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Abstract

Durante il mio progetto di tesi, svolto presso il Lab. 9 del Dipartimento di Fisica, mi
sono concentrato sull’ottimizzazione dell’apparato sperimentale per la produzione e
caratterizzazione di una nuova miscela fermionica di atomi di litio e cromo ultra-
freddi. Ho contribuito alla costruzione e all’implementazione di nuove componenti
dell’esperimento per indagare più approfonditamente i fenomeni derivanti dalle
interazioni risonanti tra 6Li e 53Cr. Inizialmente, ci siamo dedicati all’ottimizzazione
dei protocolli sperimentali, al fine di ottenere un campione di cromo ultrafreddo
sempre più grande. Abbiamo inoltre introdotto un secondo potenziale ottico che
ha consentito di aumentare il confinamento della miscela senza modificarne la tem-
peratura, permettendoci di incrementare notevolmente la densità del campione.
Ciò ha permesso di realizzare la prima miscela fermionica degenere di 6Li -53Cr
al mondo, con 2×105 atomi di litio e 1×105 atomi di cromo, ad una temperatura
relativa di T/TF ∼0.25 per entrambe le specie. Successivamente, mi sono focalizzato
sull’utilizzo di una risonanza di Feshbach eteronucleare, identificata precedentemente
al mio lavoro di tesi, per la creazione di dimeri di LiCr. Grazie ai progressi raggiunti
nella realizzazione della miscela degenere, è stato possibile produrre un considerevole
campione di 5×104 dimeri di LiCr, di cui abbiamo intrapreso una prima caratteriz-
zazione. Il mio principale contributo all’esperimento ha riguardato la realizzazione
di un’antenna a radio-frequenza (RF) per trasferire efficientemente atomi di 53Cr tra
i due livelli Zeeman a energia più bassa, compito che ha richiesto il superamento di
diverse sfide. Poichè al campo cui si trova la risonanza di Feshbach Li-Cr di 1414G
l’accoppiamento tra i due stati è debole, per ottenere trasferimenti RF su tempi di
poche centinaia di µs l’antenna deve lavorare a corrente alta. Inoltre, il design del
setup RF ha dovuto tener conto dei vincoli dettati dal sistema da vuoto e dai vari fasci
laser dell’apparato principale. Traendo spunto da un design sviluppato recentemente
da colleghi del LENS per un’antenna RF con frequenze di lavoro a 80MHz, adat-
tandolo al nostro range spettrale e vincoli fisici del setup, siamo riusciti a costruire
un’antenna altamente performante che rispecchiasse tutte le caratteristiche richieste.
L’implementazione del nuovo setup RF per il cromo mi ha permesso di caratterizzare
il rumore di campo magnetico dell’esperimento e di migliorarne significativamente la
stabilità. Questo secondo significativo miglioramento tecnico è stato raggiunto grazie
all’implementazione di un sistema di compensazione delle fluttuazioni del campo,
principalmente causate da un rumore della corrente a 50Hz. Tale schema, che ho
implementato con successo e caratterizzato sperimentalmente, è basato sull’invio,
ad una ulteriore bobina posta sopra la camera da vuoto, e concentrica rispetto
alle bobine principali, del segnale di rumore (invertito opportunamente) che risulta
nella generazione di un campo oscillante opposto alle fluttuazioni precedentemente
misurate. Questo metodo, una volta ottimizzato, ci ha consentito di raggiungere una
stabilità del campo magnetico di circa 3.6mG, a un campo di 1414G, ottenendo
cioè una fluttuazione residua di circa 2.5×10−6. Questi progressi tecnici, da me
concepiti e implementati sul setup sperimentale pre-esistente, hanno permesso di
iniziare negli ultimi mesi della mia tesi, un’accurata caratterizzazione di miscele
fermioniche Li-Cr fortemente interagenti, aprendo la strada anche a molte future
investigazioni di questo nuovo sistema bi-atomico ultrafreddo.
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Abstract

During my thesis done in the LiCr experiment, located in Lab. 9 of the Department
of Physics, I focused on the optimisation of the experimental apparatus for the
production and characterization of the novel fermionic mixture of ultracold lithium
and chromium atoms. I contributed to the construction and implementation of
new components of the experiment to further investigate phenomena arising from
resonant interactions between 6Li and 53Cr. During the first part of my thesis I
was taking part to optimise the experimental protocols in order to obtain a larger
sample of ultracold chromium. I introduced a second optical potential in addition to
the primary optical trap. This made it possible to increase the confinement of the
mixture without changing the temperature, and to significantly increase the density
of the sample. This allowed us to realise the world’s first degenerate fermionic
mixture of 6Li -53Cr, with 2× 105 lithium atoms and 1× 105 chromium atoms, at
a relative temperature of T/TF ∼ 0.25 for both species. This achievement served
as a starting point to produce heteronuclear Feshbach dimers using a previously
identified Feshbach resonance. We routinely obtain 5× 104 LiCr dimers which we
currently characterize thoroughly. This requires very good magnetic field stability
and fast radio-frequency (RF) transfer. The main part of my thesis was to realise a
RF antenna to efficiently transfer 53Cr atoms between the two lower-energy Zeeman
levels, which turns out to be challenging. At the field of the Feshbach resonance of
1414G, the weak coupling strength between the two states requires that the antenna
must be operated at high currents in order to achieve Rabi oscillation times of order
of hundreds of microseconds. Furthermore, the design of the RF setup had to take
into account the constraints imposed by the vacuum system and the various laser
beams of the main apparatus. I have adapted the recent design of a RF antenna
working for lithium at 80MHz, developed at LENS, to work with the three times
higher frequency of chromium of 240MHz. I have simulated and optimized the
components and have built and characterized the antenna with the atoms and I have
proven its efficiency. The implementation of the new RF setup for chromium also
allowed me in the last part of my thesis to characterise the magnetic field noise of the
experiment and significantly improve its stability. This second significant technical
upgrade was achieved through the implementation of a compensation scheme for
field fluctuations, mainly caused by 50Hz current noise and higher harmonics. This
scheme, which I have successfully implemented and experimentally characterised,
is based on creating, with an additional coil, an inverted noise signal opposite to
the previously measured fluctuations. This method, once optimised, allows us to
achieve a magnetic field stability of 3.6(6)mG, at a field of 1414G, resulting in a
residual fluctuation of 2.5(4)× 10−6. These technical advances, which I conceived
and implemented on the existing experimental setup, allowed me to begin, in the
last months of my thesis, an accurate characterization of strongly interacting Li-Cr
fermionic mixtures, also paving the way for many future investigations of this new
ultra-cold diatomic system.
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Introduction

Quantum matter composed by unequal kinds of fermionic particles, such as quarks
of different colors, or electrons belonging to different lattice bands, is known to
promote a plethora of exotic phenomena [1–6], qualitatively distinct from those
characterizing single-component systems. The combination of quantum statistics
with a mass asymmetry and a distinct response to external fields of two different
fermionic species, indeed provides an increased level of complexity, with a strong
impact both at the few- and many-body level. In this context, heteronuclear Fermi
mixtures of ultracold atoms, resonantly interacting close to a Feshbach resonance [7],
are regarded as clean and versatile frameworks optimally-suited for the disclosure
of exotic few-particle states [8–20], and the exploration of novel quantum phases –
primarily in the context of unconventional superfluid pairing [21–31] and quantum
magnetism [32–36].

