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Introduction

What allowed quantum physics to quit the small world of pure research and
to penetrate deeply the daily life of billion of people across the world is its
effectiveness at explaining the observed natural phenomena and at guiding
the development of new devices based on the results of these explanations.

Among the most peculiar phenomena are without doubt superfluidity
and superconductivity. These two phenomena brought the quantum world
to a mesoscopic scale and promise to enter our daily life in a future which
looks not too far. Bose-Einstein condensation in diluite atomic gases is an-
other example of system for which quantum phenomena are observable at
mesoscopic scale [1]. Not surprisingly, this perspective drew the attention
of a larger community than that of atomic physics and now many people
started experiments aimed at the realization of a “universal” quantum sim-
ulator in which models once peculiar of solid state physics are realized with
atomic Bose-Einstein condensates [2, 3, 4].

One of the key ingredient of this simulators are optical lattices: periodic
potentials generated by a laser standing wave in which atoms can be trap-
ped and their properties changed with unprecedented accuracy including
the ability to prepare systems of reduced dimensionality [5]. Among the
many important results one needs to cite at least the observation of the su-
perfluid to Mott insulator transition in 3D [6] and in reduced dimensions
[7], the observation of a Tonks-Girardeau gas [8] and of the Berezinskii-
Kosterlitz-Thouless transition to quasi-long range order in two dimensions
[9].

This scenario is even richer if two distinguishable condensates are pres-
ent in the system: this was recognized as early as ten years ago when the
first mixture of condensates was produced [10]. In this work for the first
time two different hyperfine states of 87Rb were brought to Bose-Einstein
condensation by directly cooling one of the two and letting the tempera-
ture of the two gases equilibrate. This technique of sympathetic cooling, as
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8 Introduction

predicted by the authors of [10], became the workhorse for the cooling of
fermionic species1: 6Li with 7Li [12], 23Na [13] and 87Rb [14] and 40K with
87Rb [15]. Furthermore the same technique allowed to reach the degenerate
regime for 41K whose direct cooling was problematic [16].

An extensive literature exists for Fermi-Bose mixture for which –among
others– interspecies Feshbach resonances [17, 18, 19] and boson-induced
collapse of the Fermi gas [20, 21] have already been observed. On the
other hand, concerning Bose-Bose mixtures, soon after the realization of
a condensate of 41K by sympathetic cooling with 87Rb the first mixture of
two different superfluid was realized at LENS [22], but no experimental
efforts followed this seminal work. This fact, together with the intriguing
possibility of exploiting Feshbach resonances to control the interspecies in-
teractions, motivated us in starting a new experiment devoted to the study
of a mixture of two degenerate bosonic species in an optical lattice.

Feshbach resonances can be used to convert pairs of atoms into mole-
cules as it was demonstrated starting both from a Fermi gas [23, 24] and
from a Bose-Einstein condensate [25, 26, 27]. While in the fermionic case
the molecules are relatively stable and a Bose-Einstein condensate of these
molecules could be observed [28, 29], in the Bose-Bose case Feshbach mol-
ecules are highly unstable under molecule-molecule and atom-molecule
collisions due to their high vibrational energy. The observation of a long
living sample of such molecules has been possible only in an optical lattice
with a occupation of one molecule per site [30]. In view of the creation
of heteronuclear bosonic molecules, Bose-Bose mixtures of two different
species in a 3D optical lattice are therefore the most promising candidates,
given the complexity of experiments with two different fermionic species
[31, 32, 33]. Once molecules are produced they can in principle be stabi-
lized by transferring them to their vibrational ground state: at this stage
the lattice is no longer necessary and a totally unexplored quantum phase
of dipolar molecules can be created [34].

Several open questions lie between us and this fascinating perspective:
an answer to the first, most basic, but by no means trivial of these is of-
fered by this thesis. The thesis is divided in three parts which reflect the
chronological developement of my work. The first part, after a short the-
oretical introduction to the topics underlying the physics that we want to
explore (chapter 1), presents a description of the experimental apparatus

1The first degenerate Fermi gas was however produced with a different technique [11].
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for cooling 87Rb and 39K or 41K (chapter 2). This apparatus has been build
almost entirely during my PhD and features several novel improvements
including a new kind of magnetic trap. In the second part, after introduc-
ing the physics of cold atomic collisions in chapter 3, I will present the
results on a collisional measurement on 39K which explored the possibil-
ity of using this isotope as the second condensate of our mixture (chapter
4): considering the outcome of these measurements we decided to shift to
41K. We indeed were able to repeat the simultaneous condensation of 87Rb
and 41K and to load for the first time a mixture of two condensates in an
optical lattice. These results are described in the third and last part. After
presenting a short theoretical introduction to quantum phases of atoms in
optical lattices (chapter 5), I will detail the most important result of this
first study of two condensates in a 3D optical lattice: the effect of the pres-
ence of a condensate of 41K on the superfluid to Mott insulator transition in
87Rb. These results are presented in chapter 6. Finally preliminar reasults
concerning heteronuclear Feshbach resonances on the 87Rb-41K mixtures
are presented in chapter 7.



10 Introduction



Part I

A way to a Bose-Bose mixture
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Chapter 1

Theoretical framework

Never underestimate the joy people derive from hearing something they

already know.

(Enrico Fermi)

In this chapter I will very quickly review on the theoretical side con-
cepts that are at the foundation of the experimental work presented in this
thesis. The material is presented mainly with the purpose of establishing
a notation that can be consistently used in the following: more advanced
and specific topics are presented closed to the place where the experiment
is described. As a consequence a reader already familiar with laser cool-
ing and trapping and Bose-Einstein condensation in harmonic potentials
might probably entirely skip the chapter. An exception is probably given by
§ 1.3 where the theory of two interacting condensates in a harmonic trap is
presented. On the other hand a reader that is completely unfamiliar with
these topics will hopefully find a good introduction of the physics issue and
certainly good references to improve his knowledge.

1.1 How lasers can cool (and trap) atoms

1.1.1 Laser cooling

Consider an atom at rest with an isolated level with energy hν0 and lifetime
Γ−1. The mechanical action of a laser light of frequency ν on this atom can

13



14 Theoretical framework

be expressed as a force given by 1 [35]:

F(r) = −h̄
(

α(r) ∆ + β(r)
Γ
2

)
S(r)

1 + S(r)
, (1.1)

where ∆ = 2π(ν − ν0) is the detuning, S is the saturation parameter which
depends on the Rabi frequency Ω as

S(r) =
Ω2(r)/2

∆2 + Γ2/4
(1.2)

and the two vectors α and β are given by:

α = ∇Ω(r)/Ω
β = ∇φ(r)

(1.3)

where φ(r) is here the phase profile of the laser electric field. The force
originated by α is the so called dipole force which is conservative, while the
other contribution is the radiation pressure which is given by the interplay
between the absorption and the spontaneous emission. If the atom is in
motion with velocity v � c the above formulas remain valid with the change
δ → δ − k · v which takes into account the Doppler shift.

If the atom interacts with two counterpropagating red-detuned laser
beams, in the limit of weak saturation, the force acting on the atom has
a linear dependence from the velocity along the direction of the beams
and acts as a viscous force. This scheme, repeated with six laser beams
along three orthogonal directions, can be used to cool the atom and it is
called optical molasses. The viscous force arises because absorption is
more probable from the beam which the atom is moving against because
in this case Doppler shift compensates the detuning. The effect of absorp-
tion, which removes a momentum h̄k from the atoms is counter-balanced
by the spontaneous emission which reintroduces this momentum in a ran-
dom direction at a rate Γ. The minimum temperature corresponding to the
equilibrium between the two processes is given by

kBTD =
h̄Γ
2

(1.4)

and it is called Doppler temperature.
For a two level atom the Doppler temperature is the lower limit of laser

cooling techniques. A more efficient cooling mechanism arises if the two
levels are manifold corresponding to non-zero total angular momentum F

and F + 1 2. In this case in fact the degeneracy of the magnetic sublevels is
1The atomic transition is assumed to satisfy the following condition: mΓ � h̄k2

0, where
k0 = 2πν0/c.

2Could be also F − 1 but it is much less common [36].



How lasers can cool (and trap) atoms 15

lifted by the interaction with the polarization of the laser. If this polariza-
tion is constant and σ±, the resulting effect will be the well known Zeeman
optical pumping toward the |F,±F 〉 ground state. If the polarization is not
constant as it is the case if the two counterpropagating beams have or-
thogonal linear polarization or opposite circular polarization, the different
magnetic components of the ground state manifold couple differently with
the laser light. This coupling can be represented as a spatially dependent
effective potential. Under certain condition, the dynamics of the atom is
such that it displaces climbing up the potential hill until a cycle of absorp-
tion and spontaneous emission occurs which transfers the atom to a state
with lower potential energy. During this process the atom loses kinetic
energy and it is therefore cooled: since the cooling process occurs as the
atom always climbs up a potential hill before being re-transferred at the
bottom of the hill this process is named Sisyphus cooling. The lowest tem-
perature that can be achieved with this technique depends on the angular
momentum of the level involved but it is on the order of

kBTS '
h̄Ω2

∆
. (1.5)

The above formula is valid if the resulting temperature is still well above
the recoil temperature Trec defined as the temperature corresponding to the
kinetic energy gained by the atom after a recoil with momentum h̄k:

Erec = kBTrec =
h̄2k2

2m
=

h2

2mλ2
. (1.6)

This temperature is therefore the ultimate limit which cannot be overcome
using laser light. A further cooling mechanism, decisive for the reach
Bose-Einstein condensation is presented in § 2.4 and make use of radio-
frequency photons whose recoil energy is negligible.

1.1.2 87Rb and K: level scheme

The results presented in § 1.1.1 are derived for a two level atom. The
hyperfine structure of the levels involved in the D2 line of 87Rb is shown in
figure 1.1. The | 2S1/2, F = 2〉 → | 2P3/2, F = 3〉 transition is closed and well
isolated from any other transition. The theoretical results of § 1.1.1 can
be reproduced quantitatively in the experiment and this is the transition of
choice for laser cooling. However, a laser red detuned from this transition
is brought closer to the resonance with the | 2S1/2, F = 2〉 → | 2P3/2, F =
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Figure 1.1. Scheme of the hyperfine structure of the D2 line of 87Rb.

2〉 and some optical pumping toward the | 2S1/2, F = 1〉 state cannot be
avoided. To counter this effect a second laser, called repumper is tuned
close to the | 2S1/2, F = 1〉 → | 2P3/2, F = 2〉 transition: this effectively closes
the transition and laser cooling can occur without losses. Furthermore
Sisyphus cooling can be realized and temperature lower than TD ' 140µK
can be obtained.

The situation is completely different for the two bosonic isotopes of
potassium, 39K and 41K, whose D2 lines level scheme is shown in figure
1.2. In these two species in fact the hyperfine structure of the excited level
is so small compared to the natural linewidth, that it is not possible to
simply think in terms of two isolated levels even in presence of an auxil-
iary repumping beam. Opposite, the dynamics of the internal degrees of
freedom of the atoms involves all the hyperfine components of the P state
and therefore the force is due to both the lasers from the |S, F = 1〉 and
|S, F = 2〉 states.

A careful balance of the two intensities and detuning is required to reach
the Doppler temperature [37] and even sub-Doppler cooling can be realized
although in a regime of intensity and detuning unsuitable for loading a
high number of atoms in a trap. These results agree with a model based
on the integration of the optical Bloch equations for all the levels involved
in the transition [38, 37]. The absence of an easy mechanism for reaching
sub-Doppler is one of the obstacles toward the direct realization of a Bose-
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Figure 1.2. Scheme of the hyperfine structure of the D2 line of 39K 41K. The relative abun-
dances are about 93% and 7% respectively.

Einstein condensate of 39K and 41K: we will come back on this point when
discussing the experimental setup for the laser cooling of K in chapter 2.

1.1.3 Dipole traps and optical lattices

As it was shown in § 1.1.1, beside the “classical” effect of the radiation
pressure, laser light interacts also with the internal degrees of freedom
of the atoms through the so called dipole force. It can be shown that, in
the special case of alkali atoms in their ground state |F,mF 〉 this dipole
potential is related to the laser parameters by [39]:

Udip(r) =
πc2Γ
2ω3

0

(
2 + Pε gFmF

∆2,F
+

1− Pε gFmF

∆1,F

)
I(r) = U0I(r) , (1.7)

where ∆2,F (∆1,F ) is the detuning from the D2 (D1) line, gF is the Landé
g-factor, I is the intensity of the laser and Pε takes into account the po-
larization state of the light as seen by the atom (0 for linear and ±1 for σ±

polarization respectively). This potential can be repulsive or attractive de-
pending on the sign of the expression in parentheses, but the shape of the
potential depends only on the intensity profile of the laser light.

In this work we make extensive use of two particular configurations
known as crossed dipole trap and optical lattice that will be analyzed in
some detail in the following. One should remark however, that these kind
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of potential are by no means the only structure that can be realized to trap
atoms with light (see for instance [39]).

Crossed dipole trap

In this configuration the trapping is provided by two orthogonal beams
that intersect at their beam waist. A single Gaussian beam in the so-called
TEM00 mode generates a potential given by:

U(ρ, z) = U0 I0
exp(−2ρ2/w(z)2)

1 + (z/zR)2
, (1.8)

where z is the direction of propagation of the laser beam, ρ is the radial
distance from the center of the beam, I0 the peak laser intensity, w(z) =
w0 (1 + (z/zR)2)1/2 is the width of the beam and zR = πw2

0/λ is the so called
Rayleigh range.

If λ > λ0 (red detuning) the atoms will be trapped in the maximum of
the intensity, around (ρ = 0, z = 0). Furthermore, if the size of the atomic
cloud is much smaller than w0 in the radial plane and zR along the axial
direction one can expand the potential around the potential minimum:

U(ρ, z) =
1
2
m(ω2

‖z
2 + ω2

⊥ρ
2), (1.9)

where we have neglected a constant term and set:

ω2
‖ =

2|U0| I0λ2

π2w4
0

ω2
⊥ =

4|U0|I0
w2

0

. (1.10)

As one could expect, the confinement is much bigger in the radial plane
where the intensity gradient is substantial. As we shall see in the following,
a very useful parameter characterizing a harmonic trap is the so called
aspect ratio defined as AR = ω⊥/ωz: when it is bigger than 1 the trapped
cloud is cigar shaped3.

It is clear that with a single beam it is very hard to obtain a spherical
trap, a feature which is often desirable in the experiments. This problem

3There is considerably less consensus on how to define the shape corresponding to the
opposite limit AR � 1: the unavoidable American bias of international literature has col-
lected some consensus speaking of pancake shaped condensates. This has the obvious
disadvantage of being totally neutral for those who have never see a pancake. I humbly
propose to adopt the denomination of pizza shaped condensates.
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can be overcome by adding a second laser beam perpendicular to the previ-
ous one. If the frequency or the polarization of the two beams is sufficiently
different to neglect the interference between the two, the resulting poten-
tial is barely the sum of two potentials like that of Eq. (1.9). If for instance
we take the two orthogonal beam along the x and y direction the resulting
potential is still harmonic but the frequencies are given by:

ω2
z = ω2

⊥,x + ω2
⊥,y (1.11)

ω2
y = ω2

⊥,x + ω2
‖,y

ω2
x = ω2

⊥,y + ω2
‖,x

In the following we will almost always neglect ω‖ with respect to ω⊥: the
resulting trapping potential acquires cylindrical symmetry on the plane of
the two beams and the aspect ratio is given by

√
2/2.

Before moving to the optical lattice configuration we will discuss briefly
two important issues of the optical trapping of neutral atoms: the heating
rate and the trap depth.

As it was clearly stated in the previous section the spontaneous emis-
sion can be small but cannot be eliminated. It can be shown (see for exam-
ple [39]) that the heating rate induced by spontaneous emission for a red
detuned trap is:

Ė ' Γ
h̄

U0I

∆2
Erec . (1.12)

By comparing Eq. (1.7) with Eq. (1.12) one can see a peculiar feature of
dipole traps: the potential height depends on the ratio I0/∆, while the
heating rate depends on I0/∆2. Since, neglecting technical noise, the heat-
ing rate is the only factor that limits the lifetime of the atoms, a trap at
both high intensity and large detuning can be considered conservative: in
practice an atom is kicked out of a trap by other mechanisms before any
event of spontaneous emission occurs.

As one can clearly see from Eq. (1.8), the trap depth is simply given by
V0 = U0 I0 but this is strictly true only if the dipole force is the only force
acting on the atoms. In practice the experiments are always performed in
presence of the gravity4 which adds a potential gradient such that the total
potential is given by:

V (x) = V0 exp(−2x2/w2)−mg x, (1.13)
4This statement is not fully correct as there is a growing interest for experiment in mi-

crogravity in which atoms in free fall can be interrogated for long time. See for example
[40].
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Figure 1.3. Total trapping potential in the presence of gravity for different indicated values
of the ratio V0/(mg w). Dotted line is the potential shape for g = 0.

where, for the sake of simplicity, we restricted to 1D. From this expression
we see that the curvature of the potential on the bottom is not changed
while the position of the minimum is shifted; however the strongest effect
is on the trap depth as it is clearly shown in Fig. 1.3. It is easy to derive
from Eq. (1.13) a condition for having a nonzero trap depth:

V0

mgw
>
√
e/2 ∼ 0.82

This effect is even more relevant for the case of a single beam trap because
the dependence of w on z shortens the effective size of the trap along the
axial direction.

Further detail on our implementation of a crossed dipole trap can be
found in chapter 7.

Optical lattices

If the two beams generating the optical trap are allowed to interfere and
form an angle θ with the z direction, it is straightforward to see that the
intensity profile exhibit interference along the z direction. Setting an equal
intensity I0 for each of the two beams one has:

I(r) = 4 I0
exp(−2 ρ2/w(z)2)

1 + (z/zR)2
cos2(πz/d).

As we can clearly see, this intensity profile will give rise to a trapping po-
tential similar to that one of Eq. (1.8) but with the important feature of a
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periodic modulation with a periodicity given by

d = λ/(2 cos θ).

In the experiments reported in this work the geometry of the beams is
always counter-propagating (θ = π) and therefore the period of the lattice
is given by:

d = λ/2 . (1.14)

Expanding this expression around the center of the trap (ρ� w0, z � zR)
we find the sum of a periodic potential and a harmonic confinement:

V (r) =
1
2
mω2

Lρ
2 + VL cos2(πz/d), (1.15)

where

VL = 4|U0|I0 = sErec (1.16)

ω2
L =

8|U0| I0
mw2

0

=
4VL

mw2
0

(1D) (1.17)

where we have defined the parameter s that will be extensively used in the
following to characterize the height of the lattice.

If we now repeat this reasoning along the other spatial directions, it is
easy to see that an arrangement with three pairs of counter-propagating
beams can realize a cubic 3D optical lattice if interference along different
directions is adequately suppressed. The periodic part is given by each
beam separately, while the harmonic confinement is increased with respect
to the 1D case because each direction has a contribution from two beams
(see Eq. (1.11)) and therefore

ω2
L =

8VL

mw2
0

(3D). (1.18)

The residual harmonic confinement introduced by this realization of the
periodic potential increases with increasing lattice height and will play an
important role in the physics of the Mott insulator as we shall see in § 6.4.1.

1.2 Bose-Einstein condensation in harmonically trap-
ped gases

The problem of the equation of state of an ideal and uniform gas of particles
obeying the Bose statistics was solved long time ago by Einstein and owed
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him to add his name to the statistics of particle with integer spin [41]. Here
I shall briefly review some fundamental results about a Bose gases confined
in a harmonic trap which is the case of main interest from the experimental
point of view. The reader interested in this topic will find both a clear
compendium of the subject and a nice starting point for further study in
reference [42].

1.2.1 Ideal gas

A gas of N non interacting particles can be described as a collection of 3N
single-particle, one-dimensional Hamiltonians:

hi,α(r, p) =
p2

i,α

2m
+

1
2
mω2

αr
2
i,α

{
i = 1 . . . N
α = x, y, z.

From this we have immediately the eigenvalues of the system

E{ni,α} =
∑
i,α

h̄ωα(ni,α + 1/2)

and we can already draw an important (although not surprising) conclu-
sion: at T = 0 the ground state of the system is given by the non degenerate
multiset {ni,α} = 0 ∀ i, α. This means that the wavefunction of the total sys-
tem is given by:

ψ(r) =
√
N (π)−3/4 ā−3

ho

∏
α

exp(−r2α/a
(α)
ho ) (1.19)

where we have introduced the geometric average of trap frequencies ω̄ and
the harmonic oscillator length aho given by

ω̄ = (ωxωyωz)1/3 (1.20)

a
(α)
ho = (mωα/h̄)−1/2. (1.21)

At finite temperature one needs to take into account the occupation of
the excited states. If kBT � h̄ω̄ the number of multiset {ni,α} with a energy
around kBT becomes very big and it is correct to make a semiclassical
approximation using a continuous density of state [43]

g(E) =
E2

2(h̄ω̄)3
,

obtained taking the zero of the energy at the ground state. With this ap-
proximation, it is straightforward to evaluate the total population in the
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excited states:

N −N0 =
∞w

0

g(E)dE
eβ(E−µ) − 1

=
(
kBT

h̄ω̄

)3

g3(z) (1.22)

where β = (kBT )−1, µ is the chemical potential, z = exp(βµ) is the fugacity
and g3(z) =

∑
n z

n/n3 is a polylogarithm (g3(1) = ζ(3) ' 1.20, the Riemann
zeta function). The important point is that, as long as µ < 0, 0 < g3(z) < ζ(3).
This means that, for any given temperature, the population in the excited
states has a maximum value: if the number of atoms exceeds this value
(or equivalently, if the density increases so that µ becomes positive) this
excess of atoms will accommodate in the ground state building up the Bose-
Einstein condensate.

From the experimental point of view the transition is not crossed in-
creasing the density, but decreasing the temperature: for a given N the
condensate starts to accumulate at a temperature TC such that N = maxµ(N−
N0). Inserting this condition in Eq. (1.22) one obtains

kBTc = h̄ω̄ (N/ζ(3))1/3 ' 0.94 h̄ω̄ N1/3 . (1.23)

The typical order of magnitude of TC for the experiments reported in this
work (N ∼ 105, ω̄ ∼ 2π × 100 Hz) is 200 nK. In this regime the semiclassical
approximation is still very well verified and finite size effect (see [42]) play
only a minor role.

We will not enter the detail of the ideal gas thermodynamics since –as
we will see in the next section– interactions play a crucial role. Again we
shall point to reference [42] for further information.

1.2.2 Interacting gas

As we have shown in the previous section, Bose-Einstein condensation is
a pure consequence of the statistics of the particles and therefore do not
require interactions. Rather, one could expect that the presence of inter-
actions would put extra energy in the system and therefore increase the
number of particles that are allowed to be in an excited state at a given
temperature. This would lead to a reduction in the critical temperature
either eliminating the phenomenon of condensation or making it impos-
sible to see at the lowest temperature available in the lab. It turns out
that, although qualitatively the mechanism outlined above plays a role,
Bose-Einstein condensation is possible even in the presence of interactions
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among the particles which in our case are due to binary atomic collisions
[44, 45].

The topic of ultracold collisions between atoms is a subtle one and we
will give a short introduction to it in chapter 3. For the present analysis
we shall only remind that, for sufficiently low energy, the cross section
for elastic scattering does not depend on the energy of the two colliding
partners and therefore decouples from the kinetic part of the Hamiltonian.
Furthermore, if the interparticle separation is much bigger than the range
of the potential (i.e. at low density), it is reasonable to approximate the
interaction by a two body hard sphere collision:

Vint(r, r′) = gδ(r− r′). (1.24)

In chapter 3 we will see that the coupling constant g is related to the s-wave
scattering length a by

g =
4πh̄2

m
a , (1.25)

for the present analysis we only remind that if a > 0 (a < 0) the interaction
is repulsive (attractive).

The Gross-Pitaevskii equation

Within the approximation (1.24) it is possible to express the Hamiltonian
in second quantization as:

H = Ψ̂†(r, t)L(r)Ψ̂(r, t) +
g

2
Ψ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t), (1.26)

where we have defined the single particle Hamiltonian as

L(r) = − h̄2

2m
∇2 + Vext(r) (1.27)

At zero temperature it is easy to carry out a mean field expansion Ψ̂(r, t) =
Φ(r, t)+δψ̂(r, t) which leads to the very well known Gross-Pitaevskii equation
, both in its time dependent

ih̄
∂

∂t
Φ(r, t) =

(
L(r) + g |Φ(r, t)|2

)
Φ(r, t) (1.28)

and time-independent form(
L(r) + gφ2(r)

)
φ(r) = µφ(r) . (1.29)

The latter is obtained by setting Φ(r, t) = φ(r) exp(−iµt/h̄) with µ chemical
potential and φ(r) a real function [42].
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Thomas-Fermi approximation

Much of the intriguing physics of the condensates is generated by the non-
linearity present in the Gross-Pitaevskii equation which is due to the inter-
actions among the particles. It is therefore not surprising that the ground
state of the system is deeply influenced by the sign of the coupling g. For
repulsive interaction (g > 0) the nonlinear term contributes to the stability
of the system because it dominates on the kinetic term. If we call ` the size
of the system it is easy to see that:

Ekin ∼ (h2/m)`−2

Eint ∼ gN`−3

and therefore, using Eq. (1.25),

Ekin

Eint
∼ `h2

gNm
∼ `

Na
.

In the limit of an infinite system (N → ∞, ` → ∞, but N`−3 → n̄ finite) the
kinetic term becomes completely negligible and Eq. (1.29) is immediately
solved:

n0(r) = φ2(r) = max
{
g−1(µ− Vext(r)), 0

}
. (1.30)

This is the so-called Thomas-Fermi regime. For a harmonically trapped gas
the Thomas-Fermi profile is an inverted parabola and it represents a good
approximation of the actual density profile if

Na� aho , (1.31)

which is obtained from the above analysis with the obvious change `→ aho.
In the experiments presented in this work a is in the range of a few nanome-
ters while aho is on the order of 3µm: this means that the approximation
is reasonable for N > 104. Remembering that

r
drn0(r) = N it is easy to

obtain an expression for the chemical potential from Eq. (1.30)

µTF =
1
2
h̄ω̄

(
15
Na

āho

)2/5

. (1.32)

Attractive condensates: instability

If the interaction is repulsive the spectrum of the Gross-Pitaevskii equation
becomes unbounded from the lower side: the energy of the system can be
always minimized increasing the density. This situation corresponds to the
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collapse of the atomic cloud and poses severe limitations to the realization
of an attractive condensate. Actually only the presence of the harmonic
potential which establishes a zero-point kinetic energy allows the system
to equilibrate: by the same argument given in the above section one can
expect that the condensate is stable as long as the condition Eq. (1.31) for
the absolute value of a is not satisfied. We therefore expect collapse for
atoms in the range

Ncr ∼
aho

|a|
∼ 103 . (1.33)

I will not review all the results for the dynamics of this mean field collapse
[46]. Still the topic is of some importance because the interaction among
39K atoms is attractive and therefore it is impossible to obtain a stable
condensate of this species with more than a few 103 atoms without using
some control of the interaction. We will come back to this point in part II.

Excitation of the condensate

The excitation of the condensate is contained in the fluctuations around
the mean field solution that we indicated with δψ̂(r, t). These fluctuations
exist at zero temperature (quantum depletion) and grow further at finite
temperature. Eventually, as the temperature increases these fluctuations
become more and more important and the mean field approximation is no
longer meaningful.

The spectrum of excitation of a condensate can be calculated using the
Bogolioubov approximation which amounts to expand the Hamiltonian up
to second order in the fluctuations and diagonalize the quadratic part so
that:

H = E0 +
∑
n

h̄ωn b̂
†
nb̂n.

The transformation to this basis is given by:

δψ̂(r, t) =
∑
n

(un(r)e−iωntb̂n − v∗n(r)eiωntb̂†n) (1.34)

where the b operators obey Bose-Einstein commutation rules and the two
sets of function {un} and {vn} satisfy the following Bogolioubov-De Gennes
equations [45]:{

L(r)un(r) + gφ2(r) (2un(r) + vn(r)) = (µ+ h̄ωn)un(r)
L(r)vn(r) + gφ2(r) (2vn(r) + un(r)) = (µ− h̄ωn) vn(r)

(1.35)
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The solution of Eq. (1.35) is not a trivial task and depends both on the
trapping potential and on the condensate wavefunction. Nevertheless nu-
merical and analytical solutions exist for several different external poten-
tials. For a uniform condensate with density n0, the Bogolioubov spectrum
can be evaluated analytically in the Fourier space [45]:

h̄ωq =

√√√√( h̄2q2

2m

)2

+
gn0

m
h̄2q2 . (1.36)

In the case of a trapped condensate, the low-lying excitations are the center
of mass dipole oscillations which occur at the trap frequencies and can be
therefore used to measure them.

Once the solution to the Bogolioubov-De Gennes equation are known, it
is possible to calculate the depletion of the condensate due to finite temper-
ature by carrying out a simple thermodynamic average taking into account
the occupation number of the bosonic quasiparticles:

〈b̂†nb̂n〉 =
(
eβh̄ωn − 1

)−1
.

1.3 Two coupled condensates:
topology of the ground state

One of the main experimental results presented in this work is the real-
ization of a mixture of two atomic Bose-Einstein condensates in a periodic
potential. These results are described in detail in part III, here we pres-
ent a theoretical introduction to the issue of the topology of the system in
presence of an interaction between the two condensates.

In the same way as we did for the single species case, one can assume
that the interaction between the two condensates is short range and there-
fore write a contact potential depending on a single parameter g12 as in
Eq. (1.24). With this approximation it is easy to write a system of two
coupled Gross-Pitaevskii equations:{ (

L1(r) + g1 φ
2
1(r) + g12 φ

2
2(r)

)
φ1(r) = µ1φ1(r)(

L2(r) + g2 φ
2
2(r) + g12 φ

2
1(r)

)
φ2(r) = µ2φ2(r);

(1.37)

we will now look for the topology of the solutions of these two equations
starting from the simple case of an homogeneous system and assuming
that the two condensate are stable: g1, g2 > 0.



28 Theoretical framework

Homogeneous system

The analysis of the realistic situation of an external harmonic confinement
in the gravity field and for arbitrary interaction parameters can be found
in [47] and we shall briefly review their conclusion later. Before the details
however, one can have a good insight into the problem by considering the
simpler case of a box potential without the presence of gravity but with
repulsive interspecies interaction [48]. In this case, once the volume V of
the box and the number of particle in each condensate N1 and N2 are fixed,
the condensate densities are by definition ni = φ2

i = Ni/V uniform in the
box and the coupled Gross-Pitaevskii equations simply give the chemical
potential as: {

µ1 = g1 n1 + g12 n2

µ2 = g2 n2 + g12 n1.

