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Abstract

In multi-level quantum systems, coherent superposition states can unexpectedly arise from
interactions with the continuum of modes associated with incoherent processes, such as
spontaneous emission and incoherent pumping. This type of coherence, known as noise-
induced Fano coherence, represents a novel observation that has not yet been documented.

In this thesis, I investigate a V-type three-level quantum system driven by incoherent
radiation, examining both isotropic and unpolarized as well as anisotropic and polarized
fields. The study identifies conditions for achieving quasi-stationary and stationary Fano
coherence between the excited levels of the system within an overdamped dynamical regime.
An optimization analysis of the main parameters, as the frequency splitting A between the
excited levels, the intensity 7 of the incoherent radiation and the alignment parameter p
between transition dipole moments, provides a suitable scenario for the detection of Fano
coherence.

The V-type system is then implemented in the hyperfine structure of hot 87Rb atoms
inside a vapor cell and a proof-of-principle experiment is designed and conducted. The exper-
imental setup employs angle-resolved fluorescence measurements to detect Fano coherence
through spatial anisotropy in the emitted fluorescence around the vapor cell. Preliminary
results are promising and are consistent with theoretical predictions.

Additionally, the thesis explores the quantum thermodynamics of noise-induced Fano
coherence to certify the presence of genuinely quantum traits underlying its generation.
This includes analyzing the conditions under which the Kirkwood-Dirac quasiprobability
distribution of the stochastic energy changes exhibits negativity, indicating non-classical
traits. The study also demonstrates the existence of nonequilibrium regimes where, the
generation of coherence leads to a significant excess of energy compared to the initial state,
provided that the system begins in a superposition of energy eigenstates.

Understanding how Fano coherence arises in multi-level systems through incoherent op-
tical processes is crucial for its potential applications in enhancing the efficiency of quantum
heat engines, photosynthetic light-harvesting complexes, and photovoltaics. The associated
excess energy could be exploited as extractable work by external loads or storage systems,

thereby offering significant technological advancements.
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Introduction

The phenomenon of quantum coherence within multi-level atomic systems has garnered
significant attention over an extensive period of time and continues to do so. It forms the
foundation for numerous quantum phenomena, enabling the manipulation of atomic degrees
of freedom through optical methods, and thus facilitating a comprehensive inquiry into their
intricate internal structure. In 1950, A. Kastler published a landmark paper introducing
one of the first techniques for manipulating atoms with light, namely optical pumping [1-3].
This technique is distinguished by the resonant exchange of angular momentum between
atoms and circularly polarized light. The result is the polarization of atomic spins, yielding
not just a well-defined distribution of steady-state populations, but also coherences between
levels.

Laser techniques have been then employed towards the detection of a variety of quantum
coherence phenomena in atomic systems, as the Hanle effect [4], the level-crossing effect [5]
or the quantum beating effect [6], theoretically derived few years earlier in the context of
atomic fluorescence emission. These phenomena involve exciting a multi-level atomic system
into a coherent superposition of states using laser fields. QQuantum coherence can emerge, as
in the quantum beating effect, when two atomic excited levels, closely spaced in frequency,
decay to a common ground level. The indistinguishability of the two decay paths leads
to an interference effect reflected in the time-evolution of fluorescence, which exhibits an
exponential decay modulated by a periodic oscillation, known as quantum beat. When the
emitted fluorescence can be distinctly attributed to one of the excited levels, the quantum
beats vanish, highlighting the interference nature of this phenomenon, similar to the Young’s
double-slit experiment |7, 8].

Quantum coherence also plays a crucial role in atomic absorption processes. For instance,
when two laser fields interact with two optical atomic transitions from different ground levels
to a common excited level, quantum interference in absorption can occur. The interference
leads to a phenomenon known as coherent population trapping (CPT) [9-11]. In CPT, the
coherent superposition of atomic states prevents the system from interacting with one of the
coherent fields, effectively trapping the population in a dark state, that does not absorb light.
Consequently, the atomic medium becomes electromagnetically-induced transparent [12, 13].
In these scenarios the state of the system changes coherently being driven by a coherent
field.

Since the 1990s, there has been a growing interest in generating quantum coherence in
multi-level atomic systems using alternative mechanism, remarkably by means of incoherent

sources, such as a broadband laser or a thermal radiation, as well as interactions with the
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surrounding environment [14, 15]. In this case, this sources are distinguished by a continuum
of modes, as opposed to a single coherent mode of a laser beam. For instance, during
the process of spontaneous emission, a multi-level system can interact with the vacuum’s
continuum modes. In a V-type three level system with closely spaced emission pathways,
this interaction can result in quantum interference and population inversion [16]. A A-
type three-level system can exhibit similar phenomena [17]. The coherence arising from the
interference of spontaneous emission can also lead to the formation of dark lines and narrower
linewidths in the emission spectrum [18-20] or even result in emission quenching [21].

Gaining control over the fluorescence spectrum can be challenging when relying solely
on the interference of two decay channels. However, introducing an additional incoherent
mechanism can significantly enhance the flexibility of control parameters without compro-
mising the coherence of the quantum system, contrary to what one might expect [22, 23].
A good example is external pumping with a broadband radiation source, that excites two
nearly degenerate states in a three-level system. The bandwidth of the radiation must be
sufficiently broad to drive both transitions, meaning the frequency splitting between the ex-
cited levels must be narrower than the bandwidth. In this way, interference occurs between
the two excitation pathways, making it impossible to distinguish which excited level has
been populated.

Interestingly, the presence of such incoherent mechanisms in a V-type three-level sys-
tem, with nearly degenerate excited levels, results in the formation of quantum (Fano)
coherence between excited states via Fano interference. Fano interference emerges when
discrete atomic energy levels are coupled to a continuum of states [24, 25|, which in this
case is represented by the continuum of modes associated with the broadband radiation or
the interaction with a thermal reservoir. The interference between transition amplitudes
leads to an in-phase superposition of the excited states, referred to as Fano coherence,
which can be either stationary or quasi-stationary [26-30]. This phenomenon has also been
demonstrated in other configurations, as in A-type systems [27, 31, 32]. Fano coherence
differs from that generated by coherent sources, where the coherence of the radiation is
directly “transferred” to the system via dipole interaction. Mathematically, Fano coherence
originates from the incoherent or dissipation terms in the master equation governing the
system’s dynamics, whereas coherence from coherent sources arises from the Hamiltonian’s
coherent terms.

The resilience of Fano coherence under the aforementioned “noisy” conditions, essential
for its generation, has particular significance for systems in contact with thermal reservoirs,
such as quantum heat engines [33], or exposed to thermal radiation, as customary in photo-
conversion devices [34]. In particular, in the latter case, Svidzinsky et al. [34] theoretically
demonstrate that Fano interferences might enable the mitigation of spontaneous emission,
thereby reducing radiative recombination phenomena. The photo-conversion device (a pho-
tocell) is modeled with a V-type three-level system driven by incoherent light source, wherein
the excited states represent conduction band states decaying into a common valence band
state. Quantum coherence between the excited states of the system would theoretically lead

to an increase in the extractable current from the device. Consequently, this enhancement
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would boost the output power and conversion efficiency. On the other hand, implementing
a A-type system can enhance photon absorption, as demonstrated by Scully et al. in [33].
In this quantum heat engine model, a rapid transfer of atoms from the ground levels to
the excited level enables an increase in extractable work. The boost in performance for
both applications—whether in photocells or quantum heat engines—can be realized if the
input light source is broad enough to excite both transitions, thereby producing interference
between them.

Despite extensive research conducted on the topic and evident technological applications,
an experiment proving the existence of Fano coherences produced by incoherent pumping
and spontaneous emission is still missing, according to my knowledge. Currently, the atomic
platform stands as the most suitable candidate for such measurements, given its capability
to finely adjust the parameters that define a V-type three-level system. In [29] and later in
[30], a proposal was outlined for an experiment using beams of Calcium atoms excited by a
broadband polarized laser within a uniform magnetic field. Moreover, in a magneto-optical
trap of Rubidium atoms, enhanced beat amplitudes due to the collective emission of light,
akin to Fano coherences originated by the interaction with the vacuum modes, have been
recently observed [35].

This thesis investigates the generation of quantum coherence in a V-type three-level
system with optical transitions driven by an incoherent radiation source. Specifically, the
study focuses on a system with nearly degenerate upper levels, aligning with previous re-
search [28-30], yet deviating from |23, 34]. This framework indeed aims to replicate a more
realistic system, akin to those achievable in atomic platforms. However, I maintain the same
formalism for modelling the dynamics, namely a quantum Markovian master equation in
the Schrodinger picture. The findings are then applied to a V-type system implemented in
the hyperfine structure of 8’Rb atoms, for which a proof-of-principle experiment is designed
and realized. The optical setup enables the first detection of noise-induced Fano coherence
in a V-type three-level system under incoherent driving.

Furthermore, special attention is given to the energetic aspects underlying the gener-
ation of Fano coherence in the system. A quantum thermodynamic analysis is conducted
using Kirkwood-Dirac quasiprobability distribution of the stochastic energy changes within
the discrete system. The analysis aims to certify that the generation of Fano coherences
has genuinely quantum traits, despite its “noisy” nature. To adress this, the loss of pos-
itivity (i.e., negative real parts or even non-null imaginary parts) of the Kirkwood-Dirac
quasiprobabilities is observed. The latter are evaluated at both the initial and final stages
of the transformation that results in Fano coherence. An optimization analysis is performed
to enhance the non-positivity of certain quasiprobabilities by adjusting both the initial
quantum state and the parameters governing the system’s dynamics. This dual focus is cru-
cial: it helps identify the conditions under which Fano coherence emerges with pronounced
quantum traits, and it explores potential thermodynamic advantages. In fact, in quantum
systems subjected to a work protocol, the presence of negativity is a necessary condition
for enhanced work extraction [36-38]. Thus, this study also examines the extent to which

the process generating Fano coherence can be utilized for energy conversion purposes. The



Introduction

potential for exploiting the resulting excess energy as extractable work is considered, pro-
vided an appropriate load or storage system is designed. The thermodynamic efficiency of

this process is also evaluated.

The thesis is structured as follows:

Chapter 1

This chapter introduces the fundamental mathematical tools used in deriving the Marko-
vian quantum master equation, that describes the dynamics of the V-type three-level system
exposed to a broadband radiation. Two distinct types of incoherent radiation are consid-
ered: isotropic unpolarized radiation and anisotropic polarized radiation. For each case, the
differential equations governing the time evolution of the elements of the system’s density
operator are derived. The chapter concludes with simulations for both scenarios, illustrating

the solutions across various dynamical regimes, defined by the governing parameters.

Chapter 2

This chapter describes the key quantum thermodynamic quantities and the Kirkwood-Dirac
quasiprobabilities used to verify the quantum nature of the Fano coherence generated in
the V-type three-level system excited by isotropic unpolarized radiation. It includes an
optimization analysis aimed at maximizing the excess energy produced during the processes
that lead to the generation of Fano coherence. Additionally, the thermodynamic efficiency
of the process is evaluated. This analysis is crucial for understanding not only the quantum
characteristics of the coherence, but also the potential for extracting useful work from the

system.

Chapter 3

This final chapter details the implementation of the V-type three-level system within the
hyperfine structure of 3’Rb atoms, excited by a broadband polarized laser. Theoretical
results are presented, identifying the optimal dynamical regime where Fano coherence is
maximized. The results guide the design of key experimental components to achieve the
desired dynamical parameters. The chapter includes a comprehensive description of the
experimental setup, alongside preliminary measurements and observations. The discussion
highlights how the experimental findings align with theoretical predictions and outlines

potential implications for future work.

Conclusion

The discussion of the key results are reported along with future developments of the research.



1 Multi-level system driven by an
incoherent source

In the context of multi-level systems with optical transitions, coherent superpositions of
states can arise through interactions with a radiation field. In a V-type three-level system
with nearly degenerate excited levels, quantum coherence can non-trivially arise through
interactions with non-coherent radiation sources. These interactions can induce Fano-like
interference effects, either during absorption and spontaneous emission processes, as the
continuum of modes of the incoherent source drives the discrete quantum system [24, 25].
Hence the name “Fano coherence”. To accurately describe this quantum phenomenon, it is
essential to thoroughly investigate the interaction between light and matter, which can be
explored from various perspectives, each offering different levels of detail and insight.

The first approach is represented by classical theory, which describes atoms as contin-
uum systems, with the model of classical harmonic oscillators, and the radiation as a wave,
with Maxwell’s equation of electromagnetic fields [39-41|. This approach, though simpler,
yields valuable insights into optical properties of materials. A more in-depth exploration
involves the use of the semi-classical theory, wherein atoms are treated as quantum sys-
tems with distinct, discrete energy levels, while the electromagnetic field retains a classical
representation. This theory, for example, accurately elucidates absorption and emission
processes, allowing for precise calculation of Einstein A and B coefficients as well as their
interrelation [39-41]. Unlike the classical model, the semi-classical approach provides a
more comprehensive description of atomic behavior [41]. Finally, quantum mechanics ex-
tends its application beyond the atomic system to include the electromagnetic field in the
fully quantum-mechanical theory of light-matter interaction. This theory serves as a turning
point for a rigorous treatment of phenomena that can not be explained semi-classically, such
as the spontaneous emission in an atomic system [39, 40]. Nevertheless, the fully quantum-
mechanical treatment of the interaction confirms the transition rates for absorption and
stimulated emission determined with the semi-classical theory. The latter theory is there-
fore only appropriate and reliable when the results obtained with it are in agreement with
the results determined with quantum theory [39].

In this chapter I describe the fundamental tools for a quantum-mechanical description
of the interaction between a V-type three-level system and an incoherent radiation, ex-
amining the role of the latter in the generation of Fano coherence within the multi-level
system. Through rigorous analysis, the quantum master equation describing the dynamic

of the system is derived and the time evolution of system’s populations and coherences
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are shown. Section 1.1 lays the foundation for the study by introducing the key quantum
operators essential for modeling both the radiation field and the atomic system. The main
concepts of open quantum systems are then elucidated in Section 1.2. In Section 1.3, the
quantum master equation is derived for both isotropic unpolarized and anisotropic polar-
ized radiation cases, with detailed descriptions of all approximations used. Finally, Section
1.4 identifies different dynamical regimes for each type of radiation, illustrating how the

system’s populations and coherences evolve in time.

1.1 Quantum mechanical theory of radiation and atomic sys-
tems

1.1.1 Quantization of the electromagnetic field

In a fully quantum mechanical approach to light-matter interaction, the classical electromag-
netic field vectors E and B transform into the quantum operators E and B, respectively.
This conversion typically begins by starting with the Mazwell’s equations for free-space
electromagnetic fields, i.e. [39, 40, 42]:

V-E(r,t) = 0 (1.1)
V-B(r,t) = 0 (1.2)
V x E(r,{) — _aBé‘;’t) (1.3)
V x B(r,f) — 012‘9E({(;;’t), (1.4)

where ¢ = pgeg is the vacuum light speed with g and g denoting the magnetic permeabil-
ity and electric permittivity of vacuum, respectively. For free-space electromagnetic fields
Maxwell’s equations are gauge invariant, facilitating their reformulation in terms of a vector
potential A(r,t) in the Coulomb gauge |39, 42]:

B(r,t) = VxA(r,1) (1.5)
B = —CAnD, (1.6

where the gauge condition is satisfied if:

V-A(r,t)=0. (1.7)
The wave equation
1 0?A(r,t) 9

is obtained by substituting equations (1.5) and (1.6) in equation (1.4). By imposing pe-
riodic boundary conditions in a cubic region of side L and volume V = L3, identified as

the quantization cavity, the travelling wave solution A(r,t) can be expressed in a Fourier
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expansion of the field’s modes:

Alr,t) = D0 > [Ara(®) A () + Af (DAL ()] - (1.9)

A=12 k
The free-space solution is obtained by considering the space filled with a fictitious array of
quantization cavities. The summations cover all the possible discrete modes of the field,
each identified by the wavevector k and the polarization index A. The polarization index
is associated with the unit polarization vector ey x, which must satisfy the transversality

condition imposed by the Coulomb gauge:
Ek)\‘k:O Vk,/\. (1.10)

The above condition implies that the fields are purely transverse, requiring two independent,
i.e. orthonormal, polarization vectors €x; and €xo to express an arbitrary polarization
direction for each wavevector k. The orthogonality of the vectors €y ; and €x2 can be

expressed using the Kronecker delta:
€K\ €K/ N :(5)\7/\/ Vk. (1.11)

The terms Ay x(r) in equation (1.9) are the mode functions, that carry the spatial depen-
dence of the field; the time dependence is instead contained in the terms Ay »(t) which are
explicitly separated from the spatial dependencies. Both terms independently satisfy the
wave equation (1.8). The mode function associated to a given mode of wavevector k and

polarization €y ), appropriate to free-space, can be expressed as:

1 ot
Ap(r) = ﬁek)\ ek, (1.12)

with the wavevector components subject to periodic boundary conditions:

_ 2Ny y, 2

koye=—1""" (1.13)

where n, , . are integers.
Substituting equation (1.12) in equation (1.9), the contributions to A(r,¢) from all

modes k, A is rewritten as:
1 Kk-r * —ik-r
Art)=—= 3 3 e [AkA(t)eZk + Af\(t)e®r] (1.14)
\/‘7/\:1,2 k

As regards the temporal component Ay (%), it satisfies the wave equation independently

of the spatial component, leading to:

d?> Ay (1)

T Ve aAk(t) = 0. (1.15)

The above equation represents a single harmonic oscillator with angular frequency vk x. The
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general solution of equation (1.15) is:
A (t) = axp (0)e™ ™A + a ()™, (1.16)

where ay x(0) are complex amplitudes related to the initial conditions of the mode k, A. The
classical amplitudes oy »(0) are replaced with ay » and dL y» Which are a pair of dimensionless
quantum operators, named the annihilation and creation operators, respectively. Equation
(1.16) becomes:

. , B
Apa(t) =i

vt 4 At z‘uk,xt} 1.17
2vk A€o [ak”\e TG \€ ’ (1.17)

with a normalization pre-factor that incorporates the relevant physical quantities.
The physical interpretation of the annihilation and creation operators is elucidated by

introducing the Hamiltonian operator associated with the field, which is expressed as:

A o 1
H= Y hup, (aL/\ak’)\—i—2>. (1.18)

A=12 k

The Hamiltonian operator describes the electromagnetic energy in terms of the number
of photons in each mode k, A, plus the term huy »/2, that accounts for the energy of the
vacuum fluctuations. In quantum optics, it is a common practice to write the Hamiltonian
of the field by discarding the vacuum energy term. Indeed, this term does not affect the
relative energy levels of the system, since it represents an absolute value of energy. In the
dynamics of quantum systems, what matters are energy differences, and the vacuum energy
cancels out.

The eigenvalues of the operator H for the mode k, A are the energy levels E,, x » with
eigenstates |ny y); the former represents the excitation energy of the electromagnetic field in
the mode k, A as due to ny » photons in the state |nk ). The eigenstates |nk ) are named
photon-number states or Fock states, after the Soviet physicist Vladimir Fock, and they have
no analog in the classical treatment of the field. The annihilation and creation operators

modify the photon-number states as follows:

GNPV Vil — 1) (1.19)
afalnia) = V/iox+ Tinica + 1), (1.20)

Here, the operator ay ) decreases the number of photons in mode k, A by one unit of energy
hvy . Conversely, the operator &LA increases the number of photons in mode k, A by the
same unit. These actions justify the names “annihilation” and “creation” for these operators.
Thus, the annihilation operator removes one photon from the mode k, A, while the creation
operator adds a photon to the mode k, A. The number of photons in the mode k, A is given

by the eigenvalues of the photon-number operator ny x defined as:
Py = Gl \d1r- (1.21)

The quantum expression of the vector potential A(r,t) is obtained by substituting equa-
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tion (1.17) in equation (1.14), obtaining:

A h ik
A( — Z Z . €xn [ak \e zukt+zkr+ L)\ewkt ik r] _ (1_22)
A=12 k k,AZ0

In this way, the vector potential is rewritten in terms of the annihilation operator ax y and
the creation operator dL y» Which are crucial in the quantum treatment of radiation, enabling
the field to be described in terms of “discrete” photons. It is interesting to note that the
quantum nature of the field is introduced through the time dependent terms Aky)\(t).

The electric and magnetic field quantum operators have then the following expression:

A h . . .

E(I‘, t) _ Z Z 2§kv €xc [dk,)\e_lykt—mkr . AlJr{ )\ewkt—zk-r} (123)
A=1,2 k

». h —1 7 ~ i t—ik-

B(r, t) == Z Z Wk X €k by |:Clk A€ it iker CLL’)\G vict—ik ri| . (124)
A=1,2 k

To fully characterize the interaction of light and matter within a quantum-mechanical
framework, it is essential to describe atoms quantum-mechanically as well. This is addressed

in the following section.

1.1.2 Atoms as quantum systems

The first postulate of quantum mechanics introduces the key elements of the theory: the
state wvector, that describes the quantum system considered, and the Hilbert space, the

mathematical framework in which the system exists [43]. Quoting from [43]:

Postulate 1. Associated to any isolated physical system 1 is a complex vector space H, i.e.
Hilbert space, known as the state space of the system. The system is completely described
by its state vector [1), which is a unit vector in the system’s state space.

The state vector [¢)) represents a pure state, containing all information about the system.
A more general approach involves the use of the density operator p, which enables the
description of both pure and mized states, for system in which the state is not entirely

known [41, 43]. In case of a pure state |¢), the density operator is defined as:

p= ). (1.25)
In this case, the density operator and the state vector contain the same information and
can therefore be used interchangeably. However, in cases where there is lack of information
— such as when the preparation of the system is not fully known or the system interacts
with an external system whose evolution is unknown, as in the case of interactions with the
surrounding environment — we are dealing with a mixed state. The system therefore can
be described by an ensemble of states {|¢;)} and the formalism of pure state can not be

applied. The density operator in this situation is defined as:

= Zpi\¢i><1/1i|~ (1.26)
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The above definition indicates that, while it is not exactly known which of the ensemble
state [¢;) the system is in, a probability p; can be assigned to each state.
The density operator p, whether it corresponds to a pure state |¢) or a statistical mixture

of states |1;), must satisfy certain fundamental properties:
1. the density operator is an hermitian operator, i.e. p = pi;
2. the density operator has a unitary trace, ensuring proper normalization;

3. the density operator is positive semidefinite, meaning all its eigenvalues are real and

non-negative;

4. the density operator describing a pure state satisfies Tr(p?) = 1, while the density

operator describing a mixed state satisfies Tr(p?) < 1.

These properties guarantee that p is a valid representation of a quantum state. Furthermore,
each element of the density operator conveys different types of information. For instance, in
the case of a pure state, the diagonal elements p;;, defined as (j|p|j), give the probability of
measuring the system in the state |j). The diagonal elements are referred to as populations.
On the other hand, the off-diagonal elements pj; = (j|p|l), referred as coherences, arise when
the system is in a coherent superposition of states |j) and |l). The above terminology also
applies to mixed states.

In a fully quantum description of light-matter interaction, atoms are modeled as systems
with a discrete set of energy levels. Fach level corresponds to a distinct quantum state
that the atom can occupy, known as the eigenstates of the atom’s Hamiltonian H,,. The
eigenstates are represented by state vectors |7), which form an orthonormal basis {|j)}, and
the atom’s state at any given time can be expressed as a superposition of these basis vectors,
ie.:

() =3 e (0)l). (1.27)

J
Terms ¢;(t) are complex coefficients representing the probability amplitude for the atom to
be in the state |j) at time t. Each state |j) is associated with a specific energy level E;,
which is determined by solving the relevant Schrédinger equation. Therefore, in the basis

{|7)}, the Hamiltonian of the atom can be expressed as:
Har =Y Eyl5)(l. (1.28)
J

When an atom interacts with an external electromagnetic field, the physical quantity
that describes the strength of the interaction is the dipole moment operator [i. Assuming
that the wavelength of the field is significantly lager than the size of the atom, then the

dipole approzimation applies and the dipole moment operator is defined as:

p=—er=> ;i) {jl, (1.29)
.

j .
I#]
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where p; = (l|er|j) is the transition dipole matriz element, that characterizes strength
and direction of the dipole transition only between different states |I) and |j). Here, e
denotes the fundamental charge and r is the atomic electron position vector. In equation
(1.29), the elements where [ = j are omitted. The dipole operator induces transitions states
|7) <> |1}, where a change in the atom’s space charge distribution is involved. Furthermore,
it is possible to choose the phase of the dipole matrix element p;; = (Iler|j) to be real, in
which case it is possible to write p; = p3; [41].

Further key operators are the atom transition operators, or the atom lowering and raising

operators 6 and 67, respectively, defined as:
o = (] (1.30)
- A\
o5 = (oF) =l (1.31)

If |I) is an excited state and |j) a ground state, then &;;. represents a transition from the
ground state to the excited state (raising), and 0,; represents a transition from the excited
state to the ground state (lowering).

For a multi-level atom, p captures both the probabilities of the atom occupying each
energy state (populations) and the phase relationships between different states (coherences),
which enables the modeling of processes like spontaneous emission, stimulated emission
and absorption, occurring during the interaction between a resonant radiation and atomic

transitions.

1.2 Open quantum system theory

When addressing systems that interact with their surrounding environment, it is necessary
to introduce the concepts of open quantum systems. In thermodynamics, an open system
is defined as a system that exchanges energy and/or matter with its environment. This
definition extends into the quantum realm, where the open quantum system interacts with
a reservoir or a bath, through to the exchange of energy and information. Unlike isolated
quantum systems, which evolve unitarily according to the Schrédinger equation, open quan-
tum systems experiences dissipation, resulting in the loss of information from the system
to its environment. This interaction leads to non-unitary dynamics, necessitating a more
comprehensive approach [44]. One of the central challenges in open quantum systems is un-
derstanding how environmental interactions affect coherence and populations of an atomic
system. These interactions often lead to phenomena such as decoherence and relazation.
The former physically describes the loss of information related to the relative phase between
the system state components; the latter occurs when the system reaches thermal equilibrium
with the environment.

The density operator p is a key tool, enabling the description of mixed states and sta-
tistical mixtures. In this context, the density operator evolves in time under non-unitary
dynamics, which are effectively treated using quantum master equations |44]. These equa-

tions describe the time evolution of open quantum systems by incorporating the effects
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of the environment in a perturbative manner. Given their inherently perturbative nature,
solutions to these equations rely on approximations, which must be carefully assessed.
Understanding quantum systems in realistic settings, where perfect isolation is impos-
sible, is crucial for a wide range of applications, from quantum computing and information
processing to condensed matter physics and quantum optics. The insights gained from
the behavior of open quantum systems are not only fundamental to advancing quantum

mechanics but also pivotal for the practical realization of quantum technologies.

1.2.1 Isolated quantum systems and unitary evolution

Consider a non-interacting, or isolated, quantum system S, which is completely described
by the state vector |1g(t)) at every time ¢. Its time evolution is governed by the Schrédinger

equation:

5O _ o aypss e, (1.32)

where Hg(t) is the Hamiltonian of the system.
The solution to equation (1.32) can be written in terms of a unitary operator U(t,to),

which relates the state of the system at time ¢ to the initial state |1)g(t)) as follows:

[¥s(t)) = U(t, to) s (to)). (1.33)

The operator U (t,to) is specified as unitary to preserve the norm of the state vector. In
other words, since the system is not interacting with any environment, the state remains

pure after the evolution. The unitarity is expressed as:
Ut t0)UT(t, t0) = UT(t, t0)U(t, to) =1, (1.34)

where I is the identity operator.
By substituting equation (1.33) into the Schrédinger equation, the differential equation
for the unitary time-evolution operator U (L, o) is obtained:
oU (t, o)

i = Hs)U(t,t0). (1.35)

As outlined in [44], an isolated system is described by a time independent Hamiltonian
H(t) = H. However, if the Hamiltonian is time-dependent, the system is considered closed.
This implies that the system can be influenced by external time-dependent fields, such as
electromagnetic fields, while its time evolution remains unitary despite the Hamiltonian’s
dependence on time.