In particular, Fermi mixtures with mass ratios 8.17.M/m.13.6 are especially
appealing from a few-particle physics perspective, as they are predicted to support,
already in three dimensions, non-Efimovian few-body cluster states, completely
unexplored thus far, which exhibit universal character and a peculiar p-wave orbital
symmetry [9, 13,15,18,37]. These elusive states are extremely relevant also from a
many-body viewpoint, in light of their collisional stability. In fact, owing to the halo
nature of such non-Efimovian clusters, largely exceeding in size the van der Waals
range of the interatomic interaction potential, their existence does not trigger an
increase of inelastic decay processes [38], in stark contrast to the widely-explored
Efimovian case [39]. Therefore, the presence of fermionic trimers [9,13,15] and bosonic
tetramers [18,37] – expected to exist for 8.17.M/m.13.6 [9] and 8.86.M/m.13.6
[18], respectively – may uniquely allow one to experimentally attain qualitatively
new many-body regimes, within which strong few-body correlations add to, or may
even overcome, the standard two-body ones. Yet, none of the Fermi-Fermi mixtures
nowadays available, i.e. 6Li-40K [40–42], 40K-161Dy [43,44] and 6Li-173Yb [45, 46],
exhibits a mass ratio that allows to probe such an appealing scenario, although
related few-body effects have been disclosed in Li-K [47].

Our interest for the novel lithium-chromium system is three-fold: first, the
peculiar chromium-lithium mass ratio, of about 8.8, is extremely close to the critical
values above for which both three- and four-body non-Efimovian states are predicted
to emerge [9, 13, 15, 18, 37]. This feature, combined with the recent discovery of
various magnetic Feshbach resonances well suited to control Li-Cr interactions [48],
makes such a bi-atomic combination an unparalleled framework with which to
explore a new class of elastic few-body effects and their impact at the many-body
level [15, 18]. Second, in the regime of strong repulsive interactions, three-body
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recombination processes are predicted to be drastically suppressed for the specific
Li-Cr mass ratio [49], lithium-chromium Fermi mixtures thus representing a pristine
platform to explore Stoner’s ferromagnetism [50] and related phenomena [51–55],
“immune” to the pairing instability. Finally, recent ab initio calculations [56] foresee,
for the ground state of the LiCr dimer, a sizable electric dipole moment of about 3.3
Debye, combined with a S=5/2 electronic spin, thereby making Li-Cr mixtures also
extremely appealing candidates to realize ultracold paramagnetic polar molecules.

Our strategy to produce degenerate lithium-chromium Fermi mixtures is formally
similar to the all-optical one developed for the lithium-potassium system in the
Innsbruck experiment [57]. In spite of its conceptual simplicity, successful application
of this approach to Li-Cr mixtures has required to tackle various challenges – mostly
connected with fermionic chromium and its rather limited experimental investigation
[58–60]. Specifically, a few major issues make the production of ultracold 53Cr
gases non-trivial. First, chromium suffers from rather strong light-assisted inelastic
collisions [58], which so far limited the 53Cr number collected in the MOT to
roughly 106 [60]. Second, direct loading of chromium atoms from the MOT into
an infrared optical dipole trap has proved to be challenging, owing to detrimental
light-shifts [61,62]. Finally, efficient sympathetic cooling of chromium with lithium
should not be taken for granted. Although the Li-Cr background scattering length, of
about 42 a0 [48], is close to the Li-K one [40,63] – and thus sufficient to guarantee a
good thermalization rate – efficient Li-Cr sympathetic cooling in a standard 1070 nm
optical trap is hard to achieve, given that the chromium polarizability, relative to
the lithium one, is about 1÷3, in contrast with a potassium-to-lithium polarizability
ratio of about 2 at such wavelength [57].

A detailed description of the experimental protocols, that I contributed to devise
in Lab. 9 during the first part of my thesis, to produce large double-degenerate
Li-Cr Fermi mixtures will be subject of Chapter 2. These results are reported in the
recently published work [64].

Once the quantum degeneracy of such a novel bi-atomic system was experimen-
tally attained, our activities focused on the investigation of Li-Cr mixtures in the
regime of resonant inter-species interactions.

Specifically, by employing two s-wave Li-Cr Feshbach resonances that were
identified before the start of my thesis, we focused on characterization of the atom-
molecule conversion process. Feshbach dimer formation representing a fundamental
step towards few- and many-body studies with strongly-interacting Li-Cr Fermi
mixtures, and also being the crucial starting point to realize, in the future, quantum
gases of ground-state LiCr molecules.

A summary of the first experiments that I contributed to conduct on this topic will
be given in Chapter 3. While the outcome of this characterization indeed appeared
extremely promising – as we could demonstrate the ability to create ultracold LiCr
molecular samples of more than 5× 104 dimers, with atom-to-molecule conversion
efficiency above 60% – these first attempts also revealed some technical issue of our
setup, which needed to be solved, in order to go further with the investigation of
the mixtures under resonant conditions.

Overcoming these technical problems with upgrades to the experimental appara-
tus represents the major activity that I carried out during my thesis. In particular,
a first contribution that I made to the Li-Cr experiment is to device, realize and
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integrate on the main experimental machine an efficient RF antenna to perform
coherent transitions between adjacent Zeeman levels of chromium, at high fields
exceeding 1400G. This major work is reported in Chapter 4 of this thesis.

A second technical improvement I was able to contribute successfully during
my master thesis period is represented by the implementation of an advanced
stabilization scheme of the magnetic field bias near the high-field Li-Cr Feshbach
resonance. As a result of my efforts, I could achieve a few mG stability of the
magnetic field around 1400G, as I will describe in Chapter 5. There I will also
briefly show how the successful realization of the chromium antenna, combined with
the achieved field stability, allowed us to recently characterize some properties of
LiCr Feshbach dimers.
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Chapter 1

Fundamental properties of two-
and three-body fermion
systems: a basic introduction

In this Chapter, I summarize the theoretical background useful to understand the
main scientific results obtained during my thesis. My aim is to give an overview of
the physical phenomena and theoretical tools that are pertinent for understanding
resonantly-interacting atoms (and molecules) in the ultracold regime. In particular, I
will recall some well-established textbook results on two-particle scattering, focusing
on collisions that occur at low energy, relevant for ultracold gases. I will then discuss
the Feshbach resonance phenomenon, and recall the properties of two-body systems
under strongly-interacting conditions. This chapter follows [65].

1.1 Two-body scattering physics

When two quantum particles having mass M and m, respectively, collide with each
other, their states and wavefunction are altered, as a result of their interaction
via the interatomic potential V (r), where r represents the distance between the
particles. If V (r) is non-zero, the motion of the pair changes with respect to the
case without interaction, in which a plane wave ∼ eikz describes the pair’s motion in
the center-of-mass frame, k denoting the relative momentum. The scattering energy
is given by ~2k2/(2mr), where mr is the reduced mass calculated as Mm/(M +m).
In particular, a non-zero interaction results in an extra component that adds to the
system wavefunction. For r approaching infinity, this component takes the form
of an outgoing spherical wave ∼ eik

′r/r, which combines with the incoming plane
wave. The scattering amplitude, f(k,k′), which represents the magnitude of this
scattered wave, contains all details related to the collisional process, and it generally
depends on the incoming (outgoing) momentum k (k′). Considering the case of
elastic scattering, where |k| = |k′|, and restricting to the case of a central potential
(V (r) = V (r)), the scattering amplitude can be expressed as a sum over partial
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waves with a given angular momentum quantum number l

f(k,k′) = f(k, θ) =
∞∑
l=0

(2l + 1)Pl(cos θ)fl(k) (1.1)

where Pl are the Legendre polynomials, and θ represents the angle between the
incoming and outgoing momenta. When the two particles are indistinguishable,
Eq. (1.1) needs to be adjusted to account for the symmetry (or antisymmetry)
properties of the bosons or fermions under particle exchange. In such a way, the
partial wave expansion for identical bosons (fermions) will only include even (odd)
waves, as the Legendre polynomials have a parity of (−1)l.