The energy of this uniform mixed state is easily evaluated from the full
Hamiltonian of the system as

Emix =
1

2V
(g1N2

1 + g2N
2
2 + 2g12N1N2). (1.38)

If we now consider a phase separated state in which each species occupies
a volume Vi and neglect for the moment the energy associated to the in-
terface, the energy is simply given by

∑
i gi(N2

i /Vi). Applying the constraint
V1 + V2 = V , it is easy to find that the energy of the system has a minimum

Esep =
1

2V
(g1N2

1 + g2N
2
2 + 2

√
g1g2N1N2) (1.39)

corresponding to
V1 = (1 +

√
g2/g1(N2/N1))−1 V (1.40)

and
V2 = V − V1. (1.41)

It is straightforward to see that:

µi = giNi/Vi. (1.42)

This phase separated state is the one with lower energy if

Esep − Emix < 0 ⇒ ∆g = g12 −
√
g2 g1 > 0. (1.43)

A more accurate treatment which allows fluctuations of the condensate
densities from the uniform value shows that if the condition (1.43) is satis-
fied, the population of condensate 1 decays exponentially in the volume V2
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with a characteristic length given by [48]:

Λ1 =
(√

g1g2

∆g

)1/2

ξ1,

where ξ1 is the so called healing length:

ξ1 =

(
h̄2

2mµ1

)1/2

. (1.44)

Note that Λ → ∞ as ∆g → 0 as we expect from (1.43). In turn this pen-
etration into the opposite region modifies the density distribution of the
majority condensate. In particular if Λ1 �

√
2 ξ2 (strong separation) the

condensate 2 is depleted on a length scale given by ξ2, while in the opposite
limit (weak separation), condensate 2 follows the profile of condensate 1
and it is therefore depleted on a scale Λ1. In particular, assuming that the
interface occurs at z = 0, one can show that n1(z) = (N1/V1)ρ1(z), where the
function ρ1(z) is given by [48]

ρ1(z) =

 1−
( √

2ξ1√
2ξ1+Λ1

)
exp(−

√
2 z/ξ1) if z > 0

Λ1√
2ξ1+Λ1

exp(2z/Λ1) if z < 0
(1.45)

in the strongly separated regime and by

ρ1(z) =

 1−
(

ξ2
ξ1+ξ2

)
exp(−2 z/Λ2) if z > 0

ξ1
ξ1+ξ2

exp(2z/Λ1) if z < 0
, (1.46)

in the weakly separated regime. The corresponding functions for conden-
sate 2 are obtained with the following changes: 1 → 2, 2 → 1 and z → −z.

The two functions ρ(z) are plotted in figure 1.4 for both cases of strong
and weak separation. As we can see in the strong separated case the total
density (dashed green line) is depleted near the interface, while this does
not happen in the regime of weak separation. In the case of the 87Rb-
41K mixture, we have that the 41K condensate is the strong regime (decays
with ξ before the interface), while the 87Rb condensate is in the weak one.

We note that the presence of the interface introduces an extra energy
given by the surface tension: this can lead to a non-trivial topology of the
two systems. Qualitatively, one can expect that the results of this simple
model hold if the density modulation introduced by the external potential
is small on the lengthscale of the interface. If this is not the case, in order
to have a more quantitative prediction, one needs to include the harmonic
confinement in the problem.
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Figure 1.4. Plot of the density of two repulsively interacting condensates for strong ( left) and
weak (right) separation. The two solid lines indicate the density of each condensate while
the dashed line marks the total density.

Effects of the harmonic confinement

We will now consider the more general case of a harmonic confinement
in the field of gravity, closely following the analysis of [47]. Under these
assumptions, the single particle Hamiltonian becomes

Li(r) = − h̄2

2mi
∇2 + Ṽ0,i +

mi

2

∑
α

ω2
α,ir

2
α −migz. (1.47)

If the two masses are different (as it is the case with 87Rb and 39,41K), the
gravity displaces the center of the harmonic potential in a different way:
this so-called differential gravitational sag has a big influence on the exper-
imental results presented in part III. The displacement of each component
is readily evaluated as

z0,i = −g/ω2
z,i. (1.48)

It is useful to shift the origin of the reference frame so that it coincides with
one of the displaced position, say that of species 1. In this reference frame
the displacement of species 2 is given by

z0 = z0,2 − z0,1 = −g(ω−2
z,2 − ω−2

z,1). (1.49)

Furthermore, in the experiment the confining potential is determined
by the coupling of the atoms with a static magnetic field (see section 2.3)
or with the intensity of a laser radiation (see Eq. (1.7)) and therefore its
shape is independent on the atomic species. As it is pointed out in [47]
this allows one to perform a scaling on the spatial coordinates so that the
trapping potential for both species is spherical:

r′α = (ω̄1/ωα,1) rα = (ω̄2/ωα,2) rα (1.50)
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With this transformation it is possible to rewrite Eq. (1.47) as

L1(r) = − h̄2

2m1
∇2 + V0,1 +

1
2
m1ω̄

2
1(x

′2 + y′2 + z′2) (1.51)

L2(r) = − h̄2

2m2
∇2 + V0,2 +

1
2
m2ω̄

2
2(x

′2 + y′2 + (z′ − z0)2)

where we have defined

V0,i = Ṽ0,i −
mi

2

(
g

ωz

)2

.

If we now express all the lengths in units of āho,1 and all the energies in
units of E1 = h̄ω̄1 we obtain the final expression

L̃1(r)− V0,1/E1 = (1/2) (−∇2 + x2 + y2 + z2) (1.52)

L̃2(r)− V0,2/E1 = (1/2) (−η−1
m ∇2 + ηE(x′2 + y′2 + (z′ − z0)2)

where ηm = m2/m1 and ηE = m2ω̄
2
2/(m1ω̄

2
1). We will see in section 2.3 that

for the 87Rb-41K mixture ηE = 1.
We are now in the position of rewriting the coupled Gross-Pitaevskii equa-

tion in the Thomas-Fermi approximation [47]:

(1/2) (x2 + y2 + z2) +g̃1φ2
1(r) + g̃12φ

2
2(r) = µ̃1

(1/2) ηE(x2 + y2 + (z − z̃0)2) +g̃2φ2
2(r) + g̃12φ

2
1(r) = µ̃2

(1.53)

where we have defined the rescaled couplings g̃i = giā
−3
ho,1/E1, differential

sag z̃0/āho,1 and a shifted chemical potential µ̃i = (µi − V0,i)/E1.
We can now repeat the analysis of the previous section deriving two

solutions one in the region of overlap and another one in the region of
separation. These two solutions must be properly normalized and con-
nect smoothly and this gives the shape of the interface and the amount of
overlap between the two condensates. In particular one finds that the over-
lapping region is determined by the intersection of two spherical surfaces
defined by [47]:

Σ1 : R2
1 = x2 + y2 + (z − zc1)2

Σ2 : R2
2 = x2 + y2 + (z − zc2)2

, (1.54)

where, defining γi = g12/gi, the two radii can be expressed as

R1 =
2(µ̃1 − γ2µ̃2)

1− ηEγ2
+

ηEγ2

(1− ηEγ2)2
z̃2
0 ,

R2 =
2(µ̃2 − γ1µ̃1)
ηE − γ1

+
ηEγ1

(ηE − γ1)2
z̃2
0
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and the two offsets as
zc1 = − ηEγ2

1− ηEγ2
z̃0 ,

zc1 =
ηE

ηE − γ1
z̃0 .

From the normalization condition it is possible to see that the intersec-
tion of Σ1 and Σ2 is empty if

g2
12 − g1g2 > 0

which is equivalent to the condition (1.43) that we obtained for the homoge-
neous system. A detailed analysis of the possible topological configurations
of Σ1 and Σ2 can be found in [47] and it is illustrated in figure 1.5.

To obtain the detailed shape of the interface between the two conden-
sates it is necessary to go back to Eq. (1.37): however, based on the insight
from the homogeneous case, we expect that the transition is blurred and
some overlap occurs also for ∆g small and negative.
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Figure 1.5. Possible topologies for a binary mixture of two Bose-Einstein condensates. We
can distinguish external overlap ( (a),(b) and (c)), phase separation ( (d), (h)), full overlap ( (e)
and (f)) and partial overlap ( (g)). Taken with permission from [47].
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Chapter 2

Experimental apparatus

Machines should work. People should think.

(Richard Hamming)

The experiment reported in this work were realized on a new apparatus that
was almost entirely build during my PhD. This new setup has been exten-
sively described in the PhD thesis of my predecessor [49] and therefore I
will only review some fundamental features. In particular I will describe
in some detail our scheme for the initial cooling of 39K and 41K which was
realized for the first time in our laboratory [50].

The outline of a typical experimental sequence is the following: two
atomic jets of 87Rb and K with high flux density are generated from room
temperature vapor in two separate vacuum chambers. These two atomic
jets are then collected in a magneto-optical trap (MOT) operating in a third
vacuum chamber maintained under ultra-high vacuum (UHV). The atoms
from the MOT are then further cooled and transferred into a new kind of
magnetic trap. The UHV condition allows to initiate a forced evaporation
of the 87Rb sample in this trap without thermal contact with the vacuum
chamber. This evaporative cooling of 87Rb allows to cool also K through
interspecies elastic collisions (sympathetic cooling. This was demonstrated
for the first time in the case of 39K as we shall see in section 4.1. The
lowest temperature that is achieved in our laboratory allows us to enter
the degenerate regime for both 87Rb and 41K simultaneously as it will be
described in part III.

I will now briefly describe the different sections of the apparatus.

35
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2.1 Laser sources and vacuum apparatus

Our experimental apparatus is deployed on two separate optical tables.
The first one is used to generate and control the different laser frequencies
that are needed for the experiment, while the vacuum chamber is located
on the second table: this configuration is very useful to isolate the laser
sources from vibrations and the atoms from stray light, but has the obvious
disadvantage to require a longer optical path to deliver the light on the
atoms. In our experiment this problem is overcome using 7 different optical
fibers as we shall see later on.

2.1.1 Laser sources

As we have seen in section 1.1.1, the laser cooling of alkali atoms requires
two different frequencies. For all the species considered in this work we will
call cooler the laser tuned near the | 2S1/2, F = 2〉 → | 2P3/2, F = 3〉 transition
and repumper the one tuned near the | 2S1/2, F = 1〉 → | 2P3/2, F = 2〉. In the
case of 87Rb, the leakage to the |F = 1〉 ground state is small and therefore
only a small intensity of repumping light is needed. On the other hand, for
the two bosonic isotopes of K, the optical pumping to the |F = 1〉 level is
strong and the light intensity of the repumper must be at the same level as
the cooling one. Actually in this case the force acting on the atom is given
by the two lasers as a whole and therefore the distinction between cooler
and repumper is only a matter of convention.

Our laser system involves only semiconductor sources and this proved
to be very helpful for the stability of the experiment if compared to other
schemes based on solid state sources such as Ti:Sa lasers.

Rubidium

An all-semiconductor approach to the laser cooling of 87Rb is now tradi-
tional in this field as diode laser at the right wavelength of 780 nm are
readily available on the market.

Since the frequency difference between cooler and repumper for 87Rb is
about 6.8 GHz it is easier to use two different laser diodes for the two colors.
We use two Sanyo DL7140-201 laser diodes mounted in an extended cavity
in Littrow configuration. Each laser is offset locked to a chosen line in the
saturated absorption spectrum obtained from a reference cell.
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The power of the laser diode (∼ 20 mW) is enough for the repumper
while the cooling light is amplified with a commercial tapered amplifier
(Toptica DL-100), which delivers about 600 mW of power without corrupting
the spatial mode characteristic.

Potassium

As pointed out above, a greater power is needed for the repumper of bosonic
potassium atoms. This is obtained in our system by means of a commercial
grating-stabilized Tapered Amplifier from Toptica (DLX-110). This device
delivers up to 600 mW of power and its emission is offset locked on the
saturated absorption spectrum of 39K around 767 nm in the same way as
87Rb.

Since the frequency difference between cooler and repumper for 39K (41K)
is 254 MHz (462 MHz), it is possible to obtain the cooler light by shifting the
repumper with an acousto-optic modulator (AOM) without the need of a
further locking scheme. For the sake of minimizing the modifications in
the apparatus changing from 41K to 39K, this shift is obtained with a double
passage in the AOM for 39K and with a triple passage for 41K. The cooling
light obtained at the right frequency in this way is then fed into a home
made tapered amplifier. The tapered amplifier chip (EagleYard EYP-TPA-
0765) is optimized for potassium wavelength and delivers about 800 mW
with an injected power of around 10 mW operating at around 2.5 A of cur-
rent.

Laser splitting and delivering

The power output of the four lasers described before is then split for the
several needs of the cooling and transferring processes. In particular each
species requires different frequencies for the pre-cooling, the operation of
the MOT, the optical pumping toward the magnetic trap and the detection.
Only the 87Rb repumper is held at a fixed frequency by a single passage
AOM, while, in view of optimizing all the above mentioned processes, all the
other beams have an independent control of frequency and amplitude. This
requires a total of about 12 AOM for the three other colors. A schematic view
of the splitting system is shown in figure 2.1. A system of λ/2 waveplates
and polarizing beam splitter cubes splits the power of each single beam
which is then fed into a double passage AOM. The only exception to these
scheme is the optical pumping beam for 87Rb which is slightly detuned on
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the red side of the |S, F = 2〉 → |P, F = 2〉 (see fig. 1.1): for this beam
the AOM is used in single passage as shown in figure 2.1. The frequency
of all the AOM’s is controlled with a VCO and the amplitude of the radio-
frequency can be modulated by an external voltage before being sent into
a power amplifier.

After the frequency shift and amplitude control, the beams are delivered
into seven polarization maintaining optical fibers (OZ Optics PMJ series,
core PANDA, 80µm cladding). These fibers guarantee the conservation of
the linear polarization of the input beam if it is aligned on one of the two
axes of their elliptic core. For the two optical fibers where only one color
is used the alignment is straightforward, while for the two fibers with two
colors, the laser beams are first superimposed with crossed polarization by
a polarizing beam splitter cube. The two beams are then launched into the
fibers: since the two polarization are crossed, when one of the two beam
is aligned on the fast axis the other is automatically aligned on the slow
axis and the polarization of both colors is maintained at the output. For
the three fibers which are used for all the four colors simultaneously, it is
necessary to use an extra trick. As it is shown in figure 2.1, first we super-
impose the coolers and the repumpers for both species with the technique
explained above, then we align the two polarization using a dichroic wave-
plate which acts as a λ/2 for the K light without affecting the polarization
of 87Rb. Finally we superimpose repumpers and coolers into another po-
larizing beam splitter: again once the coolers are aligned on one of the axis
of the fibers the repumpers are aligned on the other axis and polarization
is maintained for all the four colors.

2.1.2 Vacuum apparatus

The design of the vacuum apparatus allows for two special feature of our
experiment: separate chambers for the pre-cooling of the two different
species and a new kind of magnetic trap which operates under UHV con-
dition. Furthermore optical access to the magnetic trap is possible under
three orthogonal direction which makes the installation of a 3D optical lat-
tice easier. All these characteristics are visible in figure 2.2.

The pre-cooling chambers are machined from a single titanium block
and rectangular BK7 windows are glued on it using a special purpose vac-
uum epoxy (Aremco 631C). A detail of the windows glued on the chamber
is shown in figure 2.3. Titanium was preferred over stainless steel be-



Laser sources and vacuum apparatus 39

3D MOT

Optical
pumping

Probe

Rb 2D
transverse

Rb push

K push

K 2D
transverse

Rb C Rb R K C K R

Splitting and tuning Combining

0+1

Polarizing beam splitter

Mirror

l/2 waveplate (broad)

l/2 waveplate (dichroic)

AOM 200 MHz

AOM 80 MHz

Figure 2.1. Scheme of the splitting and the recombining of the lasers for the input of the
seven different fibers used in the experiment. Rubidium lasers are indicated in red, potassium
in blue, while purple lines indicate where the two colors are superimposed. Dashed line
indicates the repumping light. The lenses and the λ/4 waveplates needed for the operation of
double passage AOM’s are not shown in the scheme.
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Figure 2.2. Sketch of the vacuum apparatus: the three chambers can be seen as well as the
magnetic trap feed-through. The axes of the 3D MOT, optical lattice and atomic jets from the
pre-cooling stages are indicated.

cause of its thermal expansion coefficient: the value of this parameter in
the range 0 ÷ 100 ◦C is 8.9 × 10−6 K−1 which is much closer to that of BK7
glass (7.0× 10−6 K−1 in the range 20÷ 300 ◦C) than the one of stainless steel
(16 ÷ 18 × 10−6 K−1 in the range 20 ÷ 100 ◦C). The similarity in the thermal
expansion coefficient reduces stresses during the bake-out of the appara-
tus. The rear part of these cells allows for the connection to a vacuum ion
pump (20 l/s per chamber), to the getters for the alkali gases with their cur-
rent feed-through and to an all-metal valve that connects each pre-cooling
section with the outside. This valve was used at the end of the assembly to
bring the pressure into the working range of the ion pump. Furthermore,
on the K chamber, we have also connected a reservoir with an enriched
sample of 40K which we have never used so far but in principle allows the
apparatus to access the physics of Fermi-Bose mixtures.

To suppress the adsorption of the alkali atoms on the connection be-
tween the chamber and the pump, thereby increasing the lifetime of the
dispensers, the connection between the pump and the chamber is heated
to a temperature of about 50◦C. The lifetime of a single dispenser under
normal working condition is about 14 months. Dispensers allow to control
the partial pressure of alkali gas in the chamber which is typically ranging
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Figure 2.3. Detail of the pre-cooling chamber showing the rectangular window glued on the
titanium frame of the chamber.

between 10−8 and 10−7 mbar: this pressure is needed to increase the num-
ber of atoms that can be cooled, but, as we already pointed out, is not low
enough to obtain Bose-Einstein condensation. For this reason particular
care has been used to maintain the biggest possible differential vacuum
between each of the two pre-cooling section and the main chamber. This is
accomplished first by purely conductive effect given by a 1 cm long hole with
a diameter of 1 mm followed by a 10 cm long bellow. To increase further the
differential vacuum, the bellow is filled with three cylindrical graphite get-
ters of increasing inner diameter (6, 8 and 10 mm respectively). The bellow
is directly connected to the main chamber and decreases the mechanical
coupling between the different sections of the vacuum setup.

The main chamber consists of a cylindrical structure machined using
nonmagnetic stainless steel. The cylinder has an outer diameter of 180 mm
and a height of 45 mm as it is shown in the blueprint of figure 2.4. On
the top and the bottom of the cylinder a fit is machined for two CF100
flanges while on the side there is a total of 10 flanges, 6 CF35 and 4 CF16.
Two of the CF35 flanges are used to connect the vacuum feed-through
of the magnetic trap and the vacuum pump, the other four are aligned
on two orthogonal directions offset by 45◦ with respect to the axis of the
magnetic trap and provide the access for the MOT beams. Furthermore,
two of the CF16 flanges provide the optical access to the magnetic trap
along an horizontal axis orthogonal to the axis of the magnetic trap (see
§ 2.3), while the other two, offset by 10◦ extra provide the connection with
the bellows from the two pre-cooling chambers. This angle is needed to
make sure that the two atomic jets coming from these flanges are not in
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Figure 2.4. Blueprint of the main chamber of the experiment. The bigger flanges are CF35
while the small ones are CF16 as indicated. The section shown is taken in the vertical plane
along one of the MOT beams direction. Note that two CF100 flanges are installed on top and
bottom so that the total height of the chamber is around 90 mm.

the line of sight one of each other.
The flange opposite to the one with the magnetic trap feed-through is

connected to the main pumps: one ion pump with a speed of 55 l/s and
a titanium sublimation pump that it is used every month to suppress the
throughput of the walls. The ion pump is placed at a relatively big dis-
tance from the main chamber to reduce the noise effect from its electric
and magnetic field: however to preserve the pumping speed the connection
between the pump and the main chamber is obtained with pipes with a
55 mm diameter.

One of the flanges for the access of the MOT beam is connected to a
vacuum cross (see figure 2.2) that hosts both a UHV gauge and a valve to
the outside environment that can be used in the same way as the one on
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the pre-cooling chambers. The hot cathode gauge is not normally operated
to avoid the light emission from the incandescent cathode and pressure is
inferred from the current flowing in the ion pumps controllers: in particular
no current is detected into the main ion pump which place an upper limit
of the pressure in the central chamber to below 10−10 mbar.

2.2 The 2D–MOT

In view of realizing experiments with all the isotopes of potassium (includ-
ing in principle the least abundant 40K) it is highly desirable to have a bright
flux of relatively cold atoms. From a very general point of view the higher
the partial pressure of the gas the bigger is the total flux of atoms that can
be obtained. However the laser cooling is not efficient if the density of the
particles is too high because of re-absorption of scattered photons. Fur-
thermore the pressure should be limited in order to preserve the UHV con-
dition near the magnetic trap. As we have shown in the previous section,
in our experiment the differential vacuum limits the maximum pressure
that can be safely used in the pre-cooling chamber to about 10−7 mbar. In
this pressure range several schemes have been reported for the generation
of an intense flux of cold 87Rb atoms [51, 52, 53, 54, 55], while the only
technique applied to bosonic potassium was the relatively poor transfer
between two separated MOT [56, 16].

In our experiment, we extend the scheme of the so-called 2D-MOT al-
ready realized for 87Rb [53, 55] and 40K [21] to the bosonic isotopes of potas-
sium [50]. This achievement was not totally granted a priori due to the
peculiar hyperfine structure of these two isotopes that we introduced in
section 1.1.2. I will now summarize the structure and operating principle
of our 2D-MOT, further details can be found in [49, 50].

2.2.1 General principle

The mechanism responsible for the generation of a cold atomic jet from a
2D-MOT is simple: the atoms are cooled and trapped by the simultaneous
action of a two counterpropagating laser beams and a quadrupolar mag-
netic field. The atoms are therefore free to move along a third direction
and are allowed to escape the pre-cooling chamber through the small hole
visible in fig. 2.3.
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The velocity of the atoms can be decomposed into two parts: a veloc-
ity along the atomic jet v‖ and a velocity in the orthogonal plane v⊥. The
parallel components determines the amount of time the atom will stay in
the capturing region of the 2D-MOT: this “cooling time” tc will in turn fix
how much of the orthogonal kinetic energy will be lost in the cooling pro-
cess. Note that, since the gas is very dilute, very few collisions occur during
the time tc and therefore the two velocities distributions maintain different
effective temperatures.

The atoms with a very high longitudinal velocity have a very short tc and
therefore are not cooled to low radial temperatures: these atoms are lost
from the jet either before or shortly after leaving the cooling region due to
collisions with the walls. On the other hand, atoms with a low v‖ will have
a longer tc and will be cooled to a very low temperature: these atoms will
be very collimated (i.e. v‖ � v⊥) and will enter the main chamber. The jet
formed by the 2D-MOT is therefore obtained with both an actual cooling
in the orthogonal plane and a velocity selection along the axis of the trap.
This process can be further enhanced by adding another laser beam along
the direction of the atomic jet: this beam will push the atoms into the jet
enabling the 2D-MOT to capture also the part of the atoms propagating
backward and those having a poor collimation (v‖ > v⊥). We will come back
to this point in the next section.

These qualitative insight into the mechanisms responsible for the for-
mation of the cold atomic jet in a 2D-MOT are confirmed by numerical sim-
ulation based on the actual force acting on the atoms. These simulation
are detailed in [50] and extend to the potassium case the model developed
in [54] for 87Rb: this model assumes that the total force acting on the atoms
is the radiation pressure of each beam separately. Starting from Eq. (1.1)
one finds:

f =
h̄Γ
2

∑
i

ki
Si

1 + ST
,

where ST is the sum of all the six saturation parameters. The tricky part
of extending this model to bosonic potassium is in the fact that the force
is due to both cooler and repumper and that the two have the same in-
tensity. However the qualitative agreement between the model and the ex-
perimental findings shown in the next section confirm that we understand
the mechanism of the 2D-MOT. I note here that, after the publication of
our work, another work devoted to a 87Rb 2D-MOT operating in a slightly
higher pressure range [57] confirmed our findings.
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Figure 2.5. Scheme of our 2D-MOT: the frame of the vacuum chamber, the coils, the pierced
mirror and the direction of the different laser beams are shown.

2.2.2 Experimental parameters

A schematic picture showing all the key element of our 2D-MOT is shown
in figure 2.5. I will now describe all the parts of this pre-cooling stage.

Transverse beams

From the mechanism described in § 2.2.1, it is clear that the longer the
cooling time tc the larger is the velocity class that will enter the atomic jet
in the main chamber. One way to increase this time is to stretch the inter-
action region along the axis of the trap: this is the reason why the window
of the pre-cooling chamber have a rectangular 80 × 35 mm shape (see fig.
2.3) and the beams have an elliptic shape with a minor waist of 9.4 mm
and an aspect ratio of 1 : 3. This shape is obtained with a simple cylin-
drical telescope. The two beams are then retroreflected and polarization is
rotated in such a way to achieve the usual σ+ − σ− configuration.

The optimal power and detuning of the 2D-MOT of 87Rb, 39K and 41K are
shown in table 2.1. Indeed we found that increasing the power still increase
the flux density [50], but part of the power is needed to operate the 3D-
MOT.

Magnetic field

The magnetic quadrupole field is created by two rectangular 90 × 40 mm
coils attached around the vertical windows and insulated from the vacuum
apparatus with a 1 mm thick Teflon spacer. At the typical current of 4 A,
the magnetic field gradient in the vertical and horizontal radial directions
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Power [mW] Detuning [Γ]
Cooler Repumper Cooler Repumper

87Rb 50 3 -1.2 -0.5
41K 70 20 -3.0 -2.5
39K 70 20 -5.8 -3.9

Table 2.1. Optimal values for power and detuning of each of the two retroreflected trans-
verse beams of the 2D-MOT with a magnetic field gradient of around 15 G for the isotopes
used in this work.

is about 15 G, while, along the trap axis, it is much smaller and will be
neglected in the following. The current in each coil can be controlled in-
dependently which allows to move the position of the zero of the magnetic
field along the vertical direction. An additional coil can shift the beam along
the horizontal radial direction, but, as a matter of fact, it isn’t used.

Push beam

The “push” beam has a diameter of about 1.5 mm and is reflected away from
the chamber by a 45◦ metallic mirror in which the 1 mm exit hole is drilled1.

As expected from ref. [53, 55], within our pressure range, the presence
of a push beam is required to have a significant flux and furthermore we
have experimentally found that the parameters of the push beam are very
critical. In particular we found for both Rb and K that if the push beam
contains both cooler and repumper, flux is very much depleted. This is
due to the fact that if both lights are present, the atoms are pushed also
after leaving the pre-cooling chamber, while if only one radiation is present
the atoms are optically pumped into a dark state shortly after leaving the
interaction region. Beside the effect of an unwanted excessive acceleration,
the persistent action of the push beam heats the atoms in the jet leading to
the depletion of the flux because of collision with the graphite getters in the
transfer bellow. This is the reason why the push beam for 87Rb contains
only cooling light as indicated in the scheme of Fig. 2.1. Surprisingly we
find that for 39,41K the flux is way better with only the repumping instead
of the cooling beam. This can be again traced back to the tight hyperfine
structure of these bosonic isotopes: a beam red detuned with respect to

1This mirror was originally placed in this position to allow the insertion of a beam prop-
agating against the atomic jet (2D+ configuration [55, 57]). However we found no improve-
ment in this configuration within our pressure range.
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the |S, F = 2〉 → |P, F = 3〉 is nearly resonant with the |S, F = 2〉 → |P, F =
1, 2〉 and therefore causes a strong optical pumping which requires a big
amount of repumping light from the transverse beam. On the other hand,
a beam red detuned from the |S, F = 1〉 → |P, F = 1, 2〉 transition is closer
to resonance with the |S, F = 1〉 → |P, F = 0〉 transition which is closed
and any repumping from the |S, F = 2〉 manifold is carried over more easily
since the cooling power in the transverse beam is bigger. Of course the
optical pumping can be also reduced decreasing the overall intensity but
this in turn weakens the pushing effect on the atoms; due to absorption
the intensity is further reduced near the exit region of the chamber which
is the most critical for the formation of a good atomic flux. The peculiar
interplay between the intensity and the detuning of the push beam can
be reproduced with the model outlined above and gives a good qualitative
agreement with the observed behavior [50]. The optimal values for the
parameters of the push beams are summarized in table 2.2.

Transition Power [mW] Detuning [Γ]
87Rb 2 → 3 5 −1.5
39K 1 → 1, 2 6 −5.2
41K 1 → 1, 2 6 −4.5

Table 2.2. Optimal transition and relative values for power and detuning of the 2D-MOT
push beam for the isotopes used in this work.

2.2.3 Flux density measurement

A reliable measurement of the flux generated by the 2D-MOT is a very
important tool to optimize the parameters both of the beams and of the
magnetic field. This measurement is obtained measuring the decay of the
fluorescence detected in the main chamber after blocking the atomic jet
[53]. Once the operating point is found, the daily alignment of the 2D-MOT
is performed measuring the load rate of the 3D-MOT as it is explained later
on.

The atomic jet is exposed to a vertical sheet of light placed at a distance
L = 30 cm from the hole in the mirror and the fluorescence is collected with
a lens on a broad area photodiode. The peak intensity of the probe beam is
high enough to saturate the transition and power is divided between cooler
and repumper with a 2 : 1 ratio. The jet is shut off shining a resonant
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Figure 2.6. Schematic side view of the 2D-MOT: the thin red arrow near the exit hole marks
the position of the “plug” beam which is used to interrupt the atomic flux in order to measure
the flux density. The arrow behind the mirror represents the probe sheet of light.

beam before the mirror hole [58]: when this beam is on the atoms do not
leave the pre-cooling chamber anymore and the fluorescence in the main
chamber decays to zero. The lower the peak velocity in the jet the slower
the decay is. The position of this “plug” beam is shown in figure 2.6.

More quantitatively, the fraction of atoms crossing the sheet of light in
a time dt is given by

dN =
w

d2S d2v⊥dv‖f(r,v) v‖dt =
w

dv‖ n1(v‖) v‖ = dt
w

dv‖ρ‖(v) ,

where f(r,v) is the distribution function and ρ‖(v) is the flux density which
we want to measure. If the atomic beam is interrupted at t = 0 the atoms
which contribute to the fluorescence signal at time t are those having a
parallel velocity between 0 and L/t, namely

N(t) =
L/tw

0

dv‖ n1(v‖) = −
tw

0

dun1(L/u)L/u2du = −
tw

0

du ρ‖(L/u) 1/u du .

From the above expression we have that the flux density ρ‖(v) is given by:

ρ‖(v = L/t) = − t
η

d
dt
S(t) , (2.1)

where η is a calibration factor taking into account the atomic scattering rate
(Γ/2), the quantum efficiency of the photodiode and the numerical aperture
of the collection lens.

A typical experimental acquisition of S(t) is shown in figure 2.7 together
with the flux density inferred using Eq. (2.1). Applying the proper cali-
bration factor we obtain that the total flux for bosonic K corresponds to
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Figure 2.7. (Left) Typical experimental acquisition of the fluorescence signal S(t). At t =

0 ms the plug beam is turned on and after a delay the fluorescence starts decaying to zero.
(Right) Measured velocity distribution of atomic beam obtained by applying Eq. (2.1) (dots)
and Gaussian fit (solid line). The resulting peak velocity is 32 m/s with a FWHM of 4.5 m/s.

