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Introduction

One-dimensional systems are a fertile ground for studying the physics of quan-
tum many-body systems with strong correlations and fluctuations. They are
among the most intriguing physical problems, since no simple picture cap-
tures their behaviour. In a three-dimensional world, one dimension is not
a bare abstraction, but finds many realizations: A large amount of research
work in the last twenty years has been devoted to implementing and studying
them, within different fields of physics. From the 90’s, progress in material
science allowed for finding bulk materials exhibiting very anisotropic magnetic
and electronic properties which reveal a one-dimensional structure inside. Re-
markable examples of that are organic conductors [1, 2, 3, 4, 5], as well as
spin [6, 7] and ladder compounds [8, 9]. In the same years, an impressive
boost in chemical synthesis and nanotechnologies brought to the realization of
isolated one-dimensional systems, where electrons are confined to move along
one or a few conduction channels. Examples of this class are quantum wires
[10, 11], Josephson junction arrays [12], edge states in quantum Hall systems
[13], and nanotubes [14, 15]. Their physics drastically differs from the usual
physics of interacting particles, that is, the one known in higher dimensions.
A plethora of quantum effects arises, such as field-induced spin density waves,
ordered states like the spin-Peierls, and, last but not least, superconducting
states. Yet, although many realizations have been implemented and a great
amount of work has been already done, a complete description of the phenom-
ena occurring in these systems is hardly attainable, due to their complexity,
and many questions still have to be addressed.

On this prospect, new possibilities have been opened by the realization
of ultracold gases in degenerate quantum states and by the development of
techniques to manipulate them in light-induced periodic potential, the so-
called optical lattices. As a matter of fact, quite surprisingly, gases can realize
interactions-induced strongly-correlated systems in an unprecedent way. This
is in contrast to the common experience whereby strong correlations only con-
cerns solids or liquids, whereas gases are presumed to be weakly interacting by
definition. Ultracold gases even present some important advantages compared
to the alternative realizations of condensed-matter physics. For example, it
is possible to apply forces much stronger than electric forces usually imposed
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on electrons in crystalline solids. It is possible to switch the potential on and
off abruptly, as well as to modulate it. Besides, optical lattices provide an
effective tool for tuning the atom-atom interactions, since the depth of the
periodic potential can be easily modified by changing frequency and intensity
of the laser light producing the lattice. This is a fundamental point, especially
concerning the realization of one-dimensional systems, because it makes pos-
sible to strictly compare experiment and theory, that is more difficult for the
other realizations.

The starting point of this adventure was the achievement of Bose-Einstein
condensation in ultracold dilute gases, in 1995 [16, 17]. This accomplishment
has opened a new chapter in atomic and molecular physics, the core of which is
given by particle statistics and interactions, rather than single-atom behaviour.
The Bose-Einstein condensate (BEC) is described by a coherent, macroscopic
matter-wave in an interacting many-body system, similar to what occurs in
superconductivity and superfluidity. Therefore, the many-body aspect of a
BEC is reduced to an effective single-particle description. Actually, optical
lattices were introduced slightly before the achievement of Bose-Einstein con-
densation. For a few years, they became a prime tool for exploring a wide
range of phenomena associated with the existence of coherent matter-waves,
such as Bloch oscillations [18] and atom diffraction [19, 20, 21, 22, 23]. Spatial
ordering of the atoms in the lattices was demonstrated [24]. Optical lattices
were also used to improve atom laser-cooling through resolved-sideband Ra-
man laser cooling [25, 26]. Nevertheless, at this stage many-body physics was
still unfeasible due to the too high temperatures and the too low densities
of the atomic samples. The true turning point for the study of many-body
problems came from the combination of optical lattices and Bose-Einstein
condensates.

First experiments demonstrated the superfluid behaviour of BECs in op-
tical lattices [27, 28, 29], e.g., emulating the physics of arrays of Josephson
junctions [30]. At the same time, experiments started to realize complex many-
body states, relevant for simulating condensed-matter systems, first with BECs
[31, 32, 33, 34, 35], and later with ultracold Fermi gases [36, 37]. Strongly-
confining optical lattices have been used to create microtraps for the atoms,
the geometry of which can be appositely chosen to produce one-dimensional
bosonic systems [32, 33, 34]. Thus, we can say that optical lattices have
provided the equivalent of the lithography processes for trapping fermions in
quantum wires or the chemical mechanisms bringing the formation of nan-
otubes in one-dimensional organic materials. This has allowed to explore new
regimes. Whereas in a three-dimensional gas interactions can be neglected
or effectively described in terms of noninteracting quasi-particles, e.g., in the
framework of the Bogoliubov-De Gennes perturbation theory [38], in one-
dimension interactions can become so strong that the Bogoliubov-like theories
fail [39]. This occurs especially at very low densities. Besides, as anticipated
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before, optical lattices allow for tuning the strength of the interatomic interac-
tions compared to the kinetic energy of the gas [40], in an alternative manner
to Feshbach resonances [41, 42]: In this way, the interaction-induced transition
from a superfluid state to a Mott insulator state has been observed [31, 32].

Thus, ultracold gases in optical lattices can be a favourable test-ground
for realizing and manipulating strongly correlated quantum phases and ap-
proaching many physical problems [43]. In addition, they constitute a promis-
ing candidate for implementing quantum information processing and quantum
simulation schemes [44]. To achieve these goals, a corner stone consists in a
precise characterization of the correlated gaseous phases.

As in solid-state physics, experimental tools are necessary to characterize
these quantum many-body ultracold gases. A natural candidate is the study
of the response to scattering processes, in a similar manner to what is done
in condensed-matter physics. Along those lines several techniques have been
proposed in the latest years, consisting in scattering photons from the corre-
lated atomic state, and some of them have been implemented recently. They
include radio-frequency spectroscopy [45, 46], Raman spectroscopy [47] and
Bragg spectroscopy [48, 49, 50, 52, 51].

This thesis project

The PhD project presented here is part of the context described above. It was
carried out at the European Laboratory for Non-linear Spectroscopy (LENS)
in Florence, and consisted of three years of work performed in the Quantum-
Degenerate-Gases (QDG) group directed by Prof. Massimo Inguscio. The
experiments we will describe were realized on the apparatus of the laboratory
‘BEC1’, directed by Dr. Chiara Fort. The core apparatus, implemented to
produce quantum degenerate Bose-Einstein condensates of Rubidium-87, has
been working since 1998.

In order to explore the physics of one-dimensional systems, the Bose-
Einstein condensate has been trapped in an array of one-dimensional gases
in different quantum regimes by exploiting strongly-confining optical lattices.
For characterizing these quantum phases, we mainly exploited inelastic light
scattering (referred to as Bragg spectroscopy). This technique provides a tool
which weakly perturbs the system, and creates excitations with momentum
and energy that can be tuned independently. Thus, via Bragg spectroscopy, it
is possible to investigate the elementary excitations of the system, which are
useful for describing the strongly-correlated dynamics (e.g., using Green func-
tions), common in condensed matter physics [53]. The setup for spectroscopy
has been implemented for this purpose, and tested on a three-dimensional
sample in the presence of a one-dimensional optical lattice.

In a first experiment, we have employed Bragg spectroscopy to probe the
coherence properties of an array of one-dimensional (1D) gases. In our range
of parameters, each gas of the array is a ‘quasicondensate’ [54], i.e., density
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fluctuations are suppressed as in a BEC but the phase still fluctuates over a
distance much smaller than the size of the cloud. The decay of the correlations
is dominated by these phase fluctuations, and that reflects on the dynamical
structure factor S(q, ω). Measuring the latter, we have extracted the coherence
length of the system, that is, the range of these fluctuations. Apart from
Bragg spectroscopy, we have also proposed and used time-of-light absorption
imaging to directly give a quantitative estimate of the coherence length of the
1D gases in the regime where phase fluctuations are strong. Exploiting the
simple relation between coherence length and temperature for a single 1D gas,
we have in principle a thermometer for the system. The presence of an array of
gases with different densities, as in our case, introduces a complication into the
description of the problem. For this reason, we have developed a theoretical
model based on the treatment of M. Krämer et al. [55], which has allowed us
to simulate the response of a large ensemble of one-dimensional gases with a
mean-field interaction at finite temperature.

Further experiments have been devoted to study the transition from an
interacting superfluid to a Mott insulating phase. This has been realized by
adding an optical lattice along the axial direction of the micro-tubes, and thus
modifying the effective atom-atom interactions. The presence of this lattice
potential enriches the scenario of the possible excitations of the system: As is
well known in condensed matter physics, due to the presence of a periodic po-
tential the energy of the system shows a band structure, and excitations can
be populated in different bands. From the low-energy excitation spectrum
(in the lowest band) we extract information on S(q, ω). The measurement of
S(q, ω) has been used for characterizing the regime of superfluid and Mott
insulator, as well as for identifying the critical point of the quantum transi-
tion. In addition, inducing excitations to higher-energy bands has allowed for
extracting information on the one-particle spectral function. The latter work
has been conducted in collaboration with the theoretical group of Condensed-
Matter-Physics of the Weizmann Institute of Science (Rehovot, Israel), di-
rected by Prof. Ehud Altman, in the framework of the LENS-Weizmann Joint
Laboratory Initiative. This collaboration has yielded the proposal of a new
spectroscopic scheme, based on Bragg spectroscopy combined with a band-
mapping technique, to obtain novel information about one-particle coherence
of many-body states in the presence of a lattice potential.

Outline of the thesis

The presentation of the work is organized according to the following scheme.
Chapter 1 offers a review of some fundamental theoretical ideas concerning
one-dimensional systems, introducing the universality class of the Luttinger
liquid and the transition from superfluid to a Mott insulator. Chapter 2
presents the practice realization of the 1D physics by means of an array of
gaseous micro-tubes of atoms confined in optical lattices. The experimen-
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tal setup is described, with special emphasis on the realization of the optical
lattices. In a second part, we describe the theoretical model we developed
by drawing inspiration from [55] to describe the feature of the array of one-
dimensional gases. Chapter 3 describes the spectroscopic method and the
setup built to implement it, and establishes the relation between the quan-
tity measured in the experiments and the correlation functions of the systems.
Chapter 4 presents the measurement of the dynamical structure factor of the
an array of one-dimensional gases in the regime of a quasicondensate. Chap-
ter 5 and chapter 6 investigate the properties of the system when a lattice is
superimposed along the axis of the one-dimensional gases. Chapter 5 is de-
voted to the intra-band spectroscopy, used to determine the properties of the
system through the transition from a superfluid to a Mott insulating state.
In the last chapter, we explore the excitation in high-energy bands of the lat-
tice. First, we present the results of a preparatory experiment performed on a
three-dimensional gas in the presence of a one-dimensional lattice, used as a
test for inter-band spectroscopy. Then, we describe the analogous inter-band
Bragg experiment performed on one-dimensional Mott insulating gases.
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Chapter 1

One dimensional systems:
Luttinger liquids and Mott
transition

In one-dimension, particles act in a completely different manner from their
three-dimensional counterpart. Unlike in three-dimensions, the more dilute
the system, the stronger are interactions compared to kinetic energy. As a
consequence of this counterintuitive fact, at very low densities interactions
dominate the physics of the system. This brings very special features. In
ensembles of bosonic particles with collisional interactions, when repulsion
between the particles becomes very strong, the bosons are prevented from
occupying the same position in space; thereby interactions mimic the Pauli
exclusion principle, causing the bosons to exhibit fermionic properties. Apart
from interactions, also quantum fluctuations are enhanced by low dimension-
ality. This usually prevents from describing the system with a mean-field
theory. The combined effect of interactions and quantum fluctuations leads to
the peculiar universality class of the interacting quantum fluids, the so-called
Tomonaga-Luttinger liquid. These kind of systems are extremely fragile to ex-
ternal perturbations, and this can lead to peculiar quantum phase-transitions
such as the sine-Gordon transition from a superfluid Luttinger liquid to a
Mott insulator, that occurs when superimposing an arbitrary weak periodic
potential.

In this chapter, we will briefly review some basic ideas about one-dimensio-
nal systems, in order to provide the theoretical framework for the experiments
developed in this thesis. We will get a definition for one-dimensional systems,
useful in experimental practice. Then, we will briefly present a general treat-
ment of one-dimensional systems, which exploits the ‘bosonization’ technique,
working both for fermions and bosons. Finally, the discussion will be special-
ized to the case of one-dimensional Bose gases. In section 1.3, we will discuss
the regimes of degeneracy of trapped one-dimensional gases, pointing out the
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role of trapping potential and of temperature. In section 1.4 a periodic lattice
along the axial direction of the system will be introduced, which will allow for
exploring the physics of the Mott insulating state.

For a more detailed and extensive presentation of the physics of one-
dimensional systems, we refer the reader to the T. Giamarchi’s book Quan-
tum Physics in One Dimension [56], whereas for a more specific look at one-
dimensional Bose gases we refer to [54, 57].

1.1 One-dimensional systems

One dimensional (1D) systems in the real three-dimensional world occur be-
cause of a potential forcing particles to stay in a localized state in two direc-
tions. In this case, the wavefunction assumes the form:

ψ(r, y) = eikyφ(r), (1.1)

where we chose the coordinates so that the system is tightly confined in the
x and z directions, and we defined r =

√
x2 + z2. The function φ(r) depends

on the precise form of the potential. For an infinite well it is given by φ(r) ≡
φnr(r) = sin((2nr + 1)πr/Lr), Lr being the distance between the potential
walls. Instead, for a harmonic trap with frequency ω⊥, φ(r) is a gaussian
function multiplied by a Hermite polynomial Hnr(αr):

φ(r) ≡ φnr(r) =
√

α

π1/22nrnr!
e−α2r2/2 Hnr(αr) (1.2)

where α =
√

mω⊥/~, m being the particle mass and ~ = h/(2π) the reduced
Planck constant, and the ground-state corresponds to H0(αx) = 1. This
second case is especially relevant for us, since the transverse potential realized
in the present experiment is well described by a harmonic approximation (see
Sec.2.2.2). The energy of the system, which we can write as the sum of its
axial and radial parts, is thus quantized

E = Ey + Er =
~2k2

2m
+ ~ω⊥(nr + 1) (1.3)

where nr = nx + nz, nx and nz being integer numbers. Therefore the funda-
mental state is degenerate with multiplicity equal to 2. This situation leads
to the formation of transverse energy-minibands. If the distance in energy
between these minibands, i.e ~ω⊥, is larger than temperature and interaction
energy, only one of them is populated into a good approximation. The trans-
verse degree of freedom is frozen and the dynamics of the system develops only
along the axial direction.

A sketch of this situation is reported in Fig. 1.1 (a). The figure reports an
additional weak confinement along the longitudinal direction ŷ, as present in
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y
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y

r(y)

(a) (b)

Figure 1.1: (a) Schematics of a system confined to one dimension. Due to the
transverse confining potential the transverse degrees of freedom are strongly
quantized and only one transverse level is occupied, in contrast to what hap-
pens in the axial direction denoted by y (occupied levels are represented in
red; empty levels in gray). (b) Excitation propagating along the 1D system,
corresponding to a density wave with length-scale larger than the interparticle
spacing.

real systems: This longitudinal trap introduces a quantization of energy also
in this direction. Again, in our experiment this longitudinal confinement is
well approximated by a harmonic well, so that the term Ey in Eq. (1.3) can
be rewritten as Ey = ~ωy(ny + 1/2). If the system is sufficiently anisotropic,
i.e., ωy ¿ ω⊥, this longitudinal confinement does not invalidate the simple
picture we have traced up till now, even if it introduces some important mod-
ification on the system physics, as will be discussed in Sec. 1.3.2. To be
precise, if the temperature T and the interaction energy Eint fulfill the condi-
tion ωy ≤ Eint, T ¿ ω⊥, the system still occupies the transverse ground-state,
which is degenerate since it includes several longitudinal modes. Commonly in
experiments atoms do not form a simple chain with thickness of a single atom,
but the fulfilling of this condition ensures that the system is one-dimensional.

1.2 Luttinger liquids

Interacting one-dimensional fluids, no matter if the particles are fermions or
bosons, belong to a universality class of systems that Haldane [59] termed ‘Lut-
tinger liquids’. The name derives from the analogy with higher dimensional
fermionic systems, where the equivalent role is played by the universality class
of Fermi liquids. However, unlike the Fermi liquids, the class of Luttinger
liquids also includes one-dimensional interacting boson systems. This derives
from the absence of a well-defined concept of statistics in 1D. As a conse-
quence, the low-energy degrees of freedom of the fermions can be described in
terms of a bosonic field, and boson systems can display fermion-like properties
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under certain conditions.
As a general property, because of inter-particle interactions, if any atom

tries to move, it inevitably pushes its neighbours along the 1D axis, and the
latter their own neighbours and so on, namely, a density wave propagates
along the system. Thus, no individual motion is possible and any individual
excitation becomes a collective one. This feature is illustrated in Fig. 1.1 (b).
This character also suggests to re-express the excitations in a basis of collective
excitations, which is the idea behind the most successful theory describing 1D
systems, the so-called bosonization technique (or harmonic fluid approach),
that we will briefly trace in the next section.

1.2.1 Bosonization

One of the powerful techniques for treating interacting particles in one-dimension
is the bosonization technique, which is valid both for fermions and bosons. The
first brick of this construction consists in labeling particles with a field Φl(y).
Unlike in three dimensions, in one dimension particles can be numbered in
a unique way, whatever position they occupy along the system, and the field
Φl(y) can be always taken as an increasing function of y, e.g., starting from
y = −∞ and proceeding from left to right. A convenient definition can be [56]

Φl(y) = 2πρ0y − 2Φ(y), (1.4)

where ρ0 is the mean density and Φ(y) is the field relative to a perfect crys-
talline 1D structure. The density, defined as ρ(y) =

∑
i δ(y − yi) (yi being

the position of the ith particle), can be rewritten as a function of this field by
using the rules for transforming δ-functions:

ρ(y) =
(

ρ0 − 1
π
∇Φ(y)

) ∑
p

e2ip(πρ−Φ(y)) '
(

ρ0 − 1
π
∇Φ(y)

)
, (1.5)

where p is an integer number. On the right-hand side we have considered
the average density over a length-scale larger than the interparticle distance
d, so that all oscillating terms vanish. Then, we can write the single-particle
creation operator

ψ�(y) =
√

ρ(y)eiθ(y), (1.6)

which follows the commutation relations for bosons. θ(y) is an operator which
depends on the specific realization of the model. In the case of interest, i.e.,
for a Bose-condensed gas, θ(y) is the superfluid phase of the system. On the
other hand, order in Φ means that the density has a periodic structure, as in
a crystal.
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The Hamiltonian

An interacting 1D gas can be described by the Hamiltonian

H =
∫

dy
~2 (∇ψ(y))� (∇ψ(y))

2m
+

1
2

∫
dydy′U(y−y′)ρ(y)ρ(y′)−

∫
dyµ(y)ρ(r)

(1.7)
where the first term represents the kinetic energy, the second is the interpar-
ticle interaction and the last is the chemical potential. By substituting Eq.
(1.5) in Eq. (1.7) and considering point-like interactions, one obtains for the
kinetic and interaction terms respectively:

HK '
∫

dy
~2ρ0

2m
(∇eiθ)(∇e−iθ) =

∫
dy
~2ρ0

2m
(∇θ)2, (1.8)

Hint =
1

2π2

∫
dy U (∇Φ)2, (1.9)

where only the lowest order in ∇Φ has been considered, so that both the terms
assume a quadratic form.

Thus the low-energy Hamiltonian has the form of an harmonic oscillator

H ' ~
2π

∫
dy

(
uK(∇θ(y))2 +

u

K
(∇Φ(y))2

)
, (1.10)

having defined the Luttinger parameter u and K as

uK =
π~ρ0

m
, (1.11)

u

K
=

U

π~
. (1.12)

These parameters u and K totally characterize any one-dimensional system.
For the appropriate K and u, the Hamiltonian in Eq. (1.10) efficiently de-
scribes the low-energy properties of the system, no matter what is the micro-
scopic structure of the specific realization. Note that including higher-order
terms would not change the form of the Hamiltonian but can be absorbed
by renormalizing the parameter K and u, so that H does not depend on the
perturbative derivation that makes it a real low-energy effective Hamiltonian.
From Eq. (1.10) one can extract that the excitations are sound-like density
waves, with linear dispersion relation ω ∼ uk, where u is the sound velocity.
As a consequence of the linear spectrum, such a system is a true superfluid
[58]. Concerning the dimensionless parameter K, it tends to K = ∞ for non-
interacting bosons, and decreases when repulsive interactions increase. From
Eqs. (1.11) and (1.12) one can also notice that the ratio between interaction
and kinetic energy scales as K−2 ∼ Um/(π2~2ρ0). This indicates a funda-
mental difference of 1D systems with respect to their 3D counterpart, i.e., the
lower the density the stronger are interactions compared to kinetic energy.
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Figure 1.2: Phase-diagram for incommensurate bosons, as a function of the
parameter K.

1.2.2 Correlation functions

Interactions imply the presence of spatial correlations between the particles.
Thus, key physical properties of interacting 1D systems are defined by means of
their correlation functions – that are just what we measure in our experiments
(see chapter 3).

Let us directly report the expression of the density-density correlation
function and the single-particle correlation function [56]:

〈ρ(y)ρ(0)〉 = ρ2
0 +

K

2π2

y2
α − y2

(y2
α + y2)2

+

+ A3 cos(2πρ0y)
(

1
y

)2K

+ A4 cos(4πρ0y)
(

1
y

)8K

+ . . . (1.13)

and

〈ψ(y)ψ(0)�〉 = A1

(
1
y

)1/(2K)

+ . . . (1.14)

where the coefficients Ai are non-universal amplitudes. Note that all the
asymptotic properties of the system, described by the power-law decay of
the various terms, are universal and only depend on the parameter K. From
Eq. (1.13), we can notice that the long-wavelength fluctuations decay with a
universal power-law. They correspond to hydrodynamic modes of the inter-
acting quantum fluids, since this slow decay is a signature of massless modes,
namely sound-waves of density. One can also note the presence of a continuum
of gapless modes, with Fourier components at Q = 2πρ0, consistent with the
qualitative description that will be given in Sec 1.2.3.

K = ∞: Non-interacting bosons. As we already noticed from Eq. (1.10)
K = ∞ corresponds to non-interacting bosons. This is consistent with a
superfluid system, where density fluctuations are extinguished. Besides, the
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single-particle correlation function does not decay with distance, which in-
dicates the system to possess off-diagonal long-range order. In practice, the
system is condensed in the zero-momentum state.

1 < K < ∞: Interacting bosons. For finite values of K, the one-particle
correlation function has a power-law decay as (2K)−1. The smaller K, the
faster is its decay, and the system manifests less tendency to superfluidity.

K = 1: Tonks-Girardeau gas. For point-like interactions, infinite repul-
sion precisely corresponds to K = 1 [56]. In that case, the density of the
system becomes equivalent to that of spinless fermions since the wavefunc-
tions of the particles cannot overlap, but apart from this constrains they are
totally free. The density correlation function is that of fermions (∼ 1/r2), and
2πρ is equivalent to 2kF , kF being the Fermi wavevector. This realizes the
so-called Tonks-Girardeau gas. Note that the single-particle correlations do
not become equal to that of spinless fermions since statistics are still reflected
in it. For pure δ-like interactions, K = 1 is the minimum value that can be
reached. Long-range repulsion can induce the system to explore smaller values
of K.

These general remarks allow us to draw a schematic phase-diagram as in
Fig. 1.2.

1.2.3 Excitations in one dimension

Now, we would like to present some simple physical arguments that allow us to
infer the peculiar shape of the excitation spectrum of a 1D system, compared
to their high-dimensional counterpart.

A major component of the excitations of strongly interacting bosons or free
fermions in one dimension consists in the so-called particle-hole excitations,
where a particle is extracted from below the Fermi level (where a hole is
created) and promoted above it. Since the removed particle has momentum k
and the excited one has momentum k′, the momentum of the excitation is well
defined, and equal to q = k − k′. Comparing 1D systems of boson or fermion
particles with a high-dimensional fermionic systems can be insightful. In 2D or
3D for q < kF one can create particle-hole pairs with fixed energy but different
momentum. As represented in Fig. 1.3 (a), excitations of arbitrarily low
energy can be induced by destroying a particle just below the Fermi energy and
creating one just above the Fermi energy, changing the imparted momentum
q without moving away from the Fermi surface: This leads to a continuum of
energies which starts from zero, for all q < kF . In one dimension, the Fermi
surface is reduced to two points, and since the only way to get a low-energy
excitation is to destroy and create particles near the Fermi level, the points



18
ONE DIMENSIONAL SYSTEMS: LUTTINGER LIQUIDS AND MOTT

TRANSITION

q q  2kF~ q  0~

0             2k qF 0             2k qF

E (q)k E (q)k

e(k)

k

(a) (b)

Figure 1.3: The particle-hole excitation spectrum for (a) two- and three-
dimensional fermionic system and (b) one-dimensional (bosonic and fermionic)
system: The energy of the excitations is reported as a function of its momen-
tum. Below, the schematics of the corresponding excitations are represented.

where the particle-hole excitation energy can reach zero are only q = 0 and
q = 2kF .

The possible excitations in a 1D bosonic gas and the corresponding branches
of the excitation spectrum are summarized in Fig. 1.4. As we said before, gap-
less excitations can be induced creating a hole just below the Fermi level and
a particle in an energy state above the Fermi level, with momentum q → 0 or
q → 2kF as the energy vanishes (blue and purple branches of the spectrum,
corresponding to excitations denoted by arrows of the same colour). Besides,
for momentum 0 < q < 2kF , the system has gapped excitations (red branch of
the spectrum, and corresponding excitation, in the figure). The latter consist
in creating a hole well-below the Fermi ‘surface’: The removed particle can
only jump above the Fermi energy, since all the states below this threshold
are already populated and cannot be further occupied because of the Pauli
principle for fermions or strong repulsions for bosons; thus a finite jump in
energy is necessary.

1.3 One-dimensional Bose gases

In the previous section, we presented a general theory for 1D systems that
is valid independently from the microscopic properties of the specific realiza-
tion. This model provides a general low-energy Hamiltonian, which is fully
determined by two interaction-dependent parameters: the velocity of excita-
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E (q)k
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Figure 1.4: Identification of the different branches of the particle-hole excita-
tion spectrum of a one-dimensional system: A particle can be removed from
the Fermi surface and promoted to higher-energy, with momentum transfer
near to zero or 2kF (blue and purple arrows, respectively), otherwise a par-
ticle can be extracted well below the Fermi surface, an intermediate value of
momentum (0 < q < kF ) being imparted (red arrow).

tions u and the dimensionless exponent K. The model predicts the elementary
excitations of the system and its spatial first- and second-order correlations
functions, the decay of which is universal for all the 1D systems, only depend-
ing on the parameter K. Now, we will specialize the description to the case
of one-dimensional Bose gases, that we implement in our experiments.

For describing the properties of a specific realization, it is necessary to
connect the Luttinger parameters with known properties of the system con-
sidered. Nevertheless, for most of the condensed-matter realizations, this is
in general a non-straightforward job. Since the details of the interaction are
rarely known, only a theoretical estimate of the power-law exponents is possi-
ble, whereas a precise quantitative comparison between theoretical predictions
and experiment is usually prevented. The only exception, as far as we know,
is recent work on weakly coupled spin-1/2 Heisenberg antiferromagnetic lad-
ders realized by a crystal of CuBr4(C5H12N)2 [60]. Such spin-1/2 ladders in
the presence of an external magnetic field map essentially onto a 1D system
of interacting spinless fermions. However, suitable spin-ladder systems are
rare, either because of unattainable critical fields or because of the presence
of anisotropic interactions.

On this prospect, dilute ultracold gases can be a prime candidate to ex-
tensively study the Luttinger-liquid physics: They present a major advantage
with respect to other realizations of 1D systems, since it is possible to directly
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connect the microscopic properties, such as the particle mass and the density,
with the universal Luttinger parameters. This allows one to directly compare
theory and experiment.

In particular, we will consider bosonic particles that, from the theoretical
point of view, show quite interesting peculiarities and are in fact a priori
much more difficult to treat than their fermionic counterpart. As a matter of
fact, for fermionic systems, the free-fermion model is a good starting point,
from which one can gain valuable physical intuition on several problems before
adding interactions. On the contrary, for bosons interactions must be taken
into account from the beginning, since there are radical differences between a
non-interacting boson gas and an interacting one. For instance, superfluidity
occurs only in interacting systems: In fact, free bosons at zero temperature
have a quadratic dispersion relation, whereas interactions determine a linear
dispersion relation at small momenta. The effect of interactions becomes much
more dramatic in one-dimension.

In the following, we will present a model of particles with point-like colli-
sional interactions, suitable for describing cold bosonic gases as we realize in
the experiment.

1.3.1 Lieb-Liniger model

Let us consider an ultracold bosonic gas strongly confined in two directions.
Since only very low energies are present, only binary collisions at low energy
are relevant: Atoms mainly interact through s-wave scattering, described by
the three-dimensional scattering length as. Thus, the details of the molecular
potential can be neglected and the many-body description can be simplified
by replacing the true interatomic potential by a much simpler model potential
depending on the scattering length. As demonstrated by M. Olshanii [61], the
interactions of a 1D gas with transverse harmonic confinement is well described
by a zero-range interaction potential VBB(x− x′) = g̃δ(x− x′), where

g̃ =
2~2

ma⊥
as/a⊥

1− C(as/a⊥)
(1.15)

a⊥ =
√
~/(mω⊥) being the transverse harmonic oscillator length and C ∼

1.0235. The system is described by a single dimensionless parameter

γ =
mg̃

~2ρ0
. (1.16)

which represents the ratio of the mean-field interaction energy (Eint ∼ g̃ρ0)
to the kinetic energy necessary to bring quantum particles at distance ρ−1

0

(EK ∼ ~2ρ2
0/m). The dimensionless interaction strength γ scales inversely

with the 1D mean density ρ0. This leads to the fascinating peculiarity of
1D systems that we mentioned in Sec. 1.2.1: Interactions grow with respect
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to kinetic energy as the density decreases, in direct contrast to the three-
dimensional situation [54].

This model of particles with zero-range interactions is exactly solvable.
Its solution for periodic boundary condition was found by E. H. Lieb and
W. Liniger [39], who also computed the ground-state energy per particle, the
chemical potential and the sound velocity.

The Luttinger parameters K and u, introduced in Sec. 1.2.1 for describing
the universal behaviour of the system, can be expressed as a function of γ
over its whole range by numerically solving a set of Bethe-ansatz equations.
Otherwise, analytic approximate expressions can be written in the two regimes
of small and large γ (see [62]):

u = vF

√
γ

π

(
1−

√
γ

2π

)1/2

, K =
π√
γ

(
1−

√
γ

2π

)−1/2

for γ ¿ 1; (1.17)

u = vF

(
1− 4

γ

)
, K =

(
1 +

4
γ

)
for γ À 1. (1.18)

At low enough density or very large interactions we obtain γ À 1, so
that according to Eq. (1.18) we recover the case K = 1 we discussed in Sec.
1.2.2. The system approaches a gas of impenetrable bosons, since each atom is
reflected by the repulsive potential created by the surrounding particles, that
mimics the Pauli exclusion principle. The particles cannot overlap to each
other, and the wavefunction of the system takes the form [63]

Ψ(x1, . . . , xN ) =
∏

i<j

∣∣∣∣sin
(

π(xi − xj)
L

)∣∣∣∣ (1.19)

which coincides with the absolute value of the wavefunction of a noninteracting
gas of spinless fermions.

1.3.2 Regimes of degeneracy in a trapped 1D gas

In cold-atoms experiments realizing 1D systems, an additional trapping po-
tential is always present along the gaseous tubes. The problem of a 1D gas
trapped has been treated by D. S. Petrov, G. V. Shlyapnikov and J. T. M.
Walraven [54], who identified the different regimes of degeneracy occurring at
low temperature. In the following, we will summarize these results and we will
define some important quantities that will be useful in the next chapters.

Our realization, as in other experiments, implies particles to be in a cylin-
drical trap, tightly confining the gas in the radial direction, with frequency
ω⊥ greatly exceeding the mean-field interaction (see Sec.2.3.2). Then, at suf-
ficiently low temperature the radial motion of particles is essentially frozen as
described in Sec. 1.1 and is governed by the ground-state wavefunction of the
radial harmonic oscillator. If the radial extension of the wavefunction largely
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exceeds the characteristic radius of the interatomic potential, the interparti-
cle interaction acquires a 3D character and will be characterized by the 3D
scattering length as. In this case, assuming a⊥ À as, Eq. (1.15) simplifies to
[61]

g̃ = 2~ω⊥as. (1.20)

In the presence of a harmonic trapping potential along the axial direction
V (y) = mω2

yy
2/2, following [54] it is convenient to introduce another quantity

to describe the system, in addition to the parameter γ:

α =
mg̃ ay

~2
, (1.21)

which is dimensionless as γ and provides the relation between the interaction
strength g̃ and the frequency of the axial trap ωy, ay =

√
~/(mωy) being the

amplitude of axial zero-point oscillations. In our experiments, where an array
of 1D gases is produced by loading a BEC of 87Rb in a 2D periodic potential,
typical numbers are a⊥ ∼ 55 nm and ay ∼ 2 µm for the transverse and axial
harmonic oscillator lengths, so that α ≈ 6.

Trapped one-dimensional gas can experience three different regimes of de-
generacy, provided that T ¿ Td, where Td ≈ N~ωy is the degeneracy temper-
ature [54]. For sufficiently large interparticle interactions and for a number of
particles much smaller than a characteristic value N∗, at any T ¿ Td a trapped
Tonks gas occurs, with a typical Fermi-gas density profile. For N À N∗ the
gas becomes weakly interacting. In this case, at relatively high temperature
(still well below Td), the system is a quasicondensate, i.e. a Bose-condensed
state where density fluctuations are suppressed but the phase still fluctuates.
At very low temperature, also the long-wave fluctuations of the phase are sup-
pressed due to a finite size of the system, and we have a true condensate. In
the following, we will examine in more detail some crucial aspects of these
three phases.

Weakly-interacting bosons in 1D

In uniform infinite one dimension systems, no condensate can exist since it is
impossible to break a continuous symmetry even at zero temperature. The
presence of a longitudinal trap dramatically changes the behaviour of the sys-
tem, since Bose-Einstein condensation occurs at zero temperature for γ ¿ 1
[54]. A Bose-Einstein condensate (BEC) consists of a coherent ensemble of
particle which occupy the same quantum state. Due to the presence of the
trap, the onset of BEC occurs not only in momentum (where it is charac-
terized by a δ-function distribution centered at zero momentum) but also in
space. Considering a dilute gas with contact interactions as we mentioned be-
fore, at temperature low enough to neglect field fluctuations, the global effect
of the δ-function interactions of the surrounding atoms can be averaged in a
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mean-field approximation as a local mean-field interaction term g̃|ψ(y)|2. The
condensate wavefunction is determined by the Gross-Pitaevskii equation

i~∂tψ(y, t) =
(
− ~

2

2m
∂2

y + Vext(y) + g̃|ψ(y, t)|2
)

ψ(y, t) (1.22)

where Vext(y) is the external potential. In the Thomas-Fermi (TF) regime
(where interactions dominate kinetic energy), the axial density profile is parabolic

ρ(y) = |ψ(y)|2 = max
{

0, ρ(0)
(

1− y2

L2
TF

)}
(1.23)

where the maximum density ρ(0) = µ̃/g̃ depends on the 1D chemical potential

µ̃ = ~ωy

(
3Nα

4
√

2

)2/3

, (1.24)

and we defined the Thomas-Fermi axial radius as LTF =
√

2µ̃/(mω2
y). For a

α À 1 we are always in the TF regime (µ̃ À ~ωy). In this case, the condition
γ ¿ 1 requires a sufficiently large number of particles: N À N∗ ≡ α2. Thus,
in contrast to the analogous situation in three-dimensions, in one dimension
the weak-coupling regime requires high densities.

Trapped Tonks-Girardeau gas

In a trap, the Tonks-Girardeau regime occurs for α À 1 and γ À 1. The latter
condition requires that N ¿ N∗. The chemical potential becomes µ̃ = N~ωy

and the density distribution equals that of a Fermi gas

ρ(y) =
√

2N

πay

√
1−

( y

L

)
, (1.25)

where L =
√

2Nay is the axial size of the cloud. As evident from Eq. (1.25),
the Tonks-Girardeau profile differs both from the zero-temperature density
distribution of a weakly interacting Bose-Einstein condensate and from the
spatial distribution of a classical gas.

Finite Temperature: The quasicondensate

Now, let us consider the effect of a finite (even if low) temperature. At fi-
nite temperature, longitudinal fluctuations of the density and phase of the
condensate are related to elementary excitations of the cloud. The density
fluctuations are dominated by excitations with energy of the order of the
chemical potential µ̃. Their wavelength is much smaller than the radial size of
the condensate. Hence, these fluctuations have the ordinary three-dimensional
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character, and in one dimension are small. The phase excitations can be di-
vided in two classes: (i) high-energy excitations, with wavelength smaller then
the radial size R, having a 3D character; (ii) low-energy axial excitations, with
wavelengths larger than R, exhibiting a pronounced 1D behavior and giving
the most important contribution to the long-wave axial fluctuations of the
phase. Let focus on this second kind of phase fluctuations. For a 1D gas
trapped along the axial direction, D. S. Petrov, G. V. Shlyapnikov and J. T.
M. Walraven [64] also calculated how the mean squared value of phase fluc-
tuations depends on temperature, near the center of the longitudinal trap.
Besides, by means of a local density approximation, F. Gerbier et al. [65] have
found an approximate analytic expression of the correlation function valid
across the whole sample:

〈δφ(y, y′)2〉 =
|y − y′|

Lφ(T ) (1− (y/L)2)2
. (1.26)

Here L is the total size of the gas, T is the temperature, and we have in-
troduced the coherence length Lφ(T ) = ~2ρ/(mkBT ), i.e. the mean distance
along which the phase of the system varies by 2π, according to [64]. Lφ essen-
tially depends on temperature and 1D-density n1D. At the center of the trap,
〈δφ(y, y′)2〉 varies linearly with the distance, whereas it has some deviation far
away from the center. This can be included by redefining the space-dependent
coherence L̃φ(y) = Lφ(T )

(
1− (y/L)2

)2.
In addition to the coherence length, it is also possible to define a charac-

teristic temperature Tφ [54], related to the former by

Tφ = T
Lφ

L
. (1.27)

At temperatures lower than Tφ, Lφ overcomes the total axial size of the atomic
cloud and the longitudinal phase fluctuations are negligible. This uniform
phase profile, along with the absence of density fluctuations, defines the true
condensate. With increasing temperature, phase fluctuations become relevant.
However, density fluctuations are still negligible up to the degeneracy temper-
ature Td. Thus, in the range Tφ < T < Td the density profile is still that of
a BEC, but phase coherence is lost. The system can be also depicted as a
collection of independently fluctuating local condensates and is called a qua-
sicondensate. At temperatures higher than Td, the gas eventually evolves into
the classical regime of a Boltzmann gas. As shown in Eq. (1.27), diminishing
the number of atoms, Tφ also decreases: That makes the condition to have a
quasicondensate more and more stringent with regard to temperature.

Assuming that the condensed fraction largely exceeds the thermal part,
which ensures small density fluctuations, the correlation function of the system
only depends on the mean square fluctuations of the phase:

〈
ψ�(y)ψ(y)

〉
=

√
ρ(y)ρ(y′)e−〈δφ(y,y′)2〉/2. (1.28)
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Therefore, the linear dependence of δφ2(y, y′) on the axial coordinate (having
redefined the space-dependent coherence length in Eq. (1.26)) leads to an
exponential decay of the first-order coherence function.

