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Introduction

Ultracold atoms and quantum gases are very clean and controllable systems, that can
be considered as novel quantum materials and quantum simulators. Hence, they offer
an ideal playground to study phenomena otherwise difficult to approach in many fields
of research, from condensed matter to high-energy physics and cosmology. In this
framework, the study of superfluidity phenomena with cold atoms opens the way for
the implementation of new quantum devices, which requires a deep understanding of
the superfluid properties and of the possible dissipation in the material. With atomic
superfluids it is indeed possible to investigate the intrinsic quantum nature of the
superfluid phase and the main occurring excitations.

Both superfluidity and superconductivity are intimately connected to the Bose-
Einstein condensation. Such phenomenon was suggested by Einstein in 1924 [1], fol-
lowing the work of Bose on the black body radiation [2] and corresponds to a low
temperature phase transition in bosonic systems. Below a certain critical temperature
the ground state of the system starts to be extensively occupied by particles that share
the same wavefunction. When particles are weakly interacting, Bose-Einstein conden-
sation leads to a superfluid behavior of the system, namely the capability to flow with
zero viscosity.

The study of superfluids began in 1911, when Onnes [3] observed that the electrical
resistance of mercury vanishes to zero at temperature below 4 K. It was the first ex-
perimental evidence of superconductivity. Later, in 1938 a similar dissipation-less flow
was observed in liquid 4He in parallel by P. Kapitza [4] and J. F. Allen [5]: when cooled
to temperature lower than 2.17 K the viscosity of such fluid rapidly goes to zero. The
superfluid behavior of liquid helium was soon explained as the manifestation of Bose-
Einstein condensation by F. London [6], but the same explanation is not applicable
to the superconductor behavior of metals instead, where the conduction is performed
by electrons that are fermionic particles. It took nearly 20 years to understand the
microscopic mechanism behind superconductivity: in 1957 J. Bardeen, L. N. Cooper
and J. R. Shrieffer formulated the BCS theory [7], which describes superconductivity
as a microscopic effect caused by the condensation of Cooper pairs of electrons in a
boson-like state.

Ultracold atoms can be used to study superfluidity phenomena, as condensation
with bosonic atoms can be achieved at temperature of the orther of 100 nK. The
first Bose-Einstain condensate in diluite atomic gases was observed in 1995 by the
groups of E. Cornell and C. Wieman at Boulder [8], and a few months later by W.

3



Ketterle at MIT [9]. Since then, many superfluid properties has been probed in an
atomic Bose-Einstein condensate, such as the dissipation-less flow and the creation of
quantized vortices under rotation [10] [11] [12]. Atomic systems are particularly suited
for the study of superfluidity, as many parameters can be finely controlled, such as
the interparticles interaction, the dimensionality and the confining geometry of the
gas. The latter can be adjusted using the conservative optical dipole force that light
exert on an atomic system. Indeed, the electromagnetic field of the radiation induces
a dipole on atoms, that in turn interact with the external electric field, giving rise
to an optical potential that depends on the intensity of the radiation. In this way
it is possible to trap atoms in local minima or maxima of the intensity, depending
upon the laser light frequency. Then, the control over the intensity spatial profile
permits to create any desired trapping geometry. In particular, it can be done using
Spatial Light Modulator (SLMs), a family of tools which permits to imprint arbitrary
spatially varying modulations on an incident light beam. In this context, the Digital
Micromirror Device (DMD) is becoming a fundamental tool in cold atoms experiments
to implement tailored optical potentials. It is a reflecting SLM, composed by an array of
micrometer-sized mirror, through which both static and time-dependent light pattern
can be created. In [13], a DMD is used to create a ring-shaped optical potential for a
23Na Bose-Einstain condensate to study persistent current in the superfluid, whereas
in [14] and [15] it is implemented to perform multiple-site addressing in periodic optical
potential.

The aim of this thesis work was to realize and characterize tailored optical poten-
tials with a DMD, focusing the attention on those geometry that are interesting for
experiments with atomic superfluids. In particular, I designed and aligned two differ-
ent optical setup for the characterization of homogeneous light patterns and disordered
potentials respectively. For the first part I wrote a feedback program to improve the
DMD-made image quality and to obtain a better overlap with the target patterns pro-
jected with the DMD. Then, I implemented a DMD-based technique to measure the
resolution of an optical system, and later I used an high-resolution optical system to
create disordered potentials on length scales of a µm. Moreover, part of my thesis
was dedicated to the realization of a magneto optical trap of 87Rb as the initial part
of the construction of a novel experiment with a Bose-Bose mixture for the study of
two-components superfluids. This part of the thesis was performed in Lab. 29 of Dipar-
timento di Fisica e Astronomia in Florence. In particular, I took part in the alignment
of the optical setup for the 2D and 3D MOT, and optimized the loading efficiency of
the 3D MOT.

The outline of this thesis is the following. In the first chapter I report the main
features of Bose-Einstein condensation and analyze its connection with superfluidity.
Then, I illustrate how light can be used to manipulate atoms, both to cool and to trap
them, and describe two main applications of optical potentials in probing the superfluid
behavior: a ring potential to study persistent current and disordered potentials to
investigate the superfluid-to-insulator transition.

In the second chapter, I present my work in aligning and optimizing the 3D MOT
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of 87Rb. After a brief illustration of the working principle of such cooling technique, I
present the experimental setup and the performed measurement for the optimization.

In the third chapter, I describe the DMD and present the optical setup that I used
to create tailored optical potentials. In particular, I explain the feedback process used
to improve the image quality and analyze the properties of DMD-made time-dependent
potentials.

Finally, in the fourth chapter, I present the high-resolution optical system used to
create disordered optical potentials. First, the DMD-based technique to measure the
resolution of the system is described and the results of such measurement are reported.
Then, I illustrate the capability of the system to image disordered potential on the
length scale of a µm. In particular, I analyzed two different kinds of disorder, speckles
and point-like patterns, and implemented a method to pass the one through the other
modifying the resolution of the optical system.
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Chapter 1

Theory of atomic superfluidity

In this chapter, the phenomenon of Bose-Einstein condensation is presented from a
theoretical point of view. The existence of a low temperature phase transition in a sys-
tem of bosons was firstly postulated by Einstein in 1921 [1], by following the work of
Bose on the black body radiation [2]. In the following, the Bose-Einstain condensation
is presented both in the case of an ideal gas, in Sec. 1.1, and for a weakly interacting
one, in Sec. 1.2. Such phenomenon can be investigated with ultracold bosonic atoms,
despite they are composed by fermionic particles, because in case of weak interactions
the internal structure of an atom is not resolved during a scattering process, so it can
be considered as only one particle, which statistic is determined by the value of its
total angular momentum. Therefore, atoms can exhibit either a fermionic or a bosonic
behavior, depending on their internal structure. In the case of bosons, a notable ap-
plication of Bose-Einstein condensation is the study of its superfluid behavior, namely
the ability of the fluid to flow through a channel without dissipation. The connections
between condensation and superfluidity are presented in Sec. 1.3. Ultracold atoms
are particularly suitable to study superfluidity, because they are very controllable sys-
tems, in which the interactions between particles, the dimensionality and the trapping
geometry can be adjusted at will. In particular, confining potentials for atomic sys-
tems can be created using far off-resonance light, as it will be explained in Sec. 1.4:
shaping the spatial intensity profile of a laser beam it is possible to create any desired
trapping geometry. In this chapter, two of the main interesting applications of optical
potentials in a superfluid system are presented: a ring-shaped confining potential to
study persistent currents in a superfluid, and disordered potentials to investigate the
superfluid-to-insulator transition.

1.1 Bose-Einstein condensation of an ideal gas

Bosons are particles with integer spin. The wavefunction that describes a system of
identical bosons has to be symmetric under the exchange of any two particles, and it
does not obey the Pauli exclusion principle .Therefore, two or more identical bosons
can occupy the same state, which gives rise to the Bose-Einstein condensation (BEC),
a macroscopic occupation of the single particle ground state [16]. We can estimate
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the critical temperature of the BEC transition considering that particles exhibit their
quantum nature when the interparticle spacing become comparable to their thermal
de Broglie wavelength, defined as:

λT =

(
2πh̄2

mkBT

) 1
2

, (1.1)

where h̄ is the Planck constant, kB the Boltzmann constant, m the mass of particles
and T their temperature. On the other hand, the mean interparticle distance depends
on the particles density n: d = n−

1
3 . By equating these two quantities, we obtain an

evaluation of the critical temperature of condensation. In particular, in an experiment
with alkali atoms the particles density is 1014 cm−3, so that the transition temperature
is of the order of 100 nK.

More formally, we can obtain the exact expression of the transition temperature by
calculating the number of atoms in the excited state. To do that, we start from the
mean occupation number of single-particle state, that for ideal non-interacting bosons
is given by the Bose distribution function. For a system with energy levels εn with
ε0 = 0 for simplicity, that is [17]:

f(εn) =
1

e(εn−µ)/kBT − 1
, (1.2)

where µ is the chemical potential, determined as a function of the number of particles
N and the temperature T such that N is conserved. For the distribution f(ε) to be
positive for all states, the chemical potential is limited by µ < 0, as ε0 = 0 is the
minimum energy for the system. That means that, while the occupation of the ground
state can be arbitrarily large, the occupation number of any excited state is constrained
to be less than 1/(exp[εn/kBT ] − 1). The number of particles can now be computed
as the sum of the mean occupation number over all the possible energy states. To
characterize the Bose-Einstein transition, it is convenient to separate the total number
of atoms in two contribution: the number of atoms N0 in the ground state at n = 0,
and the number of atoms in the excited states for n > 0:

N =
∑
n

f(εn) = N0 +
∑
n>0

f(εn). (1.3)

If the energy levels spacing is much less than kBT , we can replace the sum with an
integral:

N = N0 +

∫ +∞

0

f(ε)g(ε)dε, (1.4)

where g(ε) is the density of state. The number of atoms in the excited state is thus
equal to:

Nex =

∫ +∞

0

f(ε)g(ε)dε, (1.5)

and takes its maximum value for greatest value for µ = 0. The transition temper-
ature TC is determined by the condition that the total number of particles can be
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accommodated in excited states, namely [16]:

N = Nex(T = TC , µ = 0) =

∫ +∞

0

g(ε)
1

exp[ε/kBTC ]− 1
. (1.6)

We note that the density of state g(ε) depends on the confining potential felt by the
atoms, so the critical temperature will depend on it too.

We can study the condensation in different trapping potential, by using a semi-
classical approach. In this case we can define a local distribution function fp(r):

fp(r) =
1

exp(εp(r)−µ)/kBT −1
, (1.7)

where εp(r) is the particles energy in the point r:

εp(r) =
p2

2m
+ V (r), (1.8)

where V (r) is the external trapping potential. In such semi-classical approach, fp(r)dpdr
denotes the mean number of particles in the phase space volume dpdr, so that the den-
sity of particles that occupy the excited states can be calculated as:

nex(r) =

∫
dp

(2πh̄)3

1

exp[(εp(r)− µ)/kBT ]− 1
. (1.9)

By solving such integral, we obtain:

nex(r) =
g 3

2
(z(r))

λ3
T

, (1.10)

where z(r) = exp[(µ−V (r))/kBT ] is the fugacity and g 3
2
is the polylogarithm function

defined as:

gγ(z) =
∞∑
n=1

zn

nγ
. (1.11)

From such expression of the density of atoms in the excited state, we can thus calculate
the critical temperature for condensation in different trapping geometries. In partic-
ular, we focus our attention to a uniform, an harmonic and a ring-shaped trapping
potentials.

1.1.1 Uniform trapping potential

In a uniform trapping potential V (r) = 0, so that the fugacity z = eµ/kBT reaches its
maximum value for µ→ 0. In such limit we have z(r)→ 1 and thus g 3

2
(z)→ g 3

2
(1) =

2.612. This gives an upper bound to the density of particles in the excited state:

nmaxex = nex(µ = 0) =
2.612

λ3
T

. (1.12)

As already stated, the critical temperature is the one at which the number of atoms
in the excited state is maximum. Therefore, we obtain the expression of the critical
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temperature for a uniform gas by using Eq. (1.12) and the definition of the de Broglie
wavelength:

TC =
2πh̄2

mkB

(
n

g 3
2

(1)

) 2
3

, (1.13)

where we have considered all the particles to be in the excited state, namely nex = n.
From such expression of the critical temperature, it is possible to calculate the

condensed fraction N0/N . Indeed, Eq. (1.10) says that the density of particles in the
excited state scales as T

3
2 , therefore the number of atoms in the excited state can be

written as Nex = N(T/TC)
3
2 . The number of particles in the ground state is thus:

N0 = N −Nex = N

[
1−

(
T

TC

) 3
2

]
. (1.14)

The condensed fraction increases as the temperature decreases, reaching its maximum
N0/N = 1 when T = 0: as expected at zero temperature all the particles occupy
the ground state, but a macroscopic occupation of such state is present also for finite
temperatures.

We note that the same results can be obtained by considering the density of state
in a uniform potential of volume V :

g(ε) =
V m3/2

21/2π2h̄3 ε
1/2. (1.15)

Inserting such expression in Eq. (1.6), the integral can be solved and the results give
the same expression of the density of particles in the excited state of Eq. (1.10).

1.1.2 Harmonic trapping potential

Experiments with cold atoms are usually performed in an harmonic trapping potential,
so it is interesting to study how Bose-Einstein condensation can be described in this
case. To do that, we now consider the three-dimensional harmonic trapping potential:

V (r) =
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (1.16)

where ωi for i = 1, 2, 3 are the trapping frequency in the three dimensions. This
yields a quantised energy spectrum of single-particle energies that are labelled by the
non-negative quantum numbers nx, ny, nz:

εnx,ny ,nz = h̄(nxωx + nyωy + nzωz) + ε0, (1.17)

where ε0 = h̄(ωxωyωz)/2 is the zero point energy. As already mentioned, condensation
occurs when the chemical potential takes its maximum value, that in the case of an
harmonic potential is when µ = ε0. In this case, the critical temperature can be
calculated directly from the expression for the number of particles in the excited state,
that for the energy levels of the harmonic oscillator is [18]:

Nex =

∫ +∞

0

dnxdnydnz
exp[h̄(ωxnx + ωyny + ωznz)/kBT ]− 1

, (1.18)
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where we have again replaced the sum over all the possible states with an integral,
assuming that kBT � h̄ω0, where ω0 = (ωxωyωz)

1/3 is the geometric mean of the
trapping frequencies. Such integral can be analytically solved with the change in vari-
ables: h̄ωini/kBT = n′i. Therefore, for the number of particles in the excited state we
obtain [18]:

Nex = g3(1)

(
kBT

h̄ω0

)
. (1.19)

The critical temperature is defined to be the temperature at which N = Nex, so it can
be calculated from the previous expression:

TC =
h̄ω0

kB

(
N

g3(1)

) 1
3

. (1.20)

Then, the condensed fraction can be obtained remembering that N = N0 + Nex, so
that for T ≤ TC :

N0

N
= 1−

(
T

TC

)3

. (1.21)

As in the case of uniform potential, the condensed fraction increases as the temperature
decreases, but with a different power law.

We now consider the density distribution of particles. For a non interacting gas,
the density distribution of the condensed particles can be computed from the ground
state wavefunction of a three-dimensional harmonic oscillator:

n0(r) = N0|ψ0(r)|2 = N0

(mω0

πh̄

) 3
2

exp

[
−
(
x

ax

)2

−
(
y

ay

)2

−
(
z

az

)2
]
, (1.22)

where ai =
√
h̄/mωi is the oscillator length in the i direction. For the density of

particles in the excited states, we can consider the semi-classical expression of Eq.
(1.10), that in the case of an harmonic oscillator for T ≤ TC can be written as:

nex(r) =
g 3

2
(exp[−V (r)/kBT ])

λ3
T

=
g 3

2(exp[−m(ω2
xx

2+ω2
yy

2+ω2
zz

2)/2kBT ])

λ3
T

. (1.23)

For typical experimental parameters, the width of n0 is much narrower than the width
of the thermal distribution. Therefore, in an harmonically trapped gas condensation
happens also in the real space, in addition to the condensation in the momentum
space, as particles occupy the same state. In particular, the occurrence of condensation
can be verified by observing the sharp peak in the central region of particles density
distribution.

1.1.3 Ring-shaped trapping potential

As it will be depicted in detail in Sec. 1.4, a ring-shaped potential can be used to study
persistent currents in an atomic superfluid. Therefore, it is interesting to investigate
how the critical temperature of condensation is modified by such trapping geometry.
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In particular, we consider that in the (x, y) plane atoms are confined in a ring-shaped
potential, such that the potential at the edges of the ring is infinite, whereas in the z
direction they are trapped in an harmonic potential. The ring landscape on the (x, y)

plane is topologically analogue to a rectangular box, with dimensions fixed by the radial
width and the circular length of the ring. So for simplicity, we study the condensation in
a rectangular potential in the (x, y) plane. Therefore, the three-dimensional confining
potential felt by atoms can be written as:

V (r) =
1

2
mω2z2 + Vbox(x, y), (1.24)

where m is the mass of atoms, ω the frequency of the harmonic trap in the z direction,
and Vbox(x, y) is the rectangular box potential in the (x, y) plane, defined to be 0 inside
the box and infinite elsewhere.

To calculate the critical temperature, we can start from the semi-classical expression
of the density of particles of Eq. (1.10), and calculate the number of atoms in the
excited state as:

Nex =

∫
nex(r)dr =

∫
g3/2(z(r))

λ3
T

dr, (1.25)

where the fugacity z(r) can be written as:

z(r) = e(µ−V (r))/kBT = eµ/kBT e−V (r)/kBT = z0e
−V (r)/kBT . (1.26)

Using the definition of the polylogarithm function, the number of particles in the
excited state become:

Nex =
1

λ3
T

∫
dr

∞∑
n=1

zn0 e
−nV (r)/kBT

n3/2
=

=
1

λ3
T

∞∑
n=1

zn0
n3/2

∫
e−nV (r)/kBTdr

(1.27)

The integral in the previous expression can be computed, by inserting the expression
of the potential: ∫

e−nV (r)/kBTdr =

∫
box

dxdy

∫ +∞

−∞
e−nmω

2z2/kBTdz, (1.28)

where the integral over x and y is extended on the rectangular box area. Therefore, it
gives simply the area of the rectangular box Abox, while that over the z variable is the
integral of a Gaussian function that can be easily computed to give:∫

e−nV (r)/kBTdr = Abox
√

2π

(
kBT

nmω2

) 1
2

. (1.29)

By inserting such result in the expression for the number of particles in the excited
state, we get:

Nex =
Abox
λ3
T

(
2πkBT

mω2

) 1
2
∞∑
n=1

zn0
n2
. (1.30)
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The last sum correspond to the definition of the polylogarithm function g2(z0), therefore
at a given temperature T and chemical potential µ the number of particles in the excited
state can be written as:

Nex(µ, T ) =
Abox
λ3
T

(
2πkBT

mω2

) 1
2

g2(z0). (1.31)

We can now find the critical temperature, remembering that condensation happens
when µ = 0 and Nex = N , where N is the total number of particles. Under these
conditions, the previous expression becomes:

N =
Abox
λ3
T

(
2πkBTC
mω2

) 1
2

g2(1). (1.32)

The expression of the critical temperature in a ring geometry can thus be obtained by
considering the temperature dependence of the de Broglie wavelength and noting that
g2(1) = ζ(2) = 1.645. In this way we get:

TC =
ahoh̄ω

kB

√
2πN

Aboxζ(2)
, (1.33)

where we have introduced the oscillator length aho =
√
h̄/mω. Therefore, for a con-

densate in a ring trap the critical temperature depends on the number of particles to
the 1/2 power. From such expression of the critical temperature, we can calculate the
condensed fraction:

N0

N
= 1−

(
T

TC

)2

. (1.34)

As for the uniform and the harmonic potentials, the condensed fraction increases as
the temperature decreases, but with a different power law.

The critical temperature for a gas of 87Rb atoms can be estimated by considering a
ring potential with radius r1 = 10 µ and r2 = 20 µ, and a frequency for the harmonic
trap of ω = 2π × 100 Hz. In this case we obtain TC ' 100 nK.

1.2 Weakly interacting Bose gas

In the previous section, we saw that an ideal gas of non-interacting bosons can undergo
to the Bose-Einstein condensation for sufficiently low temperatures. In reality particles
always interact, and even weak interactions modify the behavior of a condensate. In
particular, interactions modify the equilibrium state and the dynamical properties of
a condensate, and play a fundamental role in the superfluid properties of condensates.

Interactions in an atomic gas are due to the Van der Waals force. In an ultracold
gas it leads mainly to two-body collisions, because collisions involving three or more
particles are unlike due to the low density. In particular, when both the de Broglie
wavelength and the mean distance d between atoms are much greater than the range
of the interaction potential, we can describe the two-body scattering process with only
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one parameter, the scattering length a [16]. This is always true for an ultracold gas,
where λT ∼ d ∼ 100 nm, whereas the range of the interacting potential is r0 ∼ 5 nm.
Therefore, interactions in an ultracold atomic gas can be completely described with the
scattering length. In particular, as the range of the interaction potential is so short,
only its spatial average matters, while its detailed behavior is irrelevant. Therefore we
can define a delta-like pseudopotential:

Vpseudo(r) = gδ(r), (1.35)

where g is taken such that the pseudopotential reproduces the scattering properties of
the real potential, i.e. the two potential have the same scattering length. With such
constrain, it can be demonstrated that [16]:

g =
4πh̄2a

m
. (1.36)

In the following we will use the pseudopotential to describe the interacting Bose gas. In
particular, in Sec. 1.2.1 we derive the Gross-Pitaevski equation that allows to find the
ground state of the interacting Bose gas. Then, in Sec. 1.2.2 we describe the Thomas-
Fermi regime, when the interacting energy prevails over the kinetic energy, and finally
in Sec. 1.2.3 we present the excitation spectrum of the interacting Bose gas.

1.2.1 Gross-Pitaevskii equation

To describe a gas of interacting bosons, we can consider the many body Hamiltonian
[18]:

Ĥ =

∫
drΨ̂†(r)

[
− h̄2

2m
∇2 + Vext(r)

]
Ψ̂(r)+

+
1

2

∫
drdr’Ψ̂†(r)Ψ̂(r)V (r− r’)Ψ̂(r’)Ψ̂†(r’),

(1.37)

where Ψ̂†(r) and Ψ̂(r) are the creation and annihilation operators for a boson at position
r respectively, and V (r − r’) is the interacting potential. The field operators satisfy
the usual Bose commutation rules:

[Ψ̂(r), Ψ̂†(r’)] = δ(r− r’)

[Ψ̂(r), Ψ̂(r’)] = [Ψ̂†(r), Ψ̂†(r’)] = 0.
(1.38)

Instead of solving exactly the many-body problem, we can use a mean-field ap-
proach, that allows to understand the physical behaviour of the system, while avoiding
heavy calculations. At T ≤ TC the ground state is macroscopically populated, so that
we can separate out the condensate contribution to the field operator and write:

Ψ̂(r, t) = Φ(r, t) + δΨ̂(r, t), (1.39)

where Φ(r, t) = 〈Ψ(r, t)〉 is a complex number defined as the expectation value of the
field operator on the condensate state, and δΨ̂ is a small perturbation due to atoms
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not in the ground state. The function Φ(r, t) is a classical field, that represent the
order parameter or wavefunction of the condensate.