6.2 × 1010 and 5.2 × 109 atoms/s for 39K and 41K respectively at a nominal
pressure of 7 × 10−8 mbar. The difference among the two isotopes can be
almost entirely attributed to their respective natural abundance. The most
probable longitudinal velocity for 41K (39K) is found to be 35 m/s (33 m/s).

In the case of 87Rb, the performances of our system are similar to those
of references [53, 55], namely a total flux of about 5.2× 109 atoms/s and a
most probable velocity of about 30 m/s.

Another important parameter is the divergence of the atomic jet and it
is measured in the following way: the fluorescence is recorded on a CCD
camera with long exposure time (∼ 100 ms) from the horizontal radial direc-
tion. The acquired image can be integrated along the two directions and
fitted with two Gaussian functions: on the horizontal axis of the image,
which corresponds to the axis of the jet, the shape is given by that of the
detection beam while on the vertical direction the intensity of the detection
beam can be considered constant and the shape of the fluorescence is de-
termined by the profile of the atomic jet. By independently measuring the
size of the detection beam it is possible to calibrate the magnification of the
system and obtain the measure of the vertical size of the atomic jet. From
this measurement, knowing the distance L it is possible to determine the
atomic K jet divergence as 34(6) mrad.

2.2.4 Loading of the mixed 3D–MOT

In view of transferring the two atomic species to a magnetic trap it is neces-
sary to have them overlapped in space. In our experiment this is achieved
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Cooler Repumper
Detuning [Γ] Power [mW] Detuning [Γ] Power [mW]

87Rb −2.8 40 −0.5 6.0
39K −3.0 45 −7.5 23
41K −4.0 22 −4.0 22

Table 2.3. Parameters of the 3D-MOT for the atomic species used in this work. The total
power for the six beams is indicated.

superimposing the four colors needed for the 3D-MOT at the input of an
optical fiber. As I have explained in § 2.1.1, at the output of the fibers the
four colors do not have however the same polarization which is instead re-
quired for the operation of a MOT. This problem is overcome by making a
first split with a λ/2 waveplate and a polarizing beam splitter cube: when
the power is divided in a 1 : 1 ratio the two orthogonal polarizations at the
input are present at the output ports with the same intensity in both arms.
A following two stage polarized splitting, first with the ratio 1 : 2 and then
again with a ratio 1 : 1 allows the generation of six independent beams
with the same intensity and the same ratio of cooler and repumper as the
one present at the output of the fiber. These six independent, linearly po-
larized beams are delivered to the main chamber and their polarization is
changed by a λ/4 waveplate. The power and detuning of the MOT beams is
summarized in table 2.3.

Since all the species used in this work have the same magnetic moment,
the only difference in the position of the two MOT’s is due to differences in
the intensity balance or in the position of the laser beams: the latter is sup-
pressed by the use of a single optical fiber for the two 3D-MOT, while the
former effect can be only introduced by a different behavior of the wave-
plates between 780 nm and 766 nm. Indeed such an effect is observed and
the optimized position of the λ/4 waveplates for 87Rb is slightly different
from the one of K. We therefore use the λ/4 waveplates to optimize the su-
perposition of the two clouds without observing a particular degradation of
the loading of the two traps.

The magnetic field of our 3D-MOT is generated by two circular coils
which provide the required gradient of about 15 G/cm at 4 A of current. A
further set of three pairs of coils provides the compensation of stray fields:
this compensation is carried over looking at the isotropy of the explosion of
the 87Rb MOT after switching off the magnetic field.
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During the normal running of the experiment we run the experiment at
a lower pressure to be conservative on both the dispensers and the vac-
uum and therefore the loading of the 3D-MOT is reduced with respect to
the maximum flux indicated in the previous section. The daily alignment
procedure involves mainly adjustments on the alignment of the fibers and
on the direction of the push beam of the 2D-MOT: the compact splitting
design limits the misalignments of the 3D-MOT which is very robust. The
loading of the MOT is monitored from the fluorescence collected with a
high gain photodiode. Typical number of atoms in the MOT at the end of
the loading phase are 2× 109 for 87Rb, 1× 107 for 39K and 3× 106 for 41K.

2.2.5 Preparation of the atoms for magnetic trapping

As we will see in § 2.3, to obtain a good transfer into the magnetic trap
it is desirable to achieve the highest possible density. This second task
is realized introducing a short phase (∼ 100 ms) of compressed MOT at
the end of the loading of the 3D-MOT. This is done increasing the magnetic
gradient by a factor two and reducing the 87Rb repumper intensity to almost
zero while shifting the 87Rb cooler away from resonance. This suppresses
photon re-scattering and reduces the size of the cloud. For K the procedure
is slightly different in that the repumper power is held constant while the
frequency is shifted almost 9 Γ away from resonance while cooler light is
brought closer to the resonance: this optimizes the transfer to the magnetic
trap. To compensate for the heating introduced during the compression an
optical molasses is applied for a few ms2. As not all the hyperfine states
can be magnetically trapped, one has also to prepare the atoms in the right
hyperfine level which, for all the experiments reported in this work is the
| 2, 2〉. This hyperfine transfer is done by optical means: first atoms are
pumped into the F = 2 manifold leaving the repumper on for one extra
millisecond at the end of the optical molasses. Then a uniform magnetic
field of about 2 G is turned on to define a quantization axis and light with
σ+ polarization is shone along this axis. Opposite to all the other functions
of the experiments the light for optical pumping is tuned slightly below the
|S, 2, 2〉 → |P, 2, 2〉 as this gave the best efficiency to the process. The optical
pumping phase lasts 300µs and at the end all the lights are turned off in
the proper order to leave the atoms polarized at 80% into the | 2, 2〉 state.

2This is to avoid a decrease in the density of the K sample for which –as we have seen–
the laser cooling is not as efficient as for 87Rb.
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At this stage atoms can be loaded into the magnetic trap: before describ-
ing the details of this process, I will introduce the novel kind of magnetic
trap which is used in our apparatus.

2.3 The magnetic millimetric trap

2.3.1 General principle

The interaction between an atom with a permanent magnetic dipole mo-
ment and an inhomogeneous magnetic field can be written as

V (r) = −µ ·B(r) . (2.2)

If the time variation of B seen by the atom are on a timescale τ such that

τ � h̄

µB
,

the direction of the atomic magnetic moment is always parallel or antipar-
allel to the local magnetic field and the interaction simplifies to:

V (r) = mF gFµBB(r) (2.3)

where mF is the magnetic quantum number of the atomic state, gF is the
Landé g-factor and µB is the Bohr magneton.

Depending on the sign of mF gF an atomic |F,mF 〉 state can be classified
as either low-field seeker (mF gF > 0) or high-field seeker (mF gF < 0). Since
it is impossible to have an isolated magnetic field maximum in free space
[59], only low-field seeker states can be magnetically trapped by a cur-
rent configuration which realizes a minimum of the field. For 87Rb,39K and
41K which have the same magnetic quantum numbers, these trappable
states and their magnetic moments are summarized in table 2.4.

State mF gFµB/h

| 2,+2〉 1.4 MHz/G
| 2,+1〉 0.7 MHz/G
| 1,−1〉 0.7 MHz/G

Table 2.4. Magnetically trappable states of the atomic species used in this work and relative
magnetic moment.

The simplest current configuration that realizes a trapping potential is
given by two parallel coaxial coils with opposite currents. These coils realize
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Figure 2.8. Layout of the conductors creating a Ioffe-Pritchard trap. The white arrows
indicate the sense of the current and the red region marks a surface of constant field near the
minimum.

a magnetic quadrupole trap whose field profile is given by

B(r) = B′ (ρ2 + z2)1/2 , (2.4)

where we have introduced cylindrical coordinates taking z as the axis of
the system and the origin in the center of symmetry of the two coils, where
the magnetic field is zero.

The most important drawback of this configuration is related to this
zero in the field: an atom which stays a long time in the region of weak
magnetic field around the minimum will have a finite probability to undergo
a spin flip and therefore being repelled by the magnetic field gradient. Such
a process is called Majorana spin-flip and it is the limiting factor for the
lifetime of a quadrupole trap at low temperatures [60, 61].

Several schemes exist to realize a magnetic field configuration which has
a local minimum at a non-zero value. We will take a closer look to one of
the most successful of these: the so-called Ioffe-Pritchard (IP) configuration
[62]. The layout of the conductors of a IP trap is shown in figure 2.8:
two cylindrical coils with the same current create a Helmholtz field whose
minimum is not zero and four current wires carrying alternate current
create a gradient in the plane orthogonal to the trap axis. The total field is
given by the sum of these two contributions:

B(r) = B′


x

−y
0

+
B′′

4


−2xz
−2yz

2z2 − x2 − y2

+B0


0
0
1

 . (2.5)
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The modulus of the field can be expanded around the minimum as:

B(r) ' B0 +

(
B′2

2B0
− B′′

4

)
ρ2 +

B′′

2
z2 (2.6)

thus, if the condition 2B′2 > B0B
′′ is fulfilled, not only the potential has an

isolated minimum which is different from zero, but also the shape of the
trapping potential is harmonic.

Combining Eq. (2.3) and Eq. (2.6) it is easy to see that the trap frequen-
cies are

ω2
z =

mF gFµB

m
B′′ (2.7)

ω2
⊥ =

mF gFµB

m

(
B′2

B0
− B′′

2

)

and the aspect ratio is

AR =

√
B′2

B0B′′ −
1
2
. (2.8)

In practice traps are build with a high aspect ratio (AR ∼ 10) so that

B′2

B0
� B′′

2
:

this means that the curvature given by the two pinch coils mainly affects
the axial frequency while the radial frequency is almost entirely controlled
by the radial gradient and by the bias field B0. In particular one sees that
ω⊥ ∝ B

−1/2
0 and therefore it is easy to change the trap geometry by tuning

the bias field. One important consequence of Eq. (2.7) is that, as we already
anticipated, the trap shape is the same for all the species considered in
this work. The only effect of the different masses is therefore to introduce
a rescaling of the trapping frequencies.

We will now see how a Ioffe-Pritchard trap is implemented in our system.

2.3.2 Mechanical structure

The conductors layout which realizes our magnetic trap is shown in figure
2.9. The main structure is machined out of a pure, oxygen-free copper
tube in which four cut are open: the resulting shape is that of four bars
connected by two pairs of arcs. The current flows in the bar and in the arcs
in the right path to reproduce the Ioffe-Pritchard configuration of figure 2.8.
This structure is vacuum brazed on a chip on which copper is deposed. The
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Figure 2.9. Picture of the millimetric magnetic trap taken inside the vacuum chamber. Char-
acteristic dimensions are indicated.

chip has two functions: on the back side it provides the interface for the
current feed-through while on the front side it hosts the connections with
the trap itself and another circular trace (visible in figure 2.9) which refines
the axial confinement. A similar structure was reported in [63].

At the typical operating current of 70A the radial gradient is calculated
to be B′ ' 370 G/cm, the axial curvature is B′′ ' 130 G/cm2 and the bias
field is around 23 G. This is a rather high value and it is compensated by
two coaxial coils placed outside the vacuum apparatus: one of these coil
is in series with the magnetic trap and reduces the bias field to about
B0 ' 6 G, the other coil is powered by an independent power supply and
allows us to dynamically change the bias field. According to Eq. (2.7) this
gives the following trapping frequencies for for 87Rb in the | 2, 2〉 state: ω⊥ =
2π × 193 Hz, ωz = 2π × 14.6 Hz which must be compared to the measured
value of 2π × 208 Hz and 2π × 16.8 Hz respectively. The small discrepancy is
certainly related to the size of the conductors which plays a non negligible
role. The calculated trap depth at 70 A is about 3.5 mK.

This kind of millimetric structure has several advantages over both the
traditional magnetic trap and the so-called microtraps or traps on mi-
crochips. A quick comparison between the different traps is shown in table
2.5. All the key advantages, are related to the small structure. First the
ohmic resistance of our trap is about 5 mΩ and therefore the power dissi-
pation is limited to a few watts. This is in sharp contrast with traditional
traps which usually require several kilowatts of electric power and corre-
spondingly demand an efficient cooling mechanism. Strictly related to this
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Standard m-trap µ-trap

Vacuum Out In In
Current ∼ 100 A ∼ 100 A ∼ 1 A
Power ∼ 1.5 kW ∼ 50 W ∼ 10 W
νr 100 Hz 500 Hz 1 kHz

Inductance ∼ 10mH Negligible Negligible
Pressure UHV UHV HV

N0 ? 106 > 106 > 105

Opt. access Custom Limited Restricted

Table 2.5. Comparison between the different approach to magnetic trapping.

is the much higher inductance value of the usual traps: this translates in
longer timescale for the switch-off of the trap which is an important issue
for time-of-flight techniques. Furthermore, although the trapping frequen-
cies and hence the condensate production rate are lower than those of a
µ-trap, it is easier to transfer the atoms into the trap and therefore our trap
might operate far from the MOT in a UHV environment: I will come back
to this point in § 2.3.3. Another important difference is that optical access,
although limited by the Ioffe bars, is available in three direction, while in a
µ-trap one of the directions is blocked by the chip. A drawback related to
the size of the trap is the reduced depth: also this point will be discussed
in next section.

An important issue which I discuss now is instead that of the powering
of this device. The current feed-through that supplies our trap has to
satisfy four different tasks: provide the current for the magnetic trap with
the minimum power dissipation, remove the generated heat, be vacuum
tight at the UHV level and allow the optical access along the axis of the
magnetic trap. To comply with all these requirements the current leads
of the feed-through are two coaxial cylindrical copper shells split into two
segments which are displayed in figure 2.10.

The first segment is brazed on the back side of the chip: the outer diam-
eter of the outer conductor is 23 mm while the inner diameter of the inner
conductor is 12 mm the gap between the two conductors is only 1 mm, the
total length of this section is 70 mm. The two shells are held in place by the
connection to the outer segment. This is the most complicated structure
and it is shown with a section in figure 2.11. The outer segment is com-
posed by three pieces: two copper shells which are attached to the inner
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Figure 2.10. Current feed-through for the magnetic trap (shown on the bottom). The feed-
through is formed by two segments: the bottom one is attached to the chip (also shown), while
the upper segment provides vacuum isolation and is used to make the electrical connection to
the power supply.
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Figure 2.11. Detail of the outer segment of the current feed-through for the magnetic trap:
the copper shells are marked in orange, the ceramic ring in blue and the steel gaskets are
marked in red. The outer gray element is a CF16 nipple.

conductors and which complete the electrical circuit and a structure which
provides the electrical isolation between the two conductors and makes the
whole structure vacuum tight. This structure is built with two 0.5 mm-thick
steel structures which contain a ceramic ring. The special steel used is
Kovar which can be brazed both on copper and on ceramics and thus pro-
vides the connection between the two shells of the outer segment. Beside
mechanical tolerances, the main difficulty in the production of this part
is related to the stresses imposed on the ceramic ring during the brazing
process: thermal stress induced by the very different expansion coefficients
can cause cracks in the ceramic ring which make the feed-through leaking.
The hollow part of the cylinder is closed by a small BK7 window mounted
on a CF16 nipple (shown in gray in figure 2.11) brazed to the inner con-
ductor of the outer segment while the whole feed through is attached to the
vacuum apparatus with a CF35 flange (not shown).

The vacuum brazing process used to build the feed through is the best
possible test for the thermomechanical stability of the device: during the
brazing the temperature is about 700 ◦C, something which is far from being
reached under normal duty. Nevertheless, in a bench test carried out in air
we measured that the temperature of the trap can reach more than 100 ◦C
after four minutes of continuous operation at 100 A. At this temperature it
is critical that heat is dissipated through the feed-through and not through
the walls of the main chamber: this could lead to an increased outgassing
which can easily affect the UHV condition.
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Based on rather conservative calculations we expect that the thermal
resistance of the feed-through is around 3 ◦C/W which means that, if the
dissipated power at the trap position is around 10 W, the trap temperature
will be only 30 ◦C higher than the temperature of the outside part of the
feed-through. Although air convection is not an efficient cooling mecha-
nism the outside temperature is always below 50 ◦C which means that the
temperature of the trap is about 80 ◦C. We measured that in these condi-
tion the heating of the chamber is limited and vacuum is not affected. More
problematic is the temperature stability of the system: due to the low ther-
mal resistance the trap heats up during operation and cools down during
the loading of the MOT. Indeed we observe that operating the trap at a dif-
ferent temperature each time compromise the stability of the evaporation
and therefore we optimized the trap duty cycle to limit the thermal cycle.
Particular attention is given to operate the trap continuously so to keep
an equilibrium temperature: in this way the trap can operate with a good
stability and without need for external cooling.

2.3.3 Transfer from the 3D–MOT

The loading of the atoms into the millimetric magnetic trap is not an easy
task and a good effort was needed to have it operate properly. The size of
our 3D-MOT is typically a few millimeters at a temperature slightly lower
than 200µK. At this temperature the size of the magnetic trap is much
smaller, meaning that the atoms have to be compressed before being trans-
ferred in this potential. Adiabatic compression rises the temperature and
one must pay attention not to bring the atom too close to the trap depth.
Furthermore, as one can see in figure 2.2, the trap is 27 mm apart from the
center of the 3D-MOT, a separation that is required since the trap structure
is not compatible with the size of our MOT beams.

These two problems are almost always present to different extent in
all the experiments on ultracold atoms and they are usually dealt with
by trapping the atoms in a mobile magnetic quadrupole trap. This trap
captures the atoms from the MOT and releases them in the magnetic trap.
The mobile trap is usually realized either with several quadrupole traps
powered in sequence [64] or by physically displacing the magnetic coils
[65]: we adopted this second strategy.
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Figure 2.12. Scheme and realization of the coil translation stage: the two holes in the heat
sink allow the passage of the cooling water, the heat sink is cut to suppress eddy currents.
The heat sink is machined out of normal commercial aluminum alloy while the frame is build
in Ergal. The four bars are made out of stainless steel.

Magnetic translation stage

The coils are glued onto an aluminum heat sink which is connected to a
pair of stainless steel bars. The bars are in turn fastened to a frame which
is moved by a mechanical actuator (THK KR series) driven by a brushless
motor (Parker SMH82). The whole structure is shown in figure 2.12.

The choice of stainless steel is dictated by the requirements of reducing
the size of the device and withstand the magnetic force exerted by one coil
on the other. This force is the same but for a sign when the same coils,
after switching to the Helmholtz configuration, are used to generate the
field to exploit Feshbach resonances (see chapter 7). The total weight of
each of the two coils is about 16 N and the magnetic force at 100 A is almost
double around 30 N: this means that when the two coils attract each other
the lower bar feels an upward force of about 14 N and the upper one a
downward force of 46 N while the situation is reversed if the coils repel.
This force will bend the two bars and move the center of the magnetic field:
the bars must be able to limit this displacement to a reasonable value. With
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Figure 2.13. Geometry of the beam bending problem (a) and snapshot of the results of the
finite element simulation of the frame structure under load (b).

the geometry indicated in figure 2.13, for a beam of length L with constant
cross section, the bending induced by a load F applied at a distance a from
a fixed end is given by

∆z =
F a2

6EI
(3L− a) , (2.9)

where E is the Young’s modulus of the material and I is the moment of
inertia of the cross section. For a rectangular cross section with dimension
h in the direction of the load and b in the other direction we have: I = h3b/12.
If we now consider the load equally distributed between the two screws of
each bar every screw will have a load F = W/4. Assuming a linear response,
we can sum up the two contributions:

∆z =
W

24EI
(a2

1(3L− a1) + a2
2(3L− a2)) .

Taking W the one indicated above, E = 195 GPa for stainless steel3, L =
190 mm, a1 = 40 mm, a2 = 180 mm, h = 15 mm and b = 10 mm we obtain that,
when the two coils repel each other the upper coil is bent upward by 14µm
and the lower is bent down by 47µm. As a result the center of the magnetic
field moves by less than 15µm which is acceptable.

The results of this simple model were validated by a finite element sim-
ulation of the whole structure: this allowed us not only to confirm the
above calculation (within 10%), but also to calculate the stress that the bar
will transmit to the Ergal frame. For twice the expected load the maxi-
mum stress, which occurs near the edge of the bars in the bottom part of
the frame (see figure 2.13(b)), is about 14 MPa, way below the tensile yield
strength of this material which is around 500 MPa. Furthermore we cal-
culated that the lowest lying vibrational mode of the bars is around 300 Hz

3We used non magnetic AISI304 steel.
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and other extra modes are absent between 500 Hz and roughly 1 kHz: this is
highly desirable to avoid parametric heating of the atoms during the trans-
fer. The total weight of the frame with the coils and the water cooling is
below 80 N which is largely in the operating range of the selected actuator.

The target speed of the motion is less than 0.2 m/s and it can be ac-
cepted to reach it in more than 3 ms: this allow us to calculate the max-
imum torque required for the acceleration as 2.8 Nm [66]. This is again
safely below the maximum torque of our motor which is 5 Nm.

Typical transfer sequence

During a typical experimental run the current in the quadrupole is ramped
in 500 ms up to 65 A corresponding to a gradient in the horizontal plane
of about 130 G/cm. This compression raises the temperature of the atoms
slightly below 1.1 mK which is not much smaller than the initial trap depth.
This value of the final current is however necessary to have the atomic
cloud pass into the small aperture of our millimetric trap. Once the com-
pression is almost finished the translation stage moves the atoms to the
center of the magnetic trap in 500 ms: the motion is obtained with a posi-
tive constant acceleration and a final constant deceleration. As we pointed
out above the acceleration could take no more than a few ms but in prac-
tice the abrupt profile of the applied jerk4 limits this acceleration to a few
tens of ms in order to preserve the locking of the servo which controls the
motion. Limited losses and heating were observed in the atomic sample
during the transport: the number of atoms after a round trip is about 80%.
Once the translation stage is turned off the magnetic trap is turned on in
about 150 ms to a peak current of 105 A and, when the current is stabilized
(∼ 300 ms after turn on), the quadrupole is turned off in about 300 ms leav-
ing the atoms in the harmonic trap. The overall efficiency of the transfer
process from the MOT to the magnetic trap is about 20% corresponding to
3× 108 87Rb atoms loaded at the beginning of the evaporation.

2.4 Evaporation and hyperfine transfer

The key technique which allows to reach the degenerate regime in our sam-
ple is evaporative cooling [61]. This technique amounts to selectively re-

4For the reader unfamiliar with engineering slang this is the name for the derivative of
the acceleration.
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Figure 2.14. Simplified scheme of the hyperfine structure in a magnetic field of 87Rb. The
number beside the lines is the Zeeman shift of the corresponding transition. Black lines are
low-field seeking levels, gray lines are high-field seeking.

move the hottest atoms from the trap thereby removing energy from the
system and let the remaining atoms thermalize at a lower temperature
through elastic collisions. Repeating this process at a progressively lower
energy, the temperature can be significantly reduced. Eventually if the ini-
tial number of atoms is high enough one can reach the so called run-away
evaporation regime in which the phase space is greatly increased in a short
amount of time because the gain due to the lower temperature leads also to
an increase in the elastic collision rate in spite of the reduction in the num-
ber of atoms. I shall not review the theoretical foundation of this technique:
the interested reader can found them in the above mentioned reference.

In practice, the way to selectively address the high energy atoms follows
from a simple classical consideration: the higher the energy of a particle
the farther its turning point from the trap center. Therefore the higher
energy atoms, due to the inhomogeneous magnetic field of the trap, spend
most of their time where the Zeeman shift of the transition is bigger than
those of the low energy ones. The removal of these atoms from the magnetic
trap is then easily obtained exciting a transition from the trapped state to
a high-field seeking state. In many experiments the transition of choice is
the simple radio-frequency cascade illustrated by the red arrows in figure
2.14: in this case the separation between the levels depends only on the
bias of the magnetic trap and it is therefore in the range of a few MHz.

In our experiment however, this approach is not useful because 87Rb
has the same quantum numbers as 39K and 41K and therefore the evap-
oration would act also on potassium: this is not convenient since, as we
will see in chapter 3, the elastic cross section for these atoms is rather
small and elastic collisions do not allow thermalization in a time compat-
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ible with the lifetime of the sample in the magnetic trap which is about
60 s. As we will see in § 4.1 and § 6.1, the simplest way to cool both potas-
sium isotopes is to cool 87Rb and let interspecies elastic collision have the
potassium sample equilibrate with it. This requires an evaporation process
which acts only on the 87Rb atoms. The solution is to drive the microwave
transition | 2, 2〉 → | 1, 1〉 which, owing to the big difference in the hyperfine
splitting (see figures 1.1 and 1.2), has a very different frequency for the
three species.

A typical ramp for the evaporation is shown in figure 2.15: the ramp is
piecewise linear and the overall shape is roughly exponential. The first part
of the ramp is optimized maximizing the peak density of the cloud which
is the experimental signature of the run-away regime, while the last part,
which is shown in detail in the inset of figure 2.15, is optimized maximizing
the number of atoms in the 87Rb condensate. A frequency step is made
every 40 ms and the total ramp duration is around 20 s. The frequency
span is about 100 MHz which means that evaporation begins outcoupling
from the traps atoms with an energy of 5 mK. By pursuing the evaporation
up to the point in which no more atoms are present in the trap one can
measure the bias field of the magnetic trap since the resonance frequency
at which the atoms at the center of the trap are outcoupled is given by5

νB ' ν0 + 2.10 (MHz/G)B0 ,

where ν0 is the hyperfine separation of 87Rb. The frequency for the evapo-
ration is synthesized by a HP E8257D and amplified to a 40 dBm level (10 W)
with a narrowband amplifier. The output of the amplifier is fed into a horn
antenna in order to maximize the irradiated power.

A figure of merit of the evaporation process can be obtained by mea-
suring the phase space density of the sample as the evaporation proceeds.
The phase space density of a harmonic trap is given by [67]

nPS = N

(
h̄

kBT

)3

ω2
⊥ωz : (2.10)

by comparing this expression with the definition of the critical temperature
Eq. (1.23) we see that when T = TC , nPS = ζ(3): Bose-Einstein condensation
therefore occurs when the phase space density approach one. As we see
if one trades off one order of magnitude in the number of atoms for a
gain of one order of magnitude in the temperature the overall gain in the

5See Eq. (7.2) for a more accurate estimation.
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Figure 2.15. Plot of the evaporation ramp: νHF is the ground state hyperfine separation of
87Rb and the dashed line corresponds to B0 = 6.2 G. Note that the ramp is exponential at the
beginning and becomes linear in the final part.

phase space density is two order of magnitude: we will call this parameter
efficiency of the evaporation

Ge = −∆ log(nPS)
∆ logN

.

In the condition outlined above, which corresponds to the onset of the run-
away regime, Ge = 2.

One of our measurements of the phase density during the final part
of the 87Rb evaporation ramp is reported in figure 2.16: from the slope of
the dashed line we obtain Ge ∼ 2.6. This value therefore shows that our
evaporation is better than the simple run-away condition. As one can see
the upper point has a phase space density already above 1: a Bose-Einstein
condensate was formed6. With only a 87Rb sample the critical temperature
is crossed at about 250 nK with around 1.5× 104 atoms in the condensate.

2.5 Detection procedure

Once the desired atomic species are prepared into the magnetic trap, evap-
orated to the desired temperature and further experiment are done, the
density distribution is measured with an absorption image technique. In
this technique the samples are illuminated with a beam of resonant light
and the absorption profile is recorded onto a CCD.

6In this case nPS is measured from the non-condensed fraction (see 2.5)
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Figure 2.16. Plot of the measured phase density as a function of the number of atoms
during the evaporation. Only 87Rb is present in the magnetic trap for these measurement.
Each group of points corresponds to different ramp segment and each point corresponds to
different parameters: the optimal trajectory in phase space is given by the rightmost point of
each group.

The cross section for the absorption of resonant photons by an atom is
σa = 3λ2

0/(2π) and on resonance the transmitted intensity follows the Beer
law [68]:

IT (x, y) = I0(x, y) exp
(
−σa

w
dz n(r)

)
,

where I0(x, y) is the intensity profile of the beam in the absence of atoms
and n is simply the atomic density distribution. From the above expression
it follows immediately that the density of the cloud integrated along the
imaging direction can be measured as7

n(x, y) = − 1
σa

ln
(
IT (x, y)
I0(x, y)

)
. (2.11)

This technique has a very good signal to noise ratio and can detect up to
a few hundred atoms, however it is destructive in character: after taking a
picture a new sample has to be prepared.

7To keep the notation simple I do not distinguish between the density distribution and
its integral along the imaging direction (column density): the distinction will be clear from
the arguments of the function.
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2.5.1 Hardware setup

In our experiment two separate probe beams exist: these two beams come
respectively along the vertical direction and on the axial direction and ar-
rive on different regions of the CCD array. This double imaging is crucial if
one wants to access the density distribution along all the three directions.

The optical scheme is the following: the output of a dedicated fiber is
split and the two beams are directed on the center of the magnetic trap: the
shadow cast by the atoms is then collected by an acromat lens which sets
the numerical aperture of the system and fixes the diffraction limit in 15µm
along the axial direction and 8µm along the vertical direction. The light is
almost collimated and sent onto another lens which focuses the shadow
image onto the CCD: the resulting magnification, which is calibrated by
imaging the edges of the magnetic trap, is 2 in the axial direction and 2.5
in the vertical one. Typical exposures time are 50µs for each of the two
species.

The CCD camera is a Theta System SIS1-s285 equipped with the sensor
Sony ICX285AL. The size of the sensor is 1040× 1392 pixels, and pixels are
square of 6.45µm of side. The acquisition software can operate the array
in the so-called frame transfer mode: the first picture is stored in a dark
region so that the array can be exposed again within less than 1µs. After
the exposure of this second frame the two frames are transferred and pro-
cessed by the ADC in 600 ms. After this time another pair of frames can be
acquired. This is used in our experiment to take two almost simultaneous
images of the two species: the first frame has the absorption profile of K
and the second that of 87Rb. Although, as indicated in Eq. (2.11) only two
pictures are needed to reconstruct the integrated density profile, we acquire
normally three pictures: the first records IT (x, y), the second I0(x, y) and in
the third the CCD is exposed only to background light. The third image is
subtracted from each of the other two before processing them according to
Eq. (2.11). To suppress the effect of ambient light and to protect the de-
tector from the lattice light (see § 6.2.1) a bandpass filter and a mechanical
shutter are placed in front of the CCD.