1.4 Interacting bosons in a lattice

So far we considered the 1D gases as a continuum of particles. Now we will
tackle the problem of an underlying lattice in which the particle move. This
is a fundamental problem, since it also describes the situation of electrons in
crystalline lattices. One of the most important consequence of the lattice is
the possibility for particles (both atoms in an optical lattice or electrons in
a crystal) to produce an insulator driven by interactions, known as the Mott
insulator.

For describing a one-dimensional system immersed in a periodic potential,
two approaches are possible. The first is an extension of the bosonization
theory presented in Sec. 1.2.1, and it is especially suitable for systems with
large interactions (γ > 1), corresponding to small values of the Luttinger
parameter K. For less interacting systems, with γ < 1 (namely, K ≥ 3), a
microscopic approach is more often used, such as that provided by the so-
called Bose-Hubbard model. In an intermediate regime, the two approaches
give the same results.

In the following section we will present the Bose-Hubbard model, which is
more suitable for the system we realize in our experiments (0.2 < γ < 0.8).
Now instead let us spend some words about the first approach.

In the framework of the bosonization theory, a 1D lattice gas is described
by the sine-Gordon Hamiltonian, that is the Hamiltonian in Eq. (1.2.1) plus
an additional term which describes the periodic potential. The latter term
reads:

HL ∼ −VL

∫
dy cos(2pΦ(y)) (1.29)

where VL is the lattice strength and p an integer number. This periodicity
leads to a Mott transition for K = 2 [56]. As a matter of fact, the term in Eq.
(1.29) becomes relevant for K < 2 and leads to phase ordering in φ(y), where
density fluctuations are frozen. This realizes a Mott-insulating phase with an
integer number of bosons per site. A remarkable fact is that this phase occurs
for any amplitude of the periodic potential, even if small.

1.4.1 The microscopic model: Bose-Hubbard

In the cold atoms context, the system is usually described by means of a model
which accounts for the microscopic properties of the system. In the regime
of deep lattice potential, the atomic wavefunctions in the lattice are strongly
localized, and the dynamics is restricted to a tunnel process between neigh-
bouring lattice sites. Since the typical energy scales involved in the system
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dynamics are much lower then the energy spacing from the first to the second
lattice band, we can consider only the lowest vibrational state of the system.
The system is described in terms of local properties, such as on-site interac-
tions and nearest neighbor tunneling. This is the approach of the Hubbard
model [66], introduced to describe electrons in a crystal lattice and valid for
any fermionic particles in a strong periodic potential. This model has been
extended to bosonic particles, giving the Bose-Hubbard model [67, 68], which
employs bosonic operators instead of fermionic.

In order to introduce the Bose-Hubbard Hamiltonian, we start from the
general Hamiltonian of a 3D system in the presence of a periodic potential,
expressed in terms of the bosonic field operator ψ(y):

H =
∫

drψ�(r)
(
− ~

2

2m
∇2 + VL(r) + Vext(r)

)
ψ(r) (1.30)

+
g

2

∫
dyψ�(r)ψ�(r)ψ(r)ψ(r),

where g = 4πas~2/m is the 3D interatomic coupling constant. VL is the depth
of the lattice potential, which we assume to be very strong in the x̂− ẑ plane in
order to create the 1D gases, and weaker along the ŷ (axial) direction. Finally,
Vext is an additional slow-varying external potential, always present in cold-
atom experiments. The contact interaction between the atoms is expressed by
means of a short-range pseudopotential, aS being the s-wave scattering length
we already introduced. For a single atom, the eigenstates of such a Hamilto-
nian are Bloch waves, whereas for a many-body system the wavefunction is
described by the sum of an orthogonal and normalized set of wave functions
maximally localized on individual lattice sites (Wannier functions)

ψ(r) =
∞∑

j=−∞
b̂iw(r− rj) (1.31)

where rj is the site position and b̂i is the annihilation operator for bosonic
particles. By expanding the field operator in Eq. (1.30) on the Wannier
functions, one obtains the Bose-Hubbard Hamiltonian:

H = −J
∑

〈i,j〉
b̂�i b̂j +

1
2
U

∑

i

n̂i (n̂i − 1) +
∑

i

εin̂i − µn̂i. (1.32)

Here, n̂i = b̂�i b̂i is the number operator, the eigenstates of which are charac-
terized by a precise number of bosons in the site i. The first term expresses
the kinetic energy of the particles in the tight-binding approximation. It is
essentially determined by the matrix element J , which is the tunneling rate
between nearest neighbouring sites:

Ji,j = −
∫

drwi(r)∗H wj(r). (1.33)
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The second term of the Hamiltonian describes the interactions between par-
ticles on the same lattice site. The parameter U is given by the interaction
matrix element between the Wannier functions

U = g

∫
dr|w(r)|4, (1.34)

and it expresses the energy-cost to put two atoms in the same lattice site com-
pensating the collisional interaction. Here, only on-site interactions have been
considered, since for atomic species such as Rubidium-87, collisional interac-
tions are the dominant mechanisms, which ensures the range of interactions
to be shorter than the lattice spacing. In addition, again for Rubidium-87,
interactions are repulsive, and thus from here on we will assume U to be posi-
tive. The last two terms in the Bose-Hubbard Hamiltonian have the following
meaning. The third takes into account the effect of an external potential as
present in Eq. (1.30), which produces an energy offset εi at the site i. The last
term extends the description to the grand canonical ensemble, where the num-
ber of particles is not conserved: In fact, it introduces the chemical potential
µ, i.e. the energy necessary to add an atom to the gas.

This Hamiltonian leads to an energy spectrum with a band structure. The
energy of the lowest band is simply described by

ε1(k) = ε1 − 2J (1− cos(ka)) , (1.35)

a being the lattice constant. The tunneling coupling J is related to the band-
width of the lowest band, being

|J | = max(ε1(k))−min(ε1(k))
4

(1.36)

The ground-state of the Bose-Hubbard Hamiltonian depends on the ratio
between the energy scales U and J . First of all, we will consider the two
limiting case for a homogeneous system (εi = 0), then we will introduce the
effect of an external trapping potential.

1.4.2 Superfluid and Mott insulator states

In the weak interacting case U/J ¿ 1, the tunneling term dominates, and the
system is a Bose-Einstein condensate, namely a superfluid state in which the
gas can move without friction and particles are delocalized over the whole lat-
tice. The ground-state of the many-body system is given by the superposition
of the Wannier wavefunctions with the same phase

|ΨSF 〉U/J≈0 ∝
∑

i

b̂�|0〉. (1.37)
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For N particles on M lattice sites, this can be rewritten as

|ΨSF 〉U/J≈0 ∝ 1√
M

(
M∑

i=1

b̂�i

)N

|0〉 (1.38)

Since the many-body state is the product of identical single-particle states, it
can be described by a single macroscopic wavefunction |φi〉, which is equivalent
to a coherent state. Thus, the expectation value of the field operator ψi =
〈φi|b̂i|φi〉 is nonzero. The number of atoms on each lattice site is affected by
the maximum uncertainty. In the limit of a large system size M,N → ∞
with constant average occupation n̄ = N/M ; this state becomes separable
into a product of single-site states, which are the superposition of Fock states
|n̂〉 = (b̂i)n|0〉 for all possible n. The number of atoms on each site follows a
Poissonian statistics, the variance of which is given by the average occupation.

Increasing the interaction strength U , the properties of the system change
drastically. Let us consider now the limiting case U/J À 1, where the sys-
tem experiences an interaction-induced insulating phase, the so-called Mott
insulator. The atom number fluctuations due to the delocalization of the
wavefunction are unfavourable, as configurations with more than one atom
per site have an energy cost. The many-body ground state consists of lo-
calized wavefunctions, which minimize the repulsive interaction. The global
wavefunction can be expressed as a product of local Fock states, which are the
eigenstates of the number operator on each lattice site. Supposing we have a
configuration with one atom per site (which is reasonable in the homogeneous
case), we obtain

|ΨMI〉J≈0 ∝
M∏

i=1

(
b̂�i

)n
|0〉 . (1.39)

The number of atoms per site is defined, and the mean value of the field
operator vanishes. Thus, the conjugate variable of the atom number, that
is the phase, has the maximum uncertainty. This is in strong contrast to
the superfluid case, where the phase is well-defined throughout the whole
ensemble.

Quantum phase transition

When the strength of the interaction term relative to the tunneling term is
changed, the system reaches a quantum critical point in the ratio of U/J ,
where it undergoes a quantum phase transition from the superfluid to the Mott
insulator ground-state. This transition is induced by quantum fluctuations,
whereby it occurs also at zero temperature, where thermal fluctuations are
suppressed [69]. In the context of cold atoms, the parameters U and J can be
arbitrarily tuned by varying the experimental parameters, as will be illustrated
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Figure 1.5: (a) State diagram of a homogeneous one-dimensional Bose gas in
the presence of a lattice potential. The presence of an additional slow-varying
trap can be described in terms of a spatially-dependent chemical potential
(green dashed line). The figure is adapted from [71]. (b) State diagram for
a one-dimensional Bose gas in a lattice with a harmonic confining potential.
The state diagram was built using a trap with mω2

y/J = 0.008 in which the
gas has total size L=100 sites. On the vertical axis, the characteristic density
ρ̃ of the gas is reported (see text). The figure is adapted from [76].

in the next chapter. This offers the unprecedented possibility to monitor such
a transition.

For three-dimensional systems, the quantum critical point (U/J)c can be
calculated using the mean-field approach [67, 70, 71, 72], giving an accu-
rate estimate of it, in agreement with more sophisticated calculations [73]:
(U/J)c ' z5.8 (z being the number of nearest neighbours) for n̄ ≤ 1 and
(U/J)c = z 4n̄ for n̄ À 1. In one dimension, relevant deviations are observed
from the mean-field prediction. In this case, the transition takes place at
(U/J)c = 3.84 for unity occupation and (U/J)c = 2.2n̄ for n̄ À 1 [74, 75].

Phase diagram of a trapped gas

In cold-atom experiments, an external trapping potential is always present. It
can be produced by an inhomogeneous magnetic field or by the spatial profile
of red-detuned gaussian beams which create the optical lattice potentials (see
Sec. 2.2.2). Now, we consider only its contribution along the axial direction,
assuming it to be negligible in the transverse plane with respect to the trapping
frequencies in the lattice sites.

In the Bose-Hubbard Hamiltonian, this is taken into account by the term∑
i εin̂i that we mentioned before. Typically, the energy offset εi varies slowly
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compared to the typical size of the atomic cloud, and the external potential ex-
perienced by the atoms is well approximated by a harmonic term

(
εi = 1

2(mω2
yy

2)
)
.

In the superfluid regime, the trap effect can be introduced in the mean-field
picture by means of a local density approximation (LDA). Namely, we assume
that the system behaves as in the homogeneous case, with a spatially-varying
chemical potential

µ(y) = µ(0)− ε(y) (1.40)

where ε(0) = 0 at the center of the trap. This produces a slow modulation
of the density, which is maximum at the trap center and decays to zero at
the edge. The average occupation number in the site i can be determined
by minimizing the local potential energy, given the chemical potential of the
system:

n̄i = max
{

0,
µ− εi

U

}
, (1.41)

which yields the Thomas-Fermi distribution described in Eq. (1.23), where
the Thomas-Fermi radius is determined by imposing the potential energy to
be equal to the global chemical potential. This overall density modulation
constitutes the envelope of the single-site Wannier functions.

The LDA gives a useful, even if approximate, insight of the effect of the
confinement. According to the LDA, a single experimental realization is not
represented by a isolated point in the phase-space J/U − µ/U , but rather by
a line which extends over several values of µ, as represented in Fig. 1.5 (a).
This line intersects both the superfluid region and different Mott-insulating
lobes, corresponding to different average occupation of the lattice sites.

The state diagram of a one-dimensional Bose gas in a trap has been recently
computed by M. Rigol et al. in [76] via Monte-Carlo calculations. The state
digram is defined in terms of a scaled dimensionless variable, the characteristic
density

ρ̃ = Na

√
mω2

y

J
, (1.42)

where a is the lattice spacing and N the number of atoms in the gas. ρ̃ is a
dimensionless quantity, being (mω2

y/J)−1/2 a length. Essentially, for trapped
systems ρ̃ is the analog of the filling per site n̄ = Na/L in the homogeneous
case (L being the total length of the tube). Introducing this scaled density has
an advantage: It allows the building of a state-diagram in the plane ρ̃− (U/J)
that is insensitive to the number of atoms and the trap curvature mωy (see Fig.
1.5 (b)). Region (I) represents a pure superfluid phase, (II) a Mott insulating
phase at the center of the trap surrounded by a superfluid phase with n̄ < 1,
(III) a superfluid phase with n̄ > 1 at the center of the trap surrounded by
a Mott insulating phase with n̄ = 1, and an outermost superfluid phase with
n̄ = 1.
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Figure 1.6: Density profile in one-dimensional trapped systems for different
values of the ratio U/J . Different colours represent different temperatures, as
labeled in (a). For comparison, the black straight line describes the profile of
the homogeneous system with average occupation n̄ = 1 [76].

Thus, the Mott insulating regions exist above a threshold value of the
interaction strength, even without the commensurate filling required in the
non-confined case, and they coexist with superfluid domains. This is a prac-
tical advantage for experimentalists, since in inhomogeneous systems Mott
insulating domains appear for a broad range of fillings, compared to the few
commensurate fillings required for the translationally invariant system. This is
a unique feature which distinguishes the behavior of a confined system. Figure
1.6 shows the expected density profile of an inhomogeneous Mott insulating
state calculated in [76], for different ratios of interaction strength to the tun-
neling energy (U/J = 10, 14, 16): For U/J = 10 and U/J = 14 the smooth
profile of a superfluid can be recognized on top of the Mott insulator plateau.
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Chapter 2

Experimental realization

For the projects presented in this thesis, atomic vapours of Rubidium-87 driven
to the quantum degenerate phase of a Bose-Einstein condensate are used as
a source of ultracold atoms. This three-dimensional gas is confined in an
array of one-dimensional microtubes, which constitute our test-ground to in-
vestigate the Luttinger physics, covering also the Bose-Hubbard model when
the one-dimensional systems are immersed in a periodic lattice along their
axis. Typically, the experiments consist of several steps, globally lasting ap-
proximately two minutes, to prepare the quantum gas, load it into an optical
potential, conduct the actual experiment and then measure the result. These
stages are performed in cycles, since the measurements include the observation
of the atomic cloud by absorption imaging, which is a destructive technique,
since it induces a major heating of the sample and destroys the condensate.
This chapter is intended, on the one hand, to describe how in practice, starting
from atomic vapours, ultra-cold one-dimensional gases are prepared in a super-
fluid or insulator state, illustrating the experimental apparatus and procedure.
On the other hand, we will trace a model for inferring the specific features of
these gases that determine their physical behaviour1. How the investigation of
these systems has been managed, including the new setup planned and built
for spectroscopic measurements, will be instead the object of the next chapter.

Let us mention that the setup aimed at producing a Bose-Einstein con-
densate of 87Rb was originally developed at LENS, where it has been working
since 1999. Its basic parts have been already described in several publications
and theses [77, 78, 79, 80, 81, 82, 83, 84]. Therefore, in the following only
a brief introduction of the operating principle and of the key properties of
this experimental setup will be given. The description will be detailed only in
those aspects with special relevance for the experiments discussed in the later
chapters, such as the imaging procedure of the atomic cloud.

Most of the attention will be payed to the realization of periodic optical

1For instance, density strongly influences the ratio of interactions to kinetic energy of the
particles.
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potentials by means of coherent-light standing-waves, based on atom-light
dipole interaction. These potentials have played a major role in this thesis,
having been exploited to arbitrarily change the geometry of the system, namely
to trap the atoms in an array of one-dimensional micro-tubes. The modeling
of the global system is complicated by the non-uniform density distribution
over the array. In order to describe such a complex situation, we develop a
model which extends the calculations presented in the theoretical work in Ref.
[55] and allows us to entirely characterize each tube of the array. An optical
lattice added along the axis of the tubes has also been used to directly tune the
ratio between the atom-atom interactions and the tunneling along the periodic
potential, in order to realize an atomic Mott insulator.

2.1 Driving atoms to quantum degeneracy

In the following, we will explain the experimental procedure used to obtain a
87Rb Bose-Einstein condensate in the low-field-seeking state |F = 1, mF = −1〉
that can be trapped in a magnetic field minimum. For the scheme of the
energy-level structure of 87Rb, see Appendix A.1.

As a first step, a double-stage magneto-optical trap (MOT) is used to
collect atoms from a room temperature gas within ∼ 90 s. This trap also
cools the atoms, especially in the last phase which employs optical molasses.
In a second step, the atoms are transferred in a pure magnetic quadrupole trap.
Finally, the latter is modified into a quadrupole-Ioffe configuration (QUIC),
and the cloud is cooled further for up to 60 s via forced evaporation until a
BEC is formed.

Double-stage Magnetic Optical Trap (MOT). The basic idea of a MOT
is to exploit dissipative light forces which introduce an effective friction force
to slow down and cool an atomic gas [85]. At the same time, an inhomoge-
neous magnetic field with a minimum at the center of the trap is applied: It
introduces a spatial dependence of the light-force in the form of a linear-elastic
force pushing atoms toward the center, leading to a confinement of the atom
cloud [86]. The schematic setup for a MOT is shown in Fig. 2.1 (a).

In our experiment, two consecutive MOTs have been implemented. They
exploit the D2 transition connecting the fine-structure states 52S1/2 and 52P3/2

at a wavelength λ = 780.246 nm. The cooling laser beams are resonant with
the hyperfine transition |F = 2〉 → |F ′ = 3〉, which is the strongest closed
one of the hyperfine structure. A strong loss channel is constituted by atoms
which populate the state |F ′ = 2〉 – a process made possible by the fact that
the hyperfine splitting of the two excited state is quite narrow (∼266.6 MHz) –
and may decay from this state into the uncoupled |F = 1〉 state (the hyperfine
ground-state splitting is 6.8 GHz, so that the cooling light is completely off-
resonance with respect to it). For this reason, we apply a repumper laser on
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the |F = 1〉 → |F ′ = 2〉 transition to return the atoms that have fallen into
the |F = 1〉 ground-state back to the cooling transition.

The first MOT is produced in a first stainless steel chamber, connected to a
cell which hosts a rubidium sample: The flux of vapour to the main chamber
is regulated through a valve. A moderate ultra-high-vacuum environment
is kept, with measured pressure of the order of 10−9mbar, for guaranteeing
thermal isolation of the sample from the environment. The laser beams we
use are red-detuned with respect to the frequency of the cooling transition by
12 MHz' 2ΓD2, where ΓD2 is the line-width of the D2 transition. The beams
have a large diameter (30 mm) to capture a large number of atoms from
the background gas. A magnetic field gradient of 7 Gauss/cm is produced
by two coils in anti-Helmoltz configuration with a current of 4 A. Typically,
∼ 1010 atoms are caught at a temperature of ∼ 100 µK, with a loading time
of ∼ 5 s. Then, the atoms are transferred to a second vacuum cell, where
a second MOT stage is implemented, followed by the other steps leading to
condensation. The transfer to the second chamber is carried out by a pulsed
push beam with σ+ circular polarization and red-detuned by 3 MHz relative to
the cooling transition, through a thin steel pipe2 which maintains a differential
vacuum between the two MOT cells. The pressure of the second cell is of the
order of 10−11mbar, required for the good operation of the magnetostatic trap
which is created in the same cell. Therefore, the second MOT does not capture
atoms from background gas, but only those precooled by the first MOT and
transferred to the second one. The cooling light for the second MOT is red-
detuned again by 2ΓD2 from the resonance and the beams have a diameter of
20 mm. The quadrupole field is generated again by a pair of anti-Helmoltz
coils, producing a magnetic field gradient of 10 Gauss/cm. Three pairs of
Helmoltz coils are used to cancel spurious magnetic fields. About 1010 atoms
are captured and brought to a temperature3 of ∼ 100 µK.

Compressed-MOT and Molasses. Before transferring the atoms in the
magnetic trap, the atomic density must be increased. To this purpose, at
the end of the MOT phase, a compression of the atomic cloud is performed
for 20 ms by modifying the magnetic-field gradient from 10 G/cm to 6 G/cm
and increasing the detuning of the cooling beam from 12 MHz to 24 MHz
[87, 88]. This allows the density to grow by one order of magnitude, but
the temperature is still to high for an effective transfer to the magnetic trap.
Then, we further cool the atoms in a 5 ms-long optical molasses [89]. In the

2The transfer is optimized thanks to a series of permanent magnets surrounding the tube,
which create an hexapolar magnetic field with a local minimum at the center of the tube
and thus focus the beam of atoms optically pumped into the Zeeman state |F = 2, mF = 2〉.

3Note that laser cooling suffers from an intrinsic limitation: The lowest achievable tem-
perature is the recoil temperature Tr = ~2k2/(mkB), where k = 2π/λ is the wave-number
of the cooling radiation and m is the mass of 87Rb. This corresponds to the kinetic energy
acquired in a photon-absorption process. For rubidium, it is ∼ 360 nK.
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Figure 2.1: Key-mechanisms for driving atoms to quantum degeneracy. (a)
Schematic of a magneto-optical trap : Atoms are trapped in the intersection
region of three pairs of counterpropagating red-detuned lasers beams with
opposite circular polarization (orange arrows), thanks to the combined effect
of friction and elastic forces exerted in the presence of a quadrupole magnetic
field, the flux lines of which are represented by gray arrows). (b) Principle
of radiofrequency-forced evaporative cooling. A radiofrequency field is used
to induce energy-selective transitions to an untrapped Zeeman sublevel. Most
energetic atoms are removed from the trap, whereby the system can thermalize
at a lower temperature.

molasses phase, the magnetic field is turned off and the detuning of the cooling
beams is increased to 48 MHz, whereas their power is reduced by a factor 2.
In conclusion, after the compressed-MOT and molasses phases, the gas has
temperature of ∼ 50 µK and density n ∼ 1010 cm−3, driving the sample to a
phase-space density of 10−7. In Appendix A.2, a scheme summarizes the laser
frequencies used for our experiment.

Optical pumping. At this point, atoms are transferred to the low-field-
seeking state |F = 1,mF = −1〉 by means of a two-step optically-pumping
process. By turning off the cooling light ∼ 200 µs before the repumping light
used for the molasses, atoms are forced to decay to the hyperfine sublevel
|F = 2〉 of the ground-state. Then, we apply a weak magnetic field which
defines a quantization axis for the atoms and, simultaneously, a light-pulse
resonant with the transition |F = 2 → F ′ = 2〉 traveling in the same direction
as the field and circularly polarized: In this way, the |F = 2〉 state is completely
emptied and atoms end up to decaying to |F = 1〉, with a bias towards the
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Zeeman state |mF = −1〉.

Magnetic trapping. Atoms in |F = 1,mF = −1〉 are then loaded in a
conservative potential, constituted by a pure magnetic trap, where further
cooling can be implemented. As a first stage, we turn on a pure quadrupole
field with a gradient higher than the one used for the MOT, appropriately
chosen to recapture as many atoms as possible in the trap (70 G/cm along the
vertical direction and 35 G/cm in the radial plane, produced by a current of
70 A). Then, we further enhance the gradient, by increasing the current in the
quadrupole coil up to 235 A, in order to improve the phase-space density of the
atomic cloud in the trap [78]. Nevertheless, the quadrupole field is unsuitable
to obtain Bose-Einstein condensation, since it vanishes at the center of the
trap, and its direction changes rapidly around this point. For atoms passing
at a close distance from the trap center, the Larmor precession frequency is
low enough that their spin cannot adiabatically follow the rapidly changing
field direction. Thus, atoms may undergo spin-flips to untrapped states [90],
leading to atom losses, which become significant as the temperature drops
when approaching quantum degeneracy [91, 17]. The solution adopted in our
experiment is a static field which varies harmonically around a nonzero local
minimum, as in the Ioffe-Pritchard configuration [92, 93]. This is obtained by
using an additional coil oriented perpendicularly to the quadrupole pair, which
produces a field-curvature. In this configuration, the atoms in the hyperfine
state |F = 1,mF = −1〉 experience a trap with cylindric symmetry with
measured frequencies ωy = 2π × 8.8 Hz and ω⊥ = 2π × 87 Hz, and an offset
field B0 ' 2.5 G.

Evaporative cooling. In the magnetic trap, the temperature of the cloud
is further reduced by energy-selective radiofrequency (RF) evaporation (see
e.g. [94, 95]) In the presence of the inhomogeneous magnetic field the atomic
Zeeman-shift is position-dependent. Therefore a RF-field with narrow linewidth
can excite the transition from the initial trapped state |F = 1,mF = −1〉 to
the untrapped state |F = 1,mF = 0〉 only in a given region of the trap, where
the energy of the RF photon matches the Zeeman shift between the levels.
The transition-frequency at the potential minimum is typically 2 MHz for the
trap described above. Using higher frequency, atoms at certain distances from
the trap center are in resonance with the radiation and thus fall into the un-
trapped state. After selectively removing the outermost atoms of the cloud,
which have the highest energy, the average energy of the sample reduces and
the cloud equilibrates at a lower temperature via elastic collisions. A RF sweep
of about 60 s, with shrinking frequency, allows for the covering of several or-
ders of magnitude in temperature until quantum degeneracy is reached at a
critical temperature of approximately 125 nK and a Bose-Einstein condensate
is formed with about 4× 105 atoms.
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2.1.1 Observing atoms after a TOF

Resonant light absorption can be employed to image the atomic cloud. Essen-
tially, a beam of resonant light is directed onto the atoms and then is detected
by a CCD camera, which records the shadow cast by the atoms on the spa-
tial beam profile. In cold atom experiments, this is the most common way
to extract some basic data about the system. In the work of this thesis, we
widely exploit resonant absorption imaging to get complementary information
to that obtained from Bragg spectroscopy, such as to measure the momentum
distribution of the atoms.

For our experiments, a precise knowledge of the global number of atoms
of the atomic cloud is a fundamental requirement to characterize the array of
1D gases we produce. In particular, it is necessary to evaluate the 1D density
of each gas, according to the theoretical model we will develop in Sec. 2.3,
which is a critical parameter on which the physical behaviour of the system
depends. For this reason, we decided to perform a new calibration of the
imaging technique following the procedure proposed in [96].

Absorption imaging method For the imaging conducted in this exper-
iment, we use a 150 µs-long light pulse resonant with the closed hyperfine
transition |F = 2〉 → |F ′ = 3〉. Since the Bose-Einstein condensate is pro-
duced in the state |F = 1, mF = −1〉, a pumping pre-stage into the hyperfine
sublevel |F = 2〉 of the ground-state is performed, inducing atoms to perform
a transition |F = 1〉 → |F ′ = 2〉 from which they may decay through the two
relaxation channels |F ′ = 2〉 → |F = 1〉 and |F ′ = 2〉 → |F = 3〉. After a few
pumping optical cycles, it empties the sublevel |F = 1〉. The pumping light
pulse is ∼ 100 µs-long, chosen to maximize the number of atoms later revealed
by the probe light. The probe beam is collimated with a diameter much larger
than the atomic cloud size, and travels along the direction x̂ of our coordinate
system. We anticipate here that it is transverse to the direction along which
we will produce the 1D gaseous microtubes. While passing through the cloud,
the beam is attenuated due to the absorption by the atoms4, which at a given
position is proportional to the 3D density of the atoms.

The light absorption is described by the Beer-Lambert law. Considering
possible saturation effects of the resonant incident light, we can write

dI

dx
= −nσ0

I(r)
1 + I(r)/Isat

0

, (2.1)

where dI is the attenuation of the intensity I in a distance dx, n is the
numerical 3D density and σ0 = 3λ2/2π is the resonant absorption cross-
section for a two-level atom, λ being the wavelength of the incident light.

4Concerning the internal state of the atoms, after a short transient, the atomic population
starts to cycle between the levels |F = 2〉 and |F = 3〉.



DRIVING ATOMS TO QUANTUM DEGENERACY 39

Isat
0 = ~ω3ΓD2/(12πc2) is the saturation intensity for the corresponding two-

level transition, c being the speed of light and ω = 2πc/λ. In the specific case
of 87Rb, Isat

0 ∼ 1.67 mW/cm2 [97]. Note that here we considered the simple
case of an atomic ensemble of 87Rb uniformly populating the sublevels of the
five-fold |F = 2〉 ground-state, which is excited by circularly polarized light
propagating along the quantization axis of the atoms at the D2 line.

In a more general case, the response of the atoms, i.e., the population
driven into the excited state by the imaging laser beam, is affected by a non-
perfectly circular polarization of the imaging beam, the manifold structure
of the excited state, and the different Zeeman sublevel populations of the
degenerate ground state of the optical transition. This can be taken into
account by defining an effective saturation intensity Isat

eff = α∗Isat
0 , where the

dimensionless parameter α∗ accounts for the mentioned corrections. With the
appropriate substitutions, the Beer-Lambert law can be written in the same
form as before [96]:

dI

dx
= −n σeff

0

I(r)
1 + I(r)/Isat

eff

, (2.2)

σeff
0 = σ0/α∗ is the effective cross section including saturation correction.

Integrating over the optical path, one can obtain the optical depth

od0(y, z) ≡
∫

n(x, y, z)dx = f(y, z;α∗), (2.3)

where f(y, z; α∗) is defined by

f(y, z; α∗) = −α∗ ln
(

If (y, z)
Ii(y, z)

)
+

Ii(y, z)− If (y, z)
Isat
0

. (2.4)

In practice, to extract Ii(y, z) and If (y, z), we acquire four images which
capture respectively the probe beam profile with and without the atoms (Iw

and Iwo), and the background light in the absence of the probe beam (Idark,1,
Idark,2). These images are processed in order to obtain the intensity before
and after the cell, removing the background

Ii(y, z) = Iwo(y, z)− Idark,1(y, z), (2.5)
If (y, z) = Iw(y, z)− Idark,2(y, z). (2.6)

For low-intensity absorption imaging (Ii(y, z) ¿ Isat
0 (y, z)) the optical

depth is reduced to od0(y, z) ' α∗δ0(y, z), where δ0(x, y) is the optical density,
defined by δ0(x, y) = − ln[If (y, z)/Ii(y, z)]. Otherwise, the optical depth re-
quires the knowledge of the incident and final intensities Ii(y, z) and If (y, z),
and not only their ratio but also the dimensionless parameter α∗. However,
to have an estimate of the absolute value of od0(y, z), the parameter α∗ must
be determined independently.
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Figure 2.2: (a) od0(x = 0, y = 0, α∗)) as a function of the intensity of the
detection beam, for three representative trial values of α∗ (1, 3.84, 7). (b)
Standard deviation ∆od0(x = 0, y = 0, α∗) of each set of data points. It
exhibits a clear minimum as a function of the parameter α∗.

Imaging calibration An absolute calibration of our absorption imaging
simply consists of determining the parameter α∗. To this purpose, following
the procedure indicated in [96] we produced a sample of cold atoms and im-
aged it after a time of flight of 21 ms so that its maximum optical density
is not too high ∼ 1, which guarantees a low absorption regime. We set dif-
ferent intensities of the incident light Ii ranging over 2 orders of magnitude.
The time-duration of the light pulse was also changed in order to keep almost
constant the number of counts revealed by the CCD sensor. A precise measure-
ment of the intensity Ii incident on the atoms which are stored in the vacuum
chamber is not trivial. We considered the mean value of the power measured
before and after the cell (Pm), and we calibrated the relation between Pm and
Ii with the following simple procedure. A pinhole was superimposed along
the optical path of the probe beam before the cell. Changing its apertures we
reconstructed the relation Pm = Iiπd2/4, d being the diameter of the pinhole
aperture, and then Ii was extracted from a parabolic fitting.

For each value of the incident light intensity, we acquired the usual four
images. From these images we measured the number of counts on a squared
area centered on the position where the first image (with the probe beam and
the atomic cloud) shows the peak density, and with extended over few pixels
(the side being ∼ 0.1 of the half width at half maximum of the peak profile).
This defines in practice Iw, Iwo, Idark,1, Idark,2 from which we extract the
optical depth od0(0, 0) using Eq. (2.3) for different trial values of α∗. Figure
2.2 (a) reports the results of such measurements of od0(y, z) for α∗ = 1, 3.8, 7.

Since the optical depth must depend only on the cloud properties, the
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appropriate value of α∗ is the one that has a minimum dependence on the
incoming intensity. In practice, we infer by a least-squares method our best
estimate of α∗ for which od0(α∗) has a minimum standard deviation over the
whole range of incident intensities used to image the cloud, as shown in Fig.
2.2 (b). We find α∗ = (3.84± 0.04).

Scaling laws The optical resolution of our imaging apparatus is comparable
with the global size of the atomic cloud along its more confined direction5.
Thus, the observation of the atomic cloud is performed after turning off the
trapping potential and letting atoms to ballistically fall for a certain time-of-
flight.

In our experiment, the atomic cloud is confined in a highly elongated trap.
This is already true for the 3D BEC in the magnetic trap, and becomes much
more pronounced for the 1D gases we produce in the optical lattices we will
present in the next Section. As a consequence of the Heisenberg uncertainty
principle (∆p∆x ≥ ~) which the system follows due to its quantum nature, the
atomic ensemble undergo as a strongly anisotropic expansion, which is faster
in the direction where the confinement was stronger.

The temporal evolution of a BEC in the Thomas-Fermi regime in the pres-
ence of an external time-dependent potential is well-known. This is described
in the theoretical works by Y. Kagan, E.L. Surkov and G.V. Shlyapnikov [98]
and Y. Castin and R. Dum [99]. The evolution of the spatial density is essen-
tially a dilatation, which does not modify the form of its spatial dependence
but implies a rescaling characterized by three scaling factors which allow a
classical interpretation of the dynamics. This analytic treatment can be eas-
ily adapted to the evolution of a BEC released from a cigar-shaped trap (see
[100]). For a cigar-shape condensate, like that we produce, the half-lengths of
the condensate evolve during expansion according to the following equations

r(t) = r(0)
√

1 + τ2 (2.7)

z(t) = ε−1r(0)
(
1 + ε2(τ arctan τ − ln

√
1 + τ2)

)
(2.8)

where τ = ω⊥t and ε is the aspect ratio of the trap (ε = ωy/ω⊥).
Time-of-flight absorption imaging will be retrieved later on, particularly in

Sec. 2.4.1 where we will discuss the feature of an atomic cloud released from
an optical lattice potential. Besides, in chapter 4 we will present an experi-
ment demonstrating that time-of-flight measurement can be used to probe the
coherence length of an array of one-dimensional gases.

5The limiting factors of our imaging system are the finite numerical aperture of the optics
along the probe beam path and the optical quality of the cell windows, which sets a resolution
limit to ∼ 8 µm.
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2.2 Optical lattices: Manipulating atoms with light

Laser light can be exploited to trap neutral atoms in attractive or repulsive
conservative potentials, the shape and depth of which can be easily engineered
and dynamically controlled. Attainable trap depths in a tightly focused beam
are typically in the millikelvin range, orders of magnitude smaller than the
thermal energy of atoms at room temperature. Once a gas has been driven to
the ultralow temperatures necessary to reach Bose-Einstein condensation at
moderate density, it can be easily trapped in these weak potentials.

This section will present some general aspects of the optical potentials, par-
ticularly focusing on their periodic version (the optical lattices) where atoms
are axially confined in the nodes or antinodes of a standing wave. We will
introduce some useful notations and we will describe the experimental setup.

2.2.1 Light as an optical potential for atoms

Now, we would like to recall the key principles which allow us to exploit laser
light to realize an optical potential for atoms.

The electromagnetic interaction of atoms with laser light consists in a
coupling between the electric dipole of the atoms and the electric field of the
light. As is well-known, an atom undergoes two different forces, respectively
associated with the dissipative and the dispersive properties of the interaction.

The dissipative force, also called the radiation pressure force, is propor-
tional to the gradient of the field phase, and is responsible for the momentum-
transfer from light to atoms in a resonant scattering process. As such, it is
at the origin of the development of laser cooling of atoms, which has been
described in Sec. 2.1. Here instead we will deal with the dispersive part of
the atom-light interaction, which determines the dipole force. This force is
proportional to the intensity gradient of the field. Because of its conservative
character, it can be derived from a potential, the minima of which can be used
for atom trapping in different geometries. For a complete theoretical analy-
sis of these effects, we refer to [85]. In the following, we will make use of a
textbook semiclassical approach [101], by considering the atom as a two-level
quantum system interacting with a classical radiation field. This will enable us
to draw out some useful expression for the reactive and dissipative component
of the radiation force, in a simple way.

When an atom is illuminated by laser light, the electric field E(r, t) induces
an atomic dipole moment d(r, t) that oscillates at the driving frequency of
the field ωL/(2π). In the complex notation E(r, t) = ê E(r) exp(−iωLt) +
h.c. and d(r, t) = ê |d(r)| exp(−iωLt) + h.c., where ê is the unit polarization
vector. We define the atom polarizability αP describing the relation between
the amplitude d of the dipole moment and the field amplitude E as

|d| = αP |E|, (2.9)
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where αP strongly depends on ωL. This relation holds only in the linear
regime, when saturation effects can be neglected and the atomic population is
almost entirely in the ground state. While the imaginary part, describing the
out-of-phase component of d, is connected with the absorptive properties, the
real part of αP describes the component of d oscillating in phase with E and
is responsible for the dispersive properties of the interaction, in which we are
mainly interested now.

Dipole potential. The interaction potential of the induced dipole moment
d in the driving field E is given by

Udip(r) = −1
2
〈d ·E〉 = − 1

2ε0c
Re(αP )I(r) (2.10)

I = 2ε0c|E|2 is the field intensity, ε0 being the vacuum dielectric constant.
The factor 1/2 takes into account that the dipole moment is an induced, not a
permanent one. Note that Udip(r) is a time-independent quantity. As a matter
of fact, the motion of the center of mass occurs in a time-scale ~/Erec much
bigger than the inverse of ωL; thus we consider the average over the rapidly-
oscillating field terms, indicated by the angle brackets 〈 〉. The physical origin
of such an optical potential which atoms experience is the so-called dipole
force [101] obtained by differentiating Eq. (2.10):

Fdip(r) = −∇Udip(r) =
1

2ε0c
Re(αP (ωL))∇I(r). (2.11)

This force is proportional to the intensity gradient ∇I, so it vanishes when the
field intensity is uniform, as in a plane wave. Vice versa, an inhomogeneous
intensity field can be exploited for producing potential wells whose features
can be changed by tuning the laser parameters.

The semiclassical approach is suitable to derive an analytic expression for
the atomic polarizability, with the result [101]

αP (ωL) = 6π ε0c
3 Γ/ω2

0

ω2
0 − ω2

L − i(ω3
L/ω2

0)Γ
. (2.12)

Here, ω0 is the resonance frequency of the oscillator model, and the on-
resonance damping Γ is determined by the dipole matrix element between
the ground and the excited state,

Γ =
ω3

0

3π ε0 ~ c3
|〈e|d̂|g〉|2 (2.13)

where d̂ is the dipole operator. Usually the dipole traps realized in the ex-
periments exploit far-detuned light with very low saturation effects and very
low scattering rates. Thus, Eq. (2.12) is an excellent approximation of the
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quantum-mechanical oscillator. Now, the strength of the dipole potential can
be written by substituting the expression of the polarizability in Eq. (2.10),
obtaining

Udip(r) =
3πc2

2ω3
0

(
Γ

ω0 − ωL
+

Γ
ω0 + ωL

)
I(r) ≈ 3πc2

2ω3
0

(
Γ
∆

)
I(r). (2.14)

On the right hand side of this expression, we have employed the rotating wave
approximation (RWA), which can be used as long as the laser is tuned rela-
tively close to the resonance at ω0 such that the detuning ∆ = ω0−ωL fulfills
|∆| ¿ ω0. This simple approximate expression is generally used to describe
common experimental situations. However, let us note that for the wavelength
of the traps we realize in the experiment (λL = 830 nm), corresponding to a
detuning of 16 THz with respect to the D1 line, the RWA would yield an error
of ∼ 20% in estimating the strength of the dipole potential.

