 3.1. The optimization of every parameter has been done by checking if any
unwanted excitation forms, and by finding the correct ranges in which it is possible to
create a very still gas.

34



2.2. RING GEOMETRY AND CHARACTERIZATION

Figure 2.11: Procedure for the creation of the trap. The trap is created by loading two
hemispheres on the atoms. Then, a round barrier is ramped up in 15 steps with 0.1
ms PT, and the linear ”stopping” barrier is ramped down in 15 steps with 5 ms PT. An
animated gif of the creation of the trap is available by scanning the QR code.
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This is how the gas is trapped in the desired geometry, now it can be moved. In the
next section it will be discussed how we are able to confer an angular velocity to the
atoms to make them rotate and study the persistent current phenomenon.

2.3 Phase imprinting technique

Usual methods to make a superfluid rotate have been discussed in ch. 1.3.2, and
mainly consist in stirring the atoms with a laser beam or give them angular momen-
tum through a two-photon Raman transfer. Although these methods are quite reliable
in giving a well-defined winding number W, they are restricted to low W values; more-
over the preparation usually takes long time, which can be quite an issue if the lifetime
of the sample is short or if fast operations on the wavefunction have to be performed.
The technique we are going to present is instead based on the idea of imprinting a phase
to the atoms by shining the cloud with an optical potential for a very short time; this
technique is indeed called phase imprinting.

The phase imprinting method was first proposed in 1999 [74] for generation of vor-
tices in Bose-Einstein condensates and the employed in studying dark solitons in BECs
[75, 76]. The concept is to employ a far off resonant laser beam, in our case a blue-
detuned 532 nm beam, and shine it on the atoms. As we will see below, if the applica-
tion time (i.e. imprinting time) is fast enough, no density perturbation should appear
in the condensate, just a modification of the macroscopic wave function’s phase. More
recently, this technique has been studied and proposed to imprint circulations in su-
perfluids [77], which is very similar to the approach we are going to follow. A big
difference consists in the fact that their proposal includes the usage of a barrier in or-
der to make everything work, that it is not needed in our system thanks to the high
resolution achievable.

Now basic concepts of phase imprinting will be explained. Since our geometry is
annular we will work with polar coordinates. We shine a far-off-resonance laser beam
on the sample, which has a spatial variable intensity profile I(r, ϑ) on the plane. When
pulsed, it gives rise to a potential on the atoms

U(r, ϑ) = αI(r, ϑ) (2.2)

which is linearly proportional to the local beam intensity. The factor α is proportional
to the polarizability and it can be written in a two-level atom approximation as:

α =
Γ
∆

h̄Γ
8Is

(2.3)

where ∆ is the detuning, i.e. the difference between the frequency of the incoming light
and that of the atomic resonance, Γ is the transition line width, and Is is the saturation
intensity. When shining the light on the atoms for a time τ which is much smaller than
the timescales playing a role in the system, it is possible to write the final wave function
of the system as:

ψ(r, ϑ, τ) = e−
i
h̄ U(r,ϑ)τψ0(r, ϑ) (2.4)
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where ψ0(r, ϑ) is the initial wave function of the ground state. Thus, the effect of the
imprinting is just to add to the ground state wavefunction the phase:

φ(r, ϑ) = −U(r, ϑ)τ

h̄
= −α

h̄
I(r, ϑ)τ (2.5)

At this point it is clear that it is possible to arbitrary imprint a phase on the atoms by
employing the suitable planar intensity profile. By recalling what discussed in ch. 1.3.2,
and in particular equations 1.31 and 1.29, we know that a linear phase profile would
produce a velocity field in the angular direction. It means that we can apply a linear
intensity profile to obtain the circulation of the atoms.

(a) Image of the profile imprinted with the
DMD. Just the yellow ring-shaped mask is cut
and applied to the atoms to make them rotate.

(b) Angular intensity profile for different ra-
dial cuts is plotted after the feedback has been
performed to obtain a linear profile.

Figure 2.12: Gradient profile of the applied intensity beam. With the DMD it is possible
to imprint a linear (b) phase profile on the atoms. From the whole image we cut (a) only
the region of interest to imprint a circulation to the atoms in the annulus.

We will thus employ a phase dependence which is linear on the angular variable
φ(r, ϑ) ∝ ϑ, as shown in fig. 2.12; it is there provided the shape of the light profile we
shine on the atoms: with the DMD, the distribution in fig. 2.12a is generated. Then, we
select only the region of interest (i.e. the one between the two yellow circumferences)
and we shine it on the atoms for a variable time τ. A feedback has been performed
on the image sent from DMD, in order to obtain a truly linear profile (as in fig. 2.12b
is plotted). In figure, some cuts at different radii are shown: in the region of interest
for our geometry the linear profile is always well defined. It is also worth to point out
the high resolution of the anti-gradient in fig. 2.12b which enables us to work without
adding a barrier in correspondence to the phase jump.

The other parameter which plays a role in equation 2.5 is the imprinting time τ.
Since superfluid velocity depends on the gradient of the phase vs(r, ϑ) = h̄

m∇φ, the im-
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B 1/kFa νz τz h̄/µ
(G) (Hz) (ms) (µs)

BEC 702 5.53 396 ± 2 2.5 155
UFG 834 0 523 ± 8 1.9 35
BCS 862 -0.42 470 ± 6 2.1 20

Table 2.2: Properties of the gas used in this work with associated timescales. From left
to right: magnetic field, interaction parameter, vertical trap frequency and period, and
characteristic timescale are reported for each regime of fermionic superfluidity.

printing time acts in changing the applied winding number. Thus, by using lower im-
printing times we are able to excite lower states of circulations, but also higher winding
number can be imprinted by increasing the time duration of the pulse. As mentioned,
it is important to keep in mind the limits in which this procedure is valid, i.e. the im-
printing time must be much lower than the trap frequencies [77].

In the context of this work, the three fermionic superfluid regimes are explored and
for each one has been measured its trap frequency. The fastest one, so the one that gives
the upper limit, is the vertical frequency which assumes the values reported in tab. 2.2.

In the table, we compare also another timescale playing a role which is the the re-
sponse of the atoms to an external stimulus. The time scale is set by h̄/µ and it is
actually the most restricting one.
As a matter of fact, it is impossible to imprint for a time shorter than h̄/µ in UFG and
BCS regimes due to the minimum delay time of our DMD; anyway, we have verified
that, working inside the reasonable ranges in which τimprinting ≪ τz, phase imprinting
is a powerful tool which allows to generate arbitrary circulation in a deterministic way,
as will be explained in the following of the thesis. We are going to conclude this chapter
with an introduction to the method employed to detect the motion of the atoms.

2.4 Detection by interference methods

Since the first experimental realization of interference between two Bose-Einstein con-
densates [78], a lot of experimental and theoretical efforts have been devoted in study-
ing and analyzing properties of the interference [79–87]. During the recent years, in-
terference methods have been proposed [88] and realized [89] also for fermionic gases,
in order to explore a lot of properties of the systems, even not trivial ones such as the
vector nature of the order parameter are predicted to be accessible [90].

2.4.1 Interference in Bose-Einstein condensates

The very first interference pattern between two condensates was seen in 1997 at the
MIT: they created to condensates by evaporating sodium atoms in a double well po-
tential, so that the separation was 40 µm. After a 40 ms time-of-flight (TOF) the trap
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Figure 2.13: First observation of interference pattern in BEC. Two condensates are pre-
pared in a double well potential with a separation of 40 µm; then, the trap is released
and the condensates are allowed to expand and overlap. The presence of the fringes is
an evidence that condensed Bose atoms are coherent and show long-range correlations.
Image from [78].

was released and the gas was let expand and overlap. Then, an absorption imaging is
performed and the results are reported in fig. 2.13.

In fig. 2.13 it is possible to observe the presence of fringes when the two condensates
interfere. This is a direct measure of the relative phase between the two condensates.
In fact, an interference producing fringes can only happen if a macroscopic phase can
be attributed to each condensate. In that case it is possible to obtain the expected in-
terference pattern by modeling the condensates as two point like sources in harmonic
confinement and separated by a Gaussian barrier [82]. Thus, the fringes period can be
written as if two point-like pulsed source at a distance d interfere, and it is given by the
de Broglie wavelength λ associated with the relative motion of atoms with mass m:

λ =
ht
md

(2.6)

where h is the Planck’s constant, and d/t the speed of the condensates in any point of
the space.

Over all the theoretical work following the experimental results, two years later it
was explicitly shown that the observed interference pattern is related to the existence
of a macroscopic phase coherence inside the condensates [79]. The idea of the paper
is to explore the behavior of the condensate in momentum rather than in coordinate
space, leading a straightforward relation with experimental measurable quantities. In
the paper, two parallel trapped condensates are taken into account, located at a distance
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d along the x axis. They’ve associated the order parameters ψa and ψb. The starting
point is the assumption of the presence of the coherence, so that the order parameter of
the whole system can be written as:

ψc = ψa + eiϕψb . (2.7)

By going into the momentum space, it is possible to derive the momentum distribution

⟨n̂(p)⟩ = 2
[︃

1 + cos
(︃

px
d
h̄
+ ϕ

)︃]︃
n0(p) (2.8)

where n0(p) is the momentum distribution of each condensate.
Fringes-like interference pattern is clearly predicted with the cosine periodicity,

while it results that without phase coherence the density distribution does not ex-
hibit interference. In fact, in that case the many-body wavefunction would be sepa-
rable, and the average of the momentum distribution operator would take the value
n(p) = 2n0(p), which clearly does not exhibit interference.

2.4.2 The problem of interference in fermionic systems

Everything is thus very clear and linear for what concerns Bose-Einstein condensates,
but when dealing with fermionic superfluids things get more complicated. This is
mainly due to the fact that different fermionic regimes are experimentally accessible,
and it seems that the interaction strength plays indeed a significant role in the visibility
of the interference pattern.

Interference among fermionic systems has firstly been achieved in 2011 by overlap-
ping two parallel mBECs [89]. As expected, in the weak interacting regime the fringes
are well visible but, increasing the interactions, the visibility decreases.

In fig. 2.14, the contrast of interference is plotted against the interaction parameter
in unity of magnetic fields. The results can be summed up as follows: since the inter-
ference pattern shows coherence over the spatial extension of the cloud, the contrast
of interference vanishes above the critical temperature of condensation, demonstrating
that the interference is established by condensed molecules only. On the other side, it
is found out that non-forward elastic scattering processes can lead to a depletion of the
condensate wave function while the clouds overlap. Since this effect increases with the
interaction strength, it prevents from observing interference in the strongly interacting
regime. Therefore at unitarity what is seen is not an overlapping but instead a collision
and a deformation which can be explained as an hydrodynamic behavior.

Then, some theoretic paper have confirmed the conjecture that the strong interaction
profoundly affect fringe formations during the expansion and overlapping of two su-
perfluid Fermi gases [88]. Therefore from both theoretical and experimental prospects,
interference between superfluid Fermi gases in the strongly interacting regime is so far
unknown.

Still, a method has been suggested to suppress the non-forward collision and try
to access the unitary or even the BCS regime, and it is employing fast magnetic field
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Figure 2.14: Visibility of fringes against interaction strength. Black point and bars rep-
resent data and standard deviations from 20 realizations, while the solid line is the
predicted visibility from the simple calculation modeling the non-forward scattering
events. Adapted from [89]

ramping techniques [41, 91]. In this work we have actually used magnetic field ramp
techniques both fast and slow with different purposes: we are able to study persistent
currents across the BEC-BCS crossover and detect them by interference methods. In
fact, after having excited the current, a sweep of the field is performed. Since strong
interactions prevent the formation of fringes, we sweep the field from the region of
work (which can be 834 G for unitarity or even 862 G for BCS) to a deep BEC regime (at
field of 702 G, so 1/kFa ≃ 5.5).

We usually perform one of two kinds of sweep: since we are interested in the de-
tection of a residual current, in order to study persistent currents, a 50 ms sweep is
performed, and after 10 ms of waiting time (for the stabilization of the field) an ab-
sorption image is taken. Otherwise it is also possible to perform a fast ”jump” to BEC
regime, which is 2/3 ms long and allows to monitor the millisecond dynamics of the
atoms. This method will be mainly employed in ch. 4.
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Chapter 3

Measurements of persistent currents
and decay in fermionic superfluids

In this chapter, we are going to present and discuss the main results achieved in this
thesis work: we provide the observation of currents whose lifetime is limited only by
experimental resolution of imaging with a low number of atoms. More in detail, the
currents we observe are detected up to a few seconds and a decay is never observed for
all the regimes across the BEC-BCS crossover. The way in which we observe currents
consists in counting the number of spirals that appear in the interference pattern.
We will also provide the results of the phase imprinting technique as a reliable method
to excite desired quantized circulations. After having proved that the currents are long-
lived, we will discuss on the methods to damp them and make the circulation decay,
presenting a Landau-like excitation above critical velocity, and the effect of a disordered
potential on the currents.

3.1 Detection of spirals

As we have already discussed, we employ interference methods to detect the existence
of a current. This technique is available only when dealing with condensates, since re-
quires a macroscopic phase coherence, as widely discussed in chapter 2.4. We are going
now to follow the way indicated in ref [79], and apply the method to our geometry to
find out what is the expected interference pattern in presence or absence of currents.

The model we take into account to simulate our geometry is shown in fig. 3.1. We
consider two condensates such as those we have in the experiment, so a disc and a
concentric ring. The first step is now transfer in polar coordinates the procedure: we
assume for simplicity that the condensates contain the same avarage number of atoms,
and describe the inner condensate as ψa and the outer with ψb, where thus Na = Nb =
N/2.
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Figure 3.1: Model of the geometry employed in the calculation. We consider to conden-
sates at radii zero and r0, each one described by a macroscopic wave function ψa and
ψb respectively.