The equation for the condensate wavefunction Φ(r, t) can be derived from the time-
evolution of the field operator in the Heisenberg description:

∂

∂t
Ψ̂(r, t) = [Ψ̂, Ĥ] =

=

[
− h̄

2∇2

2m
+ Vext(r) +

∫
dr’Ψ̂†(r’, t)V (r− r’)Ψ̂(r’, t)

]
Ψ̂(r, t)

(1.40)

To the zeroth order, the field operator can be replaced by its mean value Φ(r, t), neglect-
ing the perturbation δΨ̂(r, t). Moreover, we can describe the interparticles interaction
with the pseudopotential V (r) = gδ(r). In this way we obtain the Gross-Pitaevskii
equation (GPE) [18]:

ih̄
∂

∂t
Φ(r, t) =

(
− h̄

2∇2

2m
+ Vext(r) + g|Φ(r, t)|2

)
Φ(r, t) (1.41)

The ground state of a Bose gas can be easily obtained from the GPE by separating
out the time dependency of the condensate wavefunction: Φ(r, t) = φ(r) exp[−iµt/h̄],
where µ is the chemical potential. The GPE then become:(

− h̄
2∇2

2m
+ Vext(r) + gφ2(r)

)
φ(r) = µφ(r) (1.42)

Such equation has the form of a non-linear Schrödinger equation, where the effect of
interactions is to add a mean field potential, proportional to the condensate density
n(r) = |φ|2(r).

1.2.2 Thomas-Fermi regime

A simple solution for the ground state of the condensate can be found if the kinetic
energy can be neglected respect to the interaction energy. This is valid for a condensate
whose size due to interatomic repulsion grows well beyond the extension of the single-
particle ground state. This approach is called Thomas-Fermi approximation and yields
to the following simplified GPE [16]:

[Vext(r) + g|Φ(r)|2]Φ(r) = µΦ(r). (1.43)

This is an algebraic equation rather than a differential one, and its solution for the
particles density is:

nTF (r) = |Φ(r)|2 =

{
= µ−Vext(r)

g
for µ > Vext(r)

= 0 for µ < Vext(r),
(1.44)

because the density of particles has to be a real number. In the case of an harmonic
trapping potential for the condensate we obtain a parabolic density profile:

nTF =
µ

g

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
, (1.45)
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where Ri =
√

2µ/mωi is the Thomas-Fermi radius in the i direction. As already
mentioned, the particles density is not null for µ > Vext(r), and such condition in the
case of harmonic trapping potential translates to x < Rx, y < Ry and z < Rz. It is
possible to write an expression of the Thomas-Fermi radius in dependence on only trap
properties by calculating the chemical potential. It can be demonstrated that for an
harmonic trap with dimension a0 =

√
h̄/mω0, where ω0 is the geometric mean of the

trap frequencies, the chemical potential can be written as [16]:

µ =
h̄ω0

2

(
15N0a

a0

) 2
5

, (1.46)

where N0 is the total number of particles and a the scattering length.

1.2.3 Excitation spectrum

To derive the excitation spectrum of a condensate, we need to take into account the
first order perturbation δΨ̂(r, t), that we neglected in the calculation that leads to the
Gross Pitaevskii equation. This can be done by diagonalizing the Hamiltonian of the
condensate in the Bogoliubov approximation [16]. The result is that the system be-
haves as a collection of non-interacting bosons with an energy given by the Bogoliubov
spectrum:

ε(p) =

√
p2

2m

(
p2

2m
+ 2gn

)
, (1.47)

where p is the momentum of the excitation and n = |φ(r)|2 is the particles density.
In the long wavelength limit, when p2 � 2mgn, the dispersion relation reduces to

a linear function of p:
ε(p) ' cp, (1.48)

where c is the speed of sound in the condensate, given by:

c =

√
gn

m
. (1.49)

Therefore, in the long wavelength limit excitations in the condensate are phonon-like.
On the other hand, in the short wavelength limit, when p2 � 2mgn, the spectrum

reduces to that of a free particle:

ε(p) ' p2

2m
. (1.50)

The transition from phonon to free particles excitation occurs when the wavelength
of the excitation is ∼ h̄/

√
2mng. Such length scale is the so-called healing length

ξ of the condensate, that denotes the shortest distance over which the wavefunction
tends to its bulk value when subjected to a local perturbation. The healing length can
be evaluated as the length scale at which the kinetic and the interaction energies are
balanced [16]:

h̄2

2mξ2
= ng, (1.51)
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that leads to the following expression:

ξ =
1√

8πna
, (1.52)

where a is the scattering length. Therefore, on length scales larger than ξ atoms are
able to move collectively as phonons, while on shorter length scales they behaves as
free particles. In particular, for 87Rb the scattering length is about 100 a0, where a0

is the Bohr radius, so that the healing length for a condensate of 87Rb atoms is about
200 nm.

1.3 Condensation and superfluidity

The word superfluidity is used to describe a variety of different phenomena [19]. The
most common characteristic of a superfluid is its capability to flow without dissipation,
that in the case of superconductors yields to a null resistance in the transport of an
electric current. Another interesting property of superfluids is the manifestation of
quantized vortices. Anyway, all the superfluid characteristics of a medium can be
linked to the existence of a condensate, i.e. a single macroscopically occupied ground
state. The superfluid motion can be interpreted as a collective phenomenon in which
particles move together to preserve the macroscopic occupation of the ground state.
Indeed, the description of the superfluid in term of a condensate leads to the dissipation-
less flow and the existence of quantized vortices. In the following the Landau criterion
for superfluidity is presented and then the nature of quantized vortex in a rotating
superfluid is illustrated.

1.3.1 Landau criterion for superfluidity

The flow of a superfluid is observed to be dissipation-less as long as the velocity of
the fluid is lower than a critical velocity vc. The first explanation and evaluation of
the critical velocity was performed by Landau [20], that established a criterion for the
dissipation-less flow of a superfluid. To understand it, we consider a superfluid medium
in motion with velocity vs. The only way for the condensate to lose energy is to create
an excitation. We consider an energy spectrum for the excitation ε(p), that in the case
of a condensate correspond to the Bogoliubov spectrum of Eq. (1.47). We suppose now
that the superfluid is able to dissipate by creating an excitation with momentum pe and
thus energy ε(pe). For the momentum conservation the momentum of the superfluid
after the excitation creation is ps − pe, where ps = mvs is the superfluid momentum
before the excitation. We note that after the excitation emission the momentum of
the fluid has to be lower than the initial one because only excitations that reduce the
velocity cause a dissipation. We now consider the energy conservation in the process:

E(ps) = E(ps − pe) + ε(pe) (1.53)
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where E(p) is the energy of the superfluid in motion with momentum p. Considering
for the superfluid only the contribution of the kinetic energy, then we obtain:

p2
s

2m
=

(ps − pe)2

2m
+ ε(p). (1.54)

Remembering that ps = mvs, the previous equation can be written in the form:

vs · pe =
p2
e

2m
+ ε(pe). (1.55)

The first term in the second member is always positive so we can say that vs ·pe > ε(pe).
The scalar product can be connected to the modulus of the two vectors considering
that vs · pe = vspe cos(θ) ≤ vspe, where θ is the angle between the two vectors. Then,
from the energy conservation we obtain:

vspe > ε(pe) =⇒ vs >
ε(pe)

pe
. (1.56)

Therefore the creation of an excitation in the superfluid can be performed only if the
velocity of the superfluid exceeds the velocity of the excitation. The critical velocity is
thus defined as:

vc = min
p

ε(p)

p
. (1.57)

For vs < vc there is no mechanism to transfer energy from the superfluid to an excita-
tion, so the superfluid flows without dissipation. Once the critical velocity is exceeded,
the superfluid can lose energy by creating an excitation and the flow becomes viscous.
Therefore, the Landau criterion asserts that a fluid can flow without dissipation, ex-
hibiting thus a superfluid behavior, if the critical velocity defined as in Eq. (1.57) is
non zero.

For a Bose-Einstein condensate the energy spectrum of excitations is the Bogoliubov
spectrum. Therefore, the critical velocity corresponds to the sound velocity, as the
lower energy excitations are phonon-like, with a linear dispersion ε(p) ' cp. Due to
its finite critical velocity, the condensate behaves like a superfluid. The typical speed
of sound of an alkali condensate is of the order of mm/s. We note that the critical
velocity of a condensate is finite because of the phonon-like dispersion. In the case of
condensate of non interacting particles the spectrum reduces to that of a single particle
and the critical velocity is null. Therefore, interparticles interactions are essential for
the existence of superfluidity.

The concepts of condensation and superfluidity are thus fundamentally connected,
as an interacting condensate exhibit a supefluid behavior. However, the Landau cri-
terion is only a necessary, but not sufficient criterion for superfluidity. This is due to
the fact that in many systems excitations at lower energy than phonons exist. Such
excitations can be vortices, that lead to turbulence in the superfluid flow, or rotons in
the spectrum of strongly interacting He II.
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1.3.2 Quantized vortices

We demonstrated in the previous section that condensation and superfluidity are fun-
damentally connected, as condensates admit a dissipation-less flow for velocity lower
than the speed of sound. We now use the condensate formalism, and in particular
the GPE, to describe another key property of superfluids: the existence of quantized
vortices.

From the condensate wavefunction we can define the current operator, in the usual
form of quantum mechanic:

J(r) =
h̄

2mi
(Φ∗(r)∇Φ(r)− Φ(r)∇Φ∗(r)) . (1.58)

By expressing the condensate wavefunction as Φ(r) =
√
n(r) exp[iφ(r)], where n is the

density and φ the phase of the condensate, the current can be written as [16]:

J(r) =
h̄

m
n(r)∇φ(r). (1.59)

From such expression of the current, we then calculate the velocity of the condensate,
so that J = nv. Therefore, we obtain:

v(r) =
h̄

m
∇φ(r), (1.60)

the velocity depends solely on the gradient of the condensate phase. From this it follows
that the condensate velocity is irrotational, namely:

∇× v = 0. (1.61)

The irrotationality of the condensate motion leads to the quantization of circulation.
Indeed, around a closed path we find that the circulation Γ is:

Γ =

∮
v · dl =

h̄

m

∮
∇φ · dl =

h̄

m
∆φ, (1.62)

where ∆φ is the phase variation along the closed line. For the condensate wavefunction
to be single-valued, ∆φ has to be multiple of 2π, so the circulation become:

Γ =
h̄

m
2πl, (1.63)

where l is an integer number: the circulation is quantized. Such state is characterized
by a phase singularity and can exist only in a multiply-connected geometry, where the
condensate density vanishes at this phase singularity. A multiply-connected geometry
can be both created by an external trapping potential and by the formation of a vortex,
a line of zero density about which the condensate phase winds. Indeed, the phase
singularity determines also a singularity in the density. To prove that, we consider a
condensate in purely azimuthal flow in a system with rotational symmetry respect to
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the z axis. The velocity at distance r from the trap axis can be calculated using the
definition of the circulation, that leads to [16]:

v(r) =
h̄

mr
l. (1.64)

At the same time, the phase of the condensate must vary as eilθ around the trap axis,
where θ is the azimuthal angle. For the kinetic energy of the condensate to remain
finite, the density has to vanish along the axis of the trap, such that the phase is
no longer well-defined and similarly the velocity of the condensate. Therefore, when
a condensate is forced to rotate, it creates quantized vortices, as observed in several
experiments [12] [11] [10].

To find whether such vortices form, we first calculate the energy per unit length of
a single vortex of charge l and radius R in a uniform condensate of density n. As a
first approximation, it can be calculated as the integral of the kinetic energy associated
with the flow along a closed path [16]:

E =
nm

2

∫ 2π

0

∫ R

0

v2
srdrdθ =

πN

m
l2h̄2

∫ R

0

dr

r
, (1.65)

where we have used Eq. (1.64) for the velocity of the superfluid vs. The previous
integral diverges for r = 0, so a cutoff rc has to be introduced. In this way we obtain:

E =
πn

m
l2h̄2 log

(
R

rc

)
. (1.66)

Typically the cutoff rc is taken to be equal to the healing length ξ of the condensate.
In principle, also the potential energy due to the density profile of the vortex should
be included, but such terms can be shown to be small and its contribution is included
in the uncertainty of rc. Therefore, the energy of a vortex scales as l2, so the lowest
energy configuration for a multiply charged vortex is to break up into an array of l single
charged vortices. In particular, vortices will form an hexagonal array to maximize their
separation and minimize the total energy [10].

From the expression of the energy of a vortex, we can see that also the rotational
flow admit a critical angular velocity, below which the system remain at rest because it
does not have enough energy to create a vortex. In particular, it can be demonstrated
that the critical angular velocity is:

Ωc =
h̄

µR2
log

(
R

ξ

)
. (1.67)

When the angular velocity imprinted on the condensate exceeded Ωc, it is energetically
favourable for the condensate to rotate and form vortices.

1.4 Optical potentials for atomic superfluids

One of the most attractive properties of atomic superfluids is the possibility to change
their confinement in an optical way. The interaction of light with atoms has indeed
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two main contributes: one linked to absorption of photons that leads to a dissipative
force, and one due to the dispersive behavior of atoms that originates a conservative
dipole force. The latter opens the possibility to create arbitrary potentials for atoms
by shaping the spatial intensity profile of a laser beam. The nature of the radiative
forces that light acts on an atomic system is illustrated in Sec. 1.4.1, with a particular
attention to the optical dipole force that allows to create optical potentials. Then in
Sec. 1.4 two interesting applications for an atomic superfluid are presented: a ring
shaped potential to study persistent current, and a disorder potential to investigate
the superfluid-to-insulator transition.

1.4.1 Radiative forces

In a semiclassical approach, the atom-light interaction can be interpreted as a force
acting on the atom, once the momentum conservation is considered [21] [22]. When
a photon is absorbed or emitted, the atom recoils and thus changes its momentum
state. Such momentum exchange can be seen as a radiative force that light exerts on
the atom. In particular, there are two kinds of radiative forces, associated with the
absorptive and dispersive properties of interaction: the dissipative radiation pressure
force, and the conservative optical dipole force. The radiation pressure is associated
with the transfer of momentum from light to atoms in a resonant scattering process:
atoms absorb photons from an incident light beam and change both their internal
state in the excited one and their momentum by the photon momentum h̄k, where k
is the wave vector of the absorbed photon. From the excited state they then decay
spontaneously to the ground state, emitting fluorescent photons in random directions.
The average change in momentum due to the spontaneous emission is thus null, so that
the dissipative force corresponds to an average momentum transfer of h̄k per atom in
each absorption/emission cycle. The radiation pressure force is the basis of the most
common laser-cooling techniques. Instead, the optical dipole force is conservative, and
arises from the dispersive behaviour of atoms. In particular, it originates from the
interaction between the external electric field and the induced atomic electric dipole.
Thanks to the optical dipole force it is possible to create optical traps for atoms.

Now we describe the two forces in detail, considering the case of an atom in inter-
action with an incoming laser beam at frequency ω.

Radiation pressure force

As already mentioned, the radiation pressure arises from the absorption of photons. If
Nph photons are absorbed in a time ∆t, the radiation pressure can be written as:

F = h̄k
Nph

∆t
, (1.68)

where h̄k is the momentum carried by each absorbed photon. It is possible to evaluate
Nph/∆t from the theory of interaction between coherent radiation and a two-level atom
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and demonstrate that the radiation pressure is [21]:

F = h̄k
γ

2

s

1 + s+ 4δ2

γ2

, (1.69)

where γ is the natural linewidth of the transition, δ = ω − ω0 is the detuning between
the laser frequency ω and the resonance frequency ω0 and s = I/Isat is the saturation
parameter defined as the ratio between the the intensity I of the laser and the atomic
saturation intensity Isat. We note that the force has the same direction of the incoming
light beam, that defines the direction of the wave vector k. Moreover, the radiation
pressure is maximum at resonance when δ = 0 and scales as I/δ2 out of resonance. In
particular, looking at the intensity dependence, we see that for strong fields the force
saturates to the limiting value of F = h̄kγ/2 when s � 1. In this case, the atom
is continuously absorbing and re-emitting photons at the maximum rate γ/2, limited
only by the lifetime 1/γ of the excited state.

For typical atomic velocities, the momentum exchange from the absorption of a
single photon is small compared to the momentum of atom, which justify the classical
treatment of the motion variables. In particular, for 87Rb at room temperature the
mean velocity of the atom is vT =

√
3kBT/m ' 300 m/s, while the velocity change

induced by a single photon at resonant wavelength λ = 780 nm is vR = h̄k/m ' 6

mm/s. The recoil velocity is about 104 times smaller than the atomic velocity, but still
the radiation pressure force experienced by atoms can be quite intense if the number
of absorbed photons is large. Therefore, using radiation pressure of resonant light, it
is possible to decelerate atoms and cool them.

Optical dipole force

Unlike the radiation pressure, the optical dipole force is conservative, so it can be
derived from a potential, the minima of which can be used for atom trapping. It arises
from the fact that, when an atom is placed into laser light, the electric field E induces
an atomic dipole moment p that oscillates at the driving frequency ω. In a classical
model of the atom, the dipole moment arises from the periodic displacement of the
atomic electron, that is forced to oscillate by the external electric field. In a quantum
mechanical approach, the dipole moment arises from the mixing of the ground and
excited states, that have different charge distributions. In particular, if we consider an
electric field with amplitude E(r), the amplitude of the induced dipole can be expressed
in terms of the atomic polarizability α:

p(r) = αE(r). (1.70)

We note that such proportionality between p(r) and E(r) is valid only in the linear
regime of weak excitations, when the saturation of the two-level system is negligible
and α does not depend on E.

The analytic expression of the atomic polarizability can be derived from a theoret-
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ical model of atom-light interactions [21]:

α = −
e2µ2

eg

h̄

δ − iγ
2

δ2 + γ2

4
+ Ω

2

, (1.71)

where e is the electronic charge, µeg is the transition dipole moment and Ω is the Rabi
frequency. The atomic polarizability is a complex quantity: the real part, representing
the dipole component oscillating in phase with the electric field, is responsible of the
dispersive properties of interaction, while the imaginary part, describing the out-of-
phase component of the dipole, is connected with the absorption. In particular, the
two components have different dependence on the detuning δ: at the resonance δ = 0

the real part is null and the imaginary is maximum, while out of resonance the real
part scales as 1/δ and the imaginary decays faster as 1/δ2. Therefore, if we consider
an incoming laser beam far of resonance, the only contribution to the polarizability
will be from its real part, so the medium becomes purely dispersive. In this case, the
induced dipole interacts with the radiation electric field and we can define the optical
dipole potential as the potential energy of such interaction:

Udip(r) = −1

2
〈p · E〉 = − 1

2ε0c
Re(α)I(r), (1.72)

where ε0 is the electric constant, c the speed of light and I(r) the intensity of the laser
beam. The dipole force can be now calculated as the gradient of the potential energy.

From the obtained expression of Udip we see that if we create a spatial modulation
of the intensity I(r), the atoms will feel a potential energy that is proportional to such
intensity modulation. In particular, we can trap atoms in intensity maxima or minima
in dependance of the sign of the detuning. Indeed, if we explicit the expression of
Re(α) we get [23]:

Udip(r) =
3πc2

2ω3
0

(γ
δ

)
I(r). (1.73)

If the light is red-detuned (δ < 0) the dipole potential is negative, hence maxima of the
intensity correspond to minima of the potential, whereas in the case of blue-detuned
light (δ > 0) the dipole potential is positive and maxima of the intensity correspond to
maxima of the potential. Therefore, for red-detuning we can trap atoms in regions of
high-field intensity, while for blue-detuning the atoms are trapped where the intensity
has its minima.

So far, we neglected the imaginary part of the absorption coefficient, but it plays
a fundamental role in determining the lifetime of an atomic gas inside an optical trap.
As already mentioned, it is associated with the absorption of photons from the incident
light field, so it generally determines a heating of the trapped sample. This process
can be quantified by the average number of photons scattered in the unit of time in
cycles of absorption and spontaneous emission [23]:

Γsc(r) =
1

h̄ε0c
Im(α)I(r) =

3πc2

2h̄ω3
0

(γ
δ

)2

I(r). (1.74)
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We see that the photon scattering rate scales as 1/δ2. Although far of resonance the
dispersive behavior dominates over the dissipative process, the finite value of Γsc sets
the limit of the lifetime in an optical trap.

1.4.2 Probing superfluidity with optical potentials

The control over the spatial intensity distribution of a laser beam permits to create
any desired potential for the atomic population. In this section, two different kinds of
optical potentials useful to study the superfluid behavior of a condensate are presented.
First, the possibility to study persistent current in a ring geometry is illustrated. The
multiply-connection of such potential is particularly suited to this kind of study because
it prevents the instability due to vortex motion in a rotating superfluid. Then, the
role of disorder is examined: in general it corresponds to a localization effect of the
wavefunction of the components of a system, that in the case of a supefluid may lead
to a superfluid-to-insulator transition.

Persistent current in a toroidal trap

A persistent current is a perpetual flow of particles, that may determine an electrical
current if they are charged, without requiring an external power source. Persistent
currents have been observed both in superfluid and superconducting systems, as the
response of the system under rotation or external magnetic field respectively. As de-
scribed in [24], a persistent current can be observed in liquid helium superfluid in an
annular geometry. In particular, an observation of persistent current can be performed
as follows: above the critical temperature of superfluid transition, the annular container
is set into a rapid rotation, so that the fluid inside is forced to rotate because of its
viscosity. Then the temperature is decreased below the critical value for the superfluid
transition and the container rotation is stopped. The superfluid liquid helium contin-
ues to rotate indefinitely because now its flow is dissipation-less, forming a persistent
mass current. In particular, the persistent current is observed as long as the velocity of
the fluid inside the container is below the critical velocity. For a stationary container,
the rotating state of the superfluid cannot be the stationary state, so the persistent
current is an example of an extremely long-lived metastable state.

As already mentioned, such state can be observed also in superconductors in a
similar annular geometry, but now the persistent current is induced by an external
magnetic field. When the system is above the critical temperature of the supercon-
ducting transition, an external magnetic field is applied along the axis of symmetry,
then the material is cooled down below the critical temperature and the external field
removed. In this case, a surface persistent current is induced in the material, generating
a magnetic field such that the flux penetrating the sample remains unchanged.