2.5.2 Data analysis

The best example of the kind of images that one obtains from the experi-
ment is shown in figure 2.17 where we show three pictures taken respec-
tively well above, close to and below the critical temperature. Quantitative
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200 mm

Figure 2.17. Absorption image showing the transition from a thermal cloud (T > Tc) with
its characteristic Gaussian shape ( left), a mixed cloud (T > Tc) (center) and an almost pure
Bose-Einstein condensate (T � Tc) (right). All images are taken after 15 ms of expansion; the
typical number of atoms in the condensate is 105 which sets a critical temperature of about
200 nK.

information from these pictures can be extracted with a two-dimensional
fit. Above the critical temperature the density profile of the harmonically
trapped cloud is Gaussian and the corresponding fit function is

nG(x, y) = A exp

(
−(x− x0)2

2σ2
x

− (y − y0)2

2σ2
y

)
+B . (2.12)

The width of the cloud is simply related to the temperature by the equipar-
tition theorem

T =
m

kB
ω2

i σ
2
i , (2.13)

while from the normalization of the density one obtains that

N =
1
2π

Aσxσy . (2.14)

If the sample is instead well below the critical temperature we know from
1.30 that the density profile in the Thomas-Fermi regime is an inverted
parabola: integrating it along one direction one obtains that the proper fit
function has the form

nTF (x, y) = A

(
1− (x− x0)2

2R2
x

− (y − y0)2

2R2
y

)3/2

+B . (2.15)
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Similar to the Gaussian case we have that the number of atoms is given by

N =
16
3
π ARxRy (2.16)

and from the radius we can readily obtain the chemical potential as

µ =
1
2
mω2

iR
2
i . (2.17)

Finally, when the temperature is only slightly sub-critical, the density
is well reproduced by a bimodal distribution given by the sum of Eq. (2.12)
and Eq. (2.15).

Operatively the initial guesses for the fitting procedure are determined
by two unidimensional fits on the distributions obtained by averaging each
direction: in both cases the width (σ or R) is not changed by the integration
while in general the amplitude is. A simple calculation yields that, setting
ax, ay, wx, wy, bx and by the results of the two unidimensional fit the correct
estimation of the amplitude for the two-dimensional fit is given by:

Aguess = α

√
M

axay

wxwy
(2.18)

where M is the total number of point in the image and the constant α for
a Gaussian (Thomas-Fermi) distribution is given by 1/

√
2π (8/(3π)). Similar

one has that
Bguess =

1
2

(
bx
W

+
by
H

)
(2.19)

where H (W ) is the height (width) of the image. The initial guesses for the
two unidimensional fits are obtained by taking for the center and width
respectively the first and second moment of the distribution and for the
amplitude and background the maximum and minimum.

We conclude this section by mentioning that, especially for a Bose-
Einstein condensate, the observation of the system in the magnetic trap
is simply impossible due to insufficient spatial resolution and high den-
sity of the sample. For this reason the most used technique is to image
the clouds after some ms of ballistic expansion. It can be shown that for
a Gaussian the only effect is to slightly modify the relation between the
observed width and the temperature:

T =
m

kB

ω2
i

1 + ω2
i t

2
e

σ2
e,i '

m

kB

σ2
e,i

t2e
, (2.20)

where te is the expansion time, σe,i is the width measured after expansion
and the last approximation requires ω2

i t
2
e � 1. This approximation can be

useful when the exact frequency is known with poor precision.
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More surprisingly, a similar scaling behavior is valid also for a Bose-
Einstein condensate in an elongated cylindrical trap in the Thomas-Fermi
regime [42]. One finds that the correct fit function is still Eq. (2.15) and the
expanded radii are related to the one in trap by the following relations [69]

R⊥(t) = R⊥(0)
√

1 + τ2 (2.21)

R‖(t) = R‖(0) (1 +A−2
R )(τ arctan(τ)− ln

√
1 + τ2) , (2.22)

where we have set τ = ω⊥t. One important well known consequence of
Eq. (2.21) is that, opposite to what happens for a thermal gas, there is a
moment in which the aspect ratio of an expanding condensate inverts: a
prolate condensate becomes oblate after a sufficiently long expansion and
vice-versa.



Part II

Experiment with 39K
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Introduction

Beside being the most abundant isotope of potassium, 39K is a very in-
teresting atom. As it was early recognized its intraspecies interaction is
attractive and therefore cannot support a large and stable Bose-Einstein
condensate. For this reason this isotope was never trapped in a magnetic
trap and sympathetic cooling was only applied to 41K: beside this, due to
the small elastic cross section of the 87Rb-39K mixture, it was not even sure
that sympathetic cooling between these two species could work at all.

During the initial part of my thesis we were very interested by the per-
spective of using this isotope purposely for exploring the field of attractive
condensates. For this reason we first demonstrated that sympathetic cool-
ing with 87Rb is possible also for this isotope and then we made the first
direct collisional measurement on this isotope. Both these results are de-
scribed in detail in chapter 4. However at the same time a theoretical work
aimed at establishing the possibility to use the repulsion between 87Rb and
39K to stabilize the latter showed that, although the effect indeed exists it
is too small and stable attractive condensates cannot be formed only with
less than 2× 103 atoms, a quantity that is barely detectable by our imaging
system [70]. Once this fact was established, the only viable alternative to
operate with this isotope was to exploit the Feshbach resonances that were
recently predicted by our group [71, 72]. However, as I outlined in the In-
troduction, the main goal of our experimental apparatus is in loading two
different Bose-Einstein condensates into a 3D optical lattice. For this rea-
son it seemed much more sensible to shift to 41K, for which a Bose-Einstein
condensate was already realized [16]. These results are presented in part
III.

I must say that indeed our experimental work sparked a renewed inter-
est for 39K. This interest was made more concrete by another experiment of
our group which is devoted to Feshbach spectroscopy and atom interfer-
ometry. Motivated by our work and taking advantage of the accumulated
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know-how, they could create a Bose-Einstein condensate of 39K by exploit-
ing both inter- and intraspecies Feshbach resonances [73]. With this work
all the stable isotopes were brought to quantum degeneracy.

This part consists of two chapters. In the first chapter I will introduce
the issue of cold collisions between atoms introducing the tools that I will
use to analyze the data obtained in the experiments presented in chapter
4.



Chapter 3

Cold collisions

When you are solving a problem, don’t worry. Now, after you have

solved the problem, then that’s the time to worry.

(R. Feynman)

This chapter treats two very important topics in the current panorama
of the physics of ultracold atoms. The first is that of s-wave scattering in
atoms: in § 3.1, I will very briefly review the fundamental elements of scat-
tering theory needed to make use of the scattering length concept. Then
I will introduce the so-called effective range approximation which is suit-
able to treat ultracold collisions beyond the zero temperature limit. The
second topic is that of Feshbach resonances: I will show how, due to the
short-range, spin-dependent interactions between the outer electrons of
two colliding atoms, under suitable conditions, the scattering length be-
comes strongly dependent on an external uniform magnetic field. The exis-
tence of these resonances plays a crucial role in several actual experiment,
as I pointed out in the Introduction.

3.1 s-wave scattering in atoms

The aim of this section is to justify the expression used to take into account
atomic interactions in § 1.2. I will not review the details of the calculation
which can be found for instance in [74], but I will recall the important
results which will be extensively used in the following sections.

Neglecting for the moment relativistic effects, the problem of scattering
of two particles can be brought back to that of a single particle with the
reduced mass mR in a central potential U(r). Taking as z the direction of
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the relative motion and h̄k the relative momentum, it is possible to expand
the particle wave function into a sum of an incoming plane wave and a
modulated outgoing spherical wave centered in the center of mass of the
system:

ψ ' eikz + f(k, θ)
eikr

r
. (3.1)

Here θ is the angle between ez and er and the function f(k, θ) is called
scattering amplitude.

Given the symmetry of the problem it is customary to carry out an ex-
pansion of the scattering amplitude in eigenfunctions of the angular mo-
mentum:

ψ =
∑

l

Al Pl(cos θ)Rkl(r) . (3.2)

The radial functions obey the following 1D Schrödinger equation:

u′′kl(r) +
(
k2 − l(l + 1)

r2
− 2mR

h̄2 U(r)
)
ukl = 0 , (3.3)

where we have defined ukl = r R(r).

From Eq. (3.2) one obtains the following partial wave expansion for f

f(k, θ) =
1

2ik

∑
l

(2l + 1) (e2iδl − 1)Pl(cos θ) =
∑

l

(2l + 1) fl Pl(cos θ) , (3.4)

where δl are the phase shift of Rkl with respect to a simple spherical wave.
The value of these phase shifts depends on the actual shape of the poten-
tial.

However, in the limit of low energy1, the scattering for l 6= 0 will be
dominated by the centrifugal barrier and in this case one can show that
[74, § 131]

fl ∼ k2l ,

this means that in the limit k → 0 only the s-wave contributes to the scat-
tering2.

In this limit 3.4 becomes

f(k, θ) =
1

2ik
(e2iδ0 − 1) ' 1

k (cot δ0 − i)
, (3.5)

1k` � 1, where ` is the characteristic length scale of the potential.
2For a potential of the form r−n, the argument remains valid, but the given asymptotic

behavior holds only for 2l + 3 < n [75].
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and, although the phase shift δ0 still depends on the detail of the potential,
the cross section can be simply written as

lim
k→0

σ0(k) = 4pπa2 (3.6)

where a is the so called scattering length formally defined as

a = − lim
k→0

tan δ0(k)
k

(3.7)

and p is equal 1 if the particle are distinguishable and 2 if they are identical
bosons3.

The cross section Eq. (3.6) is equivalent to that given by a pseudopoten-
tial such that [76, 75]

V (r)ψ(r) = gδ(r)
∂

∂r
(rψ(r)) , (3.8)

where g is given by

g =
2pπh̄2

2mR
a . (3.9)

Note that for a function ψ regular in r = 0 as the one describing the solution
of a Gross-Pitaevskii equation the pseudopotential can be written as

V (r − r′) = gδ(r − r′)

which is the form used in § 1.2.
As we pointed out in the beginning, considering the interaction poten-

tial as a central one is valid if we neglect relativistic effects which arises
because of the atomic spin. We postpone considerations about these ef-
fects to § 3.2, here we shall only remind that, even neglecting relativistic
effects, the actual interaction potential between the two atoms depends on
the total electronic spin of the atomic pair, S = 1/2⊕1/2. One should there-
fore distinguish between two different scattering lengths: one belonging to
the triplet potential (S = 1) and one belonging to the singlet one (S = 0).
The difference between the two is seen only at short distance and we will
analyze this point in § 3.2: for the present analysis it is worth noting that,
all the experiment reported in this work, but those presented in chapter 7,
are performed with atoms in the |F = 2,mF = +2〉 state. For this state one
has S = 1 and the two atoms interact only through the triplet potential so
that the formalism developed so far is still meaningful.

3In the case of identical spinless fermions the s-wave scattering is suppressed on sym-
metry ground.
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3.1.1 Zero energy scattering

The interaction between two neutral atoms at large separation is of the
van der Waals type: U(r → ∞) = −C6 r

−6, while at very short distances
the Coulomb repulsion will dominate. Following [77, 75, 78] we will use a
truncated van der Waals potential

U(r) =

{
−C6 r

−6 if r > rc

∞ if r ≤ rc
. (3.10)

This potential depends on two parameters: the C6 coefficient and the cutoff
of the hard core rc which corresponds to the position of the minimum of
the potential that we expect to be on the order of the atom size. The C6

coefficient can be calculated ab initio for the alkali atoms with very high
accuracy and the calculations can be tested against data from molecular
spectroscopy. From this coefficient it is possible to build a length scale

a6 =
(

2mRC6

h̄2

)1/4

(3.11)

which, owing to the easy polarizability of the alkali atoms, is much bigger
than rc. It can be shown that this condition allows for the application of
a semiclassical approximation which simplifies the solution of the radial
Schrödinger equation [77]. Once Eq. (3.3) is solved, the scattering length
can be extracted from the asymptotic behavior u ∼ (f0 − r). Remembering
that, within our approximation, f0 = a, one finds that [77]

a = ā (1− tan(Φ)) , (3.12)

where ā is proportional to a6

ā = 0.478 a6 (3.13)

and the phase Φ depends on the minimum position rc

Φ =
a2

6

2r2c
− 3π

8
. (3.14)

The scattering length given by equation Eq. (3.12) is plot in figure 3.1.
As we can see, the scattering length has a divergence for Φ = nπ and each
divergence corresponds to the appearance of a new bound state. The semi-
classical approximation used to solve the Schrödinger problem can be re-
stated as the requirement that the potential supports a high number of
bound state.
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Figure 3.1. Scattering length of the truncated C6 potential as a function of the parameter Φ.

The prediction of Eq. (3.12) has two important consequences. The first
is that, assuming no knowledge on the short range cutoff, and therefore
taking Φ uniformly distributed in [0, π], one obtains that the cross section
of atom-atom scattering in alkali elements should be positive in 75% of
cases [77, 78]. The second is that, if a bound state is far from threshold,
Φ ∼ 0 and therefore the scattering length is on the order of ā. The actual
value for the triplet scattering lengths, the C6 coefficients and the value of
ā for all the alkali atom combinations relevant to this work are reported in
table 3.1. As we can see four out of five scattering lengths are positive and
indeed ā provides the good order of magnitude for the scattering length with
the remarkable agreement in the case of 41K-41K. However, we see also that
in the case of 39K-39K the model fails to predict the sign of the scattering
length and in the case of both 87Rb-39K and 87Rb-41K the results are wrong
by a factor two. This means that for these mixtures a bound state (a virtual
one in the case of 39K-39K) lays near the k = 0 energy threshold. We will see
that Feshbach spectroscopy is the ideal tool to probe the position of this
level and therefore establish the details of the interaction potential.

It is worth remarking that the C6 coefficient represents only the long
range part of the actual potential: this means that not only it is not sensi-
tive to the isotopic shift (see table 3.1), but it cannot distinguish between
triplet and singlet scattering. Also these distinctions can be made measur-
ing the position of Feshbach resonances as we will see in § 3.2.
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C6 ā a (exp.) Ref.
87Rb-87Rb 4691(23) 79 99 [79]

41K-41K 3897(15) 63 65 [80]
39K-39K 3927 62 −33 [81, 80, 82, 83]

87Rb-41K 4274(13) 69 164 [71, 72]
87Rb-39K 4274(13) 68 36 [71, 72]

Table 3.1. Table of the C6 coefficient and triplet scattering length for all the alkali atoms
mixture relevant to this work. All data are in atomic units. All C6 values are taken from [84],
but the one for K-K which is taken from [85]. Reference is given for the experimental values,
note that one of the measurement of the scattering length of 39K is reported in this work (see
following chapter).

3.1.2 Effective range approximation

The above considerations about the scattering length were carried out
in the strict limit k = 0. If this can be considered a satisfactory result
for the physics of Bose-Einstein condensate as described by the Gross-
Pitaevskii equation, it is an oversimplification in the case of finite temper-
ature gases.

The finite temperature T introduces a distribution of relative wavevector
k centered around zero but with a second moment given by

kT =
1
h̄

(2mRkBT )1/2 : (3.15)

this means that the dependence of the cross section on the relative wavevec-
tor must be taken into account.

A good starting point is to evaluate the energy dependence of the scat-
tering amplitude given by the pseudopotential (3.8). It can be easily shown
that the scattering amplitude is given by [75, 74]

f0 = − 1
1/a+ ik

, (3.16)

and the corresponding cross section is then

σ(k) =
4pπ a2

1 + a2k2
. (3.17)

The cross section σ(kT ) is plotted in figure 3.2 as a function of temperature.
It has the right behavior both in the zero energy and in the so called unitary
(k →∞) limits, but one cannot expect it to be accurate in the intermediate
regime: as the energy is increased, the two colliding atoms experience more
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Figure 3.2. Plot of the cross section as a function of the kinetic energy of two colliding atoms
(E = h̄2k2

T /(2mR)). The C6 coefficient is that of 39K (see table 3.1), while the scattering length
is −33 a0 (red, dashed) or +33 a0 (blue, solid). The dotted line represents Eq. (3.17) which is
insensitive to the sign of a.

and more the short range part of the potential which is neglected by the
pseudopotential approximation.

It can be shown that Eq. (3.17) can be viewed as a zero order approx-
imation of the expansion of the cross section in the limit of small k. The
next order of the expansion is given by the effective range approximation
in which the scattering amplitude is written as [74]

f = − a

1− 1
2 are k

2 + iak
(3.18)

where the coefficient re is the effective range. The corresponding cross
section is then given by

σ(k) =
4pπ a2(

1− 1
2are k

2
)2

+ a2k2
. (3.19)

For the truncated van der Waals potential the effective range can be
calculated explicitly [86]

re = a6

(
1.39473− 4

3
a6

a
+ 0.63732

a2
6

a2

)
, (3.20)

where a is given by 3.12. Taking instead the scattering length as an ex-
perimental input, Eq. (3.20) gives explicitly the effective range: this way
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one can infer the behavior of the cross section as a function of k from
the zero temperature parameters. The expansion underlying the effective
range approximation is legitimate as long as the contribution of the term
are k

2/2 is small with respect to 1: this limits the range of validity of this
approximation for 39K to T ∼ 100µK.

This cross section is also plot in figure 3.2: as one can see, the k depen-
dence is much bigger if one includes the effective range and furthermore
this term introduces a difference between positive and negative scattering
length which is not contained in Eq. (3.17). However, as we will see in
§ 4.2, this difference is much less pronounced if we include the complete
temperature dependence of the collision rate.

3.2 Feshbach-resonances

As we pointed out at the end of § 3.1, the interaction between the two atoms
depends on the total spin of the atomic pair which, for the alkali atoms can
be 0 or 1. The low-lying electronic potentials are therefore characterized by
the molecular Born-Oppenheimer potentials 1Σ+

g and 3Σ+
u corresponding

to the singlet and triplet total spin4: the difference between the two is
determined by the overlap of two electronic wavefunctions. The scale of
this interaction is set by the size of the electronic wavefunction which is
typically a few atomic units. This means that the big difference between
the two potentials lies below the cut-off rc that we used to write Eq. (3.10):
a typical plot highlighting the relevant energy and length scales is shown
in figure 3.3. From the inset of the figure, which reports the typical shape
of a C6 potential, it should be clear that the electronic interaction has a
huge effect albeit at short range. Yet one has to mention that the typical
temperature energy scale for cold collisions is much less than 3 MHz which
is 10−4 on the scale of figure 3.3: this again is at the root of the semiclassical
approximation used to obtain Eq. (3.12) and, more generally, it allows us
to consider only zero-energy scattering.

At long distance, where the interatomic potential has a negligible ef-
fect, the atomic pair is well described by the set of quantum numbers
α = {F1m1, F2m2, `m`}, where the quantization axis is defined by the ex-
ternal magnetic field, the first two pairs are the atomic state, the last pair

4It is worth remembering that the g/u symmetry is meaningless if the two atoms are of
different species.
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Figure 3.3. Plot of the internuclear potential

is the angular momentum of the relative motion and braces are understood
to imply symmetrization with respect of identical boson exchange5. We re-
fer to the set α as a scattering channel and we distinguish between open
and closed channel based on their asymptotic energy Eα. The latter is sim-
ply the sum of the two atomic energies given by the hyperfine separation
plus the Zeemann shift.

Unless, as we assumed in the rest of this chapter, the total spin of the
atomic pair is fixed as for the {2 2, 2 2, `m`} channels, the interatomic poten-
tial couples different channels. This coupling is invariant under rotation
with respect to the quantization axis and therefore m1 + m2 + m` is con-
served; beside this selection rule, the channels are coupled by a tensor
potential of the form [87]:

V (r) = V3(r)P̂3 + V1(r)P̂1 + VSS(r) (3.21)

where Vi(r) and P̂i indicate respectively the potential and the spin projector
operator and i = 2S + 1. The term VSS(r) includes relativistic corrections
which are dominated by the spin-spin interaction. It is a weak term since
it is next order in QED but it is non diagonal also with respect to ` and
it therefore introduces coupling between different partial waves: it can be
shown that it is second order and therefore couples channels with ∆` = ±2.

5The notation used in this chapter closely follows that of [87].
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FK FRb mK mRb Eα/h [MHz]
B = 0 B = 60G

1 1 +1 +1 0.0 (-98.97)
2 1 +1 +1 254.01 367.963
2 1 +2 0 254.01 436.949
1 2 +1 +1 6834.68 6918.66
1 2 0 +2 6834.68 6992.37
2 2 +2 0 7088.69 7271.63
2 2 +1 +1 7088.69 7286.62
2 2 0 +2 7088.69 7296.89

Table 3.2. Channels coupled to the absolute ground state of the 41K-87Rb mixture, neglecting
relativistic effects. Magnetic field lifts the degeneracy with respect to m. The Zeemann shift
of the ground state has been subtracted from the energy of the other states.

The most important coupling is therefore between s and d waves: this term
opens several channels for dipolar relaxation [87]. However, if one consid-
ers the absolute ground state of the atomic pair that channel is by defini-
tion the only one to be open. A scheme of all the channel coupled to the
absolute ground state α0 = {1 1, 1 1, s 0} for the mixture 41K-87Rb neglecting
VSS(r) is shown in table 3.2.

Neglecting relativistic effects, Feshbach resonances arise because, due
to a difference in the magnetic moment of two coupled channels, changing
the magnetic field changes the relative position of the bound and scatter-
ing states between the two channels. When the entrance channel is the
absolute ground state (and therefore the second channel is closed) the un-
derlying physics can be understood in terms of figure 3.1: a new bound
state is pulled in and out of the effective potential seen by the atomic pair
and as a consequence the scattering length varies dramatically with the
applied magnetic field.

Given the huge number of bound states and of coupled closed chan-
nels shown for example in table 3.2, one sees that predicting the number
and the position of Feshbach resonances is not an easy task. Around
a broad Feshbach resonance the problem can be mapped onto an effec-
tive two channels model in which one identifies the open channel as the
one populated at infinite atomic separation and a single closed channel to
which the bound resonant state belongs [88, 89, 90]. The two channels
are then coupled by the appropriate element of Eq. (3.21). Within this ap-
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Figure 3.4. Schematic representation of a two-channel Feshbach resonance. The dashed
line is the threshold energy and the black line is the open channel: the threshold energy is
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proach one finds that the scattering length depends on the magnetic field
as:

a(B) = abg

(
1− ∆

B −B0

)
(3.22)

where abg is the background scattering length at |B − B0| � ∆, B0 is the
center of the resonance and ∆ is the distance between the center and the
value of the magnetic field where the scattering length vanishes: this quan-
tity is also called width of the resonance. A schematic representation of the
two channel model is done in figure 3.4 where we plot molecular potentials
at different values of the magnetic field. For the sake of clarity the energy
of the open channel (solid black line) is taken as zero so that it does not
change with the magnetic field: the continuous line in the closed channel
marks the relevant bound state which can be displaced with respect to the
threshold energy by changing the magnetic field.

The two channel model gives an analytic expression for the center and
the width of the resonance and, more important, it allows to make simple
calculation close to the resonance center: this is of great importance be-
cause, as the scattering length diverges, an universal behavior is expected
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independent on the resonance details. In particular one finds that in the
two-channel approximation the binding energy of the molecular level in-
volved in the resonance is given by [87]:

Eb = − h̄2

m
(
abg

∆
B−B0

)2 . (3.23)

This expression, in the universal limit B → B0 recovers a fundamental
results of scattering for which the size of the bound state is given by the
scattering length.

As we will see in chapter 7, the experimental signature of a Feshbach
resonance is associated to a drastic increase of three body losses which
occur when three atoms collide leading to the formation of a molecule. The
molecule then escapes magnetic trapping and the atom, which acquires
the molecular binding energy, evaporates from the trap. For this reason
one expects a sudden loss of atoms when the magnetic field is tuned close
to B0.



Chapter 4

Collisional properties of 39K

A journey of a thousand miles begins with a single step.

(Lao-tzu)

In this chapter I will present the results obtained during my thesis on
the 87Rb-39K mixture. As it is shown in table 3.1, 39K has a negative in-
traspecies scattering length: this represents a major problem not only for
the realization of a Bose-Einstein condensate because of mean field col-
lapse (see § 1.2.2), but also poses a major challenge to the cooling to ul-
tralow temperatures. This is due to the Ramsauer effect which predicts
the presence of a zero in the elastic cross section for negative scattering
length [74]. This means that, at a certain temperature, the elastic colli-
sions needed for evaporative cooling will be suppressed. In order to over-
come this problem the technique widely employed is that of sympathetic
cooling [10]: two species are mixed into a trap and evaporation is applied
to only one of them; the two species then thermalize owing to interspecies
elastic collisions. This technique has indeed allowed the production of a
Bose-Einstein condensate of 41K [16] and the first degenerate Bose-Fermi
mixture 6Li-23Na [13], but the scattering length in the case of 39K is smaller
and therefore the process is less efficient.

We will see in § 4.1 that we indeed succeeded in obtaining for the first
time the sympathetic cooling of 39K with 87Rb. This gave us access to the
first ultracold sample of 39K on which we performed the first direct mea-
surement of the triplet scattering length, which had been previously deter-
mined from molecular spectroscopy [80] or through a scaling from data of
Feshbach spectroscopy of 40K [81]. Our results are published in Phys. Rev.
A [82] and will be detailed in § 4.2.

87
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Figure 4.1. Experimental sequence showing sympathetic cooling between 87Rb ( left) and
39K(right). All the images are taken after 1 ms expansion. The phase space density at 1 µK
for NRb = 3× 104 and NK = 2× 104 is 0.02 and 0.01 respectively. Images are taken along the
vertical radial direction.

4.1 Sympathetic cooling of 39K with 87Rb

The striking experimental signal of sympathetic cooling between 87Rb and
39K is shown in figure 4.1, where I show a series of pictures taken at dif-
ferent stage of the evaporation of 87Rb: as we can see the size of the two
cloud is the same signaling that they are in thermal equilibrium. This can
be deduced from Eq. (2.20) observing that the 1 ms expansion time is here
negligible and that mKω

2
K = mRbω

2
Rb, since the two species have the same

magnetic moment. If one pushes the cooling process forward it is expected
that, as soon as the cloud of 39K approaches the degeneracy, the system
becomes dynamically unstable toward the mean field collapse of the 39K
condensate owing to its negative scattering length. However, our results
show that, in spite of the low interspecies cross section of 35.9(7) atomic
units [71, 72], the sympathetic cooling can take place. Thermal equilibrium
between the two species is established by interspecies collision: the rate of
these collisions depends on the density of the two species and on their tem-
perature. In our case the reduced collision cross section is compensated by
the high trap frequencies (for 39K: ω⊥ = 2π× 447 Hz, ωz = 2π× 29.4 Hz) which
increase the density. A careful study of the thermalization dynamics of the
two clouds can be done starting from the two coupled Boltzmann equation
[91] but is beyond the scope of this thesis.

More qualitatively, one can expect that the two species can reach ther-
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mal equilibrium if the heat capacity of the coolant (87Rb in our case) is
greater than that of the species to cool (39K). For an ideal classical gas
C = 3N kBT and therefore the necessary condition can be formulated sim-
ply as

NRb > NK .

In figure 4.2 we report the measured temperature difference between the
two species as a function of the relative atom number: as we can see the
temperature difference becomes negligible when NRb/NK ? 2.7. The qual-
itative behavior of the data can be understood with a very simple model:
energy is removed from the 87Rb cloud by means of forced evaporation while
energy is transferred to it from the hotter 39K cloud due to interspecies col-
lision. Assuming a dynamical equilibrium between these two processes
and indicating with W the power transfer between the two clouds, from a
simple model based on two independent Maxwell-Boltzmann distributions,
one finds that [92]

W = kB(TK − TRb)Γ12 , (4.1)

where Γ12 is the interspecies collision rate i.e. the number of interspecies
collisions per unit of time. Remembering that mK ω̄

2
K = mRbω̄

2
Rb = κ one has

that [92, 91]

Γ12 =
σ12NKNRb√

8π2 kB

(
κ

TRb

)3/2 ( TRb

mRb
+
TK

mK

)1/2

, (4.2)

where we made the rather crude approximations of neglecting the reduced
density of the hotter 39K cloud and also the dependence on temperature
of the cross section. Introducing explicitly the temperature difference ∆ =
T2−T1 and the ratio in the number of atoms x = NRb/NK , Eq. (4.1) becomes

W̃ =
√

8π2 W

N2
1

= σ12

(
κ

TRb

)3/2

∆
(
TRb

mR
+

∆
mK

)1/2

x . (4.3)

Although in principle Eq. (4.3) can be explicitly solved to give ∆(x) the
model is implicitly fit to the data by numerically solving Eq. (4.3) taking
W̃ as a free parameter and TRb = 20µK as found in the measurements:
the result of this procedure is the red curve in figure 4.2. The minimum
reduced χ2 is about 12, but the agreement is very nice, considering the
several approximation present in the model.

No attempt has been made to infer a cross section from the data, given
the precision of [71], but instead the known value was used to evaluate
Γ12 and to guide the optimization of the evaporation. The optimized ramp
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Figure 4.2. Temperature difference versus ratio of the atom number of the two species. The
ramp length is fixed to 19 s, and the final temperature of 87Rb is constant around 20 µK. The
solid red line is a fit to a simple model implicitly defined in Eq. (4.3).

shows two changes with respect to the one of 87Rb alone: the ramp is con-
sistently slowed down in the mid part of the evaporation from T ∼ 200µK
up to T ∼ 3µK. At this point we observed that, in order to maximize the
final number of potassium atoms, in the very last part of the evaporation
it is better to cool the 87Rb sample to the desired temperature, keep this
temperature by maintaining on the evaporation and let interspecies ther-
malization follow. As it is shown in figure 4.3, with this technique the
temperature of the two samples is always the same within the experimen-
tal uncertainty and the number of atoms behave as expected: 87Rb is lost to
the evaporation while the number of 39K atoms decays slowly only because
of collisions with the background gas.

4.2 Measurement of the scattering length

As a benchmark of the new apparatus we performed a measurement of
the triplet scattering length of 39K. This determination, although not in
a very nice agreement with the successive precise measurement obtained
from Feshbach spectroscopy [83], allowed our research team to optimize
the apparatus and to obtain several insight on its potential pitfalls. This
optimization work had a big impact on the work presented in chapter 6.

We measured the scattering length by analyzing the decay to equilib-
rium of a non-thermal atomic distribution. This non-thermal distribution
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Figure 4.3. Number of atoms (top) and temperature (bottom) as a function of the optimized
evaporation time for the two species. Where not shown error bars are smaller than point size.

was prepared by exciting selectively only the radial degrees of freedom: the
radial size of the cloud increases while the axial size remains constant. The
gas then relaxes toward an equilibrium state with a higher temperature and
the correct aspect ratio.

In the next section I will give more quantitative details about this tech-
nique and then I will show our experimental results. I will then conclude
this chapter by making some consideration on the numerical simulation
required to obtain the result on the scattering length.

4.2.1 Cross-dimensional thermalization

As pointed out above and from a very general point of view, the decay
toward thermal equilibrium, which is driven by collision, carries informa-
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tion about the elastic cross section. To practically implement this kind of
measurement one needs a reliable way to always prepare the same non-
equilibrium state and to monitor its relaxation.