It is possible to write the order parameter of the whole system as a linear combina-
tion of two:

ψc = ψa + eiϕψb . (3.1)

Please note that the relative phase, without any imprinted potential, is just a constant
difference. We follow ref [79] in the definition of the order parameter ψ0 of a single
condensate obeying Gross-Pitaevskii equations and normalized to

∫︁
dr|ψ0|2 = N/2, so

that in the momentum space the order parameter takes the form

ψ̃(p) = ψ̃0(p) + ei(ϕ− k
h̄ r0)ψ̃0(p) (3.2)

from which follows the density distribution in the momentum space

n(pr) = ⟨n̂(pr)⟩ = 2
[︂
1 + cos

(︂ prr
h̄

+ ϕ
)︂]︂

n0(pr) (3.3)

where n0(pr) = |ψ0(pr)|2 is the momentum distribution of each condensate. We report
in fig. 3.2 the resulting profile density. Since in the atomic sample, the time-of-flight
(TOF) expansion gives the information about the momentum space [33], the obtained
profile should be the one that the atoms reproduce.

What is thus expected is the Mexican-hat-like 3D pattern in fig. 3.2a, which would
then results in concentric circles pattern in fig. 3.2b viewed by vertically integrating. So,
periodic circular fringes are expected in case of interference of non-moving condensates
in our disc plus ring geometry.

What is instead not trivial and indeed interesting is to explain what happens in
presence of a circulation. As discussed in chapter 2.3, our method to make the atom
rotate consists in imprinting a phase on the external ring. The phase we choose to use
in the model is a function which is linear with the angular coordinate, since it is the
ideal phase profile that we imprint in order to gives rise to an uniform velocity in the
angular direction as explained in ch. 1.3.2. Always referring to figure 3.1 we can write
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(a) (b)

Figure 3.2: Resulting profile of the interference pattern between two non-moving con-
densates in a 3D picture (a) and viewed from above (b). Concentric fringes appear as a
sign of macroscopic phase coherence with a constant phase difference between the two
condensates.

the order parameter of the whole condensate as

ψc(r, ϑ) = ψa(r) + ei(ϕ+φ(ϑ))ψb(r) = ψa(r) + ei(ϕ+W·ϑ)ψb(r) (3.4)

where in the last step we’ve inserted the linear phase profile which we imprint on the
atoms φ(ϑ) that is linear with ϑ.

To access the momentum phase we perform Fourier transform. Since the interfer-
ence takes place during the clouds expansion only in radial direction, we will transform
only in that coordinate. We obtain:

ψ̃c(pr, ϑ) =
∫︂ dr

(2πh̄)3/2 ψ0(r)e−
i
h̄ prr + eiϕ

∫︂ dr

(2πh̄)3/2 ψ0(r)e−
i
h̄ pr(r+r0)eimϑ =

= ψ̃0(pr) + ei(ϕ+W·ϑ− pr
h̄ r)ψ̃0(pr) (3.5)

from which it is possible to derive the average value of the momentum distribution
operator by computing n̂(pr) ≡ n̂c(pr) = ψ̂

†
(pr)ψ̂(pr) obtaining:

n(pr, ϑ) = ⟨n̂(pr)⟩ = |ψ0(pr)|2
[︂
1 + ei(ϕ+W·ϑ− pr

h̄ r) + e−i(ϕ+W·ϑ− pr
h̄ r) + 1

]︂
=

= 2|ψ0(pr)|2
[︂
1 + cos

(︂
− pr

h̄
r + ϕ + W · ϑ

)︂]︂
. (3.6)

It is now worth to compare the obtained result in eq. 3.6 with the previous one in
eq. 3.3: in presence of phase difference between the two condensates that varies in the
space, also in the final profile a new contribution arises. Namely, the imprinted phase
acts in the argument of the cosine function by changing its periodicity. The result in
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equation 3.6 defines indeed an interference pattern which, seen from above, is made of
spirals. It particular, what defines the number of counted spirals is the winding number
W. We obtain therefore concentric circles (no spirals) when no phase is imprinted, 1
spiral when 2π phase gradient is imprinted, 2 spirals for 4π and so on.

We remark that we can also produce circulation with same magnitude and opposite
sign by imprinting a phase gradient in the opposite direction. As a result from eq. 3.6,
we address W > 0 to clockwise spirals (see fig. 3.3) and W < 0 to anticlockwise ones;
the result is a spiral (or more than one whit respect to the imprinted phase) in the op-
posite direction. The results obtained in eq. 3.6, are presented for different values of
the winding number W in the upper panels of fig. 3.3: as explained, it is possible to
detect the imprinted winding number by counting the number of spirals. In correspon-
dence of each simulated image is reported below also the experimentally achieved in-
terference pattern. The spirals presented in figure 3.3 are relative to the unitary regime.
Then, in order to perform the measurement of the interference, before switching off the
confinement traps, a sweep of the magnetic field to the BEC side is performed.

We report in fig. 3.4(a) the comparison between spirals in the three different regimes
for low imprinted circulations. In figure 3.4(b) we show the procedure we employ to
detect the current in the non-BEC regime of fermionic superfluidity: since, as explained
in ch. 2.4.2, interactions prevent the possibility to see clearly interference pattern in the
unitary and BCS regimes, we perform a sweep to the BEC side of the resonance. More
in detail, we follow the procedure in figure: first we imprint a phase gradient for a time
τ short enough to satisfy requirements explained in ch. 2.3. Then a time T for evolution
is given to the system; during this time some manipulation can be performed, as we
will see in the next chapters. Before taking the image, the magnetic field is ramped to
702 G, which is the value for a BEC superfluid at 1/kFa ≃ −5.4. At the end of this
sweep, we hold 10 ms that the magnetic field stabilizes, and then we switch off the
optical traps and take a time-of-flight (TOF) image. The TOF duration determines the
pattern periodicity and the thickness of the fringes, but not the quantitative result i.e. if
there is - or there is not - a circulation. Usually 1.2 ms of TOF are used to obtain spirals
in this work.

Once obtained the interference pattern, the first available information is contained
in the number of spirals showing up. As said, the number of spirals is related to the
winding number, therefore it stands for a direct quantitative measurement of the cur-
rent which is circulating in the ring. The most trivial way to obtain W is counting by eye
the number of spirals. Anyway, some more quantitative methods are now presented.

The first method consist in performing a fit of the image, after a bit of processing,
with the function in eq. 3.6. The main problem concerns the possibility to perform
a fit in which one of the parameters to be optimized has to be kept discrete. Standard
optimization algorithms do not allow this possibility due to the employed optimization
methods. It is anyway possible to perform a fit keeping W as a real number, and then
approximated it to the nearest signed integer. It is worth to point out that the function
in eq. 3.6 is not continue for non-integer values of W; therefore it is not possible to keep
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Figure 3.3: Simulated and real spirals in unitary Fermi gas (UFG). In the upper panels
what is shown are the results of expected interference pattern between annular conden-
sate and reference disc: the different number of spirals is related to the winding number
i.e. to the phase difference imprinted on the atoms. In the lower panels we report the
obtained spirals corresponding to the expected upper ones. The spirals reported in this
figure are relative to UFG dynamics, and then a sweep to the BEC is performed to ob-
tain the interference pattern. Each image is the result on the average of more (from 4 to
6) images.
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Figure 3.4: (a) Gallery of spirals across the three fermionic superfluid regimes for low
imprinted circulations. Each image is averaged over four different realizations. (b)
A scheme of the procedure to detect currents in different fermionic superfluids: we
imprint (green) the circulation for a time τ, then the evolution and eventually other
manipulations are performed; when we want to perform the measurement we sweep
the magnetic field (blue) to the BEC side in a 50 ms ramp and, after 10 ms of stabilization
of the field, we switch off the trapping (red) and take an image (orange) in time-of-flight
(TOF).

Figure 3.5: Graphical explanation of the devised technique to count spirals. On the left
panel the starter point is shown: as an example we used a BEC interference pattern.
After a blur, the image is unwrapped from its center, the first noisy columns of pixels
are removed, and horizontal cuts are performed (central panel). Each horizontal strip is
then fitted with a cosine convoluted with a Gaussian function to extract the phase shift.
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Figure 3.6: Results of the methods to quantitatively count the spirals. Three example of
BEC interference pattern are shown with anticlockwise spiral, no spiral, and one spiral
respectively in left, central, and right panels. Under each image it is reported the result
of the analysis of the relative image: slope from linear fits is consistent with values of 1,
0, and -1 respectively.

the real value of W since it would end up with a discontinuity in the density distribution
profile.

Another method we come up with, is described in the following and explained
graphically in fig. 3.5: once obtained the interference pattern (left panel of fig 3.5), we
first perform a Gaussian blur, and then we unwrap it as described in the methods chap-
ter 2.2. Once unwrapped, the first columns of pixel in the image are removed (since we
noticed they’re the most affected by noise) and then we perform a lot of horizontal cuts.
For each row cut, we vertically average the pixels and then perform a fit in the horizon-
tal direction. We fit the profile with a cosine function convoluted with a Gaussian, in
order to mimic the damping due to the lack of atoms when going far from the center.
In particular we fit it with the function:

f (x) = N cos(kx + φ)e−x2/σ . (3.7)

The parameter we are interested in, is the phase shift φ: from each row, a value of φ is
extracted and then they are collected together modulo 2π.

In figure 3.6 some examples of the obtained results are reported: when no circula-
tion is detected we’ve already discussed that concentric circles appear. When dealing
with circumferences, no phase shift takes place since the radius is - by definition - con-
stant. Thus, what is observed (central panel of fig. 3.6) is that the measured phase is
always constant, and the slope of the fitted straight line is compatible with zero; for ex-
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ample in the data reported in figure, the obtained coefficient is m = 0.011± 0.02. On the
other side, when detecting a circulation (thus a current), we said a spiral appears. What
differentiates a spiral from a circumference is that in the first case the radius is not con-
stant but varies with the angle, so that the line never closes on itself. As a consequence,
a phase shift arises. Moreover, since the spiral line never closes on itself, a phase jump
has to take place. In the right panel of fig. 3.6 we observed exactly this phenomenon.
We have performed also a linear fit (modulo 2π) and obtained the following results: for
the right panel (clockwise spiral) the slope value is m = −1.007 ± 0.093, while for the
left panel (anti-clockwise spiral) we obtained m = 0.995 ± 0.093. The results are indeed
in extremely good agreement with values +1 and -1, which means that it is possible to
detect also the direction of the current.
The same procedure can be applied to images with more spirals, where the line profile
winds up more than once. In that case we observe - as expected - more severe slopes,
since W > 1 phase jumps have to take place in the same space of 2π. Because of this
reason, images with high winding numbers (W > 5) are not very suitable for this analy-
sis, since an extremely high resolution would be needed to identify different very close
lines. In that cases, an human-eye based approach has still revealed to be the most
efficient one.

3.2 Phase gradient calibration: the results of phase imprinting
technique

As we have seen, we are able to obtain currents with high winding numbers and detect
them from the interference pattern they exhibit, by counting the number of spiral across
the different fermionic regimes of superfluidity. In this section, we want to provide a
characterization of the phase imprinting technique we employ to obtain circulations
of the ring, in order to show how we can excite the wanted winding numbers in a
deterministic way.

The method of phase imprinting has been widely discussed in ch. 2.3: what most
matters is that we are able to imprint on the atoms the desired phase profile. Since a
superfluid velocity arises from the gradient of the macroscopic phase, by imprinting
a phase which depends linearly on the angular coordinate it is possible to excite rota-
tional motion. There are some tunable parameters, among which the most important
are the intensity of the imprinted phase gradient and the imprinting time τ. The im-
portance of being capable of changing intensity of the optical potential relies on the fact
that the regimes across the BEC-BCS crossover have different values of the chemical
potential; thus, in order to explore all of them, it is necessary to be able to tune the
intensity of the phase profile imprinted (beyond the trapping obviously).

On the other side, by changing the imprinting time it is possible to decide the num-
ber of circulations we want to imprint. We’ve already seen in sect. 2.3 that the winding
number results depending on τ, therefore a longer pulse duration will result in higher
imprinted circulations. We report in fig. 3.7 the result for a calibration performed at
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Figure 3.7: Resulting winding numbers for different values of imprinting time in the
BEC regime. It is possible to tune the number of spirals obtainable by changing the
pulse duration of the phase gradient, and so access to different quantized circulating
states. Each point is the average over more than 20 realization, and the error bars are
the standard deviation of the mean; points without error bars correspond to 100% of
realization with the same output.
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low winding numbers. At first sight, we remark the incredible similarity with fig. 1.7
regarding quantization of the magnetic flux in superconductors, highlighting again the
strong analogies between these systems. Indeed, as shown in fig. 3.7, the quantized
quantity here is the circulation, in units of h/m. What we show in the figure is the
winding number, obtained by counting the spirals as explained in sect. 3.1. Each point
of the figure is obtained by averaging at least 20 realizations of the experiment in the
BEC regime with the same parameters. Finished one point, we change the imprinting
time and repeat the same procedure. The error bars in the figure are obtained as the
standard deviation of the mean over the different realizations. It is worth to point out
that there are some points, at stable circulating states, where no error bars are present:
it means that we obtained the same result over all the realizations of the experiment.

The results show the possibility to excite desired circulation states in a deterministic
way. Just as a proof of principle, we report the results obtained in the unitary regime
for the excitation of the state with W = 1: we’ve taken hundreds of images and found
out that the imprinted circulating W = 1 state is reliable at least at 99.47%.