For an isolated system the solution to equation (1.35) is:

A

Ot 1) = exp [—;ﬁg(t - to)] . (1.36)
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In contrast, for a closed system the solution to the time-evolution operator is given by:

t

Ul(t, o) = T exp {—; ﬁs(t')dt'} . (1.37)

to
Here, T, represents the chronological time-ordering operator, which specifies that the expo-
nential is a time-ordered product of time-dependent operators, so that their time-arguments
increase from right to left, as indicated by the arrow |41, 44].

By using the density operator formalism, where the state of the isolated or closed system
is described by the pure state operator ps = |1g)(1g|, the Schrédinger equation can be
rewritten as:

W) _ 11 irs(e), psto). (1.38)

This equation is referred to as the Schridinger-Von Neumann equation. 1t is common to

express the Schrédinger-Von Neumann equation using a Liouville super-operator, so as to
express the time evolution of pg(t) similarly to the time evolution for the state vector |¢g(t)),

requiring a higher-dimensional representation:

dps(t)

o =Lt)ps(b). (1.39)

This implies that £(t)ps(t) = —i/h [ﬁs(t), ﬁs(t)] For an isolated system, the solution is:

ps(t) = exp [L(t — to)] ps(to), (1.40)

while for a closed system the solution is:

ps(t) = T exp [ tﬁ(t’)dt’] ps(to). (1.41)

to

1.2.2 Interaction picture

Up to now, the description of time evolution of quantum systems was set in the framework of
the so called Schrodinger picture. The Schrodinger picture is perhaps the most familiar and
intuitive representation: the state of a quantum system evolves with time according to the
Schrédinger equation, which describes how the system’s state vector changes over time in
response to its Hamiltonian. In contrast to the Schrodinger picture, the Heisenberg picture
places the emphasis on the time evolution of operators rather than states. This approach is
especially valuable when studying the time dependence of observables and how they interact
with the system’s dynamics. These two different pictures can be merged, giving rise to a
more general framework, known with the name of interaction picture. The interaction
picture offers a unique perspective by separating the time evolution of a quantum system
into two distinct components: the natural evolution, governed by the free Hamiltonian ﬁo,
and the so called interaction Hamiltonian, V, describing the influence of external fields or
environments onto the system. In this picture, both states and operators evolve in time,
with the interaction Hamiltonian playing a central role.

Consider a quantum system S and its Hamiltonian H. s(t). The latter can be decomposed
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Hs(t) = Ho + V (1), (1.42)

where the Hamiltonian operator Hy is time-independent and it represents the energies of
the system S. The interaction Hamiltonian V(t) instead carries the time dependency of the
system Hamiltonian H 5(t). In this context, the subscript I is used to denote the interaction
picture formalism, while operators in the Schrédinger picture remains unsubscripted. The
Heisenberg picture is not considered in this thesis.

The canonical transformations from the Schrédinger picture to the interaction picture

are given by:

pr(t) = Ul(t,t0)p(t)Uo(t, to) (1.43)
Vi(t) = Ud(t,to)V()Uo(t, to) (1.44)
Ul(tatO) = AOT(t7t0>Ov(t7t0)7 (145)

where Up(t, o) is the unitary operator defined as:

U()(t, t()) = exp [—;I:I()(t — t0>:| . (1.46)

As an example, the electric field operator and the atomic transition operators in the
interaction and Schrédinger pictures are derived. This procedure is useful in subsequent
sections of the thesis. The electric field operator from equation (1.23) is expressed with time-
dependent creation and annihilation operators, thus being in the interaction picture. In the
Schrédinger picture, operators are time-independent, thus for the electric field operator one

has:

- : hvg ~ o ikr At ik
E(r) =i Z Z 2€Oi/€k,)\ [ak,/\elk]r - aL,\e i r] : (1.47)

Indeed, inserting the above expression in definition (1.44) for the transformation of operators

from the Schrédinger to the interaction picture, results in:

Er(r,t) = U{(t,t0) E(r)Uo (¢, to), (1.48)
where
ﬁo(t,to) = exXp —1 Z Z Vk,)\di,)\dk,)\@ - tg) . (1.49)
A=1,2 k

In the above expression, the free Hamiltonian of the electric field (equation (1.18)) is used.

In equation (1.48) there are terms satisfying the following relation:

il’k’A&LA&k"}‘t&k

—inaal L4 N —i
e >\6 ZVk,)\ak’)\ak,)\t — a/k’>\6 ll/kth’ (1.50)

)

where typ = 0 and the power series for the operator exponential:

o

. AJ . R

et =3 = with A"=1 (1.51)
=0 7"
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is used. The electric field operator in the interaction picture thus has the form:

hu . y . .
t) — Z Z 2{_:k‘/ €1 |:€Lk7)\€_“jkt+Lk'r . dL’)\e“’kt_Zk'r ) (152)
=12 k

The above expression is that of equation (1.23) described in Subsection 1.1.1.
Regarding atom transition operators &f;, a similar procedure is applied. The time-
independent atomic Hamiltonian Hy, as previously expressed in equation (1.28), is rewritten

in terms of the transition operators as follows:

_ o
Hot = Z (B — Jg T3g Zﬁw]ga]g Tig° (1.53)

J
where E4 denotes the lowest energy level of the system (ground level), and wj; = wj — wy
represents the angular frequency difference between the other levels and the ground level.
In the above expression, the ground level is chosen as the reference point with zero energy.

Hence, the associated unitary operator Uy has the form:

Us(t, tg) = exp Zw]g 67,055t —"10)]| - (1.54)
It follows:
6% = Ul t0)5 Uo(t to) = 65!, (1.55)

where, again, the power series of operator exponential is used. These two examples show
that the field and atomic operators in the interaction picture effectively evolve according to
their respective free Hamiltonians.

As for the time evolution of the density operator in the interaction picture, pr(t), the
corresponding differential equation is derived by differentiating equation (1.43) with respect
to time, using the Schrédinger-von Neumann equation (1.38) and the transformation given
by equation (1.44):

PO _ Lo, 1] (1.56)

The above equation is known as the Liouville-von Neumann equation.
The interaction picture proves invaluable for analyzing those systems subjected to ex-
ternal stimuli or engaged in the exchange of energy and information with their environment,

that are open quantum systems.

1.2.3 Open quantum systems and their time evolution

An open quantum system S is a system that is coupled to another quantum system repre-
sented by the external environment. The environment encompasses all degrees of freedom
that are not explicitly considered in the primary system’s description, but still influence
its dynamics through interaction. The external system is referred as R, which stands for
reservoir. In the literature, the terms “environment” and “reservoir” are often used inter-

changeably. However, as explained in [44], they can refer to external systems with different
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characteristics. Specifically, the term “environment” is used in a general sense, while the
term “reservoir” refers to an environment with an infinite number of degrees of freedom.
An example of a reservoir is a non-coherent radiation, whose modes can be described as
a continuum of frequencies, which is considered in this thesis work. This distinction is
important for discussing the coherences formed in the system S due to interaction with
the environment, known as Fano coherences. Finally, the term “bath” is used to describe a
reservoir in a state of thermal equilibrium.

The system S is associated to the complex Hilbert space Hg, while the reservoir state
is associated to the complex Hilbert space Hpi. The combination of these two subsystems
generates the composite system S + R, whose Hilbert space is given by the tensor product
H =HsR@Hg. In most cases, the composite system is assumed to be closed. As previously
stated, it is not possible to describe the dynamics of a system S interacting with another
system R using unitary, Hamiltonian dynamics when decoherence and relaxation are present
[44]. However, the dynamics of the combined system S + R remains unitary.

The evolution of the subsystem S, resulting from the unitary evolution of the composite
system, is referred to as reduced system dynamics, which can be described with the formalism
of quantum master equations. The derivation of the master equation governing the dynamics
of the examined multi-level system is conducted through a microscopic approach. The latter
begins with the Hamiltonian of the combined system, which includes both the system and

the reservoir Hamiltonians [44, 45|, and it is given by:
H(t)=Hs®Ig+1s® Hp + V(t), (1.57)

where H’s and H r are the time-indipendent Hamiltonians of the system and reservoir,
respectively. Here, Igand I represent the identity operators for the system and the reservoir
and V(t) denotes the interaction Hamiltonian. Equation (1.57) highlights that any operator
acting solely on one of the subsystems must be expressed in the Hilbert space H of the
composite system S + R. Hence, the tensor product of the operator in question with the
identity operator of the other subsystem is performed. The interaction Hamiltonian V(t),
on the other hand, encompasses the dimensions of the composite system. The dynamic of
the latter is described by the Schrodinger-Von Neumann equation (1.38) within the density

operator formalism: ) .

d’;it) - —% {ﬁ(t),f)(t)} : (1.58)
The initial condition is assumed to be described by the uncorrelated state p(0) = ps(0) ®
pr(0), where pg and pr are the reduced density operators describing the system and the
reservoir state, respectively. In many practical scenarios, such as those addressed in this
thesis, the focus is exclusively on the state of the primary system S, rather than on the
environment. The concept of the reduced density operator allows to obtain the state of
the system S alone, by tracing out the environment degrees of freedom from the composite
system density operator p. Mathematically, this process is called the partial trace over the

environment R, denoted as:

ps(t) = Trr (p(t)) , (1.59)
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where Trp denotes the trace over the Hilbert space Hp. The reduced density operator pg,
thus, encapsulates all the information about the subsystem S that is available, without
knowledge of the environment R [43, 44].

The derivation of the quantum master equation for the dynamics of the open quantum
system S is conveniently performed in the interaction picture, rather than in the Schrédinger
picture. Equation (1.58) is then substituted with the Liouville-von Neumann equation for

the composite system:

PO _ V). nt0)]. (1.60)

The exact formal solution is given by:

pr(t) = pr(0) — /O Vi), r(e] (1.61)

Substituting equation (1.61) in equation (1.60), the integro-differential form of the Liouville-

von Nuemann equation is obtained:

dﬁét(t) :_% Vi), 51 (0)] - % /Ot Vi), [Va(e), pr(@)] ] at' (1.62)

Applying the trace over the reservoir degrees of freedom, the differential equation for the
dynamics of the open quantum system S in the interaction picture is obtained:
dps,1(t)

1) —%TrR ([Vi(0).5(0) ® pr(0)] ) +
) L

- /Ot T ([Vi0), [Va (), pr()]]) a' (1.63)

Equation (1.63) still involves the density operator of the composite system, p(t). By
applying suitable approximations relevant to the specific scenario, it is possible to derive
a differential equation that depends exclusively on the state of the subsystem .S at time ¢.

The approximations used are the following:

e Born approximation: the Born approximation (or weak-coupling approzimation)
assumes that the coupling between the system and the reservoir is weak enough that
the state of the reservoir is only minimally perturbed by its interaction with the
system. This means that the density operator of the composite system S + R can be

approximated as:
pt) ~ ps(t) @ pr(0) Yt (1.64)

with the reservoir remaining approximately in its initial state pr(0) throughout the

Interaction.

By applying the Born approximation, equation (1.63) gets the form:

dﬁiéi(t) ~ —%TI‘R ({Vz(t),ﬁs(o) ®ﬁR(O)D *

= /0 “Tew ([V30), [T3(2),pss(e) @ ()] ] ) dt. (165
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e Markov approximation: the Markov approrimation assumes that the reservoir’s
memory effects are negligible, meaning that the system’s future evolution depends
only on its current state and not on its past history. This approximation leads to a
memoryless or Markovian process. This is valid when the reservoir has a much faster
relaxation time 7 compared to the system’s timescale 7g, i.e. 7 < 7g. Therefore,
the influence of the system on the reservoir can be neglected after a short correlation
time beyond which the reservoir “forgets” the interaction it has had with the system.
Mathematically, this implies that the reservoir’s correlation functions decay rapidly
for t — ' > 7p, therefore the contribution to the integral from times ¢ < t — 7R is
negligible and the upper limit of the integral in equation (1.65), can be safely extended
to infinity without significantly affecting the result:

D51 v ([13(0). p5(0) @ p(0)]) +

[e.9]
A

o [ me ([7200. [0 s () om0 ] ) ' (1.66)

Under the Markov approximation, the equation governing the system’s dynamics can
be expressed in a time-local form, meaning that the rate of change of the system’s

density operator at time ¢ depends only on its state at that same time t.

Equation (1.66), obtained by applying both the Born and Markov approximations, is a
Markovian quantum master equation, commonly known as Redfield or Bloch-Redfield equa-
tion. The Bloch-Redfield equation, in its simplest form, does not always preserve the pos-
itivity of the density matrix pg(t) [44-47|. The lack of positivity can lead to unphysical
results, as negative populations within the system. Therefore, further approximations are
often necessary to ensure the physical consistency of the reduced density operator. Typi-
cally, the secular or Rotating Wave Approzimation (RWA ) is applied to restore the positivity
of psr(t) [44, 45, 48, 49]. A brief description of the approximation is given, while the ap-

plication to the case under consideration is discussed in the next section.

e Secular approximation: the secular approximation involves neglecting rapidly os-
cillating terms, that are assumed to average out over time. Specifically, in the Bloch-
Redfield equation, those terms that oscillate with frequencies corresponding to differ-

ences between non-degenerate energy levels are dropped.

Consider an open quantum system, as a multi-level atom, described by the reduced
density operator pg(t) interacting with a reservoir. This system exhibits atomic
transitions with frequencies w and w’, leading to energy differences h(w — w') = hA,
where A = w — w’. The oscillation timescale Tw associated to the smallest non-zero
energy difference is given by 1/|w — w’| [29]. Three regimes can be distinguished: de-
generate, non-degenerate, and near-degenerate [48|. In degenerate cases, where A = 0,
transitions do not generate rapidly oscillating terms. In non-degenerate cases, where
A is large, the oscillation timescales 7, are much shorter than the system’s evolution
timescale g and thus the corresponding oscillating terms can be discarded. Hence, the

rotating wave approximation (RWA) is valid in both degenerate and non-degenerate
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regimes. After the application of the approximation, the remaining terms result in a
simplified master equation that ensures the positivity of the density operator. In this
way, a Gorini-Kossakowski-Sudarshan-Lindblad master equation, or simply a Lindblad
master equation can be derived. The Lindblad master equation inherently preserves
the positivity of the density operator along with its unitary trace, thereby ensur-
ing a consistent and physically meaningful description of the open quantum system’s
dynamics [44, 45, 50]. The Lindblad master equation is expressed as:
dps(t) Lo L s 8N nh Lfag, - .
82 = s + Hus,ps(0] + Y (Liw)ps(t)L] @) = 5 {Ll@)Liw). ps(t) } )
w,i
(1.67)

where Hyg is the system Hamiltonian and H;g is an Hamiltonian operator, known

as Lamb-shift Hamiltonian, used to renormalize the unperturbed system energy levels
induced by the system-reservoir coupling [44, 45]. Moreover, I:l(w) are the Lind-
blad operators, relative to the reservoir mode angular frequency w, that represent the
interaction with the environment. The terms involving L; capture the dissipative ef-
fects and ensure that the reduced system dynamics are both completely positive and

trace-preserving.

In the near-degenerate case, where 1/|w —w'| = 7, > 75, the RWA fails to accurately
model the dynamics of the system [29, 48, 49]|. Averaging out the rapidly oscillating
terms, associated to the near-degenerate energy difference AA, can neglect important
and interesting interference effects, particularly in multi-level systems driven by spec-
trally broadened or incoherent radiation [14, 23, 27, 29, 34, 51|. Therefore, the RWA
must be applied carefully, considering both the specific scenario in which the system

exists and its characteristics.

To accurately capture interference effects in the V-type three-level system driven by
non-coherent radiation, RWA is not applied in this case-study. In the following section,
further approximations are applied to the Bloch-Redfield equation (1.66). The aim is to
obtain a quantum master equation that preserves both trace and positivity and is ideally

in a form close to the Lindblad equation.

1.3 Derivation of the quantum master equation

This section derives the quantum master equation for a V-type three-level system from the
Bloch-Redfield equation, applying approximations appropriate to the case study.

First, the interaction Hamiltonian V7 in the interaction picture is defined, which dictates
the time evolution of the reduced density operator pg(t). Relevant approximations are
then applied to the Bloch-Redfield equation to obtain the quantum master equation. The
latter is expressed as a set of linear differential equations for each element of the system’s
density operator. The analysis considers two types of incoherent radiation: isotropic and
unpolarized, as well as anisotropic and polarized. The aim is to compare how Fano coherence

is generated in these different scenarios, ultimately identifying the optimal conditions for
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implementing an experimental setup on atomic platforms for the detection of noise-induced

Fano coherence.

1.3.1 Interaction Hamiltonian for a V-type three level system driven by
incoherent radiation

The light-matter interaction of interest involves a multi-level atom driven by a non-coherent
radiation source, such as a thermal or broadband laser radiation. This scenario is effectively
modeled using the open quantum system formalism, as the multi-level system S interacts
with a reservoir R.

The atomic system under consideration is a three-level system in a V configuration,
consisting of two excited states and one ground state, as depicted in figure 1.1. In the
figure, |a) and |b) represent the excited states, which decay to the ground state |c¢) with
rates v, and -, respectively. Additionally, both excited states are coupled to the ground
via incoherent pumping, (e.g. thermal radiation), with rate r4, rp. Conversely, there is no
coupling between excited states. The angular frequencies of the two atomic transitions are
indicated as wqe = wq—we and wpe = wp—w,, while the upper levels splitting is A = wWac —Whpe-
This scenario is described by the interaction between the system and the radiation field,
modelled as a thermal reservoir, and is studied using a fully quantum mechanical description.

The time-independent Hamiltonian of the reduced system is expressed as:

Hg = Z hwied 67, = T (Waeb g6 ae + Whep04,) (1.68)
l

with the energy of ground level |c) set to zero. Equivalently, from Subsection 1.1.1, the

Hamiltonian for the quantized electromagnetic field is:

I:IR = Z Zhyk:)\dir{,)\dky)\' (1.69)
A=1,2 k

As previously shown in equation (1.57), the Hamiltonian of the composite system S+ R

|a)
. |b)
W Wpc
Iy I'p
Y- -~ E—— -

Figure 1.1: The energy level configuration for the V-type three-level system under consideration
consists of two nearly degenerate excited levels, denoted as |a) and |b) with a frequency
splitting of A. These levels are incoherently pumped, at rates r, and 1, respectively,
from the ground level |c). Both |a) and |b) can decay to the ground level at rates v,
and yy, respectively.
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includes the interaction Hamiltonian V(t), which describes the interaction between the
atomic system and the electromagnetic field. The Hamiltonian V(t) can be derived by
considering the coupling between the electric dipole moment operator of the atom, f, and
the electric field operator E(r, t) [40, 41, 44]. In the interaction picture, the following
expression is obtained:

Vi(t) = —ur(t) - Bx(r,). (1.70)

The dipole moment operator in the interaction picture, associated to the V-type three level

system shown in figure 1.1, is given by:
[ () = Bae (60™" + 667 t) 4 prye (67 €0 + Gy e et) | (1.71)

where, equation (1.55) is used. Inserting equations (1.71) and (1.52) in equation (1.70)
yields the following:

‘A/I(t) =—1 Z Z hyk)\ |:(ll'ac €k )\) ( By M(wt + O' € M“”t)

2
A=12 k oV’

A —’L'Vk’kt-i-ik'r _ A il/kAt—’L'kT
X (ak7,\e ay € +

)

hl/k by . .
At twpet A—  —iWpet
) E E |: Kpe * €k \) (O, €77 + 0, e
280‘7 C ) ) ( be be )
A=1,2 k

(1.72)

—ivg attikr _ AT ik at—tker
ak /\6 .

)

X (&k,/\e
At this point, the dipole approximation is applied.

¢ Dipole approximation: the dipole approximation assumes that the wavelength of
the field is larger than the size of the atom. This allows to disregard any spatial
variations of the field over the spatial extent of the atom, meaning that the field can be
considered approximately constant. The dipole approximation is particularly suitable
for optical transitions, since atomic dimensions typically range in Angstroms, while
optical wavelengths extend to hundreds of nanometers. The dipole approximation
simplifies the electric field E (r,t) to be nearly constant over the spatial extent of the
atom. Consequently, the electric field can be evaluated at a reference point, chosen to

be r = 0. The electric field operator is then reformulated as follows:

hv ~ —iV ~ 7%
E(r,t) ~ E(0,t) =i Z Z ZEkVGkA {ak)\e Wi At aL)\e’ k**t] . (1.73)
A=12 k
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Vi(t) =

huk)\ + zwact —iwget ~ —ivp 2t ~t iV At
= — E E N (Bac - €x)) (64, +6,.€ ) (G e A —al e +

0 ,
A=12 k
R\ At dwpet | A—  —iwpet) [ A —iveat At vt
—i Z Z %0V (he * €1,0) (Gpoe™"" + Gpoe™ ) (G ae™ M — ay e ) |
A=12 k

(1.74)
Equation (1.74) can be simplified by applying RWA, that allows to discard the non-conserving

energy terms contained in the equation.

¢ Rotating Wave Approximation: considering equation (1.74), not all the four terms
arising from expanding the product (5‘;87@“ + &l;e_iwlfﬁ) ay \e et — dLAewkt), with
[ = a,b, conserve the energy. Specifically, the term &,_ay \ describes the transition of
the atom from the excited state |I) to the ground state |c) and the destruction of one
photon, resulting in a net energy loss (equal to the sum of the photon energy and the
energy difference between the atomic states). Conversely, the term 6;&11 \ represents
the transfer of the atom’s state to the excited state |I) and the creation of one photon,
resulting in an energy gain. On the other hand, the remaining two terms conserve
the energy of the light-matter interaction process [40]. Therefore, the non-conserving
terms can be dropped by applying the RWA. As specified by McCauley et al. in [48],
the application of the RWA at this stage should not to be confused with the secular
approximation that could be applied later, which turns the Bloch-Redfield equation

into a Lindblad master equation.

Hence, equation (1.74) turns into:

Vi(t) =

I~

. Vk,\ + Waelt—Vi 2\t A AT —i(wact—11c At
=1 E [ Hac - 6k,/\) (Uacak )\6 ( et ) Oacli 2 ( et e ) +
e VeV 7

>t

V] . .
k,\ |: e - ek,/\) (&l-)‘:;dk)\ez(wbct—uk,xt) _ &b_caI(,Ae_z(wat_yk’At))} )

(1.75)

—3 ;

A=1,2
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Equation (1.75) can be rewritten also in terms of the coupling terms g, '\, which have

dimensions of an angular frequency:

() _  Mic-€xx | hvg
= — 1'
T PR (1.76)
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with | = a, b, so that:

D it 3 34l (hnonc i) o e 4

=12 k
b | | (1.77)
+ih Z Zgl(g))\ (c};rcflk,,\el(wbct_”k**t) - 6&&L7A6_Z(wb‘ftﬂ’k’*t)> .
A=12 k

The coupling terms are real and quantify the strength of the interaction between subsystems
S and R. These terms define also the spectral density function J(v), which characterizes
how the modes of the radiation field (reservoir) are distributed and how strongly these

modes couple to the quantum system (atom). The spectral density is defined as:

ZZ\QM\ 6(v —vin) (1.78)

The presence of §(v — vy ) ensures that only the modes of the radiation field that have a
frequency vy ) are considered.

Now that a simplified expression for V[(t) has been obtained, it is possible to recover the
Born-Redfield equation (1.66). The first term on the right-hand side of (1.66) is associated

with the coherent part of the dynamics, since the commutator encapsulates the unitary
dPSI

evolution driven by the interaction Hamiltonian V7(¢). I denoted this term as \CO

By inserting V7 (t) in (1.66), the coherent term becomes:

dps,1(t)

dt = %TI"R ([W(t),ﬁs(o) ® ;SR(O)]) -

coh

2
==Y ) g e g \) 64, s (0)]+ (1.79)

A=1 k

2
= 2D g T ) 6y s (0)] + b
A=1 k

where (ax x) = Trg (ax 2pr(0)) are the expectation values of ay » with respect to the state
of the reservoir.

The R system is a thermal reservoir in equilibrium at temperature T'. This implies that
the modes of the reservoir are distributed as a mixture of uncorrelated thermal equilibrium
states at temperature T. Hence, the state of the reservoir can be represented by the following

reduced density operator [40, 44]:

At
. e\ huge Ay 5 Qi

K\

where kp is the Boltzmann constant. In this way, the expectation value and the correlation

function of the reservoir’s operators, computed with respect to pr(0), take the following



1.3 Derivation of the quantum master equation

24

values:
() = <ak =0 VkA (1.81)
<&1T<,>\ak’,>\’> = M0k Kk O\ N (1.82)
<&k,A&L,A/> = (fia + 1)0kkOxn (1.83)
(age rGirer 2 @ al, ) =0  Vk Kk AN, (1.84)
where

_ 1
g\ = T
exp (757 ) — 1

is the average photon (boson) number in the mode k, A and ¢ denotes the Dirac delta

(1.85)

function. These relations indicate that in thermal equilibrium, the expectation values of
the annihilation and creation operators are equal to zero (equation (1.81)). Equations
(1.82) and (1.83) give the average occupation numbers and the commutation relations of
the creation and annihilation operators at thermal equilibrium. Finally, equation (1.84)
shows that there are no correlations between modes.

Equation (1.81) implies that the coherent part of the reduced dynamics is equal to:

dps,1(t)
dt

=0 (1.86)

coh

Consider now the second term on the right-hand side of equation (1.66), which is asso-

ciated with the incoherent part of the reduced dynamics:

dps,1(t)
dt

i [ oo ([0 [750).psr0 0 pr )] @, (s

incoh

This term is related to the interaction between the system and the reservoir that leads to
dissipation. This expression can be simplified by expanding the double commutator after
substituting equation (1.77) and setting ¢’ = ¢ — s, where s > 7 according to the Markov

approximation. Each term in equation (1.87) is examined separately. The first term is:
l - —V! N/ A A N
/ Zzgk Agl(d)xe eIl ) [<aLAak”X><Uchz+cPSJ () +
AN kK
—aitpsi ()07, ) + (e vy (ps 1 (D57E07 — o0psa (D7) |ds, (1.88)
that is associated with the atomic transition |a) <> |¢) with [ = a or |b) <> |¢) with [ = b.

Moreover, also the following crossing terms (namely involving both the levels |a) and [b))

arise in equation (1.87):

/ Z ng )\gk’ ) ’L(Wac Vie A ) t—i(wpe—14er 31 ) (E—5) [<ak’ )\,ak A) (PS ]( )Ob(,O'ac +

AN kK

~otebs1(D55,) + (il ) (F0mhs1 (1) = o7ps(D55:) | ds. (1.89)

Hence, from substituting the expectation values in equations (1.82)-(1.84), equations (1.88)
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and (1.89) simplify as:

/ ZZ |9, D, [Pt men)s {nk)\ (61.0005,1(t) — 6,1 ps,r(t),) +
+(ien + 1) (51 (067567, — 670ps.1 (D7) | ds (1.90)

and

/ Z Zgl(ca;\gk ) ¢ i(Wae—Vie, \)E—i(Whe—Vie,A) (E—3) [ﬁk,x (ﬁS,I(t)&b_c(};c _ &L[;S’](t)(gb—c) +
(e + 1) (a—;ca—b—cﬁs,[(t) ~ Ophsa (Do) |ds. (1.91)

In the above expression, the exponential terms can be recast as:

/ Z Z Gergio €A TN i (1 (003078 = G (D57,) +
(e + 1) (a—;ca—;cﬁs,l( )= uhsa (5) |ds. (1.92)
At this point the Weisskopf- Wigner approximation is applied.

o Weisskopf-Wigner approximation: the Weisskopf-Wigner approximation assumes
that the electric field modes are densely packed in frequency, thus the summation over

k can be replaced with an integral, performing the continuum limit [40, 44]:

Vv 2m o RSN . VK
> — 3/ dng/ do s1n0/ k|2dk| with [k] = —=. (1.93)

m (2m)? Jo 0 0 ¢
The latter expression holds for a fixed polarization A. In equation (1.93), the summa-
tion over Cartesian coordinates is replaced with an integral in spherical coordinates
and the wavevector k can be expressed as k = |k|(sin € cos ¢, sin 0 sin ¢, cos #), varying
over the spherical volume d°k = |k|?d|k|sin #dfd¢. The fact that the radiation field is
contained in a sphere is an approximation that simplifies the mathematical treatment
of the model. Nevertheless, the error introduced by this assumption is negligible,
since the modes of the radiation field are uncorrelated due to the incoherence of the

light source. The integration variable |k| is then replaced with “= using the dispersion

Vv /271' /7r ] /oo 5
— d df sin 6 vidy 1.94
(271'0)3 0 ¢ 0 0 k%Yk ( )

with fixed polarization A.

relation:

Using the Weisskopf-Wigner approximation, the spectral density becomes:
Ji(v) = vV Z:/z7T d¢ /7r d@sin@/oo ]g(l) 26(v — V' )W2dV =
(2mc)® <~ Jo 0 o

1/3 2 ™ ]
= 16h7r35c32/0 dgf)/o e - € sin 06, (1.95)
° A
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where the properties of the Dirac delta function and definition (1.76) are used.