In a harmonic trap, in absence of collisions, the atomic dynamics along
different degree of freedom is completely decoupled: the Hamiltonian of the
system is in fact separable as we saw in § 1.2.1. If a sample is prepared in
this trap with different energy distributions along different directions this
difference will not vary with time. On the other hand, due to interactions,
the collisions drive the system toward thermal equilibrium, namely, a state
in which the total energy is conserved and the effective temperatures of the
different degrees of freedom are equal. The energy distribution along the
different direction is readily measured as the width1 w, of the atomic cloud
in the trap since

Ei =
1
2
kBTi =

1
2
mω2

i w
2 , (4.4)

where ω indicates the trapping frequency.
A reliable way to prepare a non-equilibrium system is again indicated by

the presence of a harmonic confining potential. If we modulate the trapping
potential with a time dependent profile such that

V (r, t) = (1 + ε(t))V (r)

this will induce transition from the state | i〉 to | f〉 6= | i〉 with a rate which
can be easily evaluated with the Fermi’s golden rule:

Ri→f =
π

h̄2

∣∣∣∣〈f |∂V∂ε | i〉
∣∣∣∣2 Sε(ωfi) , (4.5)

where Sε is the single sided power spectral density of the modulation ε and
h̄ωfi = Ef − Ei. For a harmonic potential in one dimension one obtains the
perturbation connects the initial state |n〉 only with the two states |n ± 2〉.
The rate can be easily calculated as:

Rn→n±2 =
πω2

16
Sε(2ω)(n+ 1± 1)(n± 1) .

Starting from the above result it is possible to calculate the heating rate
due to this parametric excitation and one finds that is proportional to the
average energy. This means that the energy rises exponentially [93]:

〈Ė〉 = π2ν2 Sε(2ν) 〈E〉 . (4.6)
1We indicate the second moment of the atomic density as w instead of the more custom-

ary σ, to avoid confusion with the cross section.
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From Eq. (4.6) one can clearly see that if the modulation is sharply
tuned around one of the trapping frequency energy is introduced in the
system selectively on that degree of freedom. If the excitation is applied
for short times thermalization will not occur and the decay toward ther-
mal equilibrium following the excitation can be measured. Furthermore,
since the excitation depends deterministically on the modulation parame-
ters, this gives to the method the required reproducibility.

The ratio of the energy along the excited direction to the others, which is
proportional to the square of the aspect ratio A2

R = w2
z/w

2
⊥ (we will assume

cylindrical symmetry as in our magnetic trap), exponentially decays to one
with a time constant τc which is proportional to the collision rate γel

τ−1
c = γc =

γel

α
=
n̄〈σv〉
α

, (4.7)

where we have expressed the collision rate as a function of the cross sec-
tion σ, the relative velocity v and the average density n̄ and 〈·〉 indicates
averaging over the Boltzmann distribution. The constant α indicates the
average number of collision an atom needs to reach thermal equilibrium: it
is on the order of 3, but cannot be easily calculated and in our experiment
it was estimated with a numerical simulation that is fully documented in
the following § 4.2.3. Therefore, by measuring the time τc, it is possible
to obtain a measurement of the cross section σ and if measurements are
available at different temperature, within the effective range approximation
(§ 3.1.2), it becomes possible to measure the sign of the scattering length
a.

This cross dimensional thermalization process has been used so far to
obtain a measurement of the scattering length for Cs [94, 95], Rb [96], Na
[97], 40K [98], Cr [99] and the mixture 87Rb-40K [100].

4.2.2 Determination of the triplet scattering length

The experimental procedure used to determine the triplet scattering length
of 39K is the following: after the sample has been prepared by means of sym-
pathetic cooling at the desired temperature, 87Rb is blown away from the
trap with a pulse of resonant light, leaving a pure sample of 39K in the mag-
netic trap. Then the radial degrees of freedom are excited by modulating
the value of the trap bias field at twice the frequency of radial confinement
for a time tmod = 100 ms. This time is much longer than the radial period
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Figure 4.4. Absorption images of the cloud of 39K atoms for different evolution times of 1 s
( left), 7 s (center) and 15 s (right). To guide the eye the shape of the clouds is outlined with a
dashed line: it relaxes toward a more elongated shape owing to interatomic collisions. Images
are taken after a 2 ms expansion.

but shorter than the relaxation time τc: this means that, when the modu-
lation is switched off, the radial size of the cloud is bigger than at thermal
equilibrium and relaxation ensues. We allow a time tw for relaxation to
occur and then we image the cloud along the vertical radial direction by
means of absorption imaging taken in situ or after a 2 ms expansion. The
relaxation of the cloud can be appreciated from the images shown in figure
4.4 where the cloud evolves toward a more elongated shape. From the mea-
sured widths w of the Gaussian density profile we can calculate the average
potential energy along the radial r and axial z profile according to Eq. (4.4).
We repeated this procedure for different values of the atom number NK

and for two different values of temperature, 16 and 29µK. In order to avoid
any systematic effect associated to in situ imaging such as magnetic field
inhomogeneities or to the elongated geometry, the dataset at 16µK is taken
with a slightly different procedure. First, we adiabatically decompress the
trap to ωr = 2π×290(1) Hz and ωz = 2π×21.24(1) Hz, by reducing the current
in the magnetic trap and adjusting the bias field and then blow away 87Rb,
apply parametric excitation at ωr, wait for a variable time and image the
cloud after a 2 ms expansion. The ratio Er/Ez as a function of tw is plotted
in figure 4.5 for a typical experimental sequence.

The dependence of the relaxation rate γc on the number of atoms which



Measurement of the scattering length 95

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  5  10  15  20  25

E
r /

 E
z

tw [s]

Figure 4.5. Plot of the decay of the ratio Er/Ez after parametric heating in the radial direction
as a function of tw. Data are taken after 2 ms expansion. Each point is an average of several
experimental realization and the line is an exponential decay fit with equilibrium value fixed
to 1. Average initial number of atoms is 379(10) × 103 and initial average temperature is
16.2(7) µK. From the fit we obtain γc = 0.20(4) s−1.

is clearly seen in figure 4.5 can be seen explicitly from Eq. (4.7) remember-
ing that the mean density in a harmonic trap is given by

n̄ =
(

m

4πkBT̄

)3/2

NKω
2
rωz , (4.8)

where T̄ = (T 2
r Tz)1/3 indicates the geometric average of the temperature

along the different directions.

Furthermore a measurement of the relaxation rate at different atomic
densities allows to check for the anharmonicity of the trapping potential.
In fact, in a Ioffe-Pritchard trap, a sufficiently big atomic cloud can ex-
perience a potential that is not strictly separable so that different degrees
of freedom are coupled and relaxation can occur even in the absence of
collisions. We refer to this process as ergodic mixing. A priori, for equal
harmonic frequencies, ergodic mixing could play a more prominent role in
our magnetic trap than in the usual traps due to its small size. For this
reason we take ergodic mixing into account by separating the component
of the relaxation rate, which is linear in NK , from the extrapolation in the
limit of zero density where relaxation can occur only through ergodic mix-
ing. If we plot the rate γc as a function of NK we expect the data to stay on
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T̄ [µK] a, re = 0 a pos. a neg.

16(1) ±57 +55 −67(11)
29.8(1.3) ±35 +25 −48(5)

Table 4.1. Experimental results. Scattering lengths are in atomic units.

a line
γc = α−1 dγel

dNK
NK + γmix = ANK + γmix , (4.9)

where γmix is the time constant of the ergodic mixing process and γel is
then given by Eq. (4.7). The plot of the experimental data are shown in
figure 4.6 together with a linear fit. In both cases the value of γmix is
very well consistent with zero and therefore we can conclude that at these
temperature ergodic mixing can be neglected in our magnetic trap.

The slope A extracted from the fit can be related to the scattering length
within the effective range approximation with a few simple steps. First
since we deal with identical particles, the cross section is given by Eq. (3.19)
with p = 2 and mR = m/2 and the average over the Boltzmann distribution
can be therefore written as

〈σv〉 = 32
√
π

√
kBT

m
a2 I(a, kT ) , (4.10)

where kT is that of Eq. (3.15) and I(a, k0) is the following integral

I(a, kT ) =
∞w

0

ξ e−ξdξ
(1− 1

2 reak
2
T ξ)2 + k2

Ta
2 ξ

, (4.11)

which must be evaluated numerically. Taking the definition of A from
Eq. (4.9) and inserting Eq. (4.10) and Eq. (4.8) into Eq. (4.7) one obtains
that

A = α−1 4
π

m

kBT
ω2

rωz a
2 I(a, kT ) . (4.12)

By numerically inverting Eq. (4.12) and taking α = 2.7 from the numerical
simulation described in § 4.2.3, it is possible to find a value for the scat-
tering length for each of the two datasets. Clearly the two values should be
consistent within the experimental errors.

Our results are summarized in table 4.1: as we can see the experimen-
tal uncertainty is fairly high and does not allow to determine the sign of
the scattering length nor to assess the importance of the effective range
approximation: we can only notice that the agreement between the two de-
terminations is slightly better in the case of negative a. The quoted error is
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Figure 4.6. Plot of the measured relaxation rate as a function of the number of atoms in the
sample after expansion (a) and in situ (b). T̄ is 16(1) µK and 28.9(1.3) µK respectively. The line
is a fit with Eq. (4.9); fit results are: γmix = −0.003(0.065) s−1 and A = 5.5(1.6) × 10−7 s−1 for
figure (a) and γmix = −0.0005(0.034) s−1 and A = 4.0(1.0)×10−7 s−1 for figure (b). Error bars on
the vertical direction are statistical error on the exponential decay fit, while on the horizontal
direction they are the statistical fluctuation of the initial number of atoms not including the
calibration uncertainty.
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the sum of the statistical contribution obtained from the linear fit shown in
figure 4.6 and the uncertainty associated to the atom number calibration.
This is done independently for each of the two trap configurations owing to
the different optical density: the obtained calibration error is around 20%.

However, according to the previous measurement of a [80, 81], we as-
sumed a negative scattering length and obtained the combined results of

a = −51(7)

which agrees with the previous measurements within 1.7 standard devi-
ations. Here the error is obtained taking a weighted average of the two
scattering length values and multiplying the associated uncertainty by a
factor χ2 = 1.65, to set the confidence level to 68% [101].

After the publication of our work, high precision Feshbach spectroscopy
of this isotope was performed by our colleagues at LENS [83]: their results
is −33.3(3) which confirms the slight overestimation of our measurement.
This is likely due to an underestimate of the number of atoms especially
for the low temperature measurement for which in fact the agreement is
poor. Nevertheless, the test of the machine was positive and allowed us
to familiarize to the experimental operation of the magnetic millitrap: in
particular on how to change the trap geometry and manage the thermal
stability. These insights were exploited for the realization of the experi-
ments with two Bose-Einstein condensate in a 3D optical lattice which are
reported in chapter 6.

4.2.3 Numerical simulation

The value of α used in the last section was obtained by means of a nu-
merical simulation that I will now describe. Following [94, 95, 102] we take
advantage of the low density and small atom number of the sample to make
a direct simulation of the gas in which we consider 3D position and velocity
of every single atom.

General principle

Choosing a time interval δt much smaller than both the average collision
time τc and the faster timescale of single particle dynamics, namely ω−1

⊥ , one
may assume that during this time interactions between atoms are weak
enough that they decouple with the center of mass motion and that the
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force experienced by the atoms varies little. This approximation is at the
root of one of the most powerful method of dilute classical gas simulation:
direct Monte Carlo simulation (DMCS) [103]. The code used to simulate our
experiment is however not purely DMCS in that, although it still involves an
aleatory element in deciding the outcome of a collision event, all collisions
are taken into account. Furthermore, although in principle interaction can
be simulated with the full two-body potential, to simplify the code we take
interactions into account as short range, hard-sphere collisions.

The simulation procedure is quite simple:

0. Setup an initial state taking N atoms from an anisotropic Maxwell-
Boltzmann distribution.

1. Update position and velocity of all the atoms according to external
forces.

2. Discretize the positions of the atoms on a lattice of spacing δx and, if
two atoms are located at the same site, make a collision test.

3. If the collision test is positive, resolve the collision.

Repeating steps 1-3 of this procedure for a sufficiently long time and keep-
ing into account the total number of collisions allows to obtain the value of
α. First γc is evaluated with the same fitting procedure used for experimen-
tal data, then one finds the number of collisions per particle that occurred
in time τc: by definition that is the value of α.

Numerical details and results

I will now give some detail of the C++ code used to implement the algorithm
outlined above. Each atom is modeled with a data structure containing
three integer numbers representing the position on a fine grid of size δx =
50 nm and three floating point number representing the velocity, typically
N = 2×104. The initial state is prepared with a simple accept/reject method
starting from randomly generated phase space configuration. The position
update is made with a Verlet integrator:

x′i = xi + vi δt+
δt2

2m
Fi(x) (4.13)

v′i = vi +
δt

2m
(Fi(x′) + Fi(x)) (4.14)
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where F indicates the external forces. Formally this is a second order
Runge-Kutta method but it can be shown that it is exactly symplectic, that
is satisfies Liouville theorem [104]. Unfortunately it is not energy conserv-
ing and therefore particular attention has to be made on the choice of δt not
to introduce numerical “heating” or “cooling” in the simulation: we checked
that after 30 s of simulated time the total energy of the system is still the
same within 5× 10−3.

In order to save computation time the frequency at which collision test
is made should be such that the probability for a collision to happen is
significant but it should not be too big not to artificially inflate the number
of collisions: typically 5% is a reasonable value. The collision test consists
in comparing a random real number y, uniformly distributed in [0, 1), with
the collision probability calculated according to kinetic theory:

℘ = σ |vr|M δtL−3δx−3 , (4.15)

where vr is the relative velocity between the two colliding partners and M

and L are two integers that represents respectively the number of time
steps between two collision tests and the size of the grid in which tests are
made. These two parameters are not independent: in practice one chooses
L so that collisions are binary (i.e. the maximum occupation number of a
cell of size Lδx is two) and then one should choose M so that in a time M δt

the atoms travel on average a distance r ' Lδx. If r � Lδx the effective
volume of the collision test is bigger than the one explored by the atom
and it is nonphysically likely that the same pair will collide again at the
next test, if opposite r � Lδx collisions will be underestimated as many
trajectory crossing are missed. We avoided these effect by checking that
the collision rate obtained from the simulation is independent on both L

and M .

The collision is processed if y < ℘: in this case one assumes that the
collision is hard-sphere and s-wave. As a consequence position are un-
changed and velocities are updated according to{

v′1 = vCM + |vr|
2 êR

v′2 = vCM − |vr|
2 êR

where v′i indicates the velocity of particle i after the collision, vCM is the
center of mass velocity before the collision, and êR is a random direction
on the unit sphere. At this point the system is ready for another iteration.
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Figure 4.7. Plot of the energy ratio for the results of the simulation (black dots, left scale) and
the number of collisions per particle (blue triangles, right scale) and the number of collisions.
The red line is an exponential fit: the value α = 2.72 can be read on the plot from the fitted
time constant of 7.74 s.

A typical results of our simulations for N = 2×104 is shown in figure 4.7,
where we plot the radial to axial energy ratio and the number of collisions
as a function of time. The confining potential is that of our magnetic trap
with ω⊥ = 2π×440 Hz and ωz = 2π×29.4 Hz. The initial effective temperature
is 15(19.5)µK along the axial (radial) direction. The cross section used in
this simulation is 8.6× 10−16 m2 in order to have a collision rate comparable
to that of the experiment in spite of the reduced density. From the fit we
obtain τ = 7.74 s which gives α = 2.72.
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Part III

Experiments with 41K-87Rb
mixture
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Introduction

As we have seen in the previous chapter, the creation of a stable degen-
erate mixture of 39K and 87Rb is not possible at low magnetic field since
the interaction of 39K is attractive. Furthermore, as it is clearly demon-
strated in [73], the efficient realization of a degenerate mixture of 39K and
87Rb requires to extensively tune both the inter- and intra-species scatter-
ing lengths. In view of producing a mixture of two superfluids it is much
more straightforward to work with the other stable bosonic isotope of K,
namely 41K. As already pointed out, the first realization of a mixture of two
degenerate gases was indeed reported on this mixture in [22].

We were able to repeat this result and obtain the degenerate mixture, as
shown in figure 6.2. This crucial step allowed us to obtain all the results
presented in chapter 6. The structure of this part is the following: in
chapter 5 I will introduce optical lattices and the most important issues
that will allow the reader to understand the results presented in chapter
6. Finally in chapter 7 I will present the first results about the Feshbach
resonances of the mixture 41K-87Rb.
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Chapter 5

BEC in periodic potentials

Science may be described as the art of systematic oversimplification.

(Karl Popper)

The way laser beams can be used to generate a periodic potential for
the atoms has been described in § 1.1.3. In this chapter we will see that
the physics of Bose-Einstein condensates in optical lattices is very rich
and can allow unprecedented experiments on particles in periodic poten-
tial enabling the experimental verification of effects originally predicted for
electrons in an ion lattice.

I will follow the scheme of § 1.2 in that I will begin looking at the prob-
lem of non interacting atoms and then I will consider the case in which
interactions are present: in particular we will see that, for a high enough
periodic potential, cold atoms in an optical lattice represent a realization
of the Bose-Hubbard model. I will then show how to compute the phase
diagram of this model which exhibits a quantum phase transition from the
superfluid state to an insulating state called Mott insulator.

I will then review the available theoretical results about two Bose-Einstein
condensates in an optical lattice addressing the different regimes. I will
conclude discussing the impact on the theoretical analysis of the trapping
potential present in the experiments.

5.1 Non-interacting BEC

In analogy to what we’ve seen in § 1.2.1, we can expect that in an ideal
Bose gas at zero temperature all the particle will occupy the ground state
of the single particle problem. The single particle Schrödinger equation is
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given by (
− h̄2

2m
∇2 + sErec

∑
i

cos2(πri/λ)

)
ψ = E ψ , (5.1)

and several consequences stem from the structure of this equation.

5.1.1 Bloch bands

Neglecting the finite size of the system the previous equation is invariant
under translation by any linear combination of the direct lattice vectors
d = (λ/2) êi. This enables one to apply the Bloch theorem and write the
eigenvector of the Shrödinger equation (5.1) as

ψ(r) = u(r,Q) exp
(
− i

h̄
Q · r

)
where u has the periodicity of the direct lattice and the corresponding
eigenvalues have the form

E = E(n,Q)

where n is an integer number and Q a real quantity. This spectrum has
the characteristic band structure that is found also in solid state physics:
n is called band index and Q is the quasimomentum. The periodicity in
the direct lattice generates the periodicity of the quasimomentum in the
reciprocal lattice: the base vector of the reciprocal space is 2π/d = 2kL

where kL = 2π/λ. From the spacing and directions of vectors in the recip-
rocal space one can construct the Bragg planes and divide the reciprocal
space into different Brillouin zones. In 1D these Bragg “planes” are actually
points and Brillouin zones are segments, while in 2D and 3D the situation
is more complicated as it is shown for 2D in figure 5.1. Since however the
Schrödinger problem (5.1) is separable, we will now restrict to the 1D prob-
lem which retains all the interesting point of the discussion. A solution of
this problem can be traced back to that of the Mathieu equation [105], but
we will show here an alternative, more practical approach.

Taking advantage of the Bloch theorem we can Fourier transform Eq. (5.1)
taking

ψ(x) = eiqkLx∑
m∈Z cm(n, q)ei2mkLx

V (x) = Erec(s/2 + s/4ei2kLx + s/4e−i2kLx)
(5.2)

where q = Q/(h̄kL). What we obtain is then an infinite system of linear
equation for the cm coefficients [106, 107]:

Amcm +B(cm+1 + cm−1) = ε cm (5.3)
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Figure 5.1. Direct and reciprocal lattice in 2D. In the left picture sites are marked to show
up to the sixth to nearest neighbors: from these positions the so-called Bragg planes can be
designed which allow to reconstruct the shape of the Brillouin zones. In the right part of the
figure, dots mark the position of reciprocal lattice vector: |Q| = 0 (open circle), |Q| = 2kL (white
dots) and |Q| = 2

√
2kL (black dots).

where

Am = (q + 2m)2 , B = s/4 , ε = E(n, q)/Erec − s/2 . (5.4)

The eigenvalue equation 5.3 can be numerically solved introducing a cutoff
M on the maximum number of plane waves1 and putting Eq. (5.3) in matrix
form:

Hq c = ε c ,

where Hq is a tridiagonal matrix with dimension 2M+1, Am on the principal
diagonal and B on the upper and lower diagonals. From the eigenvalues
εn,q it is straightforward to obtain the spectrum En,q and the corresponding
eigenfunctions ψ from the plain waves expansion, Eq. (5.2). The result of
this procedure is shown in figure 5.2 where we compare the spectrum in
the lattice for two different lattice heights with the one of the free particle.
As we expected bandgaps open in the spectrum and energy bands are flat-
ter with increasing lattice height: it is possible to connect the curvature
of the energy bands to the effective mass of the particle in the lattice and
indeed the dynamics of the condensate in the regime of low density (where
interaction effects play a minor role) can be described in terms of Bloch
waves [106].

1This corresponds to consider a finite lattice with 2M + 1 sites and periodic boundary
conditions.
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Figure 5.2. Bloch bands in the repeated and extended scheme for s = 0.5 (red) and s = 4.0

(blue).

5.1.2 Wannier picture

A complementary approach to that of Bloch waves is that of the so-called
Wannier functions which are localized states of each lattice well. Within
this framework, Bloch waves, regarded as a function of quasimomentum,
are periodic in the reciprocal lattice. This means that they can be expanded
as plane waves in the direct lattice. It is easy to show that this leads to the
following expansion [108]:

ψ(x;n, q) =
∑
m

φn(x−md)eiqkLx (5.5)

where the functions φn are called Wannier functions and can be expressed
in terms of Bloch waves as [108]

φn(x−md) =
1
2π

w

BZ

ψ(x;n, q)eiπmqdq . (5.6)

It can be shown that the Wannier functions are an orthonormal basis.
In practice if the lattice is sufficiently high, the low lying Bloch states

explore only the bottom part of the periodic potential where it can be ap-
proximated by a harmonic potential. In this case Wannier functions are
Gaussian centered in each lattice site and this approximation is frequently
used in practice. Furthermore, in view of studying the problem of interact-
ing atoms in periodic potential, the Wannier picture is more useful because
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Figure 5.3. Wannier function of the lowest band for s = 0.5 ( left) and s = 4.0 (right). Note the
reduced width and the disappearance of secondary maxima in the right picture. The dotted
curve in the background is the lattice potential

local interaction are easily included in the localized Wannier states as we
will see in the next section. A plot of the lowest band Wannier function for
two different heights of the optical lattice is shown in figure 5.3.

5.2 The Bose-Hubbard model

The key aspect that makes ultracold atoms in optical lattices so interesting
is that within a few approximations that can be fulfilled in the experiments,
they are a perfect realization of the Bose-Hubbard model [109]. We will now
briefly review this point and then we will introduce the key features of the
Bose-Hubbard physics.

5.2.1 From Gross-Pitaevskii to Bose-Hubbard

The starting point for the zero temperature analysis of the Bose-Einstein
condensate in an optical lattice is the Gross-Pitaevskii equation (1.28) for a
periodic potential. Solutions to this equation in the limit of weak lattice can
be formulated in form of non-linear Bloch states which exhibits a plethora
of phenomena typical of non-linear wave equations such as solitons [110],
dynamical instability [111] and many others which are nicely reviewed in
[5, 106]. However, when the lattice height is such that the density in each
well increases, the correlations among the particles become more and more
important and the mean field approximation becomes impractical. In this
regime one has to go back to the full Hamiltonian of the system Eq. (1.26)
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and use another approach. We will detail this approach in the following.
If the temperature of the system is much lower than the width of the first

noninteracting energy band we can expand the field operator in Eq. (1.26)
on the basis of the first band of Wannier functions:

Ψ̂(r) =
∑
j

wj(r)âj (5.7)

where to simplify the notation we set wj(r) = φ0(r−Rj) and we have intro-
duced the Fock operators âj (â†j) which destroy (create) a particle on site j.
The resulting expression can be further simplified by the so called Hubbard
approximation which amounts to neglect the spatial overlap between the
Wannier functions beyond the nearest-neighbors. Within this approxima-
tion Hamiltonian has the following form [109]

H = −J
∑
〈i,j〉

(
â†i âj + â†j âi

)
+
U

2

∑
i

n̂i(n̂i − 1) , (5.8)

where 〈i, j〉 indicate that the sum is only over neighbors sites and we in-
troduced the number operators n̂i = â†i âi and the two energy scales J and
U for tunneling and on-site interactions respectively. In the following we
will work in the grand canonical ensemble and we will add a term −µ

∑
i ni,

where µ is the chemical potential.
The two parameters U and J can be calculated knowing the non-interacting

Wannier functions [109] as

J =
w

d3r wi(r)

(
− h̄2

2m
∇2 + Vlat(r)

)
wj(r) , (5.9)

where Vlat(r) indicates the periodic potential, and

U = g
w

d3r|w(r)|4 . (5.10)

Note that, using the definition of the Wannier function, the tunneling am-
plitude can be traced back to the Bloch spectrum. In particular one has
that [78]

J =
1
vBZ

w

BZ

d3q E0(q) exp(−iq · d) (5.11)

where d is a direct lattice vector and vBZ the volume of the first Brillouin
zone.

An analytical expression for U and J can be given in the limit of s � 1,
but we will use an empirical expression based on a fit to the numerically
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computed coefficients in the range 8 < s < 30 given by [112]:

U/Erec = 5.97 (a/λ) s0.88

J/Erec = 1.43 s0.98 exp(−2.07
√
s) .

(5.12)

By changing the height of the periodic potential it is therefore possible to
explore the two regimes dominated either by the tunneling at low s values
or by the on-site interactions for s � 1. We will now see that the ground
state of the system in these two regimes is very different.

5.2.2 Phase diagram of the homogeneous system

Consider first the case where the number of atoms N is an integer multiple
of the number of sites M : N = n̄M . For a vanishing tunneling amplitude,
the Hamiltonian is a sum of single site contributions and it is trivial to see
that the ground state is given by

ΨMI(n̄) =
∏
m

(â†m)n̄ | 0〉 . (5.13)

This state, being a product state, has no site to site correlations and it is
easy to see that any elementary excitation will cost at least an amount U
of energy: this means that the excitation spectrum is gapped. We call this
state a Mott insulator.

On the other hand, if the on-site interactions are vanishing, we recover
the ideal gas that we analyzed above (§ 5.1): we know that the ground
state is a Bose-Einstein condensate where all the particles are in the lowest
Bloch wave (q = 0). This state is therefore superfluid and without any
constraint on N and M the many body state can be written as [113, 78]

ΨSF (N) =
1√
N !

(
1√
M

∑
m

â†m

)N

| 0〉 . (5.14)

In the limit N,M →∞, ΨSF (N) is a coherent state [78] in which the site-to-
site coherence is maximal. Beside this, as shown in figure 5.2, there is no
gap in the energy spectrum close to q = 0.

Another striking difference between the two states can be seen in their
momentum distribution. For a cubic lattice this quantity can be expressed
as [114, 115, 116, 113, 117]

n(k) = |w̃(k)|2
∑
i,j

exp(ik(ri − rj)) 〈âiâj〉 , (5.15)
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where k = p/h̄, the summation is extended to all occupied lattice sites and
w̃ indicates the Fourier transform of the lowest band Wannier function. In
the above expression the term 〈âiâj〉 is the one body density matrix2, which
has a totally different behavior for the superfluid and the Mott insulator
states. In the superfluid regime, assuming for simplicity a uniform system,
the density matrix is constant for any pair (i, j) and equal to the super-
fluid density: the density profile in momentum space is therefore given by
peaks located at the reciprocal lattice vectors. On the other hand, when
the system is in a Mott-insulator state such as that defined by Eq. (5.13),
the one body density matrix is exponentially decaying around k = 0. As
we will see in chapter 6 it is possible to experimentally probe the one-body
density matrix and thus distinguish between the two states. We emphasize
here that, if the number of particle is not commensurate with the number
of lattice sites, an exact Mott insulator cannot be formed: even if there is
only one extra particle the system will lower its energy by delocalizing it
over all the lattice sites. The delocalized particles will always establish a
site-to-site correlation and will spoil the energy gap effectively making the
system look superfluid for any J 6= 0; we will see that this is different for an
inhomogeneous system in § 5.2.3.

Once the nature of the ground states in the two limits U/J → 0 (su-
perfluid) and U/J → ∞ (Mott insulator) is established, the next step is to
characterize the behavior of the system in the intermediate regime that is
to find the phase diagram as a function, for instance, of the U/J ratio and of
the chemical potential. One could naively expect that a standard treatment
based on the Bogolioubov approximation (see §1.2.2) will be able to capture
at least the existence of a phase boundary. Actually it turns out that this
is not the case and the Bogolioubov theory fails in predicting the depletion
of the condensate associated to the transition toward a Mott phase [118].
We will now see that a more clever formulation of a mean field theory can
reproduce the feature of the model with great accuracy.

Site decoupling mean-field

One of the problem in the approach of the Bose-Hubbard Hamiltonian is
given by the tunneling term which couples the different site. Near the tran-
sition to the Mott phase, we expect that the tunneling energy is smaller
than the on-site interaction and for this reason it seems sensible to treat

2〈âiâj〉 can be called as well first order correlation function or phase coherence.
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exactly the interaction term and to find a good approximation for the tun-
neling. In this line one can use a mean-field approximation in which the
tunneling term is written as [119, 118]

â†iaj = 〈â†i 〉âj + 〈âj〉â†i − 〈â
†
i 〉〈â

†
j〉 = ψ∗i âj + ψja

†
i − ψ∗i ψj , (5.16)

where ψ = 〈âi〉 is the superfluid order parameter which in the following will
be considered a real quantity. With this approximation Eq. (5.8) becomes

H =
∑

i

Hi =
∑

i

[
U

2
n̂i(n̂i − 1)− µn̂i − zJ ψ(âi + â†) + zJ ψ2

]
, (5.17)

where z is the number of nearest neighbors (twice the dimensionality of the
lattice). Dropping the site index and rescaling all the energies by zJ, this
Hamiltonian can be written in matrix form on the single-site Fock basis
{n}:

Hn,m = 〈n |H|m〉 = [(Ū/2)(n− 1)− µ̄+ ψ2]nδn,m −
√
nψ δn−1,m −

√
n+ 1ψ δn+1,m

(5.18)
From this matrix formulation it is easy to obtain the ground state on the
Fock basis and the relative superfluid density with the following numerical
procedure [119]. The matrix (5.18) is diagonalized imposing a cut-off on
the maximum occupation number M for different values of ψ. The value
of ψ is chosen which minimizes the lowest eigenvalue: the corresponding
eigenvector is then the ground state of the system.

With this procedure it is possible to reconstruct the phase diagram as
a function of the chemical potential and the lattice height: whenever the
solution is found for ψ = 0 the system is in the Mott phase and when ψ 6= 0
the system is superfluid. This phase diagram for 87Rb is reported in figure
5.4: the different lobes correspond to higher filling of the Mott phase. As
we can see, the Mott phase can be approached by increasing the lattice
height at constant chemical potential and it is worth noting that there is
no direct phase transition from e.g. a Mott phase with one atom per site
to the one with two atoms. This will be very important for the case of the
inhomogeneous system as we will see in § 5.2.3.