The plateaus in the figure correspond to stable quantized states, namely when the
imprinting time has a duration which is exactly equivalent to imprint a gradient of
phase that is a multiple of 2π. Interestingly, we observe a slightly difference switching
from BEC to UFG or BCS regimes of fermionic superfluidity. As said, we are able to
perform measurements in the different kinds of superfluids by changing the interaction
strength. The results shown in fig. 3.7 refer to a 702 G BEC, so the interaction parameter
1/kFa≃ 5.4. We performed the same measurements also in the unitary regime and in
the BCS, with the results reported in fig. 3.8. In order to compare the results we have
scaled the x-axis: each regime has different chemical potential µ, so different trapping
powers and imprinted intensity. It is indeed possible to use eq. 2.5 to obtain the phase
gradient imprinted on the atoms.

Comparing the three regimes, one would maybe expect a superposition of the cali-
brations, as if it is possible to lead back the phenomenon to a more universal character-
istic of the system. Actually, what is observed is a rigid shift in the phase between BEC
regime and the other two. Due to the importance of the unitary regime and the relative
facility (compared to the BCS regime) in the realization, we focused our attention in in-
vestigate the differences between BEC and UFG results. As a matter of fact, if a −0.26π
phase shift is applied to the UFG curve, the results in the two regimes would perfectly
overlap.

Therefore, we proceed to analyze possible reason to explain the observed discrep-
ancy. The first check we performed concerns the duration of the imprinting time. It’s
been largely discussed about the necessity to avoid to set big imprinting time τ values
to not exceed the regime of validity of the phase imprinting. In that case, also the den-
sity would be affected and the effect of the imprinting would be more complex to be
investigated; in fact, we would have that both the phase and the amplitude of the order
parameter are influenced and their effects cannot be decoupled. In order to verify this
hypothesis, some experiments have been carried on both from the BEC and the UFG
side. First, we try to lower the intensity of the gradient as much as possible with a BEC
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Figure 3.8: Results of phase imprinting in the three regimes across the BEC-BCS
crossover. Scaling the imprinting time with the formula in eq. 2.5, it is possible to
use the imprinted phase gradient as x-axis, and thus compare the BEC (green) results
with the unitary (blue) and BCS (red) ones. The 0.26π shift of the last two calibrations
is not expected and we propose to address it to the role of interactions.

superfluid: we thus entered in a regime where the timescale are larger than those of
the unitary gas. We also repeat the measurement at different holding time T. More in
detail, we present in fig. 3.9a the obtained calibration for T = 2 ms and T = 90 ms with
longer pulses compared to the already presented BEC calibration (used as a reference).

By analyzing experimental data reported in figure 3.9a, some considerations can be
done. First of all we note that there is a small shift between the trends, which mainly
concerns the point in which the fluid starts to rotate. The shift is small, so it is not
very compatible with the big difference detected with the UFG. We note moreover that
it seems easier to detect currents when looking right after the imprinting compared
to what happens after 90 ms. We will prove in the next section that these currents
are long-living, so this is surely not an effort of current decay. Instead, this is due to
excitations generated with the anti-gradient that we unwillingly apply on the atoms
where the phase jump takes place. In fact, by looking at fig. 2.12b, it is possible to
observe that, due to the finite resolution achievable in experimental setups, together
with the gradient we imprint also an anti-gradient in a very localized region of the
ring. A more detailed description of these excitations can be found in Appendix B;
anyway, it is observed to decay at most in 20 ms (it differs for BEC, BCS, or UFG).

The second kind of measurements we performed to study more in detail this hy-
pothesis, takes place in the unitary regime. Here, we repeat the experiment using dif-
ferent values of intensity for the gradient. By changing it, what differs is the imprinting
time needed to achieve the desired circulation. For example, taking W = 1 state as a ref-
erence, we can call τ1 the imprinting time needed to imprint one circulation. We find out
that for 100 µs ≤ τ1 ≤ 250µs the results are compatible, while a dataset with τ1 = 700 µs
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(a) Here, the calibrations obtained with the
lowest possible gradient (light green ones) in
BEC at different holding time T, are compared
to the normal one (darker green) at T = 30
ms. A small shift is observed, but not com-
patible with the discrepancy from the UFG
regime.

(b) Calibration of the phase gradient for dif-
ferent values of intensity imprinted in a uni-
tary superfluid (UFG). The τ1=700 µs is af-
fected by the limits of validity of the phase
imprinting approximation. Values of τ1 lower
than 250 µs are instead acceptable.

Figure 3.9: Calibration of the phase gradient with low intensity imprinting in BEC (a)
and UFG (b) regimes. With τ1 it is identified the pulse duration needed to generate
W = 1 state; we conclude that the discrepancy in the results presented in fig. 3.8 is not
due to an excessively long imprinting time.

resulted in a significant shift, as clearly visible in figure 3.9b. We address this shift to the
fact that we exceeded the limit of confidence for the phase imprinting approximation.
On the other side, it means that in the range between 100 µs ≤ τ1 ≤ 250 µs everything
should work fine. Since we usually put ourselves in the conditions for which τ1 = 150
µs, we can exclude that the discrepancy is due to a too long imprinting time, so the
reason has to be searched somewhere else.

Another possibility we conjectured is that the different nature of the superfluids can
play a significant role. To this purpose, we performed some measurements to better un-
derstand the role of interactions. Since it is possible to change the scattering length by
means of Feshbach resonance (see Appendix A), not only usual 702 G BEC is accessible,
but also other regimes in which the interaction parameter 1/kFa is lower. More in de-
tail, we report in fig. 3.10 the measurements performed in the following regimes: BEC
at 702 G of magnetic field (usual), BEC at 744 G, BEC at 782 G, and finally the unitary
regime in which the magnetic field value is 834 G. As visible in the figure, we noticed
that the three BEC regimes do not show the same behavior. Instead, a shift appears
and it depends on the applied magnetic field. What is observed is that increasing the
interactions in the system, the phase difference needed to excite the state with one cir-
culation increases as well. Better, since the by definition a W = 1 state is generated by a
2π phase difference, what is most likely is that some of the phase we imprint is lost due
to an interaction-dependent mechanism which is needed to be further investigated.
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Figure 3.10: Calibration of the phase gradient for low winding numbers in different su-
perfluid regimes. By changing the magnetic field, we explore gases with low to strong
interactions and we detect a phase shift. We can thus address the phase difference be-
tween UFG and 702 G BEC to the role of interactions in the system.

As a conclusion of this section, we sum up the most relevant conclusions. We char-
acterized the phase imprinting technique which has thus been used for the first time in
order to excite currents. We also demonstrated the possibility to generate states with
the desired winding number in a very deterministic way, for all the different regimes
across the BEC-BCS crossover. We also detected a discrepancy between the BEC regime
and the other two that we addressed to the role of interactions in the fermionic super-
fluids.
It is now possible to study the currents themselves, regardless the way in which they
were generated, to investigate their persistence and eventually the decay-mechanisms.

3.3 Persistence of the currents

In this section, we are going to provide proof of the persistence of the current. We
will demonstrate that they are persistent by proving that no decay is observed for all
the time in which the system is detectable. In metallic superconducting systems that
currents can sustain flow almost forever, in the sense that no decay is observed for
all the lifetime of the system. In the same way our system has strong analogies with
that solid state superconductors: in theory, the lifetime of the supercurrents we observe
should be limited by the time in which the system remains superfluid. Interestingly,
we observe that the supercurrents are limited only by the resolution of our imaging
detection, since the atom number decay results faster than the decay of the superfluid
fraction.

Actually, in usual superconductors, the lifetime of the system is often willingly
tuned without many restrictions. Instead, when dealing with ultracold gases, this is
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Figure 3.11: Lifetime of the atoms in the superfluid BEC regime. To monitor the lifetime
of the system, the sample is loaded in the harmonic cigar trap, and the number of atoms
is measured at different times; each point is the mean over 10 realizations. By fitting
the points with an exponential function (in red), it is possible to extract the decay rate
of τ = 674 ± 24 ms; thus, our imaging system allows us to measure currents up to ∼1.5
seconds. In the inset, the simultaneously measured condensed fraction is shown: at 1.5
seconds the condensed fraction is 65%, thus it is not the most limiting timescale.

not quite true. Because of the confinement system, and due to the inter-particle scatter-
ing events, the system is not stable for long times in the prepared conditions. Thus, the
lifetime strongly depends on the experimental apparatus and the kind of measurements
that have to be performed. As an example, it is clear that after evaporative cooling it is
very easy for an atom that randomly acquires a small amount of energy to escape the
low confinement that is needed to keep the cloud at a very low temperature.

To have an order of magnitude of the timescales in our systems, we perform a mea-
surement of the lifetime of a gas in the optical crossing trap. In this harmonic trap it
is also possible to measure the temperature of the gas in a unitary regime (as explain
in chapter 1.2.2) by fitting the density distribution from an absorption image. Or in
the same way it is possible to measure the condensed fraction if the measurement is
performed in the BEC regime by fitting the bimodal density distribution.

In figure 3.11, it is reported the result of a lifetime measurement of a BEC superfluid
whose initial condensate fraction is about 83%. As said, to perform the measurement
the gas is loaded in the crossing trap and then is cooled down to reach the degeneracy
regime. This operation is performed - as usually - at 834 G (at the resonance), but right
after the field is ramped to the desired value, which in this case is 702 G (1/kFa ≃
5.4). At this point the lifetime is measured by let the gas evolve for different times and
measuring the number of atoms and the condensed fraction. Ten images of the gas (so
ten different realizations) are taken for each time of evolution, and their averages with
the standard deviations are shown in figure as blue points with error bars. To obtain
a lifetime, the data are fitted with an exponential function, from which the decay time
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Figure 3.12: Persistent currents in unitary Fermi gas. Here the lifetimes of the currents
generated in the UFG regime are shown: there is no decay and the flow is observed to
be persistent more than the lifetime of the system itself. Different lines correspond to
measurements at different winding numbers W.

τ can be extracted. The obtained result is τ = 674 ± 24 ms. We also report the results
concerning the condensed fraction: as visible in the inset of figure 3.11, the decay in
this case is linear (up to the 2.5 seconds at least) and its value is ∼65% when the atom
number is at the limit of being detectable (∼1.5 seconds).

Therefore, we observe that the fastest lifetime to take into account is that of the
number of atoms, since no current can clearly flow without atoms. Moreover, also the
imaging detection becomes more and more difficult by ”loosing” atoms. As a conse-
quence, we will consider persistent the currents that, from eq. 1.22, will result having a
decay rate slower or comparable with the one extracted above. What we will provide
is thus a lower limit for the lifetime of the currents, since no decay is observed up to
when the currents are detectable, as we are going to see.

We are going now to present the obtained results. The procedure is explained in
the previous sections: when the superfluid is ready, we load it into the trap made of a
ring and an inner disc (as a reference); then we imprint the desired circulation. After
the phase imprinting, we wait an holding time T and then we take an image in time-of-
flight (TOF). If operating in UFG or BCS regime, before taking the image we perform
a sweep of the magnetic field to the BEC side to observe the interference pattern (see
fig.3.4 for details). What we vary, to observe the persistence or decay rate of the cur-
rents, is the holding time T, from a few milliseconds to a few seconds. It results that
for high-circulating samples, the number of atoms decay faster than in those with low
winding numbers, therefore it is not always possible to explore the same time duration.

We report in fig. 3.12 the typical result obtainable (in the case in figure in the UFG
regime): we excite states with different winding numbers, and check if the currents
survive or not for different times. Not only we are able to check the existence of a cur-
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Figure 3.13: Persistent currents in the BEC-BCS crossover. The final winding number is
plotted against the initial imprinted circulation to proof that no decay takes place nei-
ther in unitary, BEC, or BCS regime. This powerful result re-open the way to investigate
fermionic superfluids as paradigms for other kind of superconductivity.

rent but, as widely discussed in sect. 3.1, also to determine the number of circulations
present.

As a result of the experiment, as visible in the figure, no decay is observed. Instead,
the states with quantized circulations last in time longer then the decay rate of the
system itself. This is indeed a powerful result which demonstrates that the currents
produced in these systems are really persistent. This is the very first work which detects
persistent currents in fermionic superfluids with winding number higher than one, and
the second time that long-living currents are observed in Fermi systems.

Up to now, just results for the unitary regime have been shown, but a lot of mea-
surements have been performed also in the other superfluid regimes. The results are
summed in fig. 3.13: since persistent flows is observed in all the three regimes, it is
not possible to extract a decay rate (because the currents are indeed constant in value).
Therefore the plotted results are the final winding number against the initial imprinted
circulation. In particular, the final winding number corresponds to the number of spi-
rals counted (i.e. the circulations) at the last possible time of acquisition of the measure-
ments. Since - as said - the atom number decays faster for higher circulating states, the
final winding number is extracted at different holding times.

The graph in fig. 3.13 contains thus the same information on the persistence of the
currents, but allows to compare directly the three different regimes across the BEC-BCS
crossover: in all the regimes persistent currents are observed in a very stable way. This
is the first time that high circulating persistent flows are observed and studied in differ-
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ent regimes of fermionic superfluidity. These results also open the field to investigate
more deeply these systems and the analogies of ultracold quantum fermionic gases
with common or high-temperature superconductors. Being the firsts much more con-
trollable systems, the mechanisms of superconductivity can be studied more in detail
to comprehend also the many unknown phenomena in other kind of superconductors.