The optical dipole potential in Eq. (2.14) is proportional to the light
intensity and its sign depends on the sign of the laser detuning ∆. For blue-
detuned light (∆ > 0) the potential has a positive sign, namely it is repulsive,
whereby atoms feel minima of potential in the intensity minima, and there
they tend to localize. On the contrary, red-detuned light (∆ < 0), such as
that used in our experiment, creates an attractive potential with a negative
sign; hence atoms tend to localize in high field-intensity regions.

Heating by dissipative forces. Even in the presence of far-detuning light,
a dissipative component of the force is always present, which leads to residual
photon scattering transferring energy to the atoms and then acting as an
undesired heating source. This sets limits to the performance of dipole traps.

For a two-level atom, the energy associated with the radiation pressure
force can be written, as [101]:

~Γsc(r) =
3πc2

2ω3
0

(
ωL

ω0

)3 (
Γ

ω0 − ωL
+

Γ
ω0 + ωL

)
I(r) ≈ 3πc2

2ω3
0

(
Γ
∆

)2

I(r),

(2.15)
where on the right hand side we have made again use of the RWA and set
ωL/ω0 ≈ 1. A simple relation exists between the scattering rate and the
dipole potential

~Γsc(r) =
Γ
∆

Udip. (2.16)

Note that the ratio between the two energies is proportional to the inverse
of the detuning ∆. Thus, using a large detuning one gets rid of the term
of radiation pressure. In this situation, the drawback is that a high power
of the laser source is required, to keep the amplitude of the dipole potential
significant.

In all the experiments accomplished in the context of this thesis work, the
conditions we have supposed in developing this treatment are fulfilled; namely,



OPTICAL LATTICES: MANIPULATING ATOMS WITH LIGHT 45

the radiation pressure of the laser field is negligible within the time-scales of
our experiment. Therefore, the optical potentials we realize can be considered
as conservative potentials.

Corrections for multi-level atoms. Rubidium-87 used in the present ex-
periment is characterized by a fine structure splitting (see Appendix A.1) due
to spin-orbit coupling in the excited state, which leads to the D-line doublet
5S1/2 → 5P1/2 and 5S1/2 → 5P3/2 with transition wavelengths at 795 nm
and 780 nm, respectively. These transition frequencies are quite close to each
other, compared to the typical detuning we use (tens of THz). In this case we
must consider the laser detuning with respect to both the atomic transitions
∆2 and ∆1. The dipole potential can be derived as in [101]

Udip(r) =
πc2Γ
2ω3

0

(
2 + P gF mF

∆2
− 1− P gF mF

∆1

)
I(r) (2.17)

Here, gF is the Landé factor and P characterizes the laser polarization (P =
0,±1 for linearly and circularly σ± polarized light). The detunings ∆2 and ∆1

refer to the energy splitting between the central frequency of the ground-state
hyperfine-structure and the central frequencies of the hyperfine-structures of
the two excited-states 5P3/2 and 5P1/2. Since this result completely neglects
the hyperfine splitting of the energy-levels, it is valid as long as the laser
detuning largely overcomes them. In our case this condition is fulfilled, being
∆ À ∆HF À ∆′

HF , where ∆HF and ∆′
HF are respectively the hyperfine

splitting of the ground and the excited state.

Focused-beam traps. The plane wave we considered until now is a schematic
representation, unfeasible in practice. In current experiments on cold atoms,
such as that developed in the context of this thesis, Gaussian beams are ex-
ploited to engineer optical traps. The intensity profile of the lowest energy
mode TEM00 of a Gaussian laser beam propagating along the z direction
varies in space as

I(r, z) =
2P

πw2(z)
e
−2 r2

w2(z) (2.18)

where r denotes the radial coordinate, P is the total power of the laser light,
and w(z) = w0(1 + (z/zR)2)1/2 is the 1/e2 radius which depends on the axial
coordinate z, zR = πw2

0/λL being the Rayleigh length. This Gaussian beam
forms a dipole potential for the atoms with cylindric symmetry around the
axis z, that is repulsive for blue-detuned light and attractive for red-detuned
light.

Near the center of the trap, the dipole potential can be approximated by
a harmonic oscillator

Vdip ≈ −Vtrap

[
1− 2

(
r

w0

)2

−
(

z

zR

)2
]

. (2.19)
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Figure 2.3: Optical dipole potentials produced by Gaussian laser beams prop-
agating along z: in the presence of red-detuned focused light (a) the atoms
experience an attractive potential (b); blue detuned light (c) leads to a repul-
sive potential (d).

Here we introduced Vtrap defined as

Vtrap =
3πc2

2ω3
0

(
Γ
|∆|

)
2P

πw2
0

, (2.20)

linearly depending on the total laser power. The harmonic confinement is
characterized by the trapping frequencies ωr =

√
4Vtrap/(mw2

0) and ωz =√
2Vtrap/(mz2

R), where m is the atomic mass.
In our experiment, we do not exploit single laser beams to trap atoms.

This job is entrusted to standing-wave traps, which provide extremely tight
confinement in the axial dimension, as we will discuss in the next Section.
Nevertheless, the Gaussian-beam shape always introduces an additional con-
finement, that is negligible in the axial direction, but is important in the radial
plane.

2.2.2 Optical lattices: A periodic potential

Exploiting dipole forces, a periodic potential (optical lattice) can be produced
by a periodic intensity pattern, such as that created by the standing-wave
made up of two interfering laser beams, as sketched in Fig. 2.4 (a). In this
thesis work, we produce such periodic lattices by retro-reflecting beams of
laser light.



OPTICAL LATTICES: MANIPULATING ATOMS WITH LIGHT 47

Figure 2.4: Schematics of a pair of interfering laser beams producing a periodic
potential for the atoms.

Consider as a simplest case only one retro-reflected beam (see Fig. 2.4
(b)). This configuration creates a potential which shows a sinusoidal spatial
dependence along its direction of propagation (one-dimensional lattice), with
periodicity a = λL/2. Supposing that the two counterpropagating beams
with the same characteristic parameters (frequency, field amplitude and beam-
waist, the last condition being obtained with the appropriate optical setup)
traveling along the direction z, the resulting trapping potential is described
by

Vdip(r, z) = −VLe−2r2/w2(z) sin2(kz). (2.21)

Note that the potential depth VL is four times as large as the corresponding
trap depth we defined in the previous Section for a single focused beam (Vtrap),
due to the constructive interference between the two counterpropagating laser
beams. For red-detuned light, this configuration forms a series of potential
minima where atoms tend to group together in parallel disk-like subensembles
with cylindrical symmetry along the lattice beam.

Throughout this thesis, it will be convenient to express the lattice depth
in units of the recoil energy ER = ~2k2

L/(2m), by introducing the parameter
s defined as

s =
VL

ER
. (2.22)

For strong lattices, namely for high values of the parameter s, the periodic
confinement along the axial direction is harmonic to a good approximation
and can be expressed as a function of the laser parameter as

ωsite = 2
√

s
ER

h
. (2.23)

The frequencies of the confinement produced by the lattice beam profile in
the radial plane and in the axial direction can be expressed, respectively, as
ωrad = 2/w0

√
sER/m and ωlong =

√
2/zR

√
sER/m.



48 EXPERIMENTAL REALIZATION

Periodic potentials in dimensions higher than one can be created by su-
perimposing standing waves from different directions. Most of the lattice po-
tentials discussed in the following are two-dimensional (2D). To realize them,
two orthogonal standing waves are superimposed. Let us denote as x and z
their directions of propagation. Neglecting for now the Gaussian profile of the
beams, the spatial dependence of the resulting potential is described by

V (x, y, z) = −VL,1 sin2(kx)− VL,2 sin2(kz)

+ 2
√

VL,1VL,2ê1 · ê2 sinϕ sin(kx) sin(ky), (2.24)

where ê1,2 are the two unit polarization vectors and ϕ is the relative phase be-
tween the lattices, and VL,1 = sxER, VL,2 = szER are the potential depths of
the two superimposed standing waves. If the two beams have orthogonal po-
larization, the third term on the right-hand side of Eq. (2.24) and the resulting
potential is simply the sum of those generated by the single stationary waves.
A not-perfect linear and mutually orthogonal polarization of the two stand-
ing waves would carry undesired cross-interference between them (typically 10
MHz). This event is typical by prevented by using two different laser frequen-
cies to produce the two standing waves. In that case, the cross-interference
term would carry a fast-rotating time-phase which does not contribute to the
time-averaging giving the effective potential. Moreover, possible time-phase
fluctuations induced by the finite coherence length of the laser source may af-
fect the stability of the periodic potential, since a frequency jitter can induce
fluctuations of the node and antinodes positions. This can eventually give
rise to decoherence and heating effects of cold atomic samples trapped in the
optical potential.

Considering now the real case of Gaussian beams, the trap profile is given
by

V (x, y, z) = −VL,xe
−2(y2+z2)

wx(x)2 sin2(kx)− VL,ze
−2(x2+y2)

wz(z)2 sin2(kz). (2.25)

At the center of the trap, for distances much smaller than the beam waists,
the trap is well approximated by a homogeneous periodic potential in Eq.
(2.24) (where the cross-interference term is suppressed as above discussed)
superimposed on a slow-varying harmonic confinement.

V (x, y, z) ' VL,x sin2(kx) + VL,z sin2(kz) +
m

2
(
ω2

xx2 + ω2
yy

2 + ω2
zz

2
)
. (2.26)

Here, ωx,y,z are the effective trapping frequencies of the combined optical po-
tential. Since they will be useful throughout the discussion, we report their
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expressions:

ω2
x = ω2

long,x + ω2
rad,z =

(
2

z2
R,x

)
sxER

m
+

(
2

w0,z

)2 szER

m
, (2.27)

ω2
y = ω2

rad,x + ω2
rad,z =

(
4

w0,x

)2 sxER

m
+

(
4

w0,z

)2 szER

m
, (2.28)

where w0,x and w0,z are the minimum waists and zR,x and zR,z are the Rayleigh
length of the two beams. ω2

z is written in an analogous manner to Eq. (2.27)
by inverting x and z. Actually, in the experiment, an additional harmonic
confinement is present, due to the magnetic trap where the Bose-Einstein
condensate has been produced. The resulting frequency is simply given by the
root mean square of the sum of the optical and magnetic squared-frequencies.

In the presence of such a 2D lattice, atoms are trapped in a 2D array
of micro-tubes. For strong enough lattices, i.e. for high values of sx, sz the
transverse dynamics are completely frozen, and atoms can move only along
the tube axis. Such a system constitutes our major test-ground to investigate
the physics introduced in the first chapter. More detailed comments on its
features will be offered in Sec. 2.3.

Now, we would like to conclude our roundup of multi-dimensional optical
potentials. A three-dimensional lattice can be formed by overlapping three
mutually orthogonal standing-waves. In analogy with the two-dimensional
case, near the center of the trap the potential has the form

V (x, y, z) ' VL,x sin2(kx) + VL,y sin2(ky) + VL,z sin2(kz)

+
m

2
(
ω2

xx2 + ω2
yy

2 + ω2
zz

2
)
. (2.29)

If the depth of the potential along each of these axes is the same, atoms
arrange themselves in a simple cubic structure. In our experiment instead, the
lattice depth is the same along two directions, whereas along the third axis it
is set to a variable value, as will be discussed in Sec. 2.4.

2.2.2.1 Experimental realization

The laser source. The light source of our optical lattice is a commercial
titanium-sapphire ring laser (Coherent 899-21) pumped by a high-power solid-
state frequency-doubled laser (Nd-YVO4, Coherent Verdi V18). The pump
laser emits about 18 W in single-mode at 532 nm. The gain curve of the
active medium of the Ti:Sa laser ranges from 600 nm to 1.10 µm, but the
frequency emission is limited to the interval from 760 nm to 850 nm due to
the reflectivity of the optical components in the cavity, with a maximum power
of 3 W at the center of the gain curve. Single-mode emission is obtained by
means of two etalons with different thickness. A birefringent filter enables us to
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Figure 2.5: Laser source and optical system for the control of the frequency
and the intensity of the beams used to produce the optical lattices in the
experiment.

tune the mode in steps of 0.5 nm. A typical spectral width is less than 1 MHz.
The emitted beam has linear polarization with a divergence of 2 mrad. For the
experiments performed in the context of this project, the wavelength selected
to realize the optical lattices is 830.3 nm, corresponding to a red-detuning of
∼ 20 THz with respect to the D1 and D2 lines of 87Rb.

The optical scheme. The laser light originating from the Ti:Sa source
is separated into three beams by means of λ/2 waveplates and polarization
beam splitter cubes, as shown in Fig. 2.5. These beams have linear and
mutually orthogonal polarization and are shifted in frequency by 10 MHz
relative to each other, in order to avoid cross-interference effects discussed in
the previous paragraph. The relative frequency shift is provided by acoustic-
optic modulators (AOMs), which also control the laser intensity guaranteeing
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Figure 2.6: Schematic drawing of the configuration of beams creating the
optical lattices with respect to the chamber containing the ultracold sample
of 87Rb.

a fast commutation time in switching on and off (∼ 0.2 µs). A mechanical
shutter upstream in the beam line before the separation ensures complete
extinction even if has a relatively long light-extinction time (∼ 1 ms). The
beam spatial mode is filtered by passing through single-mode polarization-
maintaining optical fibers. The light intensity of each beam is stabilized by
means of a feedback circuit acting on the corresponding AOM driver. The
reference signal is provided by independent generators of arbitrary waveform,
that allow us to dynamically change the potential depths. The feedback signal
is obtained by fast photodiodes placed at the output of the fibers, which
continuously collect the light from reflections. This system has a short response
time (∼ 1 µs), limited by the photodiode bandwidth, and guarantees a perfect
reproducibility of the light intensity used in the experiments, getting rid of
fluctuations of the laser source intensity or of the fiber transmittance.

Quasi-collimated Gaussian beams come out of the fibers, and are sent to
the second vacuum cell (see Sec. 2.1), where the experiments will be con-
ducted, being focused on a degenerate atomic sample. After passing the
cell, the beams are again collimated and retroreflected by adjustable mirrors6.

6Since the lattice beams are roughly superimposed on the optical path of the second-



52 EXPERIMENTAL REALIZATION

Then, they follow the inverse path, producing standing waves (see fig. 2.6).
The measured waists of the lattice beams are, respectively

wx = (210± 3) µm, (2.30)
wy = (160± 3) µm, (2.31)
wz = (190± 3) µm. (2.32)

Lattice characteristics The optical lattices we produce have periodicity
d = λL/2 = 415 nm; then the atomic cloud occupies roughly 200 lattice sites
in the direction along which it is elongated. Actually, the presence of the
lattice modifies the size of the cloud. A detailed discussion of how the atoms
rearrange in the lattice will be given in Sec. 2.3. For 87Rb, the recoil energy
is ER ∼ h× 3.33 kHz and the Bragg velocity, i.e. the velocity acquired by an
atom absorbing a photon from the lattice, amounts to ∼ 0.35 mm/s.

The quite large red-detuning of the laser light used for the lattices ensures
the light absorption rate to be small, whereby we can consider the optical
lattice as a conservative trapping potential. The heating rate can be estimated
as

∂T

∂t
∼ ~2k2

L

2m

Γsc

kB
(2.33)

where for a lattice can be written as

Γsc ∼ sER
ωL

ω0

(
Γ

ω0 − ωL
+

Γ
ω0 + ωL

)
(2.34)

Here, we used the definition of Γsc in Eq. (2.15) and the relation VL = 4Vtrap.
Besides we consider only the leading order of the spatial dependence. For large
lattice amplitude, e.g. s = 35, we obtain a heating rate of ∼ 7 nK/s.

Another heating mechanism originates from the time-phase fluctuations.
This can be given either by a frequency jitter of the laser source or mechanical
noise on the mirror mountings position. Concerning the first contribution,
the line-width of the Ti:Sa laser light producing the lattice is about 1 MHz,
corresponding to a relative error on the laser wavelength ∆λL/λL ' 3× 10−9.
Since the retro-reflecting mirror is at a distance l ∼ 150 mm∼ 1.8 × 105λL

from the atomic cloud, after a double passage 2l a phase slip of 2πl∆λL/λ2
L ∼

2π × 6 × 10−4 accumulates. This corresponds to a very small fluctuation of
the nodes and antinodes position, of the order of a half a nanometer, that is
1×10−3 of the lattice constant. We expect that the most relevant contribution
to the heating of the atoms in the optical lattices comes from the mechanical
noise, that is partially healed by using retroreflecting beams to produce the
lattice. However, it still constitutes the limiting factor to the lattice stability
[82].

MOT beams, we use dichroic mirrors which reflect radiation at a wavelength > 800 nm and
transmit at 780 nm.
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2.2.3 Adiabatically loading atoms into a lattice potential

Now we will spend some words on how to put the atoms into the lattice. Once
the ensemble of bosons has been driven to the degenerate quantum state of
BEC, the laser light is turned on to create the periodic lattice potential, and
the atoms spatially reorder to adapt to their new environment. Similarly, the
lattice can be removed from the atoms simply by turning off the lasers, thus
liberating the atoms into free space once more.

Since we want atoms to change their space-distribution from the harmonic
trap into the new periodic trap minimizing the undesired population of excited
states, the modification of the external potential must be slow with respect
to the typical timescales of the system. In this way, the wave-function of the
initial BEC is connected to the many-body ground-state of the gas in the
lattice via an adiabatic transformation, to a good approximation. To ensure
adiabaticity of the process, three timescales are relevant: One is associated
with the energy-gap between different bands, another with the width of the
energy bands, and the last with the variation of the chemical potential.

Adiabaticity with respect to vibrational frequencies in the lattice.
Fast changes of the lattice amplitude can results in excitations of higher vibra-
tional states of the system, i.e. higher energy bands of the periodic potential.
Considering for simplicity a BEC in a 1D lattice, abruptly switching on the
lattice, the momentum state |q〉 will be projected onto a superposition of Bloch
quasi-momentum states |n, q〉 belonging to different bands [102] (see Fig. 2.7).
To populate a single Bloch state in the lowest band, the transformation must
happen on a timescale longer than the inverse of the energy-level spacing. For
a non-interacting gas, this condition can be written as [18]

|〈n, q|∂H

∂t
|0, q〉, | ¿ |E(q)

n − E
(q)
0 |

~
. (2.35)

This time depends on the lattice amplitude. For a non-interacting gas in a
weak potential, e.g. s = 1, this time is of the order of 1 ms. As the lattice
amplitude increases, the energy gap between different bands grows; thus this
adiabaticity condition becomes less stringent.

Adiabaticity with respect to the quasi-momentum population in the
lowest band. In order to allow atoms to redistribute in the ground-state
of the lattice, adjusting their momentum distribution, the timescale of the
transformation must be longer than the time associated with the bandwidth of
the lowest-energy band. Unlike the previous discussion, this condition becomes
more stringent as the lattice amplitude grows, since the energy bands flatten.
For s = 1, the typical timescale is of the order of 1 ms; for a quite strong
lattice, such as s = 5, the typical timescale falls to 4 ms.
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Figure 2.7: Projection of the momentum state of a non-interacting gas (gray
dot on the purple curve) into the quasi-momentum states of a lattice poten-
tial. If the loading in the lattice is adiabatic with respect to the vibrational
frequencies of the lattice, only the lowest energy band is populated (blue dot),
otherwise also higher bands get populated (yellow dots).

Adiabaticity with respect to the modification of the chemical poten-
tial When loading the atoms in a 2D lattice to produce an array of 1D gases,
the chemical potential of the cloud changes as we will describe in Sec. 2.3.
Now, let us anticipate that for a BEC of 1.2× 105 atoms and the typical po-
tential we use, µ3D/h goes from ∼ 0.66 kHz to ∼ 3.2 kHz. The characteristic
time for this transformation is again of the order of 1 ms.

In the experiment, in order to fulfil the conditions above, the laser light
intensity – to which the lattice amplitude is proportional – is progressively
increased up to its final amplitude. The shape and the timing of the intensity
sweep has been optimized as follows. We load a pure 3D BEC in the lattices
with a trial ramp, then perform the reverse process ramping-down the lattices,
wait half a second for letting the gas to rethermalize and finally measure
the condensed fraction of the atomic cloud. The reduction of the condensed
fraction gives an estimate of the amount of undesired excitations produced in
the many-body state realized in the lattices. as a result of this optimization,
we adopt a 140 ms-long exponential ramp with time constant τ = 30 ms.
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2.3 Realizing an array of 1D gases

In our experiments, we realize a two-dimensional array of about 2×103 one-
dimensional atomic micro-tubes. To arrange atoms in this configuration, we
start from a three-dimensional degenerate gas of ∼ 1.2 × 105 atoms of 87Rb
in the magnetic trap. Then, we confine it in a pair of strongly-confining and
orthogonal optical lattices aligned along the axes x̂ and ẑ, having the same
amplitude sx = sz ≡ s⊥.

Unlike alternative realization of the 1D physics, such as in chip experiments
(e.g. in [103]), where transverse trapping frequencies hardly exceed a few kHz
and are typically of the order of the chemical potential and the temperature,
optical lattices provide a much stronger transverse confinement [104, 33]. The
drawback of the latter system is that one obtains a large number of different
1D tubes, that makes the description of the system more complicated. In
the following, we will illustrate a model at zero temperature we developed
to calculate how atoms rearrange in the array of tubes created by the two
orthogonal optical lattices. From that, we extract the crucial quantities which
describe our system, such as the density and the chemical potential. This
model is based on the theoretical work by Krämer et al. [55] which is developed
for a 1D lattice, and extends it to a 2D lattice.

2.3.1 Atom distribution in the array

Let us start by considering a three-dimensional Bose-Einstein condensate of
N = 1.2×105 atoms, as we typically realize in the experiments. It corresponds
to a chemical potential µ3D/h ' 0.66 kHz, and a total size of ' 9.6 µm× 96
µm, the aspect ratio being determined by the trap. When ramping up the
2D optical lattices, the potential felt by the atoms is given by the sum of the
3D harmonic trap and the optical confinement. The optical lattices introduce
two important effects. (i) The kinetic energy term in the transverse plane has
no longer the classical quadratic form as in the radial direction, but exhibits
a periodic dependence on the gradient of the phase. (ii) The interaction
coupling constant is renormalized due to the presence of the optical lattice.
This results from the local compression of the gas produced by the tight optical
confinement which enhances the repulsive effect of the interactions. As a result
of these effects, the radial density profile is modulated with the periodicity of
the lattice constant with respect to the original Thomas-Fermi profile and the
global transverse size increases due to the enhanced repulsion.

In the following, we will proceed according to this line: Making a reason-
able ansatz for the order parameter, we calculate the expectation value of the
Hamiltonian of the system. This will provide a definition of the renormalized
interaction constant g̃ and allow us to calculate the global characteristics of
the whole atomic cloud in the presence of the 2D lattice, such as the chemical
potential and equilibrium distribution. Once the overall profile is known, we
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will reintroduce the discretization in separate 1D tubes and calculate the num-
ber of atoms and the 1D density of each of them. From that one can calculate
an important quantity that describes the 1D physics, namely the value of the
γ parameter we defined in Eq. (1.16).

Ansatz for the wavefunction of the system. The chemical potential of
the 3D cloud is much smaller than the frequency of the transverse harmonic
oscillator in each lattice site, even for relatively low lattice depth, e.g. it is
ωsite ' 2π × 15 kHz for s⊥ = 5 (see Eq. (2.23)). Thus, a tight binding
picture can be used to describe the system. In this regime, the extension
of the ground state wavefunction is much smaller than the lattice spacing,
and the atomic cloud effectively consists of an array of separated BECs. The
tunneling between the lattice sites couples the phases of these sub-systems on
a timescale that depends on the lattice depth. As in [55], we assume the global
order parameter to be the a sum of many components, which are condensate
wavefunctions localized on each site of the 2D lattice potential

Ψ(x, y, z) =
∑

k,l

ψk,l(y) fk(x) fl(z) eiSk,l(y). (2.36)

Here, the indices pair (k, l) denotes each lattice site, constituting a grid in the
plane transverse to the 1D atomic gases. Each component (k, l) of the gas
is expressed as the product of the eigenstates of the trap in the three spatial
directions. ψk,l(y)eiSk,l(y) is the longitudinal wavefunction with site-dependent
complex phase Sk,l(y). On the other hand, fk(x) and fl(z) are the solutions
of the single-particle Schrödinger equation in a 1D optical lattice in the two
transverse directions. We assume fk(x) and fl(z) to have periodicity d in the x
and z directions, respectively, whereby they take the form fj(xj) = f0(xj−jd),
d being the lattice constant. The latter is a consequence of the tight binding
approximation introduced above, valid for the relatively large values of sx, sz

we use. Note that we use the same function f0 in the two transverse directions
since we always set the lattice depth of the two transverse lattices at the same
value (s⊥) in our experiments.

Mean-field expectation value of the Hamiltonian. Using the ansatz in
Eq. (2.36) for the order parameter, we calculate the mean field expectation
value of the effective Hamiltonian

H =
∑

j

(
p2

j

2m
− Vext(rj)

)
+ g

∑

j<k

δ(rj − rk). (2.37)

Here, Vext is the sum of the magnetic and optical external potential, and can
be conveniently separated into a slow-varying harmonic trapping due to the
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magnetic trap and the gaussian profile of the lattice beams, plus the axial
periodic confinement in the lattice sites:

Vext ≡ VHO(x, y, z) + VL(x, z)

=
m

2
(
ωxx2 + ωyy

2 + ωzz
2
)

+ s⊥ER

(
sin2(kLx) + sin2(kLz)

)
(2.38)

where ωx, ωy, ωz are the frequencies of the harmonic trap, and kL = 2π/λL is
the lattice wavevector.

The following calculation extends to a 2D lattice the treatment presented
for a 1D lattice in [55]. The expectation value is the sum of the kinetic energy
term, the external trapping potential and the atom-atom interaction energy

E = 〈H〉 = 〈HK〉+ 〈HV 〉+ 〈Hint〉. (2.39)

The atom-atom interaction gives:

〈Hint〉 =
g

2

[∫
dxf2

0 (x)
∫

dzf2
0 (z)

]∑

k,l

∫
dy ψ4

k,l (2.40)

The kinetic energy results in

〈HK〉 =
~2

2m

∫
dx (∂xf0(x))

∫
dz (∂zf0(z))

∑

k,l

∫
dy ψ2

k,l(y)

+
[∫

dxf2
0 (x)

∫
dzf2

0 (z)
] ∑

k,l

∫
dy
~2

2m
(∂yψk,l(y))2

+
~2

2m
ψ2

k,l(y) (∂ySk,l(y))2 (2.41)

where the first term of the sum is the contribution of a single lattice site to
the transverse kinetic energy, and the second and the third express the on-site
axial kinetic energy. Note that we have only considered the contribution from
a single lattice site and we have neglected the overlap contributions arising
from different lattice wells (namely, different gases), which we will re-consider
later on. The potential energy due to the external trapping Vext is

〈HV 〉 =
[∫

dxf2
0 (x)

∫
dzf2

0 (z)
]∑

k,l

ψ2
k,l(y) (VHO(x, y, z) + VL(x, y, z)) ,

(2.42)

where again we only take into account the on-site energy. Finally, in the
calculation of the expectation value of the global Hamiltonian we reinsert the
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contributions of the wavefunction overlap of two consecutive wells to the lattice
trap potential and to the radial kinetic energy:

〈Hoverlap〉 = −δ1

∑

k,l

∫
dyψk,l(y)ψk+1,l(y) cos (Sk,l − Sk+1,l)

− δ2

∑

k,l

∫
dyψk,l(y)ψk,l+1(y) cos (Sk,l − Sk,l+1) , (2.43)

having defined δ1 as

δ1 = −2
∫

dxf0(x)f0(x− d)
∫

dzf2
0 (z)VL

− 2
~2

2m

∫
dx∂xf0(x)∂xf0(x− d)

∫
dzf2

0 (z)

− 2
~2

2m

∫
dxf0(x)f0(x− d)

∫
dz (∂zf0(z))2 , (2.44)

and δ2 by analogy by inverting x and z. Instead, we neglect the contribution
of neighbours sites on the axial kinetic energy and on the potential energy
associated with the harmonic trap, as well as the wavefunction overlap between
lattice sites more distant than the nearest neighbours.

It is now convenient to transform the discrete formalism described above
into the one of continuum variables, as in Ref. [55]. This will allow us to discuss
the macroscopic properties of the system. For this purpose, we replace

∑
k,l

with (1/d)
∫

dy in the various terms of the energy. This procedure naturally
introduces a smoothed macroscopic 3D density defined by

n0(x ' kd, y, z ' ld) =
ψ2

k,l(y)
d

. (2.45)

Using this smoothing procedure and the normalization condition of f0, the sum
of the energy terms in Eqs. (2.40), (2.41), (2.42), (2.43) is notably simplified,
becoming

E =
∫

dx dy dz n0

[
g̃n0

2
+ VHO + VL +

~2

2m
(∂yS) +

~2

2m
(∂y
√

n0)
]

−
∫

dx dy dz n0 [δ1 cos (d∂xS) + δ2 cos (d∂zS)] . (2.46)

Here, we neglected a quantum pressure term originating from the radial term
in the kinetic energy, and set ψk,lψk+1,l ∼ ψk,lψk,l+1 ∼ ψ2

k,l = dn0. Besides,
we defined the renormalization coupling constant

g̃ = g d2

∫
dxf4

0

∫
dzf4

0 , (2.47)

where g = 4π~2/as is the coupling constant of the 3D gas.
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Calculating f0 and g̃. To express g̃ as a function of the lattice parameter,
we calculate f0 as the ground-state solution of the stationary Schrödinger
equation for the transverse motion in one dimension

(
− ~

2

2m
∂xi + sxiER sin2(qxi)

)
f0(xi) = ε0f0(xi). (2.48)

ε0 is introduced to ensure the normalization condition
∫ d/2
−d/2 dxf2

0 = 1, which
guarantees that the functions Ψk,l are normalized to the number of atoms Nk,l

occupying each lattice site (k, l):
∫

dy ψ2
k,l = Nk,l. In the Eq. (2.48) we have

ignored the contribution of two-body interactions. In addition, we have set
Sk,l = 0, since we consider the ground-state configuration. The single-site
potential can be approximated by a series of harmonic wells, as in Eq. (2.23).
Therefore, the single-site Wannier function is reduced to the lowest-energy
eigenstate of the harmonic oscillator

f0 =

(
q s1/4

√
π

)1/2

exp
(
−
√

s

2
(q xi)2

)
. (2.49)

Finally, replacing f0 in Eq. (2.47), we obtain the renormalized interaction
constant of the gas in the presence of a 2D lattice, as a function of the lattice
depth:

g̃ = g

(√
π

2
s1/4 Erf

(
πs1/4/

√
2
)

Erf
(
πs1/4/

√
2
)2

)2

. (2.50)

The ratio g̃/g is plotted in Fig. 2.8.

Overall density profile. The chemical potential of the entire 3D cloud in
the lattices can be written as

µ̃3D

h
=
~ω̄
2

(
15N0

as

āh.o.

(
g̃

g

))2/5

. (2.51)

Here, we defined āh.o. =
√
~/(mω̄), ω̄ = (ωxωyωz)1/3 being the geometric av-

erage of the overall trapping frequencies in the three spatial directions. Note
that µ̃3D/h in Eq. (2.51) has the well-known form of the chemical poten-
tial of a harmonically trapped 3D BEC. It has been simply rescaled by the
dimensionless factor (g̃/g)2/5.

The overall density profile of the whole 3D atomic cloud in the plane
transverse to the 1D gases at equilibrium has the typical form of an inverted
parabola characteristic of the Thomas-Fermi profile. This smooth profile is
modulated on the scale of the lattice constant, with local minima correspond-
ing to the nodes of the standing waves producing the optical lattice and local
maxima at the centers of the lattice sites. The smoothed density has the form

n0(x ' kd, z ' ld) =
µ̃3D − (mω2

x x2)/2− (mω2
z z2)/2

g̃
. (2.52)
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Figure 2.8: Ratio of the effective coupling constant of a 1D gas to the 3D
coupling constant, as a function of the amplitude of the transverse optical
confinement which creates the 1D geometry. The graph shows that using a
strong lattice (s up to 56), we are able to make g̃ one order of magnitude as
bigger as in the 3D gas.

Atom distribution. Now, let us reintroduce the discrete graining produced
by the lattices. The number of atoms in each tube (k, l) is described by the

Nk,l = N0,0

(
1− k2 + l2

k2
max

)3/2

(2.53)

where kmax is the Thomas-Fermi transverse radius of the overall distribution,
in units of the lattice constant, which is simply expressed in terms of the
modified chemical potential µ̃3D as

kmax =
RTF

d
=

1
d

√
2µ̃3D

mωx ωz
(2.54)

The aspect ratio of the new trap is modified with respect to the original
magnetic trapping, since the size of the condensate in the transverse plane
increases whereas the longitudinal size is reduced. In a lattice of amplitude
sx = sz = 35, the transverse size almost doubles, and the longitudinal one
reduces to a half.

Now, we only need to determine the number of atoms in the central tube,
N0,0. For this purpose, we observe that the chemical potential of the central
gas µ0,0 is equal to the chemical potential of the whole gas. From Eq. (1.24),
the number of atoms of the central gas is

N0,0 =
25/2

3
µ̃

3/2
0,0

g̃
√

mω2
y

. (2.55)
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These relations completely determine how the atoms distribute in the array,
given the total number of atoms of the 3D gas and the trapping frequencies
of the magnetic and optical confinement.

From that, several important quantities, such as the chemical potential
and density of each 1D gas can be calculated. Concerning density, we consider
the value at the center of the longitudinal trap

ρk,l(y = 0) =
µ̃k,l

g̃
=

1
g̃

~ωy

2

(
323/2malNk,l

2~2

)2/3

(2.56)

al being the zero-point oscillator length in the longitudinal direction. From
that, γ can be easily calculated according to γ = mg̃/(~ρk,l(0)). Typically, we
consider the mean value of γ averaged over the array of gases as a meaningful
description of our system.

Finally, the inhomogeneity of the 1D gases along their axial direction must
be considered. The numerical solution of the Non-Polynomial Schrödinger
equation (NPSE) performed with our experimental parameters [105] has demon-
strated that the longitudinal density-profile of the 1D gases is very close to a 1D
Thomas-Fermi profile (no difference is observed within th numerical errors).
In the following, we will assume that this is indeed the case, and accordingly
we define the axial Thomas-Fermi radius

LTF ;k,l =

√
2µ̃k,l

mω2
y

. (2.57)

Typically, one can evaluate the atom distribution in the 2D lattice for
a given amplitude of the 2D optical lattice, assuming the distribution to be
frozen due to a small tunneling rate from one site to the other. With this
prospect, we calculate the main parameters which define the array of 1D tubes
using the previous procedure, for a fixed total number of atoms N = 1.2×105

for different lattice depth s⊥. Table 2.1 reports the number of atoms in the 1D
gas which occupies the central site N0,0, its 1D chemical potential µ̃ in units
of h and its Thomas-Fermi radius along its axial direction, as well as the value
of the parameter γ averaged over the ensemble and the interatomic coupling
constant g̃ of the whole gas.

s⊥ N0,0 µ̃/h (kHz) LTF (µm) γ̄ g̃

10 272 1.873 25.9 0.44 1.6 ×10−37

20 213 2.511 21.8 0.68 2.30 ×10−37

40 169 3.438 18.3 1.03 3.32 ×10−37

60 149 4.183 16.5 1.31 4.11 ×10−37

Table 2.1: Array of 1D tubes with fixed total atom number N = 105.

Let us note that, in the practice of the experiments, the amplitude of the
optical lattices is progressively increased as described in Sec. 2.2.3. For low
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lattice depth (up to sx = sz ∼ 15), atoms can tunnel from a lattice site to the
neighbours. When the confinement is increased the tunneling becomes negli-
gible on the timescale of the experiment, freezing the atomic distribution in
the tubes. If the lattice depth is further increased the atoms do not rearrange
in the lattice, but their coupling constant g̃ still changes. This can be taken
into account by considering a single tube, with a given number of atoms (let
us fix N0,0 = 220), that we suppose to be determined by a low-lattice configu-
ration, just before then tunneling becomes negligible. Then, we calculate the
characteristic parameters of this tube for different amplitudes of the 2D lattice
s⊥. The results are shown in Table 2.2. We do not report the set of values
of g̃, which is the same as before, only depending on the amplitude of the 2D
lattice. Instead, we report the chemical potential, the axial Thomas-Fermi
radius and the parameter γ which depends on both the number of atoms of
the tube and g̃.

s⊥ µ̃/h(kHz) LTF (µm) γ

10 1.656 24.11 0.30
20 2.603 22.05 0.40
40 4.138 20.00 0.51
60 5.448 18.81 0.61

Table 2.2: Single 1D tube with fixed atom number N0,0 = 220.

As mentioned before, a few laboratories around the world have realized
experiments on one-dimensional [33, 34, 104] or quasi-one-dimensional gases
[103, 106, 107, 108]. A comparison with similar experiments could be useful.
Let focus on the experiments conducted by D. S. Weiss’s group [33, 109] and
by I. Bloch’s group [34]. The experimental parameters of these experiments
are indicated in Table 2.3. We report the initial trapping frequencies ω⊥/(2π)
and ωy/(2π), total number of atoms N , wavelength λL and depth s⊥ of the
2D lattice, reported in the corresponding papers. Concerning the experiment
in Ref. [34] (bottom row), we assume that ωy = ω⊥/(2π), such an information
being not available, as far as we know. The last columns report the chemical
potential we calculate from the previous data, and the number of atoms in
the central gas as reported in the papers (N (r.)

0,0 ) and as calculated with our

method N
(o.m.)
0,0 .

We notice a quite large discrepancy of our estimate with respect to the
value reported in [34], the latter being the number of atoms adjusted to fit
the experimental data. Apart from that, our calculation gives the number of
atoms in the central tube close to the value reported in these papers, which
makes us confident of the validity of our estimate.
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ω⊥
2π (Hz) ωy

2π (Hz) N λL (nm) s⊥ µ̃/h (Hz) N
(r.)
0,0 N

(o.m.)
0,0

27 19 2× 105 773 20 850 54 42
147 98 2× 105 773 20 6250 269 151
60 60? 3× 104 82 27 1400 18 48

Table 2.3: Some parameters of the experiments in Refs. [33, 34, 109]: Ini-
tial trapping frequencies (before loading the lattice), total number of atoms,
wavelength and depth of the 2D lattice.
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Figure 2.9: (a) Chemical potential µMF as a function of the amplitude of
transverse lattices s and the number of atoms N . (b) Ratio of the chemical
potential over the frequency of the transverse harmonic oscillator, for N =
1.9× 105.

2.3.2 Some numbers for our 1D gases

Now, we will summarize the main characteristics of our ensemble of 1D gases,
extracted from the model we developed in the previous section. For all am-
plitudes of the transverse lattice we explore in the experiment (s⊥ ≥ 5) the
system has a 1D character, i.e. all energy scales are much smaller than the
single-particle level spacing in the potential wells; more particularly, the rele-
vant energy scales are thermal energy kBT and chemical potential µ. In the
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Figure 2.10: Ratio of the breathing and dipole frequencies in the 1D gases at
an amplitude s = 33 of the 1D optical lattice for different holding time in the
lattices. All the measured spectra have been taken at a holding time of about
20 ms for which the 1D gases are still condensed.

case of large potential barriers the transverse confinement is well approximated
by a harmonic oscillator and the level spacing is given by ~ω⊥.