It is possible to represent each partial-wave amplitude fl(k) in several equivalent
forms expressed in terms of the associated phase shift δl(k) [66]

fl(k) = 1
2ik (e2iδl(k) − 1) = 1

kcotδl(k)− ik = sin(2δl(k))
2k + i

sin2(δl(k))
k

. (1.2)

From the scattering amplitude the scattering cross section can be obtained
making an integral over the solid angle

σ(k) =
∫
|f(k, θ)|2dΩ = 4π

∞∑
l=0

(2l + 1)sin
2(δl(k))
k2 ≡

∞∑
l=0

σl(k). (1.3)

Comparing Eq. (1.2) and Eq. (1.3) and remembering that Pl(0) = 1 for each l, we
obtain

σ(k) = 4π
k
Im [f(k, 0)] . (1.4)

It is important to note how each partial-wave component in Eq. (1.3) reaches its
maximum value, named unitary limit,

σl,MAX(k) = (2l + 1)4π
k2 when δl(k) = π

2 . (1.5)

Likewise, having information about f(k, θ), also the elastic scattering rate 1/τ can
be determined. Considering the collision of a particle within a medium of density n̄
the scattering rate is linked to the forward scattering amplitude averaged over all
collision momenta, 〈f(k, θ = 0)〉, through the relation

1/τ = n̄
~
mr

4π Im 〈f(k, 0)〉. (1.6)

Additionally, f(k, θ) provides information also about the energy shift h δν, experi-
enced by one particle due to its interaction with the surrounding medium. In this
case one finds that [67,68],

δν = −n̄ ~
mr

Re 〈f(k, 0)〉. (1.7)

The scattering problem becomes considerably simpler if we consider collisions at
low momenta (k → 0) involving short-range interaction potentials, which are those
that have a power law form, V (r) ∼ r−α with α > 3, for r →∞. This scenario is
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particularly relevant when we study non-magnetic atom pairs that exhibit a van der
Waals interaction, represented by the potential VvdW (r)= −C6/r

6 = −EvdW (r/Re)6,
with EvdW and Re denoting the van der Waals energy and range, respectively. For
that kind of short-range potentials, for each l value, it can be shown that

δl(k) ∼ k2l+1 for k → 0 (1.8)

and, therefore from Eq. (1.2), that fl(k) ∼ k2l. Consequently, when atoms undergo
collisions in the ultracold regime, in which the de Broglie wavelength is much greater
than the van der Waals range (kRe � 1), the resulting scattering is primarily
isotropic, namely s-wave (l = 0).

In particular (see e.g. Ref. [69] for details), the net effect of V (r) on the two-body
system at large inter-particle separation, r� Re, can be formally taken into account
by imposing a boundary condition at the origin for the log-derivative of the radial
wavefunction ψ(r):

[rψ]′

[rψ] |r→0 = k cotδ0(k), (1.9)

the so-called Bethe-Peierls boundary conditions [70]. While in the generic scenario
the replacement of V (r) by the condition Eq. (1.9) does not simplify the problem –
as it requires to know the phase shift – this becomes a valuable tool in the case of
low-energy scattering, kRe� 1.

In this regime, Eq. (1.2) can be approximated by expanding it in terms of the
small parameter kRe. Specifically, for the s-wave channel (l = 0), this expansion
yields a dependence of the form

k cotδ0(k) ≈ −1
a
−R∗k2 + ..., (1.10)

where the constants a and R∗ are defined as the scattering length and the effective
range parameter, respectively. The s-wave scattering amplitude now becomes

f0(k) = − 1
1
a +R∗k2 + ik

. (1.11)

It is important to note that this equation can be reproduced with an idealized
zero-range (pseudo-)potential, thereby establishing that all short-range potentials
are interchangeable provided they have the same R∗ and a.

1.2 The Feshbach resonance phenomenon

An essential characteristic of Eq. (1.11) is that it exhibits the familiar Breit-Wigner
resonance shape [66]. This kind of resonance is relevant to describe low-energy
collisions, when the scattering state, at energy E = ~2k2/(2mr), is coupled to a
quasi-stationary state, at energy Eres, via a coupling amplitude γ > 0, for which

fBW (E) = − ~γ/
√

2mr

E − Eres + iγ
√
E
. (1.12)



4
1. Fundamental properties of two- and three-body fermion systems: a basic

introduction

Comparing Eq. (1.12) with Eq. (1.11), equivalently recast in energy units, it is easy
to verify the link between the parameters (a, R∗) and (Eres,γ), respectively:

a = − ~γ√
2mrEres

(1.13)

R∗ = ~√
2mrγ

. (1.14)

R∗ depends only on the coupling amplitude, while a depends on both γ and Eres.
In equivalent terms, the coupling energy between the scattering and quasi-stationary
states equals

γ2 = ~2

2mrR∗2
. (1.15)

From Eq. (1.13) is important to note that the sign of the scattering length depends
only on the sign of Eres: if Eres < 0, i.e. a real bound state exists, the scattering
length is positive, while a < 0 only if Eres is positive. This is possible because γ is a
positive-defined quantity.

The scattering length amplitude can be tuned if the energy Eres can be varied
with respect to the scattering threshold. In particular, when Eres → 0, |a| → ∞,
that, following the Eq. (1.10), corresponds to δ0→ π/2. In the case of ultracold
systems, the value of Eres can be adjusted through the Zeeman effect, resulting in
the occurrence of the Feshbach resonance (FR) phenomenon [7].

A Feshbach resonance appears when two atoms in a specific hyperfine and Zeeman
state configuration (denoted as the open channel) have their scattering threshold
nearly degenerate with a molecular state supported by the interatomic potential
asymptotically connected to a different hyperfine state combination, (referred to as
the closed channel), see Fig. 1.1. Thereby having a non-zero differential magnetic
moment δµ = µc − µo between closed and open channels, the energy of the quasi-
stationary state can be written as Eres = δµ(B−B0), where B represents an external
magnetic field, and B0 the field value at which the scattering threshold and the
bound state in the closed channel become degenerate. Eq. (1.13) can be expressed
now as function of magnetic field

a(B) = − ~γ√
2mrδµ(B −B0)

. (1.16)

By defining the magnetic width of the Feshbach resonance as

∆B ≡ ~γ√
2mrabgδµ

, (1.17)

and the background scattering length abg as the value that a assumes far away from
B0, we can re-write Eq. (1.16) as [7]

a(B) = abg(1−
∆B

B −B0
). (1.18)

By appropriately combining Eq. (1.17) and Eq. (1.14) the effective range parameter
is given by

R∗ = ~2

2mr

1
abg∆Bδµ

. (1.19)
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Figure 1.1. (a) Basic two-channel model for a Feshbach resonance. The phenomenon arises
when two atoms collide with an energy E in the entrance channel and become resonantly
linked to a molecular bound state with energy Eres, which is supported by the closed
channel potential. In the ultracold regime, collisions happen at energies close to zero,
Eres → 0. In this case, resonant coupling can be achieved by adjusting the magnetic
field to tune Ec close to zero, provided that the magnetic moments of the closed and
open channels are not equal. (b) Scattering length a, and (c) molecular state energy
E near a magnetically tuned Feshbach resonance. The binding energy is defined to be
positive, Eb = −E. The inset shows the universal regime near the point of resonance
where a is very large and positive. Figure taken from [7].