For an incoherent radiation source, the spectral density can often be approximated
as flat near the atomic transitions, due to its broad frequency range, which implies
the assumption v\ & Wae, wWye for any k, A close to the transition frequencies. Con-

3

sequently, the term v3 in equation (1.95) can be approximated by wj, as 3 is slowly

varying near wj.. Therefore, the spectral density can be considered approximately
constant over the relevant frequency range: J;(v) ~ Jj(wi.) with [ = a, b [39, 40]. The

spectral density is then:

w 27
T = s 2 | o [ vt e (1.96)

By applying the Weisskopf-Wigner approximation, terms (1.90) and (1.92) become:

[T A e (s ()~ iasa () +

(e +1) (5.1 (05767, — 070p5.1(0575) | dvicads

(1.97)
and
[T VG hne e e (s (050 ~ s (157) +
+(aen + 1) (656505, (8) — 67 psr(t)57) }dyk Ads, (1.98)

where the spectral density function is used. Notice that when 1\ # wj., the exponen-
tial terms e*(“e="N)$ in equations (1.97) and (1.98) oscillate rapidly. By applying the
Weisskopf-Wigner approximation, the only relevant frequency modes are those close to the
atomic transition. The result of this approximation in equations (1.97) and (1.98) is to set

the following integral computations:

m . . m .
/ e*Z(Uch*Vk,A)Sde)\ - eMZCS/ VRN iy 5 A
0 0

e~ Wics 0o ) 1
S / ekAdig \ = e "WIed (7755 + iP) (1.99)
s
—0o0

and

0 )
/ ezAtez(wbcfz/kA)sdyk’)\ _ e'LAtezwas / efwk)\sdyk’)\ ~
0 0

et Wbe—vkA)s oo o 1
~ elAtGQ/ e MRS iy = !Bl <7T5(s) - z']P’) . (1.100)
s

—00

where in both equations the one-side Fourier transform of the Dirac delta function is ex-
ploited:
00 ) 1
/ eF S dy = 16(s) + iP-. (1.101)
0 S
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The term P denotes the Cauchy principal value of the integral. The Cauchy principal value
is a mathematical technique used to handle integrals that would otherwise diverge, as in
this case, due to the singularity at s = 0. This term gives rise to the Lamb shift effect, which
origins from the interaction of the atom with the vacuum fluctuations of the electromagnetic
field, causing a slight shift in the energy levels of the atom [44, 48]. In this treatment, the
Lamb shift term is neglected, as in references |27, 30, 52|, since it is negligible for weak
system-radiation couplings, being much smaller than the atomic transition frequencies.
Substituting expressions (1.99) and (1.100) in the terms (1.97) and (1.98) yields:

oo
—WJl(wlc)/ e et [ﬁk,/\ (61.670P5,1(t) = G, ps,1(t)6y,) +
0
i+ 1) (51 (057507 — 670ps1(D575) | 8(s)ds (1.102)
and
—TTy\/ Ja(wac)Jb(wbc) / (2Z te’LLUbCS |:ﬁk,)\ (ﬁ57[(t)&[;_c&;rc — &jcﬁg,f(t)@;) +
0
(e + 1) (Fe07h5.1 (1) — G7ps1 (D575 |8(s)ds (1.103)
By evaluating the integral, the terms become:

—7J (wie) [ﬁk,)\ (6.670p5.1(t) — 675ps5.1(t)67,) + (Maex + 1) (ps,r(t)6;56,, — ﬁfcﬁs,](t)&fg)}

(1.104)
and
—T/ J(Wac)J(wbc)eiAt [ﬁk)\ (ﬁS,I (t)a-l;;a-;rc - 5&%‘,1(75)&1:0) +
mer +1) (03ups.1 (1) = 03051 (05) | (1.105)

The term shown in (1.105) includes an oscillatory component at the frequency difference A
between the two excited states. If the two excited states are nearly degenerate, the oscil-
lation period 1/A can exceed the system’s characteristic timescale. In this case, applying
the secular approximation, which is suitable for large or zero A, becomes inappropriate.
The reason is that the secular approximation could ignore interesting interference effects
by averaging the oscillatory component. To account for these effects the partial secular

approximation is used.

e Partial secular approximation: this approximation maintains the coupling be-
tween populations and coherences that arise from the terms in the master equation
that oscillate with frequencies proportional to A. The partial secular approximation
allows to observe the creation of coherence and non-monotonic excited states popu-
lation dynamics, which result from interference effects between closely spaced levels
[27, 29, 53, 54].

This approximation states that, since wge — wWpe = A K Wac, Whe, then wee =~ wpe. This
is valid, for example, in the context of optical transitions, where wgc, wpe ~ hundreds of

THz. The condition A < wyc, wpe justifies the use of the partial secular approximation
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as it ensures that terms oscillating at transition frequencies, except those oscillating

at frequency A, average out over the system’s timescale.

After the application of this approximation, crossing terms as (1.105) become:

—Ty/ Ja(wac)Jb(wac) [ﬁ’ (pAS,I(wé—b_ca—(jc - &t—zi_cpAS,I(t)oA—b_c) +
(1 + 1) (663ps1 (1) — Giupsa(t)55) | (1.106)

Note that the application of the Weisskopf-Wigner approximation first and the partial-

secular approximation then imply that:
1
n=—/—=— (1.107)
exp <Z"‘%> -1

since only the modes close to the atomic transitions are relevant, and wge & wWpe.

At the end of the calculations, the Born-Redfield equation (1.66) transforms into:

dps.i(t) _ dpsu(t)
dt dt

incoh

_7TJ wac [ UaCUacPS - UacPS( ) ) + (TL +1 (p5< )Jacaac + JacpAS(t)é—(—li_c)}
) [ ( (

)
—7tJy(wae) |1(65,64ps(t &,jcﬁs(t)&,jc) + (n+1)(ps(t)665, — 64 ﬁs(t)&,jc)]

RY Ja(Wae) Jp(Wae) [ﬁ ([’S(t)&b_c@jc - 6(—;&35(15)51;_6) +(n+1) (Uacabcps( ) — 51)_@55(75)62_0)}

—7\/ Ja(Wae) Jp(Wac) [ﬁ(ﬁs(t)&;c&lj; chPS( )0 a ) (n+ 1)(0bc Gachs(t) — &c:c/ss(t)&;;)} +
+h.c.. (1.108)

Equation (1.108) deviates from the standard Lindblad master equation due to the inclu-
sion of the mixed terms (the last two lines), which account for quantum interference effects.
However, as shown by McCauley et al. [48], when the spectral density is sufficiently flat and
transitions are close enough to share the same spectral density value, the Bloch-Redfield
equation closely approximates a Lindblad master equation, thereby maintaining positivity.
Indeed, Jeske et al. in |53] explain that these conditions lead to the degenerate Lindblad
master equation case, described in the reference. For this reason the issue of losing positive
semi-definiteness of pg(t) does not occur, as also observed in this case study, and equa-
tion (1.108) consistently provides accurate predictions, as also remarked in previous works
on the subject [26, 28, 29].

Equation (1.108) is general, regarding the type of incoherent radiation considered. In the
next sections, the specific case of isotropic, unpolarized radiation and anisotropic, polarized

radiation are described in detail.

1.3.2 Interaction with an isotropic, unpolarized non-coherent source

In this section I consider an isotropic unpolarized incoherent radiation interacting with

the three-level system. I start the calculation by expanding equation (1.108) by inserting
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equation (1.96). As previously done, I perform the calculation on just two representative
terms:
3
Wie
16hAm2eqc?

27
/ d¢/ sin 0d6 Z e - €>\| [ UacaacpSI( ) - OA-:_C[JS,I (t/)&;c) +
(1.109)

(1) (s (5 — s (105)

and

wgc 27 T L o L o
16h7725003/0 d¢/0 sin 9d9; (Hac - €x) (Hoc - €3) [n (ps,1(t) 03,68, — 64ps1(t)dy,) +
(4 1) (Ghbmpsa () = Graps(#)57k) |.

(1.110)

At this point, the wave vector and the polarization vector can be expressed in spherical
coordinates in order to evaluate the angular integrals and then the sum over the polarizations
[30, 39]. Following the methodology used in [30, 39, 55], I rewrite the wave vector in spherical
coordinates: k = |k|[sin 6 cos ¢, sin 0 sin ¢, cos f]. The polarization and wave vector must be
orthogonal, thus two possible instances e —1, €y—2 of the polarization vector for A = 1,2

are given by the following expressions:

€x=1 = [— cos 0 cos ¢, — cos O sin ¢, sin 0] (1.111)
€x—2 = [sin ¢, — cos ¢, 0]. (1.112)

Then, the scalar products (g - €x=1) and (pc - €x=2), with I = a,b, for arbitrary electric
dipole moments e and pye, are computed as long with the evaluation of the integrals over

the spherical polar angles 6,¢, obtaining:

2T T
/ qu/ sin0d0 S e - exl? = o |pe]? (1.113)
0 0 /\ 3

and

27 ™ ) 8
/ d¢/ sin0d0 > " (ptac - €2) (thoe - €3) = 37 (Hac " Hae) - (1.114)
0 0 )\

As a result, substituting (1.113) and (1.114) in (1.109) and (1.110) leads to:

E’f;’jgc's [ﬁ(iaicps( ) = Gaeps(t')0ge) + (0 +1) (p (’)&jc&;c—&;ps(t’)&;)] (1.115)

and

3
w“é,;:: go'cé“"’) [ﬁ (ps(t)G3,00 — 65ps(t)55,) + (1 + 1) (65.65,05(t') — 670551 } :
(1.116)
The fact that I am evaluating the integrals in (1.113) and (1.114) means that an isotropic and
unpolarized radiation is assumed, i.e., the modes of the radiation are uniformly distributed

along all the spatial directions, without a specific polarization.
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Equation (1.108) then assumes the form:

dps,1(t) _ dpsi(t)

dt dt incoh
Ya_ A At A A A . _ ~ R P o
o P (Fadihs (1) = 68ps (D) + (1 + 1) (s (D0 + —0ahs(D57) |
Vol (aentn 4 A=) o Al Al s
—5 [n(%cffbtﬂs(t) — Gyeps(t)y,) + (1 + 1) (ps(8)53.60, — G3eps(t)5))
Vb _ _ R
—p Y5 (A (D050 — 0eps(0)67,) + (1 + 1) (007ps (1) — G3ups (D)
Vb _ . o
—p 211 [ (pS( )O—aco—l—)’; chpS( ) ) + (n + 1>(ch acps( ) - Uacps( )ch)] +h.c.
(1.117)
In Eq. (1.117),
wl |:ulc‘
p = Pacbe _ 0, (1.119)
| Bac| | ol

where 7; denotes the spontaneous decay rate from level |I) to the ground level |c¢). The
parameter p is the alignment parameter between the transition dipole moments of the tran-
sitions |a) <> |c), |b) <> |c), and O is the angle between the two electric dipole moments. The
parameter p ranges from —1 to +1, where p = +1 indicates that the transition dipole mo-
ments g and ppe are parallel, p = —1 means they are anti-parallel, and p = 0 corresponds
to orthogonal dipole moments.

Finally, the equation of motion for pg(¢) in the Schrodinger picture is derived by adding
the Hamiltonian Hg of the three-level system in the coherent part of the differential equation

of ps(t). Formally, it entails to solve the differential equation

dps(t o [ Tewf
Pst( ) _ _%TIR [vf(t) + Hs @ Ig, ps(0) @ ﬁR(O)} +

B 7112 /t Trr [V (t), [Vl(t')aﬁS(t’)G@ﬁR(O)H dt’. (1.120)

Hence, by incorporating the explicit expression of H s into the differential equation (1.120)
and decomposing pg(t) in its elements (I|ps(t)|j) = pi(t) with [,j = a,b,c, the set of
differential equations for each p;;(t) is obtained, upon following the same steps already

performed in the interaction picture, as reported below [55]:

dpz(t) = —Ya (7 + 1) paa(t) + YaRpee(t) — py/YaTe (7 + 1) Re[pab(t)]

dp;l;(t) == (1 + 1) pou(t) + Wipec(t) — Pv/YaVo (7 + 1) Re[pan (t)]

dpifft) = (Ya + ) Npec(t) + (7 + 1) (Yapaa(t) + Wpes(t)) + 203/ Ya¥e (7 + 1) Re[pab(t)]
dpg;(t) — —p@ (74 1) (paa(t) + poo(t)) + PV AaVoRpec(t) — VT*% (i +1) +iA| pa(t)

(1.121)
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together with

dpac(t W
= R e a0 - [Far F e e
dppe(l YaVb /- _ _ W '
Pell) VI (4 1) pelt) — [+ T (204 1) 442 ).

The incoherent pumping rates r; = 77y of the transitions |l) <> |¢) (I = a,b) are asso-

ciated with the absorption and stimulated emission processes due to the incoherent light
source. Note that, if p = 0, thus the transition dipole moments are orthogonal, then equa-
tion (1.121) and (1.122) for the quantum system dynamics simplify to the standard Pauli
rate equations [28, 29|.

Equations (1.121) and (1.122) correspond to two independent sub-processes of the quan-
tum system’s evolution [14]. Equation (1.121) comprise the time-evolution of the quantum
coherence between the two nearly degenerate excited levels |a), |b), which arises thanks to
the interference both between the two decay paths and between the two pumping paths (see
Fig. 1.1). This kind of coupling gives rise to an effective one-photon coherence that makes
indistinguishable the transition |a) <> |¢) or |b) <+ |¢) along which the decay and pumping
processes occur. On the other hand, the sub-process (1.122) returns the time-evolutions
of the quantum coherence between each excited level and the ground state, which are not
affected by how the system populations vary. This decoupling is a consequence of apply-
ing the partial secular approximation, which averaged out the oscillating terms at the single
atomic transition frequencies, while retaining the terms oscillating at the frequency splitting
A [30, 55]. It is important to note that equations (1.121) and (1.122) apply to single atoms
and do not account for interactions between atoms or collective behaviors. The mathemati-
cal model remains valid for theoretical predictions in the proof-of-principle experiment since
the atomic densities are low enough to treat the atoms as non-interacting, as it is shown in
Section 3.2.

In subsection 1.4.1, I present the simulations for the isotropic unpolarized case scenario,
which are obtained by numerically solving equations (1.121) and (1.122). These simulations

analyze the influence of the governing parameters A, 7 and p.

1.3.3 Interaction with a polarized non-coherent source

In this section, the case of an anisotropic and polarized incoherent radiation is considered.
Differently from the isotropic and unpolarized case presented in the previous section, the
anisotropy of the radiation affects only the incoherent pumping, thereby influencing the
absorption and stimulated emission processes. The spontaneous emission process, instead,
remains isotropic due to interaction with vacuum fluctuations. As explained by Dodin
et al. in [29], this condition can be described by the interaction of the system with two
distinct photon baths: the isotropic radiative environment for the spontaneous decay and
the directional excitation beam inducing the absorption and stimulated emission.

In the polarized case, the integration over the spherical volume d°k = |k|?d|k| sin 0dfd¢

is performed solely on the magnitude of the wavevector |k|?d|k|, since the direction of k is



1.3 Derivation of the quantum master equation

32

defined. Consequently, the spectral density J;(v) is given by:
W) = o S e e (1.123)
V)= ———— -€ex|”. )
! 16hm3e,c3 )\ Hie =€

At this point, it is necessary to define the polarization vector €y as well as the transition
dipole moments vectors ptq. and pp. of the atomic transitions. The discussion focuses on
the case of the atomic transitions with Amprp = mp — mp = +1, where the quantum
number mp identifies the hyperfine magnetic sublevel within the ground manifold F', while
the subscript F’ indicates the excited manifold. In particular, the quantum number mpg
specifies the projection of the total angular momentum F', which is given by the sum of the
electronic total angular momentum J and the nuclear spin I along a chosen quantization
axis, typically the z axis [41, 56]. This specific case is used in the implementation of the
V-type three-level system in the hyperfine structure of 8’Rb atoms, described in Chapter 3.

For Amp = +1, the corresponding transition involves coupling with circularly polarized
light in the 2-y plane, according to the selection rules. The unitary transition dipole moment

vector for this transition is defined as:

o=y = {—\}5 —z’\%,o] . (1.124)

Conversely, for Amp = —1 the transition involves the coupling with circularly polarized
light in the z-y plane, but rotated in the opposite sense respect to the previous case. The

unitary dipole moment vector for this transition is:

[ L4 0] (1.125)
=p-=|—4,—-1—,0]. i
SRR BVo MR

The atomic transition |a) <> |¢) is described by the transition dipole moment vector pg. =
|lbac|pp—, while the atomic transition |b) <+ |c) is described by the transition dipole moment
vector fpe = |tpe|p+. Note that pge L ppe. If the polarization of the light is oriented along

the x axis, the corresponding unitary polarization vector is given by:
€\ =€; =[1,0,0] (1.126)

or as the linear combination:

€& =V2(pu —py). (1.127)

The last expression indicates that a linear polarization can drive both p_ and g transitions.
Starting from the equation (1.108) and using equation (1.123), the following terms are

obtained:

AT
16hm2eqc?

Wilbacl® (o ey

+ W (pS(t )Jacgac - Uacps(t )Jac)

|7 (60ps () = s (Vo) + 1 (ps (V)b — s ()57 |+
(1.128)
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and

wgc (Kac - €2) (Moc - €2)

16Am2eqc?

Wac (“ac /"bc)
6hmeocd

[ (2s() 57,08 — 0eps (1)67,) + 7 (ks () — s (¥)o7e) |+
+ (Aaca—bcps( ) - &l:cﬁ5<t/)é—;::) )
(1.129)

where the terms related to the spontaneous emission phenomenon are the last two in each

equation. Then, calculating the scalar products:

witlme* 1o L
g3 |7 (0acdiaps(t) = 0ups(1)30c) + 7 (ps()0 00— Gaahs(1)55) |+
1.130
"~’lc|lvblc|2 N At oA A N A ( )
+ 6hmeycd (ﬂ ( )Uacaac_aacpS(t )Uac)
and

Wagc | Bac] [ 1ol
32hm2enc3

3
w (Hac'“b) 4 oA N At
ac6h7r6003 k ( acabcps( ) — OpcPS (t/)aac) .

7 (553,00 — 6Lehs(1)6y.) + 7 (60 (F) = G0ps(1)5L) |+

+
(1.131)

Using unpolarized and isotropic radiation, the incoherent pumping rate r;/2 = n7y; /2 is

given by:
leso B lzso w?c |,ulc‘2 B
= —7F". 1.132
9 "9 6hmegcd " ( )

On the contrary, for the case of polarized radiation, the incoherent pumping rate is:

pol pol 180
Tl _" wlc |//'lc‘ = _N 3 = pol 3 150
- BN . 1.133
s Ty T mmZed T g 16n N T 162 (1.133)

As also demonstrated in [30], the anisotropic pumping rate rf °l i smaller by a factor of
167/3 than the isotropic pumping rate rliso

Overall, the master equation in the context of polarized radiation is:

poln + ,yleso) Paa (t) + ’YgOlﬁpcc(t) - ( 'YgOZ'YI?Oln +p 'YZ;SO zso> Re pab

dppy (1 - n 50y)
p ( poly 4 711;50) pob(1) + AL Tipee(t) — < VBT + p\/’W) Re[pan (t)]
2

VeER + py/ 7250725") Re[pab (t)]
dpap(t 1 —
pald) __ 2 ( 4 0 ) (Gunl®) + p(0) A ()

pol pol 150 150
+
Ta 5 i3 n+ Ta ;— % +3A

pab( )

(1.134)

pol 1 vbp”l) fipec(t) + 7 (vé"”paa(t) + vfolpbb(t)) + (V2 paa(t) + Vo (t)) +
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together with

d t 1 / /-YPOZ ,yzso W
padct( ) :_2( pOl pOln+p / zso zso) pbc 5 n+,ypoln+ % +i ;C Pac(t)

d b t 1 - pol ,sto wp
pd(;( )_ 3 <\/7§Z"lvi’o’n+p 735"7”0> Pac(t) — ’Y; i e i | pre(t):

(1.135)

The structure of equations (1.134) and (1.135) mirrors that of equations (1.121) and
(1.122), with the key difference that the system interacts with two distinct thermal baths,
identified through the quantities ’yf and ’y“o Specifically, the interaction can be decom-

posed into two parts: the modes of the field with wavevector k and polarization €, act as a
hot bath, that supply energy to the V-system, while the remaining vacuum modes act as a
cold bath, to which the system dissipates energy [29]. Notice that the selected transitions
have orthogonal electric dipole moments. This implies p = 0 for the isotropic process of
spontaneous emission.

The experimental realization of a proof-of-principle experiment to detect noise-induced
Fano coherences in a V-type three-level system, described in Section 3.2, employs polarized

incoherent radiation. The reasons behind this choice are explained in the following section.

1.4 Theoretical prediction for V-type three-level systems

Recent works have extensively investigated the driving of multi-level systems, in particular
V-type three-level systems, by isotropic, unpolarized, non-coherent radiation sources [23, 26—
28, 51]. These studies provide analytic solutions to equations (1.121), revealing two distinct
dynamical regimes based on the ratio between the excited state splitting A and the average
radiative decay rate 4 between the two decay rates 7, and ~;. The solutions are also
influenced by the source’s average photon number 7, whose value is determined by the ratio
between the average incoherent excitation rate 7 and the average spontaneous decay rate ¥
[26, 28, 51]. Subsequently, also the case of polarized radiation has been examined in [29, 30].
Analytic solutions to equations (1.122) and (1.135) are still not provided in prior literature.

This section examines and discusses the dynamical regimes associated with an unpo-
larized an polarized incoherent radiation. Rather than relying on analytical solutions, as
in previous works, this thesis presents numerically obtained solutions to understand the
behavior of all elements of the system’s density operator. In particular, the solutions of
equations (1.121) for unpolarized radiation and (1.134) for polarized radiation are analyzed
separately in Subsections 1.4.1 and 1.4.2, respectively. This analysis is crucial for deter-
mining the conditions needed for a proof-of-principle experiment with atoms to detect Fano
coherence, treated in Chapter 3. The solutions of equations (1.122) are used in the quantum

thermodynamic analysis in Chapter 2.

1.4.1 Dynamical regimes with isotropic unpolarized radiation

The dynamics of a V-type three level system interacting with a continuum of radiation

modes, uniformly distributed along all the spatial directions without a specific polarization,
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is described by equations (1.121) and (1.122). I remind that the above equations correspond
to two independent sub-processes for the quantum system’s evolution. The first set of
differential equations in (1.121) describes the time-evolution of the coupling between the
quantum coherence between the nearly degenerate excited levels |a), |b), and the system’s
populations. On the other hand, the sub-process (1.122) captures the time-evolution of
the quantum coherences between each excited level and the ground state, which are not
affected by how the system populations vary. This decoupling is a consequence of applying
the partial secular approximation.

The differential equations in (1.121) and (1.122) can be reformulated using the Liouville
representation, as done in [28, 30, 51, 52|. In this representation, the reduced density

operator pg is expressed in matrix-vector form:

X(t) = [paa <t>7 pab(t)7 pac(t>7 Phba (t), Pbb(t)7 pbc(t>7 Pca (t)7 pcb(t)pcc(t)]T- (1136)

In this way, the elements of a N x IV density operator are represented by a vector of dimension
N2 [57]. Differently from [28, 30, 51, 52|, the state vector x(t) includes all the elements of
the system’s density operator, allowing to numerically solve both sub-processes in equations
(1.121) and (1.122) simultaneously. In Section 2.2 a different method is adopted, by solving
the two sub-processes separately. Both approaches ultimately yield the same results.

The coefficient matrix of the linear differential equations is represented by the Liouville
super-operator L. The latter is decomposed in the “coherent” term ﬁH, comprising the
coherent evolution of the dynamics, and the “dissipative” term Lp that encapsulates the
effects of dissipation on the density matrix. In formulas:

i

3 [ﬁg,[)g(t)} —>,CAHX(75) with ﬁH :ﬁ5®ﬂs—ﬁg®f{§. (1.137)

Here Ig is the identity operator in the Hilbert space of the system S. The term ED, instead,
can be further divided for simplicity in three contributions:
1. Lp,, that describes the decay and pumping processes relative to transition |a) < |c).
2. ﬁpg, that describes the decay and pumping processes relative to transition |b) <> |c).
3. ﬁpm that describes Fano interference terms.

The procedure used to obtain all the above dissipative terms can be found in [58]. The

following linear homogeneous differential equation is then obtained:

The advantages of the Liouville super-operator are several, among which is the ability to rep-
resent the master equation formalism in a compact and more manageable form. Moreover,

it is possible to numerically solve the set of equations in (1.138) via exponentiation:

x(t) = e“'x(0), (1.139)
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with x(0) denoting the initial state. The exponential of the super-operator is computed using
the Matlab function expm, which employs the scaling and squaring algorithm of Higham [59].
The numerical solution of equation (1.139) is valid under the assumption that all terms
composing the super-operator remain constant over time, which is the case treated in this
and in the following subsection. Subsequently, a time-dependent incoherent radiation is also
evaluated, being useful for the implementation of the proof-of-principle experiment of Fano
coherence generation.

To properly analyse the generation of Fano coherence induced by incoherent driving,
I choose a coherence-free initial state. Specifically, as in [26, 28, 30, 51| , I initialize the
system in the ground state, meaning the initial state vector x(0) has only p..(0) =1 as the
non-zero element. This initial condition guarantees the existence of positive populations at
all times, as discussed in [26, 28, 51|

The analytical and numerical solutions reveal two critical physical regimes for the evolu-
tion of the Fano-coherence pgp: an overdamped regime and an underdamped regime, separated
by a transition regime |26, 28, 51|. The regimes are determined by different values of the
excited states splitting A, of the average spontaneous decay rate ¥ = (v, + 75)/2, of the
alignment parameter p and of the radiation average photon number n. The latter can be
interpreted also as the radiation intensity. For simplicity, 74 > 73 is assumed, though the
results hold for the reverse condition 7, < v, as well.

First, consider the weak pumping condition, where n < 1. In the following, I report the
results found by Dodin et al. in [51] and previously by Tscherbul et al. [26]. The following
parameter is defined [51]:

Ap= VA2 = (1= p?)vam, (1.140)

that can be interpreted as a generalized excited state splitting. Focusing on the case p = +1,
the two main regimes are identified by the ratio A,/7 = A/7 [26, 51]:

(i) Underdamped regime, A,/¥ > 1: in presence of a large excited state splitting,
the real and imaginary parts of the coherence p,p oscillate at frequency A, as depicted
in figure 1.2. These oscillations are damped by interactions with the incoherent field,
through spontaneous and stimulated emission processes, and they reach zero on the

time scale Teon & 1/7 [26].