3.4 Critical velocity

After having verified the persistence of the currents we generate in the three regimes of
the BEC-BCS crossover, the attention now is focused on the mechanisms that can pos-
sibly induce a decay of the current. We will investigate in the following of the chapter
some of these phenomena. Since the decay of persistent currents due to a tunable bar-
rier has already been widely studied (although always with bosonic condensates) [16],
we investigate the role played by the presence of point-like obstacles in the system. In
particular, a superfluid can be described by two main parameters, which are the chem-
ical potential µ, defining the energy scale, and the healing length ξ, defining the length
scale. The healing length is defined by ξ = 1√

2
h̄

mvsound
, and it is the length scale in which

the density and phase fluctuations in the condensate are removed by the interaction
between condensed particles. It is thus interesting to study defects and spatial mod-
ification of the landscape whose dimensions are comparable with the healing length.
This is not often possible in solid state superconductors, where the healing length is of
the order of 1 nm, and thus the engineering of this kind of impurities often becomes
unfeasible. Instead, in our systems the healing length (depending on the kind of su-
perfluid, see tab. 3.1) is of the order of 1 µm, and thus we have the possibility to study
the fundamental mechanisms od decay of the persistent currents. What is extremely
powerful of the approach we employ, is the possibility to make the superfluid rotate
around the obstacle for any desired time, thanks to the usage of persistent currents.
Common approaches to critical velocity are usually on the idea of moving an obstacle
inside the superfluid at different velocities for a certain time and then monitor the effect
on the system. We are instead able to study a longer dynamics since there is no need
to continuously move the obstacle considering that the current is already flowing. The
narration will flow by the following path: in this section a few obstacles, far between
each other, will be inserted in the ring, to access at the critical Landau velocity. Then, in
the following section, the considerations on the obtained results will bring us to discuss
of the role of a many obstacles disordered pattern potential applied to the atoms.

Let’s proceed in the explanation of the first mentioned experiment. As said, the
role of the presence of a few obstacle in the ring is investigated. To achieve this goal,
the experimental sequence has to be changed a little. In fact, during the holding time
the obstacles have to be ramped up adiabatically. We optimized this sequence to avoid
create excitations in the system. As a result, the procedure consists of ramping the ob-
stacles up in 26 steps with 0.5 ms of Picture Time (PT). When acquiring an image, the
obstacles are switched off together with the trap. The procedure is a little more tricky
when the measurements are performed in the UFG or BCS regime: since we try to
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(a) (b) (c) (d)

Figure 3.14: Potential experimented by the atoms when adding a few obstacles. From
left to right one (a), two (b), three (c), and four (d) obstacles are inserted in the ring. The
lighter areas represent the intensity of the light imprinted on the atoms. The obstacle
are uniformly distributed over the 2π angular distance to be as far as possible between
each other.

work at a constant value of ∆/µ (intensity of the obstacles over chemical potential), it
is not possible to switch off the obstacles with the trap. In that case indeed, during the
sweep of the magnetic field to the BEC side to see the interference pattern, the chem-
ical potential changes its value and thus the ration ∆/µ would not be kept constant;
therefore we would not be investigating for sure the UFG (or BCS) regime but instead
the sweep would affect the measurement. As a solution we ramp down the obstacles
before changing the magnetic field: since it has been proven in section 3.3 that the cur-
rents are persistent in all the regimes, the 60 ms of magnetic field sweep plus wait time
will not affect the existence of the current at all.

The obstacles we insert in the ring have the following characteristics: they are Gaus-
sian shaped with the characteristic radius of 1.1 µm in the x direction and of 1.4 µm in
the y direction. The intensity of the obstacles is abut 1.1µ. The disposition of the obsta-
cles is reported in fig. 3.14: here, the images of the potential applied to the atoms during
the evolution time are shown. The images are taken by redirecting the beam coming
from the DMD to a camera: it is thus possible to directly access to the potential experi-
mented by the atoms. The position of the obstacles is as far as possible, i.e. uniformly
distributed over 2π angular distance. This choice is because we want to decouple the
effects due to somehow interacting or ordered distributed obstacles, and just access to
the effect of single disturbances in the system.

As first step, we studied the presence of a single obstacle in the ring. The main mea-
surement performed is the lifetime of the excited currents in presence of the obstacle,
for different imprinted winding numbers. We report an example in figure 3.15: for each
selected initial winding number, we vary the holding time with the obstacle ON, and
measure the number of visible spirals. We repeat the procedure at least 20 times, and
then the evolution time is changed. At the end, we obtain a lifetime curve. What is
observed, as reported in figure, is that for lower circulations no decay is observed also
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Figure 3.15: Example of lifetime measurements with one obstacle. Different timescales
are used to show the long-time persistence of lower circulating states and the quick
decay of currents with high winding numbers. Each point consists of the average over
more than 20 realizations, and the error bars are the standard deviation of the mean.
From an exponential fit (solid green line) to the W0 = 6 state, it is possible to extract the
decay rate and the offset i.e. final winding number.

for longer times; instead, when higher winding numbers are excited, the current is no
longer stable and quickly decays into a lower circulating state.

By fitting the datasets exhibiting a decay, it is possible to derive some useful infor-
mation. First of all, the decay rate can be extracted from the exponential constant of
the fit. We performed measurements not only with one obstacle, but also adding more
obstacles (up to 20) and we investigated how the number of disturbances affect the be-
havior of the system. The results of the constant of decay are reported in fig. 3.16: a
faster decay is observed by increasing the number of obstacles. In figure, also the re-
sults for different winding numbers are reported: it is possible to note that in general
also the number of circulations affects the decay rate, i.e. faster decay takes place when
higher W is imprinted.

Another meaningful quantity that is available from the exponential fit is indeed the
offset. The offset represents the final value of W at which the system rests after the
transitory phase. This is thus what in fig. 3.13 is called final winding number WF.
Since we noticed that the number of obstacles affects the decay rate but not the final
value of the circulation, it is possible to use a single obstacle and investigate the post-
transitory phase changing W0. This measurement would indeed give as a result the
critical velocity above which the current is damped, due to some kind of excitation
arising in the system. Moreover, we perform the measurements in all the regimes to
compare the results.

We sum up the obtained results in fig. 3.17: we plot the final winding number
WF against the initial one W0 for the three explored regimes in the BEC-BCS crossover.
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Figure 3.16: Constant of decay of the currents varying initial circulation and number
of obstacles. The constant of decay is computed from an exponential fit of the lifetimes
of the currents, and then plotted against the number of obstacles inserted. The groups
represent measurements with different initial winding numbers W0. A faster decay is
observed increasing both number of obstacles and initial circulation.

Figure 3.17: Critical velocities in the BEC-BCS crossover. The final winding number
is plotted against the initial one: when the points deviates from the persistent flow
prediction (solid yellow line), it means that a decay takes place and thus the superfluid
flow is not stable anymore due to the presence of some kind of excitations.
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Let’s take a look at the BEC results; it is clear that, at a certain point around W0 = 5, the
data significantly deviate from the persistent flow predictions. As expected, the same
behavior arises in the UFG at higher circulations, namely at W0 = 8. Instead, in the
BCS, it was not possible to achieve this point to the low-visibility of the spirals. It is
anyway possible to assert that W0 = 5 is a lower limit, while recalling the elementary
excitation spectra in the different regimes, we expect the critical velocity to be lower
than that of the unitary value.

Before discussing what has been obtained, we complete the presentation of the re-
sults by providing them in more comparable re-scaled quantities in tab. 3.1: we report
the healing length for comparison with the obstacle size, the critical measured winding
number WC and the respective real units critical velocities; we finally re-scaled them
over the Fermi velocity and over the sound speed to ease the comparison with other
experimental data or predictions.

1/kFa ξ WC vC vC/vF vC/cs
(µm) (mm/s)

BEC 5.53 1.11 5 2,287 0.115 0,392
UFG 0 0.58 8 3,660 0.124 0,3291

Table 3.1: Critical measured velocities for UFG and BEC regime. We provide interac-
tion parameter kFa, re-scaled critical velocity over Fermi velocity vC/vF, and re-scaled
critical velocity over sound speed vC/cs for comparison with other experiments or the-
ories, although no theories exist yet to describe an obstacle with size comparable to the
healing length ξ.

Let’s now try to go more deeply in the meaning of the results.
As said, a critical velocity arises as a proof of superfluid behavior and depends on the
excitation spectrum of the system under investigation. This is stated from the Landau
criterion for a point like object (see ch 1.2.3). Let’s for a while restrict ourselves to the
BEC side. A source of heating for the system is the excitation of phonons; these excita-
tions are predicted by Landau to have a critical velocity vC equal to the speed of sound
vS. vS can indeed be predicted in the Bogoliubov approximation of weakly interacting
gas which results a good approximation since we are working in the 1/kFa ≥ 5 regime.

By considering thus Bogoliubov waves as first excitations, we would obtain as crit-
ical velocity vBog.

C = cS = 5.84 mm/s. As reported in tab. 3.1, we instead find vC = 2.29
mm/s, which correspond respectively to cs = 0.29vF and vC = 0.12vF. The agreement
is not good, and the reason has to be mainly researched in the nature of the lowest
kind of excitations. It is indeed well known that there are lower energy excitations: a

1For the unitary regime, there is no theoretical prediction on the lowest excitation, but an interplay of
Bogoliubov sound waves and pair breaking excitations gives the critical velocity. Since from quantum
MonteCarlo simulations the pair breaking critical velocity has resulted to be vUFG

pb ≃ 0.39vF, which is a

bit higher than the speed of sound in our system vUFG
s = 0, 38vF, we re-scaled the value over the lower

predicted energy excitation.
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possible excitation with lower energy is due to the formation of a vortex when moving
a macroscopic obstacle in the superfluids. In this regime the theories are indeed well
consolidated: firstly, Feynman gave an estimation [92] of this phenomenon where the
critical velocity results to be vC ≈ (h̄/mD) ln D/ξ ≪ cS for superfluid flow in a long
channel with diameter D ≫ ξ. More recently works [93] derived an analytical criterion
for the critical velocity of superfluid flow around macroscopic obstacles, obtaining the
prediction vC ∼ h̄/mR with R being the size of the object. This is pretty consistent with
experiments carried on to measure vC in ultracold weakly interacting Bose gases which
have been performed both in the three-dimensional [94, 95] and two-dimensional [96]
regimes. The experiments are usually based on obtaining the rate of dissipation either
by measuring the amount of heating via the resulting depletion of the condensate [94]
or, more directly, by observing the asymmetry in density associated with a finite pres-
sure difference across the moving object [95]. With these methods, critical velocities
between 10% and 26% are observed. Yet, as said, it is expected that vC is limited by
vortex excitations since the healing length is much smaller than the obstacle size.

A possible way to overcome this limitation consists in using obstacles whose size
is comparable to the healing length. This is a powerful tool of our system, since the
micrometer resolution of the obstacle has been reached. Previously, an heating mea-
surement has been performed [97] with a ∼2 µm large obstacle in fermions. The ob-
stacle used in that work, is a red-detuned laser beam which acts as attractive potential
to the atoms, and it is a little larger than our obstacle, but still comparable with the
healing length of the system. What is found in the paper is a critical velocity signifi-
cantly lower than the speed of sound, and thanks to numerical simulations in the BEC
side, they were able to address this fact to different phenomena, such as the circular
(instead of linear) motion of the stirrer and finite temperature effects (which can induce
vortex-antivortex excitations), that cause 15% of decreasing. Another 39% of decreasing
is finally addressed to the inhomogeneous system in the trap. By interpolating experi-
mental and simulated points at 1/kFa = 3.5 with the simulated one at 1/kFa = 6.5, we
find an acceptable agreement with our results, considering the fact that the gas we are
working with is quasi-homogeneous.

As a conclusion, we’re currently investigating the decay mechanisms occurring in
our system when the currents are observed decaying. In particular, it has been detected
the presence of vortices which arises and that can cause phase slippage excitations. We
report in fig. 3.18 the observation of some vortices that appear in presence of an obstacle
and high circulations. To see them better, we also removed the inner disk and perform a
time-of-flight imaging of the sole ring (fig 3.18b). The vortices are excited inside the ring
by the presence of the obstacle between 0 and 10 ms of currents flowing. Once excited
the vortices can ”enter” inside the ring or ”exit” from the outer boundaries. These decay
of vortices causes - on average - a loss of the circulation and thus the observed behavior.

For what concerns the unitary regime, it is expected the highest critical velocity. The
agreement with the results of ref. [97] is not good: they claim to observe a maximum
value of vC = 0.31vF (actually not exactly at unitarity) while in our case the critical
velocity observed at 834 G is vC = 0.12vF. We are pretty confident that our result is
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(a) (b)

Figure 3.18: Examples of the detection of vortices which appear when an obstacle and
high winding numbers are employed. The decay of the vortices inside or outside the
ring, causes a decrement of the current. The vortices are less visible with the spirals (a),
and thus to observe them we removed the inner disk (b).

not affected by the interplay of the boundaries of the trap, since without obstacles the
current is stable. Anyway it is worth to recall that the critical velocity we measure
is a consequence of the direct measurement of the superfluid phase by interference
methods. Thus, the results does not represent an inconsistency, since an excitation that
produces phase slip and not heat, can take place and vice-versa. Instead, our results
provide a benchmark for future studies and theories investigating critical velocities due
to phase slip excitations in the BEC-BCS crossover.

3.5 Disorder effects on persistent currents

Another aspect which we can investigate is what are the effects of a disordered ma-
trix of impurities on the persistent currents. Disorder is indeed ubiquitous in a variety
of natural phenomena, such as mechanics, wave physics, solid-state physics, quantum
fluid physics or atomic physics [98]. In single particle picture of non-interacting sys-
tems, it leads to the celebrated Anderson localization, which was proposed in 1958 by
the Nobel prize P. W. Anderson for the localization of electron wave function in certain
random lattice potentials [99]. What is interesting to study is the effect of a disordered
potentials on the persistent currents. It is expected a decrement of the currents due
to disorder [100], but it is indeed not trivial to predict the scaling with the number of
impurities in the system.

In this chapter, we are thus going to study the effects on the persistent currents
of a potential made of a disordered pattern of obstacle. We have the possibility to
change five main parameters of the disorder, in particular: the dimension, distance
and intensities of the obstacles, the number of impurities, and the statistical kind of
disorder. The size of the obstacles is the same as in sect. 3.4, i.e. with radius ∼1 µm;
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(a) Iris closed, 1 − p =
5%.