If we consider that large (small) values of γ indicate strong (weak) coupling between
the scattering channel and the quasi-discrete level, we can alternatively classify
a Feshbach resonance as broad or narrow, depending whether the effective range
parameter in Eq. (1.19) is smaller or larger than the true range of the potential
Re: R∗≤ Re ⇒ broad resonance; R∗� Re ⇒ narrow resonance. In Ref. [7], this
classification is made using a dimensionless resonance strength parameter sres, which
can be written as sres ∼ 0.96R∗/Re. Narrow resonances are characterized by a small
value of this parameter, sres � 1. Vice-versa, sres � 1 for broad resonances.

1.3 Feshbach dimer
As mentioned above, close to the resonance position at B0, the two channels are
strongly coupled, and the scattering length is very large |a| � Re. Let us now move
to consider how the finite coupling γ with the open channel modifies properties of
the bound state near the FR, otherwise represented by a closed-channel molecule for
γ = 0. To this end, we look for the pole of f0(k) in Eq. (1.11) at negative energies:
i.e, we replace k → iκ, with κ > 0, so that εb = −~2κ2

2mr
< 0, with the associated

wavefunction falling off like ψb(r) ∼ e−κr/r at r � Re. We thus look when
1
a
−R∗κ2 − κ = 0. (1.20)

It is easy to verify that this happens only when a>0, for

κ =

√
4R∗
a + 1− 1

2R∗ ≡ 1
a∗
, (1.21)
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thus yielding

εb = − ~2

2mra∗2
. (1.22)

The above result interpolates between two familiar forms obtained in the limits of
small and large R∗/a values, respectively: For R∗/a� 1 – i.e. close to the resonance
pole, or in the broad resonance case – one has 1/a∗ ∼ 1/a, so that Eq. (1.22) becomes

εb|R∗/a�1 ∼ −
~2

2mra2 ≡ ε0. (1.23)

A plot of the binding energy as function of magnetic-field detuning is shown in
Fig. 1.1(c). In this case, the bound state energy features a typical parabolic trend
ε0 ∝ −1/a2 ∝ −(B−B0)2: the dimer is a halo state whose energy and wavefunction
solely depend on the scattering length a (universal regime). In the opposite limit
R∗/a � 1, instead, 1/a∗ ∼ 1/

√
aR∗ and, exploiting Eqns. (1.18) and (1.19), one

finds a dimer energy trend

εb|R∗/a�1 ∼ −
~2

2mraR∗
= δµ(B −B0). (1.24)

In this case, the bound state energy linearly decreases with the field detuning, and
it coincides with the one of the bare closed-channel molecule. It is important to
emphasize that the dimensionless parameter R∗/a also quantifies the open/closed
channel fraction characterizing the (dressed) Feshbach molecule in the zero-range
approximation. Referring the interested reader to Ref. [69] for the derivation of the
result, it is useful to keep in mind that the dimer open-channel fraction is given by

Popen = 1√
1 + 4R∗/a

, (1.25)

and, correspondingly, the closed-channel fraction is obtained as Pclosed = 1−Popen. It
is easy to verify that, for Popen∼1, the binding energy follows the universal behavior
Eq. (1.23) whereas, in the opposite limit Popen�1, the Feshbach dimer essentially
coincides with the bare closed-channel molecular state, Eq. (1.24).

Correspondingly, the magnetic moment associated with the Feshbach dimer is
given by

∂εb/∂B= µoPopen + µc(1− Popen) (1.26)

at all detunings: as such, experimental measurement of the dimer magnetic moment
around a FR provides information about the magnetic field dependence of the
open-channel fraction, thereby of R∗/a – see Ref. [71]. In general, the transition
from one regime to the other will occur at magnetic field detunings that depend
on the character of the resonance considered: for broad resonances, the universal
regime Eq. (1.23), with Popen∼1, will extend over a B-field region of order ∆B from
the resonance center B0, whereas for narrow FRs this will only occur for detunings
|B −B0|�∆B.

At a first glance, the distinction between narrow and broad FRs does not seem
to cause a significant change: from a two-body perspective, any broad resonance
becomes narrow when the incoming momenta and/or detunings are sufficiently large.
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Vice-versa, also narrow resonances will behave as broad ones for sufficiently small
k and |B −B0| values, so that R∗k2�1/a in Eq. (1.11). In practice, though, such
a distinction is highly relevant, given that in realistic situations one will have (i)
a finite B-field stability, that limits the accuracy with which to access the R∗� a
region in experiments; (ii) a finite momentum distribution, either due to a finite
thermal spread at T >0 or, for fermionic samples, to the presence of a finite Fermi
momentum κF even at zero temperature. In the broad resonance case, one will
typically have R∗∼Re� 1/κF , and thus all momenta k will simultaneously reach
unitary conditions δ0(k) = π/2 for 1/a =0. In turn, for narrow resonances and
realistic densities n = κ3

F /(6π2), R∗κF � 1, so that different momenta will reach
the unitary limit, see Eq. (1.5), at different detunings. This makes that the low-
temperature many-body regimes which can be accessed near broad and narrow
resonances are qualitatively different, see e.g. Refs. [72–75].
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Chapter 2

Production of a degenerate
Fermi-Fermi mixture of 6Li and
53Cr atoms

In this Chapter I report on the realization of a degenerate Fermi mixture made
of 6Li alkali and 53Cr transition metal ultracold atoms. This result was obtained
during the first period of my thesis, and that has been already published in Ref. [64].
In particular, in the following I describe how we could overcome various challenges
in the experiment, obtaining degenerate samples comprising more than 2×105 Li
and 105 Cr atoms, polarized in their lowest Zeeman states, at temperatures of about
200 nK, corresponding to T/TF,Li∼T/TF,Cr∼0.25 [76]. The Chapter is organized as
follows: in Section 2.1 I describe our new protocol to produce a dual-species Li-Cr
MOT. In particular, I discuss how the 53Cr MOT atom number can be substantially
increased with respect to previous studies [58, 60], reaching up to 8×107 within a
2 s loading time and in presence of a MOT of 109 6Li atoms. This optimization
was made by my colleagues, before starting my thesis, so I will just give here a
quick summary. In Section 2.2, I present an efficient scheme to load simultaneously
Li and Cr atoms in a bichromatic optical dipole trap (BODT) directly from the
MOT, based on the implementation of a “dark spot”, obtained through a weak
green beam at 532 nm superimposed to the main trapping beam at 1073 nm [77].
In Section 2.3, I show the evaporation trajectories followed by the two components
and, in particular, how the sympathetic cooling efficiency at ultra-low temperatures
can be substantially increased exploiting a narrow interspecies Feshbach resonance.
Finally, in Section 2.4 I describe how a crossed bichromatic beam, added to our
main BODT, allows us to strongly improve the chromium degree of degeneracy, and
to simultaneously reach deeply-degenerate conditions for both atomic components.
This upgrade in the experimental setup was carried out during the first months of
my thesis, to which I most actively contributed.