The stability of persistent currents and their properties can be studied with a Bose-
Einstein condensate in a ring geometry. To study persistent current, such geometry
is preferable to a simply-connected one, as an usual harmonic trap, because in a ro-
tating superfluid the creation of vortices is unavoidable. Vortices are unstable and are
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observed to move inside the superfluid towards region of lower density, reducing the
angular momentum of the system [11] [10]. To avoid vortex instability, a multiply-
connected geometry can be used, as a ring trap. In this case, vortices are pinned at
the center of the ring where the density is null [25] and superfluid flow may be stable
as long as the angular velocity at which the condensate circulates around the ring is
lower than the critical angular frequency for excitations of the condensate.

Several schemes have been implemented to create a ring trap, using both magnetic
and optical confinement. The disadvantage of a magnetic trap is that in the zero
magnetic field regions the Majorana spin-flip causes critical losses of atoms. On the
other hand, optical traps are easy to create, as discussed in the previous section, and the
desired geometry can be obtained by using a laser beam with a ring-shaped intensity
spatial profile. To do that, Laguerre-Gauss beams [26] [27] can be used or spatial
light modulators, as in this work, in combination with other trap to create a total
confinement for the atomic population.

Using optical ring trap, it has been possible to observe persistent currents in a
condensate with lifetime up to a minute [26], and to investigate their dependency on
the temperature [28] and spin imbalance in the case of a mixture of condensate of the
same element in two different spin states [29]. The study of a condensate in a ring
trap finds application also in atom interferometry, where a ring-shaped condensate is
used to measure rotations thanks to the Sagnac effect [30] [31], and in atomtronics, the
field of research that focuses on the creation of atoms analog to electronic materials,
devices and circuits. In this framework, a ring-shaped condensate can be used to
create the analog of a Superconducting Quantum Interference Device (SQUID), a very
sensitive magnetometer used to measure extremely subtle magnetic fields, based on
superconducting loops containing Josephson junctions. To do that, in [32] a toroidal
condensate was created and forced to rotate with a Laguerre-Gauss beam, and a weak
link emulating a Josephson junction was introduced via a repulsive optical potential.

Disordered superfluids

The effect of disorder in a quantum system was firstly investigated by Anderson, that
in 1958 found out that the presence of disorder in a crystal lattice has a dramatic
consequence on the electronic transport properties, and in particular that it can turn
metallic materials into insulators [33]. Such effect is due to interference: the multiple
scattering of a single electron by randomly distributed defects causes a destructive
interference on its wavefunction, that localizes the electron on a finite region of space.
In particular, Anderson identified the existence of a critical condition for localization
that depends on the amount of disorder and on the electronic configuration. Such
phenomenon has been called Anderson Localization (AL) after his studies and regards
not only the transport of electric current in metallic materials, but also the propagation
of any kind of wave in a disordered medium.

In general, in a disordered medium three typical energy-dependent length scales
can be used to characterize the three basic effects induced by disorder [34]. Single
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scattering from impurities defines the scattering mean free path ls = vτs, where v
is the velocity of the wave and τs the mean time between two consecutive scattering
events. The mean free path characterizes the typical length traveled by the wave
before it loses the memory of its initial state, and mostly the memory of its initial
phase. Such length scale depends of the particular scattering process between the wave
and impurities. Multiple scattering defines instead the Boltzmann mean free path
lB, that corresponds to the length traveled by the wave before it loses the memory
of its initial direction. In general, several scattering events are requested to modify
significantly the trajectory of the wave, so typically lB > ls. The Boltzmann scale
defines the distance within whom the transport crosses over from ballistic to diffusive.
And it is the diffusive nature of transport that gives rise to the localization effect of
disorder. Indeed, due to the stochastic nature of diffusion, the wave has a non-null
probability to return back to its initial position via loop paths and interference effects
have to be considered. Each loop consists in a multiple scattering path and can be
traveled in both direction, but the phase accumulated in one loop is the same. This
generates a constructive interference of the matter wave because the two paths are in
phase, and the probability to return in the initial position is enhanced. In this case,
the effect of disorder induces coherent back scattering and a weak localization that
reduces the diffusion coefficient. When the disorder is strong enough, such interference
effect completely cancels the diffusion coefficient and the system enter in a regime
of strong, or Anderson, localization. Here, the probability distribution of the wave
decays exponentially in space and the characteristic length of such decay is the so-
called localization length Lloc. Such length scale can be connected to the Boltzmann
mean free path in the limit of high momentum scattering klB � 1 [35]:

Lloc = lB exp
[π

2
klB

]
. (1.75)

The above picture of the localization effect of disorder tells us that the strength of lo-
calization depends on two characteristics of the medium: the coherence of the multiple-
scattering path, governed by the interference parameter klB, and the dimensionality
of space, that determines the return probability. In particular, in lower dimensions
the probability for the wave to return in its initial position is higher, and Anderson
localization occurs for any small amount of disorder.

When disorder is added in a superfluid system, the localization effect it produces
can determine a superfluid-to-insulator transition. This is particularly evident in two-
dimensional systems, as here any little amount of disorder is sufficient to localize the
wavefunctions of the components. Such transition has been studied mainly in thin
films of disordered superconductors [36] [37], leading to different insulator state in
dependance on the strength of disorder [38]. In the presence of weak disorder the
superconductor is divided into several regions of superfluid surrounded by walls of in-
sulating material. Different regions can be connected by coherent tunneling of particles
as in the Josephson effect, so the order parameter of the superfluid is not destroyed.
For stronger disorder, the wavefunction of the superfluid components becomes localized
and a superfluid phase can no longer exist.

25



The effect of disorder in a superfluid or superconducting material can be studied
using atomic superfluids to mimic the behavior of solid state physics. Quantum gases
indeed offer a versatile system in which disorder can be introduced in a controlled
manner. In particular, in an atomic system, disorder can be realized in several way:
with disordered optical potentials, with quasi-random potentials of bicromatic optical
lattices, or with a second atomic specie or spin state as impurities. In [39] a bicromatic
optical lattice was used to probe the Anderson localization of a condensate in one
dimension, while in [40] a speckles optical potential was implemented for the same
purpose. As it will be illustrated in detail in Sec. 4.2, a speckles pattern consists in a
granular distribution of intensity, that can be obtained using a glass with rough surface.
In a three dimensional system, Anderson localization has been observed using speckles
optical potentials [41] [42], but in two dimension Anderson localization is more elusive.
Indeed, speckles potentials cause classical trapping of atoms: speckles form potential
landscapes that constrain atomic motion, that results thus localized, but not because
of Anderson localization. To avoid such problem, a different kind of disordered light
pattern can be used: the point-like disorder, characterized by a random distribution of
spots of light surrounded by regions of darkness. Such kind of disorder can be set not
to cause any classical trapping of atoms [43], which makes it preferable to a speckles
pattern. Moreover, point-like is a perfect candidate to mimic the random presence of
impurities inside a solid state superconductor.
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Chapter 2

Magneto optical trapping of 87Rb

Part of my master thesis work has been dedicated to the construction and optimization
of a magneto optical trap (MOT) for 87Rb atoms. In particular, I took part in the
alignment of the optical system and work at the optimization of the efficiency of the 2D
and 3D MOT in Lab. 29 of Dipartimento di Fisica e Astronomia in Florence. My thesis
work represent the initial part of the construction of a novel experiment for a Bose-
Bose mixture of 87Rb and 39K to study two-components superfluidity. This Chapter
is organized as follows: in Sec. 2.1 I present the working principle of the magneto
optical trap and investigate the possibility to create a beam of collimated atoms with
a 2D MOT scheme. In Sec. 2.2 I present the experimental setup used for this master
thesis work: I discuss 87Rb properties and the experimental system used to create a
MOT for such atom. Finally, in Sec. 2.3 I illustrate the measuring techniques used to
probe the atomic population in the MOT and report the measurement preformed for
the optimization of the loading efficiency of the 3D MOT.

2.1 The Magneto Optical Trap

The magneto-optical trap (MOT) is a robust experimental technique, that allows to
both trap and cool atoms for arbitrarily long time. Trapping times can be as long as
several minutes, limited only by losses of atoms due to collisions with the background
gas. For this reason a vacuum chamber evacuated down to the ultra-high vacuum
regime (< 10−9 mbar) is required in order to keep the cold atoms well isolated from
the environment.

A MOT is composed by the combination of the laser cooling technique of optical
molasses and a magnetic gradient. Optical molasses are realized with two counter-
propagating laser beams with the same frequency ω, smaller than the atomic resonance
frequency ω0, that act on the atomic population as a viscous force. The viscosity of
optical molasses is due to the Doppler effect: an atom with velocity v sees photons of
the two beams with different frequencies. In particular, if we consider the velocity of
the atom parallel to the direction of propagation of the two laser beams for simplicity,
than in the reference frame of the atom the frequency of the laser beam propagating
in the opposite direction of the atom is upshifted ω′ = ω(1 + v/c), where v is the
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modulus of the atomic velocity, while the frequency of the beam propagating in the
same direction of the atom is downshifted ω′′ = ω(1− v/c). As ω < ω0 , the frequency
ω′ is closer to the resonance than ω′′, so that the atom will preferably absorb photons
from the beam propagating in the opposite direction, reducing thus its velocity due to
the recoil.

The decelerating force due to an optical molasses can be obtained quantitatively
starting from the radiation pressure force described in 1.4.1. In the small intensity
limit I � Isat, the total force acting on the atom in an optical molasses can be written
simply as the sum of the radiation pressure forces exerted by the two beams separately.
Including the Doppler shift in Eq. (1.69), we get [22]:

F ' h̄kγ
2

[
s

1 + 4(ω−ω0−kv)2

γ2

− s

1 + 4(ω−ω0+kv)2

γ2

]
, (2.1)

where s = I/Isat is the saturation ratio. The first term in square parentheses is due to
the co-propagating laser beam, and the second to the counter-propagating one. With
a small velocity expansion we obtain:

F = −βv +O(v3), (2.2)

where β is the damping coefficient:

β = −8h̄k2s

δ
γ(

1 + 4δ2

γ2

)2 . (2.3)

Therefore, the force acting on atoms in an optical molasses is viscous, and permits
to slow down exponentially the atoms to vanishing velocity. We note that such force
derives from two conservation principles: momentum conservation, resulting in the
presence of the radiation pressure force, and the energy conservation, that lead to the
preferential absorption of the counter-propagating beam.

Optical molasses provide a very efficient method to cool atomic gases, but they do
not produce any spatial confinement. For this reason in a MOT we add an inhomoge-
neous magnetic field to an optical molasses, to create a trapping force able to spatially
confine the atomic population. The magnetic field is generated by a pair of coils in a
anti-Helmholtz configuration, namely with currents circulating in opposite directions.
To understand the working principle of a MOT we consider a simplified 1D version,
composed by the two counter-propagating laser beams with opposite circular polariza-
tion for the optical molasses and the pair of anti-Helmholtz coils. The latter provides
a magnetic field B(x) = bxx̂, with uniform field gradient in the trap-centre x = 0. For
simplicity, we consider an atom with a ground state with angular momentum J = 0

and an excited state with J = 1. The energy levels of the excited state are modified
by the Zeeman shift:

∆E(x) = gJ ′µBmJ ′bx, (2.4)

where gJ ′ is the Landé factor of the excited state, µB = eh̄/2me is the Bohr magneton,
and the magnetic field gradient is chosen in such a way that gJ ′b > 0. In Fig. 2.1
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Figure 2.1: Illustration of the working principle of a MOT in a simplified 1D scheme: the
energy levels of the excited state are modified by the presence of the external magnetic field,
such that for an atom in x > 0 the transition to the mJ ′ = −1 state is favoured. Because
of the momentum conservation, the transition can happen only if a σ− polarized photon is
absorbed, so the atom receive an h̄k momentum kick in the trap center direction. Vice versa
an atom in x < 0 will absorb preferably a photon from the σ+ polarized beam, that push it
in the trap centre direction.

an illustration of the working principle of a MOT is presented. The presence of the
magnetic field introduces a position-dependence in the global force acting on the atoms.
An atom in x > 0 preferentially absorbs a photon from the σ− polarized beam, because
of the selection rules: with the red-detuned laser beam of the optical molasses the
transition mJ = 0 → mJ ′ = −1 is closer to the resonance and to perform it a photon
with polarization σ− has to be absorbed. The recoil due to the absorption pushes the
atom in the trap center direction. Vice versa for an atom in x < 0: the transition
mJ = 0 → mJ ′ = +1 now is closer to the resonance so a σ+ photon will be absorbed,
and again the recoil will push the atom to the trap center. More formally, the force
acting on the atom in the presence of the optical molasses and the magnetic field can be
calculated from Eq. (1.69), taking into account the Doppler and the Zeeman shifts [22]:

F ' h̄kγ
2

[
s

1 +
4(ω−ω0−kv−gJ′µBmJ′bx)2

γ2

− s

1 +
4(ω−ω0+kv+gJ′µBmJ′bx)2

γ2

]
(2.5)

Expanding such expression in the limit of small velocity and small displacement, we
get:

F ' −mω2x− βv, (2.6)

which describes the force acting on a damped harmonic oscillator. Therefore, in a MOT
the force acting on atoms has two contribution: an elastic term −mω2x, provided
by the magnetic field, and a damping term −βv, provided by the optical molasses.
The elastic term supplies the trap for the atoms, while the damping one cools them.
This results can be extended to atoms with different electronic configurations and
in higher dimensions. In particular, we can obtain a total confinement of the atomic
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population with three pairs of counter-propagating beams in three orthogonal directions
intersecting in the region of zero magnetic field of the anti-Helmholtz coils. Also in
this case the polarization of the beams has to be circular and opposite for the couple
of beams counter-propagating in the same direction.

Finally, it is interesting to determine the lower temperature that can be achieved
in a MOT. Such limit arises from the heating effects due to the spontaneous emission
that results in a recoil kick in a random direction, and to the intensity fluctuations of
the laser beam. It can be demonstrated [44] that the lower temperature that can be
reached in a MOT is the so-called Doppler temperature:

TD =
h̄γ

4kB

1 +
(

2δ
γ

)2

2|δ|
γ

, (2.7)

which takes its minimum value for |δ| = γ/2:

TminD =
h̄γ

2kB
, (2.8)

that depends only on the linewidth γ of the transition. For 87Rb atoms γ = 2π × 6

MHz, so the minimum Doppler temperature is TminD ' 150 µK.

2.1.1 2D MOT

A 3D MOT is the starting point for all the cold atoms experiments, as it provides
a large number of atoms, N ' 109, at a temperature of few tens of µK. However,
even if it is possible to create a 3D MOT directly from a vapour cell source of atoms
(VCMOT) [45], usual 3D MOTs are preceded by a first stage of cooling. Indeed, in
a VCMOT the lifetime of atoms loaded in a different trap after the MOT cooling is
limited by collisions with the background thermal gas. Therefore, the most common
configuration to produce cold atoms is a dual chamber system: in a first vacuum
chamber atoms are extracted from a vapour cell or an oven and preliminarily slowed
and cooled down to create an atomic beam. Such beam transfers atoms in a second
chamber with ultra-high vacuum where the 3D MOT cooling stage is performed. Here
the collisions with the background gas are negligible, so that a long lifetime for the
atomic traps can be achieved.

There are two main way to create a beam of atoms to load the 3D MOT: by slowing
down atoms with a Zeeman slower, or by cooling them with a 2D MOT. A Zeeman
slower uses the radiation pressure force to decelerate an atomic beam, typically exiting
from a oven, and a magnetic field to compensate the Doppler effect and keep the atoms
in resonance with the cooling light for all the trajectory to the 3D MOT. The Zeeman
slower technique displays some disadvantages: a great engineering effort to design and
construct the system is required, and the atomic beam created exhibits a divergence
that reduces the loading efficiency of the MOT.

On the other hand, a 2D MOT uses the magneto-optical trapping technique illus-
trated in the previous section to create a collimated beam of atoms. With such tech-
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Figure 2.2: Illustration of the working principle of a 2D MOT: two couples of laser beams
with opposite circular polarization create an optical molasses in the radial direction, while
the two pairs of coils create the elastic confinement.

nique, atoms are trapped and cooled in two dimensions using two couples of counter-
propagating beams with opposite circular polarization and two sets of coils to generate
the desired inhomogeneous magnetic field, as shown in Fig. 2.2. The coils are used in a
Ioffe configuration to produce a cylindrical quadrupole field with a line of zero field in
the x direction. As the atoms are free to move in the x direction the 2D MOT produces
a beam of atoms moving in such direction, that is extremely collimated thanks to the
radial cooling of the atomic population. A 2D MOT can be used as a first stage of
cooling both if the atoms are extracted from a vapour cell or from a oven, although
their escaping velocity are very different. In particular, if atoms come from an effu-
sive oven, the 2D MOT can be load both by a longitudinal and a transverse beam of
atoms [46].

Several configuration of 2D MOT has been probed to produce an atomic beam. The
simplest one is by using the 2D MOT setup of two couple of counter-propagating laser
beams and the Ioffe coils [47]. In such scheme the radial cooling compresses atoms in
correspondence of the x axis, while the x component of their velocity is not changed.
Therefore, two different beams of atoms are created, propagating in opposite direction
along the x axis. With this technique, it is possible to obtain a flux of ∼ 1010 atoms/s
with a velocity distribution centered around ∼ 50 m/s [47]. This technique has the
disadvantage that half the cooled atoms are moving in the opposite direction of the 3D
MOT, and are thus not used for its loading. This problem can be overcome by adding
a launching technique that creates an atomic beam only in direction of the 3D MOT.

In the 2D+ MOT scheme [48] an unbalanced optical molasses in the x direction is
added to reduce the velocity of the atoms in the x direction and to launch them towards
the 3D MOT chamber. To do that, an extra pair of counter-propagating laser beams
can be introduced in the x direction to create the optical molasses. The intensity in
these two beams can be set independently, so that atoms are pushed in the direction
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of the most intense laser beam. In this way, atoms with a large velocity in the x
direction are slowed down by the optical molasses, so that they can be captured by the
subsequent 3D MOT stage. In particular, with such scheme it is possible to obtain a
flux of ∼ 109 atom/s at a mean velocity of 8 m/s [48].

Other kinds of launching technique can be used, like an external magnetic field [49],
that has the disadvantage to create a large velocity distribution in the atomic beam,
or a pushing laser beam [50]. In the latter case, the frequency of the pushing beam can
be optimized to obtain an efficient loading of the 3D MOT. In [50], a two-color pushing
beam propagating along the +x direction is added to the 2D MOT scheme, formed
by the composition of a blue and a red detuned light. The blue-detuned light interact
mostly with the atoms moving in the +x direction, accelerating them and reducing
the losses in the transfer from the 2D to the 3D MOT. The red-detuned light interacts
preferably with atoms moving in the −x direction and it is used to avoid their loss
from the 2D MOT and to turn their direction to the +x, so that they can be captured
by the 3D MOT too.

2.2 Experimental setup

In this section I illustrate the experimental setup used to create the magneto optical
trap of 87Rb atoms. In particular, in Sec. 2.2.1 the main properties of 87Rb are reported
and the laser system used to cool down the atomic population is presented. In Sec.
2.2.2, I illustrate the vacuum system created for the experiment and the optical system
we aligned for the realization of the 2D MOT and 3D MOT of 87Rb atoms.

2.2.1 Rubidium-87 and laser sources

Rubidium-87 is an alkali atom, characterized by the energy level structure in Fig. 2.3.
The fine structure of the atom gives rise to two different spectroscopy lines, the D1

and D2 lines. For the laser cooling of rubidium the D2 line with wavelength 780 nm is
used. Among all the possible hyperfine levels of the ground 2S1/2 state and the excited
2P3/2 state, the cooling is performed with the transition F = 2 → F ′ = 3. This is a
closed transition: an atom excited in F ′ = 3 can decay only in F = 2 because of the
selection rule |∆F | ≤ 1. In this way, an atom can perform as many absorption/emission
cycle as requested to be cooled down to the limit of Doppler laser cooling. However,
because of the small energy separation between the states F ′ = 2 and F ′ = 3, there
is a probability for the cooler laser to excite the F ′ = 2 state. From here atoms can
decay to the F = 1 ground state, so that they are lost for the cooling procedure. For
this reason a repumping laser is needed to bring the atoms decayed in F = 1 back to
F = 2.

In our experimental setup, two different laser sources are used to create the cooler
and the repumper light. For the cooler a diode laser in an extended Toptica DLPRO100
cavity is used. The repumper light is instead generated by a distributed feedback (DFB)
diode laser Toptica DFBRO100. For the cooler, the extended cavity permits to fine
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Figure 2.3: Energy levels of 87Rb.

tune the laser frequency by modifying the length of the cavity using a piezoelectric
element. In addition, for both lasers it is also possible to tune the frequency by varying
the electric current flowing in the diode and its temperature.

The frequency of the cooler is stabilized to the atomic resonance using the modula-
tion transfer spectroscopy technique [51]. This is a pump-probe technique which pro-
duces sub-Doppler lineshapes, that can be directly used for laser locking. Modulation
transfer spectroscopy is a variation of the frequency modulation spectroscopy where
the modulation is imposed to the pump beam instead of the probe one. In frequency
modulation spectroscopy [52] the probe beam is passed through an Electro-Optical
Modulator (EOM), driven at a radio-frequency ωm, that introduces a time-dependant
phase modulation in the beam. The light emerging from the EOM can be represented
in terms of a carrier at frequency ωL and sidebands separated by the modulation fre-
quency. If the amplitude of the phase modulation is sufficiently small, we can represent
the probe beam as the composition of a strong carrier and only two weak sidebands
at frequencies ωL ± ωm [52]. Both the probe and the pump beams are directed to
the atomic vapour cell: as in saturation spectroscopy technique, the pump modifies
the dispersion properties of the atomic system and the probe investigates them. The
intensity of the emerging probe beam is then observed with a photodiode and the elec-
tric signal arising from such device is de-modulated at the same modulation frequency
ωm. When a scan of the laser frequency ωL is introduced, the de-modulated signal of
the photodiode has a profile as in Fig. 2.4, due to different interaction of the three
frequency components of the probe beam with the atomic system. As already men-
tioned, in the modulation transfer technique used to lock the cooler frequency in our
case the modulation is imposed in the frequency of the pump rather then to the probe
beam. In this case, if the interactions of the pump and the probe beam with atoms
are sufficiently non-linear, the frequency modulation of the pump can be transferred
to the unmodulated probe. The great advantage of modulation transfer technique is
that in this case the strongest signals are observed for closed transitions [51]. More-
over, modulation transfer only takes place when the sub-Doppler resonance condition
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Figure 2.4: Optimization of the modulation transfer spectroscopy signal in dependence on
the temperature of the atomic vapour cell. The signal and its slope in correspondence of
the zero crossing increase with temperature up to a maximum for T = 42.1°, that is thus
chosen as the working point for the laser locking. We note that the units in the x axis are
arbitrary: the aim of the optimization was to analyse the changes in the signal slope, so an
accurate calibration of the laser frequency scan was not performed. Anyway, the width of the
spectroscopy signal is of the order of the natural linewidth of the transition, that is 6 MHz.

is satisfied, which leads to a flat, zero background signal where the zero crossing is
accurately centred in correspondence of the atomic transition.