When the V-system transitions from symmetrical (7, = 7p) to asymmetrical (v, /7y >
1), distinct behaviors in the real and imaginary parts of the coherence can be observed.
In particular, the real part decays more rapidly than the imaginary part, because the
real part of the coherence couples to system’s populations via the interference terms of
the master equations. Once the faster decaying population (pg,) reaches equilibrium,
the real part of the coherence is suppressed. In contrast, the imaginary part, which is
independent from the populations, persists until the slower decaying population (ppp)
also reaches equilibrium [51]. Furthermore, the oscillation amplitude of both Re[pgp)
and Im[pg] decreases as v,/7p increases. The ground state population p.. is not

reported in the graphs, since its behavior can be retrieved by applying the constraint

Pec = 1 — paa — Pob-
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Figure 1.2: Dimensionless time evolution of excited states populations and real and imaginary
part of quantum coherence between levels |a) and |b). The radiation intensity is set
to fulfill the weak pumping regime (7 = 0.06), with a large splitting between excited
states (A/y = 10). Different ratios of decay rates ./, are shown, with p =1 in all
panels of the figure.

In figure 1.3 the parameter p is decreased to p = 0.5 to show its influence on the

amplitude of coherence. The amplitude decreases as the absolute value of p decreases,
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Figure 1.3: Dimensionless time evolution of real and imaginary part of quantum coherence p,, with

p = 0.5. The radiation intensity is set to fulfill the weak pumping regime (7. = 0.06),
with a large splitting between excited states (A/% = 10).
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without affecting the overall time dynamics. Hence, parallel or anti-parallel transition
dipole moments maximise the amplitude of Re[p,p], while the sign of p only affects

the sign of imaginary and real parts.

Overdamped regime, A,/y < 1: assume now that the excited states are very
close in frequency. In this regime, the real and imaginary parts of p, reach a quasi-

stationary state as depicted in figure 1.4.

In this scenario, the time scale of coherence dynamics is given by 7con = 27/ Ag [26, 51].
Thus, in the limit A, — 0, the coherence lifetime approaches infinity . The condition
A, = 0 is achieved with degenerate excited levels (A = 0) and with parallel (or anti-
parallel) transition dipoles moments (p = +1). Under these conditions, noise-induced
Fano coherence can become stationary, which is advantageous for possible attaining
quantum heat engines or photocells |23, 33, 34|, as well as its detection. Therefore,
by tuning the splitting A, the coherence lifetime can be made in principle arbitrarily

long.

The excited state populations evolve non-monotonically, showing a quasi-stationary
state as well. Aslong ast < 7o, the system evolves to a state that involves an in-phase
coherent superposition between the excited energy eignestates [51]. During this period,
the populations of the excited levels reach a first saturation level, which is lower than

that of thermal equilibrium, as long as Re[pqp] # 0. In this scenario, the real part of the
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Figure 1.4: Dimensionless time evolution of excited states populations as well as of real and imag-

inary part of quantum coherence between levels |a) and |b). The radiation intensity
is set to fulfill the weak pumping regime (n = 0.06), with a small splitting between
excited states (A/7 = 0.1). Different ratios of decay rates -y, /~y are shown, withp = 1
in all panels of the figure.
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coherence can be interpreted as a decay channel for populations. As time progresses
and Re[pg] decays to zero, the in-phase coherent superposition component of the
system state diminishes due to the population-coherence coupling term in equations
(1.121). Eventually, the system reaches the equilibrium state predicted by Pauli rate-
law equations, where the excited state populations attain a second saturation level,

corresponding to the thermal equilibrium state, and Re[pg] = 0.

As seen in the previous regime, also in the overdamped regime the asymmetry of the
system leads to a decrease in the value of both the real and imaginary part of ps,. On

the other hand, increasing v,/ results in longer dynamics for pgp.

Figure 1.5 shows that if p is decreased to p = 0.5 the maximum value of Re[pgp)
reduces. More precisely, if [p| < 1, the quasi-stationary condition is lost. In this
case, the lifetime of the coherence is no longer dependent from A, but is given by
Teoh = 1/(1 — |p|)7 [28]. Again, the sign of p, only affects the sign of imaginary and

real parts.

For the detection of noise-induced Fano coherence, achieving a stationary or a quasi-

stationary state with high coherence values is preferable to having an oscillating state.

Therefore, the overdamped regime is the favourable condition. I show now that, using strong

pumping, the overdamped regime can be easily achieved, as the requirement A,/ < 1

can be relaxed, thus allowing A to be much larger than 4 without compromising quasi-

stationarity.

The strong-pumping regime, where 7 > 1, is particularly relevant in the context of

quantum heat engines [33]|. As clarified by Koyu et al. in [28], the condition 7 = r; /v > 1,

with | = a,b, does not violate the weak-coupling assumption, as long as r; < wq, for all

l = a,b, meaning the pumping rate is much smaller than the atomic transition frequency.
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Figure 1.5: Dimensionless time evolution of real and imaginary part of quantum coherence pq;, with

p = 0.5. The radiation intensity is set to fulfill the weak pumping regime (n = 0.06),
with a small splitting between excited states (A/y = 0.1).
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If wge corresponds to an optical transition (thus, wg. ~ 100 THz) and v; to an atomic

linewidths (thus, 7; ~ 10 MHz) then 7 can assume values up to 103 — 10%,

Regarding
Markovianity, it is mantained if the pumping rate 7; is smaller than the inverse of the
reservoir correlation time 7. Typically, in the optical regime 75 &~ 10 fs, then 7 < 103 —10*
is acceptable.

Below, I report the findings of Koyu et al. in [28], where they examine the interaction
between a V-type three-level system and a strong intensity incoherent radiation. Differ-
ently from their work, I also provide cases of asymmetric V-type systems. The solutions
can be classified again into two physical regimes: underdamped and overdamped regimes,
depending on the ratio A/ and .. As discussed in detail in [28], the underdamped regime
is found if A/5 > f(p)n, where f(p)n is a straight line whose slope depends solely on p, in
the large A/% and 7 limit. The function f(p) is derived in detail in [28]. Conversely, when
A/y < f(p)n, the solutions to the differential equations are overdamped. I focus solely on

this case, as it is the most interesting for experimental validation of the phenomenon.

(i) Overdamped regime, A/ < f(p)n: I set n = 100, A/ = 0.1 and p = 1. As
depicted in figure 1.6, the quasi-stationarity for the real part of pg is obtained. The
coherence lifetime is significantly longer with n > 1 compared to the case with n < 1
(see also figure 1.4). As demonstrated in [28], for p = 1, 7eon = 1.3475/A2. Hence,
larger n implies longer-lived Fano coherence, as long as A remains small. Eventually,

for A — 0 then 7, — 00, thus achieving a stationary condition.

In figure 1.6, also the case of large state splitting, A/¥ = 10 is shown, which in the
weak-pumping regime corresponds to the underdamped scenario. As can be seen, with
strong pumping, the configuration A/% = 10 attains quasi-steady state for Re[pgs),
while the imaginary part is approximately zero. By increasing the intensity n, it is
possible to relax the condition of small splittings A to achieve overdamped solutions.
However, the larger A, the shorter 7.,. The populations pgq, ppp behave in the same
way when the system is symmetrical (7, = 7p). In the case v, = 2, the two different
values of A do not affect the population pu,, so the solid and dashed lines overlap. In

contrast, pp, reaches steady state faster for larger values of A.

Setting p = 0.5 yields the results shown in figure 1.7. Similar to the case with n < 1,
the quasi-stationarity of Re[pgp] is lost. As explained in [28], when |p| < 1, e.g.
p = 0.5, the coherence life-time deacreases as 7 increases. Moreover, Re[pas], Im[pap)
become insensitive to A/4. For this reason, in the panels of figure 1.7, exclusively the

behaviors with different values of n are compared.

To conclude this subsection, I compare 7.y, in the weak and strong pumping conditions.

For p = 1, their ratio is equal to [28§]:

Teohlsy _ 1.3477/A?
Tcoh’ﬁ<<1 2:7/A2

2
=0.67Tn ~ gﬁ. (1.141)

Hence, for n > 3/2 there is an enhancement of 7., that may facilitate the experimental

observation of noise-induced coherence.
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Figure 1.6: Dimensionless time evolution of excited states populations and real and imaginary
part of quantum coherence between levels |a) and |b). The radiation intensity is set
to fulfill the strong pumping regime (i = 100), with small (A/5 = 0.1, solid lines)
and large splitting (A/¥ = 10, dashed lines) between excited levels. Different ratios
of decay rates vy, /vy, are shown, with p =1 in all panels of the figure.
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Figure 1.7: Dimensionless time evolution of real and imaginary part of quantum coherence pgp,
with p = 0.5. The radiation intensity is set to fulfill the strong pumping regime (n = 5,
solid lines and 7 = 100, dashed lines), with A/ = 10.

1.4.2 Dynamical regimes with anisotropic polarized radiation

In Subsection 1.3.3 T focused on deriving the differential equations for anisotropic and po-
larized radiation. This type of incoherent radiation source can be beneficial in a V-type

three-level system with orthogonal transition dipole moments. In such a system, no inter-
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ference effects occur with an isotropic and unpolarized source, as p would be zero for all
radiative processes. However, using polarized radiation can allow for interference during the
absorption and stimulated processes. On the other hand, if the transition dipole moments
are orthogonal, no Fano interference is present during spontaneous emission, which involves
the interaction between the system and the isotropic modes of the vacuum.

I consider the case already introduced in Subsection 1.3.3, where the V-system comprises
Amp = +1 atomic transitions. The transition dipole moments are pge = |fac|pt— and
Moe = |tpelprs+, with py, p_ being the unitary vectors expressed in equations (1.124)
and (1.125), respectively. The polarization of the radiation is set linear and along the x-
axis: €x ) = €. I analyze the dynamical behaviour of populations and coherence pg, by
numerically solving equations (1.134) and (1.135), after reformulating them in the Liouville
representation, similarly to the isotropic and unpolarized case. Again, the reduced density
operator pg is expressed as the state vector in equation (1.136). The “coherent” term Ly
of Liouville super-operator is the same of the one reported in equation (1.137). However,
the “dissipative” term changes, due to the interaction with polarized radiation and the
vacuum. Again, the term Lp can be further divided into the three contributions ﬁpl, ﬁDQ
and ﬁplg, as previously done in Subsection 1.4.1. I numerically solve equation (1.138) via
exponentiation with initial condition p..(0) = 1.

First, both underdamped and overdamped regimes under the weak-pumping condition
are analyzed. Differently from the case with isotropic and unpolarized radiation, when
n < 1, the underdamped and overdamped regimes are identified not by the ratio A,/7,
but simply by the ratio A/7. Indeed, in the context of polarized radiation, the alignment
parameter p can no longer influence the coupling between radiation and the discrete system,
being replaced by the scalar product p;. - €y, as derived in Subsection 1.3.3. In this case,
the p parameter can only influence the isotropic process of spontaneous emission. However,
if the transitions involved possess orthogonal dipole vectors, p = 0 and thus the alignment
parameter has no impact on the dynamics. The results I show below are based on works by
Dodin et al. in [29] and by Koyu et al. in [30].

(i) Underdamped regime, A/7 > 1: as already seen with unpolarized and isotropic
light, in the large excited levels splitting scenario, the real and imaginary parts of
the coherence pgy oscillate at frequency A, as depicted in figure 1.8. They eventually
reaches the stationary state on the time scale 7.0, ~ 1/7. Surprisingly, both Re[pas)]
and Im[py] exhibit a nonzero stationary value, indicating that Fano coherence does
not decay to zero over time under the influence of polarized incoherent light. Albeit
counterintuitive, this result does not contradict thermodynamic principles, since the
driving of the system with polarized light can be viewed as an interaction with two
distinct reservoirs [29]: one at high-temperature, represented by polarized field modes,
coupling to both atomic transitions, and the other as a cold reservoir, consisting
of isotropic vacuum modes responsible for dissipation. These interactions keep the

system out of equilibrium, thus enabling stationary coherences to persist.

Koyu et al. [30] explain this behavior differently. They illustrate that the polarized

incoherent radiation creates an in-phase superposition of energy eigenstates. This
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Figure 1.8: Dimensionless time evolution of excited states populations and real and imaginary

part of quantum coherence between levels |a) and |b). The radiation intensity is set
to fulfill the weak pumping regime (i = 0.06), with a large splitting between excited
states (A/7 = 10). The polarization of the radiation is linear and along the x-axis.
Different ratios of decay rates ./, are shown.

excitation evolves gaining a periodic relative phase over time. The continuous action
of the incoherent source generates new excitations at every moment, each starting
in-phase but evolving with different phases as generated at different times. Summing
together all these phases results in an ensemble dephasing, where different phases from

various excitations average out to nearly zero.

Compared to the case with isotropic radiation, it can be observed a significant re-
duction in the values of coherence and populations, approximately by one order of
magnitude. This reduction is attributable to the fact that the anisotropic pumping
rate is smaller by a factor of 167/3 compared to the isotropic one, as discussed in
Subsection 1.3.3, while the rates of spontaneous emission remain the same. Despite
the difference in the pumping rate r, the system’s behavior with different ratios of
decay rates remains consistent with the scenario where A > 5. Additionally, the
populations dynamics in this regime can be accurately described using the secular (no

interference) approximation.

Overdamped regime, A /¥ < 1: in the regime with a small splitting A between the
excited energy levels, both the real and imaginary parts of py, reach a nonzero station-
ary state, as depicted in figure 1.9. This behavior contrasts with the isotropic case,

where Fano coherence persists in the long-time limit only when A = 0 (degenerate
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configuration).

Moreover, figure 1.9 indicates that Re[pyp) is of the same order of magnitude as the
excited populations, differently from the scenario where A/¥ > 1. However, the
maximum values of both populations and coherence are smaller than those shown in
figure 1.4, due to the reduced anisotropic pumping rate, r7° = %riso. As in the
case of large A, the population dynamics here can be described by the Pauli rate-law

equations, differently from the isotropic scenario.

Under polarized radiation in the strong-pumping condition, there is no clear identifica-

tion of the regimes based on the parameters. Instead, I distinguish between the regimes

by observing the numerical solutions: non-oscillatory solutions indicate the overdamped

regime. I focus on this type of dynamics.

(i) Overdamped regime: I set 7 = 100, A/4 = 0.1. As depicted in figure 1.10, higher
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N

values for the stationary state of Re[pgp] are obtained, suggesting that the signal for
a proof-of-principle experiment could be enhanced by increasing 7, i.e. the intensity
of the radiation source.

Figure 1.10 also shows the scenario of large state splitting, A/5 = 10, which cor-

responds to the underdamped regime in the weak-pumping condition. Interestingly,
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Figure 1.9: Dimensionless time evolution of excited states populations and real and imaginary

part of quantum coherence between levels |a) and |b). The radiation intensity is set
to fulfill the weak pumping regime (n = 0.06), with a small splitting between excited
states (A/y = 0.1). The polarization of the radiation is linear and along the x-axis.
Different ratios of decay rates ./, are shown.
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Figure 1.10: Dimensionless time evolution of excited states populations and real and imaginary

It

part of quantum coherence between levels |a) and |b). The radiation intensity is set
to fulfill the strong pumping regime (n = 100), with small (A/5 = 0.1, solid lines)
and large splitting (A/5 = 10, dashed lines) between excited levels. The polarization
of the radiation is linear and along the x-axis. Different ratios of decay rates 7,/
are shown.

even in this case, a nonzero stationary state for Re[pg] can be observed, whose value,

however, is smaller than the maximum value reached during the time evolution.

Hence, it is possible to observe again that with n > 1 the condition of small splitting
A to achieve overdamped solutions can be relaxed. However, increasing A results
in lower stationary values of the real part of Fano coherence [30]. The latter can be
enhanced by increasing f as shown in figure 1.11. The figure illustrates the impact
of n and A/¥ on the stationary value of Re[pgp|, comparing symmetric (v,/7 = 1)
and strongly asymmetric V-type systems (7,/7 = 10). For the optimal detection of
Fano coherence, it is beneficial to tune the splitting A around small values, where
the coherence is high. Moreover, it is advantageous to implement a symmetric system

rather than an asymmetric one.

is important to clarify that the solutions presented in this and the previous Subsection

are based on the assumption of an instantaneous activation of the interaction between the
system and incoherent radiation. Dodin et al in [52] discuss time-dependent incoherent

radiation, showing that if the turn-on time exceeds the system’s fastest characteristic time

scale

Tg, the magnitude of induced Fano coherence can significantly decrease. However,

in atomic systems excited by a broadband laser, as the one described later for coherence

detection, sufficiently rapid activation of the source can be achieved using acousto-optic

modulators.

Therefore, the result of these simulations remain relevant in our context.
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Figure 1.11: Stationary value of Re[pqs]| as a function of n and A /% with linearly polarized light
along the x-axis. Comparison between symmetric (v,/7 = 1) and asymmetric
(va/v = 10) V-type three-level system is shown.

In Chapter 3 I present simulations specific to the atomic system used in the experiment,
evaluating the effects of a time-dependent field due to the rapid switching of acousto-optic

modulators.



2 Energetics and quantumness of
noise -induced Fano coherences

In the previous chapter, I examined how Fano interference can emerge from the interaction
between a discrete multi-level system and the continuum of modes characterizing a non-
coherent source. This interaction leads to the formation of quasi-stationary or stationary
states for the Fano coherence between the excited levels. Thermodynamically, the generation
of Fano coherence results in a non-negligible amount of excess energy in the V-type system,
characterized by a residual energy in comparison with the initial state of the system at the
beginning of the transformation. Given their origin, it is natural to ask ourselves whether
noise-induced Fano coherences exhibit distinct non-classical traits. To address this aspect,
it is necessary to employ specific tools that adequately capture the quantum features of the
system and the process under investigation.

Consider to measure a quantum system with respect to two observables that commute,
meaning they can be measured simultaneously. In classical physics, measurement outcomes
are considered to reflect the inherent properties of a system and are independent of any
additional observables that may be measured simultaneously. This concept is referred to
as non-contextuality [60]. However, in quantum mechanics, the outcome of a measurement
can depend on other measurements performed simultaneously, even if these measurements
do not disturb the system. This dependence is termed contextuality. Contextuality implies
that the value of an observable does not exist independently of the measurement context,
challenging the classical notion of objective reality. More formally, the measurement result
of a quantum observable is dependent upon which other observables, even commuting, are
within the same measurement set. Non-classical features of a system can be identified by
the presence of contextuality, where the incompatibility of physical observables reveals the
quantum nature of the system [61].

In quantum mechanics, it is possible to use a probability-like framework to represent
quantum states in phase space. The Wigner distribution is a widely known tool for this
task. Introduced by Eugene Wigner in 1932, the Wigner function is defined for position
and momentum and allows for the calculation of quantum mechanical averages similarly
to classical probability distributions, but with the significant difference that it can take
on negative values, highlighting the non-classical nature of quantum states [62, 63]. A
probability that can assume negative and/or non-real values is defined as a quasiprobability.

The Wigner distribution is not the only quasiprobability distribution used in quantum

mechanics. Indeed, generalizing the Wigner function to multi-time statistics for multi-level

47
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systems or in cases where the position and momentum do not have proper analogs, the
Kirkwood-Dirac quasiprobability (KDQ) distribution can be used [64, 65]. Originally formu-
lated by John G. Kirkwood in 1933 and further extended by Paul A. M. Dirac, this dis-
tribution provides insights into the joint properties of outcomes pairs from non-commuting
observables, resulting also in this case to non-real values [66, 67].

In the physical scenario addressed in the thesis, I employ the KDQ distribution of
the stochastic energy changes to identify contextuality in the generation of noise-induced
Fano coherences, as well as excess energy that could be further exploited as work by an
external load. This is achieved by examining the loss of positivity in the KDQ distribution,
indicated by the presence of negative real parts or non-zero imaginary parts [68, 69]. KD
quasiprobabilities are evaluated at the initial and final times of the transformation under
scrutiny leading to the emergence of Fano coherences. This approach allows to demonstrate
that, despite their origin from interaction with an incoherent source, these coherences are
linked with intrinsic quantum traits.

Throughout this chapter, I explore how KD quasiprobabilities can be applied to analyze
the coherence properties in the system under scrutiny. Section 2.1 covers the mathematical
formulation of these quasiprobabilities. Moreover, I discuss how KDQ helps to understand
energy fluctuations in systems interacting with the environment and their role in defining
thermodynamic quantities, as work distribution. In Section 2.2 I analyze the energetics of
the case study, i.e. the interaction of the V-type three-level system with an unpolarized,
isotropic incoherent radiation source, by proving the quantum nature of noise-induced Fano
coherence. I also explore the potential of the process generating Fano coherences for energy
conversion purposes. In particular, T present numerical simulations to optimize both the
initial quantum state of the three-level system (before interaction with the light source) and
the parameters of the system, including the coupling strength with the light field, to enhance
the non-positivity of certain quasiprobabilities. Enhancing negativity yields thermodynamic

benefits, as quantum coherence results in a greater extractable work [36-38].

2.1 Non-equilibrium quantum thermodynamics in a finite -
dimensional system

Quantum thermodynamics is a rapidly growing field that seeks to generalize classical ther-
modynamics and non-equilibrium statistical physics to small-scale systems that operate far
from equilibrium, incorporating quantum mechanical principles [70, 71]. This field offers
a comprehensive framework for examining energy dynamics and coherence properties in
quantum systems, such as V-type three-level systems.

In this section, I introduce the fundamental physical quantities of quantum thermody-
namics, which set the stage for the discussion of Kirkwood-Dirac quasiprobabilities and

their significance.
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2.1.1 Energy and heat exchange in closed and open quantum systems

Quantum thermodynamics, similarly to classical thermodynamics, focuses on energy and
its transformations, distinguishing between heat Q and work W. In quantum system, ran-
dom energy fluctuations become more pronounced compared to macroscopic systems, where
average quantities dominate. The field of statistical physics at the microscopic scale is es-
sential for understanding this random behavior, as it characterizes the statistical properties
of these fluctuations and associates probability distributions to them [72].

Consider a closed quantum system initially in the state pg(0) that evolves into the state
ps(t) over a time interval ¢. The Hamiltonian for the system at time ¢ is denoted by Hg(t).

The average internal energy of the system at time ¢ is expressed as:

(Bs(1)) = Tr (ps()Hs(1)) (2.1)

Thus, from equation (2.1) the average change in energy (AEg(t)) over the time interval [0, ¢]
is:
(AEs (1) = Tr (ps()Hs (1)) = Tr (5s(0)s(0) ) - (2.2)
As observed, the internal energy difference depends solely on the initial and final states of
the system. Therefore, internal energy is a state function, meaning it is independent of the
specific thermodynamic process performed on the system.
Energy changes within the system arise from two distinct processes: heat and work.
Heat pertains to changes in the system’s density operator due to the interactions with the

environment |70, 73|. Heat is quantified by the expression:

(Q(1)) z/o Tr (d’}flf,)ﬁs(t’o dt’. (2.3)

Conversely, work is associated with the time variation of the Hamiltonian, and it is defined

(W (t)) = /0 Tr (ﬁs(t'f%ift/)> ', (2.4)

The convention on the sign follows the familiar principles of classical thermodynamics: if

as:

(W) < 0, work is extracted from the system. On the contrary, (W) > 0, work is done on
the system by the environment. For heat transfer, (Q)) < 0 indicates heat dissipation to the
environment, while (@) > 0 represents heat absorbed by the system. It is crucial to stress
that work and heat are path-dependent quantities, unlike state functions as internal energy.
This means that they depends on the specific process or path taken by the system during
the thermodynamic transformation.

The sum of average heat and work, defined by equations (2.3) and (2.4) respectively,
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yields:

(QU)) + (W (1)) = /O

Tr <dﬁ§t€t/)ﬁs(t’)> + Tr <p5(t’)d};5t@>] dt =

— /Ot %Tr (ﬁs(t’)ﬁs(t’)) dt’ = Tr (ﬁs(t)ﬁs(t)) —Tr (ﬁS(O)ﬁS(O)> =

= (AEs(1)).
(2.5)

Equation 2.5 represents the first law of thermodynamics, which states that the sum of
the average heat and work transfer equals the average energy change in the system. As
highlighted in [70], since heat and work are process-dependent quantities, no observables
are associated to them, differently the average energy change that depends only on the
initial and final states. It is thus possible to associate an observable to the average energy
change. Hence, the latter can be represented by an Hermitian operator while the former
can not.

The exchange of heat and work in thermodynamic processes can be either reversible or
irreversible, depending on the physical quantity, ascribable as entropy S. For a process P

involving the system and its environment, the change in the system’s entropy follows the

as [ 00 sy
P

where AS = S(ps(t)) — S(ps(0)). If the system is in thermal equilibrium state at tempera-
ture T', i.e. ps = Psh = e BHs /Ty (e_fBHS>, where 8 = 1/kgT, and Hg is the Hamiltonian
of the system, then the thermodynamic entropy S(ps(t)) equals the Shannon or information

inequality:

theory entropy times the Boltzmann constant kg, i.e.:

S(ps(t)) = kpTr(ps,tmlog psn), (2.7)

The above definition is valid provided the interaction between the system and the environ-
ment is weak [70]. Moreover, in equation (2.6), (§Q)) represents the infinitesimal amount of
heat exchanged during the process P, and T denotes the temperature at which this heat
exchange occurs. Equation (2.6) is known as the Clausius inequality, and it embodies the
second law of thermodynamics for all processes. In the context of non-equilibrium ther-
modynamics, a process is considered irreversible if it satisfies the inequality. Conversely, a

process is defined reversible if the change in entropy precisely equals to:

as— [ b2 25

reversible

The thermodynamic quantities discussed so far arise from fluctuations in the internal
energy of a closed quantum system with a potentially time-dependent Hamiltonian. Heat
and work are derived from the evolution of the system’s density operator and Hamiltonian,
respectively. For the case of a closed quantum system, as outlined in Subsection 1.2.1, the

dynamics of the system is governed by the Schrédinger-Von Neumann equation, as expressed
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in equation (1.38). Using the first law of thermodynamics, expressed in equation (2.5), and

applying the Schrédinger-Von Neumann equation yields:

i) = [ (L) ar+ [ (ﬁs(t')d};‘i,(t/)> it =

_ _%' /0 T ([fs@), ps )] Frs(t)) at' + /0 g (ﬁsu')dfi;ft/)) dt' = (2.9)

Indeed,

Te ([ As(0), ps ()] As®) =T (H30ps(1)) = Tr (M3 0ps() =0. (210)

This result follows from the linearity and cyclic properties of the trace: Tr(A+ B) =

Tr(A)£Tr(B) and Tr (AB) = Tr (BA). As demonstrated by Alicki, this shows that coher-

ent excitation produces work, and in a closed quantum system, there is no heat exchange
[70, 71, 73].

Consider the case of an open quantum system, whose dynamics are governed by a

Lindblad-type quantum master equation, which ensures the positivity and trace preser-

vation of the system’s density operator:

dps(t) _ i
dt h

[Hs, ps(t)] + LIps(t)]. (2.11)

Here, the Lindblad superoperator L is given by:

cls) = ¥ (Liwis@ile) - 5 {Ll@bpsw}) . @)

w,i

By following the same procedure as in equation (2.9), I obtain:

ans) = [ (L)) ar+ [ (ﬁs(t')dliz,(t/)) it =

. / i ([Hs(¢), ps(8)] Hs(t)) i + / T (L(ps() Hs(®)) dt'+

0

. dHs(t) . A (2.13)
+/0 Tr ([)S(t’) o )dt’:/o Tr (E(ﬁs(t’))Hg(t’)) dt’+
o[ (ﬁs@')dﬂift')) o = Q) + WD)

The Lindblad terms, represented by the operator ﬁ, are associated with the net heat pro-
vided by the environment |71, 73|.