Concerning the chemical potential, for the employed parameters (atomic
mass and trapping frequencies) the 3D gas has typically µ/h less than 1 kHz,
with a weak dependence on the total number of atoms (µ ∝ N2/5). In the
presence of a lattice, the chemical potential depends on the amplitude of the
lattices which confines the gas in a 1D geometry as well. Its behaviour is
represented in Fig. 2.9 (a). For s⊥ ≥ 1, the chemical potential is about one
order of magnitude less than ~ω⊥ (the latter increasing as

√
s⊥), as shown in

Fig. 2.9 (b)).
Concerning temperature, we expect it does not exceed ∼ 100 − 200 nK,

corresponding to few kHz. In fact, as a general point, we verified the 1D
gases to be superfluid, by measuring the ratio between the frequency of the
breathing mode ωB/(2π) to the dipole mode ωD/(2π) [110, 111]. Indeed the
ratio of these frequencies is ωB/ωD =

√
3 for a Bose condensed gas, whereas

ωB/ωD = 2 for a thermal cloud. We have measured this ratio as a function of
the time spent by the gas in the 2D optical lattice, with the results shown in
Fig. 2.10. For holding times in the 2D lattice (at s⊥ = 35) up to 50 ms, this
ratio is close to the value

√
3 corresponding to the expected value for 1D Bose-

condensed gases close to the mean-field regime [110, 111]. For longer holding
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Figure 2.11: Thermal population of the first excited state of the transverse
harmonic oscillator, calculated using a Bose-Einstein distribution. Blue curve:
T = 100 nK; Purple curve T = 150 nK; Yellow curve T = 200 nK. Total
number of atoms: N = 1.2× 105.

times, the ratio increases up to the value 2 expected for a thermal 1D Bose gas.
All the experiments we will discuss are performed with a typical holding time
of 10 ms at the amplitude s⊥ = 35 ensuring the 1D gases are Bose-condensed.
This ensures the temperature is lower than the critical value (∼ 125 nK).
Considering a trial temperature of 150 nK, for s⊥ > 10 the population of the
first-excited state of the transverse harmonic oscillator is about 0.002 of the
ground-state population. For s⊥ = 20 it falls to 3 ×10−6. The calculation has
been performed using the Bose-Einstein distribution (cfr. Fig. 2.11).

Note that, nevertheless, for low lattice amplitudes (s⊥ < 10), the 1D gases
are not fully independent from each other in the array, since the tunneling
rate through the potential barriers is not negligible on the timescale of the
experiment. However, this thesis has been focused on the investigation of the
axial dynamics of the gases. This point will be explained in chapter 3, devoted
to the description of the technique.

2.4 Realizing the superfluid-to-insulator transition

A substantial part of the work of this thesis has been devoted to the investi-
gation of the physics of 1D gases in the presence of a periodic potential along
their axis (see chapters 5 and 6). This kind of system is a realization of the
Bose-Hubbard model we presented in Sec. 1.4. In the following, we would like
to give some details about our realization of such systems and illustrate how
the experimental parameters are related to the key physical quantities.
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Figure 2.12: (a) On-site interaction energy U , (b) tunneling energy J and
(c) ratio U/J . These quantities are reported as functions of the longitudinal
lattice amplitude sy.

In practice, we start from an array of 1D gases produced by tightly con-
fining a 3D gas in a strong 2D lattice with amplitude s⊥ = 35 and wavelength
λL = 830 nm, as illustrated in the previous Section. To this system we add
another 1D optical lattice along the axial direction of the micro-tubes, with
the same wavelength as the transverse lattices but with variable amplitude.

The relative strength of the on-site interaction energy U with respect the
tunneling J along the axes of the tubes is controlled by the depth V0 of the
periodic potential superimposed along the axial direction. In Ref. [112] these
quantities are evaluated by approximating the single-site wavefunction with a
Gaussian profile. A more accurate estimate can be obtained by numerically
evaluating the Wannier wavefunctions – which are the correct eigenstates of
the Bose-Hubbard Hamiltonian – and performing a fit to the calculated curves,
as in Ref. [40]. Following this line, from the definition given in Eqs. (1.34)
and (1.33), respectively, one gathers simple equations which express the de-
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Figure 2.13: Experimental protocol used to measure the momentum distribu-
tion of a lattice gas.

pendence of U and J on the lattice amplitude:

U

ER
≈ 5.97

as

λL

(
3

√
s2
⊥sy

)0.88

(2.58)

Jy

ER
≈ 1.43s0.98

y e−2.07
√

sy (2.59)

Equations (2.58) and (2.59) clearly indicate that the parameters U and J
can be varied continuously by tuning the lattice amplitude, as illustrated in
Fig. 2.12 (a) and (b). Fig. 2.12 (c) reports the ratio U/J , which governs
the behaviour of the system, driving the transition from superfluid to Mott
insulator.

2.4.1 Measuring the momentum distribution across the tran-
sition

The momentum distribution of a lattice gas can be simply measured by imag-
ing the density distribution after time-of-flight. Figure 2.13 describes the
procedure used in the experiment. The light intensity of the lattice is slowly
increased with a ramp of 140 ms, then after a holding time in the lattice of
7 ms the optical and magnetic potentials are suddenly switched off simulta-
neously. The atomic cloud is allowed to fall under gravity, during a typical
time-of-flight of 21 ms. Then the cloud is observed via absorption imaging
in the plane ŷ − ẑ as described in Sec. 2.1.1. Two representative images are
reported in Fig. 2.14 (a) and (b) for sy = 0 and sy = 14, respectively.

Let us focus for the moment on image 2.14 (a), which shows the BEC
emitted from an array of trapped 1D gas as without any periodic potential.
The density profile presents a strong anisotropy, being elongated in the di-
rection of the transverse confinement (vertical axis in the figure). Due to the
strong anisotropy of the trap, the interaction-induced expansion mainly affects
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Figure 2.14: (a) and (b) Time-of-flight absorption images of an array of 1D
gases in the absence and in the presence of a lattice with amplitude sy = 14,
respectively. (c) Width of momentum distribution of a 1D gas confined in
a strong transverse lattice (s⊥ = 35) with a periodic potential superimposed
with variable amplitude sy.

the radial direction as described in Sec. 2.1.1. During the time-of-flight, the
atomic wavepackets of the 1D gases expand and overlap. Since the phases of
the different gases are completely uncorrelated with each other, the transverse
tunneling being negligible on the timescale of the experiment, they do not
interfere with each other.

Consider now when a periodic potential is superimposed along the axis of
the tubes. For a non-interacting atomic cloud without phase fluctuations, the
momentum peaks are given by the Fourier transform of the envelope of the
1D BEC in the lattice. Besides, the envelope of the momentum distribution
is the Fourier transform of the ground state extension of the wavefunction
on each lattice site, and reflects its profile, which is well approximated by a
Gaussian function for sufficiently deep lattices. The width of the envelope is
then the reciprocal of the width of the ground state extension. As the lattice
amplitude increases, the tunneling Jy along the axis of the 1D gases drops
exponentially, according to Eq. (2.59). This induces the atomic wavefunctions
to localize more tightly in the single lattice sites. Thus, the phase-coherence
between different lattice sites of the same 1D gas is reduced, and a larger
momentum distribution after time-of-flight gets populated. As a matter of
fact, the image in Fig. 2.14 (b) shows that the momentum distribution of the
system immersed in a strong lattice is remarkably larger than in the absence
of the lattice. We also performed a systematic analysis of the momentum
distribution of the array of 1D gases in the presence of a lattice potential along
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their axial direction. We started from a superfluid and progressively increased
the raising the lattice depth, up to enter a Mott insulating state. From the
images of the density profile of the atomic cloud, we extracted the width of
the momentum distribution, which monotonically increases as displayed in
Fig. 2.14 (c), according to the arguments presented above.

2.5 Conclusions

In this chapter we have presented the main ingredients used in the project de-
veloped for this thesis: The Bose-Einstein condensate and the optical lattices.
These tools enable us to realize a formidable test ground to investigate the
physics of 1D systems, both in a continuum space and in a discrete lattice.
In Sec. 2.3, we discussed the main characteristics of the array of 1D gases we
realized, obtained by developing a theoretical model which extends the work
in [55], as well as the features of these gases in the presence of a periodic lattice
along their axis.
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Chapter 3

Spectroscopy via inelastic
light scattering

From the experimental point of view, a crucial step in characterizing complex
quantum phases consists in finding ways to measure the low-energy excitations
of many-body systems, the knowledge of which is fundamental, since they ac-
count for the response of the system to a weak perturbation. In the context of
condensed-matter physics, the development of angle-resolved photoemission
spectroscopy has played a major role in the study of high-Tc superconduc-
tors giving information about the one-particle spectral function [113]. More
generally, scattering light or particles off solids provided some of the most
fundamental insights into the structure of matter [114, 115]. It allowed the
measurement of the low-energy excitation spectrum, giving access to the dis-
persion relations of phonons and the electronic band structure, which can tell
in most cases if the material is a metal or an insulator. Now, inelastic light
scattering is a natural candidate also to investigate the correlated quantum
phases we realized with ultracold atomic gases, where solid-state physics prob-
lems are addressed from a different perspective [43]. This chapter is intended
to show how inelastic-light scattering (also known as Bragg scattering) allows
the measurement of the correlations functions of the system, which describe
low-energy excitations. With this aim, general aspects of Bragg scattering
are introduced, both in terms of diffraction from a periodic structure and in
terms of two-photon transition, indicating its suitability as an effective spec-
troscopic technique. Then, the basics concepts of linear-response theory are
approached, and it is discussed how the dynamical structure function and
one-particle spectral function are accessible via Bragg scattering in different
ranges of parameters. Finally, the experimental setup built for this purpose
and the measurement procedure are presented in detail. The quantity accessi-
ble in practice is related to the energy absorbed by the gas, and the conditions
necessary to guarantee the linearity of the response are examined.
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3.1 Generalities about Bragg scattering

In 1912 W. H. Bragg demonstrated backward-scattering of X-rays from a crys-
tal planes, so-called Bragg scattering. In the context of cold atoms, the com-
plementary process is realized: Rather than diffracting light on a grating of
atoms, atoms are diffracted on a grating of coherent light.

In the 1980s, the first experiments were performed letting an atomic beam
cross a light grating made up of a static optical lattice [116, 117, 118]. In
perfect analogy with the solid-state counterpart, the process is efficient if the
incident beam satisfies the Bragg condition on the angle of incidence. Later on,
a more convenient experimental configuration has ended up prevailing: Atoms
at rest are diffracted by a moving optical lattice created by two intersecting
laser pulses with different frequencies. Bragg scattering was used for the first
time in 1994 to impart momentum to different velocity classes of a thermal
cloud of laser-cooled atoms [119] and in 1999 by the group of Phillips at
NIST to impart momentum to a Bose-condensed cloud of atoms [120], and to
coherently split the cloud in momentum space. In contrast to the diffraction of
an atomic beam, the interaction time is no long determined by the passage of
the atoms through a standing wave, but by the duration of the laser pulse. In
addition, the condition on the angle of incidence becomes a condition on the
frequency difference between the two beams comprising the standing wave,
or equivalently, the velocity of the moving standing wave. More precisely,
this process occurs as long as the energy and momentum transferred to the
condensate match the energy and momentum of the moving optical lattice.
Such an energy is determined by the frequency difference between the beams,
and the lattice momentum qB is determined by the beams angle of intersection,
as we will see in detail in Sec. 3.1.2.

Since Bragg diffraction provides efficient, selectable momentum and en-
ergy transfer, it can be used as an effective tool for spectroscopy, referred
to as Bragg spectroscopy. This technique has been applied in pioneering ex-
periments to measure the dynamic structure factor of gaseous Bose-Einstein
condensates [121, 122]. The response of the condensate to Bragg transitions of
different frequencies provided a spectroscopic measurement of the Bogoliubov
excitation energy. The dispersion relation of interacting BECs in the mean-
field regime [123, 124, 125], the presence of phase fluctuations in elongated
BECs [107] as well as signatures of vortices [126] have been investigated using
this technique. Bragg spectroscopy has been also used as a tool to coherently
manipulate atomic clouds for interferometric schemes [127] or for thermody-
namics studies [128]. More recently it has succeeded in providing novel infor-
mation about strongly interacting 3D Bose [48] and Fermi [49] gases close to
Feshbach resonances.

As soon as experiments on ultracold quantum gases in optical lattices
started to simulate many-body systems, theoretical papers appeared propos-
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ing to measure their dynamical structure factor through inelastic light scat-
tering [129, 130, 131]. This has been realized in this thesis work to charac-
terize weakly interacting BECs in periodic potentials [132], as well as in the
works of Du et al. [51] and Ernst et al. [52] using different configurations
of the optical lattices. Moreover, we have exploited Bragg spectroscopy ex-
tensively to investigate strongly-correlated phase realized by one-dimensional
atomic micro-tubes, such as correlated-superfluid [133] and Mott-insulating
[50] states.

3.1.1 Diffracting atoms at rest off a moving lattice

The moving optical lattice necessary to diffract atoms can be obtained from
the interference of two counterpropagating laser beams with slightly different
frequencies. Consider two linearly-polarized electromagnetic waves:

E1(r, t) = E0,1 cos(q1 · r− ω1t), (3.1)
E2(r, t) = E0,2 cos(q2 · r− ω2t− φ1,2), (3.2)

where q1,q2 are the wavevectors of the two laser beams, ω1/(2π), ω1/(2π) their
frequencies and φ1,2 the relative phase shift. The total intensity is proportional
to the square modulus of the total field:

I(r, t) = ε0c|E1(r, t) + E2(r, t)|2. (3.3)

Averaging over the terms oscillating at the optical frequencies ω1 and ω2, the
average intensity can be written as

I(r, t) =
1
2
ε0c

[
(E0,1 −E0,2)2 + 4E0,1 ·E0,2 cos2(q · r− 2π

δν

2
t)

]
, (3.4)

where δν = (ω2 − ω1)/(2π) ¿ ω1/(2π), ω2/(2π) is the frequency difference
between the two beams and q = (q1 + q2)/2 is the average wavevector. If
E0,1 = E0,2 = E this expression reduces to

I(y) = 2ε0cE
2 cos2

(
qB y − δν

2
t

)
, (3.5)

where we have defined qB = q2 − q1 and we have assumed that it is directed
along the ŷ direction. Eq. (3.5) represents a standing wave, the nodes and
antinodes of which move in the laboratory frame at a constant velocity vL =
δν/(2|qB|). Using Eq. (2.14) for the dipole potential, it immediately follows
that this field configuration produces an optical lattice moving with constant
velocity in the laboratory frame:

VB(y) = VB,0 cos2 (qB y − vLt) , (3.6)
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where the strength VB can be related to the two-photon Rabi frequency
ΩB/(2) = VB/~. This lattice is oriented along the difference of the laser
wavevectors, and its spacing depends on the angle θ between the beams ac-
cording to

d =
λB

2 sin (θ/2)
, (3.7)

λB being the wavelength of the two Bragg beams creating the lattice.

3.1.2 Two-photon Bragg transition

Scattering of light by atoms in the Bragg regime can be viewed also as a two-
photon transition between two different momentum states of the same internal
ground-state [120]: The gas is shone with two simultaneous off-resonant light
pulses (Bragg beams) for a finite time tB, with a relative angle θ and detuned
from each other by the tunable frequency-difference δν above defined. During
the Bragg pulse, atoms absorb photons from one beam and are stimulated to
emit photons in the second beam, crossing a virtual state (see gray arrows
in Fig. 3.1 (a)). The initial and final momentum states (denoted by open
circles in Figure) form an effective two-level system coupled by a two-photon
Raman process (red arrow in Figure). As anticipated above, the transition
is resonant provided that energy and momentum are conserved. Atoms with
initial momentum pi end up in the same internal state with a final momentum
pf = pi +~qB, where ~qB is the momentum transfer given by the two-photon
process. The energy difference between the initial and final atomic states is
given by the frequency-difference between the two Bragg beams (~ω = hδν).

In contrast to angle-resolved photoemission spectroscopy, the momentum
~qB is directly imprinted on the sample; it is set by the wavelength λB of
the Bragg beams and is freely variable by changing the angle θ between them.
Namely it is defined as

~qB = 4π
h

λB
sin

(
θ

2

)
· eq1 − eq2

|eq1 − eq2 |
(3.8)

where eq1 , eq2 are the unit vectors of the two beams. Note that the direction
of qB is perpendicular to the bisector between the two beams. The detuning
δν between the two Bragg beams controls not only the energy ~ω transferred
to the atoms but also the sign of the momentum transfer. For a two-photon
transition towards an excited state with higher kinetic energy, atoms absorb
a photon from the beam with the higher-energy photons and are stimulated
to emit a photon in the beam with the lower-energy photons. Therefore, with
our convention, when the detuning δν is positive atoms absorb photons from
beam (1), emit into beam (2) and the momentum transfer is +~qB (dark-gray
dashed line in Fig. 3.1 (a)). When δν is negative atoms absorb from beam
(2), emit into beam (1) and the momentum transfer is opposite, i.e. −~qB

(light-gray dashed line in Fig. 3.1 (a)).
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Figure 3.1: (a) Schematics of Bragg transitions for a free particle. The atom,
considered initially at rest for simplicity, is illuminated by two counterpropa-
gating off-resonant laser beams with different frequency δν = (ω1−ω2)/(2π). A
two-photon transition to a different momentum state is possible by absorption
of one photon from one beam and stimulated emission into the other. Depend-
ing on the sign of the relative detuning between the Bragg beams, atom pho-
tons are absorbed from beam (1) and emitted in beam (2) (for (ω1 − ω2) > 0,
dark-grey dashed lines) or absorbed from beam (2) and emitted in beam (1)
(for (ω1 − ω2) < 0, light-grey dashed lines), changing the direction of the mo-
mentum transfer ~qB. (b) Excitation spectrum of a three-dimensional BEC.

By scanning the relative detuning of the two Bragg beams (and thus the
energy of the excitation created in the system) at fixed momentum transfer
qB, as sketched by the vertical dotted line in Fig. 3.1 (a), one can monitor
the energy absorbed by the system (the method is described in detail in Sec.
3.3.2). When the energy of the excitation matches the resonance energy of the
system, the absorption is efficient. Using the approach of condensed matter
physics, this corresponds to the condition for which the atomic wave-function
is efficiently diffracted on the moving optical lattice. As an example, the
excitation spectrum of a three-dimensional weakly-interacting Bose-Einstein
condensate is reported in Fig. 3.1 (b).

In the presence of an optical lattice, momentum is defined modulus the mo-
mentum ~kL associated with the standing wave producing the optical lattice.
Thus, the two-photon Bragg transition imparting momentum along the direc-
tion of the optical lattice can couple atomic states which belong to different
energy bands of the optical lattice (see Fig. 3.2).
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Figure 3.2: (a) Sketch of the two-photon Bragg transition of a gas in the
presence of the optical lattice. In the presence of a lattice, the Bragg transition
can excite the atom in any energy band induced by the periodic potential,
when the resonance condition on the energy and the momentum transferred
is fulfilled. (b) Spectrum of a BEC in the presence of an optical lattice.

3.2 Information on low-energy excitations: The two-
body and one-body correlation function

From measuring the energy absorbed by the system via Bragg spectroscopy,
we extract information on the low-energy excitations, the knowledge of which
is crucial to characterize strongly correlated systems. Indeed, the description
of the dynamics of strongly correlated systems in terms of low-energy excita-
tions (e.g. using Green functions) is common in condensed matter physics [53].
As a matter of fact they control its thermodynamics at low temperature, as
well as the response to a weak perturbation, that is globally expressed by the
dynamical response function (also called dynamical polarizability). More par-
ticularly, we obtain the dynamical structure factor S(q, ω), which is the total
probability to create excitation, along with the one-particle spectral function
A(q, ω), which are the Fourier transforms of the two-particle and one-particle
correlation function, respectively.
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3.2.1 Measure polarizability

The coupling between the time-dependent Bragg field and the system can be
described by the time dependent Hamiltonian [38]

Hpert(t) = −VB

2
δρq e−iωte−ηt − VB

2
δρ�q eiωte−ηt, (3.9)

corresponding to propagating a sinusoidal potential with wavevector q and
strength VB. Such a strength will be assumed to be be sufficiently small in
order to apply the linear response theory. In Sec. 3.4.3 the fulfilling of this
condition will be discussed in detail, and it will be demonstrated that it applies
in our experiments. The factor e−ηt has been introduced to ensure the system
is governed by the unperturbed Hamiltonian at t = −∞. δρq = ρq−〈ρq〉 is the
fluctuation of the q-component of the Fourier transform of the density operator
ρ(x) = ψ�(x)ψ(x). The perturbation induces fluctuations of a certain physical
observable ρq, which oscillates at the same frequency ω/(2π) as the external
field. Precisely, polarizability provides the relationship of such fluctuations to
the field, being defined as

〈δρ�q〉 = VBe−iωte−ηtχ(q, ω) + VBeiωte−ηtχ(−q,−ω). (3.10)

Notice that χ(q, ω) depends only on the properties of the system in the absence
of any external perturbation.

Supposing that the system is in thermal equilibrium at temperature T at
time t = −∞; it turns out [134]

χ(q, ω) = −1
~
Z−1

∑
m,n

e−βEm

[
〈n|ρq|m〉

ω − ωnm + iη
− 〈n|δρ�q|m〉

ω + ωnm + iη

]
, (3.11)

where |n〉 and |m〉 are the eigenstates of the unperturbed Hamiltonian and
ωn,m = (En −Em)/~ the transition frequencies between them. Z =

∑
i e
−βEi

is the partition function, with β = 1/(kBT ). The Boltzmann factor e−βEm

accounts for the thermal equilibrium of the initial configuration.
Polarizability is a complex function; thus it can be naturally separated into

its real and imaginary parts

χ(q, ω) = χ′(q, ω) + iχ′′(q, ω), (3.12)

where the real part χ′(q, ω) accounts for dispersion, whereas the imaginary
part χ′′(q, ω) describes absorption properties (therefore, in the following it
will be also referred to as the “dissipative component” of the polarizability).

The two parts are simply connected by Kramers-Kronig relations [135,
136]:

χ′(q, ω) = − 1
π

∫ ∞

−∞
dω′χ′′(q, ω′)P

1
ω − ω′

, (3.13)

χ′′(q, ω) =
1
π

∫ ∞

−∞
dω′χ′(q, ω′)P

1
ω − ω′

, (3.14)
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where P is the principal part of the function. Usually, experiments give access
either to dispersive or dissipative components of the response function. For
example in our case we measure the energy absorbed by the system, which
is definitely easier to access than dispersion properties. Kramers-Kronig rela-
tions are valuable for reconstructing the whole response function.

In the linear response theory, the energy absorbed by the system linearly
depends on the dissipative component of its dynamical polarizability χ′′(ω),
as well as on the characteristics of the perturbing potential (amplitude VB and
time duration ∆tB) [137], through the relation

dE

dt
=

2π

~

(
VB

2

)2

ωχ′′(ω). (3.15)

3.2.2 Low-energy excitations

Dynamical polarizability can be expressed in terms of the dynamical structure
factor S(q, ω) [38], which is the Fourier transform of the two-particles corre-
lation function. S(q, ω) essentially describes the total probability to populate
any excited state by transferring a momentum ~q and energy ~ω, provided
that momentum and energy conservation can be met:

S(q, ω) =
1
Z

∑

i,f

e−βEi |〈φf |ψ�(q− k)ψ(k)|φi〉|2 δ(~ω + Ef (q− k)−Ei(k))

(3.16)
where |φi〉 and |φf 〉 are initial and final many-body states of the system, with
corresponding energies Ei and Ef , respectively. The operator ψ(q) creates a
particle with momentum q. When Ef > Ei the system absorbs energy; in
the opposite condition it releases energy. Moreover, the dynamical structure
factor obeys the relation

S(q, ω) = eβ~ωS(−q,−ω), (3.17)

which expresses the detailed balancing which states that the probabilities to
absorb or to release energy are related to each other by the Boltzmann factor
eβω. At zero temperature, initially the system can occupy only the ground-
state of the system. In Eq. (3.16) the summation over i includes only one
term (|0〉), and the expression reduces to

S(q, ω) =
1
Z

∑

f

|〈φf |ψ�(q− k)ψ(k)|0〉|2δ(~ω + Ef − E0). (3.18)

Since the initial state is the ground-state, only processes transferring energy
to the system are allowed, since (Ef − E0) is always positive.

In terms of the dynamical structure factor, χ(ω,q) can be rewritten as

χ(q, ω) = −
∫ ∞

−∞
dω′

[
S(q, ω)

ω − ωnm + iη
− S(q, ω′)

ω + ωnm + iη

]
. (3.19)
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Figure 3.3: Dynamical structure factor S(q, ω) (green curve) and polarizability
χ(q, ω) ∼ ωS(q, ω) (blue curve) of an array of 1D gases, both resulting from
simulations at T = 100 nK (see chapter 4 for a detailed explanation): The
difference between the two functions is within the typical uncertainty in the
experimental signal (vertical bar).

From this expression, the dispersive and dissipative components can be sepa-
rated in1:

χ′(q, ω) = −
∫ ∞

−∞
dω′

[
S(q, ω)P

1
ω + ω′

− S(q, ω′)
1

ω − ω′

]
, (3.20)

χ′′(q, ω) = ω [S(q,−ω)− S(q, ω)] = π
(
1− eβ~ω

)
S(q, ω), (3.21)

where the last equality in Eq. (3.21) has been obtained by exploiting the
detailed balancing principle expressed in Eq. (3.17).

Once the connection between the dissipative component of the response
function and the dynamical structure factor has been ascertained, it is straight-
forward that the energy absorbed (the quantity measured in our experiments)
is related to the dynamical structure factor. In fact, using the relation in Eq.
(3.15), for a finite-time perturbation results in:

∆E ∼ 2π

~

(
VB

2

)2

ω [S(q, ω)− S(−q,−ω)]∆tB, (3.22)

1To derive them from χ′′ρq
, we make use of the Dirac relation limη→0

1
x−a+iη

= P 1
ω−a

−
i π δ(x− a).
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which can be also rewritten as

∆E ∼ 2π

~

(
VB

2

)2

ω
(
1− eβ~ω

)
S(q, ω)∆tB. (3.23)

Thus, the energy absorption is sensitive to the difference [S(q, ω)− S(−q,−ω)]
rather than to the dynamic structure factor itself. This would be a difference
between Bragg experiments and other scattering experiments, like neutron
scattering from helium, where, by detecting the scattered probe, one instead
measures directly the dynamic structure factor. Equation (3.22) says that the
coupling with an external perturbation induces the system both to transfer
and to release energy. Nevertheless, in general the dynamic structure factor
exhibits a stronger dependence on temperature than χ′′(q, ω). For typical
temperature of the system we investigate (T ∼ 100 − 200 nK), the factor(
1− e−β~ω)

which appears in Eq. (3.23) is negligible, so that it does not af-
fect the response-signal significantly. Figure 3.3 compares χ(q, ω) and S(q, ω)
simulated for an array of one-dimensional gases at temperature T = 100 nK
(see chapter 4): The difference is not significant compared to the typical un-
certainty in the experimental signal, represented by a vertical bar.

3.2.3 Low-energy excitations in a lattice-gas

Up to now we have introduced general arguments to relate the energy absorbed
by the system with the dynamical structure factor. This perfectly applies to
the case of superfluid 1D gases. The situation is notably enriched when the 1D
gas is immersed in a potential which varies periodically along the axis of the
tube (longitudinal optical lattice): This has been the subject of the study that
will be presented in chapter 5 and 6. The simplest kinds of low-energy excited
states involve either one or two quasi-particles in the many-body ground-
state and they are respectively connected to the one-particle spectral function
A(q, ω) and the dynamical structure factor S(q, ω). As we will show later
the inelastic scattering process we implement allows us to obtain information
about these two quantities. Let us recall their meaning. S(q, ω) describes
the probability of creating a particle-hole excitation with momentum ~q and
energy ~ω within the many-body system. Its definition has been already
introduced in Eq. (3.16). A(q, ω) essentially describes the probability to
create a hole in the ground-state by removing a particle with momentum ~q
and energy ~ω and is defined as

A(q, ω) =
1
Z

∑

i,f

e−βEi |〈φf |ψ(q)|φi〉|2 δ(~ω + Ef + ε(q)− Ei) (3.24)

where the same notation has been used as in Eq. (3.16). The operator ψ(q)
creates a particle with momentum q. The energy ε(q) is that of the final
excited state out of the many-body wave-function.
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(a) (b)

Figure 3.4: (a) Excitation within the lowest-energy band (blue curve) of the
system in a periodic potential, i.e. a particle-hole couple living in the ground
state. (b) If the energy of the perturbation exceeds the band gap of the
system, a particle is removed from the many-body ground-state, populating
a single-particle state in a high-energy band and leaving a hole in the lowest
band.

Due to the presence of the periodic potential, the energy spectrum shows
a band structure. In the following, the different bands will be labeled by
the integer numbers n = 1 . . .∞. Since we realize 1D gases at ultra-low
temperature, the atomic many-body state with N particles lies initially in the
lowest-energy band (n = 1). As described in Sec. 3.1.2, in the presence of an
optical lattice the two-photon Bragg transition can couple the initial atomic
state with a final one which belongs to a different energy band of the optical
lattice. Essentially, the perturbation can induce two kinds of excitations which
are sketched in Fig. 3.4 (a) and (b), respectively [138].

(i) Excitation in the lowest-energy band of the system. Suppose the perturb-
ing field to transfer a small amount of energy ~ω, compared to the gap
between different bands. The simple excitation this process can create
is a couple made up of an excited particle and a hole, both living within
the many-body ground-state of the system, as sketched in Fig. 3.4. The
probability to create a particle-hole excitation is expressed by S(ω,q).

(ii) Excitation towards higher-energy bands of the system. When the pertur-
bation carries a high energy compared to the band-gap of the system,
a particle is removed from the ground-state and it goes to populate a



82 SPECTROSCOPY VIA INELASTIC LIGHT SCATTERING

higher-energy band, leaving a hole in the lowest-energy band. This case
is represented in Fig. 3.4. If the excited single-particle does not interact
with the ground-state of the system, the probability of creating a hole
in the many-body ground-state is accounted for by the single-particle
spectral function of the system A(ω,q). The fulfilling of the condition
on coupling between states in different bands will be discussed in each
case we will consider (see chapter 6).

Note that in both the cases the supplied momentum and energy is shared
by the particle and the hole. To be more precise, energy and momentum con-
servation laws establish the constraints on the relative energy and momentum
of the particle and hole:

kh = qB − kp, (3.25)
ωh = ω − ωp, (3.26)

kh (kp) being the the momentum of the hole (particle) and ωh (ωp) its energy.
Now, let us see how the two different types of excitations (i) and (ii) are

accounted for by the correlation function. In evaluating the response of the
atomic system to light scattering, one can make use of the Fermi golden rule
to write the scattering rate as

2π

~
1
Z

∑

i,f

e−βEi |Mi,f |2 δ(~ω + Ef −Ei), (3.27)

where the matrix element is calculated for the operator of equation Eq. (3.9)

Mi,f ∝
∫

drΩ(r)eiq·r〈φf |ψ�
β(r)ψα(r)|φi〉. (3.28)

In principle, this calculation would require consideration of all possible initial
and final many-body states, provided the conditions for momentum and energy
conservation are met. Nevertheless, considering the two processes (i) and (ii)
simplifies the calculation. First, let us notice the ground state as |φi〉 = φN

1 .
The final many-body wave-function will be noted as φN

f . We write |φN
i , N ′

n′〉
the state consisting of N atoms in the initial many-body wavefunction (i.e. in
the lowest-energy band n = 1) and N ′ atoms in a high-energy band n′ > 1.

Using this notation, the transition within the many-body ground state
couples the state |φN

i , 0n′〉 to |φN
f , 0n′〉, i.e. the excited atom also belongs to

the lowest-energy band n = 1. The matrix element for this type of coupling
is:

|Mi,f |2 ∝ |
∫

dr Ω(r)eiqr 〈φN
f , 0n′ |ψ�

1(r)ψ1(r)|φN
i , 0n′〉|2, (3.29)

which can be rewritten as

|〈φN
f |ψ�

1(q− k)ψ1(k)|φN
i 〉|2. (3.30)
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By inserting Eq. (3.30) in Eq. (3.27) one gets the relation defining the dy-
namical structure factor S(q, ω) of the many-body state.

On the contrary, a process like in (ii) couples the state |φN
i , 0n′〉 to |φN−1

f , 1n′〉,
i.e. one atom is excited in the energy band n′. Terms of this type correspond
to the Bragg transition coupling a state in the lowest-energy band to a higher-
energy band, n′ > 1. Assuming that the excited state is decoupled from the
initial one, one obtains

|Mi,f |2 ∝ |
∫

dr Ωeiqr 〈φN−1
f , 1n′ |ψ�

n′(r)ψ1(r)|φN
i , 0n′〉|2 (3.31)

∝ |
∫

dr Ωeiqr 〈φN−1
f |ψ1(r)|φN

i 〉〈1n′ |ψ�
n′(r)|0n′〉|2 (3.32)

which is proportional to
|〈φN−1

f |ψ1(q)|φN
i 〉|2. (3.33)

After inserting into Eq. (3.27), this expression leads to the one-particle spec-
tral function A(q, ω) of the many-body state2. When the Bragg process excites
atoms from the Mott state to a high-energy band, assuming the initial and fi-
nal states are independent is a good approximation. Indeed, being in the Mott
regime implies that the amplitude of the periodic potential is large, i.e. that
the different energy bands are separated by large energy gaps and that atoms
in the many-body state are pinned at the lattice sites, resulting in a small
overlap of the initial and final state wave-functions. The same assumption
would not hold in the superfluid regime where inter-band correlations might
play a non-negligible role. In particular the result of Bragg scattering towards
high-energy bands in the superfluid regime cannot be carried out in the simple
way we use for the Mott state.

3.3 Bragg setup

The derivation presented in Sec. 3.1.1 and 3.1.2 is correct provided that the
phase difference φ1,2 between the two radiation fields is constant. This condi-
tion can be experimentally achieved if the beams producing the optical lattice
are derived from the same laser source and then coherently frequency-shifted,
in order to provide a stable detuning δν. In a different way, this condition
could be realized with two independent laser beams whose relative phase is
stabilized by an optical phase-locked loop. In our experimental setup, the two
Bragg beams derive from a laser diode at wavelength λB = 780 nm, detuned
by ∆νB = 300 GHz from the D2 transition of 87Rb. The relative detuning of
the two Bragg beams was realized in the following way. The laser beam is split
into two parta, which are sent through two independent acousto-optic mod-
ulators (AOMs) locked in phase. The AOMs are driven with an appropriate

2To extract A(q, ω), knowledge of the density of state of the final state is required, for
which the presence of the optical lattice has to be taken into account properly.
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Figure 3.5: Experimental setup for Bragg spectroscopy. (a) First configu-
ration: Two counter-propagating laser beams (red), detuned with respect to
each other by a controllable frequency δν, are shone onto the atoms in order to
induce a two-photon transition. (b) Second configuration: The relative angle
between the two Bragg beams is θ ≈ 54◦. The direction of each beam can be
changed thanks to a rotation plate and a translation stage that allow a precise
control of θ. The axes (x̂, ŷ) coincide with the axes of the lattice beam (see
text below).

frequency-difference. This method is insensitive to possible frequency-drifts of
the laser, since the Bragg process only depends on the relative frequency of
the two beams. Each beam is injected into a polarization-maintaining fiber,
and then sent to the atomic sample through a couple of mirrors. More pre-
cisely, two different geometrical configurations of the Bragg beams have been
realized, as represented in Fig. 3.5 (a) and (b). This is achieved mechanically
by changing the mirror positions. In both cases, the geometry of the Bragg
beams has been opportunely designed for the precise purpose of characteriz-
ing the properties of 1D gases3 along their axis (from now on indicated as ŷ).
Thus, the direction of the beams has been arranged to maximize the projec-
tion of the momentum imparted to the atoms along such an axis, minimizing
the angle α between the resulting momentum and the ŷ axis (see Figure).
Counter-propagating beams along the axis of the atomic tubes, represented in

3In the presence of an optical lattice along the main axis or not.
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Fig. 3.5 (a), allows for maximizing the momentum transfer, as resulting from
Eq. (3.8). Alternatively (see Fig. 3.5 (b)), a smaller angle between the laser
beams has been chosen to reduce the momentum imparted to the atoms down
to a value almost equal to that associated with the lattice we use to realize
and to drive atoms from a superfluid to a Mott-insulating state4.

While λB is precisely known in the experiment, the angle θ cannot be
measured geometrically with high precision. We use the atoms themselves as
a sensor to precisely calibrate qB. For this purpose we measure the momentum
transferred to a 3D BEC (in the absence of any optical lattice) in two different
ways.

3.3.1 Calibration of the momentum transfer

Comparing spectra obtained by transferring two opposite momenta

In the first calibration measurement, we measure the resonant frequency of
the Bragg spectrum for the 3D BEC. The resonance frequency depends on the
momentum transfer hqB, on the strength of atom-atom interactions through
the dispersion relation and on the initial velocity of the BEC center-of-mass.
The dispersion relation E(q) of a trapped 3D BEC in the mean-field regime
can be written as

E(q) = ~

√
c2
LDA(q)q2 +

(
~q2

2m

)2

, (3.34)

where cLDA(q) corresponds to an effective sound velocity within a local density
approximation and is related to the mean-field interaction term [139]. The two-
photon transition induced by the Bragg pulse couples the initial state of the
3D BEC with momentum pi = hqi to an excited state with momentum pf =
h(qi + qB). Thus the resonance energy of this process is E(qi + qB)−E(qi).
In the absence of interactions, this energy reduces to the usual quadratic
dependence of a single-particle spectrum

Es.p.(q) =
h2(qi + qB)2

2m
− h2q2

i

2m
. (3.35)

In order to reduce the effect on evaluating qB coming from interactions, we
perform Bragg spectroscopy on dilute 3D BECs after a time-of-flight. When
the magnetic trap is switched off the BEC acquires a spurious nonzero mo-
mentum hqi and two unknown parameters have to be determined, namely
qB and qi. We measure the spectra at positive (~qB) and negative (−~qB)
momentum transfer.

4The response of a Mott insulator state has been predicted to be the strongest at the
edge of the first Brillouin zone defined by the lattice which induces the transition [130].
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The two resonance frequencies (E(qi + qB)−E(qi)) and (E(qi − qB)−E(qi))
allow us to precisely determine qB in the experiment. In the small-angle con-
figuration, qB,y = 7.3(2) µm−1.

In the experiment, the bisector of the two Bragg beams is not exactly
perpendicular to the ŷ-axis, and the momentum transferred along the ŷ-axis
is the projection

hqB,y =
4~ cos(α)

λB
sin

(
θ

2

)
e1 − e2

|e1 − e2| · ey, (3.36)

α being the small angle between the direction orthogonal to the beams bisector
and the ŷ-axis. To get an estimate of α, we diffract the atoms in the Raman-
Nath regime [140] with very short light pulses (of typical duration 3 µs). In
this regime, several orders of diffracted atoms are observed. This allows a
good estimate of the axis along which the momentum is imparted by the light
pulses to the atoms. Such a procedure has been used for both the lattice
beams and the Bragg beams separately: The images of the atomic clouds
diffracted by them is reported Fig. 3.6 (a), (b) and (c), respectively. From
that, a relative angle between qB and the lattice has been measured, (see Fig.
3.6 (c)) obtaining α = 9.5(1)◦. In conclusion, the projection of the momentum
transfer along the ŷ-axis indicates hqB,y = 0.96(3)hkL, where kL = 2/λL is
the wavevector of the lattice beams at the wavelength λ = 830 nm. For the
wavevector we obtain qB,y = 7.3(2) µm−1, which is indistinguishable from the
modulus itself within the experimental uncertainty.