The spectroscopy signal has been optimized for two different parameters: the tem-
perature of the cell, and the ratio of the powers in pump and probe beam. Fig. 2.4
shows the spectroscopy signal obtained for different temperature of the vapour cell.
We see that the signal and its slope in correspondence of the zero crossing increase
with temperature up to a maximum for T = 42.1°, that is thus chosen as the working
point for the laser locking. The pump and probe powers analysis is reported in Fig.
2.5, where the difference between the maximum and the minimum of the spectroscopy
signal ∆V is plotted versus the ratio Ppump/Pprobe. We can see that the modulation
transfer spectroscopy signal is maximum when the two beams have almost the same
power.

Therefore, with modulation transfer spectroscopy the cooler light is locked to the
atomic transition. Then the laser light is divided to create all the lights needed for the
MOT. The frequency of each light is set using a dedicated Acousto-Optic Modulator
(AOM), that introduces the desired detuning from the resonance. In particular, 2D
and 3D MOT lights are red-shifted by 15 MHz.

The repumping light frequency is instead locked to the cooler frequency via a beat
note stabilization. The cooler and repumper lights are superimposed and then observed
with a fast photodiode. Because of the interference between the two radiation, the
intensity observed with the photodetector oscillates with a frequency equal to the
difference between the frequencies of the two laser beam, the so-called beat note. The
oscillating electric signal of the photodiode is then digitalized and down-converted to
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Figure 2.5: Optimization of the spectroscopy signal, varying the power of pump and probe
beam. In figure the difference between the maximum and the minimum of the spectroscopy
signal ∆V is plotted versus the ratio Ppump/Pprobe. The maximum signal is obtained when
pump and probe beam have the same power.

a slower frequency. In particular, the down-conversion process divides the frequency of
the digitalized signal by an integer number that is set to 64× 105 = 6720. Finally, the
down-converted digital signal is compared to a well-known local oscillator signal, and
the frequency difference between the two is used as error signal to lock the repumper
frequency. In particular, the frequency of the repumper is set by choosing the local
oscillator frequency, that fixes the difference between the cooler and the repumper
lasers. The repumper frequency is set to be 6.750 GHz above the cooler one, which is
locked 182 MHz below the closed transition F = 2→ F ′ = 3.

2.2.2 Vacuum and optical systems

The vacuum and laser systems used to create the 2D and 3D MOTs are illustrated in
Fig. 2.6.

The vacuum system has a dual chamber configuration: 87Rb atoms are extracted
from a vapour cell below the 2D MOT chamber at about 40° C, they are cooled and
collimated by a 2D MOT and then transferred to the 3D MOT chamber via a push
beam. A filter for the atomic beam is placed between the two vacuum chambers: it
corresponds to two thin tubes with diameters 1.5 mm and 2 mm, 2 cm and 3 cm long
respectively.

For the 2D MOT an elliptical beam is created by means of a telescope with two
cylindrical lenses of focal lengths f1 = 100 mm and f2 = 150 mm. With such tele-
scope a beam elongated in the horizontal direction is created with an aspect ratio of
3 between the horizontal and the vertical directions, so that almost all the 2D MOT
cell is illuminated by the cooling light. The beam is then retro-reflected to create the
counter-propagating beam for the 2D MOT. Two quarter-wave (λ/4) plates set the
opposite circular polarizations of the counter-propagating beams. Such optical scheme
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Figure 2.6: Vacuum and laser system for the magneto optical trap of 87Rb.

is used both for the horizontal and for the vertical beams of the 2D MOT. The power of
the two beams is approximately 200 mW. The inhomogeneous magnetic field requested
for the 2D MOT is generated with two couple of Ioffe coils, driven with a current of
about 5 A.

The push is realized with a beam with waist of about 1 mm and power P = 1.5

mW. The direction of the beam is finely tuned to center the atomic filter, such that
the beam can get through and arrive in the 3D MOT chamber.

For the 3D MOT six independent laser beams are used. They are realized starting
from the same fibre output, divided in different beams by three polarizing beam splitters
(PSB). The power of each beam can be set with a half-wave plate (λ/2) placed before
the PBS. The total power of the 3D MOT beams, measured at the output of the fiber
before all splittings, is set to be around 110 mW. The inhomogeneous magnetic field
needed for the magneto optical trap is created by a set of two coils in an anti-Helmholtz
configuration, placed in the vertical direction above and below the vacuum chamber.
The coils are composed by 36 winding of a copper wire, in which flows an electric
current of 13 A, in opposite directions for the two coils. Before implementing the coils
in the experimental system, a characterization of the magnetic field they produce has
been done. To do that, we powered one coil at a time and measured the magnetic
field in several positions along the axial direction with an Hall probe. We repeated the
measurement for different values of the electric current and the results are illustrated
in Fig. 2.7. We note that the distances are taken from an arbitrary position. The
measured data are fitted with a function that represents the magnetic field generated
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by a coil with N windings according to the Biot-Savart low:

B(z) =
µ0IN

2

R2

(z2 +R2)
3
2

, (2.9)

where µ0 is the magnetic permeability, I is the elctric current that flows in the coil and
R its radius. We can see that the fit curve well represents the experimental data. The
fit parameters obtained are reported in Table 2.1, according to the fit function:

y = A
r2

0

((x− xc)2 + r2
0)

3
2

+ c. (2.10)

From the characterization of the two coils the value of the gradient of the magnetic
field experienced by the atoms at the center of the 3D MOT can be calculated. In our
setup the centre of the two coils are at distance 64.8 mm, so that the magnetic field
gradient is 15 Gauss/cm for a powering electric current of 13 A, as used for the 3D
MOT realization.

(a) Coil A (b) Coil B

Figure 2.7: Experimental data and relative fit for the characterization of the magnetic field
produced by the two coils for the 3D MOT. For each coil the magnetic field produced with
several powering electric currents is measured with an Hall probe, than a fit with the function
in Eq. (2.10) is performed.

Coil I (A) A (Gauss/mm) r0 (mm) xc (mm) c (Gauss)
A 2 184± 7 42.0± 1.4 65.9± 0.5 −0.15± 0.07

A 3 313± 6 45.3± 0.8 65.8± 0.3 −0.09± 0.05

A 5 481± 6 43.5± 0.4 65.97± 0.15 −0.12± 0.05

B 2 224± 25 48± 4 63.6± 1.6 −0.06± 0.20

B 3 297± 10 43.9± 1.2 65.9± 4.2 −0.10± 0.08

B 5 483± 7 43.8± 0.5 65.9± 0.2 0.08± 0.06

Table 2.1: Fit parameter of the coils characterization.
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Figure 2.8: Time evolution of the atomic population inside a MOT. Two regions can be in-
dividuated: the loading (red), where the number of atoms rapidly increases up to a saturation
value, and the decay of the MOT (blue), when the 2D MOT is abruptly turned off and the
population in the 3D MOT decreases because of collision with the background gas.

2.3 Optimization of the 3D MOT loading efficiency

In this section we study the loading efficiency of the 3D MOT. We say that a MOT is
efficient if it is capable to load a large number of atoms in a short time. In general, the
time evolution of the atomic population inside a MOT is characterized by a trend as in
Fig. 2.8, where the time dependence of the number of atoms in the trap is illustrated.
We note two different regions: the loading, where the number of atoms rapidly increase
up to a saturation value, and the decay of the MOT, when the 2D MOT is abruptly
turned off and the population in the 3D MOT decreases because of collisions with the
background gas. We can describe both evolutions with the same differential equation.
In particular, the time-evolution of the atomic population N con be represented by the
equation:

dN

dt
= R(t)− N

τ
, (2.11)

where R(t) is the loading rate of the MOT, that vanishes when the 2D MOT is turned
off, and τ is its decay constant. During the loading we can assume that the loading
rate is constant, so the solution of the previous equation is:

N(t) = Rτ
(

1− e−
t
τ

)
. (2.12)

In the decay regime the loading rate is null, so the population exhibit an exponential
decay:

N(t) = N0e
− t
τ , (2.13)

where N0 is the number of atoms in the MOT when the 2D MOT is turned off.
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The experimental data in Fig. 2.8 are fitted with Eq. (2.12) and Eq. (2.13) for the
loading and decay part respectively. From the fit we obtain the following parameter:

R = (1.278± 0.001)× 108 atoms/s

τl = (10.31± 0.02) s
(2.14)

for the loading, and:

N0 = (1.7± 0.1)× 109 atoms

τd = (20.23± 0.01) s
(2.15)

for the decay. We note that the decay time τd is double than the one for the MOT
loading τl: during the loading, the collisions with the atomic beam delivered by the 2D
MOT increase the decay rate. Anyway, the lifetime of the MOT is long, thanks to the
ultra-high vacuum in the 3D MOT chamber.

As already mentioned, in this section we present the 3D MOT loading efficiency
optimization, so we focused our attention rather to the loading time-evolution than
to the lifetime of the MOT. The aim of the optimization is to obtain the maximum
rate R permitted. To do that, we have to consider both the efficiency of the 2D MOT
in creating an atomic flux suitable for the capture in the 3D MOT and the efficiency
of the 3D MOT itself in creating a trap for atoms. In particular, the optimization of
the 2D MOT is presented in Sec.2.3.2, while that of the 3D MOT is illustrated in Sec.
2.3.3. Before that, in Sec. 2.3.1 we present the two measuring techniques used during
the optimization: the fluorescence and absorption imaging.

2.3.1 Measuring techniques

To probe the atomic population, we used two different optical techniques: fluorescence
and absorption imaging. In the first one, the light emitted by the atoms is collected by
a photodiode, that measures its intensity. This method is particularly useful to measure
the number of atoms in a MOT, where they continuously absorb and re-emit photons,
and provides a non-destructive probe. Absorption imaging is a superior method that
provides more information about the atoms, but it is a destructive measurement. Here,
the atomic cloud is illuminated by a resonant probe light and then the transmitted light
is observed with a CCD. Atoms absorb the resonant light, so that their shadow is cast
on the CCD. The image of such shadow provides information about the size and the
optical density of the atomic cloud, from which we can extract the number of atoms
and the temperature.

Fluorescence

We used fluorescence measurements for the first part of the 3D MOT loading opti-
mization. This method is particularly suitable for the optimization because it provides
a measurement of the number of atoms in the MOT without destroying it, so that a
quick optimization can be performed. Moreover, it is particularly easy to set up: in
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Figure 2.9: Calibration of the photodiode used for fluorescence imaging measurement.

our case a photodiode is placed in front of one of the 3D vacuum chamber windows
to measure the emitted intensity. To characterize the response of the photodiode, it
was previously calibrated by illuminating it with a laser light with well-known and
variable power. The photodiode is used with a loading resistance of 500 kΩ and the
potential difference over the resistance is measured. The results of the calibration
are reported in Fig. 2.9. From the linear fit we get the power to voltage conversion:
(0.503± 0.04) V/µW.

As already mentioned, from a measure of the emitted power it is possible to extract
the number of atoms in the MOT. Indeed, the emitted power Pem depends on the
number of emitting atoms Na, according to:

Pem = h̄ωNaR, (2.16)

where ω is the frequency of the emitted light and R the rate of emission processes, that
can be written as:

R =
I

Isat

γ

2

1

1 + I
Isat

+ 4
(
δ
γ

)2 , (2.17)

where I is the intensity of the laser that illuminates the atomic population, Isat =
2π2h̄γc

3λ3
is the saturation intensity, γ is the natural linewidth of the transition and δ

the detuning. Pem correspond to the whole emitted power, but we can collect only a
fraction of it with the photodiode. In particular, the measured power depends on the
solid angle Ωs covered by the photodiode area:

Pmeas = ΩsPem, (2.18)

and the solid angle can be written as:

Ωs =
APD
4πD2

, (2.19)

where APD is the photodiode area and D its distance from the atomic cloud. Therefore,
the number of atoms can be calculated as:

Na =
Pmeas
h̄ωRΩs

. (2.20)
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In our case, we use a photodiode with square a area of 1 cm2 placed at a distance of
about 15 cm from the centre of the 3D MOT vacuum chamber. The laser light that
illuminates the atomic population is one of the 3D MOT beam, with a detuning of
15 MHz from the resonance. Taking into account the photodiode calibration too, we
obtain a volt to number of atoms conversion of 8.5× 108 atoms/V.

The accuracy in the measurement of the atom number is limited mainly by the
uncertainty in the solid angle: the distance between the photodiode and the atomic
cloud is an estimate based on the geometry of the vacuum cell, that introduces an
error of around 10% in the evaluation of the number of atom. However, the calculated
conversion yields the correct order of magnitude of the atom number in the cloud,
and for the optimization measurement performed the relative value of it between two
distinct measurements is sufficient. The volt to number of atoms conversion depends
on the detuning between the 3D MOT light and the atomic resonance. Therefore, we
cannot use the fluorescence technique to optimize the frequency of such light for the
MOT loading, because the conversion would change in each measurement. For this
reason and to have an independent measurement of the atom number we implemented
the absorption imaging method too.

Absorption Imaging

For the absorption imaging measurements, a probe beam with waist of about 5 mm
is focused to the atomic cloud. The transmitted probe light from the atomic cloud is
observed with an Andor Camera iKon M-934. In particular, for each measurement three
different images are acquired: the profile of the probe beam absorbed by the atoms,
the probe profile without the MOT and an image of the background. Combining these
images, a measurement of the optical density of the cloud is obtained. Indeed, the
absorbed intensity follows the Beer law:

It = I0 exp−OD, (2.21)

where It is the transmitted intensity, I0 is the incident intensity and OD is the optical
density of the medium. Therefore, the spatial profile of the optical density of the atomic
cloud can be obtained from the following combination of the three acquired images:

OD(x, y) = − log

(
I1(x, y)− I3(x, y)

I2(x, y)− I3(x, y)

)
, (2.22)

where Ii(x, y) with i = 1, 2, 3 is the spatial intensity profile of the i-th acquired image.
Fig. 2.10 shows an example of the optical density of the cloud. From such measurement
we get several quantities of the atomic cloud. The optical density is indeed defined as:

OD(x, y) = σ

∫
n(x, y, z)dz, (2.23)

where n(x, y, z) is the density of atoms and σ is the absorption cross section, that,
when the illumination intensity is well below saturation, can be written as:

σ =
3

2

λ2

π

1

1 + 4
(
δ
γ

)2 . (2.24)
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Figure 2.10: Screenshot of the acquisition program for the absorption imaging measure-
ment. The atomic cloud is imaged after 3 s of TOF. The optical density is calculated by the
combination of three acquired images, as in Eq. (2.22). The horizontal and vertical profile of
such image are obtained by integration on the y and x variable respectively. Then a Gaussian
fit of these profile is performed to obtain the value of the centre of the Gaussian, its width
and the maximum value of the optical density.

If we consider a Gaussian density profile in each direction, namely:

n(x, y, z) =
Na

(2π)3/2σxσyσz
exp

− x2

2σ2x
− y2

2σ2y
− z2

2σ2z , (2.25)

where Na is the number of atoms in the cloud, the optical density integral can be
calculated to get:

OD(x, y) =
σNa

2πσxσy
exp

− x2

2σ2x
− y2

2σ2y . (2.26)

Therefore, the optical density has a two-dimensional Gaussian profile, as can be seen
from Fig. 2.10. From a two-dimensional Gaussian fit of the measured OD(x, y) we can
extract the centre for the cloud and its widths, and in addition the number of atoms
Na can be calculated from the value of the optical density at the centre of the cloud
ODmax:

Na =
2πσxσy
σ

ODmax. (2.27)

Before using the absorption imaging technique to optimize the efficiency of the MOT
loading, two different calibrations have to be done. First, the probe beam frequency
has to be optimized to maximize the signal we get from the imaging. The probe
calibration is performed as follows: we load the 3D MOT for 5 seconds, then we turn
off the trap and perform a 6 ms time of flight (TOF) of the cloud. After the TOF, an
image of the cloud is acquired with the described method. Such procedure is repeated
for several frequencies of the probe light, tuned with an AOM. In this way, we obtain
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Figure 2.11: Probe frequency calibration. Varying the probe frequency with an AOM we
obtain the absorption profile of the atoms, then a Lorentzian fit is preformed. We get that
the width of the absorption line is (8.1± 0.4) MHz.

the absorption profile in Fig. 2.11, where the measured number of atoms is plotted
in dependence on the probe detuning from the resonance. We perform a Lorentzian
fit of the experimental data and get that the width of the line is (8.1 ± 0.4) MHz.
This is larger than the natural linewidth of 6 MHz, indicating the presence of a power
broadening of the line. As expected, we see that the absorption imaging signal is
maximum when the probe light is resonant with the atomic transition, so we take this
value of detuning as a working point.

Secondly, we perform a calibration of the Andor Camera, to get the pixel to µm
conversion. Indeed, after the 3D MOT chamber, the probe light passes through a
telescope with lenses of nominal focal lengths f1 = 300 mm and f2 = 25 mm, so
that the expected magnification of the atom cloud is 25/300 = 1/12. To get the real
dimension of the cloud it is necessary to calibrate the exact magnification of the atom
cloud image. To do that, we image the atom cloud loaded for 5 seconds after several
duration of TOF. The cloud fall down because of gravity, following the equation:

y =
1

2
gt2 + v0t+ x0, (2.28)

where y is the vertical position of the atomic cloud obtained from the two-dimensional
fit of the OD spatial profile, g is the gravitational acceleration and the time t correspond
to the set time of flight for the cloud. Fig. 2.12 shows the vertical position of the centre
of the cloud after several TOF. We can see that the trajectory is a parabola as expected,
and from the fit we get the desired pixel to µm conversion of 1 px = (92±3) µm. Such
conversion will be used in the following to rescale the measured size of the cloud in real
units.

From the time of flight measurement another important information about the cloud
can be obtained: the temperature. In particular, we can define the temperature of the
atomic cloud from the energy equipartition theorem:

1

2
m 〈v〉2 =

1

2
kBT, (2.29)
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Figure 2.12: Andor Camera calibration. The vertical position of the atomic cloud centre
is plotted in dependence of the time of flight performed. The trajectory of the cloud is a
parabola because of the effect of gravity. The fit is performed with a parabolic function
y = 1

2gt
2 + v0t + x0. We can get the pixel to µm conversion by comparing the obtained fit

parameter 1
2g = (0.053 ± 0.002) pixel/ms2 with the well known value of the gravitational

acceleration g = 9.81 m/s2. The obtained conversion is thus 1 px = (92± 3) µm.

where m is the mass of the atoms, 〈v〉 their mean velocity, kB the Boltzmann constant
and T the temperature of the sample. If TOF is large enough that the size of the atomic
cloud is completely dominated by the expansion, namely σ(TOF ) � σ(0) where σ(t)

is the size of the cloud after an expansion time t, then the mean velocity in the x
direction is 〈v〉 = σx/TOF and the same for the y direction. Indeed, particles velocities
are transformed in distance from the cloud center during the expansion. Therefore, the
temperature of the cloud in the x direction can be calculated from the size of the cloud
in such direction, according to the relation:

σx =

√
TOF 2kBTx

m
, (2.30)

and similarly for the temperature in the y direction. Fig. 2.13 shows the plot of the
measured size of the cloud in the horizontal (a) and vertical (b) direction in dependence
on the TOF performed. Data are fitted with the function:

y =
√
σ2

0 + A(TOF − t0)2 (2.31)

to extract the temperature of the cloud in the two directions. In particular, we obtain
Tx = (181 ± 8) µK and Ty = (225 ± 8) µK. These value are of the same order of the
Doppler limit temperature of 150µK.

2.3.2 2D MOT optimization

To have an efficient 3D MOT loading process, we first optimize the atom flux from the
2D MOT. Indeed, an atom can be trapped in the 3D MOT only if its velocity is below
a critical capturing velocity vmax ∼ Γλ/2π, that is the velocity for which the Doppler
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(a) Horizontal direction (b) Vertical direction

Figure 2.13: Plot of the cloud sizes in horizontal (a) and vertical (b) direction. To get the
temperature of the cloud a fit is performed with the function: y =

√
σ2

0 +A(TOF − t0)2.
Comparing the used fit function to Eq. (2.30), we can extract the temperature of the cloud
from the fit parameter A. In particular, we obtain: Tx = (181± 8) µK, Ty = (225± 8) µK.

shift equals the natural linewidth of the transition. Therefore, we need to optimize
the parameters of the 2D MOT to obtain an atomic flux of a large number of atoms,
but with a quite low mean velocity, as in our case Γλ/2π ∼ 5 m/s. In particular,
we explore the dependency of the number of atoms loaded in the 3D MOT, after a
5 seconds loading time, on the following parameters: the electric current on the Ioffe
coils, the frequency of the 2D MOT cooler and repumper lasers and the frequency and
the power of the push beam. All the measurement for the optimization of the 2D
MOT parameter were done with the fluorescence imaging technique, presented in the
previous section.

We first report the optimization of the magnetic field produced by the 2D MOT
coils. We use the following nomenclature for the four coils: A and C coils are positioned
in the vertical direction, while B and D coils in the horizontal direction, perpendicular
to the atomic flux. We start from a current of 4 A for A and B coils, and vary
the current in C and D to maximize the number of atoms in the 3D MOT after the
loading process. Fig. 2.14 (a) shows the result of such optimization: we find that the
best configuration is reached when in the horizontal coils couple B-D flows the same
powering current, while the vertical coils couple A-C needs to be unbalanced with a
ratio in the powering current of IC/IA = 1.075. Then, we vary the currents in all the
coils keeping the ratio IC/IA constant and setting the same current in the B-D couple.
The results of this second step of coils optimization are illustrated in Fig. 2.14 (b).
We found the best configuration of the coils current to be: IA = 5.5 A, IB = ID = 5

A, IC = 5.9 A. The gradient produced by the coils in this configuration is about 19

G/cm.
Subsequently, we optimize the frequencies of the 2D MOT cooler and repumper

beams, tuned by changing the corresponding AOM driving frequency. Fig. 2.15 shows
the results of such optimization: the measured number of atoms in the 3D MOT after
a loading time of 5 seconds is plotted in dependence on the 2D MOT cooling beam
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(a) Optimization of C and D coils (b) Optimization of A and B coils

Figure 2.14: Optimization of the electric current in the 2D MOT coils measuring the number
of atoms in the 3D MOT after a loading time of 5 seconds. In (a) the current in C and D
coils is varied, while in A and B coils the current is set to be 4 A. The results shows that
the best point is when in the couple B-D flows the same current, while the couple A-C is
unbalanced. In (b) the measured number of atoms in function of the current in A and B
coils is reported. The dark blue point correspond to value of current not explored during the
optimization. In this case, the current in C and D coils is set to follow the relations: IB = ID,
IC/IA = 1.075, as suggested by the results in (a). The best configuration is found to be:
IA = 5.5 A, IB = ID = 5 A, IC = 5.9 A.

detuning δc for several value of the detuning of the repumper beam from the cooler δr.
The best point is found to be: δc = −16.8 MHz, δr = 6785.9 MHz.