The phase transition

The mean field approach of Eq. (5.16) can be used also to construct an
effective action for the system treating the term ψ(â† + â) as a perturbation.
Calculations to the order in Ū−4 show a nice agreement with the numerical
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Figure 5.4. Phase diagram of the Bose-Hubbard Hamiltonian as a function of the chemical
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solution [118]. In particular it is possible to derive an analytic expression
for the critical value (U/zJ)c which gives the tip of each Mott lobe in the
phase diagram. Up to order Ū−2, this is given by [118](

U

zJ

)
c
= Ūc = 2n0 + 1 +

√
(2n0 + 1)2 − 1 , (5.19)

which gives the following values for the first three lobes: 5.8, 9.9, 13.9. These
values are confirmed by Monte Carlo studies both at zero and finite tem-
perature [120, 121]. However, a thorough study of this phase transition
was already contained in the pioneering work [122], where the phase dia-
gram was constructed for the first time and the characteristic of the phase
transition were qualitatively understood. In particular one has that a sec-
ond order phase transition is possible only for a commensurate chemical
potential (i.e. µ = U(n0 − 1/2)). In this case the transition is in the class
of a (d + 1)-dimensional XY model [122, 123]. In the other cases one finds
a generic mean-field transition which is first-order like in the sense that
the density of the system changes and the free energy shows strong finite-
size effect [123]. In sharp contrast, the phase diagram at constant density
(i.e. constant number of particles) shows that the qualitative result pointed
out above is confirmed: the increase in the on-site interaction leads to a
change in the chemical potential such that the systems “avoids” the Mott
lobes and stays superfluid for all the value of the lattice height. This is in
no longer the case in the inhomogeneous system which I now discuss.

5.2.3 Inhomogeneous systems

In presence of an external trapping potential VT , Eq. (5.8) can be written as

H = −J
∑
〈i,j〉

(
â†i âj + â†j âi

)
+
U

2

∑
i

n̂i(n̂i − 1)−
∑

i

(µ− VT i) n̂i , (5.20)

which can be brought back to the usual form introducing a local chemical
potential

µi = µ− VT i . (5.21)

This was first put out in the context of cold atoms by [109] where the sys-
tem was analyzed by means of a Gutzwiller ansatz: |Ψ〉 =

∏
i |φi〉 where

the on site wave function is a superposition of Fock states, namely |φi〉 =∑
n fn i|n〉. The key finding is that in a trapped system with peak chem-

ical potential µ, all the phases with µi < µ are present simultaneously
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[109, 124, 78]. This is illustrated in figure 5.5 where I plot the solution
obtained in the site decoupling approximation applying to each site its own
local chemical potential [112], for three different values of the chemical po-
tential. As we can see the structure resembles that of a “wedding cake” in
which Mott and superfluid domains are alternated. With this respect the
grand canonical approach is correct because every Mott region is in con-
tact with a superfluid shell which acts as a particle reservoir. In the case
of inhomogeneous trapping we don’t have any requisite on commensurate
filling: the typical fluctuation in the number of atoms present in the ex-
periment will simply change the number of atoms in the outer superfluid
shell, while the filling of the Mott regions will remain the same.

The absence of a direct transition between different Mott lobes increas-
ing the chemical potential reflects here on the fact that there is always a
gap between the two Mott shells. However, depending on the trapping fre-
quency, this gap can be reduced to two sites or less as it is shown in the
top and central part of figure 5.5. In this situation one can expect that the
superfluid fraction plays only a minor role [124].

5.3 Two BEC’s in an optical lattice

I will now introduce the physics of two Bose-Einstein condensates in an
optical lattice: I will show how the presence of interspecies interaction en-
riches by far the phase diagram. Furthermore I will show that this kind of
systems has several analogues in the domain of magnetic ordering. Maybe
this analogy is the ultimate cause to the huge theoretical literature that
flourished on this subject in the last years. Quite surprisingly this theoret-
ical interest has not yet found a comparable experimental effort: this again
is one of the main motivation that sparked our interest toward the mixture
of two bosons in an optical lattice.

For sufficiently low temperature, the Hamiltonian that describes the
system of two bosons in a (cubic) optical lattice is a two-species Bose-
Hubbard Hamiltonian [125, 126, 127, 128]:

H = −
∑

σ 〈i,j〉
Jσ

(
â†iσâjσ + â†jσâiσ

)
+

1
2

∑
σ i

Uσn̂iσ(n̂iσ − 1) + V
∑

i

n̂iAn̂iB , (5.22)

where aσ destroys a boson of species σ = A,B, Jσ and Uσ are the single
species tunneling and interaction energies (we assume repulsive interac-
tion, Uσ > 0) and V is the interspecies interaction term defined analogously
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Figure 5.5. Mott domains for an inhomogeneous system for µ = 0.2 Erec (top), µ = 0.5 Erec
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to Eq. (5.10). The Hamiltonian (5.22) is a sum of two Hamiltonians like
Eq. (5.8) and an interaction term given by

Hint = V
∑

i

n̂iAn̂iB . (5.23)

Similar to the case of only one species, in the limit of Uσ, V � tσ, the
Eq. (5.22) simplifies to a sum of single site Hamiltonians. We will now ex-
amine the different regimes: first the case in which the dominant term in
Eq. (5.22) is the interspecies interaction and then those in which inter-
species interaction is a perturbation and the total filling is commensurate
with the number of lattice sites. Finally I will conclude commenting how
the analysis for a homogeneous system can be extended to the inhomoge-
neous case which is the one relevant in the experiment due to the presence
of the trapping potential.

5.3.1 Dominant interspecies interaction

Here I will consider the general case |V | ≥ Uσ which attracted a limited
theoretical attention but however is the pertinent case for the mixture 41K-
87Rb at zero magnetic field. As we will see there is a conspicuous difference
whether the interspecies interaction is attractive or repulsive.

Dominant attractive interspecies interaction

This case corresponds to |V | > Uσ, V < 0. In this case we see that, similar to
the case of the attractive Gross-Pitaevskii equation (see § 1.2.2), the spec-
trum of Eq. (5.22) becomes unbounded and the system collapses bringing
all the particles in one site. This situation has not been explored in the
literature and in particular there are no predictions for the case in which
the attractive interspecies interaction is compensated by the repulsion of
only one species, namely UA < |V | < UB.

Dominant repulsive interspecies interaction

This case was considered only recently for a 1D lattice in [129] and cor-
responds to V > Uσ. In this case, for incommensurate total filling, the
system is found to be always superfluid, but there is a transition from a
mixed double superfluid (2SF) to a phase separated superfluid (PSSF) for
Uσ/Jσ > (U/J)c. This phase separated superfluid is analogous to the weakly
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separated uniform system that we considered in § 1.3: the two species ar-
range inside the lattice so to minimize the overlap and keep the total density
constant. For the particular case nA = 1, nB = 1/2, UA = UB = U , V = 1.05U ,
the critical value is found to be (U/J)c ' 4.

On the other hand, for commensurate total filling, a phase transition
toward a Mott state becomes possible. This phase separated Mott state
(PSMI) has a gapped excitation spectrum and zero order parameter for each
of the two species (〈aA〉 = 〈aB〉 = 0), but the density difference is correlated
so that 〈(|nA−nB|)〉 6= 0. In [129] it is found a difference if the total filling is
odd (through the particular case nA = nB = 1/2, UA = UB = U , V = 1.05U ) or
even (nA = nB = 1): in the first case there is a PSSF phase between the 2SF
phase and the PSMI, while in the case of even total filling the transition to
the PSMI phase occurs directly from the 2SF. In both case the transition
toward the PSMI phase occurs at the critical value for a single species:
(U/J)c ' 5.7.

Particularly interesting from the theoretical point of view, is the case
where V = UA = UB: in this case the complete SU(2) symmetry of the theory
is restored and the system is expected to behave like a single species one
since there is no distinction between inter- and intra-species interactions.

5.3.2 Commensurate total filling

I will now consider the case of a commensurate total filling in which the
low-energy Hilbert space contains states with integer filling. Furthermore,
having already discussed the case |V | > Uσ, from now on I will take |V | < U .
This case is the most interesting since, in a homogeneous system, is the
only one where a transition to a Mott insulating state is possible [129].

In this regime one can further distinguish the case of an even total
filling 2n0 (i.e |nA, nB〉 = |n0, n0〉) and odd total filling 2n0 − 1 (i.e. |n0, n0 − 1〉
and |n0 − 1, n0〉). Due to the symmetry of the interaction term Eq. (5.23),
if UA = UB the odd-filled states are doubly degenerate and therefore the
ground state of a M-sites lattice is 2M -fold degenerate. For n0 > 0, this
degeneracy is lifted by a non zero difference UA − UB which is likely to be
present in an experiment with two species (and definitely is for the 41K-
87Rb mixture), but in the case n0 = 1 the degeneracy is only lifted by the
finite hopping Jσ which introduces fluctuations in the number of particle
per site: it is worth noting that these fluctuations are important at the
second order in J/U which means that simple mean field approaches are
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bound to failure as in the single species case.
In principle one should also consider states in which |nA − nB| > 1 like

| 0, 2〉 or | 1, 4〉, however, it is not difficult to show that, unless the difference
|UA−UB| is huge, these state are higher in energy than those with |nA−nB| ≤
1 [127].

Even total filling

As we pointed out above, fluctuations induced by residual tunneling must
be taken into account if one wants to isolate the phases of the system. This
is clearly demonstrated in the analysis of [130, 131] which, due to the limit
of mean field treatment, fails to predict the existence of phases that cannot
be reduced to single-component states. To put it in another way, the mean
field treatment is limited to phases in which either the two species are
superfluid (2SF), one is superfluid and the other is Mott insulator (SFAB

+ MIBA) or the two species are Mott insulator (2MI). Beside these three
different phases there are also two more phases in which the two order
parameters 〈aσ〉 are zero but there is either a condensate of atom pairs
(PSF, paired superfluid [126]) or a so called super-counter-fluid (SCF). The
first one is analogue of a molecular condensate or a BCS superfluid and
in the second one the currents of the two species are always in opposite
directions and behave as superfluids [125, 126]. Formally the transition to
PSF is characterized by the order parameter 〈aAaB〉 and that to SCF phase
by 〈a†AaB〉. I will sketch now the argument which establishes the existence
of these two phases.

Let us consider the even-filling case with V < 0 and exchange symmetry
(UA = UB = U and JA = JB = J ). In this situation, if n0 > 1, the natural
point of view is that of atomic pairs: breaking a pair of atoms of different
species involves creating an extra pair of atom of the same species at a cost
of energy U > 0. Therefore the single particle tunneling is suppressed and
the dominant term is the second order tunneling. If we take into account
this second order process, the system is again described by an effective
Bose-Hubbard model [126]

HP = −t̃
∑
〈i,j〉

[(O+
i O

−
j +O−

i O
+
j ) + 2mimj ] + γ

∑
i

m2
i , (5.24)

where O+
i (O−

i ) creates (destroys) a pair of atoms at site i, mi is the number
of pairs at site i and t̃ is the second order tunneling energy defined as
2J2/U . In the limit γ � t̃ we know that the ground state of Eq. (5.24)
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is a Mott insulator; we also know from previous section that as soon as
γ < 0 the system collapses: what we have to prove is that the system is
somewhere superfluid. This will be by construction a PSF. In the limit
n0 = m � 1, for t̃ � γ � m2 t̃ the system is stable against collapse and
the extra kinetic energy given by the mimj term overcomes the potential
energy contribution which means that the system must be superfluid. This
argument is confirmed by Monte Carlo simulations in 2D which show that
a phase with 〈aAaB〉 6= 0 exist for n0 = 2 already at γ = 10t̃ [126].

As far as the SCF phase is concerned, the existence of this phase is
demonstrated taking v = U−V > 0 and going in the limit v � U . In this limit
it become useful to introduce the isospin operators [125, 132, 127, 128]

Sz
i = (n̂iA − n̂iB)/2

Sx
i = (â†iAâiB + â†iB âiA)/2
Sy

i = −i(â†iAâiB − â†iB âiA)/2

(5.25)

which, in the approximation stated above and up to the second order in
J/U , transform Eq. (5.22) into a Heisenberg model [125]

HS = −2t̃
∑
〈i,j〉

SiSj + v
∑

i

(Sz
i )2 . (5.26)

This model, for v � U , exhibits a ground state in which the following or-
der parameter is non-zero: 〈S+

i 〉 = 〈Sx
i + iSy

i 〉. This, using the definition
Eq. (5.25) implies 〈a†AaB〉 6= 0, which is exactly the definition of supercoun-
terflow: the key property of this state is that superfluidity is not found in
each of the two species separately but instead in the correlated fluctuations
of the two species. It can be viewed also as a double Mott insulator with
superfluid behavior in the isospin sector.

One can at this point ask where the boundaries between all these phases
are located and which is the nature of the corresponding phase transitions.
One important help in this task comes from the demonstration that the
2SF-SCF transition is equivalent to the 2SF-PSF one: this can be under-
stood by thinking SCF in terms of a PSF with a particle of species A and a
hole of species B [133]. This means that the phase diagram is symmetric for
|V | < U with respect to V = 0. The charting of the phase diagram for even
filling factor is addressed in [126]: the authors find that the phase diagram
depends on the asymmetry u = UA−UB. When u 6= 0, for small values of |V |,
decreasing the tunneling one first crosses the transition from a 2SF to a
SFA+MIB and then to the two-species Mott insulator 2MI. Opposite, for |V |
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only slightly lower than U there is first a phase transition from 2SF to PSF
(or SCF, depending on the sign of V ) and then a phase transition to 2MI
when second order tunneling is also suppressed. In the case of exact ex-
change symmetry obviously the transition to a mixed superfluid-insulating
state is absent and the authors of [126] predict a single-species-like tran-
sition from a 2SF to a 2MI.

Odd total filling

As we pointed out in the introduction, in the case of total filling of one
particle per site, there is a degeneracy which is lifted only at the second
order in J/U . Introducing the isospin operator Eq. (5.25) in the expansion
of Eq. (5.22) up to order (J/U)2 one finds a anisotropic Heisenberg model
[125, 127, 128]

HXXZ = −
∑
〈i,j〉

[J⊥(Sx
i S

x
j + Sy

i S
y
j )− Jz S

z
i S

z
j ]− h

∑
i

Sz
i , (5.27)

where the coupling constants are given by

J⊥ = 4
JAJB

V
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B

V
− 4

J2
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B
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h = 2

(
J2

A
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− J2

B

UB

)
.

It is worth noting that, opposite to Eq. (5.26), no approximation are re-
quired in the derivation of Eq. (5.27), but for the constraints nA + nB = 1
and Jσ/Uσ � 1. One must remember however that for UA = UB = V (SU(2)
limit) this perturbative approaches are no longer valid.

Eq. (5.27) admits three different phases characterized by different or-
dering in the isospin sector [132, 128]. A ferromagnetic phase which corre-
sponds to the 2MI which is found for high enough V , an easy-plane phase
which –as it is shown above for the isotropic case– corresponds to the SCF,
and finally, for small values of V and close to the exchange symmetry,
an antiferromagnetic phase which corresponds to a checkerboard solid.
The transition from the different isospin phases can be understood from
Eq. (5.27): the transition from ferromagnetic to the easy-plane is second
order, while the transition from antiferromagnetic to easy-plane is first or-
der; no direct transition is foreseen from antiferromagnetic to ferromag-
netic [132, 128].



Two Bose-Einstein condensates in an optical lattice 125

The “charge” sector of the theory, namely the transition from isospin or-
der to superfluidity is much more complicated. In [127] the phase diagram
is studied for exact symmetric one particle filling (i.e nA = nB = 1/2) and
|U − V | � U where the isospin order is either antiferromagnetic or easy-
plane. It is found that the transition to superfluid occurs for at the same
values of J/U for the two species unless a strong imbalance between the
two tunneling is introduced. Furthermore, the transition from checker-
board Mott to 2SF is first order and can show a hysteretic behavior, while
the transition from SCF to 2SF is second order [127].

Similar calculations, but for nA, nB < 1 and no constraint on U−V shows
that in the limit of vanishing filling the transition is crossed with a depop-
ulation of one species and thus is reminiscent of a PSSF, for intermediate
filling the system is 2SF while, as the filling of the two species approaches
one, as we discussed above, there is room for a mixed SF-MI phase [128].
However there is no direct transition from 2MI to 2SF which instead is eas-
ily found in a simple O(J/U) theory: the mechanism is first a second order
transition to a depopulated phase or to a SCF and then another second
order transition to a 2SF. Further details and Monte Carlo calculation of
the isospin phase diagram can be found in [128].

The two approaches outlined above are both considering the case of
a maximum filling of one per species: one can therefore ask if there are
qualitative changes considering states with higher odd total filling (i.e. n0 >

1). It turns out that the only difference with respect to the n0 = 1 case is that
the depopulated phase is changed into a true mixed SF-MI phase while the
other feature of the phase diagram both in the isospin and in the “charge”
sectors remain the same [128, 127].

5.3.3 The trapping potential

The available theoretical works on this subject are either taken in the
canonical ensemble for a uniform system [126, 127] or in the grand canon-
ical ensemble with a uniform chemical potential [128]. Both these ap-
proaches are unsuitable to describe the trapping potential which is always
present in actual experiments.

We know from § 5.2.3 that the trapping potential creates alternated do-
main of superfluid and Mott insulator which can be reproduced considering
a “local” chemical potential. As it is pointed out in [128], the same mecha-
nism is not guaranteed to work also in the case of two different species. On
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the other hand number conservation is properly dealt with in the canoni-
cal ensemble but it is not even conceivable to reproduce experiment with
a fixed integer integer filling and the phase diagram at constant incom-
mensurate density is a featureless 2SF phase pretty much similar to the
single-species case [129].

Facing the limits of the available theoretical work, an experiment de-
voted to this subject should go in two complementary directions: on one
hand effort should be put to reduce the harmonic confinement and, by the
same token, to decrease the maximum filling in the lattice to one or two
where the comparison with theory is easier; on the other hand one should
try to reduce the interspecies interaction in order to access a situation in
which the isospin picture can be used to make predictions for the system.

Closely related to this issue one should also consider the problem of the
finite temperature always present in this kind of experiment: the energy
scale of the isospin-order has been shown to be that of the second order
tunneling, namely J2/U � J. The lowest temperature that can be achieved
are generally between J and U : the issue of finite temperature should be
therefore seriously considered in view of observing the different isospin
ordered phases. I note however that the direct experimental observation of
second order tunneling for a single species was recently reported in [134]
proving that this energy scale is at least accessible at the state-of-the-art.

No matter which is the ultimate goal that one seeks in the experiment,
the first fundamental step is the loading of a two superfluid mixture in a
3D optical lattice, a task which was never accomplished so far. In the next
chapter we will report how this was achieved by our group and which is
the physics that can be observed in the limit of JA/UA ? 0.01, JB/UB ? 0.2
and V > Uσ, where the system is predicted to be phase separated.



Chapter 6

Degenerate Bose-Bose mixture
in a 3D optical lattice

There is a great satisfaction in building good tools for other people to

use.

(Freeman Dyson)

In this chapter I report the main result of this thesis: the breakdown
of superfluidity in a Bose-Einstein condensate in an optical lattice induced
by the interaction with another superfluid with a much smaller popula-
tion and an incomplete overlap. The observed phenomenology was un-
ambiguously related to the interaction between the two condensates and
trivial explanations such as heating during the loading of the lattice have
been excluded. Yet, the explanation of the observed phenomenology is
far from being entirely elucidated. Certainly our results closely resemble
those obtained for a mixture of a Bose-Einstein condensate and a Fermi
gas [135, 136] suggesting the existence of a possible common cause for the
observed phenomenology. I will discuss these topics in § 6.4, but before
describing in detail in § 6.3 the experimental results (submitted for publi-
cation and available as preprint [137]), I shall detail the experimental effort
that was necessary to obtain these results.

The exploration of the new physics of two Bose-Einstein condensates
in an optical lattice requires in fact two fundamental steps that, although
they have been already reached separately, required a considerable work
to be reproduced. First the realization of the double condensate and then
the characterization of the transition from a superfluid to a Mott insulator
with the 87Rb condensate alone.

127



128 Degenerate Bose-Bose mixture in a 3D optical lattice

6.1 A double condensate

The simultaneous condensation of 41K and 87Rb was obtained at LENS in
2002 [22] soon after the first realization of a 41K Bose-Einstein condensate
by means of sympathetic cooling [16]. The main difficulty involved in this
achievement is related to the huge value of the cross section of the two
processes |Rb, 2, 1〉+ |K, 2, 2〉 → |Rb, 1, 1〉+ |K, 2, 2〉 and |Rb, 2, 1〉+ |K, 2, 2〉 →
|Rb, 2, 2〉 + |K, 1, 1〉 [138]. Both these processes lead to a fast depletion of
the K sample: the first by direct liberation of the 87Rb hyperfine energy and
the second by producing the antitrapped |K, 1, 1〉 state.

The | 2, 1〉 state is magnetically trappable and therefore atoms that are
left in this state by unavoidable imperfections of the optical pumping stage
are still present after the loading of the magnetic trap. In almost all the
experiments focused on 87Rb alone, these atoms do not harm to the cold
gas because they are promptly expelled by the radio-frequency cascade
used for the evaporation. However, as it is shown in figure 2.14, in our
experiment evaporation is performed along the | 2, 2〉 → | 1, 1〉 microwave
transition: this means that atoms in | 2, 1〉 state are only evaporated up to
a much higher temperature and definitely are not removed from the trap.

When 41K is added however, 87Rb atoms in the unwanted state quickly
disappear from the magnetic trap at the expense of roughly the same
amount of K atoms. Since sympathetic cooling demands that NK < NRb

throughout the whole evaporation process, even if the fraction of the ini-
tial number of 87Rb atoms in the unwanted state is small, it might be
enough to completely deplete the 41K sample1. We measured a lifetime
of 41K atoms in the magnetic trap without an active clean of the 87Rb atoms
as low as 19.6(1.4) s. Not surprisingly, the cleaning of these atoms was in-
deed a major technical advance toward the realization of the first double
Bose-Einstein condensate [22].

In our experiment 87Rb atoms in the | 2, 1〉 state are removed from the
trap in the following way. First two fast sweeps are done around the fre-
quency of the | 2, 1〉 → | 1, 0〉 transition: this does not affect the atoms in
the | 2, 2〉 state while removes a substantial amount of unwanted atoms.
However, as it is observed in several experiments, the unwanted state gets
populated with a non zero rate during the evaporation procedure: to elim-
inate also these atoms, a weaker (−10 dB) sideband is generated from the

1Working with 39K, the cross section for these collisions is much smaller, and atoms in
the | 2, 1〉 state represent only an extra burden on sympathetic cooling.
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K

100 mm

Rb

Figure 6.1. Absorption images of the 87Rb and 41K clouds taken from the vertical direction.
A Bose-Einstein condensate of K is present and it contains around 10× 103 atoms, while the
Rb sample was entirely evaporated and it is barely detectable.

main evaporation frequency and it is tuned across the above mentioned
transition2. With this procedure the lifetime of the atomic sample is again
of about 50 s and a significant amount of 41K survives until the end of the
evaporation.

A careful balance is then required between the initial number of 41K and
87Rb present in the trap. In fact, if the number of 87Rb atoms is too high the
cleaning procedure will not remove all the atoms in the | 2, 2〉 state before
they can actually destroy the 41K sample. On the other hand, if the number
of 41K atoms is too large, the thermal load on 87Rb will be too high and
sympathetic cooling will not work until the formation of two condensates.
This is illustrated in figure 6.1 in which we show two absorption images: a
potassium condensate is formed while the rubidium sample is completely
evaporated.

As we already pointed out in § 4.1, the precise tuning of the initial
number of atoms is obtained in our experimental setup by changing the
duration of the loading time of our 2D-MOT. This allows us to tune the
number of atoms with the accuracy needed to reach the right balance to
cool both species down to quantum degeneracy. In figure 6.2 I report two
images showing that indeed the evaporation process proceeds as expected:
in the first image evaporation of 87Rb is stopped at a temperature which
is in between the critical temperature of potassium and that of rubidium.
Temperature can be measured from the width of the 87Rb thermal com-
ponent and we find T = 170(9) nK. This value is consistent with the one

2The sideband is generated in the following way. A BCO oscillator is locked to the 683th

harmonic of a reference signal close to 10 MHz. By slowly modulating the reference it is
possible to obtain a sweep of the output frequency: phase noise is largely amplified but the
overall performance are sufficient for the cleaning task. The output of the BCO is fed into
the main amplifier with a power combiner.
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T = 170(9) nK T < 100 nK

100 mm

K K

RbRb

Figure 6.2. Absorption images of the two atomic species taken from above. Evaporation is
stop respectively between the transition of K and that of Rb (left) and below both transitions
(right). The number of atoms in the thermal components on the left parts are 14.9 × 103 for
41K and 25 × 103 for 87Rb. The 41K Bose-Einstein condensate on the left contains 8.1 × 103

atoms while on the right picture the two Bose-Einstein condensates contain 12.3 × 103 and
17.3× 103 atoms.

determined from the condensed fraction and the critical temperature of
potassium using Eq. (1.23): we find Tc(K) = 190(20) nK and a condensed
fraction of 35(3)% which gives T = 180(20) nK. At the same time it is also
consistent with no discernible condensate of 87Rb: for the measured num-
ber of atoms the critical temperature is Tc(Rb) = 135(15) nK. In the second
image reported in figure 6.2, two Bose-Einstein condensates can be seen:
expansion time was increased to 20 ms to make more evident the inver-
sion of the aspect ratio (§ 2.5). In this case temperature cannot be easily
measured since no thermal fraction is detectable: we know that, for this
number of atoms, this condition is reached for fc ? 0.7 and this allow us to
set an upper bound for the temperature to T < 100 nK.

As we have shown in § 1.3, one of the first issues when dealing of two
Bose-Einstein condensates is their topology. In our system the direct ob-
servation of the topology is beyond the possibility of our imaging system,
we have therefore to rely on simulation based on actual parameters. In
figure 6.3 I report a section of the density distribution of the two species
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Figure 6.3. Density distribution of 87Rb (red dots) and 41K (blue squares) calculated with
numerical integration of Eq. (1.37) for the numerical parameters of the actual experiment. The
lenghtscale is given by the harmonic oscillator length for 87Rb which is around 1.14 µm. The
number of atoms for 87Rb (41K) is 3× 104 (2× 103)

obtained from the solution of the coupled Gross-Pitaevskii equations (1.37)
with the parameters of the experiment. As we can see the overlap between
the two cloud is very limited: this situation is not changed by the presence
of the lattice and represents a limitation to the present experiments as we
will see in 6.3.

Anyway, the control on the two transitions toward the quantum degen-
erate regime fulfills the first prerequisite to load the mixture in the optical
lattice. I will now describe how the lattice is realized in the experiment.

6.2 A 3D optical lattice

6.2.1 The lattice laser

The optical lattice is realized in our experiment with an IPG fiber laser
capable of delivering 20 W still maintaining a linewidth of about 100 kHz
around a wavelength of 1064.0 nm.

At this frequency the fine structure separation between D1 and D2 lines
becomes negligible with respect to the detuning from the lattice light. This
separation is in fact δRb = 7.3 THz and δK = 1.3 THz for Rb and K respec-
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tively, while the detuning is typically on the order of 100 THz. With such a
huge detuning, for linear polarization, Eq. (1.7) simplifies to the following
expression3

Udip(r) =
3πc2

2ω3
12

Γ
∆
I(r) (6.1)

where the detuning ∆ is taken from the barycenter of the line at frequency
ν12 = ν2 + δ/3 = ν1 − 2 δ/3 and ω12 = 2π ν12. With the values given above,
the detuning with respect to our lattice laser for Rb (K) is about −105 THz
(−110 THz) and the ratio Γ/∆ is about 57.1 × 10−6 (56.4 × 10−6). As we have
shown in § 5, the natural unit to measure the lattice height is the recoil
energy defined in Eq. (1.6): at the lattice wavelength the recoil frequency
for 87Rb (41K) is 2.03 kHz (4.30 kHz). We can now establish one important
feature that the 87Rb-41K mixture will exhibit in the optical lattice: for a
given laser intensity the lattice height is weaker for 41K than for 87Rb. In
particular the ratio between the s parameters, namely the height in recoil
energy is given by

sRb

sK
=
(
λRb

λK

)3 (Γ/∆)Rb

(Γ/∆)K

νr,K

νr,Rb
' 1.05 · 1.01 · 2.15 ' 2.3 (6.2)

and is almost entirely due to the mass difference similar to what happens
to the trapping frequency of the magnetic potential. In the following we will
almost exclusively make reference to the height of the optical potential for
87Rb: the corresponding height for 41K is then a factor 2.3 smaller.

6.2.2 Experimental setup

As it is explained in § 1.1.3, a 3D optical lattice requires tree pairs of coun-
terpropagating laser beams which must interfere only pairwise. This re-
quirement cannot be fully satisfied with polarization for simple geometrical
reasons and therefore a suitable frequency difference has to be introduced
externally. In practice, a common solution that we adopted in our exper-
iment is to apply a frequency shift to all the three pairs by means of tree
different AOM’s. This gives us an independent control over the power of the
different beams at the expense of a slightly distorted wavefront: in prac-
tice the aberration introduced by this distortion is negligible for the beam
waists used in the experiment.

3Exact up to correction order (δ/∆)2.
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Figure 6.4. Scheme of the optics used for the optical lattice.

The layout of the three AOM’s is shown in figure 6.4. The output of the
laser is fed into a high power optical fiber with a pre-aligned output colli-
mator which produces an output beam with a waist of 0.45 mm. Immediate
after the collimator we placed a 60 dB optical isolator which is necessary
since back reflection is intrinsic to an optical lattice design and our laser
cannot withstand back reflection. After this isolator there is a mechani-
cal shutter which provides a slow turn off of the beams: this allows us to
keep the laser on during all the time thereby improving thermal stability
and reducing power fluctuations. The shutter is built from a servo actua-
tor which moves a mirror along the beam path: the stirred beam is then
properly stopped. After the shutter a sequence of three λ/2 waveplates
and polarizing beam splitter cubes splits the power for the three beams
which are injected into three different AOM’s to introduce the appropriate
detuning. Each of the three beams is then shaped with a sequence of three
lenses: the resulting waists are 90µm, 180µm and 160µm along the axial,
vertical and radial direction respectively and are placed on the position of
the magnetic trap to better than z0. After the vacuum apparatus each of
the beam is retroreflected with a cat-eye configuration to place the waist of
the backward beam in the same position as the forward one and to reduce
the effect of the misalignment of the retroreflecting mirror.

The coarse alignment of the lattice beam is done differently for the ver-
tical and axial direction than for the radial. In the former directions align-
ment is done first by superimposing the lattice beams with the two imaging
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beams and then taking an absorption image of the atoms inside the mag-
netic trap and superimposing a suitably attenuated image of the lattice
beam on the position of the magnetic trap. For the radial direction since
no imaging beam is available, we use a slightly different procedure: we
use a guide beam tuned on resonance and align it on the magnetic trap
maximizing the induced losses. Having done that the lattice beam is su-
perimposed on the guide beam and a coarse alignment is achieved. This
alignment is usually done once after any major change of the optical lay-
out. More frequently a more careful alignment is employed in which first
we realize a single beam optical trap with the axial beam: when the beam
is properly aligned atoms are held against gravity with less laser power.
For the radial and vertical direction, since a single beam trap is not deep
enough due to the bigger waists of these two beams, we simply maximize
the mechanical effect of the light on a crossed dipole trap: when a second
beam is correctly aligned the trap size is minimum.