(b) Iris closed, 1 − p =
30%.

(c) Iris open, 1 − p =
5%.

(d) Iris open, 1 − p =
30%.

Figure 3.19: Images of the potential applied to the atoms for different resolutions and
probabilities of disorder. By opening (closing) an iris placed before the high resolu-
tion objective, it is possible to make more (less) light engraving the atoms and thus to
achieve higher (lower) resolution of the applied potential. See the text for the definition
of p.

the distance between impurities is instead chosen to guarantee that the obstacles are
well separated, as we will discuss more in detail later. The intensity of the obstacles
can also be tuned, and it will be re-scaled in units of the chemical potential µ, which
is the energy scale of the system; moreover, we can change the number of impurities
by removing more or less obstacles from the initial ordered lattice configuration. The
last degree of freedom we can tune is the resolution of the potential applied to the
atoms. We report in fig. 3.19 the effective potential imprinted onthe cloud: the first two
images (figs. 3.19a and 3.19d) correspond to the configuration employed up to now:
potential for different disorder densities are shown. As mentioned, we can also tune
the resolution as an further degree of freedom, obtaining the two images on the right
(figs. 3.19c and 3.19d): this allows us to explore different kind of static-based disorder,
opening the field to more comprehensive studies on a so complex phenomenon. In
particular, it is possible to work with a speckle or Bernoulli kind of disorders: with
low resolution the speckle disorder would cause large dimension localization and thus
promotes a classical trapping mechanisms. On the other side with high resolution we
can achieve Bernoulli disorder where obstacles are more defined in the micrometric
scale and thus quantistic localization phenomena are encouraged.

As mentioned in ch. 2, we performed all the measurement with a closed iris before
the high resolution objective. This helps in make the phase gradient and the trap walls
smoother and not very sharp. As a consequence, also the obstacles result in a more
shallow shape, and the overlap between each other is not negligible. From the mea-
surement we reported, this does not constitute a problem for the current to flow, since
also with all the sites occupied by obstacles the currents can be long-living. Actually, he
high-resolution pattern has been tested on the atoms. We found very promising results
which indeed strongly depend on the precise obstacle configuration potential applied.
More in detail, we observed a strong dependence not only on the disorder type and
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density, but also we reported same exactly disorder densities obtained with different
disorder configuration causing significantly different effects on the currents.

Now we are going to provide the results obtained by investigating the cited tunable
parameters; in particular, we focused our attention on the role that is played by a disor-
dered configuration of obstacles in presence of a persistent current. The results that will
be presented, constitute just a first step in approaching this very complex phenomenon,
and will provide indications and a launchpad for further more comprehensive studies.
Also for this reason, the measurements are performed only the BEC regime, which is
the easiest to access experimentally with the following methods and it is also a regime
where numerical simulations can provide strong support.

Thanks to the results obtained in section 3.4, in order to study the effect of the dis-
order we can safely decide to work imprinting one circulation. The idea of the mea-
surements is to study if the current decays due to disorder effects; sine one circulation
is surely under the measured critical velocity (since up to 5 circulations the flow was
persistent), and the number of obstacles does not affect it, if a decay is observed it will
not be addressable to phenomena of excitations in the gas.

We are going to report mainly two kind of analysis, i.e. we investigated the effect of
the intensity of the obstacles and of the quantity of the disorder in the applied poten-
tial. The meaning of the first parameter is quite intuitive: since obstacles are applied by
means of optical potentials imprinted with the DMD, the intensity of the beam can be
tuned to imprint more or less light on the atoms. An example of a typical measurement
performed is reported in fig. 3.20b: the sequence is very similar to that of section 3.4,
but instead of ramping up a single obstacle (or just a few) we ramp up a pattern full of
obstacles in a way that will be described in few moments. Once defined the pattern, at
least 20 images are taken for each evolution time and from the image it is determined
the presence or the absence of a circulation. Then, a timestep is performed and another
point is acquired. When enough evolution times are explored, it is possible to change
the intensity of the obstacles and repeat the procedure to obtain another dataset of a
lifetime.
In figure 3.20b the same disorder quantity has been employed, and just the intensity
of the obstacles has been varied: as expected, increasing the applied power, the life-
time of the previously imprinted current decreases. Instead, when too low intensities
are applied, the atoms do not feel the presence of the obstacles and continue to flow
dissipationlessly. The qualitative results will be made more quantitative in a while, but
before it is necessary to spend a few words describing the kind of disorder we generate.

The parameter that was called disorder density, is indeed more tricky to be under-
stood. The first cornerstone to which pay attention is that we want to investigate the
effects of obstacles, not those of a barrier. So, a first requirement is that the obstacle can
never touch each other. To do so, we define a squared unitary cell which is bigger that
the obstacle size and at the beginning each cell contains exactly one obstacle, creating
thus an equally spaced lattice of obstacles. Then a probability value p is set, and each
obstacle is removed from its site with a probability 1 − p. Since this operation is ran-
dom, what results is a disordered potential. Two tunable parameters clearly becomes
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(a) Measurement of the lifetime of the current
in presence of obstacles with the same disor-
der probability (see the text for the definition).
Increasing the intensity of the obstacles, a de-
cay appears and it becomes faster and faster.

(b) Measurement of the lifetime of the cur-
rent in presence of obstacles with the same in-
tensity. Increasing the probability of disorder
(see the text for the definition) the lifetime of
the current decrease.

Figure 3.20: Examples of typical measurements to extract the lifetime of the currents
for different intensity of obstacles (a) and probability of disorder (b). Each point in
the plot is the average of at least 20 points, and the error bars represent the standard
deviation of the mean. Different kind of behavior are observed regarding whether the
decay immediately takes place or instead a plateau at the initial circulation appear.

68



3.5. DISORDER EFFECTS ON PERSISTENT CURRENTS

(a) Exponential fit (solid light line) over data
(dark blue dots) exhibiting a fast decay rate.
The half time constant of decay (see the text
for the definition) in this dataset is found to
be τ1/2 = 63 ± 16 ms.

(b) Logistic fit (solid light line) over data (dark
blue dots) exhibiting a slow decay rate. The
half time constant of decay extracted from the
fit in this dataset is found to be τ0 = 534 ± 18
ms.

Figure 3.21: Examples of the fit performed to extract the lifetime of the currents. The
systems exhibits different behaviors depending on the decay rate of the current: when
the decay is fast, an exponential behavior is fitted with great confidence (a), otherwise
a plateau appears and a good agreement is obtained by fitting a logistic curve (b).

very important: the probability of removing an obstacle, which is indirectly related to
the density of resulting obstacles in the torus, and the size of the unitary cell. This last,
is indeed a very relevant parameter, since it directly defines the inter-obstacle distance.
We have optimized it for obtaining the the most visible effects and, at the same time, to
guarantee the possibility for the superfluid to flow between two obstacles. To optimize
it, a lattice with all sites occupied (full lattice, in the latter) is taken into account: we ob-
served the system at long evolution times (750 ms) and varied the cell size. It was found
that, increasing the cell size, a critical value appear, for which the circulation from being
still, starts to flow. The critical behavior appears when the cell size is between 5/4 and
2 times the obstacle size (which is 1 µm). Therefore in the following, the data that will
be presented are obtained with the optimized parameter of 7/4 times the obstacle size.

We are now able to define the disorder density by counting the number of removed
obstacles inside the torus, over all the available sites. The second kind of measurement
performed is indeed based on the variation of the disorder density: a typical example is
reported in fig. 3.20a where the lifetime measurements are shown for different disorder
probabilities 1 − p.

From each dataset it is possible to extract the corresponding decay rate. From fig.
3.20, it is possible to observe that not all the datasets exhibit the same trend. Indeed,
when a faster decay takes place we observe an exponential behavior, as reported in
fig. 3.21a. Instead, when the decay happens later, a previous plateau at the initial
circulation is detected, and we fit this behavior in excellent agreement with a sigmoid
function (see fig. 3.21b). In particular, above the class of sigmoid functions, to perform
the fit we employ a logistic curve, defined in general by f (x) = L

1+e−(t−t0)/σ . In our case,
we have the restriction to work between 0 and 1, and the steepness must be decreasing,
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Figure 3.22: Extracted constant of current decay for different densities of disorder. The
light green point is an average of all the measurements performed with a full lattice:
when the disorder intensity is increased, the decay happens in faster time-scales. The
monotonic behavior seems to have a critical point at disorder density 20% after which
lifetime are significantly shorter.

so:
f (x) = 1 − 1

1 + e−(t−t0)/σ
. (3.8)

The parameters that are thus entering in the fit are σ, which is the steepness of the
curve, and t0, which is the point in which the function assumes its half value. In order
to be able to compare results from logistic and exponential fit, we extract the halftime
constant from the exponential constant τ of the exponential fit:

τ1/2 = τ · ln 2 . (3.9)

The first results we report concern the analysis of the behavior of the current with
respect to the density of disorder. We keep the intensity of the obstacles fixed (such as in
measurement of fig. 3.20a) and we vary the probability of disorder. Then we re-scaled
it into the disorder density, as explained above, and extract the constant of decay from
the lifetime measurements. Results are reported in fig. 3.22: since datasets are taken in
different days2, more lifetimes of the ordered full lattice are measured as a reference:

2Since every point of the image is an extracted constant of decay, we usually need around 10 points
of the lifetime measurement to obtain a reasonable fit. Every of those points is then an average over at
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Figure 3.23: Results for the decay rate of the current versus intensity of the obstacles
re-scaled over the chemical potential. Both ordered (dark green) and disordered (light
green) cases are studied: when ∆ ≈ µ, the disordered patterns cause a decay that can
be up to 5 times faster than that of the ordered full lattice.

they are all consistent and they’ve been averaged constituting point at 0% of disorder
density.

From figure 3.22, it is possible to observe a very peculiar trend: it behaves like a
two-valued step function, with a critical disorder density of about 20%. First of all, a
clear sign of faster decay is observed in presence of disorder. Moreover, it seems that
the increase of disorder density affects the currents, and make them decay quicker. This
dependence is not trivial but it seems to be triggered by some critical value: first, if a
small quantity of disorder is added by removing a few number of obstacles from an
ordered full lattice, the current decays a bit faster. But when the number of removed
obstacles reaches the critical value of 20% of the total available sites, the decay is much
faster, quicker than 100 ms.

Since the procedure we follow is based on the idea of removing the obstacles, it is
impossible to assert that the observed effect is due to the fact that we stop the current
by creating a barrier or similar, and has to be addressed to the disorder itself.

least 20 images, and the sequence to capture an image lasts around 14 seconds. As a consequence, it is not
possible to perform measurements in a single working day. This is indeed a good proof of reliability of the
results.
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The second main result is plotted in fig. 3.23: in that case the quantity we keep fixed
is the disorder probability (as in the measurements of fig. 3.20b) and instead we vary the
intensity of the obstacles. The interesting thing is to compare the effect of the disordered
pattern with that of an ordered one: we indeed performed the same measurements both
at disorder probability 1 − p = 30% (light green in the figure) and with an ordered full
lattice (dark green points). In figure, we show the decay rate, measured as the inverse
of the decay constant, as a function of the intensity of the obstacles re-scaled over the
chemical potential (∆/µ). Both the datasets exhibit a faster decay rate with increasing
the intensity of the obstacles, but a clear difference arises in the slope of the trend. When
∆ ≈ µ, the disordered pattern causes a decay which is up to 5 times faster than what
the ordered pattern does.

The results we found are very promising and clearly indicate that a disordered po-
tential plays a non-trivial role in the dynamics of the persistent currents and in super-
fluid systems in general. The system is indeed very complex, and many phenomena
takes place; in particular, impurities and vortex pinning that can arise from them (see
sect. 3.4), strongly correlates the studied phenomenology with that of granular high-
temperature superconductors, opening the field to more comprehensive studies to in-
vestigate the nature of superconductivity.
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Chapter 4

Outlooks to dynamical instabilities

In the chapter we are approaching, the main focus is to provide some outlooks to the
studies already performed. Thanks to the tunability of most of the parameters of the
system presented in the previous chapters, some more complex geometries can be ex-
plored. A straightforward very interesting outcome of this job consists in the creation of
a double ring geometry, and the consequent study of the dynamical instabilities emerg-
ing from the counter propagating flows in the two rings.
Some analysis and measurements have been performed as a proof o principle for the
realization of these proposals, and they constitute the basis of work for future studies
that are now possible. Therefore we will firstly present the accessible geometry and the
arising critical phenomena such as the Kelvin-Helmholtz (KH) instability; then, we will
provide the results of preliminary analysis and simulations acting as a background for
near-future studies. All the results that will be presented in this chapter are relative to
the unitary regime of superfluidity.

4.1 Double ring geometry and KH instability

The interest to create a double ring geometry arises from the possibility to study non
trivial phenomena concerning the interactions between the two rings. Since in the pre-
vious chapters we’ve extensively presented the persistent currents in fermionic super-
fluids, the double ring geometry would allow to investigate the possibility to transfer
angular momentum - and thus current - from one ring to the other, Josephson effects
between annular condensates, or even quantum hydrodynamical instabilities in the in-
terface between the rings. One of the most fascinating instabilities concerning two par-
allel fluid streams is the Kelvin-Helmholtz (KH) instability: it was firstly formulated by
Lord Kelvin [101] and Helmholtz [102] in the 19th century in the field of classical fluid
theory: it foresees that when two fluids with different velocities enter in contact, the
interface is not stable and rolls up forming the very famous Kelvin-Helmholtz waves,
that are present in a variety of physical systems such as cloud formation on Earth, at-
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(a) Explanation of the formation of vortices at the inter-
face between two counter flowing identical superfluids:
since the phase has 2π jumps, the velocity field along the
interface rapidly switches direction. The combination of
this motion with the initial one, gives born to topological
defects in correspondence to the phase jumps.