I emphasize again that work and heat are path-dependent quantities and for this rea-
son they are not associated in general with single-time events. In classical physics, this is

addressed by tracking the system’s state over time, defined by its position and momentum,
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forming its trajectory in phase space. These trajectories delineate how energy is exchanged
as work or heat throughout a process [71]. In microscopic systems, the scenario is more
intricate due to fluctuations of thermodynamic quantities, leading to a statistical distribu-
tion of values. In quantum mechanics, one approach to evaluate work and heat involves
constructing a quantum trajectory through two projective measurements at different times.
A projective measurement of an observable, represented by an Hermitian operator, extracts
an outcome corresponding to one of the observable’s eigenvalues and causes the collapse of
the system’s wave function to the corresponding eigenstate. This approach is commonly
known as the Two-Point Measurement (TPM) scheme. However, these measurements af-
fect the statistics of the observables, evaluated at previous times. Thus, the challenge lies
in developing a stochastic framework for quantum processes that accurately reflects these
fluctuations while considering the effects of quantum measurements and coherence, even in
case of non-commuting observables at different times [37, 71, 72, 74].

In the next section I briefly describe the TPM scheme and its limitations, paving the

way for the introduction of KD quasiprobabilities to describe work and heat distributions.

2.1.2 Two-Point Measurement scheme and no-go theorem

As discussed in the previous subsection, work and heat in quantum systems can not be
represented by Hermitian operators, meaning there are no observables that can be directly
measured through a single projective measurement [72, 75].

The established method for estimating these thermodynamic quantities in the quan-
tum regime is the Two-Point Measurement (TPM) scheme. The TPM protocol involves
measuring the system’s internal energy at two distinct times during the thermodynamic
process, typically at the initial and final times. In doing so, it generates a stochastic se-
quence of outcomes, from which the corresponding thermodynamic quantities can be derived
[37, 71, 72, 75-79].

Consider a closed quantum system in the initial state pg(0) and with a time-dependent

Hamiltonian. At ¢t = 0, the Hamiltonian is given by:
Z E;( 0)| = Z E;( (2.14)

where T1;(0) = |E;(0))(E;(0)| is the j-th projector operator onto the eigenstate |E;(0))
associated to the energy eigenvalue E;(0).

After the system undergoes a unitary evolution described by the operator U (1,0) from
time 0 to time 7, as the one reported in equation (1.36), the final state of the system is
ps(t) = U(r,0)ps(0)U1(7,0), to which is associated the Hamiltonian

ZEZ )E(T)NE(T)] = Eu()IL(7). (2.15)
z

Following references [37, 70, 71], the TPM protocol is such that the first projective
measurement of Hg(0) on pg(0) yields the outcome E;(0) and the post-measurement state

|E;(0))(E;(0)]. The closed system then evolves unitarly, according to: ps(0) — ps(7) =
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U(r, 0)|Ej><Ej|UT(T, 0). The second projective measurement is performed on Hg(7), result-
ing in the outcome E;(7). The difference between the initial and final measured energies

corresponds to the fluctuating work
Wi; = Ei(r) — E;(0). (2.16)

Since the system is closed and evolves unitarily, no heat dissipation occurs, as detailed
previously in Subsection 2.1.1.

Given that work is a fluctuating quantity, the described procedure must be repeated
multiple times to obtain the average value (W (t)). Each iteration of the procedure yields a
pair of outcomes (E;(0),E;(7)). The joint probability distribution pf; of finding the initial
energy value E;(0) and the final energy value E;(7), associated to any outcome pair, is

determined by:

Pl = 1) i (2.17)

with:
P} = (E;(0)|ps(0)[E;(0)) (2.18)
Py = (BT, 0)[E;(0)] (2.19)

Here, p? is the probability of measuring the initial energy E;(0), and plTU is the conditional
probability to measure the energy E;(7) at ¢ = 7 conditioned to have measured the energy
E;(0) at t = 0. Equation (2.17) can be formulated also as in [37]:

P = Tr [0 (r, 0)11,(r) U (, 0)11;(0) s (0)11;(0)] (2.20)
The work probability distributions is then described by the following expression:

p(W) =Y 0,6 (W —[El(r) - E;(0)]), (2.21)
7,1

where the Dirac delta ensures that the distribution only has values where the fluctuating
variable W coincides with W ;. In this way, the average work is computed as the expectation

value of the work probability distribution:
(W)= p(W)W. (2.22)
w

The TPM scheme,while widely used in quantum thermodynamics, has several limitations
when applied to quantum systems. As highlighted in various studies [37, 71, 80, 81], one
significant drawback is the invasiveness of the first projective measurement. In fact, if a
system starts in a superposition of energy eigenstates, represented by a density operator
ps(0) with non-zero off-diagonal elements, the first energy measurement will collapse the
initial state of the system into the energy eigenbagis. This process cancels the quantum
coherence originally present in pg(0), thereby preventing all interference effects resulting

from the initial coherence. Moreover, this loss of coherence can lead to a reduction in the
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maximum average work that can be extracted or absorbed, given that coherent contributions
are not accounted for [37, 71, 80].

In contrast, for quantum systems initially in a statistical mixture of energy eigenstates,
where the density operator pg(0) is diagonal, the TPM protocol is effective in describing
work fluctuations. Specifically, if [[)S(O), ﬁs(t)} = 0and [ﬁs(()), Ut(r,0)Hs(T)U(7,0)| =0
the average energy change predicted by the TPM protocol matches the average energy
change due to the unitary evolution of pg, i.e. [37, 70, 71, 81]:

(W(r) =D p(W)W =" "pj, 6 (W — [Ei(r) = E;(0)]) = > p) pjj; [Ea(r) — E;(0)] =
w Jil

W4l
= > pTE(r) = > PIE;(0) = Tr (ps(r) Hs(r)) = Tr (ps(0)Hs(0)) = (ABs(r)).
l J
(2.23)

Here, p] =) jPi is the marginal of the joint probability distribution over the initial ener-
gies. Only with an initial diagonal state the so-called unperturbed marginals are obtained;
sufficient condition for the latter circumstance is that the measurement of the system’s state
is non-invasive [37]. Indeed, in such a case, p] becomes p] = (E;(7)|ps(7)|E;i(7)), which is
the probability of measuring the outcome E;(7) at the final time ¢t = 7, as it is valid in the
classical limit.

However, when at least one between [;35(0), ﬁg(t)} or [ﬁS(O), Ut(r,0)Hs(r)U(7,0)| is
non-zero, meaning non-commuting or incompatible observables, the measurement process
becomes invasive. Specifically, the statistics of measuring Hg(7) after Hg(0) differs if the
initial measurement at ¢t = 0 is not conducted |37, 71, 81].

To have a satisfactory analogy with the classical physics, where non-invasivity of the
measurement procedure is given for granted, one would like the following requirements to
be met by a work protocol [37, 65, 71, 81]:

1. Positive, real and linear work distribution: the work probability distribution
p(W) must be positive, real, linear with respect to the initial state pg(0), and nor-
malized to 1: >, p(W) = 1.

2. Unperturbed average energy change: the protocol must ensure that the distur-
bance induced by the measurement is such that the generic joint probabilities d;; lead

to the unperturbed marginals:
S, = o (2.24)
J
0
> di = ) (2.25)
!
which implies unperturbed average energy change:

(As(7)) = Tr (ps(r)Hs(r)) = Tr (ps(0)Hs(0)) = 3 di [Bu(r) = B;(0)], (2.26)

j7l

with pg(0) generic initial density operator. I stress that }_,d7, and >, d7, corre-
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spond to the single-time probability p{,p?, associated to the outcomes E;(7), E;(0)

respectively.

These conditions are met only if [,55(0), ﬁs(t):| =0or [I:IS(O), Ut (r,0)Hs(r)U (r, 0)] =
0 holds, whereby the work probability distribution can be correctly obtained by means of
the TPM scheme [37|. However, when commutation conditions are violated, the resulting

incompatibility between observables leads to the so-called no-go theorem [37, 65, 71]:

Theorem 1. A work protocol that satisfies the aforementioned requirements does not exist
for any combinations of ps(0), Hg(0), Hg(7),U(r,0).

In other words, when the state and the measurement observables do not commute, no
measurement scheme can simultaneously satisfy these conditions for any work process and
quantum states. The no-go theorem highlights the intrinsic difficulty in accounting for
quantum coherence and measurement disturbances. As a result, approaches beyond TPM,
such as the use of quasiprobabilities, are often explored to address this challenge in quantum

thermodynamics, as I show in the next section.

2.1.3 Kirkwood-Dirac quasiprobabilities approach

Quasiprobabilities are built by relaxing part of the two requirements in Subsection 2.1.2.
In particular, the requirement of positivity of the work probability distribution is relaxed
[37, 65, 71, 80, 82, 83]. Notably, the occurrence of negative values in quasiprobability
distributions is closely related to the concept of contextuality, which highlights the non-
classical behavior of quantum systems [68, 69, 83-85]. Quasiprobabilities do not constitute
the sole method to describe energy fluctuation in thermodynamic processes, as discussed in
[71] and references therein. This approach is particularly advantageous because it preserves
the linearity of probability theory while incorporating the distinctive quantum mechanical
feature of contextuality [65].

I now introduce the Kirkwood-Dirac quasiprobability (KDQ) distribution that can lead
to negative real values or even complex values to describe fluctuations of thermodynamic
quantities defined at two or multiple times. I start from a closed quantum system undergoing
unitary evolution from ¢ = 0 to ¢t = 7, whereby the KDQ distribution is defined as follows
[37, 65]:

aj0 = Tr (U7 (7, 0)T0(7) U (7, 0)11;(0)p5(0)) (227)

where I remind that IT;(7) = |[E;(7))(E;(7)| is the projector for the measurement at time
t = 7 and I1;(0) = |E;(0))(E;(0)] is the projector for the measurement at time t = 0.

Definition (2.27) is not unique; another valid expression is:
4j0 = T (ps(OIL0)T (7, 0)TL (1)U (7,0)) (2.28)

which differs from the first just in the sign of the imaginary part, as discussed in [37]. In the
following I use the expression in the equation (2.27). The real part of the KDQ is known
as the Margenau-Hill quasiprobability (MHQ)) [86].
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Both quasiprobabilities in equations (2.27) and (2.28) satisfy the requirement 2 of the

no-go theorem. Specifically, they yield the correct marginal probabilities:

Slau = (0 0m(EU(.055(0)) (2:29)
Sa = T (0)ps(0)). (2:30)
l

Moreover, a KDQ distribution is linear and this entails that the TPM protocol is recovered
when the state and the measurement observables commute, as when the initial state is
diagonal. Indeed, if [p5(0), I:IS(t)] = 0, the KDQ are equal to the joint probabilities of the
TPM scheme:

qj1 =
= Tr (01 (r, )11 (7)0 (7, 0)11;(0)p(0) ) = Tx (T (7, 0)1(7) T (, 0)T1; (0)11;(0) s (0) ) =

=T (01 (, 0)T1(r)0 (7, 0)T1,(0) s (0)T1;(0) ) = ],

(2.31)

returned by the TPM scheme. In equation (2.31) I have made use of the idempotence
property of projectors, i.e. (f[j)2 = ij, and of the commutativity condition.

For the sake of completeness, I specify all the properties of KDQ, which are meaningful
in the following sections [55, 65]:

(i) The sum of KDQ is equal to 1: >, gj; = 1.

(ii) The unperturbed marginals are obtained:

S = o =T (M(r)ps(n) (2:32)
J
g = =T (115(0p500)) (2.33)
l

I remind that, if [p5(0), Hg(0)] # 0 for some jg(0) and Hg(0), then the unperturbed
marginal p] at time 7 is not obtained by the TPM scheme. The latter, indeed, cancels
the off-diagonal terms of pg(0) with respect to the eigenbasis of Hg(0) due to the

initial projective measurement at time 0.

(iii) The KDQ are linear in the initial density operator pgs(0). This means that, given

any admissible decomposition of pg(0) [say ps(0) = /3(51)(0) + ,6%2) (0)], equation (2.27)

splits in two terms, one linearly dependent on ﬁg)(O) and the other on ﬁ(sz)(()), ie.,

g1 =d5) + 47 (2.34)

with q](.zl) = Tr (ﬁT(T, 0)ILU (r, O)ﬁjﬁgn)(0)>, n = 1,2. A choice that is commonly
adopted is to take p“gl)(O) as the matrix that solely contains the diagonal terms of

ps(0), and ﬁg)(()) as the matrix comprising only the off-diagonal terms.
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(iv) KDQ are in general complex numbers and thus can lose positivity, i.e., they can
admit negative real parts and imaginary parts different from zero. The presence of
non-positivity is a proof of quantum contextuality: its explanation requires taking
into account non-classical features like the presence of quantum coherence in the state
of the system or the incompatibility of the measurement observables. For a two-time
statistics (here, of energy outcomes), non-positivity can be regarded as a form of non-
classicality [87]. I quantify the non-positivity of KDQ, and thus non-classicality in the
statistics of energy outcomes, by means of the non-positivity functional [36, 55, 64, 65,
88|

N= 1+ gl (2.35)
gl

If X > 0, then negative real parts and/or imaginary parts of ¢;; are present, while

N = 0 when all the quasiprobabilities are positive real numbers.

All the aforementioned properties illustrate that the KDQ can be an effective tool for
capturing quantum characteristics of energetic processes. Specifically, I explore how KDQ
distributions can be applied to key thermodynamic quantities such as internal energy and
work. These quantities fluctuate at the microscopic level, making KDQ distributions ideal
for describing their statistics.

For a closed quantum system pg(t), evolving from an initial time 0 to a final time 7

under the Hamiltonian Hg(t), the average work is given by:

(WE) =D pW)W =3 "> g6 (W = [Ei(r) = E;(0)]) = D g [Ei(r) — E;(0)].
w W 4l 75l

(2.36)
According to the sign convention, a negative (W (t)) means that the final energy is less
than the initial energy, with the consequence that work could be extracted from the system.
In quantum processes, the quasiprobability distribution may contain negative real values.
Thus, (W (t)) can be negative even exploiting energy transitions with E;(7) > E;(0). Indeed,
this is possible only if the corresponding quasiprobability is ¢;; < 0. Such a circumstance,
indicates the presence of system’s quantum traits and can also enable enhanced work extrac-
tion beyond classical limits. It can be proven that negative quasiprobabilities are associated
with “anomalous” internal energy variations |36-38].

I conclude this subsection by emphasizing that in quantum processes, a quasiprobability
distribution may contain negative real values, under operators’ commutativity. However,
the presence of positive real values, Re[g;;] > 0, does not necessarily indicate that the
underlying process is classical. The positivity of the MHQ, indeed, suggests a weaker form
of classicality compared to the classicality defined by the TPM scheme. If the state does not
commute with the measurement observable, but the MHQ is positive, it does not necessarily
imply that there is no classical statistical probability distribution capable of reproducing the
same results as those obtained with quasiprobabilities. Nevertheless, this classical statistics
will be built on a different thermodynamic process potentially having entirely different
conditions (ﬁs,f{ S,-..). Conversely, the measurement statistics associated to a quantum

system is considered classical in a stricter sense if the MHQ) is positive and the TPM scheme
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applied under the same conditions gives the same results.

2.2 Energy fluctuations of a three-level system generating Fano-
coherence

In this section, I present my recent results reported in [55], Donati et al.. The objective is to
investigate the energetics involved in generating Fano coherences due to the interaction with
an isotropic unpolarized radiation and to evaluate the role of energy fluctuations beyond
average values. To achieve this, I employ KD quasiprobabilities. This approach enables
to describe the time statistics of energy outcomes by evaluating the Hamiltonian of the
quantum system at distinct times. In this regard, notice that the concepts discussed in
the previous section can be extended to an open quantum system, such as the one under
scrutiny, that is described by a Markovian quantum master equation. I therefore formalize

the physical context in which I am working.

2.2.1 KDQ distribution for the V-type three-level system

I consider the V-type three-level system already described in Subsection 1.3.1, with time-
independent Hamiltonian Hg = 22:1 Exll. Here, E; = hwy with k& = a,b, ¢ denotes the
energies of the system and II;, = |E;XEx| = |k)k| the corresponding projectors. Initially,
the three-level system is prepared in the density operator pg(0) and subsequently inter-
acts with an isotropic, unpolarized non-coherent source. The interaction is modeled by the
Markovian quantum master equation derived in Section 1.3.2, which ensures both the pos-
itivity and trace preservation of the system’s density operator, as [ have already explained.
In particular, the time evolution of the reduced density operator elements is governed by
equations (1.121) and (1.122). The solution to the latter can be achieved by solving two

distinct systems of linear equations, as I did in [55]:

dx(t) dz(t)
ke Ax(t) and e Cz(t) (2.37)
with state vectors
T
X(t) = (paa(t)? pbb(t)v pcc(t)a Re[pab (t)]v Im[pab(t)]) (238)
2(t) = (Belpue(®)]. Im{pae(t)] Relpuel®)]. Imlpue(®)]) (239)

Differently from previous approaches [28, 51, 52|, the vector x includes the population of
the ground level p..(t) rather than imposing the constraint pe.(t) = 1 — paa(t) — pws(t).
This choice is needed to get at any time ¢ the correct density operator pg(t), solution of
equations (1.121),(1.122) altogether, from the direct exponentiation of the two differential
equations in (2.37). It is thus required to determine the solution of the whole process
by solving separately the sub-processes in equations (1.121),(1.122) that composed it. In
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equation (2.37), the matrices A, C' of coeflicients are equal to
~Va (ﬁ + 1) 0 fYaﬁ —PVYa M (7 + 1) 0
0 =% (n+1) Von —P\AaV (7 + 1) 0
A = Ya (7 +1) Yo (7 +1) ~hatw)n e (@) 0
5w (@+1) =B Aam(m+1)  pyAamen — el (R4 1) A
0 0 0 —A — 22t (p 4 1)
(2.40)
[ (e + %)+ %] Wac —5V3am (R +1) 0
o - ~Wac [ (va+%)+%] 0 —5VAae (7 + 1)
~8\ A% (R + 1) 0 —[a(w+ %) + %] Whe
0 ~5\Aa (1 + 1) e — [0+ %) + 3]
(2.41)

I numerically solve the homogeneous differential equations (2.37) via exponentiation, namely

x(t) = eMx(0) (2.42)
z(t) = e“'z(0) (2.43)

with x(0), z(0) denoting the initial states. The exponential of the matrices A, C' is computed
using the MATLAB function expm, which employs the scaling and squaring algorithm of
Higham [59].

As already discussed in Section 1.4, analytical solutions of equations (1.121) have been
demonstrated in previous studies |28, 51]. These solutions exhibit different behaviors de-
pending on the value of the ratio A/4 (between the energy splitting A among the excited
states and the average decay rate 7), as well as on the average photon number i and on
the alignment parameter p. Specifically, two main regimes emerge: the overdamped and
the underdamped regimes, separated by the critical regime. As I have shown in Subsection
1.4.1, only in the overdamped regime quasi-stationary Fano coherences can be established,
thus resulting in a prolonged coherence lifetime. In the large-time limit, the quantum sys-
tem tends towards a nonequilibrium steady states with vanishing coherences pup, Pac, Ppe and
constant populations, apart the peculiar case with |[p| = 1 and a superposition of energy
eigenstates as initial state. Being linked to populations, the quantum coherence py; expo-
nentially decays on a fast time scale, contrarily to pgc, ppe that, when initially different from
zero, tend to zero following a damped oscillatory trend. During the decay, after a sufficiently
large time, the real and imaginary parts of pge, ppe come into phase. These behaviours are
thus dependent on both the initial state, and the model’s parameters. Under the weak
pumping condition (7 < 1) with p < [1|, achieving the overdamped regime is possible when
A/7 < 1. However, under the strong pumping condition (72 > 1), the requirement A/y < 1
can be relaxed, which means a value of A much larger than %, without compromising the
quasi-stationarity of coherences. This rationale guides the selection of A/¥ < 1 in the anal-
yses presented in the next subsection, representing the condition to obtain quasi-stationary
states for pgp in all the pumping regimes.

Time evolution of the system’s density operator can be efficiently described in a compact

form using open quantum maps ®[-] [44]. An open quantum map yields the system’s density
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operator at time t, i.e., pg(t) = ®[pg(0)]. In this case, it represents the solution to the
Bloch-Redfield quantum master equation describing the interaction. For this reason, -]
is a Completely Positive Trace Preserving (CPTP) map, meaning that it maintains the
physical integrity of the system’s density operator throughout the evolution.

The KD(Q) describing the statistics of the energy changes, corresponding to the internal

energy variation within the open system, over the interval [t1, 2], is defined as
g = Tr (ﬁl o [ﬁj ﬁg(O)]) , (2.44)

where ﬁl and ﬁj are the [-th and j-th projectors of fIg evaluated at times to and 4
respectively. This definition is derived from the expression for closed systems. Indeed,

applying the cyclic property of trace to equation (2.27) yields:
g = Tr (UT(T, 0)ILU (+, O)ﬂjﬁ5(0)> - (ﬂlU(T, 0)I1;p5(0) T (7, 0)) : (2.45)

where the term U (7, 0)IL;5(0)UT (7, 0) represents the time evolution of the operator IT; 55 (0).
Then, for an open system, the correspondence U(r, O)ﬂjﬁS(O)ﬁT(T, 0) - @ [f[j /35(0)]
holds, leading to equation (2.44).

Each quasiprobability g¢;; is associated to the (j, [)-th realization AE;; = E;(t2) —E;(t1)
of the energy change AE, which is given by the difference of the system energies evaluated
at times to and t;. All the properties listed in Subesection 2.1.3 hold for open quantum
systems as well, with the substitution U(7,0)AUt(r,0) — & [A].

2.2.2 Quantumness certification

In this subsection I demonstrate that the generation of Fano coherences are linked to a
quasiprobability distribution for the energy changes in a V-type three-level system, which
exhibits negativity in its values, with the imaginary parts being zero. The presence of
negativity results from initializing the three-level system in a superposition of the wave-
functions comprising the energy eigenbasis, meaning that in such a basis quantum coherences
have to be included. This occurs for specific parameter settings that I analyze in more
details in Subsection 2.2.3. Interestingly, there is also a subset of parameters’ values such
that solely the quantum coherence in the initial state of the system (leading to negativity)

is responsible for an amount of excess energy

—(AE() = = " ajuAB; (1) = Y aj (F;(0) = Ei(t) = Tr (Hs (p5(0) — ps (1)) (2.46)
4.l 4,

larger than zero for any time ¢, with Hg time-independent. It is important to note that in
the context of open quantum systems, internal energy variations result from heat and work
exchanges, as discussed in Subsection 2.1.1. Nonetheless, negative values of (AE(t)) can be
interpreted as extractable work, which means that this excess energy could be harnessed as
work, provided an appropriate load or storage system is in place.

One example of these quantum behaviours involving the generation of Fano coherences

is shown. For this purpose, the following parameters’ setting are taken:
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(i) V-type three-level system: spontaneous decay rates (from |a),|b) to |c)) V4 =
v =y =~ 3-107 [rad/s]; energies E3 = hw,, Eo = fiwy, Eq = Aw, with E; < Eg < Eg;
wa=D+A/2, wy=D—A/2and w. =0, with D ~ 10 [rad/s] (optical transition).
Thus, wae = Wa, Wpe = Wp and wqe & Wy, according to the approximations described
in Section 1.3. Moreover, A < ~, i.e. A = 0.1y < D. In the following, the units of

measurement of the plotted quantities are re-scaled such that h = 1.

(ii) Incoherent source: average photons number 7 = 3; alignment parameter (be-
tween the dipole moments of the transitions |a) < |¢),|b) < |¢)) p = cosO =
—1,-0.75,—-0.5,—-0.25,0. The incoherent source can represent a broadband laser or

even sunlight radiation.

(iii) The bare Hamiltonian: Hg of the V-type three-level system is given by:

s = 1y corl) (k] = b (walla + Tl + el )
k

where k = a, b, c.

(iv) Initial quantum state of the three-level system: pgs(0) = [10) (10| with
o) = argla) + ap €®|b) 4 arelc) (2.47)

and o, = V0.3, ap = V0.3, ¢ = 7, and a. = v/0.4; note that a2 + ag +a? =1 to
ensure probability conservation. As previously anticipated, the initial density operator

of the three-level system contains quantum coherence along the eigenbasis of Hg.

Now, using this parameters setting, I show two distinct plots: one concerning the average
energy change (AE) as a function of the dimensionless time t-y/(27) (figure 2.1), and the
other regarding the underlying KDQ distribution (figure 2.2). For both plots I numerically
solve the linear differential equations (2.37) that describe the dynamics responsible for the
generation of Fano coherence in Markovian regime. The values of the parameters inserted
in equations (2.37) are those provided at points (i)-(iv) above. Moreover, I consider the
results given by splitting the KDQ as in equation (2.34), where ps(0) = [10)(to| is linearly
decomposed in the sum of two matrices: pg(0) = diag(ps(0))+xs(0). The term diag(ps(0))
contains the diagonal elements of pg(0), while x5(0) contains the off-diagonal elements. 1
denote the two contributions of the KD(Q

aj = T [0 @ (1) 1o)wol] | = (lt0) (Ul @ L)l 1) (2.48)

with 7,1 = a,b,c, as q;.l’ilag and qﬁh respectively. In (2.48), the quantum map ®[-] is derived
from equations of motion (2.42) and (2.43).

The ranges of parameters at points (i)-(iv) are such that (AE) = 0, as long as the
initial density operator pg(0) of the three-level system does not contain quantum coherence
Xxs (with respect to the basis diagonalizing I:IS). I stress that, by construction, such a

result can not be provided by the TPM scheme. On the contrary, by including quantum
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Figure 2.1: Average energy change (AE), re-scaled by w,, as a function of the dimensionless time
ty/(27), which we obtain by numerically computing the corresponding KD(Q distribu-
tion. The dynamics of the three-level system subjected to an incoherent light source,
entering in the quasiprobabilities, is provided by equations (2.37). The black solid
line denotes the contribution (AE)qiag of the average energy change that corresponds
solely to the diagonal elements, contained in diag(ps(0)), of the initial state pg(0). It
can be verified that (AE)qiag is equal to zero for any value of p. On the other hand, all
the other curves in the figure refer to the contribution (AE).., of the average energy
change depending on xg, matrix containing the off-diagonal elements of pg(0), for
p=0,-0.25,—0.5,—0.75, —1. Notice that the black solid line is used also for (AE)¢on
with p = 0 since in this case (AE)con = 0.

coherences as given by equation (2.47), (AE) = (AE)con < 0, as shown in figure 2.1.
In fact, (AE) = (AE)giag + (AE)con but (AE)giag = 0 in this case study. Indeed, the
contribution from the off-diagonal elements of pg is analyzed. This entails a non-negligible
amount of excess energy assisted from initializing the quantum system in a superposition
state of the energy eigenstates. Moreover, both the magnitude of |(AE)| and the time
interval in which |[(AE)| # 0 can be linearly enhanced by increasing the value (with sign)
of the alignment parameter p € [—1,1]. Such an effect is maximized for p = —1, whereby
max|[—(AE) /w,] = 0.17 and remains quasi-stationary as long as the incoherent light source is
active. This finding is related (and thus consistent) with the already-known fact that |p| = 1
implies quasi-stationary Fano coherences, ideally for an arbitrarily large time ¢ [28, 30, 51].
It is worth noting the sign of p is not relevant for the solution pg(t) of the quantum system
dynamics, but it matters for the sign of (AE) and thus for the nature of the thermodynamics
process under investigation. In fact, using the ranges of parameters at point (i)-(iv), p
negative entails energy in excess, while p positive means absorbed energy.