The finest alignment of the lattice is done during the calibration of the
lattice height: in fact it is easy to see that, for a given total intensity, the
height of the optical lattice is maximum when the two beams are perfectly
counterpropagating. I will now describe the two techniques that we employ
to do this calibration.

6.2.3 Lattice calibration

The main tool for lattice calibration is an atomic interferometric technique:
the atomic diffraction in the thin-grating (Raman-Nath) regime.

Consider a standing wave potential of the form U(x) = sErec cos2(kx):
an atomic wavepacket which can be treated as a plain wave with momen-
tum p0 (∆p � h̄k ⇒ ∆z � λ/2), is coupled by the standing wave to plain
waves with momentum p0 ± 2n h̄k, where n is an integer number. If we
now apply the standing wave only for a limited time T we can ask which
is the probability of finding the atoms in the nth plane wave. The calcula-
tion is straightforward if one can neglect the motion of the atomic center
of mass along the lattice during the time T : in this case one is in the so-
called atomic Kapitza-Dirac regime, corresponding to the Raman-Nath light
diffraction from a thin grating and the probability is given by [139]

℘(n) =
∣∣∣∣Jn

(
s

2
ωrecT

)∣∣∣∣2 . (6.3)

The thin grating approximation requires that the kinetic energy of the
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involved plane wave is small with respect to the height of the optical poten-
tial. Taking as nc the biggest significant order of diffraction and neglecting
the initial momentum p0, one has that the thin grating condition is equiv-
alent to

(2nc h̄k)2

2m
� sErec ⇒ 4n2

c � s .

An estimation of nc can be done remembering that |Jn(z)|2 � 1 if |z| < n:
this means that

nc '
s

2
ωrecT .

With this estimation we can say that the thin grating approximation is
equivalent to the following condition

s ω2
recT

2 � 1 . (6.4)

From this expression one sees that, for this technique to be useful for
values of s > 1, one needs to apply the standing wave for a very short time
T � ν−1

rec ∼ 1 ms.

Raman-Nath diffraction of a Bose-Einstein condensate

If we now consider a more realistic situation in which the atomic plane
wave is replaced by a Bose-Einstein condensate one can follow the same
reasoning as above: the condensate get diffracted by the laser standing
wave and atomic wavepackets with momenta spaced by 2h̄k are generated.
These packets can be directly seen after the expansion as it is clearly shown
in figure 6.5. More quantitatively, if we indicate the condensate wavefunc-
tion as ψ0(x), the wave function after the interaction with the lattice in the
thin grating approximation is given by

ψT (x) =
∑
n

in Jn

(
s

2
ωrecT

)
e−2inkxψ0(x) .

The corresponding momentum distribution is obtained with a simple Fourier
transform

ψ̃T (p) =
∑
n

in Jn

(
s

2
ωrecT

)
ψ̃0(p− 2nh̄k) . (6.5)

With the assumption that ψ0(x) extends over many lattice sites and there-
fore ψ̃0(p) is narrow on the scale of h̄k, it is possible to write the second
moment of the momentum distribution as

〈p2〉 =
∑
n

℘(n)
w

BZ

(q − 2nh̄k)2|ψ̃0(q)|2dq = (
∑
n

℘(n))〈p2〉0 + 4h̄2k2(
∑
n

n2℘(n)) ,
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Figure 6.5. Atomic diffraction by a standing wave in the Raman-Nath regime. In the upper
part an absorption image is shown after a 15 ms expansion: up to three order of diffraction
can be seen. In the bottom part we show the density profile integrated along the y axis of the
image: the fit is a sum of seven Gaussian peaks with the same width (see Eq. (6.5)) and a
broad Gaussian background. The interaction time with the laser standing wave is T = 5µs.
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where we indicate with 〈p2〉0 the second moment of the momentum distri-
bution of the trapped condensate. Using Eq. (6.3) and the sum rules for
the Bessel function one finds

〈p2〉 = 〈p2〉0 +
1
2

(h̄k)2 (s ωrecT )2 . (6.6)

This quantity is simply proportional to the RMS width of the cloud after
expansion provided that the original size in the trap can be neglected and
that the atomic interactions play a negligible role during the expansion: in
these approximation we have

σ2
rms =

texp

m
〈p2〉 =

(
σ2

0 +
1
2

(vrectexp)2 (ωrecT )2s2
)
. (6.7)

This equation relates the s parameter and the expanded RMS size of the
condensate.

The experimental procedure is very simple: the condensate is prepared
in the magnetic trap and then we let it expand for one millisecond before
turning on the lattice for a time T = 5µs. After this time the cloud is
let expand for texp = 15 ms and imaged with the usual procedure. Typ-
ical images are like that shown in figure 6.5: first and second moment
of the optical density distribution are computed together with the width
of the central peak σ0 and from the solution of Eq. (6.7) one obtains the
lattice height. A comparison of this method with a complete fit based on
Bessel function shows that the calibration is correct within 10%: for ex-
ample from the height of the peaks of figure 6.5 one obtains in arbitrary
units ℘(0, 1, 2, 3) = {19.6, 39.0, 13.0, 1.6} which can be fitted by sωrecT = 3.68 or
s = 53; from the same picture one has σ0 = 13µm and σrms = 102µm which
give s = 58.

This calibration requires in principle only a single image and it is there-
fore very helpful for the daily alignment of the lattice, furthermore it allows
us to evaluate the balance of the lattice height along the different direc-
tions. To do this we shine all the tree standing waves and image simulta-
neously both direction on separate regions of the CCD: a typical result is
shown in figure 6.6. From the relative weight of the first order diffraction
peaks it is possible to evaluate the balance of the heights of the three or-
thogonal lattice which is very important in order compare the experimental
results with the theory.

Two different systematic errors can affect this kind of measurements:
the first one is purely technical and it is related to the temporal profile of
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Figure 6.6. Atomic Raman-Nath diffraction from three orthogonal standing waves obtained
with a pulse duration of 5 µs: the number of atoms in the condensate is around 105.

the pulse used to induce diffraction. The phase of the Bessel functions
appearing in Eq. (6.5) has that simple form only for a rectangular pulse:
in our case, for a 5µs pulse the turn on of the AOM introduces a rounder
shape which causes an underestimate of the actual lattice height. This
can be compensated for by introducing an appropriate correction factor
into Eq. (6.7). The second systematic source of error is more fundamental
and it is given by the atomic interactions. If we apply the pulse of the
laser standing wave when atoms are still trapped or anyway too dense,
the different momentum components can undergo s-wave collisions which
will reduce the diffraction efficiency: this effect is more severe in the axial
direction for which the trapped size is bigger. In this case the physical
separation of the different components takes more time and the number of
collision is bigger. To avoid this effect, we normally apply the pulse only
after 1 ms expansion: during this time the atoms fall by less than 5µm
and therefore experience the same optical lattice as in the trap position,
but have a lower density and therefore interactions become negligible. To
further test systematics of our calibration we compared the results of the
Raman-Nath diffraction with another interferometric technique.

Bragg scattering of a Bose-Einstein condensate

This second technique used for lattice calibration is based on the so-called
atomic Bragg diffraction [140, 141, 142]. As the name suggests this tech-
nique is reminiscent of the Bragg scattering of neutron from a material
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Figure 6.7. Scheme of the Bragg scattering two-photon transition. Continuous arrow mark
the resonant process, while the two photon transition marked by the dashed line is allowed
by the Heisenberg principle only if δ < h̄/T , where T is the duration of the lattice pulse.

crystal.
Consider a Bose-Einstein condensate in motion with velocity v: if we

shine on it a pulse of the two counterpropagating beams that create the
lattice, the atoms can absorb a photon from one of the beams and un-
dergo stimulated emission by the other beam. This two-photon process is
summarized in figure 6.7: if the initial momentum of the condensate is h̄k
the shown sequence transfers the atom into the −h̄k state conserving both
momentum and energy. The two populations undergo a two-photon Rabi
oscillation at a frequency given by

ΩB =
Ω2

0

2∆
. (6.8)

This Rabi frequency can be related to the height of the lattice by noting
that Eq. (6.1) can be casted in the form

Udip(r) =
h̄Ω(r)2

∆
,

where Ω(0) = Ω0. We then obtain

Udip = 2h̄ΩB ⇒ s =
2ΩB

ωrec
. (6.9)

If the initial velocity of the atom is different from h̄k a priori it is not pos-
sible to satisfy energy and momentum conservation, however if the stand-
ing wave is pulsed for a time T , the Heisenberg principle allows an energy
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Figure 6.8. Oscillation of the center of mass position of the two momentum components
created by Bragg diffraction of a condensate induced by the axial beam for two different
lattice powers (dots and squares). From the sinusoidal fit to the higher power case (continuous
line) we obtain a frequency ωB = 5.25(5) kHz which gives s = 5.3. In the fit of the lower power
data, the frequency is fixed to one third of the previous value showing that data follow the
expected scaling.

difference on the order of h̄/T : for T > 1 ms this means an energy width of
about ∆E ' h 1 kHz ' Erec and therefore it is possible to observe Bragg os-
cillation for almost every initial momentum. The only consequence is that
the amplitude of oscillation is reduced, i.e. it is not possible to transfer all
the initial population.

The experimental procedure to observe Bragg oscillation is the follow-
ing: for the radial and axial directions the condensate is set in motion by
displacing the center of the trap inducing dipole oscillations. When the
condensate has the desired velocity the magnetic trap is switched off and
within 200µs the pulse of the lattice light is applied. For the vertical direc-
tion the trap is simply switched off and when the atoms have acquired the
right velocity by the effect of gravity, the pulse is applied. The two momen-
tum components are allowed to separate by the expansion and the center
of mass of the two clouds is measured from the absorption imaging: fitting
the oscillation of the c.o.m. as a function of the pulse duration one obtains
ωB and hence s. A typical experimental acquisition is shown in figure 6.8.
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6.2.4 Loading of 87Rb in the lattice

The process of loading a Bose-Einstein condensate into an optical lattice
can be viewed as an adiabatic transfer between the unperturbed conden-
sate and the ground state of the first Bloch band which is the one with zero
quasimomentum4. The condition on the ramping speed of the lattice that
must be fulfilled in order to perform an adiabatic transformation can be
derived from the usual adiabatic criterion

|〈u |∂tH|w〉| �
(Eu − Ew)2

h̄
(6.10)

where |w〉 is the state that one wants to populate and |u〉 is the state to
avoid nearest in energy. In our case we have that these two states are
respectively the Bloch waves | 0, 0〉 and | 1, 0〉 and the criterion (6.10), for
s ∼ 1 is equivalent to [143]

ṡ� 32
√

2ωrec ∼ 580 ms−1 (6.11)

and is even less stringent for s� 1: this requirement is easily fulfilled at all
values of s and, as far as a homogeneous system is concerned, it is the only
relevant criterion for adiabaticity. However, for an inhomogeneous system a
more stringent criterion is set by the atomic dynamics time scale. Changing
the trapping potential in facts requires a change in the density distribution
in order to conserve entropy and to adjust with the compression originated
by the red detuned lattice beams (see Eq. (1.18)). The relevant timescale of
this process is given by the tunneling time h̄/J which, as we have seen in
5.2.1, becomes exponentially small with increasing s. This leads in princi-
ple to a difficult condition in which increasing the lattice height demands
an increased density redistribution which however occurs at a slower rate.
In practice, for deep lattices, the compression induced by the beam is com-
pensated by the increase in the on-site repulsive interaction and therefore
a density change is no longer necessary, at least for a 3D lattice [144]. This
criterion is therefore relevant only at intermediate lattice depth where the
compression is still dominating.

For this reason we ramp up the lattice intensity with an exponentially
growing profile depicted in figure 6.9. In principle the slowest the ramp the
best the adiabaticity is, however several technical reasons, chiefly the deco-
herence associated with mechanical noise on the optics, limit the lifetime of

4Clearly this is no longer true if the condensate and the lattice have a non-zero relative
velocity.
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Figure 6.9. Typical profile of the ramp-up of the intensity of a lattice beam as a function of
the control signal: a linear ramp in the control signal is converted in a smooth one both at the
beginning and at the end of the ramp. The dashed line is a fit to a step function.

the sample and increase the heating. For high lattices this heating will ulti-
mately introduce a dephasing among the different lattice sites which would
destroy the superfluidity in the system. The ramp parameters are there-
fore chosen as a careful compromise to ensure adiabaticity and to avoid
unwanted heating in the system. The optimization of the ramp parameters
is done by ramping up and down the lattice with the same ramp under
test: if the ramp is adiabatic the condensate is recovered in its Thomas-
Fermi ground state, if the ramp is too fast excitations are visible, mostly as
excitation of the surface modes of the condensate. We found that a good
compromise, for a broad range of lattice heights, in presence of 87Rb alone,
is given by a ramp duration of 50 ms with a time constant τR = 20 ms.

6.3 Experimental results

In this section I will present our experimental results obtained loading the
mixture in the optical lattice. The reported experiments are a première in
this line and –as we will see– are not fully understood yet. As a first charac-
terization of the experiment I will report first our results on the superfluid
to Mott insulator transition in 87Rb and then I will describe what happen
when the second species is added. The chosen regime is that where the
41K Bose-Einstein condensate acts as a small perturbation on 87Rb: nev-
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ertheless we will show that such a perturbation induces a loss of phase
coherence in the 87Rb condensate at significantly lower lattice heights than
in the unperturbed case. I will show that this effect is related to the small
overlap of the two condensates and disappears if the two are far apart one
respect to the other. I will also exclude the most trivial explanations related
to the thermal fraction of the two gases and to the lattice ramp-up time.
The tentative explanations for the observation reported here are explored
in the next section.

6.3.1 The superfluid to Mott insulator transition in 87Rb

The first observation of the superfluid to Mott insulator transition in an
atomic gas was made in [6] where M. Greiner and co-workers observed a
strong change in the density profile of the condensate after expansion as a
function of the lattice height.

Their results were reproduced in our experiment and are shown in fig-
ure 6.10. Qualitatively as the lattice height is increased, the coherence be-
tween the different sites (typically, our 87Rb condensate occupies 1.5 × 104

lattice sites) give rise to a matter wave interference which is visible after
the expansion. This interferogram becomes more and more visible as lat-
tice height is increased until, for a certain value of the lattice height, the
contrast starts to decrease and eventually disappears leaving a Gaussian
shaped cloud.

The experimental procedure we used to obtain these results is the fol-
lowing: after adiabatically loading the atoms in the lattice with the ramp
illustrated in figure 6.9, we wait for 5 ms with the optical lattice at full
power and abruptly switch off the lattice beams (< 1µs) and the magnetic
trap (∼ 100µs). Then, after a time-of-flight of 20 ms, we make the usual
absorption image.

The relation between the loss of interference and the superfluid to Mott
insulator phase transition is established noting that this loss is reversible:
the coherence can be recovered if the lattice height is ramped down again.
Further properties can be extracted with a more quantitative analysis. As
we already pointed out in § 6.2.3, the density profile after expansion is
related to the momentum distribution which, for the lowest Bloch wave, is
given by Eq. (5.15). The transformation from the post-expansion density
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Figure 6.10. Absorption images taken with 87Rb alone at different lattice heights. The
contrast of the interference pattern is reducing as lattice height increases.

profile to the momentum distribution is simply given by:

ne(x) = k6
e

∣∣∣w̃ (k2
e x
)∣∣∣2∑

i,j

exp
(
ik2

e x(ri − rj)
)
〈âiâj〉 , (6.12)

where the scaling factor ke depends from the expansion time te as k2
e =

m/(h̄te).
From the above expression we can understand the physics behind fig-

ure 6.10. The peaks are in fact the Bragg peaks corresponding to the
reciprocal lattice as it can be immediately recognized looking at figure 5.1.
The smearing of the peaks is associated to the reduction of the coherence
length of the sample with a persisting short range correlation and, when
the peaks completely disappear, the remaining Gaussian background is
the Fourier transform of the single-site Wannier function.

A more quantitative analysis of the phase coherence of the system across
the phase transition can be done by measuring the visibility of the inter-
ference pattern [117]. In principle one could fit the image to Eq. (6.12)
and extract all the information. This method suffers of a poor accuracy
when the peaks start to be smeared because a fitting of separate sharp
peaks is not possible. A more robust procedure, introduced in [117], is
depicted in figure 6.11: first we perform a sum over four small 3 × 3 pixel
window around the first order Bragg peaks that we call S90, then we repeat
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Figure 6.11. (Left) Visibility of the Bragg peaks as a function of the adimensional parameter
U/(6J). The parameter is calculated from Eq. (5.12) with the measured lattice height and
the error bars are statistical fluctuation over around 5 measures. The vertical lines mark
the expected value for the formation of the first three Mott lobes. Experimental results are
compared with the superfluid fraction computed within the site decoupling approximation
(red triangles). (Right) Procedure to compute the visibility according to Eq. (6.13): the black
squares are used to compute S90 and the gray one to compute S45

the same procedure on another four windows offset by 45◦ and obtain S45.
From these two quantities we construct a measure of the visibility as

v =
S90 − S45

S90 + S45
: (6.13)

in this way the contribution of the background cancels regardless of the
quality of the peaks themselves. The resulting plot of this quantity is
shown in figure 6.11: indeed the visibility is almost constant up to a value
U/(6J) ' 6, where it begins to drop. The results are compared with the sim-
ple model outlined in § 5.2.3: the superfluid fraction defined as

∑
i |ψi|2/N

closely follows the behavior of the measured visibility.

Another observable which reflects the transition from superfluid to Mott
insulator is the width of the k = 0 Bragg peak which measures the coher-
ence length of the system. This quantity is plot in figure 6.12: as we see
the width shrinks for increasing lattice height and then has a steep climb
around U/(6J) ' 6.
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Figure 6.12. Width of the zero momentum peak as a function of the adimensional parameter
U/(6J).

These results show that we can experimentally probe the loss of phase
coherence associated to the phase transition from a Bose-Einstein con-
densate to a Mott insulator and it nicely fits with the prediction based on
the Bose-Hubbard model. We are therefore in the position to see how this
dynamics is changed by the interaction with another superfluid.

6.3.2 Adding the second species

As we pointed out in the introduction to this chapter, the main experimen-
tal result of this work is the observation that the lattice strength at which
the contrast of the 87Rb Bragg peaks starts to decrease is largely shifted not
only by a minor admixture of 41K atoms, but also with a marginal spatial
overlap.

The experimental procedure adopted is straightforward: first the two
condensates are produced as explained in § 6.1 and then the lattice is
ramped up at different heights as we have done for the experiment of
§ 6.3.1. In order to explore a regime in which the second superfluid acts
as a perturbation on the first, the number of K atoms is limited to NK =
2(1) × 103, less than 10% of the 87Rb condensate size. The typical number
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of 87Rb atoms in the condensate is NRb = 3(1) × 104. In order to exclude
any effect due to the residual thermal fraction and to set stage for further
analysis, it is important to give an estimate of the initial temperature be-
fore the ramp-up of the lattice. In our case, an estimation can be obtained
by noting that, in the presence of potassium, we cannot distinguish any
thermal fraction of the 41K condensate. For NK ' 2 × 103 this means that
the condensed fraction is above 50%. Since the condensed fraction scales
as

N0

N
' 1−

(
T

Tc

)3

,

we can estimate that the temperature of the mixture is below 73 nK: at this
temperature the corresponding condensed fraction of 87Rb is 83%.

The visibility of the Bragg peaks of 87Rb in presence of a small 41K con-
densate is plotted in the top part of figure 6.13, while the width of the zero
momentum peak is reported in the bottom part. To ease the comparison
with the case of 87Rb alone the corresponding data are also plot. As an-
ticipated the visibility starts to decrease for a much weaker lattice and at
the same value of lattice height the width of the central peak has a steep
climb. To make the effect more evident, the results with two species are
plotted as a function of the height of the 87Rb lattice s instead of the pa-
rameter U/(6J). The relation between the two horizontal scales is given by
Eq. (5.12).

Quantitatively, we characterized the loss of visibility fitting the data with
a phenomenological Fermi function:

v = v0 (1 + exp(α (s− sc)))−1 . (6.14)

This function has the expected flat behavior below the critical height sc and
then decays as exp(−αs) for s� sc. Note that there is no direct link between
the fitted sc and (U/(6J))c, but we expect that the [U/(6J)]s=sc is close to it.
From the fits displayed in figure 6.13(top), we obtained the following value
for sc:

sc0 = 17.1(0.6)(1.7) sc1 = 12.8(0.3)(1.3)
α0 = 0.36(7) α1 = 0.71(8)

where the first error is the statistical contribution of the fit and the second
is the systematic uncertainty associated with the lattice calibration that
does not affect the difference of the two value which is clearly not compat-
ible with zero.
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Figure 6.13. Visibility of the Bragg peaks of 87Rb as a function of s with (squares) and
without (dots) 41K. Error bars are statistical fluctuation over around 5 measures. Dashed line
are a fit according to Eq. (6.14).
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According to Eq. (6.2), the corresponding height of the lattice for 41K is a
factor 2.3 smaller and the sample is always deep into the superfluid phase.
This, combined with the small number of atoms, makes the detection of
the Bragg peaks of K very difficult: the zero momentum peak is however
always visible and shows no broadening. Together with the appearance of
weak Bragg peaks in the best pictures, this is an indication that no heating
takes place during the ramping up of the lattice. This indication is further
confirmed by an analysis of the visibility of the 87Rb peaks as a function of
the ramping time with and without 41K, which is reported in figure 6.14. As
we can see, although systematically smaller, the change in the visibility is
the same with or without 41K establishing that the adiabaticity in the load-
ing of the lattice is not modified by the presence of the second condensate.
I will come back to this point in § 6.4.1. These measurements also show
that there is no significant difference in the lifetime of the sample with and
without 41K: this means that the three-body loss rate is not enhanced by
the presence of two species, consistently with the small overlap of the two
clouds outlined in section 6.1.

However, given this little overlap, the observed shift is somewhat sur-
prising. Numerical integration of the 3D Gross-Pitaevskii equation with a
s = 11 vertical lattice shows that the overlap is restricted to 1 lattice site
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out of 11. Generalizing to a 3D lattice, we expect that approximately only
10% of sites are simultaneously filled with both 87Rb and 41K atoms. For
this reason, one might doubt that the shift is genuinely related to the in-
terspecies interaction. In order to check that this is indeed the case, we
repeat the experiment with lower magnetic confinement to increase the
differential sag of the two samples (1.48). Once the double-species conden-
sate is achieved, we relax the harmonic frequencies of the magnetic trap
to ω⊥ = 2π × 108 Hz and ωz = 2π × 9.2 Hz, thereby increasing the vertical
separation to 11µm, more than the summed radii of the condensates that
remain well separated even with the additional confinement of the lattice
beams. The results for the visibility of the Bragg peaks and the width of the
central peak are shown in figure 6.15: as we can see, although the visibility
is somewhat lower and the increase of the central peak width is sharper in
presence of 41K, the change in this two parameters takes place at the same
lattice height. By fitting the visibility decay as in the case of small overlap
we obtain

sc0 = 16.4(0.6)(1.6) sc1 = 15.3(0.4)(1.5)
α0 = 0.51(14) α1 = 0.51(8)

and this time the difference is consistent with zero and the exponent in the
deep lattice limit is the same within the experimental uncertainties. We
note that in this configuration the critical temperature for 41K is even lower
due to the reduced trap frequency: since however no thermal component
of 41K can be detected, repeating the above reasoning we can set an upper
limit for the temperature to 50 nK. The corresponding condensed fraction
for 87Rb is above 95% and the presence of the thermal cloud becomes com-
pletely negligible.

These results prove that indeed the effect shown in figure 6.13 is due to
the interaction between the 87Rb and the 41K condensate. Furthermore the
most trivial explanations, either related to non-adiabatic effects or to other
processes that precede the loading of the lattice, are ruled out by our ex-
perimental observations. However no simple arguments exist to relate the
observed large shift in the onset of the loss of phase coherence to the small
overlap between the two clouds. Increasing this overlap would require to
reduce the mutual repulsion between the two species: this can be done –as
we have seen in § 3.2– using a Feshbach resonance. Experimental efforts
are underway at the moment of my writing to assess the position of these
resonance and preliminary results will be presented in chapter 7.

Nevertheless the experimental observations demand a theoretical anal-
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Figure 6.15. Visibility of the Bragg peaks of 87Rb as a function of s with (squares) and
without (dots) 41Kin a weak magnetic trap. Error bars are statistical fluctuation over around
5 measures and where not shown are smaller than point size. Dashed line are a fit according
to Eq. (6.14).
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ysis, which is more intriguing since the effect is somehow unexpected. I
will discuss the possible explanation in the following section.

6.4 Theoretical scenarios

Our experimental findings augment those of the attractive Fermi-Bose mix-
ture [135, 136] to repulsive bosonic impurities and help to shine some light
on the induced loss of coherence, whose origin has so far remained unclear,
if not controversial.

Among the causes of this shift of the loss of coherence only those related
to finite temperature can be translated from fermionic to bosonic impuri-
ties. Other explanations such as disorder induced by localized fermions
cannot apply to our case since our impurities are superfluid and therefore
delocalized. Obviously our experiment does not have any direct implication
for the Fermi-Bose case but certainly it pushes the theoretical analysis to
look for explanations that can be valid in both cases.

One of the most surprising results shown in previous section is that the
observed loss of coherence occurs with a very limited overlap between the
two clouds: this in sharp contrast both with the fermionic case and with
several theoretical analysis which usually take the interspecies interaction
as weak (see § 5.3). As we pointed out above, we think that the ultimate
answer to the questions raised by our experimental observation can come
only after a systematic analysis of the system as a function of the inter-
species scattering length and hence of the overlap. Nevertheless, several
hypotheses can provide a partial explanation our results: unfortunately
none of them is conclusive but each of them is worth further studies.

6.4.1 The issue of finite temperature

The first and most immediate explanation for the loss of phase coherence
could follow from heating of the two clouds when the lattice ramps up.
Besides technical noise, which plays a role only at longer timescales, we
consider the effect of the thermodynamic transformation involved.

The entropy of a Bose gas condensate in a harmonic trap in the Thomas-
Fermi regime can be obtained from the energy per particle which, for t =
T/Tc < 1, can be expressed as the sum of two contribution, one is identical
to that of the ideal gas and the second depends on the interaction. To the



Theoretical scenarios 153

lowest order in the interaction one has [44, 42]:

E

N kBTc
=

3ζ(4)
ζ(3)

t4 +
1
7
η (1− t3)2/5(5 + 16t3) , (6.15)

where ζ is the Riemann zeta function and the interaction term is linear in
the quantity

η = α

(
N1/6 a

āho

)2/5

(6.16)

which is the ratio between the zero temperature chemical potential (2.17)
and the critical temperature of the ideal trapped Bose gas (1.23). In the
above expression α = 152/5ζ1/3(3)/2 ' 1.57, a –as in chapter 1– the in-
traspecies scattering length and N is the total number of atoms including
the non-condensed fraction.

From Eq. (6.15) this expression one can obtain the entropy from the
known relation [67]

∂S

∂T
=

1
T

∂E

∂T

The resulting expression for the entropy of the trapped gas is given by

S

N kB
=

4ζ(4)
ζ(3)

t3 +
6
7
η

tw

0

duu

[
8(1− u3)2/5 − 5 + 16u3

5(1− u3)3/5

]
, (6.17)

where the interacting contribution must be evaluated numerically.

If the lattice is so weak that the system is very well superfluid, a rea-
sonable approximation is to replace the actual mass by the effective mass
of the particles in the lattice and continue to consider the gas as harmon-
ically trapped. As it is shown in figure 6.16, increasing the lattice height
increases the effective mass and hence η: in order to keep the entropy
constant, the reduced temperature T/Tc decreases, thereby increasing the
superfluid fraction of the system. This effect is augmented by the compres-
sion induced by the spatial profile of the beams as per Eq. (1.18), since it
also increases the entropy.

If one goes to higher lattice, the effect of the shell structure become sig-
nificant: in this range entropy is confined in sites with number fluctuations
i.e. in superfluid shells [145, 146]. As we pointed out in § 5.2.3, the shape
of the superfluid shell is very sensitive to the external confinement. The
compression induced by the ramping up of the lattice might give rise to a
strong increase in the temperature of the system and possibly a reduction
of its superfluid fraction. At zero temperature in the limit J → 0, the radius
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Figure 6.16. Effective mass in the ground state of the lattice as a function of the lattice
height. Vertical line marks the lattice height for which in 87Rb U/(6J) ' 1.

of the nth-shell is given by [124, 145]

R
(n)
i =

1
ωi

(
2(µ− nU)

m

)1/2

, (6.18)

where µ is the chemical potential at the trap center. The effect of finite
temperature is to blur the step between the different shells up to the point
in which the gas reverts to its normal state. Based on a simple approxima-
tion which takes into account excitation in the form of particle-hole pairs,
it is possible to show that the system is still in a Mott insulator state if
T < T ∗ ' 0.2U [146]. For a 87Rb condensate in a lattice with s = 20 one
finds T ∗ ' 8 nK.

In the presence of tunneling however the situation is simplified by the
presence of the superfluid layers between the Mott insulating domains.
Considering a spherical trap with frequency ω̄, one finds that the total
entropy associated with the shell structure, for kBT < U is [145]

Sshell/kB =
32π3

3
kBT

mω̄2 λ3
L

∑
j

R(j) . (6.19)

From this expression it is possible to calculate the final temperature reached
by the atoms in the lattice. In figure 6.17 we report the entropy per parti-
cle as a function of temperature for 87Rb, as obtained from Eq. (6.17) and
Eq. (6.19) for s = 20. The parameters used in the calculation are obtained
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Figure 6.17. Entropy per particle as a function of temperature for a harmonically trapped
condensate in the Thomas-Fermi approximation (continuous line) and for a inhomogeneous
Mott insulator (dashed line) in a lattice with s = 20. The arrow marks the reduction of the
temperature following the adiabatic loading in the lattice.

as follows. The compression generated the lattice is taken into account by
introducing in Eq. (1.18) the waists of our lattice beams obtaining:

ωz = 2π
√

16.82 + 7.662 s Hz
ω⊥ = 2π

√
2022 + 11.92 s Hz

(6.20)

The chemical potential is obtained from a site decoupling simulation fixing
the total number of atoms obtained from the estimation of the condensed
fraction given above. For N = 3.7× 104 we have µ = 1.85Erec.

As we can see from figure 6.17, the adiabatic loading may result in a
reduction or an increase of the final temperature depending on the initial
one. For an initial temperature of 73 nK, considering for the moment 87Rb
alone, the loading in the lattice results in a reduction of the temperature
to about Tf = 25 nK: this means that our treatment is self consistent since
Tf < U/kB ' 38 nK. Beside this it is worth remarking that, since entropy is
conserved, the thermal fraction (which is the fraction contributing to the
entropy) should be constant as well.