2.1 Dual species 6Li-53Cr MOT

The strategy we adopted to create a degenerate Fermi mixture consists of an all-
optical approach [57] and it consists of the following main steps, summarized in
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Figure 2.1. Schematic overview of the experimental routine discussed in the text. Our
protocol consists of the following main steps: sequential loading of a cold Li-Cr mixture
in a dual-species magneto-optical trap (first two panels); Efficient collection of the two
components into a bichromatic optical dipole trap through the implementation of a “dark
spot” for the chromium MOT (middle panel); Evaporative cooling of a two-state lithium
mixture and simultaneous sympathetic cooling of chromium (last panel). Optimized
values of the most relevant experimental parameters are specified for each stage. Typical
absorption images, acquired at the end of each step of the routine, are shown for the
two mixture components, with Li (Cr) images being framed red (blue). The time-line of
the experimental cycle, overall lasting 12.8 s, is shown below the panels.

Fig. 2.1: (i) realization of a cold mixture in a dual-species magneto-optical trap
(MOT) [60]; (ii) direct loading of the two components into an optical dipole trap; (iii)
evaporative cooling of a two-state lithium mixture and simultaneous sympathetic
cooling of chromium.

The experimental apparatus employed for the present studies, apart from targeted
changes in the optical setup summarized below, has been described in detail in the
previous works of Lab. 9. In particular, the experimental setup and first MOT
optimization can be found in Ref. [60, 78,79]. Details about experimental procedure,
still not fully updated, and Feshbach spectroscopy are instead given in Ref. [80]. To
produce the lithium MOT, we essentially follow the scheme developed by Burchianti
et al. in Ref. [81]. Laser cooling and trapping of such a element is well-established,
and it requires only two laser lights addressing the D2 (2S1/2→2P3/2) atomic line
at 671 nm, see Fig. 2.2(a): the cooling light, addressing the F = 3/2 → F ′ = 5/2
transition, and the repumper light, detuned by 228MHz from the cooling one, near
resonant with the F = 1/2→ F ′ = 3/2 transition. With respect to the previously
reported performance of the Li MOT [60], a further optimized shaping of both MOT
and Zeeman slower (ZS) beams allowed us to increase the lithium atom number
collected in the MOT from 4×108 to 109, after a typical loading time of 6 seconds.
For the 53Cr component, a much more substantial increase in the MOT atom number
was achieved during the time of my thesis, resulting in an improvement by almost
two orders of magnitude relative to previous studies [58,60].

I will make use of the next pages of this section to summarize our new upgraded
chromium optical setup with respect to the reported one and, after recalling some
theoretical results about the MOT loading dynamics, to discuss our experimental
findings and procedures to realize large cold Cr samples, also in combination with
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the Li component. This optimization of the chromium MOT was mainly carried out
by my colleagues A. Ciamei and S. Finelli at the start of my thesis.

Figure 2.2. (a) Sketch of the fine and hyperfine energy levels relevant for the laser cooling
of 6Li atoms (not to scale), including those exploited for the gray optical molasses
based on the D1 line (blue arrows). The saturation intensities of these two lines are
ID1
sat = 7.59mW/cm2 and ID2

sat = 2.54mW/cm2 respectively. The widths of both transition
is Γ = 5.87MHz. (b) Sketch of energy levels and optical transitions addressed for the
laser cooling of 53Cr atoms (not to scale). For each relevant hyperfine level originating
from the non-zero nuclear spin I= 3/2, the F quantum number and the detuning in
MHz, referenced to an assumed I = 0 state, are shown. A single frequency-doubled
laser at 425.5 nm delivers the light exciting atoms from 7S3 to 7P4, addressing the main
cooling transition labeled “Cooler” (solid blue), and the repumping transitions denoted
BR1, BR2 and BR3 (solid blue) in order of decreasing gain on the steady-state MOT
number. Metastable 5D states onto which 7P4 atoms decay by spontaneous emission are
repumped back into the cooling cycle by three additional “red repumper” beams labeled
as RR1, RR2 and RR3, with the same indexing used for BRs. These lights are delivered
by two independent master oscillators at 663 and 654 nm, see Ref. [60] for more details.
RR1 and RR3, detuned from each other by only 225MHz, are obtained by two separate
sets of acousto-optic modulators. The three green transitions around 533 nm, coupling
the 7P4 to the 7D3,4,5 states, are relevant for the operation of the “dark spot” discussed
in Sec. 2.2.

Improved 53Cr MOT optical setup.

As described in Refs. [58,60], laser cooling of fermionic chromium is based on the
7S3→7P4 (FS = 9/2→ F ′P = 11/2) atomic line, see Fig. 2.2(b) for a sketch of the
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energy level diagram and addressed optical transitions. Besides the cooling light,
three blue repumpers, respectively denoted as BR1, BR2 and BR3, are required to
operate the MOT. Furthermore, even with all blue repumpers on, the MOT transition
remains slightly leaky, since optically excited atoms can decay from the 7P4 state
onto underlying 5D3 and 5D4 metastable states. Therefore, three additional “red”
repumpers, denoted RR1, RR2 and RR3 in order of repumping efficiency, are needed
to fully close the cooling cycle. In particular, RR3, not implemented in previous
work, Ref. [60], was introduced right before I started my thesis, which yielded a
further increase of 10% in the steady-state MOT atom number.

We carefully optimized the size of all laser beams shone on the Cr MOT cloud,
with the freedom of changing the power partition between different beams and under
the constraint of maximum available blue power of 500mW. In particular, we have
increased the MOT and repumper beam waists by about a factor of two relative to
the previous setup described in Ref. [60], now featuring 1/e2 radii of about 0.65 cm,
effectively increasing the capture volume by almost one order of magnitude. Notably,
these improvements on the chromium setup enabled us to identify a peculiar region
in the detuning-intensity plane of the MOT cooling light, within which light-assisted
losses are drastically suppressed, as shown in the following.

53Cr MOT: a few theoretical considerations.

In order to understand our strategy and the experimental data presented below,
I recall some textbook results [82] about the loading dynamics in a MOT. Quite
generally, the atom number in a MOT follows a time evolution defined by the rate
equation

dN

dt
= ΓL − αN(t)− β

〈V 〉
N2(t), (2.1)

where ΓL is the loading rate, α is a one-body decay rate, β is the rate coefficient
per unit volume for light-assisted collisions, and 〈V 〉 denotes the density-weighted
volume of the cloud. Since in our experiment we exploit all (blue and red) repumping
lights, we can neglect the one-body loss term, and safely set α=0. Eq. (2.1) then
yields the asymptotic value for the collected atom number

N∞ =
√

ΓL 〈V 〉
β

. (2.2)

From Eq. (2.2) one can immediately see that, in order to increase N∞, one needs
to maximize ΓL (solely dependent on the transverse cooling and Zeeman slowing
parameters but not on the MOT ones), enlarge 〈V 〉 and minimize β.