Bragg diffraction of a release BEC for different times-of-flight

In a second set of calibration measurements, we use the diffracted atoms of the
3D BEC by the moving lattice created with the Bragg beams. By letting the
atoms fall under gravity after the Bragg pulse for a long enough time of flight
(tTOF = 10 − 30 ms), the diffracted atoms separate from the atoms which
have not undergone the two-photon transition. The distance between the two
clouds is hqB,ytTOF /m in the ŷ − ẑ plane where absorption images are taken,
m being the atomic mass. By fitting the distance between the diffracted and
non-diffracted atomic clouds as a function of tTOF , we measure qB,y = 0.97(4)
kL in good agreement with the previous measurement.

Concerning the configuration with counter-propagating beams, an analo-
gous estimate of the momentum imparted to the atoms gives qB = (16.04 ±
0.15) µm−1.

3.3.2 Experimental procedure

The spectroscopic scheme described above has been used to probe the response
of a correlated superfluid or insulating 1D Bose gases in the linear response
regime, using the procedure depicted in Fig. 3.7 (a). The atomic cloud is
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Figure 3.6: (a), (b), (c) Diffraction of a BEC by the lattice beams x̂ and ŷ and
Bragg beams in Raman-Nath regime. The images in (a) and (b) depict the
atoms in the plane x̂−ŷ, whereas (c) represents the plane ŷ−ẑ. (d) Momentum
imparted by Bragg beams qB (green arrow) compared to the direction of the
wavevectors of the two lattices beam, indicated as x̂ and ŷ.

trapped in the lattice potential with amplitude s⊥, sy by means of the expo-
nential ramp described in Sec. 2.2.3. After a holding time of typically 20 ms
in the lattices, it is excited by shining the two Bragg beams for a time ∆tB = 3
ms. In order to detect the amount of excitation induced by the Bragg beams
in the correlated gaseous systems we follow a procedure similar to that used
in [32] consisting in measuring a quantity related to the increase of energy in
the gas, as we describe below.

Measuring the energy absorbed by the atoms

After the excitation, all the lattice amplitudes are linearly ramped down in
15ms to a low value (s⊥ = sy = 5), where the system is in a superfluid phase
and the different tubes are no more independent, allowing the system to re-
thermalize via atom-atom collisions. After 5 ms both optical and magnetic
traps are simultaneously switched off abruptly and the system is observed via
absorption imaging of the atomic distribution in the ŷ− ẑ plane after a time of
flight (TOF) tTOF = 21 ms. Expanding from a phase coherent state in a 3D
optical lattice (s⊥ = sy = 5), the atomic distribution exhibits an interference
pattern which is the analogue of the diffraction pattern of light from a grating
(see Fig. 3.8 (b) and [141, 142]). From this interference pattern we extract
the root-mean-squared value of the widths σy and σz of the central peak. The
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Figure 3.7: (a) Experimental protocol used to measure ∆σ2 i.e. the increase
of the squared-width of the central peak of the interference pattern after a
Bragg pulse. Pictures (b) and (c) correspond to absorption images taken after
an off-resonance and on-resonance Bragg pulse, respectively.

increases of the quantity σ2 = σ2
y + σ2

z (from now on, it will be defined as
∆σ2) is related to that of the energy of the system. Let us notice that we
found σy and σz to have the same dependence on the detuning ∆ between the
Bragg beams as expected from an efficient rethermalization process in each
spatial direction when the lattices are ramped down. The relation between
∆σ2 and the energy growth is easy to demonstrate for a thermal gas with
classical Maxwell-Boltzmann velocity distribution, where the squared size of
the gas after time-of-flight is directly proportional to the temperature. In our
case, we have verified this relation in practice, as we will describe in the next
section.

3.4 Probe the excitations of the system

3.4.1 How to relate the experimental observable to the energy
absorption

Now, we want to verify the quantitative relation between the quantity mea-
sured in the experiment, denoted ∆σ2, and the energy absorbed by the gas.
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Figure 3.8: (a) Experimental sequence used to measure the increase of tem-
perature ∆T after a Bragg pulse and a thermalization time of 1 s in a 3D
harmonic trap. Pictures (b) and (c) depict absorption images taken after an
off-resonance and on-resonance Bragg pulse, respectively.

For this aim, we directly compare ∆σ2 after a resonant Bragg excitation with
the temperature increase ∆T induced under the same conditions (for iden-
tical Bragg excitation). This comparison has been carried out for an array
of 1D gases in a Mott insulating state, realized using a transverse optical
lattice with amplitude s⊥ = 35 and a longitudinal lattice at sy = 13 (see
chapter 6); excitation in the second band of the lattice has been considered
in this test, by selecting the appropriate relative detuning between the Bragg
beams. The temperature of the system after Bragg excitation is measured
by ramping down adiabatically the optical lattices with an exponential ramp
after the Bragg pulse, letting the system thermalize in the harmonic magnetic
trap for 1 s and then measuring the condensate fraction of the 3D atomic
cloud. The experimental protocol is illustrated in Figure 3.8 (a). Figure 3.8
(b) and (c) report two absorption images taken after off-resonance and on-
resonance Bragg excitation. In the first case the profile of the gas is well
described by an inverted parabola, the signature of an almost-pure conden-
sate in the Thomas-Fermi regime. After on-resonance excitation, a bimodal
density profile is visible, where a gaussian pedestal can be recognized below
the inverted parabola, revealing that the condensed fraction is sensibly de-



90 SPECTROSCOPY VIA INELASTIC LIGHT SCATTERING

0 2 4 6 8 10 12

0

500

1000

1500

2000

D
s

2
(m

m
2
)

DT (nK)

Figure 3.9: Linear behaviour of ∆σ2 as a function of the increase of tempera-
ture ∆T of an array of 1D gases in the Mott insulator regime (s⊥ = 25, sy = 13)
perturbed via Bragg scattering. Data points correspond to different power of
the Bragg beams with a fixed pulse length of 3 ms.

creased. By changing the power in the Bragg beams, ∆σ2 is tuned over the
whole range typically used in experiments. The results are presented in Figure
3.9 where ∆T has been extracted from the decrease of the condensate fraction.
This measurement confirms that ∆σ2 is proportional to the energy absorbed
by the atomic system, i.e., to the number of excitations created.

In addition to what we demonstrated above, it is possible to verify that
the amount of excitation we measure by means of ∆σ2 is ωS(q, ω), definitely
distinguishing it from S(q, ω). As a testing ground, we use an array of gases in
deep 1D conditions (s⊥ = 45). To achieve our purpose, we check the relation
between ∆σ2 and ∆T for two different values of relative detuning δν1 and
δν2 between the Bragg beams, namely for two different frequencies of the
excitation created in the gas. These values have been opportunely chosen so
that one is twice the other (δν1 = 3.2 kHz and δν2 = 6.4 kHz) and so that we
observe the same amount of excitation for each, as shown in Fig. 3.10 (a). As
observed above for a Mott insulating state, we find again a linear dependence
of ∆σ2 on ∆T for both values of detuning (Fig. 3.10 (b)). Moreover, from
comparison of the two slopes, we can extract additional information. If the
amount of excitations were a measurement of S(q, ω), the ratio of the two
slopes (i.e. the ratio of the amount of excitation to the temperature) would
be the inverse of the ratio of the two frequencies, being S(q, ωi)/Ti ∼ 1/ωi.
On the contrary, the slope is observed to be independent of the excitation
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Figure 3.10: (a) Bragg spectrum of an array of 1D gases (s⊥ = 45). (b)
Amount of excitation as a function of increase of temperature induced by the
Bragg excitation at two different frequencies ν1 (red squares) and ν2 (blue
dots), indicated by markers in the spectrum (a).

frequency: This demonstrates that the quantity we measure is proportional to
ωS(q, ω).

We conclude this Section with a final remark about the measurement tech-
nique here illustrated. One may wonder whether the spectra could be obtained
by measuring the condensate fraction instead of ∆σ2. This could be the case
when the amplitude of the response of the 1D gases is large as in the superfluid
regime or in a Mott regime for high-energy bands. In contrast, the amplitude
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of the response of the Mott insulating state within the lowest energy band is
low as the system exhibits its insulating behavior. In this case, the measure-
ment of σ2 is definitely more sensitive than that of the condensate fraction,
allowing the detection of even small excitations.

3.4.2 Amount of excitations A

In the last Section, it was demonstrated that the quantity defined as ∆σ2 is
directly proportional to the energy absorbed by the gas because of the Bragg
excitation. Thus it is a relevant quantity, giving access either to the dynamical
structure factor or to the one-particle spectral function, as described in Sec.
3.2.2. Nevertheless, the widths σx and σy which take part in defining ∆σ2

strongly depend on the parameters of the Bragg pulse (intensity and time-
duration). In addition, we observed a weak dependence of ∆σ2 on the number
of atoms N in the gas, which can fluctuate from shot-to-shot up to 20%,
introducing a source of noise in each spectrum (up to 8%). In fact, the number
of atoms determines the in-trap interactions, which influences the size of the
cloud after time-of-flight, as recalled in Sec. 2.1.1. This is independent of the
Bragg excitation. To remove this noise, a normalization has been performed
as explained in the following.

The noise on ∆σ2 induced by fluctuations of N was corrected in the follow-
ing way. The images were selected, considering only pictures showing atomic
clouds with a constant number of atoms. Then, a calibration of the increase
of σ2 with N was performed by changing the atom number over a wide range
(105 − 106). This scaling was used to subtract the contribution to σ2 coming
from the fluctuations in the atom number for each measurement. To display
the spectra, the width in the absence of Bragg excitation is subtracted in order
to plot the increase ∆σ2.

To compare different spectra taken with slightly different parameters of the
Bragg beams, ∆σ2 was normalized as described above. From linear-response
theory, we know how the energy absorbed by the system depends on the
second power of the strength of the perturbation VB and linearly on its time-
duration ∆t (see 3.23). The next Section will be devoted to demonstrate that
the treatment of the Bragg perturbation in terms of linear-response theory is
justified. In turn, as shown in Sec. 2.2.2, VB is proportional to PB/∆B, PB

being the power of the Bragg beams and ∆B their detuning from the nearest
atomic transition. Thus, ∆σ2 has been scaled by the factor (tBP 2

B/δ2)−1. In
the following we will refer to the re-normalized ∆σ2, called A, as the amount
of excitation transferred to the system. The plot of A as a function of the
detuning δ between the two Bragg beams gives the excitation spectrum. In
Fig. 3.11 we show an example of a spectrum of the inhomogeneous Mott
insulating state (see chapter 5 and [50]).
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Figure 3.11: Bragg spectrum of an inhomogeneous Mott insulating state with
lattice amplitudes s⊥ = 35 and sy = 13. Dashed and dotted vertical lines mark
the resonance energy ∆ph ∼ U of the Mott state and its double (see chapter
5 for detailed discussion). Red arrow indicates the detuning δ at which the
linearity of the response has been tested. It corresponds to the resonance
energy of a particle-hole excitation in the Mott regions.

3.4.3 Linear response

The linearity of the response of the system to the Bragg excitation has been
studied by monitoring how ∆σ2 varies with the parameters of the Bragg ex-
citation on resonance. The frequency of the Bragg excitation was fixed at
ω = 2π∆ph/h (see red arrow on Fig. 3.11), i.e. on the main resonant peak of
the Mott insulating state, which we identify as the frequency of the particle-
hole excitation in the lowest band ∆ph [50], as will be explained in chapter 5.
∆σ2 was measured as a function of the amplitude VB of the Bragg lattice and
the duration ∆tB of the pulse, with the results plotted on Fig. 3.12. In the
range of parameters used to monitor the spectra5, ∆σ2 shows a quadratic de-
pendence on VB and a linear dependence on ∆tB, according to that predicted
by linear-response theory.

The inset of Fig. 3.12 (b) compares the variation of ∆σ2 as a function of
the pulse duration ∆tB for two amplitudes VB, namely VB = 0.5ER (dots) and
VB = 2.0ER (circles) at ω = 2π∆ph/h for sy = 13. For the larger amplitude
VB = 2.0ER the response to the Bragg excitation exhibits a saturation and

5For instance, the spectrum at sy = 13 in Fig. 3.11 has been obtained with VB = 0.5ER

and ∆tB = 6ms.
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Figure 3.12: (a) ∆σ2 as a function of the amplitude VB of the lattice induced by
the Bragg beams which is proportional to the power PB. The measurement
is performed at a fixed energy transfer ω = 2π∆ph/h corresponding to the
resonance of the particle-hole excitation and for a duration of the Bragg pulse
∆tB = 3 ms. Inset: The same measurement on a larger scale of the amplitude
VB showing saturation for VB > ER. (b) ∆σ as a function of the duration of
the Bragg pulse at a given amplitude VB = 0.5ER. As in (a), the measurement
is performed at the energy ν = ∆ph/h of the particle-hole excitation. Inset:
Comparison of the response for two amplitudes VB, namely VB = 0.5ER (dots)
and VB = 2.0ER (circles).

the time scale of the linear regime is shorter. We note that we did not observe
Rabi oscillations as in the case of excitation from the ground-state of a 3D
BEC in a harmonic trap and a Bogoliubov mode [122]. In the latter case the
excited state is decoupled from the ground-state, a situation which might not
be true anymore in the Mott state where strong correlations are present. ∆σ2

also saturates for large amplitudes VB as depicted in the inset of Fig. 3.12 (a).
In addition, it is emphasized that the amplitude VB of the moving lattice

created by the Bragg beams for such parameters is much smaller than the
amplitude of the longitudinal lattice sy used to realize the Mott insulating
phase. All experiments are performed in a regime where VB < 0.05Vy. This
regime is different from the one where the Bragg spectrum of a Mott insulator
has been obtained in previous experiments [32, 35] using the lattice modulation
technique. In the latter case, the amplitude of the lattice has been typically
modulated by∼ 30%, because measurements are performed at zero momentum
transfer, where the response of the Mott insulator is predicted to be weak
[130]. In contrast, in the present work the parameters U and Jy describing
the system in the Bose-Hubbard model (see Sec. 1.4.1) are almost unaltered
by the additional light potential created by the Bragg beams.
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3.5 Conclusions

The discussion presented in this chapter has shown that the probe technique
used in the work of this thesis, namely Bragg scattering, can be used as a
powerful and versatile spectroscopic method; it allows the characterization of
condensed-matter physics systems as well as strongly-correlated phases real-
ized with ultracold gases. Not only does it allow independent tuning of the
energy and momentum of the excitation induced in the system, offering the
possibility of completely scanning the whole excitation spectrum of the sys-
tem, but also it weakly perturbs the state of the system under investigation.
With appropriate choice of parameters, the amount of excitation induced in
the system varies linearly with the parameters of the probe: This has been
proven to apply in our experiment. This is a crucial point, since for this con-
dition the process is well described by linear-response theory. Thus, the Bragg
spectra we measure are directly related to the correlation functions of the sys-
tem, the knowledge of which highlights the physics governing the system. In
particular, we demonstrated that the spectra measured for a correlated su-
perfluid and a Mott insulator in the lowest energy band are proportional to
the dynamical structure factor S(q, ω) [143], whereas the excitation-spectra
of a Mott insulator state in the high-energy bands give information on the
one-particle spectral function A(q, ω).

Now, in the next chapters (4, 5, 6) we will pursue our aim to characterize
such strongly-correlated quantum phases realized by one-dimensional atomic
micro-gases, exploiting Bragg spectroscopy.
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Chapter 4

Thermal phase-fluctuations in
one-dimension

The knowledge of quantum and thermal fluctuations, strongly enhanced by
reduced dimensionality, gives access to key quantities characterizing the sys-
tem [56]. In one dimension, their presence can drastically alter the properties
of the systems. Remarkable examples of that are superconducting disordered
nanowires, where quantum and thermal fluctuations can lead to the formation
of phase-slip centers [144, 145], which strongly affect the resistivity of such
materials.

In this chapter, we report on the investigation of the coherence properties
of an array of one-dimensional Bose gases with short-scale phase fluctuations.
The momentum distribution is measured using Bragg spectroscopy and an
effective coherence-length of the whole ensemble is defined. In addition, we
propose and demonstrate that time-of-flight absorption imaging can be used
as a simple probe to directly measure the coherence-length of 1D gases in the
regime where phase-fluctuations are strong. This method is suitable for future
studies such as for investigating the effect of disorder on the phase coherence.
We also develop a simulation of the response of our inhomogeneous array,
as a sum of the contributions of all the 1D gases, due to interactions and
fluctuations. Finally, we extract an estimate of the temperature of the system.

4.1 Introduction

In the context of cold atoms, both phase and density fluctuations of 1D sys-
tems have been studied during the last few years [103, 106, 108, 107]. In
particular, phase coherence has been investigated in elongated 3D quasicon-
densates with different techniques [103, 106, 107]. In the experiment of S.
Hofferberth et al. [103] phase dynamics has been followed by monitoring in-
terference between two different 1D gases. S. Dettmer et al. [106] observed
density-modulations of the atomic cloud released from the trap, which results
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Figure 4.1: (a) Schematic view of the two-dimensional array of one-
dimensional gases. (b) Density profile along the axial direction. (c) Example
of phase profile along the same axial direction showing fluctuations on a length
scale much smaller than the axial size.

from phase-modulation of the trapped sample. Such work points out the sta-
tistical character of phase-fluctuations. In the experiment by S. Richard et
al. [107], phase coherence was also investigated by means of the response to
light scattering, by measuring coherence lengths of the order of 10 µm. Never-
theless, in all of these realizations the transverse trapping frequencies hardly
exceed a few kHz and are typically of the order of the chemical potential. This
situation is referred to as the quasi-1D regime.

Reaching the regime of strongly interacting 1D systems would further am-
plify the presence of quantum and thermal fluctuations. This is achieved
when atoms are loaded in a 2D optical lattice allowing much stronger trans-
verse confinements [33, 34, 104]. Following this approach, we realize an array
of strongly phase-fluctuating 1D Bose gases, represented in Fig. 4.1 (a). Each
1D gas in the array is a quasicondensate, where density fluctuations are sup-
pressed (Fig. 4.1 (b)), whereas longitudinal phase fluctuations are present
and enhanced due to the anisotropy of our system (Fig. 4.1 (c)). Yet, making
use of optical lattices one obtains a large number of 1D tubes. In this case,
interferometry-based techniques like in [103, 106] cannot be implemented to
study the phase coherence properties since the average over different gases
washes out the response signal and it is particularly important to find alter-
native methods to analyze the axial coherence properties.

Our study exploits first Bragg spectroscopy with large momentum-transfer
to measure the momentum distribution and directly evaluate the ‘radius’ of
the phase fluctuations Lφ, that is, the mean distance along which the phase of
the system varies by 2π [107]. In our case, thermal-induced phase-fluctuations
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dominate and drastically reduce the coherence length (2Lφ) of the system
compared to a 3D Bose-Einstein condensate [62, 54]. In addition, we verify
that direct mapping of the momentum distribution onto coordinate space via
absorption imaging after TOF is an effective probe of the phase fluctuations.
We demonstrate that in our regime of parameters these two techniques give
the same results.

4.1.1 The experiment

The system under study consists of an array of 1D gases of 87Rb. The gases
are trapped in a slow-varying magnetic trap and forced in the 1D geometry
by a pair of orthogonal red-detuned optical lattices aligned along the x and
z directions. We study different configurations starting from a 3D gas and
dividing it into 1D micro-tubes that are more and more squeezed. This is
obtained by tuning the amplitude s⊥ of the 2D optical lattice.

Increasing the amplitude of the 2D lattice from s⊥ = 5 to s⊥ = 56, the
frequency of on-site transverse confinement of each 1D gas changes from ω⊥ ∼
2π × 15 kHz to ω⊥ ∼ 2π × 50 kHz. Also, the axial confinement given by the
Gaussian profile of the beams producing the lattices becomes stronger as s⊥
grows, being ωy ∼ 2π × 19 Hz for s⊥ = 5 and ωy ∼ 2π × 57 Hz for s⊥ = 56.
Globally, the stronger the optical confinement, the more anisotropic is the trap
experienced by each 1D gas: The aspect ratio λ = ω⊥/ωy ranges from 790 to
880 for 5 < s⊥ < 56. As discussed in Sec. 2.3, for all the amplitudes of the
transverse lattice we have explored (s⊥ ≥ 5) each gas has a fully 1D character,
i.e. both the chemical potential and the thermal energy are about one order
of magnitude smaller than the frequency of the transverse harmonic oscillator
(typically, in the most unfavorable case of s⊥ = 5 the thermal population of
the first transverse excited-state amounts to about 0.1% of the ground-state).

Exploiting the model we developed in Sec. 2.3, it is possible to calculate
the main features of the array, which change as the transverse confinement is
modified. For s⊥ = 5 the array consists of ∼ 800 micro-tubes, with typical
total size 0.08µm ×50µm and density 6µm−1. For the most confining lattice
that we realize, s⊥ = 56, we produce ∼ 1.8×103 1D gases, with total size ∼
0.05 µm × 30 µm and density ∼ 5 µm−1. For the transverse size of each gas,
we have to consider the amplitude of the transverse zero point oscillations in
the lattice sites, whereas along the axial direction we have taken the Thomas-
Fermi radius, having demonstrated in Sec. 2.3.1 the longitudinal profile to be
parabolic. Besides, due to the inhomogeneity of the array, we have considered
an average value of the 1D density of the gases (weighted with the number of
atoms of each tube). We note that the modification of the transverse confine-
ment hardly affects such a 1D density.

As mentioned in Sec. 1.3.1, a crucial quantity to describe the regime of a
1D gas is the parameter γ = mg̃/~2ρ0. In the system we realize, γ ∼ 0.2−0.8,
i.e. the universal parameter K is larger than 3, according to Eq. (1.17).
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Figure 4.2: Schematic phase diagram for a 1D gas trapped with α ' 6.6.
Adapted from [54], by rescaling the vertical axis. The red vertical strip repre-
sents our system, for typical temperatures achieved (see text).

Therefore interparticle correlations are stronger than in the mean-field regime
(as in other experiments probing a similar range of parameters, see for example
[104]).

Another relevant quantity for describing the system is the parameter α =
m g̃ ay/~2 introduced in Sec.1.3.2. Through the dependence on the axial
harmonic-oscillator length ay and on the 1D coupling constant g̃ (see Eq.
(2.47)), α only depends on the axial trapping frequency and on the lattice
depth, apart from the characteristics of the atomic species itself (mass and 3D
scattering length), whereas it is independent from the 1D density. Thus, α
assumes the same value over all of the array, no matter if inhomogeneous. In
this experiment, α = 3.6− 7.6 for s⊥ = 5− 56.

For a fixed lattice depth, a knowledge of α allows us to locate the state of
the system in a phase diagram in the N−T plane [54], N being the number of
atoms in the single 1D gas and T its temperature. In Fig. 4.2 we report such
a phase diagram for s⊥ = 35, corresponding to α = 6.6: It has been adapted
from [54], simply by rescaling the number of atoms of the 1D gas by a factor
0.66. For such a value of the lattice depth, we expect the temperature to be
∼ 100 nK (see Sec.4.5) and the axial frequency ωy ∼ 45 Hz, which results
in kBT/(~ωy) ∼ 40. Because of the inhomogeneity of the array, an extended
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range of N is realized, represented by a red band in the diagram1, the upper
border of which represents the 1D gas in the central lattice-site, having the
largest number of atoms. As depicted in the figure, the inner gases are in a
quasicondensate phase. Moving from the center of the trap, the atom number
decreases: Below the critical value N∗ ≡ α2 ∼ 40, realized at a sufficiently
large distance from the center of the trap, the gases should enter the Tonks-
Girardeau regime (light-blue region below the dashed line in the figure). In the
outermost region of the lattice we expect the 1D-density to be so low that the
gas lies in the classical regime, where no phase coherence exists. These low-
density gases are numerous, as the number of tubes scales with the squared
distance from the center of the trap. Yet, the response of each gas contributes
to the global signal proportionally to its atom number, as we will show in Sec.
4.4. Therefore, we expect the response of the inner gases to dominate, even
though they are less numerous: This is indicated by colour saturation of the
red rectangle in the figure.

4.2 Investigate coherence properties via Bragg scat-
tering

The effect of the phase-fluctuations is first investigated via Bragg spectroscopy.
In this experiment, two series of measurements have been performed, using the
two different geometrical configurations of the Bragg beams we described in
Sec. 3.3, imparting a momentum ~qB,1 = ~ × 16.0(2) µm−1 and ~qB,2 =
~× 7.3(2) µm−1 respectively. In both cases, the geometry of the Bragg beams
is chosen so that ~qB is aligned along the axis of the 1D tubes). For both the
Bragg configurations that we use, we assume to be in the large momentum-
transfer regime (Doppler regime) [139], where the reference momentum is qξ =
ξ−1, ξ = ~/

√
mµ̃ being the healing length of the system. The typical chemical

potential µ̃/h of the system ranges from 1 kHz to 3 kHz, so that for the case
of counter-propagating beams qB/qξ ranges from 3.2 to 5.5, whereas for the
small-angle configuration from 1.4 to 2.5.

The procedure described in Sec. 3.3.2 allows us to measure the energy
transferred to the system, which is related to the dynamical structure factor of
the system through χ′′F (ω) = πS(ω, q)(1−e−~ω/(kBT )) as discussed in Sec. 3.2.
In the Doppler regime, S(q, ω) reduces directly to the momentum distribution
P(~q) [121, 107], which can be written as the Fourier transform of the first-
order correlation function C(1)(y):

P(~q) ≡ 1
2π~

∫
dy C(1)(y) e−iqy. (4.1)

1The width of this band describes the uncertainty of the estimated temperature (∼ 90
nK) at s = 35. For a discussion about temperature, see Sec. 4.5.
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Figure 4.3: Excitation spectra of arrays of strongly correlated 1D gases trapped
in optical lattices with different amplitudes s⊥. The spectra are obtained with
momentum transfer ~qB,2 = ~× 7.3(2) µm−1. Blue curves are the results of a
fitting procedure of the function ν×f(ν), where f(ν) is a Lorentzian function.
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Figure 4.4: Central frequency of the Bragg resonances as a function of the am-
plitude s⊥ of the transverse optical lattices, for a fixed value of the momentum
of the Bragg excitation (qB,2 = 7.3(2) µm−1)).

The spectra resulting from these measurements for a transferred momentum
~qB,2 are reported in Fig. 4.3.

Central frequency of the resonances In the Doppler regime, assuming
a mean-field picture to treat the interactions2, the spectrum assumes a single-
particle-like form with an additional mean-field shift

E(q) ' ~2q2
B

2m
+ µ̃, (4.2)

µ̃ being the chemical potential of a 1D gas. Thus, energy and momentum
conservation for the two-photon Bragg transition implies that the energy hν
transferred to the system to be

hν = ~ωB + µ̃ +
~2qiqB

m
(4.3)

~qi being the momentum of the initial state and ~ωB the energy of the Bragg
excitation. Starting from a gas at rest (qi = 0), the central frequency νc

2For the values of γ we realize in the experiment, the resonant frequencies of the Lieb-
Liniger modes are expected to be indistinguishable from the mean-field solution within our
experimental resolution [146].
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of the energy spectrum is expected to be given simply by νc = ωB/(2π) +
µ̃/h. Actually, the inhomogeneous density of each trapped 1D quasicondensate
along its axial direction modifies this mean-field shift to 4µ̃/(7h)[121]. As
discussed in Sec. 2.3.2, the chemical potential monotonically increases as a
function of the amplitude of the transverse confinement s⊥, and thus we expect
the mean-field shift to grow consequently.

Fig. 4.4 reports the central frequency of the observed resonances as a func-
tion of the amplitude s⊥ of the lattices, at fixed wavevector of the excitation
qB,2. The gray dashed line represents the single-particle energy ~ωB, whose
uncertainty covers all the region between the gray solid lines. As expected, the
resonance centers drift toward higher frequencies as the lattice amplitude in-
creases, due to the enhanced interactions, qualitatively confirming the picture
we described above.

Width of the resonances From Eq. (4.3), the spectral half-width at half-
maximum (HWHM) of the Bragg resonances is related to the initial momen-
tum spread ~∆qi through

∆νHWHM =
qB

2πm
~∆qi, (4.4)

which increases linearly with the wave-vector qB of the induced excitation. To
test the accuracy of the approximation of being in the Doppler regime, we
also calculate the HWHM of the momentum distribution for a single 1D gas
from the spectral width using the Bogoliubov dispersion relation. In this case,
from the energy and momentum conservation, we derive a more complicated
relation between the energy and the momentum of the initial state3. We
calculate the response in energy which derives from trial distributions of the
initial momentum, and we extract ∆νHWHM from a fit. Both for a Gaussian
and a Lorentzian momentum distribution, with ∆qi amounting to a few µm−1,
the result differs by less than 10% from the HWHM of the single-particle
response. In the experiment, the ratio of the HWHMs of the response of
identical arrays of 1D gases to the two different excitations qB,1 and qB,2 (for
instance, at s⊥ = 45 the ratio is (2.5±0.4)), is consistent with the ratio of the
two wave-vectors qB,1/qB,2 = (2.16± 0.06) as expected (a linear fitting of the
experimental data in Fig. 4.5 (c) allows a mean ratio ∆ν1/∆ν2 = (2.7± 0.8))
to be defined.

4.2.1 Momentum distribution dominated by phase-fluctuations

In 1D systems, correlations at finite temperature decay exponentially with
distance, thus much faster than the algebraic decay due to interactions at

3This relation reads hν =
√

(~2(qi + qB)2/(2m))2 + 2µ̃(~2(qi + qB)2/(2m))

−
√

(~2q2
i /(2m))2 + 2µ̃(~2q2

i /(2m)).
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T = 0. When performing Bragg spectroscopy at large momentum transfer in
our regime of parameters for the 1D Bose gases (in particular γ ∼ 0.2 − 0.8
and typically T ∼ 100 nK), the dominant contribution to the response of the
system comes from the thermal population of excited modes [147].

Since phase fluctuations dominate, the general form of the first-order cor-
relation function is the one we reported in Eq. (1.28). Following the approach
in [65], the local density approximation can be used to deduce the global first-
order correlation function C(1) of a trapped 1D gas, from Eq. (1.26) and Eq.
(1.28):

C(1)(y, T ) ≈
∫

dy
√

ρ(y)ρ(y′) exp
(
−1

2
Tρ(0)|y − y′|

Tφρ(y)L

)
. (4.5)

Here, L is the total size of the one-dimensional gas along its axis, T the
actual temperature and Tφ a characteristic temperature above which the quasi-
condensate phase occurs, as described in Sec. 1.3.2, and ρ(y) the 1D density.

In this regime dominated by phase fluctuations, the momentum distribu-
tion defined in Eq. (4.1) reads

P(~q, T ) ≈ ρ(0)
2π~qφ

∫
dȳ

(ρ(ȳ)/ρ(0))2

(ρ(ȳ)/ρ(0))2 (q/qφ)2 + 1/4
, (4.6)

where ȳ = (y + y′)/2, and we approximated
√

ρ(y)ρ(y′) ≈ ρ(ȳ). The mo-
mentum distribution is self-similar in qy/qφ, and is well approximated by a
normalized Lorentzian. Its half width at half maximum ~∆qy depends only
on the coherence length of the gas, being [148]

∆q =
0.635
Lφ

, (4.7)

where Lφ is the half coherence length, i.e, the radius of phase fluctuations:

Lφ =
~2ρ

mkBT
. (4.8)

Thus, for an axially trapped 1D gas dominated by phase fluctuations, one finds
again the Lorentzian momentum distribution of a uniform 1D gas [62, 54], with
only a correction to the factor 0.635 in the HWHM, which takes into account
the parabolic profile of the system along the axial direction as well as the
1D character (for a 3D Thomas-Fermi profile one obtains a factor 0.67 [65]).
Therefore, in the following, we will focus on the width of the energy spectra
observed in the experiment, which carry information on the coherence of the
system.

4.2.2 Effective coherence length

In our case the description of the problem is complicated by the presence
of an inhomogeneous array made up of gases with different densities (thus,
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Figure 4.5: Half width at half maximum of the Bragg resonances as a function
of the amplitude s⊥ of the transverse optical lattices, for two different value of
the momentum of the Bragg excitation (blue squares (qB,1 = 16.0(2) µm−1)
and black dots (qB,2 = 7.3(2) µm−1)).

different characteristic Lφ). In principle, one should take into account the
sum of the response of each micro-tube, which is affected by interactions and
phase fluctuations. Both the mean-field shift of the central frequency and
the thermal broadening of the width depend on the 1D density, which is not
uniform over the array.

Nevertheless, we observe that the global response of the system to the
Bragg excitations consists of a single broad resonance, as shown by the spectra
in Fig. 4.3. In the range of parameters we realize, the shape of the resonance
is well described by ν × f(ν) ' ωS(q, ω) where f(ν) is a Lorentzian function.
This means that, in our case, the thermal broadening of the response of each
gas masks the relative shifts of the resonant frequencies of the tubes. This
has been also verified a posteriori by means of numerical simulations we will
present in Sec. 4.4. On the basis of these arguments, we analyze the Bragg
spectra as being the response of a single 1D gas and we define accordingly an
effective coherence-length Lφ of the whole system, using the previous relations
valid in the Doppler regime. This would be the coherence length of an array
of identical 1D gases with the same effective density, whose response would
reproduce that of the inhomogeneous array.

From the fittings of the Bragg spectra, we extract the HWHM ∆ν. This
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Figure 4.6: Lφ of an array of 1D gases, reported as a function of the transverse
confinement which squeezes the gas in 1D micro-tubes. Blue squared and black
dots denote the data corresponding to two different values of the momentum of
the excitation ((qB,1 = 16.0(2) µm−1) and (qB,2 = 7.3(2) µm−1), respectively).

quantity is reported in Fig. 4.5 as a function of the amplitude s⊥ of the
optical lattices and for two different wave-vectors of the excitation qB,1, qB,2

(blue squares and black dots). The total number of atoms is kept almost
constant in both series of data. From the spectral half-width of the Bragg
spectra, we extract the half-length Lφ. As shown in Fig. 4.6, Lφ drops off by
a factor 5 as s⊥ increases from 5 to 56. We note that for higher s⊥ values
the coherence length becomes comparable to the inter-particle distance. In
addition, the analysis of the Bragg spectra for the two momentum transfer
qB,1 and qB,2 gives identical Lφ as expected in the Doppler regime. From
Eq. (4.8), Lφ depends both on the 1D density ρ and on the temperature T .
The optical confinement makes the aspect ratio of the 1D gases grow and their
density decrease. However, as mentioned before, on the basis of our theoretical
model, we estimate that the relative variation of the 1D-density over the whole
range of s⊥ is about 10% and does not account for the rapid reduction of the
coherence length. This suggests that a major role in determining Lφ is played
by finite temperature, which should increase almost five times.

Let us try to gain a qualitative insight into the possible contribution of
temperature to the reduction of coherence length. A fundamental point is that
the temperature is expected to be proportional to the spacing of the energy
levels of the longitudinal trap [64]. As a matter of fact, in our experiment
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kBT À ~ωy, ωy being a few tens of Hz. Therefore, one can write

T ∼
∑

j

njεj (4.9)

where nj is the equilibrium occupation number for the longitudinal excitation
with the integer index j, and εj its energy, which can be expressed as a solution
of the Bogoliubov-de Gennes equations for the low-energy axial modes [64]:

εj = ~ωy

√
j(j + 3)

4
. (4.10)

Since the loading in the transverse lattices is performed by passing through
intermediate amplitudes via an adiabatic transformation, we can compare the
different lattice configurations. For instance, from s⊥ = 20 to s⊥ = 56 the axial
energy-spacing, and thus the temperature, increases by a factor ∼ 1.7. The
observed reduction of the coherence length, in this range of s⊥, is compatible
with that, being ∼ 2.5.

However, extracting an absolute estimate of temperature from the mea-
surement of Lφ is not straightforward as it requires to take into account the
inhomogeneity of ρ over all the array. This issue will be discussed in Sec. 4.5.
Before tackling this topic, we would like to propose and discuss an alternative
way to measure the coherence length of an array of 1D gases, which works
very well for systems with short-scale fluctuations.

4.3 Direct imaging of momentum distribution

To obtain further insight on the coherence properties of the system, informa-
tion has also been extracted by directly mapping the momentum distribution
into a space distribution, the latter being currently measured via absorption
imaging of the gas after releasing from the trap (below referred to as TOF
measurements).

In practice, we use the procedure described in Sec. 2.4.1 for measuring
the momentum distribution. We start from a pure 3D condensate in a weak
magnetic trap. First, atoms are loaded into the 2D lattice, as described above,
for the Bragg experiment, by increasing the light intensity with an exponential
ramp (duration 140 ms, time constant 30 ms) in order to produce the 1D gases
in their ground-state. Atoms are left in the such a combined trap for a given
holding-time (∆t = 7 ms), after which the optical and magnetic traps are
turned off simultaneously, so that atoms fall under the effect of gravity. After
a time-of-flight of about 20 ms, an absorption image is taken. The density
distribution of the cloud is shown in Fig. 4.7 for four different amplitudes of
the 2D transverse lattice (s⊥ = 10, 20, 30, 45).

The expansion of the atomic gas from the trap is governed by two kinds of
kinetic-energy: one which interactions convert to, and the other produced by
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s =10y s =20y s =30y s =45y

Figure 4.7: Example of absorption pictures after a time-of-flight for different
values of the amplitude s⊥ of the 2D transverse lattice.

in-trap phase-fluctuations. During the time-of-flight, the axial and transverse
size of each 1D quasicondensate of the array follows the temporal evolution
of a BEC released from an anisotropic trap, described by Eq. (2.7) and (2.8),
respectively (Sec.2.1.1). Essentially, due to the strong anisotropy of the trap,
the interaction-induced expansion affects the radial direction mainly, whereas
the longitudinal size of the cloud is not significantly altered compared to its
in-trap value Rint

TOF [99]. At nonzero temperature, thermally-induced local
phase-gradients produce a velocity field given by vφ = (~/m)∇φ [38], where φ

varies significantly on a length-scale Lφ. The increase Rφ
TOF of the longitudinal

size during TOF due to initial phase fluctuations contributes significantly if

Rφ
TOF /Rint

TOF > 1. (4.11)

Since pφ ∼ ~/Lφ, the axial size of the cloud after an evolution time texp

increases by Rφ = pφtexp/m ∼ ~texp/(mLφ). Therefore the condition in Eq.
(4.11) becomes

Rφ
TOF

Rint
TOF

∼ ~tTOF

mLφRint
TOF

. (4.12)

In other experiments, the product LφRint
TOF amounts typically to 10 µm ×

260 µm for 3D quasi-condensates [107] and ∼1 µm × 170 µm in the case of
atom-chip experiments [103]. In both cases, Rφ

TOF is negligible and the lon-
gitudinal length after TOF can not be related to in-trap phase-fluctuations.
For our 1D lattice gases, this quantity is typically reduced to ∼ 1 µm× 27
µm for s⊥ = 5 and it decreases as the amplitude of the optical confinement
increases (∼ 0.2 µm × 22 µm for s⊥ = 56). This estimate refers to a rep-
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Figure 4.8: (a) and (b): Profiles of the atomic cloud (red dots) at s⊥ = 5 and
s⊥ = 45 compared with a fitted Gaussian and Lorentzian function, respectively
(blue curves). Such profiles are obtained from the images in (c) and (d), by
integrating the density along the vertical axis of the absorption pictures, in
the square defined by the green dashed line.

resentative tube with a number of atoms equal to the average value over all
of the array. Thus, one expects that for low values of s⊥ the in-trap size
still dominates and the density profile has a parabolic shape as expected in
the Thomas-Fermi regime, whereas for high values of s⊥ phase-fluctuations
enlarge the distribution and the profile assumes a Lorentzian shape. Let us
also notice that, over the whole range of s⊥ explored in the experiment, we
can completely neglect the momentum-spread associated with the finite-size
in this direction4.