In the panels of figure 2.2 the full distribution of KDQ (dashed black lines) ¢;; with
5l =
statistics and thus the average energy change shown in figure 2.1. In doing this, I use again

a, b, c, is plotted. Such a quasiprobability distribution underlies the energy change
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Figure 2.2: Kirkwood-Dirac quasiprobabilities (dashed black lines), quantifying the energy change
statistics of the V-type three-level system subjected to incoherent light source, as a
function of the dimensionless time ty/(2w). The quasiprobabilities refer to the (energy)
transitions between the levels |a), |b), |c) of the system. Here, the imaginary parts of
all the quasiprobabilities are equal to zero. For all the panels, the parameter settin%'at

iag

points (i)-(iv) is used with p = —1, and I distinguish between the contributions q;

and qjc-f}h depending respectively on xs (solid red lines) and diag(ps(0)) (dash-dotted
blue lines), where diag(ps(0)), xs linearly decompose the initial density operator pg(0).

the parameters setting at points (i)-(iv) but with p = —1, whereby the imaginary parts of

all the plotted KDQ are equal to zero. In the figure, I distinguish between q;lilag and q]‘?f;h of

qj,1, which I recall are the contributions stemming respectively from the matrices containing

the diagonal and off-diagonal elements of pg(0). It can be observed that gac, ¢up, aa have

a contribution of qﬁh

system in a state with quantum coherence (with respect to the eigenbasis of H s). Notably,

# 0 (solid red lines in the figure), which is due to initializing the

the quasiprobability g, is globally negative in a transient time interval. In this regard, it is
worth recalling that the Fano coherence can arise between the excited levels |a), |b) of the
three-level system. Hence, the presence of negativity in the corresponding KDQ describing
energy change fluctuations is an hallmark of Fano coherence generation occurring in a non-

classical regime. I complete this analysis by showing in figure 2.3 that:

(i) the real part of ¢S5 (plotted as a function of time) monotonically grows by increasing

the value of the alignment parameter p that effectively represents a control knob to

enhance the negativity of the corresponding KDQ [panel (a)], and thus the amount of
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Figure 2.3: (a) Real part of qg?gl [panel (a)] and the non-positivity functional X [panel (b)], as a
function of the dimensionless time tv/(27), for p = —1,—0.75, 0.5, —0.25. For both
panels, the ranges of parameters at point (i)-(iv) are considered.

the excess energy in several cases as detailed below.

(ii) The non-positivity functional X of the KDQ distribution of energy changes is > 0 in
a transient time interval, at least in the parameters setting at points (i)-(iv). This
aspect certifies the presence of negative real parts of quasiprobabilities, as observed in

figure 2.3a, and thus non-classicality. Moreover, N is maximized for p = —1.

As a final remark, notice that initializing a V-system in a superposition of all the
three energy eigenstates (as in equation (2.47)) is not a necessary condition for observing a
quasiprobability distribution with negative values (X # 0), since the main factor appears to

be the presence of coherence between the excited states.

2.2.3 Optimization of excess energy

In the previous section, I have introduced a case study in which (AE)qjisg, dependent on
the diagonal elements of pg(0), is zero for any time ¢t. In this section the focus shifts to
optimizing some key parameters of the model, including the initial quantum state of the
three-level system, in order to maximize the value of —(AE)., arising from the off-diagonal
elements of pg(0). As mentioned earlier, such an optimization also leads to an enhancement
of negativity.

Achieving the condition (AE)qiag = 0 relies solely on specific values of 7 and pe.(0) =
|oe|?, under the assumption that the initial state of the system is given by Eq. (2.47). The
analytical formula returning the values of 7, p..(0) such that (AE)giae = 0 is unknown.
However, to attain (AE)giag = 0 with an increased value of 7, one needs to decrease p..(0),
and vice-versa. For instance, in the weak pumping regime (n < 1), the condition (AE)giag =
0 is satisfied for n = 0.5 and p..(0) = 0.6. Conversely, in the strong pumping regime (7 > 1),
the condition (AE)giae = 0 holds for n = 3 and p..(0) = 0.4 that are the values used in
Subsection 2.2.2. Choosing 7 above (below) the value allowing for (AE)giag = 0, for a given
pec(0), leads to (AE)qiag being nonzero and either positive (negative). These considerations

are valid for any values of p, but in what follows I specifically select p = —0.5.
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Once the condition (AE) = (AE) .y is established, the optimization of (AE)cop is de-
termined by the initial state [1)o) = g €%e|a) + ap €?*|b) + a. e'¥<|c), where T consider a
more general state featuring also the relative phases ¢, ¢. in addition to ¢p.

Setting the values 7 = 3 and p..(0) = 0.4, T take the populations ps = |ag|? = ppy =
|ap|? = 0.3, and the relative phases ¢q, ¢p, ¢ Of |1hg) are varied within the range [0, 27].
Interestingly, setting one of the relative phases to zero does not impact the maximum
attainable value for (AE). Moreover, by using ¢, = 0 or ¢ = 0 and ¢. = 0, I identify two

distinct scenarios:

(i) ¢a =0o0r ¢, =0.
Setting ¢, = 0, the two relative phase vary within the range [0, 27|, and I then record
the corresponding values of (AE). Figure 2.4a highlights the maximum values of
(AE)con by varying the value of the phases ¢, ¢.. From the figure it can be observed
that, in this setting, ¢. does not affect neither the magnitude nor the sign of |(AE)cop|-
Conversely, the relative phase ¢y significantly influences the quantity [(AE)con|. The
magnitude [(AE)con| is zero for ¢, = 7/2, and increases in both directions either
towards ¢p = 0 or ¢, = m, but with opposite sign. The value ¢, = 7 represents a
line of mirroring symmetry. The results depicted in figure 2.4a are the same if ¢, =0

instead of ¢, = 0 and the relative phases ¢,, ¢. are varied.

(i) e = 0.
In this scenario I explore how the largest values of (AE).,,, with sign, modify by
varying the values of the phases ¢, and ¢, across the range [0, 27]; see figure 2.4b.
Unlike the symmetry observed in figure 2.4a, a different pattern emerges, whereby the

mirroring symmetry line is given by the condition ¢4 = ¢p.
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Figure 2.4: Largest values of (AE).on including its sign, re-scaled by w,, as a function of the
relative phases ¢y, ¢ [panel (a)], and ¢,, ¢y [panel (b)]. In both panels the value of p
has been set to —0.5, n = 3, p.. = 0.4, and pyq, = ppp = 0.3.
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I recall that in figure 2.4 the value of p has been set to —0.5. However, if one is free to
also vary p, then it would be observed that the sign of p is responsible to affect the sign
of (AE), such that whenever p < 0 the sign of (AE) is the same in figure 2.4, while for
p > 0 the condition is reversed. Similarly, the magnitude of p is responsible to modify the
magnitude of (AE), such that decreasing the magnitude of p decreases the largest value of
|({AE)|. This behaviour has been previously noticed in figure. 2.1. Before proceeding, it is
also worth stressing that selecting ¢, = 0, ¢p = 7, ¢ = 0 in |1)g) leads to the maximization
of —(AE) in figure 2.4.

I now analyze how (AE) varies for different values of the populations puq(0) and pp,(0)
pertaining to the excited states |a) and |b). The population in the ground level p..(0)
is not directly considered, as it is predetermined by 7n, in order to satisfy the condition
(AE)giag = 0. For instance, in the scenario with p = —0.5,72 = 3 = p..(0) = 0.4, T vary
only the value of the population p,,(0); indeed, pp(0) changes according to the constraint
Pob(t) = 1= paa(t) — pec(t) for any t. The results depicted in figure 2.5 illustrate max({AE)con
as a function of paq(0), with ¢, = 0,7/4,7/2,3m /4, 7. While p..(0) may affect (AE)giag, the
initial populations paq(0), pps(0) of the excited states impact (AE).on. Specifically, (AE)con
is zero when the three-level system is initialized with one among puq(0), ppy(0) is set to
zero. Additionally, it can be observed that the maximum value of (AE)., is obtained when

Paa(0) = ppp(0). The imbalance in favor of one over the other decreases max(AE)con. As

0.1 ‘
¢ =0
=), = 77 /4
d)b = 7T/2
0.05F ==y = 37/4

max(AE)n/wa
o

-0.05

_0'1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6

paa(o)

Figure 2.5: Maximum value of (AE) . as a function of p,,(0), initial population of the excited
state |a). The ground state is fixed at p..(0) = 0.4 and the relative phases are ¢, =
¢ = 0, while ppp(0) = 1 — pee(0) — paa(0). The alignment parameter p is set to
p = —0.5. Different values of ¢, are taken into account.
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ty
p Thmax %
-1 6% > 0.40
-0.75 4% 0.20
-0.5 2% 0.17
-0.25 1% 0.16

Table 2.1: Achievable maximum thermodynamic efficiency of the process and time instants at
which it is obtained, for various values of p.

in figure 2.4a, varying ¢, from 0 to m enables a transition from the condition of maximum
absorbed energy (¢, = 0) to maximum energy in excess (¢, = 7), passing through a regime
where (AE)eon = (AE)ding = (AE) = 0 (¢ = 7/2).

To sum-up, the optimal initial state configuration is achieved by setting the populations
Paa(0), ppy(0) # 0 and paqe(0) = ppp(0), while the value of p..(0) is dictated by the n that
allows for (AE) = (AE).n. Finally, regarding the relative phases ¢q, ¢y, ¢ entering the
initial wave-function |v¢y), setting all the three to zero means maximum absorbed energy,

whereas choosing ¢, = m (with ¢, = ¢, = 0) entails the maximum amount of excess energy.

2.2.4 Efficiency of the process

The assessment of the thermodynamic efficiency is crucial in any energy conversion process,
to gauge the performance in transforming a form of energy (the input energy &) in another

(energy in excess Eexc) for practical uses. The efficiency is generally defined as follows:

(2.49)

In this case study, the excess energy is given by the quantity —(AE(t)) > 0, where only
the contribution from the off-diagonal elements of pg accounts. Conversely, the energy that
drives the system, which originates from the incoherent field, is &, = nhw,. that corresponds
to the average energy of the photons impinging on the system. Indeed, as previously done,

I assume wy. ~ wpe. Hence,
—(AE(t
) ~SE0)
nhwge

Equation (2.50) reveals that the time dependence of the efficiency follows the one of (AE)

(2.50)

depicted in figure 2.1. Consequently, the efficiency reaches its peak when (AE) is maximized
with sign, which occurs at a specific instant ¢ denoted as t. Notably, in the scenario with
p = —1, both 7 and —(AE) attain a maximum quasi-stationary value.

Based on the optimization analysis in Subsection 2.2.3, I focus on the condition yielding
the maximum amount of energy in excess, given by puq(0) = ppy(0) = 0.3 with pc.(0) = 0.4,
n=3and ¢, = ¢, =0, ¢ = 7. In table 2.1 the achievable maximum efficiency is reported
together with the time instants at which it is obtained, for various values of p. I conclude by
emphasising that the energy for preparing the initial state of the three-level system was not

included among the costs in the calculation of the efficiency. This is because I am implicitly
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assuming to work in a condition where the preparation of a superposition of Hamiltonian
eigenstates as the initial state is given for granted. However, this assumptions shall be
properly calibrated when dealing with the experimental realization of a process for Fano

coherence generation.

2.2.5 Discussion

Throughout this chapter, I analyzed the energetics of a V-type three-level system exhibiting
noise-induced Fano coherence due to interaction with a non-coherent source. The motiva-
tion for this analysis arises from the question: “To what extent the process generating Fano
coherence can be considered genuinely quantum?”’ The answer to this question would con-
stitute a first attempt to certify the quantumness of a process driven by an incoherent field
that induces quantum effects in a nonequilibrium regime.

To address this, I determined the Kirkwood-Dirac quasiprobability distribution asso-
ciated to the time-dependent energy changes in the system while exposed to incoherent
radiation. If the real part of some quasiprobability is negative, or even some quasiprob-
ability is complex, then one can witness the onset of a genuine quantum effect linked to
quantum interferences. Necessary condition for that is the non-commutativity of the initial
state of the quantum system with the Hamiltonian Hg at the beginning of the dynamical
transformation (recall that in the process generating Fano coherence, the Hamiltonian is
time-independent). Thus, as expected, initializing the three-level system in a superposition
of the Hamiltonian eigenstates leads to negative quasiprobabilities with zero imaginary parts
for a precise set of parameters. Initializing the system in the ground state of Hyg does not
lead to the same result. In this regard, further studies are essential to understand the in-
terplay between the generation of Fano coherences and the presence of quantum coherences
in the initial state. These investigations will elucidate how different types of coherences
impact the quantum dynamics of the open system and contribute to the negativity in the
KDQ distribution characterizing energy change fluctuations.

Under the same parameter setting and initial state choice (with n = 3 and p..(0) = 0.4), 1
found that (AE) = (AE)¢on < 0 within a certain time interval for any value of the alignment
parameter p, except p = 0. Interestingly, despite the incoherence of the input light source,
the maximum efficiency of the thermodynamic process goes up to 6%, and becomes quasi-
stationary for p = —1. These findings motivate further investigation into designing and
optimizing (coherent or incoherent) coupling with an external load, which could function
as an energy battery [89] or quantum flywheel [90]. The latter can be minimally modeled
by using a two-level system either coherently or incoherently “connected” to the V-type
three-level system. This approach could align the thermodynamic study of this thesis with
the research described by Svidzinsky et al. in [34], which contemplates a five-level system
where the presence of Fano coherence in the V-type system enhances the photocurrent that
passes through a two-level system representing the external load.

Finally, the results presented in this chapter could be experimentally validated via recon-
structing quasiprobabilities for the energy change statistics. As recently shown in [36, 65],

reconstruction procedures based on projective measurements or interferometric schemes can
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be employed for this purpose. Implementing a V-type three-level system conducive to Fano
coherence is, in principle, feasible using an atomic platform, such as a gas of a suitable atomic
species maintained at a constant temperature, as shown in the next chapter. Preparing the
system’s initial state in a superposition of Hamiltonian eigenstates can be achieved using
independent coherent light sources that are quasi-resonant with the two dipole transitions
before interacting with the incoherent radiation. The choice between a cold or hot gas
can be crucial, since lower temperatures may enhance parameter tunability. Additionally,
generating Fano coherence might require the polarization of the incoherent radiation field,

depending on the selected atomic species [30, 51].



3 Implementation on 5'Rb atoms:
theoretical and experimental re-
sults

Despite extensive research conducted on the topic, an experiment proving the existence of
Fano coherences produced by the interplay of incoherent pumping and spontaneous emis-
sion is still missing, based on current knowledge. This phenomenon has a broad field of
applicability, spanning from quantum heat engines to photoconversion devices and biolog-
ical systems that interact with the environment and radiation. All these systems could
potentially benefit from the presence of Fano coherences, which might enable more efficient
exploitation of the energy supplied by external driving.

Currently, an atomic platform stands as the most suitable candidate for realizing a proof-
of-principle experiment, given the possibility to finely adjust the parameters that define a
three-level V-type system. In Chapter 1, for example, the role of the splitting A between
excited levels has been investigated as well as its influence on the dynamics of populations
and coherences. Implementing the V-type system on magnetic sublevels in an atomic struc-
ture allows for tuning the splitting by simply varying a uniform magnetic field. Previous
proposals, such as those by Dodin et al. [29] and subsequently by Koyu et al. [30], suggested
experiments with beams of Calcium atoms excited by a broadband polarized laser within
a uniform magnetic field. According to their proposal schemes, coherence can be observed
through resolved detection of the fluorescence signal [29] or by measuring the difference in
the fluorescence signals emitted by the atoms driven by x-polarized versus isotropic incoher-
ent light [30]. Similarly, in [32] the authors propose an experimental scenario for measuring
steady-state noise-induced Fano coherences in a A-type three-level system, using metastable
He(23S51) atoms. Additionally, recent experiments in a magneto-optical trap of Rubidium
atoms have detected an increase in beat amplitude due to collective light emission, analogous
to Fano coherences from interactions with vacuum modes, as reported in [35].

In my case study I chose to implement the V-type three-level system in the hyperfine
structure of Rubidium-87 (8"Rb) atoms. There are several compelling reasons for selecting
87Rb as one of ideal candidate for a proof-of-principle experiment to detect Fano coherence.
Firstly, the isotope 8"Rb has a well-documented atomic structure, with detailed knowledge
of its energy levels and transition properties [41, 91]. Moreover, it features a rich hyperfine
structure due to its nuclear spin (I = 3/2), providing multiple energy levels suitable for

creating the V-system. From a technical standpoint, the transitions between the 525, /2
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ground state manifold and the 52P, /2 and 52 P, /2 excited state manifolds, known as D1 and
D2 lines respectively, are well-matched to commercially available diode lasers (A = 795 nm
and A = 780 nm, respectively). This accessibility simplifies the experimental setup involving
laser excitation and control.

Although Rubidium’s cooling and trapping technologies are well-developed, enabling
cold atom experiments, the designed setup utilizes hot atomic ensembles. This approach is
driven by several factors: it simplifies the experimental design and reduces costs compared
to ultra-cold conditions. The main objective at this stage is to establish the feasibility
of detecting Fano coherence. Hot atomic ensembles offer a practical and robust initial
validation before transitioning to more sophisticated cold atom configurations. Additionally,
conducting the experiment in less-controlled environmental conditions better simulates the
real-world scenarios of future applications.

The detection of noise-induced Fano coherence is performed by driving the V-type system
with a polarized broadband laser and measuring the spatial anisotropy in the fluorescence
emitted by the atoms, a method proposed in [29]. The measurement is compared with
one conducted under conditions of no Fano coherence. Section 3.1 introduces the hyperfine
atomic structure of 87Rb, where the V-type three-level system is realized. Moreover, it
presents an optimization analysis focused on maximizing pg, by adjusting the parameters
that influence atomic dynamics. Subsequently, the relationship between Fano coherence
and the anisotropic fluorescence emission is thoroughly examined, providing a theoretical
foundation for the experimental observations. In Section 3.2, the experimental setup de-
signed to detect Fano coherence is described in detail. This includes the arrangement of
optical components and atomic sample, the configuration of the coils for uniform magnetic
field along z-axis, and the methodologies employed to excite the atoms and measure their
fluorescence. Finally, Section 3.3, outlines preliminary measurements obtained from ini-
tial trials, highlighting the feasibility and effectiveness of the proposed detection technique.
These preliminary findings are crucial as they offer insights into potential adjustments and
refinements needed to optimize the experimental conditions for observing Fano coherence

in future experiments.

3.1 °%"Rb atoms as V-type three level sysyems

Rubidium (Rb) is a chemical element, belonging to the group of alkali metals, along with
lithium (Li), sodium (Na), potassium (K), caesium (Cs) and francium (Fr). These elements
are categorized under group 1 in the periodic table, each possessing a single electron in their
outermost s-orbital. Natural rubidium on Earth consists primarily of two isotopes: 72% is
the stable isotope 8°Rb, while 28% is the slightly radioactive 8"Rb. The atomic structure of
rubidium is rather complex and it is briefly described in this section as long as the choice
of the levels for the implementation of the V-system. Once these atomic parameters are
defined, the next step involves optimizing the system dynamics parameters to achieve the

optimal coherence signal in the emission spectrum.
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3.1.1 V-type three level systems in the hyperfine structure of ’Rb atoms

The atomic structure of 8’Rb atoms can be treated in different energy description. The
ground energy level of the outer electron of this atomic species is denoted as 525, /2. In this

notation:
e the principal quantum number is n = 5;
e S identify the s-orbital angular momentum number, that is L = 0;

e the superscript (2) indicates the multiplicity of the state, which is given by 25 + 1.
Here, S is the total spin quantum number, related to the spin angular momentum
S. For a single electron, as in this case, S is equal to S = 1/2. Thus, 25 + 1 = 2,

indicating a doublet state, with two possible spin orientations.

e The subscript (1/2) specifies the total angular momentum J, which is the vector sum

of the orbital angular momentum L and the spin angular momentum S:
J=L+S (3.1)
and the corresponding quantum number J is in the range [91]:

IL—S|<J<L+S. (3.2)

In this context, the usual quantum numbers n,l, m, ... are expressed with capital letters
to refer to the more general case of multi-electron atoms, where atomic quantities represent
total electron values. Hence, L is the quantum number for the total electron orbital angular
momentum [41].

The interaction between the electron’s spin angular momentum S and its orbital angular
momentum L, which arises from the electron’s motion around the nucleus, results in what
is known as spin-orbit coupling. This coupling causes the apparent degenerate energy levels
to split into multiple closely spaced levels, giving rise to the fine structure of the atom. An
illustrative example of the fine structure splitting is observed in the first excited state of
the 8"Rb atom. In the ground state of 8"Rb, where L = 0 and S = 1/2, the total angular
momentum J is 1/2, showing no splitting. However, in the first excited state 52 P, where
L =1and S = 1/2, J can take the values 1/2 or 3/2. Consequently, the 52P state splits
into two fine structure levels: 52P, /2 and 52P; /2. The energy levels shift according to the
value of J, causing the L = 0 — L = 1 transition, known as the D line, to split into two
components: the D1 line (525’1/2 — 52P1/2) and the D2 line (5251/2 — 52P3/2) [91].

At a deeper level, the interaction between the magnetic field generated by the electron’s
total angular momentum J and the magnetic moment of the nucleus (due to its nuclear spin
I) leads to the formation of the hyperfine structure. For 8"Rb, the nuclear spin quantum
number is I = 3/2. This interaction is much weaker than the spin-orbit coupling responsible
for the fine structure, but still causes additional splitting of the energy levels based on

the nuclear spin. This hyperfine splitting is characterized by the total atomic angular



3.1 8"Rb atoms as V-type three level sysyems

73

momentum F [91]:

F=J+1 (3.3)

The possible values of the quantum number F' are:
|J—I|<F<J+1I. (3.4)

For the ground state of 3'Rb, where J = 1/2 and I = 3/2, F can be either 1 or 2. In the
case of the excited state for the D2 line (52P3/2), F can take values of 0, 1, 2, or 3, whereas
for the D1 line (52P; /2), I is either 1 or 2. The detailed fine and hyperfine structures for
the D1 and D2 lines are comprehensively depicted in reference [91].

Each hyperfine energy levels contains 2F + 1 magnetic sublevels, distinguished by the
magnetic quantum number mpg. In the absence of external magnetic fields, these sublevels
are degenerate. However, applying an external magnetic field along one axis (e.g. the z-axis)
breaks this degeneracy. The energy shift of the levels due to a weak magnetic field is linear
and can be described as [41, 91]:

AE\F mp) = wB gr mp Bz, (3.5)

where up is the Bohr magneton and gr is the hyperfine Landé g-factor. When the energy
shift is small compared to the hyperfine splittings the regime is called anomalous Zeeman
effect, and the linearity expressed in equation (3.5) holds. For stronger magnetic fields,
the regimes are known as the Paschen-Back effect and normal Zeeman regimes for fine
structure. In these regimes equation (3.5) no longer applies and the calculation of the
energy shift becomes more complex [41, 91].

To implement a V-type three-level system interacting with an optical field, it is crucial
to identify the allowed atomic transitions. This involves understanding the selection rules
that determine “dipole allowed” transitions, ensuring that the dipole matrix element p;; =

(ller|j) is non-zero. The selection rules can be summarized as follows:

(i) Fine-structure selection rules: for transitions between fine-structure states of the

form |J my) — |J' mys) the rules are:

J=J o J=J+1 (3.6)
my=m/; or my=my+1 (3.7)
J#£J if my=my=0. (3.8)

Transitions where J = J’ = 0 are forbidden, and any transitions not obeying to these

rules have vanishing dipole matrix elements, making them dipole forbidden.

(ii) Hyperfine-structure selection rules: for transitions between hyperfine-structure
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states of the form |F mp) — |F’ mp/) the selection rules are:

F=F o F=F+1 (3.9)
mp=mlp or mp=mm+1 (3.10)
F#F if mp=mm=0. (3.11)

Again, F' = F’ = 0 is a forbidden transition. Any transitions not adhering to these

rules have vanishing dipole matrix elements, making them dipole forbidden.

Assuming a magnetic field B along the z-axis, the degeneracy between magnetic sublevels
(both in the fine and hyperfine structure) is broken. When light interacts with transitions
between these magnetic sublevels, the selection rules in equations (3.7) and (3.11) must be
observed. It’s important to note that the driving radiation must also comply polarization
rules to properly excite the selected transitions. Transitions where Amp = mp — mp = 0,
i.e., mp = mp, are known as «w transitions. The latter are coupled by linearly polarized
radiation parallel to the magnetic field (along the z-axis in this case), i.e., ex\ = €, =
[0,0,1], with the wavevector k oriented orthogonal to B. Transitions where Amp = mp —
mp = +1 are referred to as T transitions. These transitions are coupled by circularly

polarized light in the x-y plane, whose unitary vector is:

1 1
€L = |—,—1—,0 3.12
i [ V2T V2 } (312)
and the wavevector k is parallel to the magnetic field. Lastly, transitions where Amp =
mp — mp = —1 are referred to as o~ transitions, and they are coupled by circularly

polarized light in the x-y plane, whose unitary vector is:

€_ = [\}?7_i\j§’0] (3.13)
and the wavevector k is again parallel to the magnetic field.

The hyperfine structure is particularly suitable for implementing V-type systems to
detect Fano coherence. Hyperfine levels are responsive to low magnetic fields, enabling
precise control of energy levels through the anomalous Zeeman effect, where hyperfine energy
levels shift linearly with the applied field. Additionally, the smaller hyperfine splittings
facilitate the use of microwave or radiofrequency fields for manipulation and preparation.
Nonetheless, it is crucial to ensure that the hyperfine transitions are sufficiently isolated,
meaning the hyperfine ground and excited manifolds must be spaced far enough from other
hyperfine manifolds to prevent the involvement of additional transitions. On this point, the
broadband radiation used should not be excessively broad to avoid exciting other hyperfine
or fine levels. The D1 line is ideal for this purpose, with just well separated two hyperfine
manifolds (F = 1, F' = 2) in the ground state, with 6.83 GHz frequency splitting, and two
hyperfine manifolds (F' = 1, F' = 2) in the excited state separated by 814 MHz. Notably,
both the excited and ground manifolds can be resolved even at high temperatures, despite
Doppler broadening due to atomic motion.

Among the four possible F — F” transitions, the hyperfine transition F =1 — F/ =
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is selected, since it contains the least number of magnetic sublevels, specifically 2F +1 = 3
sublevels. Within this transition, the V-scheme is implemented as illustrated in figure 3.1.
The ground state |c¢) corresponds to the |[F' =1 mp = 0) atomic level, while the two excited
states |a) and |b) are represented by the |F/ = 1 mp = —1) and |[F' = 1 mp = +1)
levels, respectively. The selected transitions |a) <> |¢) and |b) <> |c) have Amp = —1
and Amp = +1, respectively. Thus, they are driven by circularly polarized light in the x-y
plane, with the wavevector k along the z-axis, adhering to the selection rules. The transition

dipole moment vectors are:

Kac =|Hac| Uﬁ —i\}i,O} (3.14)

P [‘\}5"1';5’0] . (3.15)

Here, |pac| and |ppe| are the electric dipole moment matrix element. Their values can be
found in [91], where all the dipole matrix elements for specific |F mp) — |[F' mps) are
listed. In this case study, |pac| = |tpe| and their values are reported in table 3.1.