Finally, we vary the frequency and the power of the push beam to optimize the 3D
MOT loading efficiency. The push frequency is controlled with a dedicated AOM, so
that it can be modified by varying the driving frequency of the AOM. Fig. 2.16 (a)
shows the measured number of atoms in dependence on the push detuning from the
resonance δp, and the relative fit with a Gaussian function. Although the measured
data are pretty scattered, it is possible to individuate a peak in the number of atoms
in the MOT. In particular, the fit individuates the centre of the Gaussian function in
correspondence of a detuning δp0 = (−5.7 ± 0.9) MHz. Therefore, the optimal push
frequency is red-detuned from the resonance by approximately one linewidth: in this
way the push light interact more with atoms propagating in the direction opposite to
the 3D MOT chamber, it slows them down and eventually changes the direction of
their velocity. Fig. 2.16 (b) shows the value of the measured number of atoms after
the 5 seconds loading time in dependence on the push power. We tune the power of
the push beam with an half-wave plate in front of a PBS in the push path toward the
2D MOT chamber. We can see that the higher the power of the push is the higher is
the loading efficiency of the MOT. We chose as working point the power of 1.5 mW.

2.3.3 3D MOT optimization

As already mentioned, also two parameters of the 3D MOT itself have to be considered
to maximize its loading efficiency: the powering current of the anti-Helmholtz coils and
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Figure 2.15: Optimization of the frequencies of the 2D MOT cooler and repumper light:
the plot shows the number of atoms in the 3D MOT after a loading time of 5 seconds in
dependence on the 2D MOT cooling beam detuning δc for several value of the detuning of the
repumper from the cooler δr.

the frequency of the cooler light of the 3D MOT. Indeed, on such parameter depends
the capability of the 3D MOT to trap atoms.

First, we report the magnetic field optimization. In this case, we measure the
number of atoms in the MOT when it is saturated with the fluorescence imaging
technique. We proceed as follows: we change the current of the coils and measure
the saturation number of atoms in the trap, once it has stabilized to the new value.
Fig. 2.17 shows the results of such optimization: we can see that the loading efficiency
of the MOT grows with the current in the first part of the curve. Than it forms a
plateau where the saturation number of atoms is more or less constant for current
values between 13 and 22 A. Therefore, we choose the current value of 13 A to be our

(a) Optimization of the push frequency (b) Optimization of the push power

Figure 2.16: Optimization of the push beam. In (a) the measured number of atoms in
dependence on the push detuning from the resonance δp is plotted. We see that the optimal
point is reached for a slightly red-detuned light. Plot (b) represent the measured number of
atoms in dependence on the power if the push beam.
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Figure 2.17: Optimization of the magnetic field of the anti-Helmholtz coils. The plot shows
the number of atoms at the MOT saturation in dependence on the powering current of the
two coils. We choose 13 A to be our working point. This measurement has been performed
with the fluorescence imaging technique.

working point, because it is the smaller value with higher number of atoms. A lower
electrical current is useful to avoid an excessive heating of the coils.

Then we vary the frequency of the cooler beam of the 3D MOT. As already men-
tioned, in this case the fluorescence imaging technique cannot be used because the volts
to number of atoms conversion depends of the detuning of the 3D MOT light from the
atomic resonance. Therefore, we use the absorption imaging technique and proceed as
follows: we change the 3D MOT cooler frequency modifying the driving frequency of
the dedicated AOM and the measure the number of atoms in the MOT after a loading
time of 5 seconds and a time of flight of 8 ms. In Fig. 2.18 the measured number of
atoms in dependence on the detuning of the 3D MOT light from the resonance δ3D is

Figure 2.18: Optimization of the frequency of the 3D MOT cooler beam. The plot shows
the number of atoms in dependence on the detuning of the 3D MOT cooler light from the
resonance δ3D. The maximum efficiency is obtained for a detuning of about −20 MHz. This
measurement has been performed with the absorption imaging technique.
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illustrated. We see that the maximun efficiency is obtained for a detuning of about
−20 MHz.

In conclusion, the performed optimization yields to a MOT of about 109 atoms
at saturation with a temperature of about 200 µK and a loading efficiency of ∼ 108

atoms/s. We note that the temperature of atoms in the MOT is far from the critical
temperature of condensation. To obtain an atomic superfluid another cooling technique
has to be implemented: the evaporative cooling permits to reach the Bose-Einstein
condensation.
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Chapter 3

Tailored Optical Potentials with a
DMD

The second part of my master thesis was dedicated to the realization and characteri-
zation of arbitrary optical potentials with a Digital Micromirror Device (DMD). Such
device is a reflective spatial light modulator (SLM) that can be used to manipulate
the spatial intensity profile of a laser beam. The working principle of the DMD is
illustrated in Sec. 3.1 and in Sec. 3.2 its optical properties are described. Then, in
Sec. 3.3 the optical setup I designed and aligned for the characterization of the DMD-
made light patterns is presented. The DMD offers the possibility to create both static
and time-dependent potentials. In Sec. 3.4 I investigate two main properties of static
patterns: the smoothness of the image edges and the homogeneity of the image bulk.
In particular, I present the capability to have smooth potentials by cutting the high
frequency component of an image with an iris, and the feedback program that I wrote
to obtain homogeneous potentials. Finally, in Sec. 3.5 I illustrate the main proper-
ties of a time-dependent potential created with the DMD, showing that the timing
characteristic of the device are well suited for applications to atomic superfluids.

3.1 The Digital Micromirror Device

The Digital Micromirror Device (DMD) is a reflecting Spatial Light Modulator (SLM),
a device that gives control over the amplitude and the phase of an incoming laser beam.
For the atomic physics applications this device is preferable to other kind of SLMs, like
Liquid Crystal Displays (LCDs), because it provides both truly static highly defined
images and a fast switching rate, in case of a time-dependent potential is required.

The DMD used in this master thesis work is a DLP70000 Discovery TM 4100 0.7"
XGA 2xLVDS, produced by Vialux, with a V-7000 board. This device is composed by
an 1024 × 768 array of square mirrors. Each mirror has dimension of 13.68 µm and
can be tilted over its diagonal axis by an angle of ±12°. The state of a single mirror is
thus binary and can be accessed using a computer through the board. Mirrors can be
arranged in any kind of binary pattern to reproduce a black and white image.
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Figure 3.1: Picture of the DMD mounted in its support with a smiling image loaded on
board.

A picture of the DMD mounted in its support is reported in Fig. 3.1. Here, a
black and white smile is loaded in the DMD board and displayed on its screen: mirrors
assume the tilt position fixed by the loaded image and make its visible on the DMD
screen thanks to their different reflecting properties in the two states. The mounting
support is tilted by a 45° angle, in such a way that the tilting axis of the mirrors is
vertical. This is useful to obtain a mainly horizontal diffraction pattern, as it will be
illustrated in Sec. 3.2, which is easier and safer to handle with an optical system.

3.1.1 Controlling the DMD

Vialux provides a default controlling program to communicate with the DMD: the
ALP basic GUI. This program controls the DMD via an USB2.0 connection: a binary
image can be sent to the device and a sequence of at most five alternating images
can be created. The operation doable with this program are yet limited, so that it is
not suitable for atomic physics applications of the DMD. A much deep control over
the characteristic of the image and the timing properties of the sequence is indeed
requested. For these reasons in this master thesis work I used the open source Python
module by Sebastien Popoff ALP4lib to control the DMD [53].

ALP4lib is a Python module to control Vialux DMDs based on ALP4.X API, that
uses the Dynamic-Link Library (DLL) files provided by Vialux. The ALP4lib library
gives a number of function to interface with the device. For example one can allocate
the memory for a sequence of images and send the sequence to the DMD using the
functions SeqAlloc and SeqPut respectively, or set the timing properties of the
sequence to display using the SetTiming function. In this way the only limitation in
the operations that can be done are given by the intrinsic characteristic of the device.

The Discovery 4100 DMD used in this master thesis work has a RAM capacity on
board of 32 Gbit, so it can store at most 43690 binary pattern. That gives the limit of
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Figure 3.2: Illustration of the adopted angles convention: θ angles are taken from the DMD
surface normal n̂s, while φ angles are taken from the mirrors normal n̂m.

the dimension of the sequence that can be send to DMD, assuming that the transfer
process can be supported by the computer that controls the device. The limit on the
timing properties is instead given by the higher array switching rate of the device, that
for the DMD used in this work is 22727 Hz.

3.2 Optical Properties

The DMD is a reflecting device so it is important to determine its behaviour when it
is illuminated with a laser beam. In this thesis work I used a 532 nm laser beam to
illuminate the DMD and to realize a repulsive optical potential for alkali atoms.

As already mentioned, each mirror of the DMD can be set in one of two different
states, tilted by an angle of ±12° from the DMD surface plane. The light impinging
on a mirror is thus reflected in two different directions, depending on the tilt state of
the mirror. But to understand the whole optical behaviour of the device, it has to be
noticed that the DMD is composed by an array of micrometer-sized mirrors. Thus, it
acts like a 2D diffraction gratings for the incoming light because the mirrors dimension
is comparable to the wavelength of the laser beam. Therefore, the laser light impinging
on the DMD surface is not just reflected into one of the two directions fixed by the tilt
state of mirrors, but rather into a number of different diffraction orders.

In general, the distribution of the laser power over many diffraction orders is incon-
venient, because only one of these direction is used. The power of the reflected light
in a particular direction can be maximized, finding the blazing condition of the device,
which is discussed in the next section.

3.2.1 Blazing condition

In a diffraction grating the laser light reflected from a single element of the grating
interfere with light reflected from the surrounding elements. In some direction the
interference is constructive and destructive in the others, so that light is overall reflected
only in particular directions called diffraction orders. Analyzing the diffraction grating
problem more formally, one can find the grating equation [54]:

mλ = d(sin θi + sin θm), (3.1)
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Figure 3.3: Trend of the corrected blazing condition of equation (3.3) in dependence of the
angle of incidence θi for several order of diffraction m, printed beside the corresponding line.
The blazing condition is realized when the curve for fixed m cross the zero value. The plot is
obtained for λ = 532 nm and d = 13.68

√
2 µm.

where m is the diffraction order, λ is the wavelength of the impinging light, d is the
spacing of the grating, θi is the incident angle and θm the reflation angle, respect to
the DMD surface’s normal n̂s, as depicted in Fig. 3.2.

But in a DMD mirrors are tilted from the device’s surface plane, and this angle
has to be taken into account to find the blazing condition. Let indicate the angles
measured respect to the normal of the mirror plane n̂m with the Greek letter φ, as in
Fig. 3.2, just to distinguish them from the θ angles taken respect to the DMD surface’s
normal. The two class of angles can be connected by the relation: θ = φ−12°, because
of the mirror’s tilt angle.

Fixed the incident angle of the laser beam, the blazing condition for the device is
achieved when each mirror reflects the light in a single diffraction order m of the whole
diffraction grating. Formally that means that the angles must satisfy this condition:

θm = θr, where θr = φr − 12°. (3.2)

Combining this request with the grating equation, one finds that the blazing condition
is achieved when the following relation is satisfied:

arcsin

(
mλ

d
− sin θi

)
+ θi + 24.° = 0. (3.3)

The first member of the equation can be seen as a function of θi and studied for several
m, looking for a zero.

The blazing condition for our case has been explored, studying the function of θi on
the left side of equation (3.3) for several diffraction orders. The result are shown in Fig.
3.3, where the function of θi is plotted for many values of the diffraction order m for
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Figure 3.4: Picture of the several diffraction orders reflected from the DMDM when it is
illuminated with a 532 nm laser beam. Note that the DMD acts like a two-dimensional
diffraction gratings creating diffraction orders not in only one direction. Furthermore, the
picture shows the achievement of the blazing condition: the central order is much more
illuminated than the surrounding others.

Diffraction Order Power Efficiency
0 61.5%
1 5.2%
2 2.1%
3 1.8%

Table 3.1: Power efficiency of different diffraction order.

λ = 532 nm and d = 13.68
√

2 µm, because the DMD mirrors are tilted respect to their
diagonal. The graph shows that there are at least 6 diffraction orders (from m = −2

to m = −7) that satisfy the blazing condition. Among all these possible solution, the
best one is the one that admit the lowest value for reflection angle θr = −θi − 24. A
lower θr means indeed that the plane where the DMD surface lies is almost orthogonal
to the propagation direction of the reflected light. This characteristic is useful to avoid
aberration and distortion in the image of the DMD made by an imaging setup aligned
in the selected order.

In our case the best configuration is the m = −7 order of diffraction that provides
a reflection angle θr ' 8° with an incident angle θi ' 32°. In practice, this blazing
condition is realized positioning the DMD with almost the correct angle, and then
changing the incident angle until one diffraction order is much more illuminated than
the others. This situation is illustrated in Fig. 3.4: here several diffraction orders are
illuminated but is clear that the central one is brighter than the others. We note that
the diffraction orders are tilted by an angle of 45° from the horizontal because of the
tilt of the DMD support, as illustrated in Fig. 3.1.

To verify the validity of the blazing condition realized, the efficiency of the light
reflected in the different order of diffraction has been measured, obtaining the results
recorded in Tab. 3.1. In this table the value of the diffraction order are taken respect
to the blazed configuration shown in Fig. 3.4: the central spot is indicated as the
0 diffraction order and the others are counted moving on the diagonals. The power
efficiencies are obtained measuring the light power in the different orders far enough
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from the DMD so that the orders are sufficiently separated. Such values are then
compared to the power of the impinging light to estimate the efficiency. In particular,
for the 7th order used we have a power efficiency of 61.5%.

3.3 Optical Setup

The optical setup used to characterize the arbitrary optical potentials created by the
DMD is shown in Fig. 3.5.

Figure 3.5: DMD optical setup

The laser source used is a 532 nm laser diode. The light emerging from the diode is
sent to the DMD setup via an optical fiber, so that the working mode is the Hermite-
Gauss TEM0,0 mode. After the fiber the laser beam is collimated by a collimator
with a waist of about 5 mm, and then sent to the DMD. This device reflects the light
approximately in the orthogonal direction to the DMD plane thanks to the blazing
condition already mentioned. The 7th diffraction order we need is selected by an iris,
in Fig. 3.5 indicated as Iris 1.

The subsequent optical scheme is used to image the DMD plane into the atomic
plane, demagnifying the image created by the DMD so that the size of the optical
potential felt by the atoms is comparable to the dimensions of the atomic cloud. A
first stage of demagnification is realized by a telescope, that decreases the size of the
image of a factor of about 4. The telescope is composed by two lens with focal length
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of f1 = 400 mm and f2 = 100 mm at distance of 50 cm, and is coupled with an iris
placed in the focus of the first lens. The aperture is used as a spatial filter of the image,
as it cuts the high frequency components in the Fourier domain, as it will be discussed
in Sec. 3.4.1.

The DMD image is further demagnified by a Mitutoyo Plan Apo microscope ob-
jective and its tube lens with f3 = 200 mm focal length. The objective is infinity
corrected and provides a demagnification of 20×, with a working distance of 29 mm.
The overall demagnification of the system is thus of about 80×, which means that the
image after the objective is too small to be resolved by an usual CCD camera. The
CCD camera used in this work is a Thorlabs CMOS DCC1645C camera, with pixel
dimension of 5.2 µm. A full-screen image on the DMD with dimension of about 1 cm
is reduced to 125 µm after the objective, so that only about 20 CCD pixels would be
illuminated. That’s why another objective with its tube lens of f4 = 250 mm focal
length is used after the first one. The second objective is a Zeiss LD Achroplan in-
finity corrected objective, with a magnification of 20× and working distance of 10.2

mm. This objective is positioned at a distance of about 4 cm from the previous one.
The image emerging from the objective tube lens is finally observable with the camera,
thanks to the magnification of 20× by the second objective.

In conclusion, the telescope and the first objective image the DMD plane into the
atomic plane, applying a demagnification of 80×, while the second objective image the
atomic plane onto the CCD plane, with a magnification of 20×.

3.4 Static Optical Potentials

With the optical system described in the previous section, static optical potentials
can be realized and characterized. In particular, I focused my attention on two main
properties of a DMD-made light pattern: the smoothness of the image edges and the
homogeneity of the image bulk. On one hand, smooth potentials are useful to trap the
atoms without any abrupt change in their energy. On the other hand, homogeneous
potentials are important if one wants to have the same physical condition in all the
atomic cloud. The scope of this section is to explain how a smooth and an homogeneous
optical potential can be created with a DMD.

As already mentioned, the state of a single mirror of the DMD is binary. That
means that only black and white image can be reproduced by a DMD, no gray-scale
is accessible. To overcome this limit one can use dithering algorithms, like the Floyd-
Steinberg one [55], that create a synthetic gray-scale using only black and white pixels.
Therefore, using dithering algorithms it is possible to create a smooth potential. How-
ever, the aim of this thesis work was not to explore the fascinating field of image
processing, but rather to probe and understand the capability of an optical imaging
system. Therefore, smoothness is achieved in an optical way, using a spatial filter, as
it will be illustrated in 3.4.1.

On the other hand, all the black and white images sent to the DMD are homoge-
neous, but we cannot say the same for the imaged light pattern on the atomic plane.
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(a) Stripe DMD image (b) Flat-top DMD image (c) Torus DMD image

Figure 3.6: DMD image used to characterize static optical potentials.

Indeed, the Gaussian profile of the impinging beam has to be considered: the light pat-
tern emerging from the DMD will keep part of the Gaussian shape of the input beam,
that has to be removed to achieve a really homogeneous potential. For this purpose I
wrote a feedback program for the DMD image, as it will be described in 3.4.2.

Regarding static potentials, I focused my attention in three different geometries: a
barrier, a flat-top and a ring potential. The first one has been used to characterize the
smoothing properties of the spatial filter, that are much more clearly observable with
tiny structures. On the other hand, the large constant black area of the flt-top makes
it particularly useful to study the capability of the setup to reproduce an homogeneous
pattern. Finally, the ring potential has been characterized for its interesting application
in experiments with atomic superfluids, as already discussed in Chapter 1. The DMD
images used to realize such potentials are shown in Fig. 3.6. The barrier DMD image
consists in a stripe of black pixels tilted by an angle of 45°, so that the light stripe
emerging from the DMD is vertical. The width of the stripe is about 70 pixels, that
correspond to 12 µm in the atomic plane. The flat-top pattern is obtained with a square
with side of 400 pixels, that correspond to 68.4 µm on the atomic plane. Finally the
ring image has a radial thickness of 79 pixels, that correspond to 2.3 µm on the atomic
plane. These dimensions have been chosen to be comparable with those requested in
typical atomic superfluids experiments, but can be changed at will.

3.4.1 Spatial Filtering

As already mentioned in Sec 3.3, the first telescope of the optical system is coupled
with an iris used as a spatial filter. In this section I will explain in details the operating
principle of this tool.

The spatial filtering is performed by the iris thanks to the Fourier transforming
properties of lenses. To understand how, let consider the system illustrated in Fig. 3.7.
An input image is placed at distance d in front of a converging lens of focal length f .
The input image is a monochromatic plane wave, with amplitude U0(x, y), where x and
y are coordinates in the normal plane respect to the light propagation direction. In our
case the dependency on x and y of the plane wave electric field is created by the DMD:
U0(x, y) depends on the mirrors tilt position, that is fixed by the matrix sent to the
DMD. Therefore, we can say that U0(x, y) is the amplitude function of the image in
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Figure 3.7: Illustration of the Fourier transforming properties of a lens.

the DMD plane, namely in Fig. 3.7 it has a ring shape. Such a plane wave propagates
towards the lens, that focuses the image at distance f . It can be demonstrated [56]
that the electric field in the lens focus is proportional to the Fourier transform of the
input field:

F [U0] = Fi(fx, fy) =
1√
2π

∫ +∞

−∞

∫ +∞

−∞
U0(x, y) exp−i(fxx+fyy) dxdy. (3.4)

In particular, when the lens is placed at a distance equal to its focal length from the
input image, namely d = f , the electric field in the lens focus is:

Uf (u, v) =
Fi(u, v)

iλf
. (3.5)

Therefore, the electric field in a lens focus is straight proportional to the Fourier
transform of the input electric field. That is, a converging lens perform the two-
dimensional Fourier transform of the electric field in input.

Going back to the DMD setup in Fig. 3.5, the first lens of the telescope is positioned
at a distance f1, equal to its focal length, from the DMD, while the spatial filtering iris
is located in correspondence of the first lens focus. Here the electric field is proportional
to the Fourier transform of the image sent to DMD, so the iris cuts the high frequency
of the DMD image. In this sense the iris works as a spatial filter: it cleans the DMD
image from the high frequency components, smoothing its intensity profile.

To verify this behaviour, an image with well-known frequency has been created.
Such image, depicted in Fig. 3.8 (a), is composed by a sum of 1000 sinusoidal functions
in the horizontal direction with fixed frequency, rounded to obtain a black and white
image. This pattern is sent to DMD, and the image created after the telescope is
observed with the CCD Camera for several iris diameter. The light pattern is observed
before the two objective to see more clearly the effect of the spatial filter. The first
objectives introduces indeed another frequency cut because of its small aperture of 5.6

mm, while all the previous optics have a diameter of 2′′. The results are shown in Fig.
3.8: we can see that decreasing the diameter of the aperture only the lower frequency
remain.
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(a) DMD image (b) Iris wide open

(c) Iris diameter of 4 mm (d) Iris diameter of 2 mm

Figure 3.8: Effect of the spatial filter for several iris diameter.

The spatial filter has been then tested with the barrier image of Fig. 3.6 (a). In
this case the high frequency cut results in a smoothing of the light pattern, as reported
in Fig. 3.9. Here, the horizontal profile of the light pattern is plotted for the two
extreme iris diameter, namely the iris wide open and with a diameter of 1 mm. These
horizontal profiles are obtained integrating the image acquired with the CCD camera
over 40 rows in the central part of the barrier.

In conclusion, the spatial filter is a very useful optical tool to realize smooth poten-
tials on the atom cloud, starting from a black and white image on the DMD.

3.4.2 Feedback Program

The necessity to write a feedback program for the DMD image starts from the fact that
the light profile on the atomic plane would never be the same as in the DMD image.
This is mainly due to two reasons: the not-uniform intensity profile of the input beam
and the presence of defects on the imaging system.