Let us consider how these two quantities depend upon the normalized detuning
δ/Γ and saturation parameter s0 = I/IS of the MOT (for the 7S3→7P4 chromium
line, the natural linewidth is Γ= 2π×5.02MHz, and IS=8.52mW/cm2 the associated
saturation intensity).

In the limit of s0�1 and |δ| � Γ, one obtains that the MOT volume scales
as [82]

〈V 〉 ∼
( Γ

16µ′kL

)3/2 (2δ/Γ)6

(b s0)3/2 , (2.3)
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where kL denotes the laser wavevector, b the magnetic field gradient, and µ′ the
effective differential magnetic moment for the cooling transition.

The dominant light-assisted loss processes affecting a chromium MOT involve
pairs of one ground S- and one excited P -state atom. Thus, denoting with ΠP the
P -state population, on quite general ground one expects the rate coefficient to scale
as β ∝ ΠP (1−ΠP ). Considering the standard result for ΠP for a two-level atom [82],
in the low-intensity and large-detuning limit one obtains that, up to a constant,

β ∼ s0/(2δ/Γ)2. (2.4)

Combining this dependence of β upon the MOT parameters, with the one for 〈V 〉
given by Eq. (2.3), one then expects the MOT atom number to feature a scaling of
the kind

N∞ ∝
√

ΓL
b3/4

(δ/Γ)4

s
5/4
0

. (2.5)

From the overall trend of Eq. (2.5), one can see how, for a given loading rate
ΓL, light-assisted losses can be mitigated – thereby substantially increasing N∞ –
by working at low s0 values, large detunings, and weak field gradients of the MOT,
although a compromise must be found, in order to guarantee a sufficiently strong
force and high capture velocity of the MOT.

A well-known system, where very strong light-assisted losses are successfully
circumvented by following these concepts, is metastable 4He∗ [83, 84]: in that case,
operating the MOT at large detunings on the order of |δ| ∼ 40Γ while keeping
large s0>10 values to maintain a sufficiently high capture velocity, it is possible to
collect more than 109 atoms within a few-second loading time. For the 53Cr system,
this strategy is challenging to follow. On the one hand, the saturation intensity
(linewidth) of chromium is more than 50 times (3 times) larger than the one of
He∗, and the limited amount of blue power available does not allow us to reach
s0 �1, without diminishing the performance of transverse cooling and hyperfine
pumping stages at the chromium oven [60], thus decreasing ΓL. Moreover, contrary
to metastable He, 53Cr features a rich and rather dense hyperfine spectrum which,
in combination with large s0 and |δ|/Γ values, may allow the cooling light to address
undesired transitions. Indeed, the small optimum Zeeman slower detuning and low
exit velocity shown in our previous work [60], was already interpreted as a strong
sensitivity to residual Doppler shifts during the MOT capture. Hence, we opted to
follow a strategy opposite to the one of 4He∗, based on minimizing s0 while keeping
relatively small light detunings of a few Γ.

53Cr MOT: experimental results.

Experimentally, to test the feasibility of the strategy above discussed, we measured
the atom number collected in the MOT after a 2 s loading time, exploring different
(small) values of s0. For each s0 value, the light detuning was scanned until the
maximum number was observed. The study was performed by intentionally keeping
both ΓL and b constant. Specifically, we worked at a field gradient b=25G/cm along
the vertical direction. In order to better count the collected atoms, at the end of
the loading stage we performed a compressed MOT (C-MOT) stage lasting about
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Figure 2.3. Characterization of the maximum chromium atom number collected in the
MOT after 2 s loading, as a function of I/IS (black circles, left axis). I = 2×2P/w2 is the
peak intensity of one single (retro-reflected) MOT beam, characterized by a 1/e2 radius
w=6.5mm. Each data point is the average of at least five independent measurements.
For each I/IS , the experimental data exhibit a constant 10% uncertainty. For each
value of I/IS , the corresponding optimum detuning |δ|/Γ, experimentally determined,
is shown as blue squares, right axis. The blue line shows the best fit to a power law
|δ|/Γ=(I/IS)α, see text. The red solid line corresponds, up to a multiplicative factor,
to N∞ given by Eq. (2.5), assuming the best-fitted power-law dependence of |δ|/Γ on
(I/IS).

6ms, that strongly reduces the cloud size while not affecting the atom number.
Then both MOT gradient and lights were turned off, and an absorption image was
acquired after 2ms time-of-flight, from which the atom number was obtained through
a 2D-Gaussian fit.

The results of this characterization, reported also in Ref. [64] are summarized
in Fig. 2.3. The atom number (black circles, left axis), is plotted as a function of
the normalized single-beam peak intensity I/IS , together with the corresponding
optimum detuning experimentally identified (blue squares, right axis). One can
notice how, throughout the scanned parameter space, a substantial increase in the
collected Cr atoms could be observed, relative to our previous study [60], and samples
ranging from 30 to 80 million particles were obtained. The behavior of |δ|/Γ versus
s0 is well fitted to a power-law, with exponent α = 0.22(1), see blue line. Such a
value is relatively close to, but smaller than, the one that would maintain a constant
β/ 〈V 〉 rate for light-assisted collisions in Eq. (2.5), i.e. α= 5/16 ∼ 0.31. On the
other hand, a non-constant loss rate is signaled by the observed variation of the
MOT atom number, see black circles in Fig. 2.3. Remarkably, the observed behavior
is nicely reproduced by the textbook model expectation Eq. (2.5), shown as solid
red line in Fig. 2.3, up to a multiplicative constant. The small mismatch between
experiment and theory, visible at very low s0 values, we ascribed to the fact that
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in this regime the estimated MOT capture velocity becomes very close to, or even
slightly smaller than, the exit velocity of our Zeeman slower [60]. Parallel to that,
the MOT size in this regime was found to rapidly increase approaching the beam
radius, thus making finite-size effects more important.

The identification of a region of MOT parameters able to strongly mitigate light-
assisted losses allowed us to greatly speed up and simplify the experimental routine
to produce a large 6Li-53Cr mixture in the cold regime. Since a loading time of 2 s
suffices to reach N∞ for chromium, and that the MOT performances summarized in
Fig. 2.3 are not affected by the presence of an overlapping lithium cloud, it is not
anymore needed to pursue accumulation of Cr atoms in magnetically-trapped D
states [58], a procedure that requires significantly longer loading times, and whose
efficiency is limited by the presence of a large Li MOT [60]. As a final remark, it is
worth emphasizing that while the optimum loading conditions summarized in Fig. 2.3
strongly reduce the Cr MOT density, they do not limit the capture efficiency of the
C-MOT stage, operated at constant cooling light parameters. As a consequence, the
strong increase in the MOT atom number achieved during my thesis directly turns
into a significant density increase after the C-MOT, hence providing a substantial
gain for the successive step of optical trap loading within our experimental routine.

Optimized loading of a dual species 6Li-53Cr MOT.