The vectors pqe and ppe are orthogonal, thus p = 0 and no interference between the
pumping paths and decaying paths occurs when using an isotropic unpolarized radiation.
To induce Fano interference between the pumping paths, polarized radiation is required. For
this purpose, I have chosen the polarization to be aligned along the x-axis, in an horizontal-

vertical basis, which is represented by the unitary vector:
€\ =€; =[1,0,0] (3.16)

or as a linear combination:

1 1 1 1
€& =V2|(|—,—i—.,0| - |———=,—i—,0] | . 3.17
The last expression indicates that linearly polarized light can drive both p,. and pp. tran-
sitions.
The selected V-type three-level system is symmetric, implying that v, = 5. As discussed
in [41, 91|, all the excited state hyperfine sublevels decay at the same rate I', which is

the decay rate of the D1 line, with population decay branching into various ground state

Quantity Magnitude
Transition F' =1 — F’ =1 frequency, wy [THz] 377.11226
Dipole matrix element for D1 line, |(J||w||J")|* [C-m] 2.537 x 10729
Dipole matrix elements, |tac], || [C-m] V2 1l 2
Decay rate D1 line, I' [MHz| 27 -5.75
Landé g-factor F’ = 1 manifold D1 line, gp [-] -1/6

Table 3.1: Values of relevant physical quantities for 8" Rb.
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Figure 3.1: V-type three level system within the D1 line transition of 8" Rb. The ground state |c)
corresponds to the hyperfine magnetic sublevel |F =1 mp = 0), while the two excited
states |a) and |b) are represented by the |[F' =1 mp = —1) and |F' =1 mp = +1),
respectively. The red arrows represents the radiation processes involved: spontaneous
emission from levels |a) and |b) to level |c) at rates ~y,, 7 respectively; incoherent
pumping and stimulated emission involving transitions |a) < |c) and |b) <> |c) at
rates r, rp, respectively. The parameter A is the splitting between the excited levels:
A = wge — wpe- In the figure the wavevector k of the radiation and the uniform
magnetic field vector B are reported, as well as the frequency difference between the
hyperfine manifolds of D1 line.

sublevels. Hence: 3
wy  2J+1 L

i el T2l =% = 3.18

h3meged 20" + 1 ‘< [ ae]] >‘ Ya = Vb ( )

where J = J = 1/2 for D1 line and (J||p||J’) is the D1 matrix element, found in [91], and

whose values is reported in table 3.1. Here, the definition of the decay rate expressed in
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equation (1.118) is used. From equation (3.18) it follows that ¥ = (74 +7)/2 = Vo = V-
The incoherent pumping rate r;, with [ = a, b, depends on both atomic properties and

the radiation source used. In particular, it can be expressed in two ways: either as r; = ny;

or as 11 = Bjpy(Vac). In the latter, p,(v4c) is the spectral energy density of the broadband

laser at the transition frequency wge = 2TVqe & wp and By is the Einstein B-coefficient,

given by:
W‘MZC‘Q
B =—— 3.19
= Tl (3.19)
where | = a,b. Since |pac| = o], it follows that B, = By and r, = ry, consistent with

the symmetry of the system. For a broadband laser, the intensity can be approximated as
follows [92]:

Ilaser = C/PV(V)dV ~ CpV(VaC)AVlasera (320)

where the spectral density of the source is assumed to be relatively flat around the atomic
transitions. The quantity Avjeser iS the spectral width of the laser. This approximation
holds when the laser’s has a broader spectral width compared to the frequency separations
A of the atomic transitions, aligning with the assumptions in the mathematical model. By
selecting a value for n and knowing the bandwidth of the broadband laser Avjger, One can

relate the average photon number to the laser intensity:

r n
Ligser = Cpu(Vac)AVlaser = CBiAylaser = C%Aylase% (321)

a a

Hence, the average photon number 7 results proportional to the intensity of the broadband
source, as anticipated in Chapter 1. It is crucial to ensure that the laser intensity remains

below the saturation intensity of the atomic transition, which is defined as [41, 91]:

C€0F2h2

4|€gc ‘IJJacP' (3.22)

Isar =
If the laser intensity absorbed by the |a) <+ |c) transition exceeds saturation intensity, the
atomic population levels involved can become saturated, leading to a range of effects, such
as reduced absorption, altered emission properties and thus to the disruption of the noise-
induced Fano coherence phenomenon. The same applies to the transition |b) <+ |c¢). Note
that Igq is the same for both transitions. Hence, there exists a maximum value of n, above
which the effects of saturation come into play.
Finally, the control on A is performed by manipulating a uniform magnetic field B = B,z
along the z-axis. For a weak magnetic field, equation (3.5), can be expressed in terms of

frequency, resulting in:
h(wac — wbc) = hA = wB gr’ (77”LF(;C — mFéc) Bz = 2,uB gF’Bz- (3.23)

Hence,
A= 2’%3 g B, (3.24)

where the Landé g-factor for the F' = 1 excited state manifold of the D1 line is listed in



3.1 8"Rb atoms as V-type three level sysyems

78

table 3.1 and can be found in [91].

In this subsection all the governing parameters have been defined as depending on the
atomic species, the incoherent radiation source, and the external magnetic field. In the next
subsection I analyze these parameters to determine the optimal conditions for maximizing

Fano coherence and provide the corresponding solutions to the differential equations.

3.1.2 Theoretical prediction with ¥ Rb atoms

The V-type three-level system, implemented in the hyperfine structure of 8’Rb atoms, inter-
acts with a broadband laser, with the wavevector k along the z-axis and linear polarization
along the x-axis. The dynamical regimes with anisotropic polarized radiation were ana-
lyzed in Subsection 1.4.2 of this thesis. It was observed that in the overdamped regime
Fano coherence has a nonzero stationary values, which need to be maximized for effective
detection.

Using the governing parameters specific to the implemented atomic system, I conduct
an analysis based on the approach used in Subsection 1.4.2 for a general V-system. The
parameters A/% and n are varied in the overdamped solutions region, to find where Re[pg)
is maximized. In figure 3.2, the stationary values of Re[py| are shown for different values
of A/y and n. The maximum value of 7 in this scenario is fimax = 345, above which
the intensity exceeds the saturation intensity. It can be observed that large excited states
splittings are detrimental to stationary Fano coherence. For this reason 0 < A/y < 1 is
selected as the range of interest. Regarding the intensity 7, higher values result in greater
stationary values of Re[pg). However, beyond a certain level, the increase in Re[pap)i—oo
becomes less significant. For example, Re[pgp]i—o0 at 7 = 100 differs by only 4% from its

value at imax = 345, whereas Re[pgp]i—o00 at m = 5 differs by 45% from its value at 7 = 100.

20 0.25

18

16 0.2

14

12 015 ¢
S0 3
< =

8 10.1 =

6

4 0.05

2

0 0

n

Figure 3.2: Stationary value of Re[pq| as a function of i and A/¥ with linearly polarized light
along the x-axis.
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Therefore, preliminary measurements are restricted to values of n below 100.

Up to this point, I considered a sudden turn-on of radiation to generate Fano coherence.
It is important to explore the effect of time-dependent radiation on pu(t), particularly the
impact of a slow turn-on. In the experimental setup, I periodically turn on the incoherent
beam for a time interval [0, 1], and then turn it off for a time interval [t1,¢2] to allow the
system to reinitialize to the ground state through relaxation processes. After the interval
[t1, to] the radiation is turned on again, repeating the cycle. Turning off the radiation allows
the system to return to the ground state, ensuring that each measurement cycle starts from
the same initial conditions. This approach enhances the reliability and reproducibility of
the results by ensuring that the observed phenomena originate from consistent starting
conditions. The detection of the signal is performed with a photodiode, whose dynamics is
slower than that of the system. In this way it is possible to average the signal over multiple
cycles of turn-on and turn-off, reducing noise and improving the signal-to-noise ratio, leading
to clearer and more accurate measurements of the coherence effects. Consequently, this
technique provides a robust method for observing and analyzing Fano coherence in the
experimental setup.

I modeled the incoherent time-dependent field following the theory discussed in [52].
The time dependency is incorporated into the average photon number as n(t) = nf(t),

where, differently from [52], I selected f(¢) to have the form of a sigmoid function:

1(t) = !

- , (3.25)
1+ exp [—20 '5‘17/2]

where T, is the turn-on time scale. The choice of a sigmoid function ensures a smooth and
gradual increase in the photon number, which is essential for avoiding abrupt changes in
the field and for better reproducing realistic experimental conditions.

Dodin et al. in [52] explored the dynamics of an isotropic and unpolarized radiation field,
comparing the effects of different turn-on time scales relative to the system’s characteristic
time scale 7g. They found that in the overdamped regime, with p = 1 and 7,, > 7g, the
Fano coherence significantly diminishes, losing its quasi-stationary nature. Conversely, when
Ton <K Tg, the system’s behavior aligns with the solutions derived under a time-independent
field. In the latter scenario, the field reaches its steady state much faster than the system
evolves, meaning the transient behavior of the field does not impact the system’s dynamics.
Thus, the V-system’s evolution is governed predominantly by the steady state field rather
than the transient field.

In the case of anisotropic polarized radiation with time-dependency, different behaviors
are observed. By selecting values for A/4 and n that yield overdamping solutions for
the density operator elements, specifically A/4 = 0.1 and 7 = 25, I examined scenarios
where 7., < Tg &~ 1/7 and 1o, > Tg, as illustrated in figure 3.3. It is evident that
the stationary value of pup(t) remains unaffected by a slow turn-on process, although the
dynamics exhibit a slower evolution. By repeatedly switching on and off the radiation,
an excessively slow switching process would result in a considerable loss of signal since

the dynamics of coherence are significantly slower. Therefore, in the realized experimental
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Figure 3.3: Time evolution of excited states populations and real and imaginary part of quantum
coherence between levels |a) and |b). The radiation intensity is set to fulfill the strong
pumping regime (7 = 25), with small splitting (A/5 = 0.1). The turn-on time scale
Ton 18 varied as 7o, < Tg (solid line) and 7,, > 75 (dashed line).

setup, acousto-optic modulators (AOMs) have been chosen to control the radiation, since

they have on/off times around a hundred nanoseconds for small beam diameters. For the

turning off process, the sigmoid function is modified as follows:
1

14 exp | 20 e ren/2)

fit)y=1- (3.26)

Ton

with Tpuise as the time duration of the single pulse. For example, a train of pulses with
Tpulse = 3us is realized, with light-off period of 2us. The time scale for both turning on and
off processes, 7o, and 7,5 respectively, is set to 100 ns. Using these pulses, I obtain the
signals shown in figure 3.4.

The challenge of how to detect noise-induced Fano coherence remains an open question.
The following subsection addresses this aspect by detailing the angle-resolved fluorescence
measurement technique. This method enables the isolation and analysis of specific contri-

butions to the radiated emission from the atoms, directly linked to pgp(t).

3.1.3 Angle-resolved fluorescence detection

The detection of Fano coherence is related to the detection of resonance fluorescence from
the excited atoms. Following the scheme proposed in [29], consider a fraction of 8"Rb atoms
that are excited from the ground state |¢) = |F' = 1 mp = 0), after the initial turn-on of the
anisotropic and polarized incoherent radiation. As observed previously, the turn-on time
can influence the values of Fano coherence. In particular, if the turn-on time is much longer
than the time-scale of the system, 7¢ ~ 1/7, the Fano coherence exhibits slow dynamics,

thereby decreasing the average detectable signal. To adress this issue, AOMs are used.
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Figure 3.4: Time evolution of excited states populations and real and imaginary part of coherence
between level |a) and |b). The radiation excites the system with a train of pulses with
Tpulse = 3its and a light-off period of 2ps. In the picture, the effect of a single pulse is
shown. The intensity is set to fulfill the strong pumping regime (. = 25), with small
splitting (A/¥ = 0.1). The turn-on and off time scale T,, = To5f = 100 ns.

Assuming the excited atoms are in the state |a) = |F' = 1 mp = —1), they can
then decay to the ground level emitting photons and thus producing resonance fluorescence
radiation. The intensity expectation value of resonance fluorescence can be calculated as

follows [39-41]:
gocC

0 Bl 0B (x,1), (3.27)

<IaC(Rv t>> =

where EZ (r,t) is the electric field operator emitted from transition |a) < |¢) and its conju-
gate, while R is the distance vector from the emitting source. For an oscillating dipole, as
the atom emitting radiation, the electric field operator can be approximated according to
[41]:

Gac(t)

EAchrc(Ra t) ~ [(:uac ‘R)R - l"ac} wgc“"facyT' (3.28)

Admegc?
Here, wq, is the atomic transition frequency, . is the transition dipole moment vector and
its module is the transition dipole moment matrix element. Finally, 6,.(¢) is the lowering
operator. Substituting equation (3.28) in equation (3.27) I obtain:

2
WaelBac® | [(ac - R) R — ptac]

R = (G4 ()52(0): (329)

In the above expression, the order of the electric field operators is crucial. In the expectation
value on the right hand side, the lowering operator is to the right, meaning that if the atom
is in the ground state the intensity is zero. This order is known as normal ordering [39, 41].

The atoms can also be excited to the state |b) = |[F/ =1 mp = +1), where all the steps
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described previously apply. The total intensity of the radiation emitted is then given by:

(I(R,t)) = (B~ (r,t)ET(r, 1)), (3.30)

where the electric field operators E+(R,t) and E~(R,t) are composed of the sum of the

two electric fields emitted from transitions |a) — |c¢) and |b) — |¢):

ET(r,t) = Ej.(r,t) + B (r,1). (3.31)

The same applies for the complex conjugate. Hence:

(IR, 1) =5 (B, ) B (v 1) + (Epo v ) B v, 1)+ (3:32)
(B ) (0, )) + (B (0, D EL(x,) ) (3.33)

Considering the following equalities [41]:
(6 (D67, (8)) = T (675 (167, (D)ps (1)) = prelt) (3.34)

(e - R)R — ] [* _ 1 — e - RJ?

3.35

ik it (335)
with [ = a,b. By writing the vector R in spherical coordinates:

R = |R| [sin 6 cos ¢, sin O sin ¢, cos 0], (3.36)

the fluorescence intensity is finally equal to:

1
- 32m2¢0c3|R |2

1+ cos?8

(I, 0..1) :

(W3c|ﬂa0|2paa(t/) + W§c|ubc‘2pbb(t/)) +

+ Wil Bacllkbe| sin? @ (cos(20)Relpap(t')] — sin(2)Im[pas(t')]) ] - (3.37)

Here t' = t + |R|/c. Since the selected V-type three-level system has pise = ppe and

Wae & Wpe, then:

1+ cos? 0
2

wéc a02
(16, 0.1)) e

:327125003\R\2 (pa“(t/) + pbb(t/)) +

+sin 0 (cos(2¢)Re[pap(t')] — sin(2)Im[pas(t')]) ] L339

Equations (3.37) and (3.38) directly relate the real and imaginary parts of Fano coherence

to an observable quantity: the intensity of the emitted fluorescence, as a function of angular
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coordinates. Both equations can be reformulated as follows:

4 | 2 2
Wael Hacl 1+ cos?#
(I(0,p,t) = 3272203 R |2 5 (Paa(t’) + peu(t')) + sin? 6 cos(2¢ + o)
. Im[pab]
with tana = . 3.39
Re[pab] ( )

This formulation highlights that the ratio between the imaginary and real parts of the
coherence produces a phase shift in the ¢ dependent term. This phase shift o must be
accounted for during measurement. Specifically, the fluorescence component dependent on
 might not be oriented precisely at a given ¢, but could be slightly deviated due to a.
By placing detectors around the atoms, it is possible to select specific ranges of solid
angles to isolate the contribution from each term of equation (3.38). As detailed in [29], if

the following integrals are computed:

5#/4
/ / 0,0, dcpd9—|—/ / t)dpdl (3.40)
—m/4 3r/4
37r/4 77r/4
/ / 0,p,t dgod@—i—/ / t)dpdd (3.41)
5m/4

their difference Iy(t) — I;(t) is directly proportional to Re[pas(t)]. These specific ranges of
solid angles are chosen to maximize the sensitivity to the spatial anisotropy caused by the
real part of the coherence term. By integrating over these two angular regions and taking
their difference, the symmetric contributions from p,,(t) and pp(t) cancel out, isolating a
signal dependent solely on Re[pp(t)]. This detection technique, known as angle-resolved,
allows for the selection of specific angular ranges to isolate the contributions of individual
terms in the fluorescence intensity.

The real and imaginary parts of Fano coherence are responsible for spatial anisotropy
in the x-y plane, as also illustrated in figure 3.5, that can be detected. This results in
the characteristic “doughnut-shaped” radiation pattern, typical of an oscillating dipole. To
detect the presence of Fano coherence in the V-system, I place two photodetectors along
the x-axis and y-axis in a differential configuration. If Fano coherence is present, a non-zero
signal should be measured. Using a short focal length lens with fiens = Diens = 25.4 mm,
where flens is the focal length and Djeys is the diameter, an angle aperture of /2 is obtained.

The integration ranges for 6 and ¢ are:
e For fluorescence around the x-axis: 6 € [7/4,37/4], ¢ € [—m/4,7/4].
e For fluorescence around the y-axis: 6 € [w/4,37/4], ¢ € [7/4,37/4].

The intensities [;(¢) and I2(t) are then given by:

3n/4 /4
/ / 1(0, o, t)dpdb (3.42)
w/ —7/4

3m/4 37r/4
/ / t)dypd. (3.43)
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Figure 3.5: Fluorescence intensity around the atomic vapor cell when stationary coherence is
reached. The polarized radiation intensity is set to n = 25, with small splitting
A/ =0.1. At (z,y) = (0,0) is the vapor cell, whose diameter is 19 mm.

The chosen range of angles ensures that the signal difference I5(t)—I7(t) is merely dependent
on Re[pap).

By driving the three-level system with the same train pulses described previously, with
excited states splitting set to A/4 = 0.1 and the intensity radiation to n = 25, whose
turning on and off time are 7,, = 7,77 = 100 ns, the time evolution of I1(t), I>(t) and their
difference are illustrated in figure 3.6. To distinguish the fluorescence signal influenced by
Fano coherence, it is essential to establish a reference value, denoted as Iy, representing
the signal obtained under isotropic conditions. An isotropic fluorescence pattern occurs
when interference effects are absent, such as when the frequency separation between the
two excited states A significantly exceeds the laser bandwidth Avaeer. In this scenario, the
source can no longer excite both transitions, making them distinguishable and minimizing
interference in the pumping process. As a result, Fano coherence vanishes, and the popu-
lations and coherences of the atomic system evolve according to the Pauli rate equations.

The resulting fluorescence pattern becomes isotropic in the x-y plane, as described by:

wiipac*  [1+cos?6

(10,0 = gy e | () + plt) | (3.44)

where the angular dependence arises solely from the 6 angle. The radiation pattern in the
x-z plane (or equivalently in the y-z plane) in this case is “peanut-shaped”, typical of a
rotating dipole.

In figure 3.6, the difference I5(¢) — I;(t) of the equations (3.42) and (3.43), is normalized
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Figure 3.6: Fluorescence intensities around the x-axis (I;(t)) and around y-axis (Iz(t)) varying
with time. The values of angles 6 and ¢ are those of equations (3.42) and (3.43). On
the right, their difference is shown, scaled by I,, which is the isotropic fluorescence
intensity obtained when pq,(t) = 0. The radiation intensity is set to i = 25, with
small splitting A/5 = 0.1.

by the isotropic fluorescence intensity Iy. The latter is collected over the same angular range

and can be expressed as:

3r/4  pm/4
T —7/4

/4
3r/4 /4 wl |“ |2 1+COS29
= ge” 20 aa(t )| dedb. 3.45
/77/4 —7/4 32m2e0c3|R|? 2 (p )+ punl )) 4 ( )

Since the fluorescence is isotropic, Iy is calculated just around the x-axis, where ¢ varies
between —m/4 and 47 /4. The time evolution of excited state populations and coherence
associated to I1(t) and Iz(t) were depicted in figure 3.4.

To accurately distinguish between the fluorescence measured under isotropic and anisotropic

conditions, it is necessary to continuously vary the splitting A. This can be accomplished
by sinusoidally modulating the magnetic field along the z-axis. By slowly varying the mag-
netic field such that A/% &~ 0.1 at minimum and A > 2Ap4e. at maximum, the difference
signal from the two photodiodes should exhibit a similar modulation pattern. In particular,
it should oscillate between a maximum value at A/4 ~ 0.1 and a minimum value (ideally
approximately zero) when the splitting is greater than the laser bandwidth.

For a laser bandwidth Avjser < 10 MHz, the required splitting A should be A >
2Avjgser = 20 MHz. This ensures that the laser selectively excites only one of the two
transitions, causing the loss of interference. Having selected the V-type three-level system
and established how to control the key parameters A and 7o via magnetic fields and laser
intensity, I describe in the next section the experimental setup designed for detecting noise-

induced Fano coherence in a hot rubidium vapor cell. In the setup, atoms are excited
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using a linearly polarized broadband laser. This experimental arrangement is essential for

validating the theoretical predictions discussed.

3.2 Proof-of-principle experiment for Fano-coherence detec-
tion

The previous sections explored the dynamics of excited state populations and noise-induced
Fano coherence within a three-level system realized in the hyperfine structure of 8’ Rb atoms.
I utilized anisotropic polarized radiation that can be switched on and off. Additionally, I
introduced the angle-resolved fluorescence technique to detect coherence. By measuring the
fluorescence with photodetectors placed along the x and y-axes, any non-zero pg(t) should
result in a measurable difference between these two signals.

To achieve this measurement, a well-designed optical setup is required. Specifically, the
setup must include magnetic field control, laser source control for adjusting the frequency
and frequency band, as well as the intensy, an atomic source, and a detection system. The

next subsections describe each of these main components in detail.

3.2.1 Rb vapor cell and magnetic cage

As previously discussed, the platform for implementing the V-type three-level system is a
hot atomic ensemble in a vapor cell. Specifically, I decided to use a quartz vapor reference
cell from Thorlabs, in the enhanced version with 98% pure 8’Rb (model: GC19075-RBS87).
The standard cells typically have the natural abundance of the two isotopes 8Rb and 8Rb,
where the latter constitutes only 27.85%. Using the enhanced version ensures that there is
minimal influence from 8°Rb isotopes.

The Thorlabs enhanced vapor cell is long 75 mm with a diameter of 19 mm. The vapor
pressure inside the cell depends on the temperature according to the following empirical

vapor pressure model [91, 93]:

4215

logg P, =2.881 + 4.857 — 7 solid phase (3.46)
4040

log,o P, =2.881 + 4.312 — T liquid phase (3.47)

where P, is the vapor pressure in torr and T is the temperature in K. The melting point
of 8Rb is at T = 39.30°C. The subsequent measurements are taken at temperature up
to T = 40°C. At this temperature, the atomic density is natomic = 5.92 - 101 m=3, which
means that the atomic density is low enough that interactions between atoms do can be
neglected in the mathematical model. Having established the atomic density, the optical

density (OD) of the medium can be calculated as follows:

OD = nNatomic Tabs Leell (348)
3)\2

° 3.49
= (3.49)

Oabs =
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where g, is the absorption cross-section on resonance and Lcg is the length of the vapor
cell. At T'=40°C OD = 1338.

The temperature of the vapor cell is controlled putting it in thermal contact with re-
sistors housed in aluminum casings, each with a resistance of 152 and a power rating of
15W. Temperature regulation is achieved with a 10,2 NTC thermistor connected to a
Thorlabs TC300 temperature controller, which utilizes a Proportional-Integral-Derivative
(PID) feedback loop for precise temperature management.

The cell with the heating resistors is then placed inside a cage, which is composed of
coils holders, as illustrated in figure 3.7. Inside the cage there are two pairs of rectangular-
shaped coils in the Helmholtz configuration, whose axis are along the x and y-axis. These
coils are used to cancel the x and y-components of the magnetic field around the center of
the cage, where the vapor cell is located. An additional pair of Helmholtz coils, aligned with
the z-axis, is placed outside the cage to generate a uniform magnetic field along the z-axis at
the cage’s center. The latter establishes the quantization axis and tunes the excited states
splitting.

The coils along the z-axis were custom-designed to be placed outside the cage. A square
shape was chosen for its superior field homogeneity compared to circular coils, despite
offering a lower maximum field intensity [94, 95]. The design and implementation follow the
methodology outlined in [95], starting with calculations based on the Biot-Savart law, where
the conductor is approximated as an infinitesimally small element to derive the magnetic
field components B = B,x + Byy + B.z. Due to the necessity of achieving a higher field
magnitude than what a single turn can provide, multiple turns are used, resulting in a coil
with a cross-section that is thick relative to the diameter of the conductor, as illustrated
in figure 3.8. Therefore, it is not possible to consider the conductor as infinitesimal; the

dimensions of the cross-section must be taken into account to accurately model the magnetic

Figure 3.7: Coils cage with the vapor cell at its center. The cage consists of two pairs of coils
aligned along the x and y-axis, while an additional pair of square-shaped coils is
positioned outside the cage along the z-axis.
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Figure 3.8: Left: A filamentary square Helmholtz coil pair. Right: Cross-section of a thick
Helmholtz coil pair, composed of M layers and N turns for odd layers, N — 1 turns
for even layers (figure reproduced from [95], without any modification).

field.

Considering the cross-section of the thick Helmholtz coils as the ones shown in figure
3.8, where each coil consists of M layers of round conductors, with a diameter d. The odd
layers contain N turns, while the even layers have N — 1 turns. This coil configuration can
be modeled as an assembly of individual pairs of single-turn square loops positioned at turn
n and layer m. The origin of the reference system is placed at the center between the two
coils and the axial magnetic field generated by each pair of single-turn square loops can be

computed using the following formula:

2 2 2
B. (1.y.z) =" 1)) T —x;
) 2;( ) ; Vi —2)?+ (y—y)?+ (2 — 2 + (y — )
1
QY T e T R Fa
_Wii(_l)(imi: Y=y
(L j=1 k=1 \/(33 —zi)? 4+ (y — yj)2 +(z—2k)% + (x — ;)
X - (3.50)

Ve =22+ (y—y;)?+ (2 — z)?

Here, the coordinates of the single-turn square loop are defined as: z; = y1 = am, x2 =
Yo = —Qm, 21 = Cn, 22 = —Cp. The parameters a,, and ¢, are determined by the following

expressions from [95]:

H d V3
W 1

Cn=C= o +d <n - 2> formodd values (3.52)
w

Cn == + dn formeven values (3.53)

where, H, W are the width and height of the thick cross-section, and a and ¢ are the
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Figure 3.9: Left: 2D magnetic field streamlines on the y-z plane generated by the designed pair of
thick coils. The cross-sectional values W, H and the average distances a, ¢ are shown
in the figure and listed in table 3.2. Right: Coils holder with dimensions detailed in
3.2.

average coil width and coil space respectively, as depicted in figure 3.8. The relationship
¢ = 0.544506a ensures a uniform magnetic field at the center (0,0,0) according to the
Helmholtz condition [94, 95].

The coils and their holders are designed to produce a uniform magnetic field up to 50
G. To achieve this, the coils are constructed with N = 6 turns in M = 6 layers resulting in
a total of M N — M /2 = 33 turns. The copper conductor chosen has a diameter of d = 1.5
mm, which supports a high current flux of up to 10 A. Based on these parameters, the
holders were designed as depicted in figure 3.9, and both the holder and coil dimensions are
listed in table 3.2.

By applying a current of I = 6 A, the generated magnetic field along the z-axis varies
with the y and z positions around the center as shown in figure 3.10. Due to the symmetry
of the square Helmholtz coil configuration, the variation with the x position is identical to

the variation along the y position. The magnetic field remains uniform within the range

Quantity Magnitude
Side of the coil support, a [mm|] 54.5
Width of the coil support, s [mm|] 10
Conductor diameter, d [mm)| 1.5
Number of layers, M |[-] 6
Number of turns, N |- 6
Total number of turns MN — M/2 || 33
Coils cross-section width W [mm)| 9
Coils cross-section height W [mm)| 8

Table 3.2: Designed values for the z-axis coils holder and coils pair.
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Figure 3.10: Magnetic field B, generated by the designed square Helmbholtz coils. The figure
illustrates the field’s variation with respect to the y and z positions around the
central point. The variation respect to the x direction equals the variation along
v. The field is uniform to within 0.01% over the range © = y € [—22,22] mm and
z € [-20,20] mm. A current of I =6 A is considered.

xr =1y € [-22,22] mm and z € [—20,20] mm. Given that the vapor cell has a cylindrical
shape with a diameter of 19 mm, the uniform field radially covers the entire space around
the cell. Along its length, equal to 75 mm, only the portion of the cell within the range
z € [—20, 20] mm experiences a uniform magnetic field.