As already mentioned, the Gaussian profile of the incoming beam affects the image
created by the DMD. This is because the DMD acts like a light mask: where the
mirrors are ON it reflects the light without changing its intensity profile. Therefore, if
a flat-top image is sent to the DMD, the light emerging from the device will keep the
Gaussian profile of the reflected portion of the incoming beam. On the other hand,
defects on the optical imaging system can create imperfections in the image on the
atomic plane, like dark region in the light pattern created by flecks of dust.
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Figure 3.9: Horizontal profile of an optical barrier with and without the spatial filter. The
profile is obtained integrating the image acquired with the CCD over 40 rows. A section of
the CCD image analyzed is reported in the lateral box, for the two considered iris diameter.

The feedback program that I wrote corrects these two issues, realizing on the atomic
plane a light pattern that is closer to the desired one. The feedback program operates
like a PI controller: the image created by the optical system on the CCD is acquired and
compared to the target image of the light pattern we want to reproduce. The pixel-by-
pixel error matrix, i.e. the difference between the two, is calculated and then summed
to the previous DMD image, weighted by a proportional and an integral coefficient.
This new image is sent to the DMD and the process is iterated as long as the difference
between the acquired and the target images is not sufficiently low.

In order to compare the acquired and the target image, a transformation has to
be done to the first one. The image on the CCD plane is indeed tilted by an angle
of 45° because of the DMD support tilt, and smaller than the target image because of
the demagnification of the optical system. Therefore, before the feedback process it is
necessary to calibrate the DMD on the CCD. This process is described in details in
the next section.

Calibration of the CCD image

The calibration of the DMD in the CCD image is achieved through an affine transfor-
mation of the image acquired. Affine transformations are functions between matrices
that preserve point, strait lines and planes, so that parallel lines remain parallel af-
ter the transformation. In our calibration case the wanted transformation involves a
rotation and a scaling, both operations within the class of affine transformations.

In particular, the calibration program operates as illustrated in Fig. 3.10: an image
with three point of 20 pixel diameter is sent to DMD (a) and acquired with the CCD
camera (b). The coordinates of the three point in such CCD image is revealed by
a two-dimensional Gaussian fit. Then, the affine transformation matrix is defined
by the getAffineTransform function of the Open-CV Python module, using the
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(a) Calibration image sent
to DMD

(b) Acquired image before the cali-
bration

(c) Acquire image after the
calibration

Figure 3.10: Illustration of the calibration process: in (a) the DMD image used for the
calibration is reported, (b) shows the image of (a) as acquired by the CCD, in (c) the affine
transformation of (b) is reported. We note that (a) and (c) images show a limited area of the
DMD screen,the same square of 400 pixels side that is used in Chapter 4

coordinates of the points in the CCD image and their well-known position in the input
image on the DMD. This matrix can be then applied to the acquired image using the
Open-CV warpAffine function. The resulting matrix can be set to have the same
dimensions of the DMD image, namely a 768× 1024 array, so that it can be compared
to the image sent to DMD, as requested in the feedback program. We note that (a)
and (c) images show a limited area of the DMD screen, the same square of 400 pixels
side that is used in Chapter 4. The calibration procedure in the two cases is the same,
just the used DMD screen area is different: for the feedback program we use all the
1024× 768 array of pixels, whereas a reduced area is considered in Chapter 4.

Feedback process

Once obtained the affine transformation matrix from the calibration process, it is used
in the feedback program. The feedback program is mainly composed by an iteration,
where the error between the target image and the acquired one is estimated, and the
input image on the DMD is modified to reduce such error. To do that, the program
applies the pixel-by-pixel error matrix to the DMD image. The error matrix En for the
n-th iteration is simply obtained by the difference between the target and the acquired
image, once transformed by the affine transformation matrix A:

En = T − A× CCDn, (3.6)

where T and CCDn are the matrix corresponding to the target image and to the image
acquired in the n-th iteration respectively.

Two kinds of correction can now be used, as in a PI controller: a proportional and
an integral one. The proportional correction acts simply adding to the previous DMD
image the error matrix En weighted by the a coefficient kP . On the other hand, the
integral correction is set to keep memory of the past corrections: it adds the sum of
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(a) Flat-top profile without the feed-
back program

(b) Flat-top profile with the feedback
program

(c) Horizontal profile with and with-
out the feedback program

(d) RMS error with and without the
spatial filter

Figure 3.11: Effects of the Feedback program on the flat-top profile.

all the error matrix already evaluated to the DMD image, weighted by a coefficient ki.
Finally, another kind of correction can be introduced to the feedback program. This
is a fast correction that add to the DMD image the error matrix raised to the 3rd
power and weighted by a coefficient kp3. Such fast correction has never been used in
this work, but can be useful when the program is requested to correct the image in
only few iterations. Therefore, the new DMD image evaluated in the n-th iteration,
DMDn+1, is obtained as:

DMDn+1 = DMDn + kpEn + ki

n∑
m=0

Em + kp3(En)3, (3.7)

The DMDn+1 image is sent to the DMD and the procedure is repeated in the
consecutive iteration. Furthermore, in each iteration the RMS error is evaluated:

RMS = 100

√√√√∑
(i,j)

(
CCD[i, j]− T [i, j]

T [i, j]

)2
1

RC
, (3.8)

where R = 768 is the number of rows in the DMD matrix and C = 1024 the number
of columns. The sum over the two matrices elements is restricted to the region where
the target image is non zero, otherwise the error is saturated by the background noise
and the effect of the feedback program on it cannot be seen.

As a first step, the feedback parameter kp and ki has been optimize to achieve the
lower RMS error in the minimum number of iteration, using the flat-top profile as
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(a) Torus profile without the feedback
program

(b) Torus profile with the feedback pro-
gram

(c) Horizontal profile with and with-
out the feedback program

(d) RMS error with and without the
spatial filter

Figure 3.12: Effects of the Feedback program on the toroidal profile.

the target image. Then, the feedback program has been tested with the ring profile
too. The results are shown in Fig. 3.11 and 3.12. The (a) and (b) images show the
light profile in the CCD plane without feedback and after 20 steps of feedback process
respectively. We can see that the light profile in (b) is much more homogeneous than
the one in (a) for both geometries. In particular, the feedback program is capable to
correct bot the Gaussian profile of the impinging beam and the imperfections in the
light profile due to defects in the optical setup. In Fig. 3.11 and 3.12 (c) is then plotted
the horizontal profile integrated over 40 rows of the two images to see more clearly the
feedback effect. We see that for the corrected image the intensity is reduced, but
almost constant. To achieve an homogeneous profile indeed not all the DMD mirrors
in the light part of the image are ON: the feedback program modulates the density
of ON mirrors to achieve the corrected image. Finally, in Fig. 3.11 and 3.12 (c) the
trend of the RMS error over several iteration is reported. Here, two lines are plotted,
corresponding to a feedback process done with and without the spatial filter illustrated
in 3.4.1. We see that the spatial filter reduce the RMS error, because without the
high frequency components the corrected image is smoother, and so more similar to
the target one. Furthermore, we note that the number of iterations required to achieve
the stable state for the corrected image is quite the same for both case: less than 5
iterations are required to achieve an RMS error around 5%. In particular, for the flat-
top pattern the minimum RMS is achieved in the 11th step with the value of 5.90%

without the feedback and in the 7th step with the value of 3.52% with the spatial filter.
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Figure 3.13: Comparison between the horizontal profile of the ring potential, integrated
over 40 rows, at the end of the feedback process with and without the smoothing action of
the spatial filter. The spatial filter extremely reduce the intensity fluctuations in the light
pattern.

For the ring patter these value are instead 5.72% in the 8th step and 4.50% in the 9th
step respectively.

Fig. 3.13 shows a comparison between the horizontal profile of the ring potential,
integrated over 40 rows, at the end of the feedback process with and without the
smoothing action of the spatial filter. We can see that with the spatial filter, the
fluctuations in intensity are extremely reduced. In particular, only residual fluctuations
of 1.4% over a length scale of about 5 µm remain in the image after the feedback process
with the spatial filter. Such length scale is bigger than the healing length of an atomic
superluid, that for rubidium is about 200 nm, so that for what concerns the atomic
motion, the optical potential created by such light profile is seen as homogeneous.

In conclusion, with the feedback program I developed in this thesis work it is possible
to create arbitrary light pattern that differ from the target image only few percentage
points. In particular, with this tool we can obtain homogeneous potentials, and their
homogeneity is increased by the spatial filter.

3.5 Time-Dependent Optical Potentials

A sequence of images can be loaded into the DMDmemory and then displayed at a fixed
frequency to obtain a time-dependent light pattern. In particular, with the ALP4lib
Python Module [53] this is achieved with three different functions. The SeqAlloc
function allocate memory on the DMD board RAM for the desired sequence of images.
Such sequence can be then loaded on board with the SeqPut function, using the
memory previously allocated. Finally the timing properties of the sequence can be set
using the SetTiming function. The latter has two main entries to fix the frequency of
the image sequence to display: IlluminationTime fixes the display time of a single
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image of the sequence, while pictureTime sets the time between the display of two
consecutive image. Therefore, the dark time between the display of two consecutive
pictures is fixed by the difference between these two parameter.

In this thesis work two main kinds of time-dependent light patterns have been
studied: the translation and the rotation of a starting image. A sequence of image
resembling these two situation is easily obtained using the geometric transformation
functions available in the Open-CV python module. Now, the properties of such moving
images on the atomic cloud has to be determined. In particular, it is interesting to
compare the velocity of a time-dependent obstacle with the sound speed of the atomic
superfluid. As already mentioned in Chapter 1, typical sound speed are in the order of
mm/s for an atomic superfluid. The DMD can then be used to realize a time-dependent
potential suitable for experiment with atomic superfluids if the display velocity it can
achieve is in the order of mm/s. Let then examine the two time-dependent light pattern
separately.

For the translational motion we can consider a cluster of ON pixels moving along a
row of the DMD screen. The motion cannot be continuous because pixels are discrete
unit. The best we can do is to make the change of position of the cluster between two
consecutive image as little as possible. In this way the discrete jump of the potential
felt by the atoms is less sudden. Consider thus a sequence of images where the position
of the cluster vary of only one DMD pixel between two consecutive frame. The velocity
of such cluster can be evaluated as:

v =
∆s

∆t
, (3.9)

where ∆s = 1 px is the change in position between two consecutive images and ∆t is
the time between the display of the two. In our case ∆t = 1/f , where f is the display
frequency of the image sequence, that can be set with the SetTiming function. We
are interested in the maximum velocity achievable with the DMD, so the maximum
switching rate of the device has to be considered. For the DMD used in this work,
this is fmax = 22.727 kHz. To evaluate the actual velocity of the potential felt by the
atoms, we need to consider the change of position of the light pattern in the atomic
plane. That is:

∆satoms =
1px× 13.68 µm

M
, (3.10)

where M is the demagnification operated by the imaging system and 13.68 µm is the
DMD mirrors dimension. Therefore, the maximum velocity achievable with the DMD
is:

vmax = ∆satomsf
max =

310.9 mm/s
M

. (3.11)

That is, the maximum velocity depends on the demagnification of the optical system.
In particular, with the demagnification of 80× operated by the optical system described
in Sec. 3.3 the maximum velocity is vmax = 3.8 mm/s. For the imaging system used
to realize high-resolved optical potential described in the next Chapter, the demagnifi-
cation operated is 20×, so the maximum velocity is vmax = 15.5 mm/s. In both cases
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Figure 3.14: Illustration of the figure-8 trajectory of a light obstacle.

the maximum velocity is of the right order of magnitude. Anyway, this value can be
increased by using an higher change in position between two consecutive image of the
sequence.

Let now consider a sequence of image where a cluster of ON mirrors is rotated
around a fixed point. Again, we want to evaluate the maximum velocity of such a
cluster achievable with the DMD. Also this motion is limited by the non continuity
of the pixels in the DMD image, which now translates to a constrain in the rotation
angle ∆θ between two consecutive images on the sequence. ∆θ has to be such that the
change in position of the cluster is as little as possible, namely equal to one pixel. For
a circular trajectory of radius R we obtain: ∆θ = 1 px/R[px]. Now we can estimate
the maximum angular frequency achievable with a DMD:

ωmax =
∆θmax

∆tmin
= ∆θmaxfmax =

22.727 kHz
R[px]

, (3.12)

that correspond to a radial velocity:

vmaxr = ωmaxR′ = ωmax
R

M
=

310.9 mm/s
M

, (3.13)

where R′ = R/M is the trajectory radius measured in the atomic plane. Therefore, we
obtain the same results as before.

These calculations demonstrate that the DMD can be certainly used to create time-
dependent optical potentials suitable for experiments with atomic superfluids. In ad-
dition to the translational and rotational motion of a cluster of pixels studied in this
section, other exotic geometries can be implemented.

As a test, the figure-8 path for a circular obstacle studied in [57] has been realized.
As demonstrated in [57], if the light is blue detuned from the main atomic resonance,
this time-dependent potential is an efficient way to generate a large number of vortices
in the atomic superfluid. In particular, the figure-8 geometry is useful to create a vortex
tangle due to its minimal net transfer of angular momentum.
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An illustration of the DMD realization of such time-dependent profile is reported
in Fig. 3.14. Here, the positions of the moving obstacle are represented all together in
the same image to see more clearly its trajectory, but to create the desired excitation
of the superfluid each frame of the sequence will keep only one spot. The coordinates
of the obstacles are given by:

x(t) = x0 cos(νLt)[1− sin(νLt)] , y(t) = y0 cos(νLt) sin(νLt) (3.14)

where x0 = y0 = A is the amplitude of the figure-8 path and νL its frequency. The
light obstacle is created with a circular light pattern with diameter of 30 px, that
correspond to 5.13 µm in the atomic plane, whereas the amplitude of the curve is 300

px, namely 51.3 µm in the atomic plane. These dimensions have been chosen to create
a more evident light pattern in Fig. 3.14, but can be changed at will to achieve the
requirement of an atomic superfluids experiment. Also the timing properties of the
sequence can be set to be the same as in [57]. Specifically, a figure-8 path frequency of
νL = 0.74× 150 Hz used in [57] corresponds to a switching rate of about 2 kHz for the
DMD.
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Chapter 4

Highly-resolved Optical Potentials

In this chapter I present the possibility to create optical potentials on the length scale
of a µm, comparable to the resolution of the optical system, with the DMD. To do so,
I used a different optical setup than the one presented in the previous chapter, as a
lower demagnification is requested to be able to resolve the light pattern imaged on
the atomic plane with the CCD.

The first part of this chapter is dedicated to the study and measurement of the
resolution of the optical system. In particular, in Sec. 4.1 the theory of image formation
in an optical system is briefly illustrated, then a numerical simulation of the expected
point spread function of the optical setup used is presented. Successively, I propose
a DMD-based method to measure the size of the point spread function of the system
and report the results of the application of such method. In Sec. 4.2 I present the
capability of the optical system to realize disordered potentials on the length scale of
its resolution, namely of the order of µm. In particular, two different kinds of disordered
pattern have been studied: speckles and point-like disorder. Their statistical properties
are illustrated and then a characterization of the disordered potentials created with the
DMD is performed.

4.1 Measurement of the resolution of an optical sys-
tem with the DMD

To create highly-resolved optical potentials it is necessary to know the resolution of the
optical system. In Sec. 4.1.1 the theory of image formation is briefly summarized in, in
order to understand the role of the Point Spread Function (PSF), namely the response
of the system to a point source illumination. Then, in Sec. 4.1.2 the DMD setup
used to create highly resolved potentials is presented and the PSF of such system is
numerically evaluated in Sec. 4.1.3. Finally, the PSF measurement technique developed
in this work is presented in Sec. 4.1.4: the DMD is used to generate a grid of point
sources, that are processed by the optical system and observed afterwards by means
of a CCD. The dimensions of such point source images provides information about the
PSF and allow to identify the possible aberrations of the optical system.
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Figure 4.1: Illustration of the process of image formation performed by a lens of focal length
f .

4.1.1 Theory of image formation

If we put an object in front of a lens and illuminate it, under the appropriate conditions
a distribution of light intensity that closely resembles the object will appear across a
second plane beyond the lens. This is what we call the image formation capability of
lenses.

To illustrate the process of image formation in detail, we consider first a planar
object placed at distance z1 in front of a positive aberration-free lens with focal length
f and illuminated by monochromatic light, as depicted in Fig. 4.1. If we neglect the
polarization of the electromagnetic field, we can treat it as a scalar field. In particular,
we call Uo(ξ, η) and Ui(u, v) the amplitude of the electric field of the object and of
the image observed at distance z2 beyond the lens respectively. The latter one can be
expressed as :

Ui(u, v) =

∫ +∞∫
−∞

h(u, v; ξ, η)Uo(ξ, η)dξdη, (4.1)

where h(u, v; ξ, η) is the impulse response or Point Spread Function (PSF) of the lens.
We note that Eq. (4.1) is valid for all imaging systems, because of the linearity of the
wave propagation phenomenon. The PSF correspond to the electric field amplitude
produced at coordinates (u, v) by a point source placed in coordinates (ξ, η) in the
object plane. Therefore, all the properties of an imaging system are specified by the
PSF. In particular, the image is as much similar to the object as the PSF is:

h(u, v; ξ, η) ≈ Kδ(u±Mξ, v ±Mη), (4.2)

where K is a complex constant, M is the magnification of the optical system and the
± indicates the possibility of an image inversion.

We can find the PSF of an optical system by considering a point source at coor-
dinates (ξ, η) as the object and calculating the amplitude of the image electric field
Ui(u, v) produced by the lens. Following [56], it can be demonstrated that the PFS
can be expressed as:

h(u, v; ξ, η) =
1

λ2z1z2

∫ +∞

−∞

∫ +∞

−∞
P (x, y) exp

[
−i 2π

λz2

((u−Mξ)x+ (v −Mη)y)

]
dxdy,

(4.3)
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where P (x, y) is the pupil function of the lens, defined to be unitary inside the lens,
and null elsewhere. To obtain Eq. (4.3), some approximations have been done. In
particular, the paraxial approximation to consider only rays near the optical axis and
the lens law 1

z1
+ 1

z2
− 1

f
= 0 permit to simplify considerably the PSF expression.

Now we can use the PSF expression of Eq. (4.3) in Eq. (4.1) to find the profile of
the image electric field amplitude. Using the variables change:

ξ̃ = Mξ , η̃ = Mη (4.4)

and defining h̃ = h
|M | , the superposition integral in Eq. (4.1) translates into a convolu-

tion of function [56]:

Ui(u, v) = h̃(u, v)⊗ Ug(u, v) =

∫ +∞

−∞

∫ +∞

−∞
h̃(u− ξ̃, v − η̃)Ug(u, v)dξ̃dη̃, (4.5)

where:
Ug(u, v) =

1

|M |
Uo

( u
M
,
v

M

)
(4.6)

is the geometrical optics prediction of the image when the optical system perform a
magnificationM . Therefore, Eq. (4.5) express the electric field amplitude of the image
performed by a lens as a convolution between the PSF of the optical system and the
geometric amplitude of the image. This is due to the diffraction only, no aberrations
have been taken into account. The effect of diffraction thus leads to a smoothing
operation that can attenuate the details of the object, limiting the resolution of the
optical system.

In general, the results of Eq. (4.5) can be obtained also for composite imaging
system, the only request for them is to be diffraction-limited, i.e. free from aberrations.
In this case the PSF is expressed as in Eq. (4.3), where now P (x, y) is the pupil function
of the most limiting aperture of such system. Moreover, it is possible to find a more
clear expression of the PSF noting that the integral in Eq. (4.3) is a Fraunhofer
diffraction integral for a circular aperture. As reported in [56], it can be solved to
obtain the Airy pattern:

h̃(u, v) =
A

λz2

2
J1(x)

x
, (4.7)

where A is a constant amplitude, J1 is the Bessel function of the first kind of order 1

and x = 2πwr
λz2

, with r =
√
u2 + v2 and w is the radius of the most limiting aperture of

the optical system.

4.1.2 Optical system

The DMD setup used to implement highly-resolved optical potentials is the one illus-
trated in Fig. 4.2. Here, all the optics are the same presented in Sec. 3.3, but the first
telescope has been removed to decrease the demagnification performed in the atomic
plane. Furthermore, the second objective is coupled with a different tube lens, in order
to achieve a lower magnification of the image in the atomic plane. This is necessary to
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Figure 4.2: Optical setup used to create highly-resolved optical potentials.

have a smaller image of the DMD on the CCD, so that enough mirrors of the device
are visible on the camera. In particular, the second objective perform a magnification
of 11×, in this way the DMD screen is reduced by a factor 1.75 on the camera. With
such demagnification of the whole optical system, the DMD screen is still too big to
be completely observable with the CCD. Hence, for the further works only a square of
400 px side of the DMD screen is used, that corresponds to a region of 273.6 µm on
the atomic plane. Another difference from the setup of Sec. 3.3 is that now a cage
system has been used for the first part of the optical system, from the DMD to the
first objective, to improve the stability of the alignment.

4.1.3 Point Spread Function of the optical system

First of all, the PSF of the optical system in Fig. 4.2 has been estimated using the
results seen in Sec. 4.1.1 with a numerical simulation. The PSF is fixed by the most
limiting aperture of the imaging system, and for the setup in Fig. 4.2 this is the first
objective. It has indeed a numerical aperture of 0.28 and a focal length of 10 mm, that
correspond to a pupil radius of 2.8 mm. Instead, the second objective has a higher
pupil radius of 18.1 mm, because its numerical aperture of 0.40 and its focal length
of 45.26 mm, and all the other optics used in the setup have a diameter of 2”, that
correspond to a larger pupil radius even in the case of mirrors that are tilted of 45°.

In the numerical simulation the PSF is evaluated using Eq. (4.7) and the first
objective as the most limiting aperture, and the results is reported in Fig. 4.3 (a).
The size of such function has been estimated with a two-dimensional Gaussian fit for
convenience, as all the spot sizes in the rest of this section. In Fig. 4.3 (b) the central
row of PSF matrix and of its two-dimensional Gaussian fit are plotted. In particular,
from the fit we obtain σx = σy = 0.523 µm. Therefore, the size of the PSF is of
2σ = 1.046 µm, that correspond to the resolution of the optical system: any light
source with dimension lower than 1.046 µm on the atomic plane is seen as point-like
by the optical system. Its image is thus dominated by the PSF, so that it cannot be
resolved in detail.

It is particularly useful to compare the dimensions of one mirror of the DMD on
the atomic plane with the size of the PSF, to understand if the optical system is
capable to resolve single mirrors of the device. The side of 13.68 µm of a DMD mirror
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(a) Point Spread Function. (b) Gaussian fit of the PSF.