(b) In situ image of the geometry
used for KH experiment: the gas is
loaded in two homogeneous rings,
with dimensions: internal radius
15 µm, radius of the separation bar-
rier 30 µm, external radius 45 µm.

Figure 4.1

mospheres of planets and moons, Red Spot on Jupiter, plasma coronas of Sun and other
stars, and also in the deep ocean.

In the field of superfluidity, a lot of works have studied instabilities (including also
KH effects) arising at the interface between two different superfluids [103, 104]. Also
the interface between superfluid and normal fluid [105, 106] and that between two im-
miscible binary BEC [107–109] have been widely investigated. Still, no experimental
observations of a single superfluid KH instability have been obtained yet. It is indeed
not trivial to detect this kind of instability, since it is usually not possible to easily dis-
tinguish the interface between two touching sides of a single superfluid moving with
different velocities. Recently, it has been proposed to study KH instability by using per-
sistent currents [110]: two binaries were simulated in which persistent currents flow in
opposite directions; the binaries are separated by a Gaussian barrier.

When removing the barrier, the two flows come into contact. Now, at the interfer-
ence, there exists a discontinuity in the condensate phase θ, as shown in fig. 4.1a. This
phase difference has a saw-tooth profile along the channel because the phase wraps
between -π and +π. Since the velocity is proportional to the gradient of the phase,
also a saw-tooth velocity field appears along the channel. In the interface, when the
phase jumps of 2π, the velocity discontinuosulsy switches its direction, and this hap-
pens ∆W times (where ∆W is the difference between the winding number of the two
persistent currents). When superposing this velocity field with the original one due to
the persistent currents motion, it gives rise to a circulating flow around this points at
the interface, which thus immediately evolve into quantized vortices.
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Figure 4.2: Procedures to obtain spirals and vortices in a double ring geometry. In both
cases persistent currents are excited by phase imprinting opposite phase gradients on
the two rings (a); then, if the trap is switched off and we make the rings interfere (b), it
is possible to obtain the relative winding number. In the upper right panel it is shown
that higher winding numbers are easier to be excited in this geometry (respectively we
counted 7, 14, and 30 spirals from left to right). On the other side, if the separating
barrier is removed (c), the flows enter in contact and by time-of-flight imaging it is
possible to monitor the evolution of the interface between the two flows by looking at
the position of the vortices.

The formation of vortices becomes thus the sign of the interface between the two
parts of the superfluid, and thus by looking at the vortex dynamics it is possible to
monitor the interface instability. The idea of the experiment proposed in this outlook,
it is exactly this one. Experimentally, it is possible to work in a geometry such as that
presented in fig. 4.1b: with respect to the previous experiments, we added an external
ring: the inner disc is not necessary anymore, since it is possible to make the two rings
interfere and look directly at their relative phase difference. As visible in the figure, we
work with a larger geometry in order to be able to study also the vortices dynamics
after their generation. The procedure to load the gas in the trap is similar to the one
described in fig. 2.11; the difference in the process is that now we add a step in which
the internal hole is carved very slowly and adiabatically. Then, as usual, the separation
barrier is ramped up and the diametrical barrier is ramped down. When the gas is
ready, we generate persistent currents by phase imprinting (see ch. 2.3) opposite phase
gradients on the two rings (the result is shown in fig. 4.2(a) ).

At this point, as shown if fig. 4.2(b), a possibility is to make the two rings interfere in
time-of-flight (TOF) to calibrate the phase imprinting technique on this new geometry.

75



CHAPTER 4. OUTLOOKS TO DYNAMICAL INSTABILITIES

Figure 4.3: Evolution of the interface monitored by the presence of the vortices. From
left to right the images correspond to 5 ms, 35 ms, and 45 ms of evolution time after the
two rings have come into contact. The interference is clearly unstable and sometime it
seems to detect clusters of vortices.

As is it visible in the figure, in this new geometry it is easier to obtain also higher
circulating superfluids (we observed up to 30 spirals) without loosing accuracy in the
excitation of low winding number states. The measure of the number of spirals, is
in this case the exactly measurement of the number of phase jumps that would result
by lowering the separating barrier and bringing the flows into contact. Therefore, by
counting the number of spirals, it is possible to predict the relative winding number and
thus the number of vortices expected in a KH-like experiment. The procedure to explore
KH instability is instead shown in fig. 4.2(c): after the phase imprinting the barrier is
lowered without turning off the trap. Since the superfluid in the two ring is identical, it
is not be possible to distinguish the interference by in-situ imaging the cloud. Instead,
by taking a TOF absorption imaging, holes appear in presence of quantized vortices,
since the density in the core is vanishing (see ch. 1.3.2). By looking at the position of
the vortices, it is then possible to monitor the interface evolution.

An evolution in time of the interface is reported in fig. 4.3: at the beginning the
interface seems to be stable for a couple of time (10-20 ms), while then it becomes un-
stable. We observed that the typical time in which the instability occurs depend on the
number of vortices. As a qualitative result, more vortices cause the instability to hap-
pen faster. It was also observed in some images, that the evolution of the position of the
vortices sometimes brings them to agglomerate and form clusters. The KH instability
indeed would consists in this phenomenon: the counter propagating flows, cause the
interface, and thus the vortices, to start to roll up and, as simulated in ref. [110], to form
clusters. Actually, the measurement is more accurate when an high number of vortices
defines the interference between the counter propagating flows, so this would be an
important aspect to take into account for high-quantitative analysis in future experi-
ments.
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4.2 Analysis to detect KH instability

As possible ways to quantify the presence of the KH instability, we report now some
quantitative analysis which can be performed. The route we propose is based on the de-
tection of the vortices positions from the acquired images. The possibility of extracting
vortices coordinates from the images is very powerful, since it is then possible to work
with a relative small amount of data, and obtaining at the same time a great amount of
information, as we will see in the following sections. Therefore the first step consists in
building a procedure to detect vortices from an image.

4.2.1 Image processing for vortex detection

In order to study the evolution of the vortices position in time to detect the arising of
the KH instability, many images need to be taken at different times. Moreover, since
the timescales seem to vary a lot depending on vortices number (and thus difference of
velocity in the counter propagating flows), a dense sampling is often required. It is now
clear that in order to obtain statistically relevant results, a large amount of data has to
be taken; thus, an automatized procedure to analyze the images becomes essential.

The procedure that we have employed is shown in fig. 4.4: after loading the raw
image, we select only the doughnut region in which there are the atoms; to do this,
we find the active region with usual methods as explained in ch. 2.2, and then we
manually put zero value everywhere else. Then, the values measured by the camera
are normalized to obtain the result in fig. 4.4(b). It is now possible to perform an image
denoising using the Non-local Means Denoising algorithm, which considers the noise
as Gaussian and white. A parameter regulating filter strength is carefully chosen to
remove noise but preserving image details. Then the image is re-normalized with a 32
floating point precision resulting in fig. 4.4(c) and finally the exponential of the image
is taken (fig. 4.4(d) ). At this point the image is ready to start the research for vortices:
an algorithm which finds local maxima has been lunched, with some constrains. In
particular, a peak is considered if its value is at least 55% of the maximum value of
the image, and two peaks are considered separated if their distance is greater than 10
pixels. Every peak is thus collected (a found peak correspond to a sign in fig. 4.4(e) ):
if its distance from the borders is lower than 8 pixel, the peak is discarded. Otherwise,
a two-dimensional Gaussian fit is performed in a region of 16×16 pixels around the
position of the peak. In case the fit satisfies given requirements (concerning minimal
and maximal amplitude, and goodness of the fit estimated thanks to the R2 parameter)
the coordinates of the vortex are collected, otherwise it is discarded. This operation
is repeated for each image of the dataset, and thus the obtained information mainly
concerns: number of vortices per image and coordinates (both in Cartesian or polar
systems) of each vortex.

The obtained results are quite affordable although some of the discussed parameters
have to be tuned from dataset to dataset, because their optimal value strongly depends
on day-to-day variable characteristics such as number of atoms in the ring and visibility
of the vortices.
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Figure 4.4: Image processing to detect vortices: a raw image (a) is collected from ab-
sorption imaging of the atomic cloud, the image is then cleaned by considering only
the active area of the doughnut (b), and a denoising algorithm is performed (c). Fi-
nally the exponential of the image is taken (d) and the peaks of the resulting image are
searched and collected. The peak has to be far enough from the borders of the ring and
it must satisfy requirements of goodness after a 2D Gaussian fit is performed. In image
(e) the yellow crossing points are the peaks discarded because they are too close to the
borders, the red crosses are those that do not satisfy good results from the fit and finally
the triangular red ones are the accepted vortices.
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Figure 4.5: Evolution in time of the mean number of vortices in the the ring. Each point
of the graph (blue crosses) is the average over 20 images of the extracted number of
vortices, with the relative errors due to the standard deviation of the mean. A compar-
ison with the data detected by hand (red dots) is provided to proof the reliability of the
automatized discussed procedure.

We report, as an example, the results obtained for the evolution of the number of
vortices in time: in figure 4.5, the results from the discussed automatic procedure are
compared to some manually obtained results. By ”manually obtained” we mean that,
for some evolution times, vortices are detected by eye. For each evolution time, 20
images are taken and the number of vortices for each image is collected. Their aver-
ages are then plotted and the results is that the mean number of vortices decreases in
time. This can be due mainly to two phenomena: the first possibility is that the vor-
tices exit from the ring and goes inside it (increasing the circulation of the atoms) or
outside it (lowering it). Another possibility is that the vortices merge with one another
while moving. Although this last hypothesis is not supported by the observation of
larger holes (which actually we are not sure to be able to detect the difference), it is in-
deed suggested by the fact that in general faster decays are observed with higher initial
number of vortices. This is not actually a proof, since a lot of reasons can be adduced
to explain it, such as the fact that, when just a few vortices are present, each vortex
feels a lower velocity field due to the contribution of the others, thus the dynamics is
slower; as a consequence, also the motion to the borders would maybe be affected by
the number of vortices in the ring.

Let’s now discuss about the other important information we can extract from the
procedure to analyze the images, i.e. the coordinates of the vortices. This is indeed the
most powerful information, since it can be used to monitor the dynamics and extract
relevant physical quantities of the system.
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4.2.2 Point vortex model

A first analysis which can be performed with the coordinates of the vortices is based
on the idea of simulating the velocity field generated by the given configuration of
vortices. The goal is to be able, following the method suggested in ref. [110], to extract
a ”shear viscosity” of the superfluid.

It is possible to compute the velocity field both with Gross-Pitaevskii simulations
(whose validity is though restricted to the BEC regime only) or modeling the vortices
with the point-vortex model, whose regime of validity across the BEC-BCS crossover
has recently been proved [111]. The idea of the point-vortex model is to consider each
vortex as a point-like object, thus neglecting the finite size of the core. The generated
velocity field is trivially dependent only by the distance of the center of the vortex and
has no radial component: v = h̄

m
1
r êϑ where r and θ are respectively the radial and

angular coordinates of the system having center corresponding with the position of the
vortex.

The main issue concerning the usage of the point-vortex model, is constituted by the
problem of the boundary conditions. What is necessary is that the total velocity field
of the system has vanishing normal component at the torus boundaries. This is due
to the definition of the boundaries, since they cannot be pierced. When dealing with
linear geometries, in which the boundary is constituted by a straight line, the problem is
solved in a quite simple way: a fictitious image vortex is placed on the other side of the
boundary at the same distance, and thus all the boundary conditions are satisfied. Such
as the image charge in electromagnetic problems, a simple solution is obtained also
when dealing with spheres (or circles in two dimensions). What is not trivial is indeed
to find a way to respect the boundary conditions in a simply connected geometry such
as the annular one, which we are dealing with. The main problem is that there are two
separated boundaries on which the normal component of the velocity has to vanish.
If an image vortex is placed outside the ring, on the external boundary everything is
right, while, on the internal one, the normal component can never be zero.
The solution consists in considering, for each vortex in the torus, an infinite number of
fictitious image vortices [112], each one with an appropriate position and circulation.
Let’s consider the case of a torus with internal radius R1, an external radius R2, and a
vortex inside the ring with winding number W (the procedure has to be repeated for
each vortex) located at r from the center of the torus (taken as the origin of the frame).
To cancel the normal component at the boundaries, we have to consider two classes of
image vortices: to fulfill boundary conditions on the inner radius, a first image vortex

with charge −W and position rim1 =
R2

1
r2 r has to be placed, together with an image vortex

at the origin with charge W. The image vortex located at rim1 now produces a normal
component on the outer radius, that has to be erased with an image vortex at rim2 =

R2
2

rim1r r =
R2

2
R2

1
r having winding number W. This external image vortex, induces a normal

component on the inner radius, therefore another internal image vortex has to be placed

at rim2 =
R2

1
rim2r r =

R4
1

R2
2r2 r with circulation −W together with an image vortex placed at
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(a) Scaling of the position of the fictitious im-
age vortices used to fulfill boundary condi-
tions on both inner and outer radii of the
torus. Note the logarithmic y-axis. An infi-
nite number of vortices would be needed, but
actually after 11 simulating steps the accuracy
is of the order of 10−9. Image vortices are in-
dicated with crosses, while the real one is a
red dot.

(b) Simulation of the velocity field inside the
torus generated by a generic five vortices dis-
tribution. Vortices are represented as blue
dots, while torus boundaries (on which nor-
mal component of the velocity field vanishes)
are highlighted by a red line. At each point of
the space, the direction of the intensity field is
given by the direction of the arrow based in
that point.