The ability to rapidly collect a large number of 53Cr atoms directly in the MOT
allowed for an optimized sequential loading of the Li-Cr mixture in our dual-species
magneto-optical trap. The most convenient strategy we experimentally identified
– and that represents our current experimental routine – is summarized in the
following: (i) We first load lithium atoms for about 6 s, at an optimum gradient of
about b = 45G/cm along the vertical direction. During this time, the chromium
lights and ZS field are already on, although few Cr atoms are collected at this stage.
(ii) We switch off the Li Zeeman slower and decrease the MOT gradient down to
b = 25G/cm, which is the optimum value found for chromium. The light detuning
for lithium is correspondingly slightly diminished to ensure a good storage of this
species during the chromium MOT loading. (iii) We operate the Cr MOT for about
2 seconds with the optimum light parameters reported in Fig. 2.3. (iv) We then
turn off the Cr Zeeman slower (light and field), and adiabatically transfer the cold
Li-Cr mixture from the quadrupole field of the MOT coils into that of a smaller set
of “Feshbach” coils [60], yielding the same gradient but allowing for a faster switch
off. (v) Finally, a 6ms-long C-MOT phase is applied on both species simultaneously,
in order to compress and cool the mixture. This is done, without changing the field
gradient, by diminishing the intensity of the MOT lights, and moving the cooling
frequency closer to resonance. Specifically, for chromium the C-MOT detuning is
set to about -1.4Γ and the beams intensity is reduced to about 20%, relative to that
employed during the loading. For lithium, the detuning is moved from about -7 to
-1.7 natural linewidths (ΓLi/(2π) = 5.87MHz), and the light intensity is substantially
reduced, passing from more than 17 I/IS,Li at the loading stage, down to about
0.5 I/IS,Li (IS,Li=2.54mW/cm2) [60].

At the end of this procedure, lasting 8 seconds overall, we manage to obtain cold
Li-Cr mixtures comprising 109 Li and 8×107 Cr atoms, at a temperature of about
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300 µK.

2.2 Loading of 6Li-53Cr mixtures into a BODT

As anticipated in the Introduction, our experimental strategy is based on an all-
optical approach conceptually analogous to the one employed for Li-K mixtures [57].
As a crucial step, this requires an efficient loading of the cold Li-Cr mixture, delivered
by our dual species MOT discussed in Sec. 2.1, into a high-power optical dipole trap.
Also in this case a few factors make the Li-Cr system more challenging than the Li-K
one. First, the chromium polarizability for standard infrared (IR) laser trapping
lights at 1064 or 1070 nm is only about 30% of the lithium one, see red profiles
in Fig. 2.4(a), making the resulting IR trap not suited to guarantee an efficient
sympathetic cooling of Cr. Indeed, a 1070 nm beam, characterized by power PIR
(expressed in Watt) and 1/e2 waist wIR (in micron), yields a maximum trap depth for
lithium and chromium that, expressed in mK, are given by ULi,IR ∼ −38.3PIR/w2

IR

and UCr,IR ∼ −12.7PIR/w2
IR, respectively.

We could mitigate this issue by superimposing a green beam at 532 nm to the IR
trap. This second light is tightly confining for chromium, whereas it anti-confines
lithium, see green profiles in Fig. 2.4(a). Denoting the power and waist of the green
beam with PG and wG, respectively, one finds in this case ULi,G ∼ +39.2PG/w2

G

and UCr,G ∼ −23.5PG/w2
G. Therefore, by tuning the relative power of the two lights

of this bichromatic optical dipole trap one can control the overall trap depth ratio
for the two species, see black profiles in Fig. 2.4(a). Experimentally, the BODT is
realized by overlapping our IR trap, already discussed in Ref. [77] and based on
a multimode fiber laser module from IPG Photonics (YLR-300) delivering up to
300W, with a high-power laser at 532 nm. For the latter, we employ a Sprout-G
source by Lighthouse Photonics, nominally delivering up to 15W. The two BODT
beams, propagating in the horizontal (x, y) plane, are recombined on a dichroic
mirror and then focused onto the center of the Li-Cr MOT clouds, with waists along
the vertical (horizontal) direction of wIR,z=44 µm (wIR,y=58 µm), and wG,z=45 µm
(wG,y=48µm), for the IR and green light, respectively.

A second technical problem of Li-Cr is that the direct loading of atoms from the
MOT into the optical trap, contrarily to the lithium case, see e.g. Ref. [81], has been
found to be challenging for chromium [61,62,85]. Besides increasing light-assisted
losses owing to an increased density of the trapped cloud, the IR light shifts both
7S3 and 7P4 atomic levels – connected by the main cooling transition – to lower
energy, with a shift for the excited state larger than the one of the ground state.
Therefore, the detuning |δ| of the MOT light, experienced by Cr atoms within the
IR trap, is effectively reduced (and it may eventually change sign). From light-
shift measurements, that were performed by monitoring the resonance frequency of
absorption imaging of a cold Cr cloud in presence of our IR beam, we obtained a
trap-averaged shift of -0.021(2)MHz/W. This implies that the (C-)MOT detuning,
felt by atoms within the IR trap with PIR ∼200W, is moved towards resonance
by about +1Γ. It thus becomes almost impossible to simultaneously guarantee
a good efficiency of the C-MOT stage for Cr atoms both in- and out-side the IR
trap, especially given the inhomogeneous intensity distribution of the trapping beam.
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Figure 2.4. (a) Sketch of the optical potentials experienced by Li (left panel) and Cr
(right panel) atoms confined in the BODT. The IR light (red curves) yields a trapping
potential about 3.3 times deeper for Li than for Cr atoms, whereas the green beam
(green curves) anti-confines lithium and tightly confines chromium, see text for details.
By adjusting the parameters of the two beams, in the figures assumed to feature equal
waists and an IR-to-green power ratio of 2, one can obtain an overall BODT potential
(black curves) deeper for the Cr than for the Li component. (b) Schematic view of our
BODT setup. Two overlapped IR and green beams, propagating in the horizontal plane
along the x direction, and featuring waists indicated in the figure, provide the primary
trapping potential for the atomic mixture, sketched in blue. A secondary bichromatic
trap, realized by two additional overlapped IR and green circular beams with waists of
about 60 and 70 µm, respectively, crosses the main BODT at an angle of about 15◦ from
the vertical direction. The crossed BODT beam, turned on at the end of the evaporation
stage, allows us to tune the densities of the two mixture components independently
while not modifying the trap depth, see Sec. 2.4.
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One way to circumvent this problem is to flash the IR trap only once the MOT
light is turned off. Experimental trials in this direction, given our large MOT atom
number and the high IR power at our disposal, allowed us to capture about 106 53Cr
atoms within the IR beam at typical power of 130W. Yet, this non-adiabatic loading
method was found to considerably heat up the sample, and it is far from being
optimum also for the lithium component. More involved loading schemes, alternative
to the instantaneous flash of the IR trap, have been devised in Refs. [61, 62, 85],
which rely on the accumulation of metastable D-state atoms in a combined magnetic
and optical potential.

In our case, we found a convenient way, offered by our BODT setup, to success-
fully overcome this major technical issue. The key point is that the 532 nm light
dramatically perturbs the cooling transition, owing to the presence of three atomic
lines that connect the 7P4 level to the 7D states, see Fig. 2.2, all centered around
533 nm and featuring linewidths ranging from 0.9 to about 10MHz. A relatively weak
laser field near 532 nm, blue-detuned from these lines by less than one nanometer,
thus suffices to strongly shift the 7S3→ 7P4 transition towards higher frequencies.
Contrarily to the IR case discussed above, this implies that the effective detuning
of the MOT light experienced by atoms within a 532 nm beam is strongly moved
out of resonance. The green light of our BODT can thus be efficiently exploited to
(over-)compensate the detrimental effect of the IR main beam on the Cr C-MOT,
realizing an effective “dark spot”.