Figure 4.3: Point Spread Function of the optical system: in (a) such function is calculated
using Eq 4.7 and a pupil radius of 2.8 mm. In (b) the Gaussian fit of the PSF is reported:
to obtain the 1D plot the central row of the PSF and its two-dimensional Gaussian fit are
considered.

is reduced by a factor of 20 in the atomic plane, so that here a single mirror has
dimensions of 0.684 µm. Therefore, we expect that the image of a single mirror is
completely dominated by the PSF of the optical system. To prove this statement, the
image amplitude Ui of a single mirror object can be computed using Eq. (4.5) and the
numerical expression of the PSF already estimated. Such process is illustrated in Fig.
4.4. In (a) the geometrical optics prediction of the image amplitude, calculated as in
Eq. (4.6), is reported. Such matrix is convolved with the PSF of the optical system
reported in Fig. 4.3 (a) to obtain the actual image amplitude in (b). We can see that
the image of a single DMD mirror is completely dominated by the PSF, as expected.
The size of such image has been estimated with a Gaussian fit: a two-dimensional
Gaussian fit of the image in (b) is performed, and the central row of of the fitted and

(a) Geometrical image Ug. (b) Image amplitude Ui (c) Gaussian fit of Ui

Figure 4.4: Calculation of the image of a single mirror of the DMD on the atomic plane. The
geometrical optic prediction for the image Ug and the actual image amplitude Ui, numerically
computed as the convolution of Ug with the PSF, are reported in (a) and (b) respectively. Ui
is obtained by the convolution between the PSF and Ug, as requested by Eq. (4.5). In (c) the
Gaussian fit of Ui is plotted.

72



Figure 4.5: Comparison between the geometrical image Ug and the image obtained by the
numerical convolution of Ug with the PSF of the optical system, for many square object of
different size.

fitting image is plotted in (c). In particular, from the two-dimensional fit we obtain
σx = σy = 0.583 µm, almost the same size of the PSF. This means that the image
of single mirror cannot be well resolved by the optical system, that is not capable to
reproduce the details of the image.

For bigger images on the DMD we expect that the effect of the convolution with
the PSF will not be so severe. To prove this, the image of a square with side of few
DMD mirrors on the atomic plane has been calculated from the convolution with the
PSF. The results are reported in Fig. 4.5. We see that increasing the dimension of the
object the image become more detailed, but still the smoothing effect of the PSF is
visible even for the bigger object with a 6 mirrors size.

It is important to note that all the results obtained in this section are valid only for
diffraction-limited imaging system. The presence of aberrations may modify the PSF
of the optical system, distorting the image on the atomic plane.

4.1.4 Measurement of the resolution

From the numerical simulation of the previous section we understand that a single
mirror of the DMD is seen as a point source by the optical system. Therefore, we
can use a single mirror to measure the real PSF of the optical system and compare
it to the results of the simulation. To do so, we need to switch on a single mirror in
a fixed position of the DMD array and observe it with the CCD camera. Then, we
can estimate its dimension with a Gaussian fit and compare the results with the size
obtained with the simulation. The dependency of the PSF from the position on the
DMD plane can be explored repeating these operations for several position of the ON
mirror on the DMD mirrors array.

To increase the efficiency of the measurement, instead of scanning the DMD array
mirror-by-mirror with many image acquisition of the CCD, a grid of single mirrors is

73



(a) DMD image. (b) Image on the CCD. (c) Detail of (b).

Figure 4.6: PSF measuring process with the DMD: a grid of single mirrors is switched on in
the DMD (a) and then its image on the CCD is acquired. Such image is represented in (b),
after the affine transformation to bring it back to the DMD dimensions. In (c) is reported a
detail of (b): we see that the image of a single mirror covers just over 1 pixel.

switched on simultaneously on the device and a single image of such grid is acquired
by the CCD. The grid used to estimate the PSF for the optical setup is reported in
Fig. 4.6 (a). It consists of a 15 × 15 array of ON mirrors, separated one from the
surroundings by 14 OFF mirrors. The illustrated area represent the 400 pixels side
square used for all the image in this chapter, as already mentioned in Sec. 4.1.2. The
area covered by the grid is smaller that this central square: the grid fills a region of
2.87 mm on the DMD screen, that corresponds to 143.64 µm on the atomic plane. This
DMD grid is imaged by the optical system on the atomic plane and observed with the
CCD. As described in Sec. 3.4.2, an affine transformation has to be applied to the
image acquired by the CCD, in order to make it comparable to the DMD image. Such
transformed image is reported in Fig. 4.6 (b), and Fig. 4.6 (c) illustrates a detail of
(b): we can see that the image of a single mirror covers just over 1 pixel.

To measure the PSF, we need to estimate the dimensions of each point in Fig. 4.6
(b) with a Gaussian fit. The results of such fits are stored in a 15 × 15 matrix and
reported in Fig. 4.7. The (i, j) value of such matrices correspond to the σx and σy of
the Gaussian fit for the (i, j) point in the grid. For each matrix the mean value of σ
and the relative error is evaluated. For the horizontal direction we obtain a mean value
of (0.55 ± 0.02) µm on the atomic plane, and a relative error of 3.6%. In the vertical
direction the mean value is (0.59± 0.03) µm on the atomic plane, with a relative error
of 5.1%. We can consider the mean of these two values as a measurement of the PSF
size; that is σ = (0.57± 0.03) µm.

Two important conclusion follow from these results. First, we see that the measured
value of σ is slightly over the PSF size of 0.523 µm predicted by the numerical simu-
lation: their difference is about 8%. Moreover, the measured mean value of the single
mirror image size is consistent with the simulated one of 0.583 µm. We can conclude
that the deformation of a single mirror image is solely due to diffraction: aberrations
barely affect the PSF of the optical system, which behaves as diffraction-limited. Sec-
ondly, the change in size of the PSF among the region of interest is of the order of 4%.
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(a) (b)

Figure 4.7: Dimensions of the grid points in the horizontal and vertical direction. For each
point a two-dimensional Gaussian fit is performed, and the values of σx and σy are stored in
the plotted matrices.

Therefore, all the points in the examined area of the DMD mirrors array are imaged
quite in the same way by the optical system.

Optimization of the objective position

The method for measuring the PSF already illustrated can be also used to optimize the
alignment of the optics in the setup. In particular, it is very useful to find the optimal
position of the left objective in Fig. 4.2. This is mounted on a three-dimensional trans-
lation stage, in order to be able to fine-tune its position. The accuracy of the imaging of
the atomic plane into the CCD deeply depends on the position of the second objective,
so the PSF measurement method provides a fundamental tool to achieve high resolution
for the system. The alignment procedure is illustrated in Fig. 4.8: the three movement
for the objective are indicated as longitudinal, in the direction of propagation of the
laser beam, vertical and lateral, in the orthogonal plane respect to the propagation
direction. For each direction, the movement of the objective is controlled by a microm-
eter drive, that enable to fine-tune its position. The resolution of the optical system is
particularly sensitive to the longitudinal position of the objective, because it fixes the
focus of the object. On the other hand, vertical and lateral movement changes only the
portion of the image in the atomic plane observed by the objective and are thus less
sensitive than the longitudinal one. While moving in these directions the position of
the objective, we expect to modify its optical behaviour only in distances comparable
with its field of view, that is 23 mm for the one used in this thesis work. Therefore,
micrometer movements will slightly affect the imaging properties of the objective, but
still an optimization of the resolution can be done.

To optimize the alignment we operate as following: the objective is moved in one
direction at a time and for each position a PSF measurement with the single mirrors
grid is performed, as described in the previous section. The sizes of the imaged points
in the horizontal and vertical directions are stored in matrices similar to the ones in
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Figure 4.8: Illustration of the movement for the optimization of the objective position

Fig. 4.7, to then calculate the mean value and the relative error of σx and σy for each
measurement. The best objective position is then chosen comparing these obtained
values for several positions: for the longitudinal direction only the focus of the image
matters, so the best position is the one with the minimum size of single mirrors image.
For the other two direction is instead important that the single mirrors image is as
much uniform as possible all over the grid. Therefore, the best position is the one with
the minimum relative error in the points size. Finally, from the gradient of σx and σy
inside the matrices is possible to identify the aberrations that may affect the optical
system.

The optimization of the objective position done for this thesis work is illustrated
in Fig. 4.9, 4.10 and 4.11. Here the σx and σy matrices, their mean value and relative
error for the different position are reported. The displacement values are taken respect
to an arbitrary initial position of the objective. For each direction the best position
is the one marked with a red rectangle. The first optimization is in the longitudinal
direction to fix the focus of the objective, reported in Fig. 4.9. The best position is
found to be with a displacement of ∆xLong = +0.010 mm, where the mean sizes of
the spot are: σ̄x = (0.62 ± 0.05) µm and σ̄y = (0.50 ± 0.03) µm on the atomic plane.
As already mentioned, the resolution of the system is very sensitive on a change in
the longitudinal direction: we can see that a movement of 5 µm modify drastically
the sizes of the PSF. Then we proceed with the lateral position optimization, starting
from the best longitudinal one already found. From Fig. 4.10, we can see that the
system is less sensitive in a change in position: moving less than 50 µm will not modify
the optical behaviour of the objective. The best lateral position is for a displacement
of ∆xLat = +0.25 mm, where the mean PSF sizes are: σ̄x = (0.56 ± 0.03) µm and
σ̄y = (0.57 ± 0.03) µm on the atomic plane, with relative errors of 4.9% and 5.0%
respectively. We can see that the spot sizes are quite uniform inside the grid and a
clear direction for the gradient of sizes cannot be found. Finally, the vertical position
of the objective is optimized, as reported in Fig. 4.11. The best one is found to be for a
displacement of ∆xV ert = 0 mm, where the mean spot sizes are: σ̄x = (0.55±0.02) µm
and σ̄y = (0.59± 0.03) µm on the atomic plane, with relative errors of 4.4% and 4.3%
respectively.

In conclusion, we can say that the measured PSF is spatially invariant: besides
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the relative error of about 5% for the sizes of points in the grid, no gradient direction
for them can be found. Furthermore, the measured value of PSF is consistent with
the numerically simulated one of 0.583 µm. Therefore, it confirms the fact that the
optical system is not affected by aberration and can be considered diffraction-limited.
Only a slight astigmatism of the laser beam appears from the performed measurement:
from the longitudinal optimization we can see that the minimum values for σ̄x and σ̄y
do not occur for the same objective position: in the horizontal direction we have the
minimum of σ̄x = (0.53 ± 0.03) µm for a displacement of ∆xLong = +0.005 mm and
∆xLong = +0 mm, wile for the vertical direction the minimum is σ̄y = (0.50±0.03) µm
for ∆xLong = +0.10 mm. That is, focuses in the two direction are 5− 10 µm distant.

The DMD-based method improved in this thesis work is a powerful technique to
directly measure the Point Spread Function of an optical system. With such method
we obtained that our optical system is almost diffraction-limited, as the value of the
measured PSF size is consistent with the numerically simulated one. The measurement
provides also information about the aberrations that affect the optical system: in our
case only a slight astigmatism of the laser beam has been observed. We conclude that
the optical system used in this chapter has an high resolution of 2σ = (1.14±0.05) µm,
where σ is the mean value between σx and σy.
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Figure 4.9: Measured value of PSF size for the optimization in the longitudinal direction.
The mean value of σx and σy and their relative error are plotted versus the displacement in
the longitudinal direction ∆xLong. The dashed lines in the σ plot represent the simulated
value of the PSF size σth = 0.523 µm (red dashed line) and the simulated value of the size of
a single mirror image σconv = 0.583 µm (black dashed line). The best position is chosen to
be the one with minimum size of the spot and corresponds to the value of ∆xLong = +0.01

mm. In the grid below the σx and σy matrices for three values of displacement are reported.
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Figure 4.10: Measured value of PSF size for the optimization in the lateral direction. The
mean value of σx and σy and their relative error are plotted versus the displacement in the
lateral direction ∆xLat. The dashed lines in the σ plot represent the simulated value of the
PSF size σth = 0.523 µm (red dashed line) and the simulated value of the size of a single
mirror image σconv = 0.583 µm (black dashed line). The best position is chosen to be the one
with minimum relative error in the σ matrices and corresponds to the value of ∆xLat = +0.20

mm. In the grid below the σx and σy matrices for three values of displacement are reported.
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Figure 4.11: Measured value of PSF size for the optimization in the vertical direction. The
mean value of σx and σy and their relative error are plotted versus the displacement in the
vertical direction ∆xV ert. The dashed lines in the σ plot represent the simulated value of the
PSF size σth = 0.523 µm (red dashed line) and the simulated value of the size of a single
mirror image σconv = 0.583 µm (black dashed line). The best position is chosen to be the one
with minimum size of the spot and corresponds to the vale of ∆xV ert = +0.0 mm. In the grid
below the σx and σy matrices for three values of displacement are reported.
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4.2 Disordered optical potentials

As already mentioned in Chapter 1, implementing disordered potentials to atomic
clouds is interesting to study localization effects and, in the framework of quantum
simulation, to introduce the randomness of impurities characteristic of any real ma-
terial. A disordered light pattern can be created with the DMD setting the state of
each mirror randomly. An high resolution of the optical system is then necessary to
image such disordered pattern on the DMD screen to the atomic plane. From the PSF
measurement of the previous section we are guaranteed that this can be done by our
optical system: a single mirror can be imaged on the CCD. But, such image is distorted
by the PSF of the optical system, so that the disordered light pattern created on the
atomic plane will never be the same as the image sent to the DMD screen.

The purpose of this section is to investigate the properties of the disordered light
pattern imaged on the atomic plane. To do so, several disordered images have been
used, differing in size of the single disorder element w and in density of disorder n,
defined as the ratio between the number of ON mirrors and their total number. These
matrices are defined as Bernoulli distribution of ON mirrors: for w = 1 pixel the state
of the mirror in the (i, j) is randomly decided to be:

Mi,j =

{
ON with probability p,

OFF with probability 1− p
(4.8)

As pixels are dimensionless units, the density of disorder in a DMD images n correspond
to the probability p of ON mirrors. To obtain images with bigger disorder elements,
the DMD mirrors array is divided into w sized clusters of pixels and the state of each
cluster is defined to follow the same Bernoulli distribution as before. Examples of
such images are shown in Fig. 4.12. In the following work several DMD disordered
images has been used. In particular, we considered images with impurity dimension
varying from 1 to 6 pixels, that correspond to 0.68 µm and 4.10 µm on the atomic
plane respectively, and with probability from 0.05 to 0.7.

By projecting such images with the DMD, a characterization of the disordered light
pattern can be done. We focused our attention in two different kinds of disordered
patterns: speckles and point-like. By now, speckles optical potentials have been the
standard disorder used in atomic system. We call speckles the granular light pattern
created when coherent light is reflected or diffused by a rough surface. They are usually
generated by using a glass plate with a rough surface that exhibits a variability of its
thickness in a scale comparable with the light wavelength. Depending on the optical
path experienced, different portions of the incoming light acquire different phases.
After the glass the optical wave results of many coherent component of wavelets, and
the consecutive interference of the de-phased but coherent wavelets translates in the
granular pattern of intensity that we call speckles. On the other hand, point-like
disorder has a conceptually different basis. It is defined as the random distribution of
point-like spot of light, resembling the presence of finite impurity once focused on the
atomic cloud. The shape of such potential is not granular, as in the speckles case, but

81



(a) w = 1 pixel, n = 0.05 (b) w = 4 pixel, n = 0.5 (c) w = 6 pixel, n = 0.3

Figure 4.12: Examples of DMD images used to implement disordered potential. w is the
dimension of a single element of disorder and n the disorder density.

rather step-like.
All the DMD image used for this section (Fig. 4.12) are defined to be point-like.

However, the light pattern imaged on the atomic plane would never be the same as the
DMD image sent to the device: the point-like object may be transformed in a speckles
image because of the smoothing operation of the PSF of the optical system. In Sec.
4.2.1 we present the expected behavior of the optical system in imaging disordered
pattern in dependence on the size of the PSF. In particular, it is shown that our optical
system is capable to reproduce both a speckles and a point-like pattern. In Sec. 4.2.2
the statistical properties of the two light patterns are presented, in order to enlighten
a way to characterize and distinguish between the two. Finally, in Sec. 4.2.3 the
experimental characterization of disordered light pattern is presented, demonstrating
the capability of the optical system to reproduce both speckles and point-like disorder
and the possibility to tune between them.

4.2.1 Role of PSF in imaging disordered patterns

To implement a disordered potential, a random DMD image as in Fig. 4.12 is sent
to the device and imaged on the atomic plane by the optical system in Fig. 4.2. As
already mentioned, the PSF modifies the image on the atomic plane, smoothing its
edges. This can lead to a transformation of the point-like disorder on the DMD screen
to a speckles light pattern on the atoms. In particular, we expect the occurrence of
such transformation when the PSF is capable to crate an overlap between two impurity
elements that are distinct in the DMD image. When this happens, the electric field
of the two impurities may interfere and create the granular pattern characteristic of
speckles.

To understand if this transformation can occur in our optical system, we can com-
pare the measured size of the PSF to the mean distance between two impurity elements
in a disordered image. As presented in Sec. 4.1.4, for the optical system used in this
section the PSF has a mean size of σ = (0.57± 0.03) µm. On the other hand, we can
define the mean distance between impurities in a pattern with impurity size w and
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Figure 4.13: Comparison between the measured PSF of the optical system and the mean
distance between impurities. The mean distance is plotted in dependence of the impurity
density for several impurity size. The black dashed line represent the PSF size when the iris
does not affect the resolution of the optical system, whereas the red dashed line correspond
to the minimum iris diameter.

dimensionless density n = p as:
d =

w√
n
. (4.9)

We note that this distance has to be calculated in the atomic plane. We consider now
two distinct impurities at distance d, each one of them is spread of σ by the PSF. If
d > 2σ the electric fields of the two do not overlap and we expect that the disordered
pattern on the atomic plane will keep the characteristic of a point-like one. Instead, if
d < 2σ the electric fields of the two overlaps and interfere, and we expect to observe a
speckles pattern imaged on the atomic plane.

In Fig. 4.13 the comparison between these two quantities is shown. The colored
lines indicate the value of the mean distance between impurities versus their density
for several impurity sizes expressed in DMD screen pixels. The black dashed line
correspond to the measured value of the PSF 2σ. We can see that only for impurity
size of 1 pixel the mean distance between impurities become comparable with the PSF,
and it does it only for high values of density. Therefore, according to this analysis we
expect to see a speckles pattern only in these cases.

To explore thoroughly the point-like to speckles pattern transition, an iris can be
placed in front of the first objective (see Fig. 4.2) to reduce the most limiting aperture
of the optical system, thereby increasing the size of the PSF. In particular, we consider
several iris diameter: for each of them a measurement of the PSF has been done with
the method discussed in Sec. 4.1.4, verifying the expected increase in its size. Fig. 4.14
shows the value of the measured size of the PSF in dependence of the iris diameter. We
see that the maximum value is obtained for an iris diameter of 1.5 mm and correspond
to σ = (1.06 ± 0.17) µm. This case correspond to the red dashed line in Fig. 4.13.
Therefore, decreasing the iris diameter we expect to see a speckles pattern imaged on
the atomic plane even for higher impurity size and lower densities.
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Figure 4.14: Measured values of the PSF size for several iris diameter.

4.2.2 Statistics of disordered light pattern

As we expect to reproduce both a speckles and a point-like pattern on the atomic plane,
it is important to be able to distinguish between them. To do so, we can consider the
statistical properties of the two light pattern. In the following the main statistical
characteristic of speckles and point-like disorder are presented.

Speckles Disorder

We start considering the first-order statistical properties of laser speckles, that concerns
a single point in the space. As already mentioned, for a speckles pattern the amplitude
of the electric field at a given observation point (x, y) consists of a multitude of de-
phased contributions from different scattering regions of the rough surface used to
generate it. Therefore, the amplitude of the electric field in the plane orthogonal to
the laser propagation direction can be written as [58]:

A(x, y) =
N∑
k=1

1√
N
ak(x, y) =

1√
N

N∑
k=1

|ak| expiφk , (4.10)

where the sum is performed over the N elementary phasor contribution to the electric
field ak(x, y), and |ak| and φk are their modulus and phase respectively. The prob-
ability density function of the intensity of the speckles light pattern can be found,
assuming that |ak| and φk are independent to each other and to ak′ and φk′ , and that
φk is uniformly distributed in [−π, π]. Under these assumption the mean values, the
variances and the correlations of real and imaginary part of the electric field amplitude
can be computed. As demonstrated in [58], they have zero means, identical variances,
and are uncorrelated. Using the Central Limit Theorem, we can say that in the limit
of N → ∞ their distribution is asymptotically a Gaussian with the same mean and
variance. Finally, the intensity probability density distribution can be computed from
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such Gaussian distribution with a change in variables, that leads to [58]:

P (I) =
1

〈I〉
exp−

I
〈I〉 , (4.11)

where I = |A(x, y)|2 is the intensity and 〈I〉 its mean value. Therefore, the intensity
distribution of speckles is exponential.

We now concentrate on the second-order statistics of speckles. To characterize the
spatial properties of a speckles patter, we need to consider the autocorrelation function
of intensity distribution:

ΓI(∆r) = 〈I(r)I(r + ∆r)〉 , (4.12)

where the average is over an ensemble of rough surfaces. For an imaging geometry that
involves a single lens of diameter D and focal length f , it can be demonstrated that
the autocorrelation function assumes the form [58]:

ΓI(∆r) = 〈I〉
[
2

λf

πD∆r
J1

(
πD∆r

λf

)]
, (4.13)

where λ is the laser wavelength and J1 is the Bessel function of the first kind. The
size of the speckles is fixed by the correlation length, defined as the first zero of the
autocorrelation function, namely:

lcorr = 1.22
λf

D
. (4.14)

We note that lcorr has the same expression of the diffraction limit of the lens.

Point-like Disorder

We now consider the point-like disorder and analyse its first and second-order statistical
properties. To do so, a pattern as in Fig. 4.12 can be used to represent point-like
disorder: in correspondence of the ON mirrors the light intensity is constant and equal
to I0, while in correspondence of the OFF mirrors the light intensity is null.

First of all, we determine the probability density function of the intensity for the
point-like disorder. Since the possible values of intensity are only two (I0 and 0), the
probability density function is a Bernoulli distribution. It shows two peaks in corre-
spondence of the intensity value of I0 and 0, whose height is fixed by the dimensionless
impurity density n: the probability to have an intensity value of I0 is p = n, while
the probability to have null intensity is 1− p = 1− n. This behavior of the probabil-
ity density function is intrinsic of the definition of point-like disorder we used for this
thesis work, and can be verified considering a point-like disordered pattern as in Fig.
4.12 and computing the histogram of intensities of such matrix. This function shows
the number of time a given value of intensity is present in the image, corresponding
therefore to the probability density function of intensity for the image. Fig. 4.15 (a)
report the computed histogram for several disordered images that differ in impurity
density.
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(a) Probability density function (b) Autocorrelation function

Figure 4.15: Statistical properties of the point-like disorder. Both the probability density
function and the autocorrelation function have been calculated starting from a DMD image
as in Fig. 4.12.