To confirm this behaviour we have analyzed the TOF profiles both with
a Gaussian (mimicking a parabola smoothed by the finite resolution of the
imaging system) and a Lorentzian shape as a function of s⊥. In Fig. 4.9

4The axial size in trap being ∼ 30 µm, the associated momentum spread is ∆p ∼ ~×
0.03 µm−1, which corresponds to ∆x ∼ 0.5 µm after time-of-flight, well below our imaging
resolution.
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Figure 4.9: Mean-square value of residuals of a Lorentzian (hollow dots) and
Gaussian function (solid dots) fitted to density profile measured after TOF.

we plot the standard deviation of the residuals for both fitting functions. As
anticipated from the simple formula in Eq. (4.12), Fig. 4.9 points out the
cross-over through the two regimes (s⊥ ∼ 10−15). For s⊥ < 10 the resonance
profile is approximated by a Gaussian function better than a Lorentzian. In-
stead, for s⊥ > 20 initial trapped phase fluctuations are responsible for the
Lorentzian shape of the TOF momentum distribution.

To quantitatively compare the results of Bragg spectroscopy and TOF
measurements, we map both the energy spectra and density profile after TOF
into wave-vector space of the gas in the trap. In the first case, we use the
dispersion relation for a free-particle obtaining q = 4π2mν/(hqB) − qB/2. In
the latter case, the calibration of the pixel size in momentum-space is obtained
by measuring the distance between two interference peaks from atoms released
from the lattices at weak amplitude. As shown by Fig. 4.10 (a), for an array of
strongly-correlated 1D gases (s⊥ = 50) the momentum distributions measured
via Bragg spectroscopy and TOF measurements show an excellent agreement.
From TOF measurement we extract the coherence length as well. Accordingly,
from what we observe via Bragg spectroscopy, the coherence length is observed
to decrease as the optical confinement becomes stronger, as reported in Fig.
4.10 (b). In the inset of the figure, we compare Lφ measured in the two ways.
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Figure 4.10: (a) Momentum distribution of a array of 1D gases in a strongly
confining optical lattice (s⊥ = 50) measured through Bragg spectroscopy
(black dots) and direct mapping in the TOF density profile (red curve). (b)
Half coherence length Lφ extracted from the TOF measurements is shown as
a function of s⊥ on a linear scale. The gray area points out the region of
parameters where TOF measurements can not be used to extract Lφ. Inset:
Comparison between Lφ from Bragg measurements (black dots) and direct
mapping (red dots).

The gray area points out the region of parameters where the agreement fails,
that is where the TOF profiles are not dominated by the velocity field of
phase-fluctuations (see Eq. (4.12))
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4.4 Simulating the response of the array

We now want to simulate the response of the array of 1D tubes to the Bragg
excitation. This will allow us to verify a posteriori the assumptions we made
throughout the discussion of the Bragg measurements.

Single-tube response.

Let us first discuss how to simulate the contribution of a single tube. From
the considerations presented in Sec. 4.1.1 and 4.2, we simulate the response
of a single 1D gas to the Bragg excitation with the following two main effects:
interactions, playing a role in shifting the resonance of the excitation with
respect to the single-particle energy [121] and finite temperature, inducing
the population of phase fluctuating modes. As mentioned, the latter is the
dominant effect contributing to the width of the Bragg spectra, in the range
of γ (∼ 0.2−0.8) and for the typical temperature (T ∼ 100 nK) in our system.
This leads us to write the response of a single 1D gas (the position of which
in the array is indexed by (i, j)) to the Bragg excitation as

Si,j(q, ω) = Ai,j
1(

ω −
(
~q2

2m + ∆i,j

))2
+ σ2

i,j

, (4.13)

that is a Lorentzian function, with center shifted from zero, due to interactions,
by the quantity

∆i,j =
δi,jµi,j

~
=

δi,j g̃ ρi,j(y = 0)
~

, (4.14)

and HWHM, determined by phase fluctuations, given by

σi,j = 0.635
~qB

mLφ;i,j
∝ T

ρi,j(0)
, (4.15)

In these expressions density, chemical potential and coherence length have the
index of the lattice site.

The two physical effects we have taken into account for evaluating the
spectrum of a 1D Bose gas depend on the atom number. The latter is the
only difference from one 1D gas to another in the array of tubes created by
the 2D optical lattice. We have therefore decided to write scaling laws for ∆i,j

and σi,j with the atom number in a single tube Ni,j . In the interaction-induced
shift of the resonant frequency ∆i,j , the coefficient δi,j depends on whether the
Bragg excitation probes the phononic or the single particle regime, whereby
it depends on the product qBξi,j , with ξi,j the healing length. In the Doppler
regime ∆i,j is linear in the chemical potential (see Eq. (4.2)), with δi,j = 4/7.

Since the 1D gas has to a good approximation a parabolic density profile
along its axial direction (see Sec. 2.3), we use the definition for the 1D density
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the expression in Eq. (2.56), and obtain

δi,j = αN
2/3
i,j (4.16)

σi,j = βN
−2/3
i,j (4.17)

The parameters α and β are numerical values identical for each 1D gas5.

Weight of the single-tube contribution in the global response of the
array.

Now, we want to determine how to weight the contribution of each tube to
the global response of the array. Then, we have to characterize the amplitude
Ai,j of S(q, ω) in Eq. (4.13). To this aim, we use the normalization condition
of the dynamical structure factor

∫
dωωSi,j(q, ω) = ηNi,j , (4.18)

which derive from sum rules [139]. This integral is not directly tractable
since it diverges when S(q, ω) has a Lorentzian shape. Nevertheless, the
momentum of the order r of S(q, ω) can be calculated for r < 1, obtain-
ing

∫
dω ωr S(q, ω) ∝ Ai,jσ

r−1
i,j . Taking the limit r → 1 one finds that∫

dω ω S(q, ω) is independent from σi,j and therefore Ai,j ∝ Ni,j . Finally,
we can write

Si,j(q, ω) =
η Ni,j

(ω − ~2q2/(2m)δi,jN
2/3
i,j ) + β2N

−4/3
i,j

(4.19)

In the experiment we measure the energy absorbed by the system, which
is proportional to ω(S(q, ω) − S(−q,−ω))(1 − e−βω)∆t. Therefore, knowing
the atom distribution from the model we developed in Sec. 2.3, the response
of the array of 1D gases at finite temperature can be simulated as

A =
∑

i,j

ω(1− e−βω)S(q, ω) (4.20)

where for S(q, ω) we use the expression in Eq. (4.19), and where we assume
that the Bragg pulse does not couple the tubes with each other. The latter
assumption is reasonable since the typical energy of the excited atoms is several
times smaller than the transverse trapping frequency of the 1D gas.

5α = 64(ω2
ym)1/3/(22/37~) and β = 0.635× 22/3kBTqB g̃/(16~m1/3).
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Results.

Simulating the response of the array allows us to verify if it can be effectively
described in terms of a single resonance, as we assumed in Sec. 4.2.2, defining
an effective coherence length of the whole system. We consider for the moment
the dynamical structure factor S(q, ω) instead of ωS(q, ω). Figure 4.11 (a) and
(b) show the resulting signal for an ensemble of N = 1.2×105 atoms trapped n
a 2D lattice with depth s⊥ = 35 at two different trial temperatures T = 3 nK
and T = 100 nK. For low temperature (T < 20 nK), the simulated response
of the array show an asymmetric shape with an edge at low frequencies, as in
Fig. 4.11 (a). The upper frequency corresponds to the resonance of the central
gas, which is affected by the largest mean-field shift. The asymmetry occurs
because the mean-field shift of the single-gas resonances (up to 3 KHz) is
larger than their temperature-dominated width (∼ 0.5 kHz for the tube with
the mean number of atoms). With increasing temperature the thermally-
induced broadening overcomes the mean-field shifts, masking the structure of
the signal originating from the presence of an ensemble of gases with different
numbers of atoms. Therefore, the response of the array assumes a symmetric
shape, well described by a Lorentzian function (see Fig. 4.11 (b)). We can
evaluate the temperature threshold above which the signal becomes a single
broad resonance by imposing that the Lorentzian width of the response of the
‘mean gas’ is larger than its mean-field shift:

T ∗ =
4
7

g̃ρ2
0

0.635 qBkB
(4.21)

which strongly depends on lattice amplitude s⊥ via the coupling constant g̃,
and depends also on the momentum imparted by the Bragg excitation. For an
array of 1.2× 105 atoms trapped in a 2D lattice with amplitude s⊥ = 25, we
find T ∗ ∼ 32 nK for qB = 16 µm−1 (counterpropagating Bragg beams), and
T ∗ ∼ 72 nK for qB = 7.3 µm−1 (small angle configuration). However, notice
that, when considering the quantity measured in the experiment, ωS(q, ω),
the low-frequency tail at low temperature is masked.

Our interest has been focused on the possibility of defining a representative
gas, the response of which would reproduce the width of the response of the
whole inhomogeneous array. From Eq. (2.56) and (4.8), we can establish a
relation between the atom number of a 1D gas and the HWHM of its response
to an external excitation. Supposing that this response equals the response of
the array ∆νmeas, we define the effective atom number

Neff =
(

4as ζ

~∆νmeas

)3/2 a2
y

3asa⊥
, (4.22)

where ζ = 0.635qB kBT/(2π). Notice that Neff does not depend on temper-
ature, since both ζ and ∆νmeas are proportional to the temperature. From
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(a)(a) (b)

Figure 4.11: S(q, ω) resulting from the simulation of the response of the array
(black curve) compared with the response of a single 1D gas with an atom
number averaged over the array (blue curve) and that of the gas in the central
lattice site (red curve) (a) for T = 3 nK, and (b) T = 100 nK. The number of
atoms in the whole gas is N = 1.2× 105, and the amplitude of the 2D lattice
is s⊥ = 35.

the numerical simulation, we calculate Neff for several trial values of the lat-
tice amplitudes, total number of atoms of the cloud and temperature, and we
found that the average value of the atom number of the gases, weighted with
the atom number itself, is a good estimate of Neff .

4.5 Measure Temperature

Since Lφ depends both on temperature and density, if one could find a good
estimate of the density, one could have access to the temperature of the system.
This would become a primary thermometer, i.e., a method connecting the
measured quantity to temperature from first principles. For weakly-interacting
ultracold gases, TOF measurements are an example of a primary thermometer
[149], but this method does not normally give information on temperature for
a lattice gas.

With this prospect, an important issue consists in establishing if the sys-
tem is at thermal equilibrium, especially for s⊥ ranging from 20 to 56, where
transverse tunneling is completely suppressed on the timescale of the exper-
iment and thermalization can occur only through the dynamics in the axial
direction. As a general point, trapped 1D gases with collisional point-like in-
teractions are almost-integrable systems. In uniform 1D systems, integrability
is predicted to prevent thermalization [150]. Since the number of integrals
of motion equals exactly the number of degrees of freedom, the state of the
system always depends on its initial state, in the course of its dynamical evo-
lution. Actually, thermalization is forbidden in any closed system, but for
non integrable systems the eigenstate thermalization hypothesis enables de-
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phasing to mimic relaxation to the thermal equilibrium [151, 152]. Let us
mention that experiments conducted in D. S. Weiss’s group [109] have indi-
cated the absence of thermalization in a trapped Tonks-Girardeau gas (γ ∼ 4),
whereas for a less interacting 1D gas, as probed in our experiment (γ ∼ 0.6),
re-equilibration effects have been observed on a timescale of a few tens of ms
[109], comparable with the timing used in our experiment. This suggests that
thermalization is prevented only for high values of γ. In addition, let us notice
that the coherence length measured in our experiment is perfectly compatible
with a description in terms of thermal equilibrium, according to the discussion
in Sec. 4.2.2. For these reasons, we assume thermal equilibrium and thermal
population of 1D modes in the 1D gases.

In the light of that, the measurement of Lφ performed via Bragg spec-
troscopy allows us to evaluate the temperature of the system, according to
Eq. (4.8), using the mean density. Figure 4.12 shows the estimated tempera-
ture of the array of 1D gases, obtained by the Bragg measurements at qB = 7.3
µm−1. The stronger the transverse confinement, the higher is the tempera-
ture. This increase cannot be explained as an effect of the radiation pressure
of the laser light producing the optical lattice (∼ 7 nK/s for s⊥ = 35, corre-
sponding to a few hundreds of pK on the timescale of the experiment), and
it is consistent with the increase of axial confinement according to arguments
presented in Sec. 4.2.2.

4.6 Conclusions

In conclusion, we investigated the coherence properties of an array of 1D
gases by measuring their momentum distribution. Since the latter shows a
Lorentzian shape as predicted for a single uniform 1D gas, it was possible to
define consequently an effective coherence length of the whole ensemble. Its
measurement showed an evident reduction as the optical confinement was in-
creased. We also performed a strict comparison between Bragg spectroscopy
and direct mapping of momentum distribution into density distribution after
TOF. This demonstrated that TOF images give access to coherence proper-
ties in the regime of strong phase-fluctuations for s⊥ > 15. We developed a
simulation of the response of the array, that allows us to verify the assump-
tions made in the analysis of the Bragg spectra. Besides, the measurement of
the coherence length allowed us to give an estimate of the temperature of the
array, based on the identification of an “effective” 1D gas. This measurement
can represent a first step in the direction of creating multiple primary ther-
mometers based on different theoretical approximations, and then check for
their consistency at low temperatures. Our study of phase fluctuations paves
the way for future studies of the coherence properties in 1D geometries with
short coherence lengths. Of particular interest in our view are strongly inter-
acting disordered systems where the role of thermal phase fluctuations in the



118 THERMAL PHASE-FLUCTUATIONS AND INTERACTIONS

0 10 20 30 40 50
20

40

60

80

100

120

140
T

(n
K

)

s

Figure 4.12: Measurement of the temperature of an array of 1D gases as a
function of the transverse lattice amplitude.

nature of the superconductor-insulator transition is still debated [153, 154]. So
far, only disordered gaseous quasi-condensates have been investigated where
it was shown that the contribution of phase fluctuations is small [155, 156].



Chapter 5

Exploring the
superfluid-to-insulator
transition in a lattice

The realization of the Bose-Hubbard model [68] with cold gases in optical lat-
tices has been one of the corner stones in carrying out quantum simulations of
solid-state physics problems using ultracold atomic samples, also with a view to
implementing quantum information processes. The most remarkable fact that
this model accounts for is the occurrence of an interaction-induced quantum
phase-transition from a superfluid to a Mott insulating state. One-dimensional
gases are a favourable test-ground, since the role of interactions is strongly
enhanced by the one-dimensional geometry. A fundamental requirement for
using such strongly-correlated gaseous systems as quantum simulators is their
precise experimental characterization. As in the analogy of condensed-matter
physics, the presence of strong correlations makes it hard to draw a complete
picture, both from the experimental and theoretical point of view. Various
techniques have been already used to obtain information on these systems
like, for instance, the presence of a gap in the spectrum of a Mott insulator
[32, 31] or its shell structure [45, 157]. An important information for charac-
terizing the system concerns elementary excitations on which the dynamical
properties of the many-body system depend. In this chapter, we report on
the first measurement of the linear response of interacting one-dimensional
Bose gases across the transition from a superfluid to a Mott-insulator [50].
Elementary excitations are induced at nonzero momentum, exploiting two-
photon Bragg scattering as a probe. Now the discussion will be specialized
to the excitations induced within the lowest energy-band determined by the
presence of the periodic potential; the excitations in higher energy-bands will
be the subject of the next chapter. From the continuous modification of the
excitation-spectra, we obtain quantitative information on the critical lattice-
amplitude for entering the Mott-insulting phase. The complexity of these
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strongly-correlated quantum-phases is directly displayed in the spectra which
exhibit novel features. On the superfluid side of the transition, the presence
of an extra mode in addition to the phonon mode is suggested. In the in-
homogeneous Mott-insulating state, multiple resonances are observed. They
give information about the particle-hole gap, the inhomogeneity of the trapped
system, and exhibit novel features at low energies that could be related to the
temperature of the atomic sample. The value of the particle-hole gap is a par-
ticularly interesting quantity in the study of quantum critical phenomena. In
addition, this gap is also very important for the practical application of these
systems to quantum information processing, since it determines the fidelity of
the Mott state [129].

5.1 Does Bragg scattering tell something more on
Mott insulators?

In the last few years, different atomic insulating phases have been realized
demonstrating the versatility of gaseous systems. These include bosonic Mott
insulators in one-dimensional [32], two-dimensional [158] and three-dimensional
[31] systems, disordered bosonic insulating phases [35] as well as fermionic
Mott insulators [36, 37]. The characterization of these insulating quantum
phases has revealed many of their properties. One key piece of evidence for
the quantum phase transition is the loss of global phase coherence of the
matter wavefunction when the lattice depth increases beyond a critical value.
However, the loss of coherence could arise from many sources, such as the de-
coherence induced by quantum or thermal depletion of the condensate during
the loading process. Therefore, complementary evidence for the Mott-insulator
transition was provided showing the presence of a gap in the excitation spec-
trum by applying a potential gradient to the lattice [31] or by modulating the
lattice which drives the system in the Mott phase [32]. Further experiments
have demonstrated this gap to vanish in a disordered insulating phase [35]. A
noise correlation analysis of time-of-flight pictures has shown the spatial order
of the atomic distribution [159] and its controlled alteration when modifying
the lattice potential [160]. Studies on the suppression of compressibility have
been performed in fermionic [36, 37] and bosonic [161] Mott insulators. In
addition to these properties expected in homogeneous insulating phases, the
presence of a trap enriches the experimental situation while creating alternate
regions of Mott insulator with different filling factors and superfluid states
[68, 162]. This shell structure has been identified in experiments and clearly
related to the trapping potential [45, 157]. Recently, single-site addressing has
allowed one to directly measure compressibility [163] and temperature [164] of
a two-dimensional Mott insulator.

In this context, Bragg spectroscopy offers the possibility of deepening our
insight on correlated phases of gases in optical lattices, better characteriz-
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ing the quantum phase-transition from superfluid to Mott insulator, as well
as highlighting the properties of strongly-correlated superfluids. In contrast
to applying a potential gradient as mentioned above, Bragg spectroscopy is
not susceptible to effects like Bloch oscillations and Landau-Zener tunneling.
Moreover, Bragg spectroscopy allows a tunable nonzero momentum transfer
and in principle can reveal the full structure of the excitations, information
unavailable using other techniques. Due to the lattice periodicity, the ampli-
tude of the system response is modulated by the momentum of the excitation
modulus ~kL [129, 130]. For an homogeneous system, an analytical expression
of dynamical structure factor has been found in the framework of perturbation
theory [130]:

S(qB, ω) = 32
(

J

U

)2

g(g + 1) sin2

(
qBd

2

) Ns∑

r=1

sin2

(
πr

Ns

)
δ(ω − E

~
). (5.1)

Here, g = N/Ns is the filling factor, i.e. the ratio of the number of particles N
to the number of occupied lattice sites Nsite, r = 1 . . . Ns is the site index and
d the lattice constant. This equation indicates that the response of the system
is modulated as a function of the momentum qB of the external perturbation,
and its maximum is expected at qB = π/d = kL.

Since insulating states are hard to excite, due to the presence of the gap,
the lattice-amplitude modulation experiments [32, 35], which are conducted at
zero momentum-transfer, require a large modulation (typically, the 25% of the
lattice amplitude). In that case, the response signal cannot be treated in the
linear-response framework [165]. In contrast, by setting a favorable nonzero
value of momentum, one can reduce the strength of the external perturbation
exploited as a probe, keeping a reasonable signal-to-noise ratio. In Ref. [130]
the validity condition for the Bragg strength is calculated for a homogeneous
Mott insulator

VB <
U√
Nsite

cot
(

qd

2

)
(5.2)

but no quantitative prediction is available for inhomogeneous systems, as far
as we know. In the present Bragg experiment, we verify the linear response
conditions to hold in practice, as illustrated in chapter 3.

In the Mott regime the condition of linear response is fulfilled only us-
ing small amplitudes VB of the Bragg moving lattice, whereas in the super-
fluid phase the linear-response regime still holds for higher values of VB, due
to the uncorrelated nature of the system: It is only required that the num-
ber of excited atoms be small compared to the condensate population. The
spectroscopic measurement performed in the linear response regime gives di-
rect access to the dynamical structure factor S(q, ω) of those complex phases
[129, 130, 165, 166, 131, 167, 168] as described in chapter 3.
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5.1.1 The experiment

We start with an array of independent 1D gases, produced by confining a
three-dimensional Bose-Einstein condensate of 87Rb atoms (N ' 1.5 × 105

with chemical potential µ3D/h ' 740 Hz) in two orthogonal optical lattices
with wavelength λL = 2π/qL = 830 nm at a large amplitude s⊥ = 35. The
1D gases can be considered as independent since the tunneling rate in the
transverse plane is 0.75 Hz and much smaller than the inverse time scale of
the experiment (lasting a few tens of ms). For these 1D gases, the ratio of
interaction to kinetic energy γ = mg1D/~2n1D ' 0.6(1), g1D being the inter-
atomic coupling in the 1D gas [39, 169, 54]. Let us recall that for γ ¿ 1 a
mean-field picture well describes the 1D gas, while for γ À 1 it enters the
Tonks-Girardeau regime [63]. Thus, in our experiment the correlations in the
1D gases are stronger than in the mean-field regime.

As anticipated in Sec. 2.4, the 1D gases are driven through the cross-over
from a superfluid to a Mott insulator state by putting them into a lattice
with the same wavelength λL = 830 nm as for the transverse lattices and
with larger and larger amplitude Vy ≡ syER along the axis of the 1D gases.
The tighter axial confinement produced by the lattice wells results in a local
compression of the gas, and hence in an increased strength of the interaction
U compared to the next-neighbour hopping energy J between different lattice
sites, according to

U

J
' 0.206e2.07

√
sys−0.698

y (5.3)

derived from Eqs. (2.59) and (2.58) in Sec.2.4.
Tuning the ratio U/J , the 1D gases explore the phase-diagram represented

in Fig. 5.1, adapted from [76]. The vertical axis reports the characteristic
density ρ̃ = Na

√
mωy/J defined in Eq. (1.42), where in this case ωy is given

by the combined effect of the magnetic and optical confinement. Since the
intensity of the laser beams producing the lattice is uniform over the whole
of the atomic cloud, all the tubes of the array see the same lattice amplitude,
and thus experience the same interaction strength. However, each tube has a
different number of atoms, and therefore covers a specific path in the diagram,
different from the others. For instance, the 1D gases at the extreme boundary
of the array (where the density vanishes) have a characteristic density too low
to enter the Mott phase, for whatever value of U/J . In Fig. 5.1, we depict
a typical path along which a representative 1D gas of our array evolves (gray
dash-dotted line). The considered gas has N = 120 atoms, which is the atom
number per tube averaged over all of the array, calculated as illustrated in Sec.
2.3. The longitudinal-trap frequency used to calculate ρ̃ is ωy = 2π × 45 Hz
and is obtained as a combination of magnetic and optical trap confinement.
In turn, the optical confinement along the Oy direction is essentially given by

1The mean value of γ is calculated as the weighted mean of the γ parameter of each 1D
tube with its number of atoms, as described in chapter 4.
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Figure 5.1: Phase diagram for bosons in a one-dimensional gas with a harmonic
confining potential along the axis of the gases. The trap has ~ωy/J = 0.008,
length L = 100. The area marked by (I) indicates a pure superfluid phase;
(II) and (III) denote inhomogeneous Mott-insulating phases: (II) is a Mott
insulating phase at the center of the trap surrounded by a superfluid phase
with n < 1, (III) a superfluid phase with n > 1 at the center of the trap
surrounded by a Mott insulating phase with n = 1 and an outermost superfluid
phase with n < 1. The vertical dashed green line signals the critical value of
U/J for the formation of a Mott insulator with n = 1 in the homogeneous
case. Gray dash-dotted curve indicates the line along which a typical micro-
tube evolves with increasing amplitude of the longitudinal lattice sy (number
of atoms N = 120, frequency of the longitudinal trap ωy = 2π×45 Hz). Figure
is adapted from [76].

the transverse confinement of the Gaussian laser beams along x̂ and ẑ with
amplitude s⊥ = 35 which are employed to produce the 1D tubes. The effect
of the non-uniform profile of the Gaussian laser beams creating the lattice Vy

along their propagation direction (∼ 0.01 Hz) is negligible. Note that this
representative gas enters the Mott region for values of U/J higher than for
a homogeneous 1D gas with filling factor n̄ = 1 (vertical dashed line). As a
matter of fact, in one dimension the trapping potential has a strong effect on
displacing the critical value for the formation of the Mott insulator toward
larger values of U/J , much more pronounced than in higher dimensions [76].
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Bragg scattering has been used to induced excitations of the system at
fixed momentum. For this purpose, we set out an appropriate Bragg scheme
as described in Sec. 3.3 to transfer a momentum ~q0 close to the edge of the
Brillouin zone defined by the wave-vector kL = 2π/λL of the optical lattice
where the response in the Mott state is predicted to be the largest: q0 =
0.96(3)~qL

2. Slightly different parameters (ΩB, ∆tB) have been used to obtain
a good signal-to-noise ratio, keeping VB at about a one percent level of the
amplitude Vy of the longitudinal lattice (for all sy values, VB < 0.15ER).

Due to the presence of the longitudinal lattice, the excitation spectrum
of the system displays a band structure. Therefore, excitation at a given
quasi-momentum is associated with multiple resonances corresponding to the
different energy bands, as already described in Sec. 3.1.2. In the experiment
described here, we scan an energy-range (∼ 0 − 4 kHz) corresponding to the
lowest energy band n = 1. Thus, we measure ωS(q, ω), as discussed in Sec.
3.2.3. In fact, when restricted to transitions within the lowest energy band,
the response of the 1D gases to the scattering of light is related to terms of the
type |〈ψ�

1ψ1〉|2, i.e. to density-density correlation functions of the many-body
state.

5.2 Characterizing the Superfluid-to-Insulator tran-
sition

In this section, we will present the results of the measurement of the dynami-
cal structure factor across the quantum phase-transition from a superfluid to
a Mott insulator state in the lowest excitation band. Let us recall that the
presence of the external trapping potential crucially affects the properties of
the system. As a matter of fact, when repulsive interaction energy overcomes
the tunneling energy the Mott insulator exists even without the commensu-
rate filling required in the non-confined case, but it does not develop uniformly
along the whole of the gas. As predicted in Ref. [162], above a threshold value
of U/J a first domain of insulator arises, surrounded by two tails of super-
fluid or normal gas on both of its sides (depending on the system entropy).
Thus, rigourously speaking the gas does not experience a sharp transition but
a cross-over due to coexistence of the different phases. The spectroscopic mea-
surement we perform allows us to precisely mark the appearance of the first
Mott insulating lobe. This is assumed as a boundary between the superfluid
state and an inhomogeneous Mott insulating state.

In the absence of the longitudinal lattice (sy = 0), we already demon-
strated the 1D gases to be superfluids, by measuring the frequency ratio of
the breathing mode to the dipole mode as in [111] (see Sec. 2.3.2). For large
sy (sy > 10), the 1D gases are expected to be deeply in the inhomogeneous

2The momentum imparted to the system has been calibrated as reported in chapter 3.
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Figure 5.2: Spectra in the lowest energy band measured across the transition
from superfluid to Mott insulator. Solid lines are guides to the eye. The
vertical dashed line in (e) marks the particle-hole excitation energy ∆ph(qB)
(see text). Note the reduction in the amplitude of the response (vertical scale).

Mott insulating state [32]. This phase transition is reflected in a dramatic
change of the dynamical structure factor of the system. This point is revealed
in Fig. 5.2, which displays the excitation spectra of the system for six dif-
ferent amplitudes sy of the longitudinal lattice, corresponding to increasing
values of the ratio U/(2J): U/(2J) = 2.4 (sy = 4), U/(2J) = 6.3 (sy = 7),
U/(2J) = 14.4 (sy = 10), U/(2J) = 30 (sy = 13), U/(2J) = 47 (sy = 15).
For low sy the response exhibits a single broad resonance (see Fig. 5.2 (a-c)),
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Figure 5.3: (a) First energy-band (blue curves) and second energy-band (green
curves) of a single 1D gas for sy = 0, 2, 4, 5 (lighter colour gradations indicate
increasing values of sy). The bands have been calculated in the mean-field Bo-
goliubov approximation for the experimental trapping frequencies and atom
number Natom = 250. Considering a system with initial momentum distribu-
tion centered around k/kL ∼ 0 and inducing excitations with finite momentum
transfer, the energy of the resonances decreases as sy increases. (b) Resonant
frequency in the lowest energy band. Solid line is the frequency extracted from
mean-field calculations shown in (a).

whereas for large sy the spectrum shows a complex structure with multiple
narrow resonances (see Fig. 5.2 (d-f)). A detailed discussion of such different
resonances will be presented in Sec. 5.4. Now we are interested in highlighting
the evolution of the spectra.

For this purpose, a Gaussian function is fitted to the whole signal-envelope
corresponding to excitations within the energy-range corresponding to the
lowest-band (δν ∼ 0 − 4 kHz). Concerning the central frequency of the reso-
nance at low values of sy, a shift towards lower frequencies is observed as sy

increases. This can be explained taking into account the Bloch-bands structure
of the energy distribution of the states in the presence of a periodic potential.
Figure 5.3 (a) shows a Bogoliubov mean-field calculation of the energy-bands
for some of the values of sy: As the amplitude of the periodic potential in-
creases the energy bands flatten. For a momentum transfer close to the edge of
the first Brillouin zone kL, this flattening implies that the resonant frequency
of the transition within the lowest energy band decreases as sy increases. The
frequency-shift observed in the experiment is consistent with this description
(see Fig. 5.3 (b)).

A more peculiar feature of the spectra concerns their width, which exhibits
a non-monotonic behaviour as a function of the lattice amplitude (Fig. 5.4
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(a) (b)

Figure 5.4: (a) RMS width of the resonance in the lowest energy band. The
blue area is the expected position of the Mott transition for trapped 1D gases
extracted from [76] and corresponds to U/J = 8.5 − 9. (b) Amplitude of the
response of a Mott state as a function of U/J at the frequency ν corresponding
to the particle-hole excitation energy (see vertical dashed line on Fig. 5.2 (e)).
This amplitude scales as a power-law with the ratio J/U with an exponent
1.7(3).

(a)). For low lattice amplitudes (sy ¿ 10), the observed single resonance (see
Fig. 5.2) has a width which diminishes as sy increases. This can again be
accounted for by the same band picture mentioned above. Due to thermal
effects and correlations a large distribution of quasi-momenta is populated,
also at low values of sy. Therefore, the external perturbation will induce a
response whose width in energy is equal to the energy bandwidth. However,
the band flattens with increasing sy, and this can explain the reduction of the
response width. These two effects – the decrease of the resonant frequency
and the width with increasing sy – has been observed in our experiment for
the 1D gases before the phase transition. On further increasing the ratio
U/J , the system is expected to enter a Mott insulating phase. Once the
first Mott domain has appeared, new resonances are predicted, at frequencies
higher than but close to that of the superfluid domain: In fact, the resonant
energy of the insulator lies above the lowest-energy band of the optical lattice.
The Gaussian width of the response observed below the first-excited band
suddenly rises as the gas enters the insulator regime (Fig. 5.4 (a)). Globally,
the width of the response clearly exhibits a minimum, which we attribute to
the appearance of a Mott insulating domain. Such a minimum lies in the
range U/J = 8−10, corresponding to sy ∼ 5.5−6.3, in agreement with recent
Monte-Carlo simulations predicting U/J ∼ 8.5− 9 for trapped 1D gases [76].
Note that in the presence of a trapping potential the transition occurs at higher
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value of U/J compared to an homogeneous system, where it is expected at
U/J = 3.61.

Moreover, as clearly shown by the spectra in Fig. 5.2, a drastic fall of
the amplitude of the response is observed as the atomic system experiences
a strong lattice potential, corresponding to high values of sy: Compare the
vertical scale on Fig. 5.2 (d)-(f) to that of Fig. 5.2 (a)-(c). This is an indica-
tion that the system is no more a superfluid but it has entered an insulating
state, which is naturally difficult to excite. In addition, above sy = 7, the sig-
nal amplitude further slowly diminishes as sy increases, consistent with that
predicted for a Mott insulating state. To quantify this drop, we perform a
Gaussian fit of the peak indicated by a vertical dashed line in Fig. 5.2 (e),
which corresponds to the particle-hole excitation energy ∆ph(q0) in the Mott
state (see Sec. 5.4). Instead of considering its integral, we chose to take into
account its amplitude. In fact, the root-mean-squared width we observe is
constant (∼ 300 Hz) 3; therefore the amplitude is proportional to the integral
of the signal to a good approximation. In Fig. 5.4 (b) the amplitude is plotted
as a function of the ratio U/J : Fitting the experimental data with a power-law
(J/U)p we find an exponent p = 1.7(3) in good agreement with the theoretical
value ptheo = 2 extracted from Eq. (5.1).

5.3 Correlated superfluid in the lowest band

Even within the superfluid phase, interactions may greatly impact on the ba-
sic properties, which can be revealed in the excitations of the system. In
condensed-matter physics, the roton minimum in the spectrum of helium pro-
vides a well-known example of that. In this section, we would like to precisely
investigate the features of correlated superfluid gases, i.e. by exploring the
superfluid side of the transition. Again, the discussion will be specialized to
excitations within the first band, using the second band only as a reference,
as shown in Fig. 5.5.

In the absence of the lattice (sy = 0) and for the regime of interactions
experienced by our array of 1D gases (γ ' 0.6), the resonant frequency of the
Lieb-Liniger model is indistinguishable from the mean-field solution within
our experimental resolution. This has been demonstrated by comparison with
the mean-field calculation presented in Fig. 5.3 (b) and confirmed by the
calculation of the Lieb-Liniger solution kindly performed by the the group of
T. Giamarchi [146]. Instead, the peculiar effect of the correlations in the 1D
gases compared to the mean-field regime mainly consists in a modification of
its shape. The case of sy = 0 (see Fig. 5.2 (a)) has been already discussed
in chapter 4. As a matter of fact, the width of the spectrum (2.5 kHz, see
Fig. 5.2 (a)) is much larger than the spectrum width of the 3D BEC, which is

3This width corresponds to the resolution limit of our spectroscopic tool, which is set by
the time-duration of the Bragg pulse (3 ms).
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Figure 5.5: Spectrum of 1D gases in the SF regime (sy = 4). Solid line is a
guide to the eye. Shaded areas correspond to the width of the first (blue) and
second (green) lowest bands as shown in the inset.

0.75(9) kHz for the same parameters of the Bragg excitation. This observation
can be attributed to the presence of correlations and thermal effects peculiar
to the beyond mean-field 1D gases. For sy > 0, a novel feature of the spectra
is observed (see for instance Fig. 5.5 referring to sy = 4). The first resonance
has an asymmetric shape with a tail toward high frequencies, but the most
important feature in the form of the high frequency tail is that a response signal
is detected within the energy-gap between the first and the second band of the
optical lattice, where in principle excitations should be forbidden, according
to the conventional Bloch-band picture. For comparison, we have performed
the spectroscopy on a 3D BEC loaded in an optical lattice at sy = 6 measuring
a sharp resonance, falling within the bandwidth.

To explain this special behaviour of the 1D lattice-gas, we consider differ-
ent possible explanations. First, the excitation spectrum is expected to differ
from a mean-field description due to strong correlation [171, 172, 170, 169].
In contrast to what we discussed above, this feature is not related to the pres-
ence of the longitudinal lattice responsible for the transition from superfluid
to the Mott-insulating state. In fact, as we discussed in chapter 4, the effect
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Figure 5.6: (a), (b), (c) Density plots of the dynamical structure factor com-
puted in [170], and reported here for three different values of γ, i.e. the ratio
of interaction energy to kinetic energy (γ = 0.25, 1, 5). The horizontal axis
is momentum running up to 4kF (kF = 2πρ0) and the vertical axis repre-
sents energy transfer. The data refer to systems with parameter similar to
that realized in the present experiment (length L = 100, number of atoms
N = 100). Momentum of excitations induced with our Bragg setup is indi-
cated by red dashed lines (qB ∼ 0.3kF ), whereas green dashed lines correspond
to momentum qB = kF . (d) Profiles of the dynamical-structure factor at fixed
momentum qB = kF (which correspond to cutting the previous graphs along
the dashed green line) for some representative values of the interaction param-
eter (γ = 1, 5, 10, 20 and 100, respectively). Finite experimental resolution is
taken into account by using a Gaussian profile as energy function, instead of
the δ-function appearing in Eq. (4.13). These figures are published here with
the kind permission of J.-S. Caux [170].

of interactions is enhanced in 1D gases compared to 3D even in the absence
of an optical lattice. When the kinetic energy overcomes the interaction en-
ergy (γ ¿ 1), only the well-known phonon-mode responsible for superfluidity
[173, 174] can be excited, according to the Bogoliubov-De Gennes mean-field
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approximation. For high values of γ, the Lieb-Liniger model [169] predicts
umklapp excitations at finite momentum 4kF = 2πρ0, related to translations
of the center of mass, with energies that tend to zero in a large system. In Fig.
5.6 (a), (b) and (c), the evolution of the dynamical structure factor S(q, ω) is
reported as the parameter γ increases, namely the gas becomes more and more
interacting. The horizontal axis is the wavenumber of the excitation expressed
in units of the Fermi wavenumber kF = πρ0, ρ0 being the 1D-density of the
gas. The vertical axis represents energy transfer. These density plots have
been calculated in [170] with an analytic approach based on a Bethe-ansatz,
and refer to systems with length L = 100 and number of atoms N = 100. Note
that the 1D gas we realize corresponds to an intermediate situation between
those represented in Fig. 5.6 (a) and (b) (γ = 0.6 − 0.9), where the system
cannot be described anymore by a mean-field Bogoliubov-like theory. In prin-
ciple, a modification of the excitation spectrum could start to become visible,
expressed as an algebraic low-energy tail, in contrast to the high-energy tail
observed in the experiment. However, the profile of the dynamical structure
factor strongly depends on the momentum of the excitation induced by the ex-
ternal perturbation. As an example, Fig. 5.6 (d) reports the shape of S(q, ω)
at momentum ~qB = ~kF , which corresponds to a cut of the previous density
plot along the green dashed line: This choice of momentum allows the obser-
vation of an evident asymmetric shape of the signal already for γ = 1, which
becomes more pronounced with increasing γ, until evolving into a flat signal
for γ = 100. In our experiment qB/kF ∼ 0.3, so that the low-energy tail lies
within the experimental resolution. Note that the ratio qB/kF depends not
only on the parameters of the Bragg excitation (through qB), but also on the
1D-density of the gas (via kF ). To sum up, the asymmetric shape observed
in the experiment does not correspond to the algebraic tail of correlated 1D
Bose gases which is expected towards low energies [171, 172, 170] and which
in any case could not be resolved for the 1D-gas we realize with the probe we
used.

Another contribution can be taken into account to explain the peculiar
shape of the superfluid response. As a matter of fact, the presence of a
longitudinal lattice can induce a depletion of the Bose-Einstein condensate,
which induces the initial many-body ground state to populate several quasi-
momentum states in the lowest energy band. The response of such an initial
state can dramatically differ from that of a system with a narrow momentum
distribution, as represented in Fig. 5.7. In the upper row three different initial
momentum distributions are considered: (a) a narrow initial distribution given
by a Gaussian of width equal to one tenth of the width of the first Brillouin
zone; (b) a quite broad distribution, given by a Gaussian three times as large as
the previous case; and (c) a completely flat distribution described by a Heave-
side step-function. The bottom row reports the dynamical structure factor
we calculate in the three different cases, by considering for simplicity a mean-
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Figure 5.7: Evolution of the dynamical response of a gas with increasing spread
in its initial momentum distribution: (a) Gaussian of width w = 0.1kL and
(b) w = 0.3kL; (c) Heaveside step-function.

field approximation. The comparison of the experimental signal reported in
Fig. 5.5 with the calculation in Fig. 5.7 indicates that the lattice-induced
population of quasi-momenta over the entire Brillouin zone can support the
asymmetric shape only for the transition to the second band (shaded blue area
on Fig. 5.5 (a)), and not for the excitations within the first band (shaded red
area in Fig. 5.5 (a)).