With two species, however, the two entropies change at different rates
and thermal equilibrium requires an interspecies redistribution of entropy.
In our experiment, this increases the entropy of 87Rb and therefore reduces
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its condensed fraction: it might be the case that this reduction accounts
for the observed loss of phase coherence. Quantitatively, due to the small
overlap, we neglect the interspecies interaction energy and calculate the
total entropy as the sum of two independent contributions. At s = 0, each
of the two gases contributes with Eq. (6.17). At s = 20 [U/(6J)]K ' 0.75 and
therefore, for 41K, we can apply Eq. (6.17) with the replacement m → m∗ =
4.16m while for 87Rb it is legitimate to use Eq. (6.19). The final temperature
of the mixture and the entropies of the two gas are obtained imposing
conservation of entropy and thermal equilibrium:{

SK(0) + SRb(0) = SK(20) + SRb(20)
TK(20) = TRb(20)

(6.21)

For an initial temperature of 73 nK, which –as we pointed out above– corre-
sponds to a 87Rb thermal fraction of 20%, the presence of 41K increases the
87Rb entropy, hence its thermal fraction, by 20%. As a consequence, the
87Rb condensed fraction decreases, at most, from 80% to 75% and the visi-
bility by approximately the same amount [112]. It is worth noting that also
in this case the obtained final temperature T (20) = 29 nK is lower than U/kB

and therefore our approach is self consistent. We conclude that this is a
minor effect, unable to account for the observed relevant loss of coherence.

6.4.2 Effective potentials

The first naive explanation can be obtained from a crude mean field approx-
imation of the interaction term Eq. (5.23). If one consider that potassium
is superfluid at all the lattice heights considered in the experiment, a mean
field version of the interaction term can be written as

Hint = V
∑

i

ψK in̂Rb i =
∑

i

µ̃i n̂Rb i .

In this form it is straightforward to identify the interaction term as a cor-
rection to the local chemical potential: since for our mixture V > 0, the
local chemical potential is increased. The case of commensurate 1 + 1 fill-
ing for the 87Rb-41K mixture is considered theoretically in [34] but, in sharp
contrast with our experiment, calculations are made for a uniform system
and the interspecies scattering length is considered such that the overlap
is perfect. In this condition the authors of [34] observe that the transition
to the Mott insulator phase occurs for deeper lattice opposite to what we
observe in our experiment.
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Figure 6.18. Cross section of the effective potential seen by 87Rb in presence (continuous
black line) and in absence (dashed black line) of a frozen distribution of 41K atoms and corre-
sponding density distribution (dots, continuous line and squares, dashed line respectively).
The upper plot is taken along the vertical axis, while the lower one is taken along the axial
direction at the vertical position marked by the dot-dashed line. The chemical potential is
slightly different in the two cases in order to have the same number of atoms within 0.5%.

However, if in presence of harmonic confinement, the situation can be
more complicated. Looking at figure 5.4, one sees that not necessarily
increasing the chemical potential leads to an increase of the superfluid
fraction. Considering the potassium condensate as a static perturbation,
the problem for 87Rb is mapped on an inhomogeneous problem in which
the potential is not purely harmonic but reflects the density distribution of
41K as shown in figure 6.18. In the same figure I report the corresponding
density distribution as obtained within the site decoupling approximation:
the effect on the density distribution is sizable, but if we compute the su-
perfluid fraction we see only a minor change unable to account for the
experimental observation.
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The exact result when the potassium distribution is not frozen but is
repelled from the 87Rb distribution is not easy to predict. From very gen-
eral consideration one should expect no simple answer but whether the
superfluid fraction increases or decreases depends on the trapping geom-
etry of both species [147]. A theoretical analysis that takes these effects
into account is way beyond the experimental character of this thesis. How-
ever I think that a further insight into this problem could be helpful also
because it could allow a comparison with the fermionic case in which the
interspecies interaction is attractive and therefore modifies the trapping
potential in the opposite way.

6.4.3 Polarons

Here I want to address the last theoretical scenario which can help to un-
derstand our experimental findings, especially with respect to the small
overlap between the two clouds. This treatment is based on two funda-
mental assumptions that are verified in our system:

1. Rubidium can be described by a Bose-Hubbard model, while potas-
sium is deep in the superfluid region where the Gross-Pitaevskii equa-
tion is still meaningful

2. in the overlap region the coupling between the two clouds is weak
because of the reduced density and in spite of the large cross section.

The model

The Hamiltonian of the system at our lattice heights can be written as a
sum of three contributions: one for each of the two species plus an in-
teraction term. In the spirit of the above mentioned assumption (1), the
Hamiltonian of potassium can be taken as Eq. (1.26), while that for 87Rb is
given by the Bose-Hubbard model Eq. (5.8). To work in the grand canonical
ensemble a term −Ψ̂†(r)µK Ψ̂(r) (−µRb

∑
i n̂i) is added to the potassium (ru-

bidium) Hamiltonian. The interaction term is readily found remembering
Eq. (5.7):

Hint = g12Ψ̂†(r)Ψ̂(r)|w(r)|2n̂ , (6.22)

where the coupling g12 is that introduced in § 1.3 and it is related to the
interspecies scattering length by Eq. (3.9). In this model it is possible to
show that 87Rb atoms interact with the 41K condensate by creating exci-
tations in the condensate [148]. These excitations “dress” the 87Rb atoms
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and the tunneling of these dressed atoms is slower: this might be at the
origin of the observed loss of coherence5.

If the effective coupling between the condensate and the tunneling atoms
is weak enough, the fluctuations of the condensate from the unperturbed
ground state can be considered small and treated with the Bogolioubov
approach introduced in § 1.2. It becomes then possible to diagonalize the
complete Hamiltonian on a basis of quasiparticles consisting in a 87Rb atom
and a coherent cloud of excitations of the 41K condensate [148]. These com-
pound objects are reminiscent of polarons in solid-state physics and, as
their solid state counterpart, can be characterized by a energy shift which
is given by [148]:

Ep =
1
Ω

∑
q

g2
12

n0 ε(q)
h̄2ω2

q

|f(q)|2 . (6.23)

In Eq. (6.23) Ω is the quantization volume of the system, ε(q) = h̄q2/(2mK),
h̄ωq is the Bogolioubov spectrum and f(q) is the Fourier transform of the
absolute square of the Wannier function:

f(q) =
w

Ω

dr |w(r)|2 exp(iq · r) .

In order to obtain an analytic expression for Ep, I will use the Bogolioubov
spectrum of an homogeneous condensate, given by Eq. (1.36) and take for
the Wannier function the ground state of the harmonic approximation of
the lattice well. Introducing these approximations Eq. (6.23) becomes:

Ep =
g2
12

(2π)3/2 gKξ2K

1
σw

(
1−

√
2π
σw

ξK

)
, (6.24)

where ξK = h̄/
√

2mgK nK is the healing length already introduced in Eq. (1.44),
σw = λ s−1/4/(2π) is the second moment of the real space Wannier function
and the above equation is approximated to the order (σw/ξK)2.

The dynamics of the polarons depend on the ratio between the temper-
ature and Ep [148]. For kBT � Ep the system dynamics can be described
by the coherent hopping of polarons with a renormalized tunneling energy
given by J̃ = J exp(−S) . Within the above mentioned approximations one
finds

S ' 1
16π2

(
g12
gK

)2 λ

nKξ4K
(6.25)

where nK is the peak density of the 41K condensate. On the other hand,
for kBT � Ep, one has that the Bogolioubov excitation undergo incoherent

5A similar tentative explanation was also suggested by T. Hänsch.
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scattering as the 87Rb atoms tunnel. Under these conditions the damping
of the tunneling rate becomes much more severe and one has [148]

J̃ ' J2 exp(−Ep/(kBT ))
h̄(kBT Ep)1/2

. (6.26)

The actual experiment

I first check whether the weak coupling condition introduced above is ap-
plicable to our case. This might seem at first counter-intuitive since, as we
saw in § 6.1, the interspecies repulsion is so strong that induces phase sep-
aration between the two condensates. However, for our number of potas-
sium atoms, the density is weak enough that the coupling with 87Rb repre-
sents a perturbation.

More quantitatively the weak coupling is justified if the mean field en-
ergy of the 41K condensate is bigger than the interaction energy with 87Rb
[148]:

g12 � 2
√

2 gKn(r)ξ3(r) ∼ h̄3√
m3gKn(r)

∼ h̄3√
m3gKnK

(6.27)

which is equivalent to

a12
√
aKnK �

[
4π3/2

(
1 +

mRb

mK

)]−1

' 0.02 .

For our experimental parameters:

a12
√
aKnK = a12

√
1
8π

mω̄

h̄

(
15NKa

āho

)1/5

' 0.003 .

In the previous equation we made use of Eq. (1.30) and Eq. (1.32) and
set ω̄ = 2π × 128 Hz and NK = 2 × 103. As we can see the weak coupling
approximation is well verified at the center of the condensate but is less
and less valid as we approach the edge: given that the overlap between our
two condensates is marginal the approximation in our case is only weakly
verified. I will come back on this point below.

A similar calculation for the polaron energy yields Ep ' 1 nK at s = 10.
We are therefore in the regime at which polarons undergo incoherent scat-
tering and one expects a strong reduction of the tunneling according to
Eq. (6.26). For comparison we calculated that the coherent contribution
given by Eq. (6.25) is almost negligible. This proves that indeed the inco-
herent scattering of the 41K condensate excitations associated to the tun-
neling of 87Rb atoms might indeed play a role in our experiment. However,
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before claiming that this is the cause of the observed loss of coherence
and initiate further investigation aimed at experiments related to polaron
physics (see for example [149]), several questions must be answered from
the theoretical side. First of all the weak coupling approximation is not
very well verified at the edge of the condensate and this requires a more
complicated approach, second the presence of the lattice is neglected for
41K as it is that of the harmonic trap for 87Rb and third the Bogolioubov
spectrum is calculated for a homogeneous condensate which is far from
the experimental situation. Last it should be noted that, although the con-
densate excitations are intrinsically collective and therefore explain how
the entire condensate is affected by a local perturbation induced by the
87Rb atoms, this should at least introduce some cutoff in the wavelength
of the excitations summed in Eq. (6.23). By the same token it remains ob-
scure how a perturbation of the tunneling in a marginal region can affect
a global property of the 87Rb gas such as the visibility of the interference
pattern. About this issue it has been suggested that, since 87Rb is close to
a quantum phase transition, the influence of boundary condition may be-
come overwhelming [150], but an experimental challenge of this hypothesis
is at least cumbersome.

In summary our experimental observation of a loss of phase coherence
induced by the presence of a small condensate of another species even
in the presence of a small overlap opened several scenario that deserve
further investigation, both from the experimental and on the theoretical
point of view. From the experimental side, the most obvious step is get rid
of this reduced overlap and look how the effect change if the two species
are perfectly overlapped: to realize this however, the use of a Feshbach
resonance to tune the interspecies interaction is a fundamental tool.
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Chapter 7

The quest for Feshbach
resonances

As it was clearly pointed out in § 6.4, a loss of coherence induced by the
presence of a second superfluid was observed in a Bose-Einstein conden-
sate of 87Rb even though the overlap between the two is only limited. This
finding is in sharp contrast to the prediction of [34] which is done for
perfectly overlapped gas. For this reason it is very important to acquire
the experimental capability of tuning the interspecies scattering length: as
shown in § 3.2, this can be done by tuning a uniform magnetic field across
a Feshbach resonance.

Heteronuclear Feshbach resonances in the mixture 40K-87Rb were among
the first to be observed [17], and recently several resonances of this mixture
were identified [71, 72]. These determinations allowed to create accurate
models of interspecies collisions and, more interesting to us, to predict the
position of Feshbach resonances also for the 41K-87Rb mixture [71, 72].
However, no experimental determination of these resonances exists so far
and therefore, before thinking to any experiment in which interactions can
be controlled, these resonances must be find experimentally.

In this chapter I will present preliminary results on the position of two
low-field Feshbach resonances of the 41K-87Rb mixture. This work ideally
concludes the build-up phase of the new apparatus which can now fully
explore the physics it was designed for. Before the results are actually
presented I will introduce the detail of the experimental setup.
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7.1 Experimental procedure

The Feshbach field is generated by the same coils that are used for the
3D-MOT and the quadrupole trap. However, in order to generate a uni-
form magnetic field the current direction in one of the two coils is switched
with an electro-mechanical relay. The current flowing in the coil is mea-
sured with a high precision Hall probe: the first task we accomplished is
a calibration of the probe output as a function of the magnetic field. Since
Feshbach resonance are exploited by tuning a homogeneous magnetic field
they are intrinsically incompatible with magnetic trapping. For this rea-
son, to calibrate the magnetic field, atoms are held into a 1D optical lattice
simply obtained shining only the axial beam with a higher power (s ∼ 100).
The calibration consists in measuring the frequency ν21 of the | 2, 2〉 → | 1, 1〉
hyperfine transition. In a uniform magnetic field B the frequency of this
transition is given by:

ν12 = 〈1, 1 |A(I · J) + (µB/h)(2S + J + gNI) ·B| 2, 2〉 , (7.1)

where the first term is the hyperfine splitting which is diagonal on the
|F,mF 〉 basis, µB is the Bohr magneton and gN is the nuclear magnetic
moment in units of µB which for 87Rb is 1.4984×10−3 [151]. By plugging the
right values in Eq. (7.1) one obtains

ν12 = ν0/2 + αB +
√
ν2
0/4 + βB + γB2 ' ν0 + 1.5µBB , (7.2)

where ν0 is the hyperfine separation and the numerical constants are given
by

α = 1.4006 MHz/G β = 4779.3 MHz2/G γ = 1.9559 MHz2/G2 .

After this preliminary step we transferred atoms into a crossed optical
trap realized with the axial and horizontal beam of the optical lattice. We
found out that the position of the waist of the beam is more critical for a
single beam trap than for a 1D lattice and therefore this parameter was
carefully adjusted by changing the position of the last lens. As we expected
from Eq. (1.10) the trap aspect ratio is very big and therefore the trap acts
more like a waveguide letting the atoms expand along the axis of the beam:
this is clearly shown in figure 7.1(a) where we plot the density distribution
of the atoms a few ms after releasing them from the magnetic to the optical
trap. The second beam is aligned to minimize the size of the trapped atoms
at a constant temperature thereby maximizing the trapping frequency. A
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Figure 7.1. Absorption images taken in situ inside a single beam dipole trap (a) and a
crossed dipole trap (b). The temperature in both cases is around 600 nK. Note that in the case
of the single beam trap atoms are still expanding along the axis.

typical picture of the atoms trapped by the crossed dipole trap is shown
in figure 7.1(b). The lifetime of the atoms at a temperature slightly below
1µK is found to be 22(3) s and the heating rate is less than 10 nK/s with a
power of 2.87 W (1.43,W) on the axial (radial) beam. We checked that we can
control the depth of the trap without displacing the atoms by evaporating
the hottest atoms. In order to do that we reduce the laser power so that
higher energy atoms experience the effect of gravity and are outcoupled
from the trap (see figure 1.3). In this configuration we could easily make a
Bose-Einstein condensate of 41K.

As we pointed out in § 3.2, if both species are in the | 2, 2〉 state Fesh-
bach resonances cannot occur since the {2 2, 2 2, 0 0} channel is not coupled
to any other channel 1. In order to avoid spin relaxation it is necessary to
prepare the mixture in a state which gives rise to a single open channel.
The best candidate is the absolute ground state {1 1, 1 1, 0 0}, as it is shown
in table 3.2. In order to prepare the desired states the atoms are trans-
ferred with a Landau-Zeener sweep across the hyperfine transition. For
87Rb the frequency is given by Eq. (7.2), while for 41K the formula is the

1Neglecting the weak coupling due to the spin spin interactions (see § 3.2).
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same but the hyperfine separation is ν0(41) = 254.014 MHz [152], the nu-
clear magnetic moment is gN (41) = 1.17022 × 10−5 [151] and the numerical
coefficient obtained from Eq. (7.1) are

α = 1.400 MHz/G β = 177.75 MHz2/G γ = 1.9587 MHz2/G2 .

For the very first measurements, the frequency for the two species is
obtained from a synthesized sweeper whose signal is fed into the same am-
plifier used for the evaporation in the case of 87Rb and a fixed frequency
generator mixed with a low-frequency modulation fed into a 7 W broad-
band amplifier (PHA-4000) for 41K. It took several weeks of optimization to
find the proper antenna to efficiently couple the output amplifier with the
atoms. At the end the best solution was to use a single coil tuned around
300 MHz by means of variable capacitors and to eliminate the mixer to gain
some extra power: instead of sweeping the microwave frequency at a con-
stant magnetic field one sweeps the magnetic fields keeping the frequency
constant. This solution proved effective also for 87Rb.

The complete experimental sequence is therefore the following: the atoms
are transferred from the magnetic into the dipole trap and a uniform mag-
netic field is turned on around 40 G to lift the degeneracy among the hyper-
fine levels. Then, in order to avoid dipolar relaxation, 87Rb is transferred
into the | 1, 1〉 state and the atoms remaining in | 2, 2〉 (< 15%) are swept
away from the trap with a pulse of resonant light. After this stage a similar
sequence of transferring and cleaning is applied to 41K, leaving both species
in the desired state.

7.2 Preliminary results

Soon after the beginning of the experimental search for the resonances pre-
dicted in the 0÷100 G range, we realized that, probably due to some residual
and unidentified ferromagnetic impurity inside the vacuum chamber, our
magnetic field is plagued by a gradient of 5.3 G/cm at a field of 46 G. The
gradient has significant components both in the axial direction and along
the vertical. The gradient value was measured by looking at the Zeeman
shift given by Eq. (7.2) as a function of the coil position (which we can
vary with the translation stage), while the direction was inferred from the
perturbation of the free fall of the atoms.

The magnetic field gradient introduces a linear potential which acts in
the same way as gravity in Eq. (1.13) and therefore lowers the depth of our
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Figure 7.2. Number of 41K atoms as a function of the constant magnetic field. The dashed
line is a Gaussian fit. The linear background on the left picture is due to residual noise in the
loop controlling the magnetic field at low value of the control voltage.

dipolar trap. We indeed found a position of the coil in which the gradient is
minimum, but this position is field-dependent and therefore is not suitable
to search for Feshbach resonances which requires to change the field by
several gauss. We therefore revert back to the 1D optical lattice where
we made the first observation of loss feature compatible with the three
body losses induced by a Feshbach resonance. However, for reasons that
are still under investigation at the time of my writing, the signal looks very
broad. For this reason we decided to modify the design of our dipole trap to
increase the confinement and therefore increase the trap depth (see figure
1.3).

After this key improvement a clear signal of the two resonances was
found as it is shown in figure 7.2. The experimental sequence is the follow-
ing: one the mixture is prepared in its absolute ground state as described
in the previous section, the Feshbach field is placed at a value in which no
resonances are present and then it is ramped in 40 ms to the desired value
where it is left on for 1 s. At the end of this sequence the number of atoms
of both species is measured after expansion in the usual way. In order to
be sure that the observed feature is indeed dependent on the presence of
the two species we checked that no losses of 41K are detected without 87Rb.

The experimental determination of the center of the two resonances is

B40 = 36.2(0.5)(0.6)G B80 = 78.62(0.06)(0.9)G .

Clearly the loss feature associated to the high-field resonance is narrower
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than that of the low-field one. The first error quoted above is statistical
and comes from the fit while the second is systematic and comes from
the field calibration. These results are compared with a coupled channel
calculation based on the existing measurements on other isotopic combi-
nations [153]. The relevant molecular level scheme for our input channel
is shown in figure 7.3 for the magnetic field range that we explored. As we
can see two levels cross the threshold giving rise to two different Feshbach
resonances: furthermore since the crossing slope is different, we expect a
different strength of the resonance which explains the different width of the
loss feature observed in the experiment. From the accurate computation
of the level scheme it is possible to determine the expected position of the
two resonances with great accuracy. The expected values are

B40 = 39.4(4) B80 = 78.93(5)G .

As we can see, the agreement between the theoretical calculation and our
measurements is excellent for one of the resonance and moderate for the
other one. This small discrepancy will be further investigated by measuring
the zero crossing i.e. the value of the magnetic field at which the scatter-
ing length is zero: as we can see from figure 7.3, one of these positions
is expected around 85 G and the other around 75 G. These positions can
be measured independently from the resonance center and provide a fur-
ther comparison between theory and experiment. Note that, in the single
resonance approximation, a measurement of the zero crossing gives an es-
timate of the resonance width ∆ appearing in Eq. (3.22). Measurements in
this direction are underway at the moment of my writing and will allow a
further stringent test of the collisional model used for calculations.
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Figure 7.3. Molecular levels for the absolute ground state of the 87Rb-41K mixture (top): every
time that a molecular level crosses the threshold the scattering length diverges (bottom). The
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Conclusions

Un poème n’est jamais achevé. C’est toujours un accident qui le ter-

mine, c’est-à-dire qui le donne au public.

(Paul Valéry)

“A poem is never finished. It’s always an accident that puts an end
to it, namely that gives it to its audience”: I think that this quotation of
the French writer Paul Valéry might well be adapted to PhD theses and
especially to this one. Many interesting work could be done on the Bose-
Bose mixture of 87Rb-and 39K or 41K and the feeling is that, at the end of
these three years of work, although we know a bit more than when the
experiment started from an empty room with a few blueprints and some
laser sources, yet more question arose than we could find answer to. On
one hand this means that we worked well, enabling the exploration of a
field that was left behind, but on the other hand this means that not all the
questions that came from the experiments are answered in this thesis.

Among the question that are positively solved is the problem of building
an apparatus for the efficient and stable production of two Bose-Einstein
condensates. This apparatus has been described in chapter 2 and it is
based on two important elements: two bright sources of ultracold atoms
(2D-MOT) that allow the independent control on the loading of the two
species and a novel kind of Ioffe-Pritchard magnetic trap operating in vac-
uum. Ideally the build-up of the apparatus is completed by the results
presented in chapter 7. These results about interspecies Feshbach reso-
nances, beside the scientific importance in the field of ultracold collision
that they have per se, pave the way to the control of the interspecies in-
teractions in the 41K-39K mixture. With the addition of this last “knob” ev-
erything is ready to begin the journey toward the physics of heteronulcear
bosonic molecules in an optical lattice.

Another question that found a positive solution, though not by us, is
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the possibility to bring 39K to the degenerate regime. Even if the challenge
was taken and won by another experiment at LENS, our work on the colli-
sional properties of this isotope, presented in chapter 4 was instrumental
in acquiring the know-how necessary to obtain this result.

More open questions are left by our initial work on degenerate Bose-
Bose mixtures in an optical lattice, presented in chapter 6. Indeed we
showed that even a small amount of a second superfluid, with a small
overlap, induces a loss of phase coherence in the first condensate. Several
possible causes were taken into account but no one of them could explain
entirely the observed phenomena. Actually the incoherent scattering of
the second condensate excitations driven by the tunneling of the atoms
of the first species can play a very important role in destroying the phase
coherence. However, a definitive answer to this question requires a further
effort from the theoretical side that certainly would benefit from a more
thorough experimental characterization. Again, a great improvement in
the experiments will be given by the possibility to tune the interspecies
interactions and hence the overlap between the two clouds.

Access the regime of negligible interspecies interaction can open the
possibility of exploring the phase diagram of the two species Bose-Hubbard
model that could so far receive attention only from the theoretical point of
view (see § 5.3). In particular one could try to observe the two elusive
phases of super-counterflow and pairing-superfluidity which have never
been observed experimentally and depend crucially on the presence of two
different condensates. This could help to shine light on the problem of pair-
ing superfluidity which is a “hot” topic for the physics of ultracold fermions
and beyond. Beside this, along the line of ultracold molecules, the increase
of the overlap is a necessary step toward the creation of single heteronu-
clear molecule in each lattice site. It is worth mentioning that anyway
these results will require to understand all the mechanisms underlying the
dynamics of the bosons in the optical lattice: with this respect, our obser-
vation of a loss of phase coherence opens important scenarios that will be
extensively explored in the future.
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mixtures in a three-dimensional optical lattice”. Phys. Rev. Lett. 96 180402 (2006).

[137] J. CATANI, L. DE SARLO, G. BARONTINI, F. MINARDI AND M. INGUSCIO. “Degenerate
Bose-Bose mixture in a 3D optical lattice” (2007). Arxiv:0704.3011.

[138] G. FERRARI, M. INGUSCIO, W. JASTRZEBSKI, G. MODUGNO, G. ROATI AND A. SI-
MONI. “Collisional properties of ultracold K-Rb mixtures”. Phys. Rev. Lett. 89 053202
(2002).

[139] P. L. GOULD, G. A. RUFF AND D. E. PRITCHARD. “Diffraction of atoms by light: The
near-resonant Kapitza-Dirac effect”. Phys. Rev. Lett. 56 827 (1986).



BIBLIOGRAPHY 181

[140] M. KOZUMA, L. DENG et al. “Coherent splitting of Bose-Einstein condensed atoms
with optically induced bragg diffraction”. Phys. Rev. Lett. 82 871 (1999).

[141] J. STENGER, S. INOUYE, A. P. CHIKKATUR, D. M. STAMPER-KURN, D. E. PRITCHARD

AND W. KETTERLE. “Bragg spectroscopy of a Bose-Einstein condensate”. Phys. Rev.
Lett. 82 4569 (1999).

[142] J. STENGER, S. INOUYE, A. P. CHIKKATUR, D. M. STAMPER-KURN, D. E. PRITCHARD

AND W. KETTERLE. “Erratum: Bragg spectroscopy of a Bose-Einstein condensate
[Phys. Rev. Lett. 82, 4569 (1999)]”. Phys. Rev. Lett. 84 2283 (2000).

[143] M. BEN DAHAN, E. PEIK, J. REICHEL, Y. CASTIN AND C. SALOMON. “Bloch oscillations
of atoms in an optical potential”. Phys. Rev. Lett. 76 4508 (1996).

[144] M. GREINER. Ultracold quantum gases in three-dimensional optical lattice potentials.
Ph.D. thesis, Ludwig-Maximilians-Universität München (2003).

[145] T.-L. HO AND Q. ZHOU. “Intrinsic heating and cooling in adiabatic processes for
bosons in optical lattices”. Phys. Rev. Lett. 99 120404 (2007).

[146] F. GERBIER. “Boson Mott insulators at finite temperatures”. Phys. Rev. Lett. 99
120405 (2007).

[147] C. KOLLATH. Private communication (2007).

[148] M. BRUDERER, A. KLEIN, S. R. CLARK AND D. JAKSCH. “Polaron physics in optical
lattices”. Phys. Rev. A 76 011605 (2007).

[149] M. BRUDERER, A. KLEIN, S. R. CLARK AND D. JAKSCH. “Transport of strong-coupling
polarons in optical lattices”. ArXiv:0710.4493v1 [quant-ph].

[150] G. JONA-LASINIO. Private communication (2007).

[151] N. E. HOLDEN. “Table of the isotopes”. In D. R. LIDE, ed., CRC Handbook of Chem-
istry and phyiscs, 11–38. CRC Press, Boca Raton, Florida (USA), 1995, 76 edition.

[152] E. ARIMONDO, M. INGUSCIO AND P. VIOLINO. “Experimental determinations of the
hyperfine structure in the alkali atoms”. Rev. of Mod. Phys. 49 31 (1977).

[153] A. SIMONI. private communication (2006).



182 BIBLIOGRAPHY



Index

2SF, 125

aspect ratio, 19

attractive condensate, 26

ballistic expansion, 71

bar bending, 62

Beer law, 68

Bogolioubov spectrum, 27

Brillouin zones, 112

C6 potential, 80

chemical potential, 26

collapse, 26

column density, 68

cooling

time, 44

D2 line, 16

detuning, 14

dichroic waveplate, 38

dipole

crossed trap, 18

force, 14, 17

effective range, 83

epoxy, 40

equation

Gross-Pitaevskii, 25

Bogolioubov-De Gennes, 27

ergodic mixing, 100

frame transfer, 69

gravitational sag, 31

hard sphere, 24
harmonic oscillator

length, 23
heating rate, 19

Ioffe-Pritchard, 54
isospin, 127

jerk, 63

magnification, 68
Majorana spin-flip, 54

optical lattice, 21
optical molasses, 14

parametric heating, 97
phase shift, 78
phase space density, 66
PSMI, 125
PSSF, 125

quadrupole, 53
quantum depletion, 26
quasimomentum, 112

radiation pressure, 14
Raman-Nath, 141
Rayleigh range, 18
recoil

energy, 15
temperature, 15

183



184 INDEX

run-away evaporation, 64

s, lattice height, 21
scattering

amplitude, 78
channel, 85
length, 79

Sisyphus cooling, 15
spin-spin interaction, 86

TEM, 18
temperature

critical, 23
Doppler, 14

Thomas-Fermi, 25
trap depth, 20
trap frequencies

average, 23

Wannier, 114



Acknowledgments

This work is the outcome of three exciting years of work at the department of
physics of the University of Florence in contiguity with the LENS. When I officially
begun my thesis in January 2005 the lab was simply an empty room. If I could
take part in the wonderful adventure that turned that empty room into a state-
of-the-art laboratory working at the frontier of atomic physics, I owe it to my
supervisor: prof. Massimo Inguscio. To him my gratitude first for believing in my
qualities even when I doubted about them, second for giving me the opportunity
to join his group where I met so many extraordinary people and last for trying to
share with all of us his vision of science and the struggle for discovering something
new even when everything, from technical difficulties to the wrong scientific policy
of a nation, seems to cross all the efforts.

The BEC3 experiment I worked in is directed by dr. Francesco Minardi with
whom I discussed every single piece of my work. I thank him for his legendary pa-
tience, his extraordinary culture and for having always helped me to look beyond
the difficulties of the circumstances. I will not forget the many lessons I’ve learned
from him and will keep as a treasure his many advices on atomic physics but also
on the life in and outside the lab. Together with Francesco I’ve had the pleasure
to work with two exceptional scientists who joined the BEC3 experiment as post-
docs: Paolo Maioli and Gregor Thalhammer. I want to express my gratitude to
both of them for the many things they taught me but most of all for sharing their
passion for experimental physics.

I am deeply indebted to the two PhD students who worked with me during
these years. First and foremost Jacopo Catani with whom I shared the hard times
of the building up of everything: I bet that –like me– he cannot find a single thing
that could be completed exactly as planned but every time I was glad he was
there and indeed his dogged attitude helped me to overtake my limits and finally
to achieve our objectives. Second, my “junior” partner Giovanni Barontini who
proved himself a continuous source of surprises having often the right answer
hidden beyond a humble disclaimer. I thank him for accepting almost every duty
without complaints and for always be ready for discussions at every level, from
field theories to mirror coating.

Finally I would like to thank all the members of the degenerate gases group at
LENS, its director prof. Roberto Righini and all the technicians who contributed

185



186

so much to the build-up of the experiment often teaching lessons that I will never
forget. I thank also professors Anna Vinattieri and Philippe Bouyer who accepted
to report on the manuscript.

Adesso, in italiano, qualcosa di meno istituzionale: sono tante le persone che
hanno reso questi anni un periodo straordinario che ha fatto di me, nonostante
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