We consider now the autocorrelation function of point-like disordered. We use the
following expression for the intensity to represent the pattern with density n of impurity
of size w:

I(x, y) =
N∑
i=1

I0Sw(xi)Sw(yi), (4.15)

where N = nA is the number of impurities over a region of area A and Sw is a step
function of width w defined as:

Sw(x0) = θ(x− x0 + w/2)θ(x0 + w/2− x), (4.16)

where θ(x) is the Heaviside theta-function. Such expression for the intensity can be
used to compute the autocorrelation function:

ΓI = 〈I(r)I(r + ∆r)〉 = 〈I(x, y)I(x+ ∆x, y + ∆y)〉 , (4.17)

where the average is over an ensemble of different random point-like pattern. We can
substitute the ensemble average with an integral over the area of the disordered pattern
because of the homogeneity of such pattern. Thus we have:

ΓI =

∫ L/2

−L/2
dx

∫ L/2

−L/2
dyI(x, y)I(x+ ∆x, y + ∆y), (4.18)

where we have considered a square area of side L covered by the disordered pattern.
Using Eq. (4.15) for the intensity, we obtain:

ΓI = I2
0

∑
i,j

∫ L/2

−L/2
dxSw(xi)Sw(xj + ∆x)

∫ L/2

−L/2
dySw(yi)Sw(yj + ∆y) (4.19)

The two integrals can be treated separately. Considering the one over the x variable,
we have: ∫ L/2

−L/2
dxSw(xi)Sw(xj + ∆x) =

∫ xi+w/2

xi−w/2
dxSw(xj + ∆x), (4.20)
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because the only effect of the step function Sw(xi) is to restrict the region over which
we integrate. The previous integral assume different values depending on i and j.

If i = j we have that the two step functions overlap for each impurity in the pattern,
so the integral is non-zero. In particular, we obtain:∫ xi+w/2

xi−w/2
dxSw(xi + ∆x) =

{
w − |∆x| if |∆x| < w,

0 otherwise.
(4.21)

On the other hand, when i 6= j the integral is non-zero only when the displacement
∆x is such that the step functions of two impurities in different region of the pattern
overlap. But, for each xi in the sum over all the impurities it will happen with a different
displacement ∆x because of the randomness of the light pattern. Therefore, when i 6= j

the former integral may be non-zero for a given displacement, but when summed over
all the impurities of the pattern this contribution become negligible because it is non-
zero only for few i in the sum.

Putting together all these statement and considering the integral over the y variable
too, we obtain the following expression for the autocorrelation function:

ΓI =

{
I2

0N(w − |∆x|)(w − |∆y|) if |∆x|, |∆y| < w,

∼ 0 otherwise.
(4.22)

Therefore, the autocorrelation function for a point-like disordered pattern has a
triangular shape, when observed in one direction at a time. This conclusion can be
verified computing numerically the autocorrelation function for a point-like pattern as
in Fig. 4.12 (b). The horizontal profiles of the autocorrelation function for several
pattern differing in impurity size w are shown in Fig. 4.15. We see that the numerical
computation confirms our calculations.

In conclusion, speckles and point-like pattern differ both in intensity probability
density and in autocorrelation function. Studying such properties of the light pattern
imaged on the atomic plane, it is thus possible to understand if the disorder can be
properly considered speckles of point-like. Moreover, the statistical properties can be
used to characterize the transition from point-like to speckles, explored by modifying
the ratio between the size of the PSF and the mean distance between two different
disorder elements.

4.2.3 Characterization of disordered potentials

In this section the characterization of the disordered pattern imaged on the atomic
plane is presented. To do so, several DMD imaged has been used and their image
on the atomic plane has been acquired with the CCD. In particular, three quantities
has been varied: the size of a disorder element w, the probability of the Bernoulli
distribution of the DMD image p and the iris diameter ID. In this way it is possible to
observe the transition from point-like to speckles disorder imaged on the atomic plane.
Fig. 4.16 shows examples of these two kinds of disorder: the point-like pattern (a) is
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(a) Point-like disorder (b) Speckles disorder

Figure 4.16: Images of the point-like and the speckles disorder. The point-like pattern is
obtained using a DMD image with impurities dimensions of 4 mirrors and Bernoulli probability
of 0.1 and the iris wide, while the speckles one has DMD image with 1 mirror impurities
dimensions and Bernoulli probability of 0.3 and an iris diameter of 1.5 mm.

realized using impurities of dimensions 4 mirrors on the DMD screen, that correspond
to 2.7 µm on the atomic plane, with a Bernoulli distribution probability of 0.1 and the
iris wide open. The speckles pattern (b) is instead obtained when the iris diameter is
2.0 mm for a DMD image with impurities dimension of 1 mirror and a probability of the
Bernoulli distribution of 0.3. Differences between the two are clear even at first sight:
the speckles image displays its typical granular pattern, while in the point-like one we
can clearly see the alternation between region of light and darkness. We note that to
obtain the two images in Fig. 4.16 the Gaussian profile of the incoming laser beam of
the DMD has been removed. To do so, an image of the Gaussian profile, observable
when all the DMD mirrors are ON, is acquired and used to rescale the disorder profile.

To fully characterize such disordered images a statistical analysis is performed.
First of all, the probability density function of each acquired disordered image has been
calculated. This function is obtained simply computing the histogram of the matrix,
that counts the number of pixels in the acquired image that have a given intensity
value. In Fig. 4.16 the probability density function for the speckles pattern and its
exponential fit are shown. To compute the fit only data after the peak maximum have
been considered. The data at low intensity deviate from the exponential behavior of
the intensity probability density function for speckles as the density of disorder element
is high enough to let no regions of darkness. We can see that the exponential trend
is well suited for the probability density function, as expected for a speckles pattern
of light, as in Eq. (4.11). However, for high intensity value it is possible to see a
deviation between the experimental data and the fit. Here the information about the
statistical properties of the pattern are quite none because this region corresponds to
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(a) Probability density function of the intensity
for the speckles pattern

(b) Exponential fit of the probability density
function

Figure 4.17: Probability density function for the speckles pattern and its exponential fit with
the function: y = A exp−αx. The estimated fit parameter are: A = (22.89 ± 0.07) × 10−3,
α = (38.02 ± 0.18) × 10−3 a.u.−1, that correspond to a mean intensity 〈I〉 = (26.30 ± 0.12)

a.u.

intensity value with almost zero counts in the histogram. Therefore, we can say that
the probability density function for the considered image pattern is exponential, as it
should be for a speckles pattern.

The behavior of the probability density function of intensity for point-like pattern
is not as clear as for the speckles instead. In particular, the presence of the two distinct
peaks characteristic of the Bernoulli distribution is not observable for all the point-like
images, but rather they appear only for high probability when the dark region of the
image is small. Fig. 4.18 shows the histograms of the point-like patterns obtained with
w = 4 mirrors on the DMD screen and for several probabilities, all with the iris wide
open. We can see the appearance of a peak for high intensity only for probabilities
higher that 0.3. That means that for the image in Fig. 4.16 (a), which seems clearly
point-like, the probability density function is not the one of the Bernoulli distribution as
it should be. Maybe that is because the intensity of the light spots is not homogeneously
equal to a certain value I0, but it varies continuously from a minimum to a maximum,
so that the peak of counts at non zero intensity is broadened. The area of the peak
is fixed by the probability of the Bernoulli distribution, so if the width of the peak is
large, then its height has to be little. For low probability p, the height of the peak at

Figure 4.18: Probability density functions for a point-like disordered pattern with w = 4

pixel and different probability p.
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(a) Autocorrelation function for
the point-like pattern

(b) Horizontal cut of the autocorrelation func-
tion

Figure 4.19: Autocorrelation function and its horizontal cut for the point-like pattern re-
ported in Fig. 4.16 (a). The latter is obtained integrating (a) over 10 columns in the central
region, and then fitted with the step function y = m|x− x0|+ q for |x− x0| < x1, and y = c

otherwise. The estimated fit parameter are: x0 = (0.06 ± 0.05) µm, x1 = (2.67 ± 0.07) µm,
m = (0.359 ± 0.015) a.u./µm, c = (0.082 ± 0.005) a.u. . The q parameter is not estimated
by the fit, as it depends on m, x1 and c. In particular, q = c+m/x1 and for the fit in figure
it is: q = (0.216 ± 0.014) a.u. Comparing the fit function to Eq. (4.22), we note that x1

corresponds to the impurity size w.

non zero intensity is so small that it cannot be seen in the histogram. Moreover, we
note that in these cases the probability density function seems to have an exponential
trend, the same of the speckles pattern.

Subsequently, we consider the autocorrelation function of each image acquired,
both for speckles and point-like patterns for several values of w and p. This function
is computed with the correlate2d function of the Python Scipy module, with the
wrap circular boundary condition. In this way the two images are superimposed once
shifted of a finite amount, and, when the shift is such that part of an image escape
from the area of the other, the exceeding pixels are repeated at the opposite edge of
the second image. This method is suitable for our characterization, as we assume the
disordered patterns to be spatially homogeneous. The autocorrelation function of the
point-like pattern of Fig. 4.16 (a) is shown in Fig. 4.19 (a), while in (b) the horizontal
cut of such function integrated over 10 columns in the central part is plotted. Then,
a fit of such one-dimensional function is performed according to the expected trend of
Eq. (4.22). We can see that the fit function can well represent the experimental data,
so we can conclude that the pattern of Fig. 4.16 (a) is actually a point-like disorder.
In particular, from the fit we obtain an impurity size of wexp = (2.67 ± 0.07) µm,
consistent with the expected value of w = 2.74 µm for a DMD image with impurity
cluster of 4 mirrors.

Fig. 4.20 shows the autocorrelation function of the speckles pattern reported in
Fig. 4.16 (b). In (a) is presented the two-dimensional autocorrelation function, while
in (b) the horizontal cut of such function integrated over 10 columns is plotted. The
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(a) Autocorrelation function for
the speckles pattern

(b) Horizontal cut of the autocorrelation func-
tion

Figure 4.20: Autocorrelation function and its horizontal cut for the speckles pattern reported
in Fig. 4.16 (b). The latter is obtained integrating (a) over 10 columns in the central region,
and then fitted with a Bessel function y = A

BJ1(x−x0B )/(x − x0) + C, as expected for a
speckles pattern (Eq. (4.13)). The estimated fit parameter are: A = (0.76 ± 0.02) µm
a.u., B = (0.67 ± 0.01) µm, x0 = (−0.001 ± 0.022) µm, C = (0.126 ± 0.004) a.u. . From
Eq. (4.14) and the fit results, we obtain a correlation lenght for the speckles pattern of
lcorr = (2.61± 0.04) µm.

one-dimensional profile of the autocorrelation function is fitted using a Bessel function,
as suggested by Eq. (4.13). We can see that this function fits properly the profile of
the measured autocorrelation function, so we can identify the image in Fig. 4.16 (b)
as a speckles pattern. From the fit results and using Eq. (4.14), we can obtain the
correlation length of the speckles pattern lcorr = (2.61± 0.04) µm.

The statistical analysis of the two images in Fig. 4.16, and in particular the study
of the autocorrelation function, confirm their different nature. Therefore, our optical
system is capable to image on the atomic plane both a speckles pattern and a point-like
one, starting from Bernoulli distributed DMD images.

Transition from point-like to speckles disorder

We now investigate in detail the transition from point-like to speckles pattern. As
already discussed in Sec. 4.2.1, we expect to have one pattern rather than the other
depending on the value of the ratio 2σ/d between the size 2σ of the PSF of the optical
system and the mean distance d between two different elements of disorder. Therefore,
we study the properties of the several acquired images versus the ratio 2σ/d.

A first property able to distinguish between speckles and point-like disorder is the
value of the fluctuations of intensity respect to its mean value. Indeed, in a speckles
pattern the intensity varies smoothly from a minimum to a maximum, while for a
point-like disorder image only two values of intensity are permitted. Therefore, we
expect that fluctuations are large for a point-like pattern and small for a speckles one.
To demonstrate this scenario, the value of fluctuations ∆I/I has been calculated for
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Figure 4.21: Measured intensity fluctuations in dependence of the ratio between the PSF
size 2σ and the mean distance between two element of disorder d, calculated as in Eq. (4.9).
For 2σ

d < 1 we are in a point-like regime of large intensity fluctuations, while for 2σ
d > 1 we

enter in a speckles regime characterized by small intensity fluctuations.

all the imaged acquired at different disorder element size w, probability p and iris
diameter ID. The dependence of intensity fluctuations on the ratio 2σ/d is obtained
by calculating the value of the ratio for each image and then binning it in the range of
2σ and d considered. We calculate the mean value of the fluctuations and its standard
deviation for all the points in the same bin and finally obtain the profile reported in Fig.
4.21. We see that for 2σ/d < 1, where we expect to image a point-like disorder pattern
on the atomic plane, intensity fluctuations are large, while for increasing values of 2σ/d

fluctuations decrease, as the image on the atomic plane becomes more speckles-like.
We note that the standard deviation error in the speckles regime is lower than in the
point-like one. It is due to the fact that the number of acquired image with 2σ/d > 1

is little compared to that in the point-like regime.
As discussed in the previous section, the histogram profile of the acquired image

does not help in distinguish between the two different kinds of disorder. However, we
can use a different information from the images histograms to characterize the speckles
and the point-like regime: we can look to the number of count at very low intensity.
As can be seen from Fig. 4.17 (a) and Fig. 4.18, for a speckles pattern the counts
at very low intensity, at most the zero intensity counts, are little, while for a point-
like one the image histogram takes its maximum exactly for low intensity. That is
due to the fact that in a point-like image there are spots of light surrounded by dark
regions, whereas in a speckles pattern darkness is almost completely cancelled out by
the granularity of the pattern. We expect thus to have a small number of count at
low intensity in the speckles regime, and large counts in the point-like regime. This
apparently contradict the exponential behavior of the probability density function for
speckles, as the exponential is maximum at zero intensity. But, as we can see from Fig.
4.17 (a), the histogram shows an exponential behavior only after a peak. At very low
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Figure 4.22: Counts at zero intensity in the images histogram versus the ratio between
the PSF size 2σ and the mean distance between two element of disorder d, calculated as in
Eq. (4.9). The value of zero counts is obtained considering the percentage of pixels in each
acquired image where the intensity is less than 5, after the image have been rescaled to have
the intensity maximum equal to 255.

intensity the count in the histogram are little because in a speckles pattern there are
no regions of complete darkness. In Fig. 4.22 is reported the percentage of zero counts
in dependence to the ratio 2σ/d, obtained with the same binning procedure previously
described. Each acquired image has been rescaled to have its maximum intensity value
equal to 255, then the zero counts percentage has been calculated by summing the
number of pixels where the intensity is less than 5. We can see that the zero counts
percentage is high in the point-like regime for 2σ/d < 1, whereas it decreases as the
speckles regime is reached for 2σ/d1, as we expected.

Finally, we can look to the autocorrelation function profile to characterize the tran-
sition between point-like and speckles. To do so, for each acquired image the autocor-
relation function has been calculated, and the horizontal profile has been analyzed. In
particular, for each one-dimensional autocorrelation function obtained both a triangu-
lar and a Bessel fit has been performed, with the same fit functions used for Fig. 4.19
(b) and 4.20 (b). Then, the residual sum has been calculated as the difference between
the fit function and the experimental data in absolute value. Fig. 4.23 shows the values
of the residual sum for a point-like fit with the triangular function and for a speckles
fit with the Bessel function versus the ratio between the PSF size 2σ and the mean
distance between two elements of disorder d. We can see that in the point-like regime
for 2σ/d < 1 the residual sum for the point-like fit is always less than the residual sum
for the speckles fit, and vice versa in the speckles regime for 2σ/d > 1.

In conclusion, the intensity fluctuations, the zero intensity counts and the residual
sum for the autocorrelation fit confirm that our optical system is capable to perform
a smooth transition from a point-like to a speckles disordered pattern imaged on the
atomic plane. Such transition is driven by the change of the ratio between the PSF size
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Figure 4.23: Residual sum for a point-like fit of the one-dimensional autocorrelation function
with a triangular function and for a speckles fit with a Bessel function in dependence on the
ratio between the PSF size 2σ and the mean distance between two elements of disorder d.
The residual sum is calculated by summing the difference between the fit function and the
measured autocorrelation function in absolute value for each point.

2σ, varied with the iris diameter, and the mean distance between two disorder element
d, that depends on the the dimension and density of disorder. In particular, for 2σ < d

we are in a point-like regime where the resolution of the optical system is high enough
to image a point-like pattern on the atomic plane. On the other hand, when 2σ > d

the resolution of the optical system is so low that the images of two different disorder
element overlap, giving rise to a speckles pattern on the atomic plane.

Correlation length of the disordered pattern

Another important information can be extracted from the autocorrelation analysis
performed on the acquired images: the size or the correlation length of the disordered
pattern on the atomic plane. For a point-like pattern we can consider the size of a
disorder element as the characteristic length scale, whereas for the speckles we have
to consider the correlation length defined as in Eq. (4.14). In both cases these length
scales can be obtained from the one-dimensional autocorrelation fit.

Fig. 4.24 shows the measured values of the point-like disorder size in dependence
on the DMD image disorder size w for different value of the probability p (a) and the
iris diameter ID (b). The plotted data correspond to acquired images in the point-like
regime, where 2σ < d. We can see that the disorder size for a fixed value of w depends
on the probability p, but not on the iris diameter ID. In particular, wmeas grows
linearly as w increases, except for the region at little w where the smoothing effect of
the PSF begin to be remarkable. In any case, these results show that the size of the
point-like disorder can be tuned by changing the probability and the dimension of a
disorder element in the image sent to the DMD.

In Fig. 4.25 the measured values of the correlation length for the speckles patterns
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(a) Disorder size for different probability (b) Disorder size for different iris diameter

Figure 4.24: Measured size of the point-like disorder element in dependence on the DMD
image disorder size for different value of the probability p (a) and the iris diameter ID (b).

(a) Correlation length for different probability (b) Correlation length for different iris diame-
ter

Figure 4.25: Measured correlation length of the speckles disorder in dependence on the
DMD image disorder size for different value of the probability p (a) and the iris diameter ID
(b).

are plotted in dependence on the DMD disorder size w for different value of the prob-
ability p (a) and the iris diameter ID (b). In this figure only the data from acquired
images in the speckles regime, for 2σ > d, have been considered. We see that the
correlation length of the speckles pattern depends both on the probability and on the
iris diameter. Therefore, also for a speckles pattern we are able to tune the correlation
length to adapt it to the experimental necessities.

Therefore, our optical setup is capable to image both a point-like and a speckles
pattern on the image plane with tunable characteristic length. The latter can be mod-
ified by acting on the image sent to the DMD, changing w or p, or on the iris diameter
that modify the resolution of the system. Anyway, in both cases the characteristic
length of the disordered pattern is of the order of µm, therefore comparable to the
resolution of the optical system.
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Conclusions

In this thesis work I have illustrated the possibility to create arbitrary optical potentials
with a Digital Micromirror Device useful for the study of superfluidity phenomena of
an atomic Bose-Einstein condensate.

Part of the work was devoted to the alignment and the optimization of a magneto
optical trap for 87Rb atoms. I performed the optimization of both the parameter of the
2D MOT and the 3D MOT, obtaining at the end a MOT of about 109 atoms with a
temperature of about 200 µK and a loading efficiency of ∼ 108 atoms/s. Such cooling
technique represent the first step to obtain a condensate, as the critical temperature
for the BEC transition is about 100 nK.

Then I focused my attention on the realization and characterization of optical po-
tentials with the DMD. In particular, I developed two different optical setups: one for
the realization of homogeneous optical potentials and the other for the implementation
of disordered potentials on the length scale of a µm. For the first part, I used a spatial
filter to smooth the spatial intensity profile of the DMD-made light pattern, and wrote
a feedback program to improve the image quality. In particular, with such program it is
possible to obtain images that differs around 5% from the target pattern sent to DMD.
Moreover, such patterns have only a residual fluctuation in intensity of 1.4% on the
length scale of about 5 µm, such that they can be considered homogeneous for what
concerns the superfluid motion. Then, I analyzed the properties of time-dependent
potentials than can be created with the DMD. In particular, the maximum velocity of
a DMD-made time-dependent light pattern is of the order of mm/s, comparable to the
critical velocity of an atomic superfluid.

Finally, I used an high-resolution optical system to realize disordered potentials on
the length scale of µm. I developed a DMD-made technique for measuring the point
spread function (PSF) of the optical system, and using it I verified that the optical
setup I aligned was diffraction limited. Successively, I implemented two different kinds
of disordered potentials: point-like and speckles pattern. They differ in both intensity
probability function and autocorrelation function, so that studying such properties I
performed a characterization of the two patterns. Using a point-like target pattern on
the DMD it is possible to image on the atomic plane both a speckles and a point-like
disorder, depending of the ratio between the size of the PSF 2σ and the mean distance
between disorder elements d. For 2σ < d the resolution of the optical system is high
enough to image a point-like pattern, wheres for 2σ > d the resolution of the optical
system is so low that the images of two different disorder element overlap giving rise to
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a speckles pattern. I investigated the point-like to speckles transition by using several
target image with different d and by changing the PSF of the optical system with an iris.
The results confirm what expected: the intensity fluctuation of the acquired image, the
zero intensity counts and the residual sums of the fit of the autocorrelation functions
versus the ratio 2σ/d have different behavior above and below the value 2σ/d = 1.
Both for speckles and for point-like patterns the characteristic length scale of disorder
can be set adjusting the size and the density of disorder elements: in both cases it is
of the order of µm.

In conclusion, this master thesis work presents the DMD as a powerful device
to create optical potentials and demonstrate that it is well suited for applications
in experiments with atomic superfluid. Both static and time-depending DMD-made
potentials exhibit properties convenient for the study of superfluidity, and with an high-
resolution optical system it is possible to create disordered potentials with controllable
size and density of disordered element.

The main perspective of this work is to implement the optical potentials that I
characterized on an atomic system. To do that, first a Bose-Einstein condensate of
87Rb has to be produced, using the evaporative cooling technique to reach the low
temperature of condensation (TC ' 100 nK). Then, the DMD setup can be aligned on
the experiment in order to imprint the optical potential on the atomic system. To do
so, a custom-made high-resolution microscope objective has to be designed, in order
to match the high resolution requests to the geometric experimental setup constrains.
Finally, a ring-shaped optical potential will be imprinted of the atomic system, in order
to study persistent current phenomena. As a repulsive optical potential will be used,
the feedback program presented in this work cannot be used to create homogeneous
intensity profile, but rather it will be implemented to have a feedback directly on the
atomic population. The idea is to compare the target image of the DMD with the
density distribution of atom, and perform a feedback process similar to that presented
in this thesis.
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