The two arguments mentioned above not only predict an asymmetric shape
on the low frequency side, opposite to what we observe in the experiment, but
they fail in creating excitation within the energy-gap of the lattice gas.

Theoretical works dealing with the excitation spectrum of interacting lattice-
gases help us to interpret the experimental observation. In fact, strongly cor-
related superfluids in a lattice have been predicted to exhibit an extra gapped
mode [167, 168, 175, 176, 177, 178, 57, 179] in addition to the usual phonon
mode. The Bose-Hubbard model used to describe them generates two effec-
tive low-energy field theories for the complex order-parameter field ψ. For
weak interaction Un̄ ¿ J , the effect of the lattice can be absorbed in defining
a renormalized effective mass. The periodic potential, apart from increas-
ing the strength of the interactions, modifies the energy as a function of the
quasi-momentum (along the lattice axis) which does not have the free-particle
quadratic form (as discussed in Sec. 1.4). Actually, for small velocities (or,
equivalently, small phase gradients across the lattice), this term can still be
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expressed by a quadratic form where the real mass m is replaced by an effective
mass m∗ dependent on the tunneling rate J :

m∗ = m
ER

π2J
. (5.4)

If one assumes that the quantum tunneling between adjacent optical wells
is sufficient to ensure long-range coherence across the entire array, the order
parameter of the system can still be described by the Galilean-invariant Gross-
Pitaevskii theory [55]. The first-order time derivative in the Gross-Pitaevskii
theory defines the density ρ = |ψ|2 and hence any density mode is bound to
the phase degree of freedom, resulting in the unique and well-known sound (or
Goldstone) mode that corresponds to a combined phase and density modula-
tion. Close to the superfluid-insulator transition, namely at Un̄ ∼ J , a quite
remarkable change of behaviour occurs, since the combined action of the lat-
tice and the interaction leads to a Lorentz-invariant critical theory (nonlinear
Klein Gordon equation) [69]. This differs from the Lorentz invariant criti-
cal theory, where the second-order time derivative spoils the relation between
the order-parameter modulus and the density. As a consequence, this theory
allows the possibility of two independent modes, which correspond to phase
(Goldstone) and amplitude (Higgs) excitations. The latter is generated by a
physically similar mechanism as the Higgs boson in high energy physics [179]
and describes an exchange between condensate and non-condensate at fixed
overall density. The dispersion relation of the two modes is illustrated in Fig.
5.8 (a): Whereas the Goldstone mode is the gapless sound (phonon) mode,
the amplitude mode is gapped. As the ratio U/J increases, the strength of the
correlation grows, and the amplitude of this mode increases. Finally, at the
transition, the gapped amplitude-mode evolves in the Mott branch. Such two
excitation modes which would not be resolved could support the asymmetry
of the spectrum toward high frequencies, and especially accounting for the
presence of excitation within the energy gap.

The relative strength of the two modes is predicted to be modulated by
the wave-vector of the induced excitation [179, 168]. We can define a spectral
weight Si of each component of the spectrum according to [179]

S(q, ω) ∼
∑

i

Siδ(ω − ωi). (5.5)

Fig. 5.8 (b) reports these weights calculated in [179] with a variational mean-
field method: The sound mode dominates the response at low momenta, with
the massive mode acquiring weight only for higher momenta, where the sound
mode saturates. Since the probability to excite the amplitude mode is max-
imum at the edge of the Brillouin zone, the momentum transfer q0 = 0.96qL

chosen in the present experiment appears to be appropriate for this observa-
tion.
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Figure 5.8: Dispersion relation (a) and spectral weight (b) of the sound and
massive excitation-modes of a homogeneous superfluid. At long wavelengths,
the gapless Goldstone mode exhausts all the available spectral weight, allow-
ing the Higgs massive mode to gain weight only towards the zone boundary.
Figures are adapted from Ref. [179].

Moreover, let us cite the calculations recently performed in Hamburg [180]
describing how Goldstone and Higgs modes are modified by the presence of
spatial inhomogeneity induced by the harmonic trapping potential, always
present in current experiments. In particular, the breaking of the transla-
tional symmetry leads to a broadening in k-space that enlarges the signal.
Reasonably, such a mechanism intervenes in our case, influencing the width
of the two modes. This can be seen as a positive argument in support of the
interpretation of our experimental observation in terms of the existence of two
modes.

5.4 Response of an inhomogeneous Mott insulator

The response of the inhomogeneous Mott insulating phase exhibits a structure
with multiple resonances (see Fig. 5.9 (c)) much more complex than that of
an homogeneous Mott insulator at zero temperature, where a single resonance
corresponding to a particle-hole excitation is expected.

5.4.1 Gapped excitations of Mott islands

The elementary excitation in a homogeneous Mott-insulator state with mean
filling n̄ = 1 consists of extracting a localized particle from a well of the
periodic potential and moving it to a different site, as illustrated in Fig. 5.9
(a). This excitation can be viewed in terms of the creation of a pair given by
a quasi-particle and a quasi-hole (in the site left empty). The excited particle
typically populates a non-zero momentum within the same energy band of the
initial ground-state (as in the case considered in this chapter) or can hop into a
higher-energy band. The dispersion relation of the quasi-hole lies in the range
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Figure 5.9: (a) Schematics of the activation mechanism of an elementary ex-
citation in a homogeneous Mott insulator with filling n̄ = 1. The required
energy is of the order of U , that is the energy-cost paid to put two atoms in
the same lattice site. (b) Particle and hole dispersions in units of the tunnel-
ing parameter in a one-dimensional lattice, for U/(zJ) = 6. The horizontal
arrow indicates absorption of momentum, the vertical arrow absorption of en-
ergy [129]. (c) Low energy part of the spectrum measured at sy = 13. The
green solid line is a guide to the eye. The vertical dashed line indicates the
particle-hole excitation frequency ∆ph(qB).

of negative energies and is approximatively symmetric with the quasi-particle
lowest band (the higher the ratio U/J , the better is this approximation) (see
Fig. 5.9 (b) [129]). As mentioned in Sec. 3.2.3, the momentum ~qB and
energy h δν imparted by the external field are shared by the particle and the
hole excitation. The typical energy needed to create such particle-hole pairs
is of the order of the on-site interaction energy U . The distinctive signature of
the particle-hole (p-h) excitations in the dynamical structure factor consists of
a resonance located close to the energy U . As is apparent in Fig. 5.9 (c) the
largest resonant peak in the Mott-insulating state (marked by a vertical dashed
line) is observed at a frequency ∼ 2 kHz which is close to the energy U = 2.2
kHz. We have identified this resonant energy with the particle-hole excitation
energy ∆ph(qB) of the atomic Mott insulator for a momentum transfer qB.

In Fig. 5.10 we plot the central frequency of the peak ∆ph(qB) measured
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Figure 5.10: Points correspond to ∆ph(q0) measured in the inhomogeneous
Mott phase. The dashed blue line is U . The dotted blue line is ∆0

ph and the
green solid line is ∆ph(q0) calculated for a homogeneous MI state at T = 0
with n̄ = 3. Inset: Ratio between the two resonant energies in the Mott phase.

in the experiment as a function of the ratio U/J (green dots). A systematic
downward shift of the experimental points is observed, compared to U (dashed
blue curve). As a matter of fact, the energy required to induce a particle to
hop into a neighbouring already-occupied site is rigorously U only in the limit
U/J → ∞. Instead, for finite tunneling, the particle-hole excitation has a
minimum energy cost at zero momentum transfer ∆ph(q = 0) ≡ ∆0

ph given by
[167]:

∆0
ph = U

√
1− 4(2n̄ + 1)

J

U
+

(
2

J

U

)2

. (5.6)

At the center of our 1D gases the filling factor is n̄ = 3. ∆0
ph, the so-called gap

of the insulating state, is smaller than U and asymptotically reaches U for large
ratio U/J in the case of an homogeneous Mott insulator at zero-temperature.
Actually, the gap is also modulated as a function of the momentum of the
particle-hole excitation, with a minimum at qB = 0 as it is possible to infer
from Fig. 5.9 (b). We compare the particle-hole excitation ∆ph(q0) measured
in the experiment to the theoretical prediction by Huber et al. [167] based
on the Schwinger-boson mean-field approach (green solid line in Fig. 5.10).
However, it must be mentioned that this calculation refers to a homogeneous
Mott insulator at temperature T = 0. Our measurements of ∆ph(q0) are well
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Figure 5.11: (a) Same spectrum as in Fig. 5.9. The blue dashed line points
out the resonance at ∼ 4kHz, corresponding to an excitation at frequency
twice ∆ph(q0). This is the energy required for a particle to hop into a lattice
site already occupied by two other particles. Some doubly-occupied (or even
multi-occupied) lattice-site can be present in the initial many-body state: Two
possible mechanisms at its basis are the slow-varying confinement due to the
Gaussian laser-beam profile and the magnetic trapping potential along the
axis of the gas (b) and the presence of defects on the lattice filling, induced
by a non-perfectly adiabatic loading of the gas in the lattice.

below the prediction for the homogeneous case. This deviation can be related
both to the inhomogeneity and the finite temperature affecting the particle-
hole excitation energy for which no complete theoretical predictions exist so
far.

We observe another peak at frequencies larger than the gap ∆0
ph (see Fig.

5.11 (a)). Since the excitations of a superfluid or a normal gas are expected
below this threshold, we can attribute also this peaks to the Mott domains.
The ratio of its frequency (∼ 4kHz) to the one identified as ∆ph(q0) is constant
over all the range U/J of Fig. 5.10 and equal to 2 (see inset of Fig. 5.10).
Since the response of the atomic gases to the Bragg excitation lies in the
linear regime, we exclude non-linear processes. This peak can be attributed
to the inhomogeneity of the experimental system, coming from the trapping
potential and a loading in the optical lattice which might not be fully adiabatic
as sketched in Fig. 5.11 (b) and (c) respectively. On one hand, the slowly-
varying trapping potential produces a modulation on the mean-density, as
illustrated in Sec. 1.4.2. Density reaches its maximum value at the trap center,
where the potential has a minimum, and decays to zero at the boundary.
In other words, the inhomogeneity is responsible for the formation of Mott
domains with different filling, separated by superfluid. According to the model
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we developed in Sec. 2.3, the chemical potential of the central tube (with
N ∼ 200) is ∼ 3.6kHz. According to a Gutzwiller-ansatz-based calculation,
we draw out that in the most internal shell of this tube four particles per site
are present. In an analogous way, a representative gas with N ∼ 120 – that is
the average number of atoms over all the tubes – has three atoms per site in
the inner shell. On the other hand, if the process for creating the Mott state is
not perfectly adiabatic4, the final state can be affected by defects, like empty
sites next to multiply-occupied sites. Concerning this possibility, we note that
in principle a pair at the same site (see that indicated in Fig. 5.11 (c) by
the shaded green region) is expected to be unstable with respect to breakup
into two separate atoms at different lattice sites to minimize the repulsive
interaction. This process, however, is forbidden not only for large lattice
amplitudes where tunneling is negligible, but also when the typical tunneling
time is of the order of (or lower than) the time-scale of the experiment (for
example for sy = 10 the system is in a Mott insulating state with a tunneling
time of h/J ∼ 15 ms) since momentum and energy conservation does not allow
the two particles to separate. There are simply no free states available if the
energy lies more than zJ above the band center, which is the upper edge of
the tight-binding band [181].

In this scenario, excitations involve again the hopping of particles from a
site to the neighbours. Compared to the case with a perfectly uniform filling
factor n̄ = 1, where excitations include only the tunneling of an atom in a
site, the inhomogeneity enriches the number of possible excitations. From the
Bose-Hubbard Hamiltonian (see Eq. 1.32), we know that the energy required
to put n particles in the same lattice site overcoming their mutual repulsion
is

Eint =
U

2
n(n− 1). (5.7)

Consider a pair of lattice sites A and B occupied by n and (n + m) atoms
respectively, and suppose the Bragg field induces j particles to hop from A to
B, i.e. changing the configuration from nA; (n+m)B to (n−j)A; (n+m+j)B

as represented in Fig. 5.12. The energy necessary for this process is simply
given by the energy-difference between the final and initial states:

∆E(m,j) =
U

2

[
(n− j)(n− j − 1) + (n + m + j)(n + m + j − 1)

]

− U

2

[
(n(n− 1) + (n + m)(n + m− 1)

]
= j(j + m)U . (5.8)

The opposite process (i.e. the tunneling of j atoms from a site with filling
n + m to neighbours with n) has not be considered since it would imply a
release of energy from the system, which would not be energy-conserving.
The lowest-energy excitation occurs for j = m = 1, and corresponds to the

4Adiabaticity conditions have been discussed in Sec. 2.2.3.



RESPONSE OF AN INHOMOGENEOUS MOTT INSULATOR 139

U n(n-1)
2

U n+m(n+m-1)
2

U (n-j)(n-j-1)
2

U (n+m+j)(n+m+j-1)
2

n

n+m

n-j

n+m+j

A B

A B

Figure 5.12: Schematic of a generic excitation induced by an external field in
a multi-occupied pair of wells in a periodic potential, with different filling to
each other: j atoms tunnel from site A with filling n to site B with n + m.
Upper and bottom panels sketch the initial and final situation, respectively.
The process occurs if the perturbing field provides an energy Uj(j + m) (see
text).

hopping of a single particle from a site with filling n to another with (n + 1)
particles, which requires an energy equal to 2U . Note that is not affected by
the specific value of the filling n, but only depends on m and j. The peak
observed at ∼ 4 kHz can be interpreted as a signature of this kind of excitation.
Not surprisingly, its frequency slightly differs from 2U . In fact, this derivation
neglects finite-tunneling and non-zero momentum effects, as well as non-zero
temperature. Taking into account these corrections, the energy required for
the process discussed above is 2∆ph(qB).

No response has been observed corresponding to higher-energy excitations.
The first should happen for j = 1,m = 2, corresponding to the hopping of a
particle to a site with two more particles, with associated energy 3U . This
is unlikely because Mott lobes with occupancy differing in two particles are
not adjacent but are separated by a lobe with intermediate filling. The cost
of excitations implying the hopping of more than one particle is even higher:
6U to move two particles simultaneously to a site with one-more particle.

Finally, another kind of particle-hole excitation can occur, removing a
particle from the superfluid or normal part of the system and bringing it into



140 EXPLORING THE SUPERFLUID-TO-INSULATOR TRANSITION

a Mott insulating zone. The energy cost of a particle for jumping into a Mott
lobe with filling n̄ = 1 is ∼ U ; the required energy doubles if the excited
particle is created in a lobe with filling n̄ = 2.

5.4.2 Lower-frequency response

A striking fact is the observation of a response from the system at very low
frequencies, ranging from 0 to 1.5 kHz, not yet revealed by using other spec-
troscopic techniques such as lattice modulation [32]. It is clearly visible by
increasing the magnification on the low-frequency part of the spectra as in Fig.
5.13 (a). This signal lies below the particle-hole excitation energy ∆ph(qB) of
the Mott insulator (vertical dotted line) and is present over the whole of the
range U/J tested above the quantum phase transition.

Superfluid lobes creeping among Mott insulating islands Due to the
inhomogeneity of the atomic distribution at finite J , superfluid regions with
different densities separate the Mott domains with different filling factors. The
observed low-energy excitation branches can be partially attributed primarily
to the response of the superfluid components of the system.

In fact, the recent work by G. Pupillo et al. [131] predicts a low-energy
multi-branched structure in the excitation spectrum, whose origin is exactly
related to the presence of these superfluid regions at zero-temperature. To
be precise, the superfluid component on top of insulating domains with filling
n̄ gives a response which saturates at energy 4n̄J . This structure emerges
both in quantum Monte-Carlo simulations and in analytic calculations based
on an extended-fermionization model5, as depicted in Fig. 5.13 (b) drawn
from [131]. The Figure reports the dynamical structure factor of a one-
dimensional gas at fixed momentum transfer 0.96~kL. It refers specifically
to a low-filling factor case n̄ = 2. The feature of the spectrum is strongly
affected by the wave-vector of the induced excitation: As a comparison the
inset shows S(qB, ω) at lower transferred momentum, increasing from the top
to the bottom (0.2, 0.4, 0.7~kL). For low momentum, a response at ω/J < 4
is expected. It is solely due to the small number of atoms in the sites which
are in the superfluid phase, thus corresponding to excitations of the borders
of the atomic gas. If the Bragg field imparts a momentum at the boundary of
the first Brillouin zone of the longitudinal lattice as in Fig. 5.13 (b) – that is

5This is a generalization of the Fermi-Bose mapping, in the presence of a multi-component
gas [131]. The density profile can be visualized as being composed of stacked horizon-
tal layers. Since atoms are no longer frozen, the layers are not independent. However, if
number-fluctuations in adjacent layers do not overlap in space, all of them can be treated
independently and standard fermionization techniques can be applied to each layer sepa-
rately, as in the homogeneous system. In this situation single-particle solutions provide
expressions for all many-body observable quantities. In the low density limit n̄ = 1, the
extended-fermionization method reduces to standard fermionization.
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the scheme implemented in our experiment – excitations are predicted up to
8J . The value 4J corresponds to the single particle band width of a hole, that
is of an empty site tunneling in the lattice. These excitations are thus due to
the coupling between the ground state and eigenstates with at most one atom
per site. The peak at ~ω/J = 8 corresponds to excitations in the superfluid
with more than two atoms per site.

This treatment can be simply extended to fit the situation we realize in the
experiment. As already mentioned in the last section, we calculated to have up
to four particles per site, in the central tube of the array. In this tube, the inner
shell is in an insulating state. Thus, the highest-density superfluid component
is seated on a Mott pedestal with mean filling equal to 3. Its response is
expected at 12J . Globally, the superfluid part of the whole gas contributes to
the system’s response with a complex structure of multiple peaks, stretched
out in the energy-range 4J − 12J . The observed spectrum clearly exhibits a
response in the frequency range matching those excitations (see the shaded
pink area in Fig. 5.13 (a)). However, in the experiment, it is not possible
to resolve separately each peak, since they are separated from each other by
∼ 130 Hz, less than an half the experimental resolution (∼ 300 Hz). Thus, the
superfluid response should be given by the convolution of the multi-branched
structure with a Gaussian function whose width should be determined by the
resolution, but this profile is altered by the presence of a signal at slightly
higher frequency, which we will discuss in the next paragraph.

Additional signal In the Mott insulator regime, a signal has been revealed
also in the energy range of 0.5 − 1.5 kHz (see gray area in Fig. 5.13 (a)).
Even if these resonances are below the energy particle-hole gap ∆ph(qB) of
the Mott insulator, they can not be attributed to the superfluid domains since
their energy is too high [50].

In a uniform Mott insulator, whereas the particle-hole energy gap (i.e.
the difference in energy between the ground-state and the particle-hole exci-
tations) is of the order of U , the energy splitting between different excitations
must be a fraction of the bandwidth, namely it is of the order of the tunneling
energy J . Several of these modes can be simply activated by the effect of finite
temperature. In particular, we can assume that in our system thermal energy
overcomes J , since the characteristic temperature associated with tunneling
is of the order of nanoKelvin, in a Mott insulating state6). At thermal equi-
librium, the occupation number of modes can be estimated as Nj = kBT/εj

7,
where εj is the energy of an excitation and kB the Boltzmann constant. Thus
we expect excitations to be populated up to an energy kBT . That mechanism
can explain the system’s response at energies larger than 12J . Yet, how to

6For a lattice gas with sy = 13, whose spectrum is shown in Fig. 5.13 (a), from Eq. (2.59)
we obtain J/kB ∼ 1.6nK.

7Note that this picture completely neglects the existence of quantum fluctuations.
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Figure 5.13: (a) Magnification of the low-frequency part of the spectrum in
Fig. 5.9 (c) and 5.11 (a). The shaded area indicates the range where a
response from the superfluid lobes is expected [166, 131], corresponding to the
energy interval 4J − 12J . For reference, also ∆ph(q = 0) has been indicated
(vertical dotted line). (b) Dynamical structure factor of a one-dimensional
gas is reported as a function of the frequency ω in units of J/~, for a fixed
value of momentum 0.9~kL [131]. The gas considered consists of 64 atoms
and has U/J = 8, realized in the experiment when sy = 5.5. The solid
(red) and dashed (black) lines are the quantum-Monte Carlo and extended-
fermionization results, respectively. Inset: Dynamical structure factor of the
same system at different momenta (0.2, 0.4, 0.7 ~kL – top to bottom).

extract a quantitative temperature from the position and/or width of these
low-energy excitations is not clear. We hope that these measurements will
trigger a new interest in working out such a possible relation. However, as
an upper limit, we mention that the temperature corresponding to the gap
(vertical dashed line in Fig. 5.13 (a)) is about 102 nK 8).

5.5 Conclusions

In conclusion, this chapter has presented the first measurement of the linear
response of one-dimensional gases across the quantum phase cross-over from
the superfluid state to an inhomogeneous Mott insulator state. The latter
has been realized by transferring atoms in a strong optical lattice along the
axial direction of the micro-tubes in order to increase atom-atom interactions
compared to the kinetic energy associated with tunneling between adjacent
sites. Inducing excitations within the lowest energy band of the lattice, we
have measured the dynamical structure factor of the system.

The dynamical structure factor has revealed a composite structure reflect-

8Considering again a lattice-gas with sy = 13, from Eq. (2.58) we obtain U/kB ∼ 97 nK.
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ing the complexity of such correlated quantum phases. Its evolution has al-
lowed us to identify the threshold value of interactions at which the system
enters an insulator state. Due to the external trapping potential, this state is
made up of an insulating region alternated by superfluid lobes.

Below the transition, in addition to the sound-mode the presence of a
gapped mode not completely resolved has been suggested. This is expected
for strongly correlated superfluids in proximity to the transition, having been
indicated as a precursor of the Mott insulating phase.

Above the transition, in Sec. 5.4 we have demonstrated that information
about a non-uniform filling of the Mott state is directly accessible using Bragg
spectroscopy. The trapping potential is in fact responsible for the existence of
several Mott and superfluid regions in each gas. This scenario allows a variety
of possible excitations in the insulating islands, since a particle can hop to a site
already multiply occupied. Thus, the presence of a multiply peaked structure
we have observed in the excitation spectrum of the system is clear evidence
of the existence of a shell-like atomic density distribution. The inhomogeneity
is also the origin of a response at extremely low frequencies because of the
sensitivity to the presence of superfluid. Even if Bragg scattering has pro-
vided a probe of ‘global’ properties of the system, since it cannot distinguish
spatially different lattice sites, the measurement performed in the experiment
has suggested that it can also give information about the atomic density shell-
structure in a quadratic potential. Moreover, extra-signal exhibited by the
spectra can be interpreted as a signature of thermally-activated particle-hole
excitations. In the future, a systematic investigation of the observed novel
features combined with new theoretical input should allow the addressing of
open questions regarding those strongly correlated gaseous phases. Of course
this calculation should also include temperature, which, as highlighted by the
measurements reported in this chapter, is expected to be very important in
determining the response of an inhomogeneous Mott insulating state.
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Chapter 6

Inter-band spectroscopy in a
lattice

The presence of a periodic lattice potential remarkably enriches the scenario
of possible excitations that may be activated in a system. Indeed, in any peri-
odic system, it is possible to populate several states corresponding to different
bands by imparting a given momentum to the system. In Chapter 5 we inves-
tigated the excitations of one-dimensional gases in the lowest-energy band of
the lattice potential present along its axis, characterizing the transition from
a superfluid to a Mott insulator state. In this chapter, we want to present two
experiments which exploit high-band Bragg spectroscopy.

In a first preparatory experiment [132], we investigate a relatively simple
system, such as a three-dimensional weakly-interacting Bose-Einstein conden-
sate immersed in a one-dimensional optical lattice. The response of the BEC
in the superfluid phase is drastically modified by the presence of the lattice
[182, 183, 184, 185, 186], both by the opening of energy gaps in the energy
spectrum and by the change of the linear dispersion relation (and thus sound
velocity) of the superfluid. In the mean-field regime of interactions these pe-
culiar features of the excitations of a superfluid BEC in the presence of an
optical lattice are captured by the Bogoliubov theory [38]. The experiment
demonstrates in practice the possibility to excite different bands of the lat-
tice, analogously to the Bloch bands for single particles that have also been
investigated using cold atomic gases [102]. Moreover, we compare the inter-
band spectroscopy with the band calculation in the Bogoliubov-De Gennes
approximation.

In a second experiment [187, 188], high-band Bragg spectroscopy has been
used to investigate short-range phase coherence in a one-dimensional gaseous
Mott insulator. Examples of correlation-induced loss of coherence can be
recognized in low dimensional systems (e.g. 1D Bose gases in the Tonks-
Girardeau regime [33, 34]) or in the presence of optical lattices (e.g. Mott
insulator). In this framework, our interest has been focused on the regime
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where the phase coherence is not completely destroyed. A ‘perfect’ Mott
state (obtained when the ratio of the Bose-Hubbard parameters U/J is infi-
nite) exhibits no phase coherence and is well understood. More challenging
is the case of Mott insulator states at finite U/J where short range coher-
ence between a few lattice sites exists. The latter results from the coherent
admixture of particles and holes on top of the Mott ground-state. In this
work, we propose and realize a scheme to probe short-range phase coherence
properties in many-body lattice systems, especially gaseous Mott insulators,
using two-photon Bragg transitions towards high-energy bands. These results
have triggered a collaboration with the theoretical group of condensed-matter
physics at Weizmann Institute of Science, in order to interpret them in terms
of strong-coupling mean-field theory [189, 190].

6.1 A 3D BEC in a periodic potential

In the first work we use Bragg spectroscopy to probe the excitation spectrum
of a 3D BEC loaded in a 1D optical lattice. We measure the resonance fre-
quencies, the strengths and the widths of the transitions to different bands of
the 1D optical lattice and quantitatively compare the results with Bogoliubov
mean-field calculations [186].

In this experiment, a 3D cigar-shaped BEC of N' 3 × 105 87Rb atoms is
produced in a magnetic trap with axial and radial frequencies ωy = 2π×8.9 Hz
and ωx = ωz = 2π× 90 Hz respectively, corresponding to a chemical potential
µ ' h×0.9 kHz. The condensate is loaded in a one-dimensional optical lattice
aligned in the elongated direction of the cloud (ŷ axis), with variable depth sy.
For low lattice amplitude, tunneling between different sites ensures coherence
of the condensate wavefunction over its whole size, whereas for high lattice
amplitude sy ≥ 15 tunneling is suppressed on the timescale of the experiment,
whereby the gas results in a pile of two-dimensional disks aligned along the ŷ
direction, the phase of which evolves in time independently from each other.

The procedure for Bragg spectroscopy is the same as described in Sect.
3.3.2. In a first set of measurements, we make use of counterpropagating
Bragg beams, imparting a momentum ~qB,1 = ~×16.0(2) µm−1 = 2.12(3)~kL,
corresponding to a quasi-momentum 0.12~kL in the lowest-energy band. In a
second set, obtained using the small angle configuration of the Bragg beams,
the transferred momentum is ~qB,2 = ~× 7.3(2) µm−1 = 0.96(3)~kL. In both
the cases, we measure the energy absorbed by the system, namely the quantity
ωS(q, ω).

In our regime of weak atom-atom interactions, the excitation spectrum of
the BEC in the presence of a 1D optical lattice can be described by the mean-
field Bogoliubov approach [182, 184], from which we calculate the resonance
frequencies νj and the transition strengths Zj to create an excitation in the jth

Bogoliubov band.



A 3D BEC IN A PERIODIC POTENTIAL 147

Frequency (kHz)nd

120

100

80

60

40

20

0

100806040200

20

15

10

5

0

-1.0 -0.5 0.0 0.5 1.0

E
n

e
rg

y
 (

E
R

)

k/kL

(a)

(b)

A
m

o
u

n
t 

o
f 

e
x c

it
a

ti
o

n
 (

a
.u

.)

Figure 6.1: (a) Measured BEC excitation spectrum in the presence of a lattice
with height sy = (22±2). The increase ∆σ of the width of the atomic density
distribution after TOF is monitored as a function of the relative detuning δν
between the two counterpropagating Bragg beams. The data are fitted with
Gaussian functions (gray line). The arrows below the resonances indicate the
corresponding bands, represented in (b) with the same colors (numbers). (b)
Band structure of the excitation spectrum of a BEC in a 1D optical lattice
with sy = 22: First, second, third and fourth bands are represented (black (I),
blue (II), red (III) and green (IV) lines, respectively). The arrows indicate
the processes starting from a BEC at k = 0 and inducing the creation of
excitations with a quasi-momentum 0.12~kL in the different bands.
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Figure 6.2: (a) Band spectroscopy of a BEC in the presence of a 1D optical
lattice: The energy of the resonances is reported as a function of the height
sy of the lattice. The experimental points (blue squares, red circles and green
diamonds) are compared with the numerical calculation of the Bogoliubov
spectrum in the presence of a 1D lattice (solid lines) and the single-particle
Bloch spectrum (dashed lines). The lines correspond to the energy of an
excitation in the second (blue (II) line), third (red (III) line) and fourth (green
(IV) line) Bogoliubov bands. Inset of (a): Zoom of the graph (a) for low values
of sy. (b) Relative strength of the excitations in the j = 2, j = 3 and j = 4
bands. Symbols and colors are the same as in (a).

We first discuss the results obtained with the configuration of counter-
propagating beams, i.e., for a transferred momentum ~qB,1 = 2.12~kL. The
induced two-photon transition is characterized by a measured Rabi frequency
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for the BEC in the absence of the optical lattice ΩR ' 2π×1 kHz for the typical
power PB and relative detuning δν of the Bragg beams used in the experiment.
A typical Bragg spectrum is presented in Fig. 6.1 (a) corresponding to a lattice
height sy = (22±2). The spectrum exhibits multiple resonances corresponding
to the creation of excitations in the different Bogoliubov bands as shown in Fig.
6.1 (b). These bands have been identified by comparing them with Bogoliubov
calculations, as explained below, but also via a band mapping technique which
we will describe in Sec. 6.1.2.

Since the central frequencies of the observed resonances largely overcome
their width (e.g. for sy = 22, the central frequency of the first resonance is
ν1 ∼ 23 kHz, and its half width at half maximum is ∼ 1.1 kHz), ωS(q, ω) is
indistinguishable from S(q, ω) within the experimental resolution, the latter
being expected to have a Gaussian profile [121]. From a Gaussian fit of the ob-
served resonances we extract the central frequency, the width and the relative
strength of the transition towards the corresponding band. In Fig. 6.2 (a), we
plot the energy values corresponding to the measured central frequencies as a
function of sy. The vertical error bars come from the result of the fitting pro-
cedure while the horizontal error bars correspond to possible systematic errors
in the lattice calibration (estimated ≤ 10%). For large enough amplitude sy

of the periodic potential we observe up to three different resonances.

6.1.1 Comparison with Bogoliubov bands

The experimental data has been compared with the numerical results of a
Bogoliubov calculation (solid lines in Fig. 6.2 (a)). In particular, for low
amplitudes of the 1D lattice (sy < 6) the agreement of the resonance energies
with the Bogoliubov bands (full lines) is better than with the single-particle
(dashed lines) Bloch bands (see inset in Fig. 6.2 (a)). For larger amplitude of
the 1D lattice, we can not explicitly distinguish between the Bogoliubov and
Bloch results. This comes from the experimental uncertainty on the calibration
of the lattice amplitude.

Over the entire range of sy values used in this work, we observe a resonance
corresponding to an excitation created in the third band j = 3 (red circles in
Fig. 6.2). For larger lattice amplitudes two other resonances appear, respec-
tively for sy > 4 and sy > 20, corresponding to an excitation in the j = 2
band (blue squares in Fig. 6.2 (a)) and in the j = 4 band (green diamonds in
Fig. 6.2 (a)). This demonstrates the possibility to excite, in a periodic system,
several states for a given momentum transfer [102]. For weak optical lattices,
the most efficient process consists of creating an excitation in the j = 3 band
since the excitation energy of this band is continuously connected as sy → 0
to that of the BEC in the absence of the 1D optical lattice at the transferred
momentum ~qB,1 = 2.12~kL. On the contrary, the possibility to excite states
in the second and fourth bands of the optical lattice requires a large enough
amplitude sy. These observations can be quantified in terms of the strength Zj
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Figure 6.3: Rms width of the resonances j = 2 (blue squares) and j = 3 (red
circles) as a function of sy. The gray region corresponds to the experimental
rms width (with its uncertainty) for the BEC in the absence of the lattice
(sy = 0). The blue (II) and red (III) lines are, respectively, the bandwidth
of the second and the third band, calculated in the mean-field Bogoliubov
approach.

of the different excitations, which can be extracted from the energy spectrum.
The strengths Zj are proportional to the integral

∫
dω Sj(q, ω) with Sj(q, ω)

being the structure factor corresponding to the creation of an excitation in
the Bogoliubov band j [184]. From Eq. (3.23) and assuming that ωj is much
larger than the width of the resonances of Sj(q, ω),we obtain

Zj(q) ∝
∫

dω Sj(q, ω) ∝ 1
ωj

∫
dω Ej(q, ω) ≡ fj . (6.1)

In the experiment, we extract the quantity fj from a Gaussian fit of the
different resonances. Normalizing the sum of these quantities to one for the
first three observed resonances (f2+f3+f4 = 1) allows direct comparison with
the relative strengths Zj/(Z2 + Z3 + Z4) for j = 2, 3, 4. Comparison between
the experimental data and the calculation reveals a reasonable agreement (see
Fig. 6.2 (b)).

From the Gaussian fit of the experimental spectra (see Fig. 6.1 (a)), we
also extract the rms width of the resonances j = 2 and j = 3 with the results
plotted in Fig. 6.3. Different sources can contribute to enlarge the observed
resonances. In the absence of an optical lattice (sy = 0), finite-size Doppler
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Figure 6.4: (a) Excitation spectrum of a BEC in the presence of a 1D lat-
tice with height sy = 11 at a transferred momentum 0.96~kL along the ŷ
direction. The arrows indicate the corresponding bands, represented in (b)
with the same colors. (b) Resonance energy in the band j = 1 (black circle),
j = 2 (blue squares) and j = 3 (red circles) as a function of the transferred
quasi-momentum for a fixed value of the lattice height sy = (11 ± 1). The
experimental points are compared with the Bogoliubov bands for sy = 11
(black (I), blue (II) and red (III) dashed lines); the solid lines correspond to
the bands for sy = 10 and sy = 12 to take into account the 10% uncertainty
of sy.

broadening and mean-field broadening [121] give a width of (0.36± 0.11)kHz,
in agreement with the expected value ' 0.26 kHz. However, the largest con-
tribution is introduced by the Bragg spectroscopic scheme, essentially due to
power broadening (∆νP ' 1 kHz)1 The total resonance width can be obtained
by quadratically adding up all these rms contributions. In the presence of the
optical lattice we observe that the widths of the resonances corresponding to
the excitations in the bands j = 2 and j = 3 lie within the experimental range
of the resolution as expected for a coherent system, except in the case of j = 3
for large amplitudes of the lattice (sy > 20) where the width is much larger.
We attribute these larger widths at high amplitude of the 1D lattice to the
long tunneling times (∼ 0.11 s for sy = 20) implying that the system is not
fully coherent along the ŷ direction on the time scale of the experiment. The
loss of coherence spreads the population of quasi-momenta across a larger frac-
tion of the Brillouin zone and, for large amplitude sy, one expects the width
of the resonances to approach the bandwidths. In Fig. 6.3 we have plotted
the bandwidths of the j = 2 and j = 3 bands (blue (II) and red (III) straight

1The broadening resulting from the atom-light interaction time (∆νt ' 167 Hz) is negli-
gible.
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lines). At sy = 27 the width of the resonance j = 3 equals the bandwidth
confirming this interpretation.

We also perform the experiment with a different configuration of the Bragg
beams corresponding to imparting a momentum along ŷ ~qB,2 = 0.96~kL. In
Fig. 6.4 (a) an excitation spectrum in the presence of an optical lattice of
height sy = 11 is depicted. Note that a first resonance at low frequency is
visible corresponding to an excitation with non-zero momentum within the
lowest energy band (j = 1). Such a resonance is not observed using counter-
propagating Bragg beams because the strength of this transition is negligible
for ~qB,1 = 2.12~kL. Since the momentum of the excitation has been changed
from the previous measurements, the frequency of the resonances are shifted
according to the dispersion relation of the different energy bands of the system.
In Fig. 6.4 (b) we report the frequency of the resonances j = 1, j = 2 and
j = 3 for the two values of quasi-momentum used in the experiment (0.12~kL

and 0.96~kL). The region included between the straight lines indicates the
experimental uncertainty, related to the lattice calibration. The experimental
points are in good agreement with the numerical calculation of the Bogoliubov
bands for sy = 11 (dashed lines in the Figure) within the error bars.

6.1.2 Band mapping of a 3D BEC in a lattice

In order to identify the band towards which atoms are excited by the Bragg
pulse, we implement a band mapping as in [141]. The Bragg pulse has been
applied to populate excitations in a given band. Unlike usual time-of-flight
images (see Sec. 2.4.1), where all the trapping potentials are switched off si-
multaneously, the magnetic trap is switched off abruptly, whereas the lattice
is ramped down on a timescale of some ms. In practice, the light intensity is
extinguished with a 2 ms-long exponential ramp with time constant of 0.5ms.
The procedure is sketched in Fig. 6.5 (a). This timescale is long enough to
avoid recombination between different bands, but short with respect the char-
acteristic time associated with the atomic motion in the lattice site, namely,
the inverse of the bandwidth of the lowest energy band (see Sec. 2.2.3). There-
fore, the band population is preserved and the quasi-momentum states of the
lattice gas are projected onto momentum states of the free particles released
from the trap. After a time-of-flight of the atomic cloud (typically, 21ms), the
atomic density distribution reflects the band population in the momentum
space.

Figure 6.5 (b)-(d) shows the band mapping images of a 3D BEC loaded
in a 1D optical lattice with amplitude sy = 9 probed by creating a Bragg
excitation with momentum 0.96~kL. When the Bragg pulse is set out of res-
onance, TOF images show a single peak which covers a fraction of the first
Brillouin zone 2kL, and no population is detectable in higher-order Brillouin
zones, as shown in Fig. 6.5 (b). This demonstrates that only the lowest-
energy band is populated, whereas the higher bands are empty. On resonance,
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Figure 6.5: (a) Experimental time sequence of the band-mapping technique.
(b)-(d) Band population of 3D BEC in a 1D optical lattice of amplitude sy = 9
after a Bragg excitation with frequency δν = 8 kHz (b), δν = 15 kHz (c) and
ν = 37.4 kHz (d). (e) Density profile at δν = 38 kHz integrated along direction
ẑ: The plot shows that the excited atoms populate the third Brillouin zone.

a small lateral peak appears corresponding to excited atoms, as displayed in
Fig. 6.5 (c)2. The density profile along the ŷ-axis, integrated over direction
ẑ, is shown in Fig. 6.5 (d) when a resonant Bragg pulse creates excitations
in the third energy band (δν = 38 kHz). The central peak around q = 0
corresponds to the non-excited cloud. The momentum of the excited atoms
lies between 2~kL and 3~kL, proving that these atoms are excited to the third
band of the optical lattice. Fitting the position of the diffracted cloud with
respect to the non-diffracted one with a Gaussian function we have measured
momenta of 1.1(1)~kL and 2.8(1)~kL for a Bragg pulse corresponding, respec-

2The parameters of the Bragg excitation have been optimized in order to produce an
observable number of excited atoms out of the non-diffracted cloud. More precisely, we
shorten the time duration and increase the intensity of the Bragg pulse, compared to the
values used to reconstruct the Bragg spectra.
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tively, to the transition towards the second and third energy band of the lattice.
These results are in good agreement with the expected values 1.04(3)~kL and
2.96(3)~kL corresponding to a momentum transfer ~qB,2 = 0.96(3)~kL given
by the Bragg beams in our configuration3.