To ensure precise monitoring and control of the magnetic field within the cage, a three-
axis magnetometer (Adafruit Magnetometer MMC5603) is placed inside the cage under the
vapor cell. The magnetometer provides real-time measurements of the magnetic field along
the z, y, and z directions. The smallest change in the magnetic field that the sensor can
detect is 0.0625 mG and the total RMS noise is 2 mG. The data from the magnetometer is
acquired using an Arduino Nano 33 [oT, enabling accurate current adjustments to maintain
the desired magnetic field conditions.

The magnetic field along the z-axis is modulated by adjusting the current through the
coils using a function generator. The current is varied sinusoidally with a frequency of
less than 10 Hz. The low frequency ensures that the magnetic field can be considered
approximately constant on the time scale of the system, and accounts for the inertia of the
coils. When B, ~ 50 G the corresponding splitting A is A ~ 23 MHz, as given by equation
(3.24). If the laser’s bandwidth is less than this value, modulations in the fluorescence signal
should be detectable.

3.2.2 Detection scheme

To detect Fano coherence, the angle-resolved fluorescence scheme, outlined in Subsection
3.1.3, is employed. As previously described, two photodetectors are arranged along the x

and y-axes in a differential configuration.
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To enhance the detection of fluorescence, a lens system is placed in front of each pho-
todetector. This optical setup focuses the fluorescence emitted from the sample onto the
photodiodes, thereby increasing both the intensity and sensitivity of the measurements,
which is essential for accurately detecting weak fluorescence signals. The first lens has a
short focal length of fiens, = 25.4 mm, and a diameter of Diens = 25.4 mm, providing an
angular aperture of w/2. The short focal length allows to capture a large amount of light
emitted from the atom and the diameter is appropriately sized to cover the portion of the
vapor cell along the z-axis where the magnetic field is uniform, specifically within the range
z € [—20,20] mm.

The two photodetectors utilized are silicon PIN photodiodes (HAMAMATSU S6967)
featuring a large photosensitive area of Ay, = 5.5 x 4.8 mm?. The large area enhances the
signal detection capability by capturing more light. The lens system and the photodiode
define the fluorescence-emitting volume of interest within the vapor cell. The transverse
photodiode dimension that is imaged into the vapor cell can be calculated as follows: Lgyer =
Lph fiens, / fiens,-  To determine the volume, the cross-section area of the beam and the
dimension Lauo are used, yielding a fluorescence volume of Viyor = Lﬂuorﬂ'd%eam /4.

Photodiodes with such a large photosensitive area generally exhibit higher capacitance,
which can degrade their electronic performance. To address this, a transimpedance am-
plifier, which includes an inverting operational amplifier paired with a feedback resistor,
is typically employed to convert the photodiode current into a voltage signal, as the one
realized for my setup, whose electrical circuit is shown in figure 3.11. In the design of
low-noise amplifiers, particular care is needed to minimize the input voltage noise of the op-
erational amplifier to ensure optimal signal-to-noise ratio with large-area photodiodes [96].
In my case, the junction capacitance Cpy, of the photodiode is Cpj, = 50 pF. Its high value
significantly affects the noise performance of the circuit, especially the input voltage noise
of the operational amplifier. To address this, a bootstrapping technique, described in [96],
is employed. Using a low-noise depletion-mode N-channel Junction Field-Effect Transistor
(JFET) (NXP Semiconductors BF862) effectively reduces the photodiode’s capacitance and
the associated noise. Indeed, this configuration substitutes the operational amplifier noise

with the JFET’s lower noise. Additionally, this approach can enhance the circuit’s band-
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Figure 3.11: Electronic circuit of the two transimpedence amplifiers photodiodes in the bootstrap
configuration.
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width by minimizing the compensating feedback capacitance. This substantial improvement
in both noise performance and bandwidth is achieved by making the feedback resistor Rp
interact with the much lower capacitance of the JFET gate rather than the large capacitance
of the photodiode.

To enhance the transimpedance gain, a feedback resistor of Rp = 1 G2 is used. This
high resistance value, however, reduces the -3dB bandwidth of the transimpedance amplifier,
which results in v_34p ~ 9 kHz for the photodiodes used in this setup. The bandwidth of
the photodiode defines the time over which the electrical signal is integrated. Consequently,
in this configuration, dynamic events occurring within time scales shorter than 110 us are
effectively integrated and averaged. A second operational amplifier stage with unity gain
is incorporated into the transimpedance photodiode circuit, as shown in figure 3.11. This
stage is used to add an offset to the photodiode signal, enabling the balance between the
two photodiodes under dark conditions.

Finally, the two photodiodes are arranged in a differential configuration using a differ-
ential amplifier circuit. The latter not only measures the difference signal resulting from
the anisotropy of fluorescence but also helps reducing low-frequency noise. Figure 3.12 il-
lustrates the Power Spectral Density (PSD) of the electronic signal difference between the
two photodiodes: the first oriented along the x-axis (PDy) and the other along the y-axis
(PDy). The PSD of each individual photodiode is also shown in the figure. The differen-
tial configuration effectively cancels out low-frequency common noise. This is particularly
advantageous when the magnetic field is modulated at frequencies below 10 Hz, as the flu-
orescence modulation is expected at this frequency and its harmonics. The peak at 10 Hz,
that can be seen in the figure, corresponds to the frequency of a modulation applied to the

laser beam to balance the signals from the two photodiodes, before the measurement.

107° -
— P D,
PD,
PD, — PD, ||
Sy
=
af qgtol \.w..-,-...,.l . i
a)
wn
[a W)
|
10-15 R HE HEEH| iiiil HE H ]
10° 10" 102 108 10% 10°
f [Hz]

Figure 3.12: Power spectral density (PSD) of the electronic signal from the photodiodes placed
transverse to the x-axis (PDy) and y-axis (PDy). The PSD of the signal difference
(PDy - PDy ), obtained using a differential amplifier circuit, is also shown.
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3.2.3 Laser system and control

The incoherent source is realized with a Distributed-Feedback (DFB) diode laser at A = 795
nm (TOPTICA Eagleyard EYP-DFB-0795-00080-1500-BFW01-0005) with a specified max-
imum linewidth of 1 MHz. To broaden this source and make it approximately incoherent,
the driving current is modulated with Gaussian noise, generated by a function generator,
and defined by amplitude and offset. The effect of the noise on the linewidth is estimated
by observing the beat note with a locked reference Distributed Bragg Reflector (DBR) laser
(Thorlabs DBR795PN), which has a linewidth of 1 MHz. The linewidth of the beat note
is the square root of the sum of the squares of the individual linewidths of the two lasers.
When one laser has a linewidth significantly greater than the other, the beat note linewidth
is primarily influenced by the broader laser. Hence, the DFB linewidth can be approximated
with the beat note linewidth.

To evaluate the Full Width at Half Maximum (FWHM) of the beat note I employ the
Line-Profile Analysis Software (LIPRAS) |97|. The fitting process utilizes the pseudo-Voigt
profile, which is a linear combination of Gaussian and Lorentzian distributions. The pseudo-

Voigt profile is commonly used for fitting diffraction data. It is defined as:

Vola, f) =n-L(xz, f) + (1 =n) - G(z, f). (3.54)

Here n represents a weighting factor that depends on the FWHM, f, while L(z, f) and
G(z, f) denote the Lorentzian and Gaussian profiles, respectively. To achieve an accurate fit
between the model and the experimental data, LIPRAS employs a least squares optimization
routine, which is a component of the Curve Fitting Toolbox™ from MathWorks®. To
assess the goodness-of-fit, LIPRAS employs several statistical metrics, including the root

mean squared error, and the following measures [97]:

R, = 2= lYobs —eatel 1 (3.55)
Z Yobs
. 271/2
pr _ Zw(yobs ycalc) % 100 (356)
Z w(yobs)2
o 2
GOF = Z w(yobs ycalc) ’ (357)

v

where yobs are the experimental data, ycac are the fit data, w denotes the fit weights and
v = n. of data points — n. of variables.

Figure 3.13 displays the experimental data of the beat note between the broadband
DFB laser and the locked reference DBR laser, acquired with a spectrum analyzer. The
pseudo-Voigt profile calculated using LIPRAS, along with the background fit, is also shown.
The noise amplitude applied to the laser driving current was 250 mV,, with an offset of
—75mVpc. The fitted FWHM is 7.5 MHz, with the peak located at 114.5 MHz. The error
metrics are: R, = —0.2853%, Ry, = —0.3606% and GOF = —0.0009, indicating a good fit
to the data. The beat note without Gaussian noise applied to the laser driving current is
also shown in the inset of the figure.

Since the DBR laser is expected to have a linewidth 1 MHz, the assumption that the
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Figure 3.13: Experimental data (blue line with markers) of the beat note between the broadband
DFB laser and the locked reference DBR laser, acquired with a spectrum analyzer.
The pseudo-Voigt profile is shown (solid red line) as well as the background fit (yellow
dashed line). The amplitude of the gaussian noise signal is 250 mV,,, and the offset
is =75 mVpc. Inset: beat note without Gaussian noise applied to the DFB laser
current.

bandwidth of the DFB lager Avy,ger is equal to the FWHM of the beat note is justified. This
equivalence allows for a fast estimation of the DFB laser’s bandwidth in the experimental
setup. The DBR laser is also used to calibrate the frequency of the DFB laser to match the
hyperfine transition ' =1 — F’ = 1. However, due to the noise introduced into the driving
current, the DFB laser is not locked, as the noise complicates locking it with a standard
PID feedback loop.

To periodically reset the dynamics of the three-level system, as discussed in Subsection
3.1.2, the broadband laser is switched on and off. This rapid switching is achieved using
a 80 MHz Acousto-Optic Modulator (AOM). The 80 MHz radiofrequency, required for the
acousto-optic effect, is combined with a pulse train in a frequency mixer. The pulse train
comprises an active duration of 22 us and an inactive duration of 3 us. These time intervals
are chosen to ensure that Fano coherence reaches and maintains its stationary value for a
duration considerably longer than the 3 us off period, which is designed to allow complete
relaxation of the excitation. The pulse train is detected in the transmission signal after the

vapor cell, measured by a fast photodiode and shown in figure 3.14.

3.2.4 Optical setup

The integration of the various components described above results in the experimental
setup illustrated in figure 3.15. The setup was designed to perform measurements of Fano
coherence through fluorescence signals. Included in the setup is a repumper laser, which
is phase-locked to a reference laser using a Phase Lock Loop (PLL) through a beat note.

The repumper laser is designed to excite atoms that have decayed to the F' = 2 ground
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Figure 3.14: Transmission signal of the modulated light with on and off activation of the AOM.
The pulse train consists of 22 us pulses with a 3 us off interval. The intensity of the
incoherent source is set to n = 30.

state, making them unavailable for excitation by the broadband laser. Recall that the
ground state manifolds F' = 1 and F' = 2 are separated by approximately 6.8 GHz and
are not coupled by the broadband radiation source. The repumper laser addresses this
by exciting atoms in the F' = 2 ground state to the F/ = 1 excited state manifold of
the D2 line at a wavelength of 780 nm. This process allows the atoms to decay back
to the FF = 1 ground state, effectively enabling repumping and maintaining a continuous
cycle of excitation. Initial fluorescence measurements unexpectedly showed only a slight
increase in the amplitude of the fluorescence signal when the repumper was active. Instead,
the repumper introduced a significant offset in the fluorescence measurements, despite the
presence of a 10-nm narrowband filter centered at 795 nm in front of the two photodiodes.
This suggests that the repumper was ineffective in enhancing signal clarity. Consequently,
the decision was made to remove the repumper and focus on significantly enhancing the
signal through precise temperature control.

Figure 3.16 illustrates the experimental setup implemented in the laboratory. On the
right is the beatnote detection setup for the master laser. The central part of the setup
features the coils cage, which houses the vapor cell and is flanked by two photodiodes
positioned to collect fluorescence signals along the vertical (y-axis) and horizontal (x-axis)
directions. Initially, only one photodiode was used along with two beams with orthogonal
polarizations, where the change in polarization simulated the change in the photodiode’s
position. However, due to the high noise levels associated with a single photodetector setup,
the design was modified to incorporate a differential configuration using two photodiodes.
This adjustment significantly improved the signal-to-noise ratio by mitigating low-frequency
noise.

In the next section, I present preliminary experimental measurements. These results hint

at the presence of Fano coherence, however further investigation is needed to determine the
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Figure 3.15: Experimental setup scheme. The repumper and master laser are designed to be locked
in a Phase Lock Loop (PLL) scheme. The master laser beam then passes through
an AOM and impinges on the vapour cell. Two photodiodes, placed orthogonally
around the vapour cell, detect the fluorescence emitted by the atoms. The cell is
surrounded by pairs of magnetic coils. The difference signal spectrum of the two
photodiodes is then analysed.

Figure 3.16: Experimental setup.

direct association of the observed signals to the Fano coherence.

3.3 Experimental results

The experimental setup, thoroughly described in section 3.2, was designed with precise con-

trol of the governing parameters of the dynamics equations relevant to the study. This setup
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is fundamentally structured to measure the fluorescence anisotropy when Fano coherence is
present and compare it to the isotropic fluorescence, observed when such coherence is ab-
sent. The design of the setup has undergone numerous iterations, each addressing specific
challenges inherent to the detection of weak fluorescence signals.

Initially, a single photodiode was employed with orthogonally polarized beams to sim-
ulate changes in photodiode positions. However, this configuration resulted in excessive
noise levels, necessitating the adoption of a differential configuration with two photodiodes.
The evolution of the setup also included efforts to implement a PLL for the master broad-
band laser, although the complexity introduced by noisy current driving led to maintaining
the laser in a free-running state. Furthermore, early fluorescence measurements indicated
minimal signal amplification from the repumper, accompanied by an undesirable offset in
measurements. Consequently, the repumper was excluded, and signal improvement was
pursued achieved through stringent temperature control.

In the finalized version, the coils cage is centrally positioned, with two photodiodes
aligned along the vertical (y-axis) and horizontal (x-axis) directions to capture the emitted
fluorescence, as shown in figure 3.15 and 3.16. The magnetic field is modulated at low
frequency in such a way to drive the V-type three-level system in and out the anisotropic
fluorescence scenario and capturing the same modulation in the difference signal from photo-
diodes. The measurements obtained thus far are preliminary but indicate potential success
in detecting the weak fluorescence signals associated with Fano coherence. However, further

studies are needed to validate these results.

3.3.1 Towards Fano coherence detection: preliminary measurements

The weak electronic signal coming from the two photodiodes is measured and analyzed
using a Dynamic Signal Analyzer (Keysight 35670A) and the signal spectrum is obtained
through a Fast Fourier Transform-based measurement, whose frequency range can span
from 122 uHz to 102.4kHz. In particular, the Power Spectral Density (PSD) of the signal
is calculated to understand its frequency components.

The measurement begins by setting the temperature of the vapor cell to T' = 40, °C and
introducing noise into the driving current of the DFB master laser. It is verified that the
frequency beat note aligns with the atomic transition F =1 — F’ = 1. The noise applied
has an amplitude of 250 mV,, and an offset of —75mVpc, resulting in a laser’s bandwidth
of Avjaser = 7.5, MHz, as determined from the fitting shown in figure 3.13. To modulate the
magnetic field, a sinusoidal signal at f = 5Hz is sent to the power supply controlling the
~1Gand B
an excited states splitting of A/4 = 0.1 and A/ = 4, respectively. The x and y-axis coils

z-axis coils. B, varies between B ~ 50 G. These values correspond to

Zmin Zmax

are adjusted to cancel out the magnetic field along their respective axes, ensuring that only
the z-axis component remains.

In figure 3.17, the average PSD signals over 20 traces are depicted within the range of
[0,40] Hz. When the laser is active, peaks at 5 Hz and its higher harmonics are observed.
The 5 Hz peak is also present when the laser is inactive, indicating that the magnetic

field modulation impacts the electronic circuit of the photodiodes, generating electrical
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Figure 3.17: Left: PSD of the difference signal between the two photodiodes, with the master laser
on and off. Right: PSD of the difference between these two traces. The laser power
is set to Plaser = 2 uW, corresponding to n = 9. The magnetic field is sinusoidally
modulated at f = 5Hz with B, ,, ~ 1 G and B ~ 50 G. The traces represent
the average of 20 measurements.

Zmax

noise. The difference signal, obtained by subtracting the laser-off scenario from the laser-on
scenario, still exhibits a peak at 5 Hz (picture on the right in figure 3.17), demonstrating
that the magnetic field modulation is also reflected in the fluorescence signal. I want to
remark that the signal labeled “laser off” refers to a continuous turn-off of the laser light,
not the intermittent off periods within the pulse train. The pulse train, characterized by
pulses lasting 22 us with 3 us off intervals, is applied only when the laser is on.

I subsequently examined the behavior of the 5 Hz peak value and its higher harmonics
(10, 15, 20 Hz) by varying the laser power within the range Pser € [0.5,30] uW, which
corresponds to n € [2,125]. The result is shown in figure 3.18. For each peak, the associated
signal is expressed relative to the noise floor of the signal, as both the signal and the noise
level increase with laser power. At lower power levels, there is a notable enhancement of
the signal, which begins to saturate as the power increases. This observation aligns with
the theoretical predictions illustrated in figure 3.2, where, for a fixed low A, a significant
increase in signal is seen at low 7, followed by a saturation trend at very high n. The
exception is the peak at 5 Hz, which shows a distinct behavior: at Pager below 5 W, the
signal reaches a maximum, followed by a decrease. However, for Pase, above 10 uW, the
signal starts to increase again, exhibiting a saturation behavior. This suggests that different
mechanisms may dominate the signal generation at low and high power levels, with potential
implications for optimizing the detection of Fano coherence.

Based on the results illustrated in figure 3.18, I chose a laser power below the saturation
point, specifically Paser = 5 uW, corresponding to n = 21. With the amplitude of the
modulated magnetic field set to 20 G, I varied the offset, thus B and B =B, 420
G. The range of B, . is adjusted between 0.5 and 30 G. The frequency peaks measured

Zmin Zmax Zmin

varying the magnetic field offset are presented in figure 3.19. As B,_. increases, a significant

Zmin
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Figure 3.18: PSD of the frequency peaks (5,10, 15,20 Hz) as the laser power is varied. The values
of the peaks are relative to the noise floor of the associated signal. The magnetic
field is sinusoidally modulated at f = bHz with B, , ~1 G and B, ~ 50 G.

reduction is observed across all main harmonics. An increment of B increases the ratio

Zmin

A /7, at which the interference effect should be present. For the values of B selected,

Zmin

the range of A/¥ spans from 0.04 to 2.4. According to figure 3.2, for A/¥ < 1, the steady-
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Figure 3.19: PSD of the frequency peaks (5,10,15,20 Hz) as the offset of the magnetic field is
varied. This variation is reported as a variation of B, _, , since B =B, . +20G.
The amplitude of the modulated field is constant at 20 G. The frequency modulation
is at f = BHz. The values of the peaks are relative to the noise floor of the associated
signal.
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state value of the real part of Fano coherence at n = 21 is higher than for A/4 > 1 at the
same n. Therefore, the behavior observed in Figure 3.19 aligns well with the theoretical
predictions. However, the 5 Hz peak exhibits again anomalous behavior, showing a decrease
at B

be influenced by electrical noise, which could be contributing to these observed anomalies.

= 5 G and an increase at B = 10 G. It is crucial to note that this frequency might

Zmin Zmin

With these data, the preliminary results appear to align well with theoretical predic-
tions. Further measurements are planned to investigate whether the observed behaviors
are independent of the modulation frequency of the magnetic field. Moreover, I planned to
investigate the influence of applying a stronger noise to broaden the laser spectrum further,
and examining the effect of the direction of linear polarization. The current measurements
lack sufficient statistical analysis, as they are intended as preliminary observations. Compre-
hensive statistical evaluation will be conducted in subsequent investigations to strengthen

the conclusions.

3.3.2 Discussion

The experimental results, obtained with the optical setup presented, seem promising to-
wards a validation of Fano coherence presence inside a V-type three-level system driven
by a broadband laser. Here, the angled-resolved fluorescence scheme for Fano coherence
detection is enriched with a slow modulation of the B, magnetic field, between values that
produce a small and large excited state splitting, moving the fluorescence from to be spatially
anisotropic to isotropic. This slow modulation is retrieved effectively in the fluorescence sig-
nal, which present peaks at the frequency of the field modulation and the subsequent three
harmonics.

The behavior of the difference signal between photodiodes is measured evaluating its
spectrum and was analysed changing the power of the laser and the offset of the magnetic
field modulation. The data show a notable enhancement of the signal at low power levels,
which subsequently reaches a saturation point as the laser power increases. This obser-
vation aligns well with theoretical predictions where, for a fixed low A, significant signal
enhancement is expected at low n, followed by a saturation trend at higher 7.

In terms of the magnetic field, the observed reduction in signal strength with increasing
B

modulation becomes less favorable for coherent interactions.

2oy and thus A/¥, suggests that the interference effects diminish as the magnetic field

The behavior of the 5 Hz peak is particularly noteworthy, displaying anomalous behav-
ior. The peak’s deviation from the expected pattern could be indicative of the influence
of electrical noise. This noise might affect the photodiode measurements, particularly at
this specific frequency, which justifies further investigation, as measurements changing the
magnetic field modulation frequency.

The preliminary nature of these experimental results indicates the need for additional
measurements to confirm and expand upon these results. Moreover, a statistical analysis is
also required. As such, a comprehensive statistical evaluation will be carried out in subse-
quent investigations to validate these observations and provide a more robust understanding

of the underlying phenomenon. Overall, the initial results appear consistent with theoretical
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predictions.



Conclusions

In this thesis, 1 investigated the generation of noise-induced Fano coherence within a V-
type three-level system excited by an incoherent radiation source. Despite the inherent
incoherence of the radiation, its broad spectrum interacts with the discrete energy levels
of the system, remarkably leading to significant interference effects in both the excitation
and spontaneous emission processes. This interaction ultimately results in the creation of a
coherent superposition state of the system, specifically in the creation of coherence between
the two excited states, i.e. Fano coherence. To the best of my knowledge, the observation
of Fano coherence in such systems has not yet been reported.

I derived the quantum master equation for the system dynamics under two distinct con-
ditions: one involving an isotropic unpolarized source and the other involving an anisotropic
polarized source. The polarized source allows for the recovery of interference effects in the
excitation process, especially in systems where the electric dipole moments are orthogonal.
The orthogonality of the transition dipole moments makes them distinguishable, thereby
eliminating the associated interference. By employing an appropriately polarized source
capable of exciting both dipole moments, the interference is restored. However, the spon-
taneous emission process remains isotropic by nature, as it arises from interactions with
vacuum modes, thus no interference between the decay paths can emerge if the transition
dipole moments are orthogonal.

For both scenarios, the solutions were analyzed by identifying two regimes: the over-
damped regime and the underdamped regime in the weak and strong pumping conditions.
Adequate Fano coherence values, characterized by quasi-stationary and stationary behav-
iors over time, were only achievable within the overdamped regime. The key parameters
governing these equations—namely, the splitting between the excited levels A, the radi-
ation intensity 7, and the alignment factor between the electric dipole moments p—were
investigated to ensure that the solutions fall within the overdamped regime. Stationarity
or quasi-stationarity of coherence facilitates its detection in practical experimental setups.

From a thermodynamic perspective, generating Fano coherences in a V-type system
implies an excess of energy relative to the system’s initial state before the process. Given
their origin, I investigated whether noise-induced Fano coherences exhibit distinctive non-
classical properties. For this purpose, I employed the Kirkwood-Dirac Quasiprobability
distribution to analyze stochastic energy fluctuations within the system. The presence of
negative real parts in the KDQ distribution indicates genuine quantum features for the
generation of noise-induced Fano coherences.

I calculated the Kirkwood-Dirac quasiprobability distribution to study time-dependent
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energy variations in the system under incoherent radiation. My analysis revealed that
initializing the three-level system in a superposition of the Hamiltonian eigenstates results in
negative real parts of the quasiprobability associated to the coherence between the excited
states. Furthermore, the observed energy changes arise exclusively from the off-diagonal
elements of the system’s density matrix and exhibit negative values. This suggests that the
excess energy could be interpreted as extractable work, potentially harnessed by an external
load. Notably, despite the incoherent nature of the input light source, the thermodynamic
process achieved a thermodynamic efficiency of up to 6%.

Finally, the V-type three-level system was designed to be implemented on an atomic plat-
form for a proof-of-principle experiment aimed at detecting noise-induced Fano coherence.
The atomic platform is particularly advantageous due to its ability to precisely control the
key parameters, namely A and . The system was identified in the D1 line F =1 — F' =1
hyperfine atomic transition of 8’Rb atoms, involving the magnetic sublevels Amp = +1.
By exciting the system with a broadband polarized laser, Fano coherence can be detected
through the angle-resolved fluorescence technique. This method isolates the contribution
of the coherence between the excited states to the emitted radiation, revealing a spatial
anisotropy around the atomic vapor cell.

I designed and realized an optical setup for the detection, which includes a controllable
uniform magnetic field to precisely adjust the splitting A, and a laser whose spectrum can
be broadened by introducing Gaussian noise into its driving current. The fluorescence sig-
nal is detected using two photodiodes aligned orthogonally around the cell in a differential
configuration. By modulating the magnetic field between small and large splitting config-
urations, the fluorescence transitions from anisotropic to isotropic conditions. Preliminary
measurements indicated that the modulation of the magnetic field is reflected in the photo-
diode signals’ spectrum, indicating a promising presence of coherence. By conducting the
same measurement with different laser intensities (1) and magnetic field modulation offsets
(A) T observed a consistent behavior with theoretical predictions. Further measurements

are planned to comprehensively validate the presence of Fano coherence.

Future developments

Building on the insights gained from this study, several possibilities for future research and
development present themselves. The following areas are identified as promising for further

investigation and refinement:

e Cold atoms experiment: the transition to experiments with cold atoms can offer
significant improvements in signal-to-noise ratios and sensitivity, particularly for de-
tecting subtle phenomena as Fano coherence. By mitigating the influence of thermal
noise and Doppler broadening, cold atom systems enhance the precision of measure-
ments. Additionally, the lower temperatures of cold atom ensembles allow for more
precise control over atomic energy levels and enable the exploration of various initial
atomic states through advanced state preparation techniques. However, the imple-

mentation of cold atom experiments involves increased complexity in the experimental
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setup.

e Validation on different platforms: the V-type three-level system can also be im-
plemented on alternative platforms, such as solid-state platforms. In these systems,
incoherence may arise not only from the radiation but also from lattice vibrations,
which can be modeled as interactions with a thermal phonon reservoir. As discussed
in [34], the incoherent phonon interaction can couple the three level system with a
two-level system, representing the lower and upper states in the conduction and va-
lence bands, respectively, at which an external load can be connected. By interpreting
this system as a photoconversion device, the current, and thus electrical power, can be
in principle enhanced by Fano interference. On this regard, two-dimensional materials
like semiconducting Transition Metal Dichalcogenides (TMDs) offer a promising av-
enue for exploration. As two-dimensional materials, TMDs offer unique opto-electronic
properties and the low-dimensional nature enables better control and facilitates the
integration into nanoscale devices. A first approach to this material occurred dur-
ing my collaboration with Prof. Niek van Hults’ group at ICFO. During this period,
I conducted an analysis of tungsten diselenide (WSey) at room temperature. This
analysis employed microscopic photo-current and luminescence detection techniques
within a Fourier-transform excitation spectroscopy framework. The objective was to
investigate the role of excitons in the material’s photoresponse. To achieve this, we
spatially resolved the excitation spectrum of WSes, by examining both its current
and luminescence responses. This experience proved invaluable for understanding the
optical behavior of two-dimensional materials under broad excitation as well as how to
perform current measurements on these materials. However, further in-depth studies
are required to explore how to implement multi-level systems on solid-state platforms
and to precisely control the key parameters. Testing these systems could advance the

research on the topic towards practical technological applications.
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