Figure 4.6: Simulation of the vortices velocity field in a torus with condition of vanish-
ing normal component on the boundaries.

the origin with charge W. These last vortices induce again a normal component of
the velocity field on the outer radius that has to be erased by adding another external
image vortex and so on and so forth. To sum up, this first class of vortices - when
completed - erases entirely the normal component of the velocity field on the internal
boundary, and, on the external radius, erases the normal component of the velocity
field due to all the image vortices placed. The second class of image vortices will finish
the job fulfilling the boundary condition on the external radius. To do so, an image

vortex is placed at r′im1 =
R2

2
r2 r with −W; its velocity field’s normal component on the

inner boundary is erased by an image vortex at r′im2 =
R2

1
r′im1r r =

R2
1

R2
2
r with charge W and

another in the center with circulation −W. To balance them another external fictitious
vortex at r′im3 =

R2
2

r′im2r r = R4
2

R2
1r2 r with −W will be placed, and so on and so forth.

Computationally it is observed that the convergence of this method is quite fast: a
precision can be arbitrarily set and the procedure continues until it is reached. In our
simulations, the given 1·10−8 precision of vanishing normal component on both the
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boundaries has been achieved within 11 steps. It is also observed that the maximum
computational available precision is 2·10−14.

We report in figure 4.6 the results of our simulation with the discussed character-
istics. On fig. 4.6 a logarithmic y-axis is used to show the spatial scaling of the image
vortices, while in fig. 4.6b the simulation of a generic 5 vortices velocity field has been
computed. With this analysis it is thus possible to obtain the velocity field of the su-
perfluid (which is not a directly accessible quantity in experiments) starting from the
coordinates of the vortices which are available thanks to the procedure discussed in
section 4.2.1.

4.2.3 Cluster analysis

The last kind of analysis we want to propose, aims to detect quantitatively a trace of the
Kelvin-Helmholtz instability. A clear sign of the presence of KH instability in our sys-
tem, would be given by the clusterization of the vortices [110]. In order to quantify the
presence of clusters in the torus, we apply the Ripley’s K function and its normalization
known as Besag L function to the vortices coordinates..

Ripley’s function is a statistical pattern analysis method used as a measure of spatial
clustering which has already been employed in order to classify quantized vortices in
condensates [113]. Let’s assume, as it should be in our case, that all the vortices have
the same sign. Having N vortices in a total area A in which the condensate is trapped,
the Ripley’s function can be expressed as

K(r) =
A

N2

N

∑
i=1

N

∑
j=1

fi,j(r) (4.1)

where fi,j(r) is a function assuming value 1 if the vortex j is located within a distance r
from the reference vortex i, and 0 otherwise ( fi,j(r) = 0 also if i = j). In other words (as
represented in fig. 4.7a), being ri,j the distance between two vortices j and i, used as a
reference, it is possible to define

fi,j(r) =

{︄
1 ∀ri,j < r, i ̸= j
0 ∀ri,j > r or i ̸= j

(4.2)

The meaning of the K function is to count the vortices within an area of radius r and
compare the density of vortices per unit of area in this region, with that of the whole
area of the condensate. Clustering results in the K(r) function, if it increases faster
than KPoiss(r), which is the Ripley’s function for random distributed vortices. In this
last case, when the distribution of vortices follows the Poisson distribution, K function
scaling is KPoiss(r) = πr2, thus parabolic. Therefore, it is possible to detect the presence
of cluster of vortices by comparing the obtained K(r) with the predicted random value
of πr2: if the scaling is greater, it means that clusters are present.

When dealing with systems in which the size of the searched clusters is of the same
magnitude order of that of the system, it happens that the finite size of the condensate
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(a) Ripley’s K function computes the density
of vortices in an area of radius r: if it is greater
than the density of vortices in the total area, it
is a sign of formation of clusters. Referring to
eq. 4.1 in the text, fi,j(r) vanishes if vortices
i and j are more distant than r and equals 1
otherwise.

(b) Boundary corrections in Ripley’s K func-
tion. When computing fi,j(r), it is possible
that a part of the area of radius r exceeds
the boundaries of the condensate area. In
the example in figure, stars represent vortices:
the green areas have to be subtracted because
there cannot be vortices since there’s no gas.

Figure 4.7: Explanation of the Ripley’s K function (a) and of its boundary corrections in
a annular geometry (b).

fakes the value of Ripley’s function. To understand this phenomenon and look for
a solution, let’s consider for example a vortex near a boundary: when this vortex is
taken as a reference (as the vortex i in eq. 4.1), by increasing the radius r within which
looking for other vortices, a great amount of the spanned area is not included in the
region where the superfluid is. As a consequence, there can be no vortices and the
density of vortices will for sure decrease. Thus, some boundary corrections have to be
included, by taking into account the amount of area which effectively is a superposition
of the two under consideration (see fig. 4.7b). In cases of simple geometries, such as
circles or rectangular shapes, the correction have already been computed. In an annular
geometry it has not been done yet.

Therefore we had to calculate the corrections for this geometry. Let’s take a look at
fig. 4.7b: the idea it to calculate the area enclosed in the dotted blue line, and subtract-
ing the green areas which are not part of the condensate, by taking into account all the
possibility values of r (radius of the blue dotted circumference). We will consider an an-
nular condensate with internal radius Rin, external radius Rext, and we assume to being
at the step of calculating the vortices within a radius r from a vortex i whose coordinates
are x and y. Let’s define thus d ≡

√︁
x2 + y2 and the following useful quantities:

Ain = R2
in arccos

(︃
R2

in − r2 − d2

2Rind

)︃
+ r2 arccos

(︃
r2 − R2

in + d2

2rd

)︃
+

− 1
2

√︂
(2Rind)2 −

(︁
R2

in − r2 + d2
)︁2 (4.3)
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and

Aext = R2
ext arccos

(︃
R2

ext − r2 − d2

2Rextd

)︃
+ r2 arccos

(︃
r2 − R2

ext + d2

2rd

)︃
+

− 1
2

√︂
(2Rextd)

2 −
(︁

R2
ext − r2 + d2

)︁2 (4.4)

It is now possible to split the problem in different sub-cases obtaining the following
results: the area Ared has been calculated, which is the superposition of the area of the
circle of radius r and the region is which the condensate is present. It holds:

Ared =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πr2 if r + Rin ≤ d ≤ |r − Rext|
πr2 − Ain if d ≤ |r − Rext| ∧ r − Rin < d < r + Rin

πr2 − πR2
in if d < |r − Rext| ∧ d < r − Rin

Aext if d > |r − Rext| ∧ d ≥ r + Rin

Aext − Ain if d > |r − Rext| ∧ r − Rin < d < r + Rin

Aext − πr2 if |r − Rext| < d < r − Rin

(4.5)

As said, this correction has to be applied to each step in calculating Ripley’s K func-
tion, then a factor A/Ared is multiplied, so that the corrected formula becomes:

K(r) =
A2

N2

N

∑
i=1

1
Ared

i

N

∑
j=1

fi,j(r) (4.6)

To obtain a linear scaling of Poisson-distributed data, it is common to normalize the
Ripley’s function to obtain the so called Besag’s function:

L(r) =
√︂

K(r)/π − r (4.7)

which can be scaled to a characteristic radius of the condensate that we identify as
rc = Rext to obtain

L
(︃

r
rc

)︃
=

⌜⃓⃓⎷ A
πr2

c N2

N

∑
i=1

N

∑
j=1

fi,j

(︃
r
rc

)︃
−
(︃

r
rc

)︃2

− r
rc

(4.8)

From Besag function is it straightforward to detect the presence of clusters or, on the
contrary, of repulsive interaction: when the vortices are distributed in a Poisson distri-
bution L(r/rc) = 0, while it assumes positive values up to 1 in case of clusters, and
negative values (up to -1) in case of dispersed vortices.

We report in fig. 4.8 the results for two example distributions of vortices obtained
by the automatized procedure explained in sect. 4.2.1 applied to two images relative
at different evolution times of the system. We plot the computed Ripley’s K functions
on the left, and the Besag functions on the right. In the first reported case, a Poisson
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Figure 4.8: Examples of the computation of Ripley’s K function and Besag’s one. Upper
and lower panels represent different configurations of vortices, which are shown in the
insets of images on the left. Upper, a Poisson distribution of vortices is detectable since
Ripley’s function (on the left) reproduces very well the predicted parabola, and the
Besag function (on the right) is zero valued. Lower, from the same analysis, a cluster
is detectable since the functions show a super Poisson trend. For each image, the effect
of the boundary corrections in a torus (in blue) are compared with those that would be
applied if the geometry would be a simple disk (in orange) and the predicted behavior
for a Poisson distribution (in green).

distribution of vortices is detectable since the K function follows a parabolic trend, and
the Besag function is zero valued. On the other side, in the second example reported, a
super Poisson trend is observed, indicating the presence of cluster of size r = 0.6÷ 0.8rc
(where the Besag function is positive valued).

As a conclusion of this chapter, we sum up what it has been presented. We have
proven that an experiment investigating Kelvin-Helmholtz instability can be performed.
We also provided some useful analysis both concerning automatically processing the
images and numerical computations based on the coordinates of the vortices. We have
thus presented the necessary background and information that can act as a launchpad
for near-future experiments.
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Conclusions

In this thesis work we demonstrated the realization of a new versatile platform for
the simulation of superfluidity across the BEC-BCS crossover, in particular studying
persistent currents and investigating its main mechanisms of decay.

In detail, we observed the phenomenon of persistent currents in fermionic regimes
of superfluidity trapped in annular geometries. For the first time, we employed phase
imprinting technique to excite the currents and we characterized it, both by calibrating
the imprinted time needed to deterministically generate the desired winding number
in the system, and also by verifying the limits of validity of the method. We detected a
discrepancy in the phase which needs to be imprinted in the unitary and BCS regimes
with respect to that needed in the BEC regime. We also looked at how this quantity
varies by changing the scattering length and concluded that the difference can be ad-
dressed to the role of correlations in the system.

In order to detect the currents, we made use of interference methods. We theoreti-
cally calculated the expected interference pattern generated by the time-of-flight expan-
sion of two condensates shaped as a disk and a concentric external ring. The resulted
function allowed us to directly link the winding number of the circulating superfluid
to the number of spirals detectable in the interference pattern. In order to count them,
we also provided quantitative analyses: by fitting the radial profile of the image with a
sinusoidal-like function, the slope of the resulting linear trend of the phase shift gives
the number of spirals in the observed pattern.

A central result that we discussed is the observation of persistence of the currents,
since we found they live longer than the system itself. This is one of the first obser-
vations of persistent currents in fermionic superfluids and it has been reported for all
the three regimes in the BEC-BCS crossover. It was indeed the very first time that cir-
culations made of winding numbers higher than one are observed persisting in Fermi
superfluids. This result is very powerful and opens the fields to future studies aimed
to employ ultracold quantum gases as paradigmatic controllable environments to un-
derstand superconductivity also in less predictable systems.

As a further step, we investigated the decay phenomena affecting the currents:
firstly, we inserted in the ring an obstacle whose radius is comparable with the heal-
ing length of the system: this allowed us to probe for real the Landau criterion of su-
perfluidity. We observed a decay of the currents on a timescale which depends on the
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number of impurities we put in the system, and we were able to compare the results
with previous experiments and provide benchmark for future theories.

As a natural consequence, we have increased the number of obstacles which the
persistent flow faces. We were able to address to the disorder an effect of decaying on
persistent currents, both by studying the lifetimes of the flows for various densities of
disorder and by comparing them with the respective results obtained with an ordered
lattice. In the exactly same conditions, an ordered pattern of obstacles conduces cur-
rents for longer time than the same pattern where some random obstacles are removed.
We also highlighted the possibility of exploring different statistical kinds of disordered
patterns by tuning the resolution of the applied optical potentials, opening the path to
future more structured studies on the field.

In conclusion, we gave also a detailed analysis of possible outlooks of this thesis,
providing experiments and analysis which support our assertions: we proposed to em-
ploy our system to study dynamical instabilities, and in particular to use a double ring
geometry to detect Kelvin-Helmholtz instability. We reported how it is possible to mon-
itor the dynamical evolution of the interface and provided some very preliminary re-
sults from experiments. Moreover, different methods of analysis have been developed:
firstly, a routine to process and analyze the acquired images; then, a simulation of the
velocity field of the obtained generic distribution of vortices has been developed by
using the point vortex model in a non-trivial annular geometry; finally, theoretic cor-
rections for this geometry have been calculated and implemented in a statistical func-
tion used to detect presence of clusters of vortices. The reported preliminary results
and analysis constitute a solid background on which it is possible to move to further
studies on KH and other dynamical instabilities.

This work opens the way for new prospects to explore the concept of superfluidity
in versatile systems by using arbitrary optical potentials, and to investigate the decay
mechanisms taking place when a supercurrent is damped. In particular the results
achieved open up the possibility to investigate more complex phenomena such as dy-
namical instability, quantum turbulence, and disorder effects which are ubiquitous in a
variety of natural systems.
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Appendix A

Feshbach resonances and states in
6Li

Lithium-6 is the fermionic isotope of lithium, which is an alkali atom having 2 paired
electrons in the core, and a single unpaired electron in the valence state. The first excita-
tion concerns this last electron, and thus being 1s22s1 the ground state, the first excited
state is 1s22p1. The transition between these two states is a so called D-line which has a
wavelength of about 671 nm (visible red light).

By taking into account the spin-orbit coupling, as for all alkaline atoms, the D-line
splits in two narrower lines, D1 and D2, which link the ground state to the 2p1/2 and
2p3/2 levels respectively, where J = 1/2 and J = 3/2 refers to the total angular momen-
tum in the fine structure. D1 has a wavelength of 670.992 nm and D2 of 670.977 nm.
The ground state instead remains unperturbed.

It is moreover possible to take into account also the electronic magnetic moment
and the nuclear spin magnetic moment Î by looking at the hyperfine structure. It is
therefore necessary to use new quantum number as eigenstates of the Hamiltonian by
defining F̂ = Ĵ + Î. In image A.1a, the states of 6Li in absence of external field are
represented.