6.2 Inter-band spectroscopy of inhomogeneous Mott
states

In this second work, we use inter-band Bragg scattering to investigate the
coherence properties of an array of one-dimensional Mott-insulating gases.

Recently, this effect has been investigated in cold atom experiments through
the measurement of interferences after a time-of-flight [40]. Coherence prop-
erties can also be inferred from the momentum distribution as the latter is the
Fourier transform of the first-order spatial correlation function [139]. In this
respect, light scattering experiments allowing energy-resolved and momentum-
resolved spectroscopy constitute an outstanding technique as demonstrated
in [107] to measure coherence length in quasi-condensates. Yet, obtaining
information about first order correlations from light scattering requires the
experiment to be performed in specific regimes that depend on the type of
scattering processes. In [107] Bragg spectroscopy has been used with a large
momentum transfer. Under this condition the response to the light scattering
is dominated by single-particle effects, therefore implying that Bragg spec-
troscopy, sensitive to density-density correlations, actually reduces to probing
the momentum distribution. In the opposite regime of small momentum trans-
fer, Bragg spectroscopy probes collective modes of Bose-Einstein condensates
[121].

For a Mott insulator, we used Bragg spectroscopy to investigate the re-
sponse of inhomogeneous Mott insulating states within the lowest energy band
and to study their properties on an energy scale of the order of the Mott gap
∆ph as described in chapter 5. Excitations to higher energy bands have been
recently reported in [191] where the authors focused on the lifetime and the
coherence of the excitations.

Here, we study the response of inhomogeneous Mott insulating states on a
large energy scale, focusing on the spectra corresponding to excitation to high-
energy bands of the optical lattice, for a momentum transferred by the Bragg
beams ~qB = 0.96(3)~kL. This response to the high-energy Bragg scattering
involves the excitation of a continuum of particle-hole pairs, where the hole
lives in the many-body ground-state of the Mott insulator, whereas the excited
particle populates a high-energy band. The supplied momentum qB and energy

3Note that this technique is not suitable for measuring the momentum transfer for transi-
tions within the lowest energy band, since the finite width of the non-diffracted atoms covers
a relevant fraction of the first Brillouin zone.
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~ω is shared by the particle and the hole excitation. Compared to the intra-
band spectroscopy presented in chapter 5, these inter-band measurements offer
an important advantage. The created particle and hole have very little spatial
overlap. As a matter of fact, the typical energy transferred for excitations in
high energy bands is at least one order of magnitude larger than the Mott
gap (see details later), whereby the excited atoms can be considered as not
correlated with the non-excited atoms lying in the lowest energy band, to a
first approximation. Besides, the Bragg excitation being weak, only a small
fraction of the atomic cloud is excited. Therefore, the small number of atoms
excited in the high energy bands can be considered as non-interacting particles.
This point makes the study of the high-energy excitation spectrum of a Mott
insulating state much different from that restricted to the lowest energy band
where atom-atom correlations play a crucial role. Indeed, the response of the
Mott state to the Bragg excitation in high-energy bands involves the first-order
correlation properties of the hole in the initial many-body state. The response
signal corresponding to initial quasi-momenta close to zero gives information
about the coherence of the hole as we will show below. In addition, the spectral
properties of the lowest band are mapped onto a relatively large energy range,
thereby improving the spectral resolution.

6.2.1 Multi-band spectrum of a Mott insulating state

To investigate the peculiar feature of the response of the 1D Mott insulator,
let us compare the spectrum of an array of 1D gases loaded in a lattice with
amplitude sy = 9 with that of a 3D BEC in the same optical lattice, as
discussed in Sec. 6.1. This comparison is illustrated in Fig. 6.6 for sy =
9, the typical tunneling time of atoms in a lattice being ~/J ∼ 12ms. As
for the 3D BEC, since the tunneling time is comparable with the time scale
of the experiment, long-range phase coherence is not completely lost. The
quasi-momentum distribution in the presence of the optical lattice has a small
extension around the center of the first Brillouin zone k = 0. Therefore the
resonance in the excitation spectrum is narrow since the resonant condition for
a two-photon transition between momentum states ~k = 0 and ~k′ = ~qB is
well defined in energy. Our experimental resolution is good enough to observe
that this spread in energy is a small fraction of the energy bandwidth. As
shown in Fig. 6.6 (a), the experimental spectrum of this phase-coherent system
(sy = 9, s⊥ = 0) exhibits several well-defined resonances corresponding to
excitations created in the different lattice bands.

The case of the array of 1D gases loaded in a 1D optical lattice is different,
in particular when the amplitude of the longitudinal lattice is large enough for
the 1D gases to be in the Mott-insulating regime. On the one hand, strong
atom-atom correlations are present and are responsible for peculiar features
of the Mott state such as the existence of an energy gap ∆ph in the excitation
spectrum. On the other hand, the quasi-momentum distribution of a Mott
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Figure 6.6: (a) Bragg spectrum of a 3D BEC loaded in a 1D optical lattice
at the amplitude sy = 9 (blue dots) and for a momentum transfer 0.96(3)~kL.
The solid blue line is a fit with three Gaussian functions. (b) Bragg spectrum
of an array of 1D BECs (s⊥ = 35) loaded in a 1D optical lattice of amplitude
sy = 9 (red dots), i.e. the 1D gases being in the Mott-insulating state, and
for a momentum transfer 0.96(3)~kL. The red solid line is a guide to the
eye. (c) Energy bands of single particles in a periodic potential of amplitude
sy = 9. The gray areas cover the entire energy distribution of each band and
are reported in Figs. 6.6 (a)-(b).

insulator is spread over the whole first Brillouin zone (−kL < qi,y < kL)
as a consequence of the spatial localization of atoms [43]. Deep enough in
the Mott regime, this quasi-momentum distribution is expected to be almost
homogeneous over the interval [−kL; kL]. Therefore two-photon transitions
towards the excited bands can occur from any initial quasi-momentum, and
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Bragg spectroscopy can induce excitations on a large energy interval, of the
order of the energy bandwidth of a single-particle. In this picture, fixing
the frequency between the Bragg beams allows one to selectively excite only
a fraction of the atomic cloud determined by the resonance condition: For
a given energy transfer lying in the energy interval of an excited band, one
can always find a populated quasi-momentum state matching the resonance
condition for being excited.

Figure 6.6 (b) depicts a spectrum of 1D gases in the Mott insulating state
(s⊥ = 35, sy = 9). The energy scale is identical to that of the 3D BEC loaded
in a 1D optical lattice along the y-axis with the same amplitude sy = 9. On
this energy scale, the spectra of 1D Mott insulating states exhibit several large
resonances that can be identified with transitions towards different energy
bands of the optical lattice. The experimental measurements are reported with
single-particle energy bands as gray areas. The lowest-energy signal (ν < 10
kHz) extends over a range of frequencies larger than the bandwidth of the
single-particle lowest energy band. This is related to the presence of atom-
atom correlations. The energy transfer corresponding to transitions towards
high energy bands is tens of kHz, much larger than the Mott gap ∆ph ' h× 2
kHz. Identifying the final momentum state of atoms making a contribution to
the different parts of the excitation spectrum of Fig. 6.6 (b) should allow us
to determine which band the excitations belong to. For this purpose we have
used the same band mapping technique that we described in Sec. 6.1.2.

6.2.2 Band population in the Mott insulating states

Figure 6.7 (a) is an experimental measurement of the band population of an
array of dephased 1D Mott insulators realized in a lattice with amplitude
s⊥ = 35, sy = 9, once it has been excited via resonant Bragg scattering at a
frequency ν = 34kHz. The square density peak on the left is made up of the
unscattered atoms, whereas the small cloud on the right consists of excited
atoms which have been ejected from the cloud. Unlike a 3D BEC in the same
lattice along the ŷ direction (sy = 9) discussed in Sec. 6.1.2, the distribution of
the population of quasi-momenta in the first Brillouin zone is flat. This proves
that in a Mott insulating phase atoms cover homogeneously all the states in
the lowest energy band. In other words, the system shows no phase coherence
between different lattice sites. The profile integrated along the ẑ direction is
shown in Fig. 6.7 (b). As in the case of Fig. 6.5, the diffracted atoms are
clearly visible and lie in the third band of the optical lattice (2kL < q < 3kL).

By applying the same fitting procedure as in the case of Fig. 6.5 (b), we
extract the momentum ~q of the diffracted atoms. We repeat this procedure
over the entire frequency range corresponding to the transition towards the
third and fourth bands, i.e. varying the relative detuning δν of the Bragg
beams from 27 to 45 kHz. Some images at sy = 10 and for different frequencies
are reported in Fig. 6.8 (a). The results are summarized in Fig. 6.8 (b), where
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Figure 6.7: (a) Band population of an array of 1D BECs loaded in a 3D optical
lattices of amplitudes (s⊥ = 35, sy = 9) after a Bragg excitation with frequency
δν = 34kHz (false colours). (b) quasi-momentum distribution profile derived
from the previous image by integrating along the ẑ direction. The horizontal
scale is normalized to the momentum ~kL of the longitudinal optical lattice.

we plot the energy transfer hν given by the Bragg beams as a function of the
momentum of the excited atoms measured using the band-mapping technique.
Figure 6.8 (c) shows the same results compared with the data for sy = 8, 9.
These results are shown together with the corresponding dispersion relation
of single particles in the presence of a periodic potential4. This demonstrates
that: (i) the excitations observed over a large energy scale between 27 and
36 kHz correspond to transitions towards the third energy band of the optical
lattice, whereas the excitations in the range 37− 45 kHz belong to the fourth
band; (ii) the quasi-momentum distribution of the inhomogeneous MI state
extends over the entire lowest lattice band since the entire energy band can
be mapped using a Bragg excitation with a fixed momentum transfer.

6.2.3 High-energy bands: Towards novel information about
the Mott state

Using the band-mapping technique we have demonstrated that the different
parts of the spectrum measured in a Mott insulating state (see Fig. 6.6 (c))
can be attributed to the different energy bands induced by the optical lattice.
At high energies, e.g. for excitations into the third and the fourth bands,
the frequency range of the Mott excitations corresponds to the bandwidth of

4The dispersion relation in the lowest energy band can be considered as flat on the energy
scale of Fig. 6.8. In Fig. 6.8 we have subtracted this constant energy offset to the bare
calculation of the single-particle dispersion relation since it does not enter the two-photon
transition process.
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Figure 6.8: (a) Images of band mapping for a Mott insulator in a lattice with
amplitude sy = 10, excited at increasing frequencies ν (top to bottom). (b)
Energy dispersion as a function of the quasi-momentum derived from band
mapping of a Mott state after a Bragg pulse: Experimental measurements
(dots) and single-particle band dispersion relation (straight lines) at sy = 10
with 10% of uncertainty (shaded area) due to the lattice calibration; the red
and blue colors are associated respectively with excitations into the third and
fourth band of the lattice. (c) Third-band dispersion relation for sy = 8, 9, 10
(red dots, purple dots and orange triangles, respectively): Experimental points
from band mapping and free-particle band calculation. The vertical error
bars are given by the experimental resolution in frequency, set by the Bragg
pulse duration. Horizontal error bars are the standard deviations, typically
calculated from 5 images.
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the single-particle spectrum. As we will discuss below, the peculiar lineshape
of the response within a given band can be related to the properties of the
many-body state which is probed. The response of the Mott insulating state to
the Bragg spectroscopy shows a structure in amplitude within the third band
(from 25 to 36 kHz) in Fig. 6.6 (b). In particular, we observe an increased
response at both edges of the band. A peak is mostly evident close to the
higher-energy edge, the position of which corresponds to a Bragg transition
from an initial quasi-momentum k = 0. Now we schematically discuss a way
to interpret these features, which we are working on in collaboration with E.
Altman and S. Huber [188].

To a first approximation, we can consider the atoms excited by the Bragg
beams in high-energy bands not to interact with the non-excited atoms since
their typical energy (corresponding to a frequency of several tens of kHz) is
much larger than the particle-hole excitation energy ∆ph ' h × 2 kHz. To
obtain a more quantitative estimate of the interaction between the particles
residing in the third band and the many-body ground state, one can solve the
two-particle problem assuming a Gaussian wavefunction, which is the eigen-
state of the harmonic approximation of the cosine potential [192]: In this
approximation, the inter-band interaction amounts to a few percents of the
bandwidth of the third band (the latter being an estimate of the kinetic energy
of the excited particle). Moreover, as already mentioned, with our experimen-
tal parameters only a minor fraction of the atoms is excited. Therefore the
transition induced by the Bragg beams in high-energy bands can be consid-
ered to happen between an initially strongly correlated state (Mott state) and
single-particle states: The two-photon transition creates a hole in the Mott
state and populates highly energetic single-particle states. In other words, the
response of the gas to the Bragg pulse gives access to the one-particle spectral
function of the Mott state and involves both the dispersion relation of the hole
in the Mott phase and the density of states to populate the excited band from
the initial correlated phase. Information about the one-particle spectral func-
tion of solid-state systems has proved to be crucial to understand properties of
correlated states such as high-Tc superconductors [113] and recent proposals
have demonstrated the interest of measuring the one-particle spectral func-
tion for ultracold fermions [47]. Information about the one-particle spectral
function obtained from the high-energy band spectra might shed new light
on the bosonic Mott state, in particular close to the superfluid-to-insulator
transition.

6.2.4 Hole-coherence in 1D gaseous Mott insulators

Following the line presented above, we will extract information on the coher-
ence of the hole created in the many-body ground state, by comparing the
experimental data with a theoretical model developed in collaboration with
the theoretical group of condensed matter of the Weizmann Institute of Science
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[188].
Essentially, the theoretical model consists of calculating the dynamic struc-

ture factor S(q, ω) for inter-band transitions to find the transferred energy
∝ ωS(q, ω)∆tB. The approach makes use of the strong-coupling mean-field
analysis [189, 190] and generalizes it to the inter-band setup here. It turns
out that the dynamical structure factor depends on the density of states, that
manifests itself in the Van Hove singularities at the edge of the Brillouin zone,
and on a ‘coherence’ term, which determines an unbalance of the signal at the
two boundaries of the third band.

The use of mean-field results in one spatial dimension is here justified
thanks to two reasons. (i) It is the abundance of low-energy excitation which
gives rise to power-law correlations and demands for theories beyond mean-
field. In the gapped Mott phase this is not the case and a mean-field approx-
imation is a good starting point. (ii) Bragg spectroscopy at large momentum
(qB ≈ kL) probes correlations on a small length scale, which are well captured
by the mean-field analysis.

In brief, S(q, ω) has been calculated for energies beyond the first Bloch
band. For this, we need to express the density as

ρ(y) = ψ�(y)ψ(y) =
∑

j,j′,r,r′
w∗jr(y)wj′r′(y)b�jrbj′r′ .

Here j and j′ are band indices, r and r′ site indices, so that wjr(y) is the Wan-
nier function of the jth band centered at y = yr. From now on, we only consider
transitions from the first to the jth band. Furthermore, we assume that the
lattice is sufficiently deep that the overlap between the Wannier functions of
neighboring sites is small. Thus, we can express the Fourier components of
the density (ρ(q) =

∫
dx ρ(x) exp(−iqx)) as

ρj(q) = n̄ F1j(q)
∑

r

e−iqRrb�jrb
�
1r, (6.2)

n̄ being the mean filling of the Mott insulator, and F1j(q) the overlap factor
between the first and the jth bands. The calculation of the dynamical structure
factor defined in Eq. (3.16) gives:

Sj(q, ω)
Mn̄2

= |F1j |2
∫

v0

dk

v0

δ (~ω − ~ωh(k)− εj(k + qB))√
1−

(
J1/Jc cos(ka)

2−J1/Jc cos(ka)

)2
. (6.3)

The integral runs over the first Brillouin zone with volume v0 = 2π/a, where
a = λ/2 denotes the lattice constant, and M the number of occupied lattice
sites. Besides, ~k and ~ωh(k) are the momentum and energy of the hole created
in the ground state, and k′ = k + qB is the momentum of the excited particle,
determined by imposing momentum conservation, and εj(k+qB) its energy. J1
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is the tunneling energy of the particles in the first band and Jc ≈ U/(8n̄) is the
critical hopping, corresponding to a critical lattice depth sy ∼ 5.1, consistent
with the experimental findings presented in chapter 5. The energies of the
hole in the first band and the particle in the jth band are given by

~ωh(k) =
U

2

√
1− (J1/Jc) cos(ka), (6.4)

εj(k) = εj(0) + (−1)j+12Jj cos(ka), (6.5)

Jj being the tunneling energy of the particles in the jth band.
An important aspect is the presence of the two-particle density of states

(DOS) δ (~ω − ~ωh(k)− εj(k + q)) [190], which can strongly influence the re-
sult. As a matter of fact, the DOS shows two symmetric divergences, at both
the lower and upper edge of the band, the so-called Van Hove singularities
[143], corresponding to creating a hole at k ≈ 0 and k ≈ kL, respectively,
where the derivative of the energy with respect to the momentum vanishes. In
finite systems strong divergencies are suppressed by the uncertainty in k and
we use a cut-off in the calculation of the dynamic structure factor.

Crucial to the discussion of S(q, ω) is the presence of the factor

1√
1−

(
J1/Jc cos(ka)

2−J1/Jc cos(ka)

)2
, (6.6)

which reflects the coherence of the hole in the Mott insulator [190]. Approach-
ing the phase boundary (J1 → Jc), the coherence builds up when the hole is
created at k ≈ 0. This effect is reflected in a divergence of S(q, ω) at the edge
of the Brillouin zone, since a hole in k ≈ 0 corresponds to an excited particle
at k + qB ≈ qB ≈ kL.

The comparison of experimental spectra and strong-coupling mean-field
results is shown in Fig. 6.9 for different Mott states with sy ranging from
sy = 7 to sy = 14. To measure these spectra in the experiment, we have made
use of slightly different parameters for the Bragg excitation, e.g. slightly
different intensity and pulse duration, as the amount of excitation drastically
decreases when going deeper into the Mott regime (see inset of Fig. 6.9). We
stress that what we refer to as normalization procedure takes into account the
scaling of the amount of excitation with the parameters of the Bragg excitation
so that the relative amplitudes of the experimental spectra can directly be
compared with one another [187].

To compare the theoretical calculations to the experimental data a unique
scaling factor is used for the entire set of data. Indeed, both in the theoretical
spectra on one side and in the experimental spectra on the other side, relative
amounts of excitation are fixed by the system under study. We arbitrarily
choose the amplitude of the second band at sy = 10 (resonance around ~ω ∼
5ER) to obtain the scaling factor and rescaled all spectra with it. This allows
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Figure 6.9: Experimental spectra of excitation for different Mott states with
sy = 7, 8, 9, 10, 14. The solid lines (shaded area to zero) are calculations from
our model. All curves are offset in the vertical direction for an easier reading
and the zero amount of excitation is marked with a dotted line. Inset: Integral
of the signal observed in the third band, in the experiment.

us to compare experiment and theory as done in Fig. 6.9 where the solid
lines are the result of the calculations. The position and the amplitude of the
response in the first excited band show a good quantitative agreement between
the experimental spectra and the calculated spectra over the whole range of
U/(J1) tested. As the energy scale of the third band is much larger than that
of the first one, we can better resolve the structure of the response appearing
within the energy band. Therefore we will now concentrate on the response
in the third band.

Figure 6.10 depicts both the experimental (dots) and the calculated (solid
lines) spectra in the energy range corresponding to transitions towards the
third band. A clear modulation of the amplitude of the response is observed
in the experiment as expected from our calculations. As discussed previously,
this modulation can contain information about the state of the Mott insulator.
Indeed we can recognize the two contributions of the divergences in the two-
particle density of states corresponding to the Bragg transition and the non-
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Figure 6.10: Excitation spectra corresponding to transitions from a Mott insu-
lator towards the third energy band. The amplitudes of the lattice sy defining
the Mott state are (a) sy = 8 (U/J1 = 18.6), (b) sy = 9 (U/J1 = 24.4), (c)
sy = 10 (U/J1 = 31.8). The solid lines are the results of our calculations.

zero coherence of the hole in the Mott insulator. Note that the van Hove
divergences are smoothed in the experiment due to finite-size effects and they
can be clearly seen in the spectra of Fig. 6.10 as relatively wide resonances.
For our calculation, we chose the cut-off such that the opposite edge is nearly
featureless. For the chosen value of the imparted momentum ~qB = 0.96~kL,
close to the zone boundary, and coupling to the third band (and to other odd
bands) the hole in the first band explores small k-values for the highest energies
of the spectra. In the corresponding energy range, we expect and observe an
enhanced response signal (see Fig. 6.10). Therefore the height and the width
of the high-energy peak in the spectra of Fig. 6.10 can be directly related to
the coherence of the hole. Figure 6.10 (a)-(c) show this role played by the
coherence of the hole in the response. For even bands this ‘sharp’ feature is
expected at the lower band edge. Let us mention that also the superfluid lobes
separating the Mott regions with different fillings could partially contribute to
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the response, even if we expect that the number of atoms which do not belong
to the Mott state is quite small (∼ 15% for sy = 9, ∼ 5% for sy = 14). In
fact the superfluid regions have a narrow initial quasi-momentum distribution
centered around k ≈ 0 that would give a response at the upper edge of the
third band, for the momentum we transfer to the system.

When entering deeper in the Mott regime (see, for example, the spectrum
at sy = 14, corresponding to U/J1 = 83.4 in Fig. 6.9), the decrease in the
experimental signal-to-noise ratio prevents us from measuring the response of
the system to the Bragg excitation.

6.3 Conclusions

In conclusion, we have measured the response of two different periodic systems
probing the inter-band excitations induced by inelastic light scattering. In
the first experiment, we explore the response of a weakly-interacting three-
dimensional condensate loaded in a 1D optical lattice. Changing the relative
angle of the Bragg beams, we investigate excitations created both at the center
and at the edge of the Brillouin zone. The results are in good agreement
with mean-field Bogoliubov calculations. These inter-band measurements have
been used as a reference to reveal the properties of a strongly correlated system,
such as one-dimensional Mott insulating gases, that we investigated in a second
experiment. In contrast to the case of a 3D BEC loaded in a 1D optical lattice,
the spectra of these Mott states exhibit broad resonances in energy. The use of
a band-mapping technique after applying the Bragg pulse allows us to identify
these resonances with transitions towards the different energy bands induced
by the optical lattice. We also give direct experimental evidence that the
momentum distribution of Mott states spreads over the entire first Brillouin
zone. This property enables us to reconstruct the dispersion relation of the
high energy bands using a Bragg excitation at a fixed momentum transfer.
Finally, the amplitude of the response of the inhomogeneous Mott insulating
state in high-energy bands exhibits peculiar structures within a single excited
band. The comparison with a model based on strong-coupling mean-field
analysis has revealed the role of the Van Hove singularities in light scattering
experiment with cold atoms. An enhanced response signal at the upper edge
of the third band could be directly related to the coherence of the hole-like
excitation created in the Mott state, demonstrating the validity of our scheme
to measure first-order correlations in many-body lattice gases.
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Outlook and prospects

This thesis has been aimed at characterizing strongly-correlated quantum sys-
tems in one dimension. We have approached this problem by realizing one-
dimensional ultracold gases trapped in optical lattices, and investigating them
via inelastic light scattering.

The great interest that one-dimensional systems have attracted in the last
decades is related to the special role played by interactions in reduced dimen-
sionality, that produces features drastically different from ‘normal’ physics of
three-dimensional interacting systems. This has driven an enormous amount
of experimental research in different fields, from material science to chemistry,
which has resulted in the realization of a large variety of 1D systems. However,
most of the 1D compounds that have been studied or synthesized are in some
sense complicated materials, where many different phenomena occur at once.
Some agreement between the theoretical studies and the experimental obser-
vations can be reached but many open questions still remain. In particular,
for most of these realizations, it is not straightforward how to quantitatively
relate the specific microscopic properties with the general description in terms
of the Luttinger-liquid universality class, that would predict the response of
the system to weak perturbations and its correlation functions.

To overcome these complications, it would be a great opportunity to have
other reference systems in which some degree of simplification occurs. Ultra-
cold atoms in optical lattices can play this role. They offer almost total control
over the lattice characteristics and over the fundamental physical parameters
that govern the systems, such as the interaction strength. Thus, a strict re-
lation between experiment and theoretical description is possible. As a major
advantage, the microscopic properties of the lattice gas (e.g. particle mass,
density, scattering length) can be directly related to the Luttinger parameter
K which describes the universal collective behaviour of all the 1D systems.
In addition, it is a virtually perfect rendering of the Hubbard-type models.
Then, one can add the other ingredients which make the picture more com-
plicated (e.g., disorder) in a controlled way. This is in line with the original
idea proposed by R. Feynman [193] and later demonstrated by S. Lloyd [194]
to realize a quantum simulator of models describing many-particle quantum
systems that are beyond the reach of any classical computer. Despite some ex-



168 OUTLOOK AND PROSPECTS

periments demonstrating few-qubit quantum computers as a proof-of-principle
[195, 196], large-scale quantum computers look not to be getting close, with
scalability hardly attainable. Instead, lattice gases provide full-scale quan-
tum simulators, which are already a specialized type of quantum computer,
precisely aimed at simulating condensed-matter models [149, 197].

In this context, it is crucial to better characterize the strongly-correlated
quantum phases that Bose gases realize in one dimension. This thesis has been
intended to add new elements for the comprehension of it. As a probe tech-
nique, we used mainly inelastic light scattering (Bragg spectroscopy). As is
commonly performed in solid-state physics, the use of such a probe allowed us
to gain important information about the atomic many-body state, by investi-
gating its response in the linear regime to an excitation at nonzero momentum.
In this regime, Bragg spectroscopy gave us access to the dynamical structure
factor S(q, ω) and the one-particle spectral function A(q, ω) of the system.

In a first experiment, we studied the coherence properties of an array of
1D Bose gases. We defined and measured via Bragg spectroscopy an effective
coherence length as a mean property of the whole array. In defining it, we were
supported by the results of our simulations reproducing the response of the
array, which showed the system to exhibit a single broad resonance dominated
by thermal effects. In addition, we proposed and demonstrated time-of-flight
absorption imaging to be a simple but powerful method to study the coherence
properties in 1D systems with short coherence length. In this experiment, the
measurement of the coherence length of the system also allowed an estimate
of temperature, which is in general difficult to measure in a lattice gas. Only
very recently, single-site resolved detection has given access to the tempera-
ture of strongly correlated systems such as a Mott insulator, by measuring
the variance on the lattice-site occupation, which is related to temperature
through the fluctuation-dissipation theorem [164]. However, all the primary
thermometers – i.e. the ones which employ intrinsic properties of the system
for measuring temperature – are affected by the approximations of the theory
on which they are based. In exploring regimes for which no complete theory
is at our disposal, one must have multiple primary thermometers based on
different theoretical approximations, and then check for their consistency at
low temperatures [149]. This can be the case, e.g., for 1D systems where both
thermal effects and interactions play a relevant role and none of them can be
neglected. On this prospect, our measurement provides one of these primary
thermometers.

Then, a second experiment was dedicated to the study of 1D Bose gases
immersed in a periodic lattice potential along their axis. For the values of the
parameter γ – i.e. the ratio of interaction to kinetic energy – experienced by 1D
gases (γ ∼ 0.2−0.8), the system was well described by a Bose-Hubbard Hamil-
tonian. By progressively increasing the lattice depth, the interaction-induced
transition from a superfluid state to an inhomogeneous Mott insulator state
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was investigated. The complexity of such correlated quantum phases appears
in the dynamical structure factor we measured via Bragg spectroscopy. From
that, we identified the threshold value of the interaction strength above which
the first Mott insulating lobe appears, surrounded by a superfluid. In addi-
tion, we characterized both the phases below and above this quantum critical
point. This allowed the identification of the experimental signatures of strong
atomic correlations and their link to the dynamical properties of the many-
body states. This point underlined the interest of using Bragg spectroscopy as
a tool to probe low-energy excitations in correlated quantum atomic phases.

Finally, the study was extended to inter-band spectroscopy in a periodic
lattice. This consisted of removing a particle from the many-body ground
state of the system and promoting it to a high energy band, where it is almost
free since its energy is much larger than the typical ground-state energy. A
preparatory experiment was conducted on a Bose-Einstein condensate in the
presence of a 1D optical lattice, well captured by a mean-field Bogoliubov pic-
ture. The measurements demonstrated the possibility to populate excitations
in the higher energy bands of a periodic system, identified thanks to com-
parison with the Bogoliubov bands, which showed a good agreement. A band
mapping measurement confirmed this identification, allowing the measurement
of the momentum of the excited particles at different energy. This system was
also used as a reference for more correlated situations. Indeed, in the last
experiment, we performed inter-band spectroscopy of a one-dimensional Mott
insulator. The band mapping of this system allowed us to reconstruct the
dispersion relation of the high energy bands of the system. In addition, the
detailed analysis of the response of the system to excitation in the third band
gave us information on the coherence of the hole created in the many-body
ground state of the Mott insulator (thus, its one-particle correlations).

At the end of this work, we can identify three main lines of research which
would continue and extend it.

The current focus is in developing the study of more and more strongly
interacting 1D Bose gases, to finally venture into the Tonks-Girardeau regime,
characterized by an interaction strength γ À 1, corresponding to a Luttinger
parameter K ∼ 1. In this regime, interparticle repulsive interactions become
so strong to mimic the Pauli exclusion principle applicable to fermions. In
this context, Bragg spectroscopy could be an excellent method for measur-
ing the dynamical structure factor of this system. Several theoretical works
have calculated the dynamical structure factor of 1D Bose gases both at zero
temperature [171, 172, 170] and at finite temperature [198], as well as its
one-particle spectral function [199], but an experimental measurement is still
missing. In order to realize this system, three possible strategies for increasing
interactions are feasible. One can raise the scattering length by exploiting Fes-
hbach resonances [41, 42]. However, the main problem of this approach is that
the life-time of the condensate strongly decreases due to three-body losses,
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which rapidly grows when the scattering length becomes large [200]. Another
possibility is increasing the effective mass of the particles putting the 1D gas in
a 1D optical lattice along its axis as in [34], though, in this case the filling fac-
tor n̄ should be smaller than unity. Otherwise if doubly occupied sites would
be present, as in our case, the direct correspondence to the Tonks-Girardeau
gas would be lost and the system would rather enter a Mott insulating phase
(see [32]). As a third possibility, interactions can be enhanced, compared to
kinetic energy, by reducing the density ρ0 as in [33]. In practice, this can be
achieved, for example, by superimposing a blue-detuned beam on the mag-
netic and lattice confinement to reduce the trapping frequencies. With an
opportune beam configuration, one can increase either the radial size of the
whole cloud, in order to produce a larger number of 1D gases, or the axial size,
in order to obtain more uniform 1D gases. This third realization of strongly
interacting 1D gases implies a great advantage when investigating via Bragg
spectroscopy. As a matter of fact, the lower the density, the lower is the Fermi
wavevector kF = 2πρ0 and the Fermi energy EF = ~2k2

F /(2m). Thus, fixing
the momentum imparted via Bragg scattering and decreasing the density, one
can explore regions of the spectrum closer and closer to 2kF , where the pecu-
liarity of the 1D systems is revealed. Indeed, gapped particle-hole excitations
are created for 0 < k < kF , corresponding to removal of a particle well below
the Fermi surface and promoting it above this threshold, whereas at k = 2kF

– i.e. at the border of the Fermi surface – umklapp particle-hole excitations
with vanishing energy can be created.

In the case that the 1D gases are immersed in a periodic potential along
their axis, sufficiently strong interactions (γ À 1) would open the way to
additional fascinating prospects, allowing one to explore with ultracold gases
beyond Hubbard-type physics. In the current work we explored the effect of
a periodic potential on 1D gases with relatively strong interaction, but still
characterized by values of the dimensionless interaction strength γ ≤ 1, and
the physics of the system was well captured by the Bose-Hubbard model,
predicting a quantum phase transition from superfluid to Mott insulator for
deep enough lattices. Increasing the interactions would allows us to approach
the sine-Gordon transition which brings a superfluid Luttinger liquid to a
Mott insulator for arbitrarily weak amplitudes of the periodic potential [56].
This transition has been observed very recently via amplitude modulation
spectroscopy [201], which implies a strong perturbation (of the order of 25%−
45% of the lattice amplitude). However, the linear response of the system,
addressable with a weakly-perturbing probe such as Bragg scattering, still
needs to be investigated.

Another interesting line of research is the study of the interplay of disor-
der and interactions. The time-of-flight method we have proposed for studying
phase-fluctuating 1D Bose gases could have an interesting application in mea-
suring the coherence properties of strongly interacting disordered systems.
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This could help to reveal the role of thermal phase fluctuations in the nature
of the superconductor-insulator transition, which is an intriguing and still un-
clear theme [153, 154]. In this case, the remarkable control offered by ultracold
atoms in an optical lattice would be a major advantage, allowing one to tackle
the problem by realizing the 1D gases first, and then adding disorder in a
controlled way. This really would be an example of a quantum simulator as
Feynman first envisaged.
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Appendix A

A.1 87-Rubidium

Vapors of alkali atoms are routinely used in cold-atom experiments, thanks to
their favourable properties and their relatively simple hydrogen-like energy-
level scheme, which makes them suitable for laser cooling and magnetic trap-
ping.

For Rubidium-87, the gaseous phase is easily generated from a solid due to
its high vapor-pressure at room temperature (∼2×10−7 Torr at 20◦C). It is a
radioactive species, decaying to 87

38Sr by a β− transition but its life-time is so
long as to be considered effectively stable. Its internal degrees-of-freedom can
be optically manipulated since it has a relevant transition at 780 nm (D2 line),
which can be accessed by commercial diode lasers. In addition, 87

37Rb has a
small and positive scattering length (weak repulsive interaction), which allows
the production of stable Bose-Einstein condensates with a life-time of several
seconds. Figure A.1 shows the manifold structure of the ground and the first
excited states of 87Rb. The red and orange arrows indicate the cooling and
repumping transition exploited during the MOT stage. The BEC is produced
in the state |F = 1,mF = −1〉. Some physical properties of 87Rb and optical
properties of its D2 transition are summarized in the following table. For
further information, we refer to [97].

nuclear spin 3/2
atomic mass 86.9902 u
vacuum wavelength D2-transition 780.241 nm
line width of D2-transition 6.01MHz
life time of the state 52P3/2 26.5 ns
saturation intensity of D2-transition 1.654mW/cm2

ground state hyperfine splitting 6834682612.8 Hz

Table A.1: Some physical and optical properties of Rubidium-87.
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Figure A.1: Energy level scheme of Rubidium-87.

A.2 Laser light for producing BEC

Figure A.2 summarizes the lasers used in the experiment. The first laser
source is a commercial diode laser DL 100 PRO TOPTICA locked at 140
MHz below the |F = 2〉 → |F = 3〉, which pumps a commercial tapered
amplifier TOPTICA TA100. From this source (indicated as ‘Master 1’ in the
figure) we derive the cooling beams used for the MOT, the push beam that
transfers the atoms from the first to the second vacuum chamber, the light for
optically pumping the atoms in the low-field seeking hyperfine ground-state
state |F = 1〉 before the magnetic trapping and finally the probe beam used
for imaging the atomic cloud. The relative detuning of these beams is provided
by acousto-optic modulators. The second master laser is a commercial diode
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Figure A.2: Laser light used in the experiment.

laser DFB TOPTICA (‘Master Repumper’ in the figure) and it is used as a
repumping light for the MOT and prepumping for the imaging procedure.
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tials”, PhD thesis, Università degli Studi di Firenze (2007).

[85] C. Cohen-Tannoudji, “Atomic motion in laser light”, in “Fundamental
Systems in Quantum Optics” edited by J. Dalibard, J. M. Raimond, J.
Zinn-Justin (Les Houches, 1990) Les Houches, Session LIII, July 1990,
ed. by Dalibard J. and Raimond J.M., (Elsevier, 1992).

[86] D. E. Pritchard, E. L. Raab, V. Bagnato, C. E. Wieman, and R. N.
Watts,“Light traps using spontaneous forces”, Phys. Rev. Lett. 57 310
(1986).

[87] C. Monroe, E. Cornell, and C. Wieman, “Laser Manipulation of Atoms
and Ions” in “Proceedings of the International School of Physics Enrico
Fermi”, Course CXVIII, edited by E. Arimondo, W. D. Phillips, and F.
Strumia (North Holland, Amsterdam, 1992), pp. 361-377.

[88] J. R. Ensher, “The first experiments with Bose-Einstein condensation of
87Rb”, PhD Thesis, University of Colorado (1998).

[89] J. Dalibard and C. Cohen-Tannoudji, “Laser cooling below the Doppler
limit by polarization gradients: simple theoretical-models”, J. Opt. Soc.
Am. B 6(11) 2023 (1989).



186 BIBLIOGRAPHY

[90] E. Majorana, “Atomi orientati in campo magnetico variabile”, Il Nuovo
Cimento 9 43 (1932).

[91] W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, “Stable,
tightly confining magnetic trap for evaporative cooling of neutral atoms”,
Phys. Rev. Let., 74 3352 (1995).

[92] D. E. Pritchard, “Cooling neutral atoms in a magnetic trap for precision
spectroscopy”, Phys. Rev. Lett. 51 1336 (1983).

[93] T. Bergeman, G. Erez, and H. Metcalf, “Magnetostatic trapping fields
for neutral atoms”, Phys. Rev. A 35 1535 (1987).

[94] H. Metcalf and P. van der Straten, “Laser Cooling and Trapping”,
Springer (New York, 1999).

[95] W. Ketterle and N. J. van Druten, “Evaporative cooling of atoms”,
in “Advanced in atomic, molecular and optical physics” edited by B.
Bederson and H. Walther, 37 181-236 (1996).

[96] G. Reinaudi, T. Lahaye, Z. Wang, and D. Guéry-Odelin, “Strong satura-
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[174] H. P. Büchler, V. B. Geshkenbein, and G. Blatter, “Superfluidity versus
Bloch oscillations in confined atomic gases”, Phys. Rev. Lett. 87 100403
(2001).

[175] A. F. Ho, M. A. Cazalilla, and T. Giamarchi, “Deconfinement in a 2D
optical lattice of coupled 1D boson systems”, Phys. Rev. Lett. 92 130405
(2004).

[176] K. Sengupta and N. Dupuis, “Mott-insulator-to-superfluid transition in
the Bose-Hubbard model: A strong-coupling approach”, Phys. Rev. A
71 033629 (2005).

[177] S. Konabe, T. Nikuni, and M. Nakamura, “Laser probing of the single-
particle energy gap of a Bose gas in an optical lattice in the Mott-
insulator phase”, Phys. Rev. A 73 033621 (2006).

[178] Y. Ohashi, M. Kitaura, and H. Matsumoto, “Itinerant-localized dual
character of a strongly correlated superfluid Bose gas in an optical lat-
tice”, Phys. Rev. A 73 033617 (2006).

[179] S. D. Huber, B. Theiler, E. Altman, and G. Blatter, “Amplitude Mode
in the Quantum Phase Model”, Phys. Rev. Lett. 100 050404 (2008).



BIBLIOGRAPHY 193

[180] U. Bissbort, Y. Li, S. Götze, J. Heinze, J. S. Krauser, M. Weinberg,
C. Becker, K. Sengstock, and W. Hofstetter, “Detecting the Ampli-
tude Mode of Strongly Interacting Lattice Bosons by Bragg Scattering’,
arXiv:1010.2205v1 (2010).

[181] K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. H. Denschlag, A.
J. Daley, A. Kantian, H. P. Büchler, and P. Zoller, “Repulsively bound
atom pairs in an optical lattice”, Nature 441 853 (2006).
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