When an external field B is applied, the Zeeman effect takes place, so that hyperfine
states split up. When B is small, it can be treated as a perturbation of the hyperfine
levels, using common quantum numbers and thus the effect becomes ∆EZ = µB

h̄ gFmFB.
Instead, when B assumes high values, we enter in the strong-field regime and F is not a
good quantum number anymore. This limit is called Paschen-Back limit, and here the
hyperfine interaction is considered a perturbation of the atom-field Hamiltonian. For
intermediate magnetic fields, the effect has to be computed numerically.

In figure A.1b we reported the splitting of the hyperfine ground state manifold due
to the presence of an external magnetic field. The useful states for application in ultra-
cold gases, and in particular for this work, are those labeled with |1⟩, |2⟩ and |3⟩.

So far, only not interacting systems have been considered. Anyway most interesting
phenomena happen in the interacting regime. As already mentioned in the text, the
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(a) Lithium-6 states at zero magnetic field.
Here the structure of ground and first excited
states of 6Li at zero magnetic field is shown;
the spin orbit coupling splits the 2P levels
and defines the D1 and D2 lines. Levels are
then again split by the interaction with nu-
clear magnetic moment. Image taken from
[114]

(b) Zeeman shift of the ground state hyper-
fine levels. By applying an external magnetic
field, the hyperfine states of 6Li are split: sub-
levels labeled as |1⟩, |2⟩ and |3⟩ are those
used for ultracold fermionic gases applica-
tions. Image taken from [114]

Figure A.1: Lithium-6 states in presence (a) and absence (b) of external magnetic field.

interactions in ultra-cold gases are well described by the Fermi pseudopotential, which
mainly depends on the scattering length.

When dealing with interaction between alkali atoms in different hyperfine states,
the electronic spin configuration defines a singlet and a triplet state. Before the scatter-
ing event, the incoming particles are in one of these two possible states, and therefore
they define the so called open channel. The other is thus the closed channel. Now, the
presence of a bound state in the close channel, modifies the scattering properties of the
particles in the open one, because of the hyperfine coupling between triplet and singlet
states. In case the energy of the bound state corresponds to that of the particles in the
open channel, this resonance causes the scattering length to diverge. Actually this is
not very common but it is a useful property: indeed, the two channels have different
magnetic moments. It provides the possibility to tune an external magnetic field in or-
der to match the two energy and make the scattering length diverge. This phenomenon
is called Feshbach resonance [115].
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Figure A.2: Feshbach resonance in 6Li. Here the Feshbach resonance of the three lowest
6Li hyperfine states is shown against the external magnetic field B: by changing value
of B it is thus possible to tune strength and sign of interaction over a wide range of
values. Image taken from [38]

The resulting dependence of scattering length from external field can be modeled
phenomenologically as:

a(B) = abg

(︃
1 − ∆B

B − B0

)︃
(A.1)

where ∆B is the resonance width and B0 its center, while abg is the off-resonance back-
ground scattering length. At the resonance, i.e. when B = B=0, the scattering length
diverges; instead, all the observable remain finite. One of the most astonishing proper-
ties of Feshbach resonances, is the possibility to tune not only the interaction strength
but also its sign;. It give rise to the possibility of exploring different regime of fermionic
systems.

In figure A.2 it is represented the dependence of the scattering length from the ex-
ternal applied magnetic field for the lowest hyperfine levels of 6Li. Referring to the
states labeled as in figure, both resonances |1⟩-|2⟩ and |1⟩-|3⟩ are about 250 G broad;
in particular the most exploited resonance in this work is the |1⟩-|2⟩: it is centered at
about 832 G, and it is used to explore the different regimes in the BEC-BCS crossover.
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Appendix B

Density depletion caused by phase
imprinting

When employing the phase imprinting technique to produce circulations in the ring,
there is a characteristic sign that it is always present right after the phase gradient pulse.
If an image is taken just a few microseconds after the imprinting, this sign is well visible
also by eye. An example is given in fig. B.1: the image is taken 21 µs after the light pulse.
In correspondence to the phase jump of the gradient imprinted, both a depletion in the
density and an accumulation of atoms appear close to each other.

This fact is due, we strongly suspect - to the anti-gradient imprinted together with
the phase gradient: as a matter of fact, when a linear phase profile is generated, a slope
in the opposite direction has to take place because a vertical line is not possible in any
experimental system. Previous attempts involving phase imprinting technique on an
atomic ring, suggested to place a barrier over the phase jump to avoid counter propa-
gation of atoms [77]. Actually, due to the high resolution of our system, we managed
to employ the technique with good results without the usage of a barrier.

The only issue we have to take into account is indeed this kind of short term soli-
tonic excitation. The kind of density depletion or bump depends strongly on the em-
ployed imprinting time. In figure B.1 we report an exampled of a 70 µs imprinting time
in the unitary regime. This procedure would not end up creating a circulating state,
just winding number zero. Still, the excitation is present. The more imprinting time we
apply, the deeper is the depletion (and more pronounced instead the accumulation).

In order to study the behavior of the excitation, a more quantitative analysis is per-
formed: first, as usual, the ring is unwrapped; then the density distribution is fitted
with two Gaussian functions, one with a positive amplitude for the accumulation of
density and one with negative value for the depletion. As a result, the amplitude,
standard deviation, center and offset of the function are saved. To obtain an evolution
of these quantities over time, we take multiple images with a variable timestep. For
each time, 5 images are taken and averaged. We repeated the analysis with different
timescales in order to access to phenomena both quickly vanishing or lasting for mil-
liseconds.
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APPENDIX B. DENSITY DEPLETION CAUSED BY PHASE
IMPRINTING

(a) Image taken 21 µs after imprinting. (b) Image taken 270 µs after imprinting.

Figure B.1: In situ image of the gas at different time after the phase imprinting: in
correspondence with the phase jump of the imprinted gradient, a depletion and an
accumulation in density profile of the ring are visible and quickly decays in time.

Figure B.2: Example of the results obtained from the analysis of the short-term exci-
tation caused by phase imprinting. The density profile of an average image is fitted
varying the acquisition time to monitor the evolution. On the left panel it is plotted the
evolution in time of the amplitude from the fitted Gaussian of both depletion and ac-
cumulation. In center, the evolution of the position is shown: the accumulation moves
faster and clockwise, instead the depletion moves slower in the anticlockwise direction.
Finally, the broadening of the two excitation can be observed by looking at the standard
deviation of the Gaussian fit, plotted in the right panel.
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An example of the results obtained with the described analysis is reported in fig.
B.2: from the result of the Gaussian amplitude it is possible to extract the decay rate
of the excitation. Moreover, by looking at the center of the fitted function we can re-
construct the trajectory of the depletion and accumulation: after the imprinting the are
propagating in opposite directions. Since the profile is linear in good approximation, it
is straightforward to derive the propagation speed. Finally from the standard deviation
it is possible to see that both the excitations broaden in time.

In the following we report some numeric results obtained. As said, values strongly
depend on the regime of superfluidity explored. An interesting feature regards the
propagation speed of the accumulation of density. Indeed, as expected, for all the
regimes we found a very good agreement with the speed of sound. For UFG we ob-
tained that the maximum decay rate observed is around 0.4 ms, while the speed of the
density bump is 11.2±0.5 mm/s (compared to sound speed of vs = 11 mm/s). An
interesting feature observed only in unitary regime is a radial oscillation decaying in at
most 1 ms, with a frequency that is around 30 times the first box energy level. In the
BEC regime instead we find that the decay rate is at most 3 ms while the bump speed is
6.02±0.2 mm/s (where sound speed is vs = 5.8 mm/s). Finally, in the BCS regime the
maximum decay rate is 0.3 ms and the accumulation in the density propagates with a
speed of 12.58±0.27 mm/s in excellent agreement with vs = 12.53 mm/s.

As a conclusion, by phase imprinting technique we cause also a short-term excita-
tion in the density. Anyway it decays very fast and most of all it does not interfere (as
seen in the text) with the presence of currents in the ring.
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[19] M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and
W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular
momentum,” Physical Review Letters, vol. 97, no. 17, pp. 1–4, 2006.

[20] K. C. Wright, R. B. Blakestad, C. J. Lobb, W. D. Phillips, and G. K. Campbell,
“Driving phase slips in a superfluid atom circuit with a rotating weak link,” Phys-
ical Review Letters, vol. 110, no. 2, pp. 1–5, 2013.

[21] A. Kumar, S. Eckel, F. Jendrzejewski, and G. K. Campbell, “Temperature-induced
decay of persistent currents in a superfluid ultracold gas,” Physical Review A,
vol. 95, no. 2, pp. 1–5, 2017.

[22] C. Ryu, E. C. Samson, and M. G. Boshier, “Quantum interference of currents in
an atomtronic SQUID,” Nature Communications, vol. 11, no. 1, pp. 2–7, 2020.

[23] R. Mathew, A. Kumar, S. Eckel, F. Jendrzejewski, G. K. Campbell, M. Edwards,
and E. Tiesinga, “Self-heterodyne detection of the in situ phase of an atomic su-
perconducting quantum interference device,” Physical Review A - Atomic, Molecu-
lar, and Optical Physics, vol. 92, no. 3, 2015.

[24] Y. Cai, D. G. Allman, P. Sabharwal, and K. C. Wright, “Persistent currents in rings
of ultracold fermionic atoms,” ArXiv ID 2104.02218, vol. 1, no. 2, pp. 1–5, 2021.

98



BIBLIOGRAPHY

[25] P. W. Anderson and N. Itoh, “Pulsar glitches and restlessness as a hard superflu-
idity phenomenon,” Nature, vol. 256, no. 5512, pp. 25–27, 1975.

[26] G. Pecci, P. Naldesi, L. Amico, and A. Minguzzi, “Probing the BCS-BEC crossover
with persistent currents,” ArXiv ID: 2010.03552, pp. 1–7, 2020.

[27] Bardeen, John and Cooper, , L. N. Schrieffer, and J. Robert, “Theory of super
conductivity,” Physical Review, vol. 108, no. 5, p. 1175, 1957.

[28] T. Tsuneto, Superconductivity and superfluidity.

[29] M. Inguscio and L. Fallani, Atomic physics: precise measurements and ultracold mat-
ter. 2013.

[30] L. V. Keldysh and A. N. Kozlov, “Collective properties of excitons in semiconduc-
tors,” Sov. Phys. JETP, vol. 27, no. 3, p. 521, 1968.

[31] D. M. Eagles, “Possible pairing without superconductivity at low carrier concen-
trations in bulk and thin-film superconducting semiconductors,” Physical Review,
vol. 186, no. 2, p. 456, 1969.

[32] V. N. Popov, “Theory of a Bose gas produced by bound states of Fermi particles,”
Soviet Physics JETP, vol. 50, p. 1034, 1966.

[33] W. Ketterle and M. W. Zwierlein, “Making, probing and understanding ultracold
Fermi gases,” Rivista del Nuovo Cimento, vol. 31, no. 5-6, pp. 247–422, 2008.

[34] A. Leggett, Diatomic molecules and cooper pairs, vol. 115, p. 13. 1980.

[35] M. Randeria and E. Taylor, “BCS-BEC Crossover and the Unitary Fermi Gas,”
pp. 1–33, 2013.

[36] P. Nozieres and S. Schmitt-Rink, “Bose condensation in an attractive fermion gas:
From weak to strong coupling superconductivity,” J. Low Temp. Phys.; (United
States).

[37] M. J. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein, “Revealing the super-
fluid lambda transition in the universal thermodynamics of a unitary fermi gas,”
Science, vol. 335, no. 6068, pp. 563–567, 2012.

[38] G. Del Pace, Tunneling transport in strongly-interacting atomic Fermi gases. PhD
thesis, 2020.

[39] J. M. Kosterlitz and D. J. Thouless, “Ordering, metastability and phase transitions
in two-dimensional systems,” vol. 6, pp. 1181–1203, apr 1973.
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bon, and H. Perrin, “Producing superfluid circulation states using phase imprint-
ing,” Physical Review A, vol. 97, no. 4, pp. 1–7, 2018.

[78] M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and
W. Ketterle, “Observation of interference between two bose condensates,” Sci-
ence, vol. 275, no. 5300, pp. 637–641, 1997.

[79] L. Pitaevskii and S. Stringari, “Interference of bose-einstein condensates in mo-
mentum space,” Physical Review Letters, vol. 83, no. 21, pp. 4237–4240, 1999.

[80] W. Hoston and L. You, “Interference of two condensates,” Phys. Rev. A, vol. 53,
no. 6, pp. 4254–4256, 1996.

[81] M. Naraschewski, H. Wallis, A. Schenzle, J. I. Cirac, and P. Zoller, “Interference
of Bose condensates,” Phys. Rev. A, vol. 54, no. 3, pp. 2185–2196, 1996.

102



BIBLIOGRAPHY
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sempre di più in questi anni: sei stata una grande compagnia e mi hai ispirato ad essere
sempre migliore in questi anni. Un ringraziamento anche agli zii Emi e Anna, e a Ceci
e Paolo, per tutti i momenti che abbiamo condiviso e vissuto insieme. Grazie a nonna
Gigia, per la tua accoglienza sempre calorosa, e un grazie anche a tutto il resto della
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Pivets, perché in questi anni hai imparato a sopportare le mie freddure e volermi bene
lo stesso, Leo, perché mi hai sempre richiamato all’essenziale pur nello sparare caz-
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vere queste righe sicuramente buona parte del merito la devo a te, che a partire dalla
quarantena mi sei stato compagno in tanti esami, e mi hai fatto riscoprire la bellezza
di studiare; meriteresti una statua! Grazie Michi, perché sei stata proprio un bellissimo
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