Figure 2.5. Characterization of the chromium atom number collected in the BODT directly
from the C-MOT, as a function of the green beam power acting as a “dark spot”. The
Cr population (blue circles), recorded in the BODT after a hold time of 100ms through
absorption imaging that follows a time-of-flight expansion of 200 µs, is normalized to
the maximum value found throughout the scan, centered at 0.47(1)W. Each point
corresponds to the average value of at least four independent measurements. Error bars
represent the standard deviation of the mean. Horizontal dashed line marks the value
obtained by instantaneously flashing the IR trap at the end of the C-MOT stage. For
this data set, the IR beam has a fixed power of 130W, and the parameters of the C-MOT
stage are kept constant to their optimum values, obtained in the absence of the BODT.
The Sprout-G module used to realize the “dark spot” has a wavelength of 532.2 nm.
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We tested the feasibility of this loading strategy by rising the IR beam up to
130W and, simultaneously, the green beam to a variable power level, through a
3ms-long linear ramp that started 1ms before the chromium C-MOT stage. The
laser cooling light parameters were kept fixed to the optimum values experimentally
found in the absence of the optical trapping potential. 5ms after the end of the
BODT ramp, both MOT lights and gradient were switched off. By turning off the
cooling light 20µs before the repumper ones we made sure that the Cr component
was in the FS =9/2 hyperfine ground-state. After an additional hold time of 100ms,
we turned off the BODT and recorded, through an absorption image following a
time-of-flight expansion, the number of Cr atoms collected in the trap.

The result of this characterization is summarized in Fig. 2.5, that shows the
chromium number loaded into the optical trap, normalized to its maximum value,
as a function of the power of the green light (blue circles). One can notice how,
without the green beam being applied, almost no atoms could be collected in the IR
potential. By increasing the power of the 532 nm light, instead, we observed a sharp
enhancement of the atom number which, for our specific BODT beam parameters,
reaches its maximum at PG=0.47(1)W. A further increase of the green beam power
beyond this optimum value progressively diminished the Cr atom number. For
PG ≥1.25W, this was found to approach the value obtained by instantaneously
flashing the IR trap right at the end of the C-MOT stage, marked by the horizontal
gray line in Fig. 2.5. This behavior can be understood by considering that, once
the green light reaches this power level, atoms falling within the BODT volume are
effectively transparent to the C-MOT light, and thus completely unaffected by it.

Owing to the strong inhomogeneity of the light shift experienced by the Cr
C-MOT atoms throughout the BODT region at the loading, it was hard to quantify
the actual light shifts based on the method employed to characterize the IR beam
at high temperature. Measurements performed in the ultracold regime, where the
Cr sample is localized near the center of the green laser, yielded a peak shift of
+38(5)MHz/W, characterized by a (positive) slope almost 2000 times larger than
the IR (negative) one [80]. Correspondingly, at the optimum value shown in Fig. 2.5,
atoms residing at the center of the green beam experience an effective red shift of
the cooling light of about -3.6Γ.

Not aiming at a quantitatively accurate description of the observed loading
dynamics – which can be quite involved – I remark here only a few qualitative and
general experimental facts. First, throughout the power range explored in Fig. 2.5,
the green beam had negligible impact on the total trap depth, which was solely set
by the high-power IR beam. Second, depending on the specific laser source employed
for realizing the green BODT beam, the optimum power may quantitatively move
to higher or lower values, but the qualitative trend would remain unaffected, as long
as the wavelength of the green light remains close to, but shorter than, 532.9 nm.
Third and most importantly, application of such a scheme allowed us to substantially
enhance the optical trapping efficiency, compared to the instantaneous flash of the
IR beam. Indeed, this “dark spot” strategy, currently employed in our everyday
routine, yields more than a four-fold improvement in the BODT atom number, and
it does not cause any detectable excitation nor heating of the atomic sample. Under
optimum conditions, such a protocol allows us to store up to 4 × 106 Cr atoms in
the optical trap, at temperatures of about 250 µK, slightly lower than the typical



20 2. Production of a degenerate Fermi-Fermi mixture of 6Li and 53Cr atoms

Figure 2.6. Dependence of the number of chromium atoms collected in the BODT upon
the C-MOT atom number. The latter is adjusted by reducing the MOT loading time
while not varying the MOT parameters. The IR beam is set to a power of 130W, and
the green light is adjusted to the optimum value shown in Fig. 2.5. Data are recorded,
after a hold time of 100ms in the BODT, through absorption imaging that follows a
time-of-flight expansion of 200 µs. Each point corresponds to the average value of at
least four independent measurements of both C-MOT and BODT numbers. Horizontal
and vertical error bars represent the standard deviation of the mean. A linear fit to the
data, see dashed line, yields an overall MOT-to-BODT transfer efficiency of 5.5(2)%.

C-MOT one. Finally, it is also important to stress that the absolute number of atoms
that can be transferred into the BODT from the MOT following this procedure was
found to scale linearly with the MOT atom number itself, as shown in Fig. 2.6: up to
the largest MOT clouds we could produce, we did not observe any saturation effect
on the optically-trapped samples, with a constant 5.5% MOT-to-BODT transfer
efficiency. This observation demonstrates how the “dark-spot” method indeed allows
us to maintain light-assisted losses negligible up to the highest achievable densities,
thereby making the ODT loading dynamics of chromium as simple as the one of
lithium and other alkalis.

Besides enabling to collect a significant amount of 53Cr atoms, which may be
appealing also for single-species setups dealing with cold (fermionic or bosonic)
chromium, the successful implementation of this direct loading method is especially
advantageous in our mixture experiment. Indeed, the presence of the weak green
laser field is essentially irrelevant for the loading of the lithium component: up to
2×107 6Li atoms, with temperatures of about 280µK are stored in the BODT when
the IR trap power is set to 130W, with transfer efficiencies similar to those reported
in Ref. [81] for the single species case.

Since the two species feature similar temperatures, the simultaneous loading
of the Li-Cr mixture in the BODT does not perturb too strongly the chromium
performance, although the initial trap depth ratio, uniquely set by the IR beam,
yields at 130W ULi,IR ∼1.9mK and UCr,IR ∼0.65mK, thus causing a rather strong
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asymmetry in the temperature-to-trap-depth ratio between the two components. In
fact, while ηLi=ULi,IR/kBTLi∼7, for chromium we obtain ηCr=UCr,IR/kBTCr∼3.
For this reason, the chromium BODT population, after a hold time of 100ms, in
presence of the overlapping Li sample, is typically found to drop by almost a factor
of 3. This effect was partly reduced by applying a 350µs-long D1 molasses phase on
lithium within the BODT [81], about 3ms after the end of the C-MOT stage, once
the magnetic field quadrupole gradient has been zeroed. This allows us to reduce the
lithium temperature, although not substantially, from 300 down to approximately
220 µK, a value slightly lower than the chromium one. At the end of the D1 cooling,
a 20µs-long hyperfine pumping pulse is applied [81], which transfers all lithium
atoms into the F = 1/2 ground-state manifold. Finally, within 20ms the green power
is linearly ramped up to its maximum value, corresponding to a net power of 6W
onto the atoms, leading to about a 10% increase (6% decrease) of the chromium
(lithium) trap depth.

The application of the BODT loading method for 53Cr discussed above, and
its integration within the two-species experimental cycle, allows us to store in our
optical trap cold Li-Cr mixtures at about 250 µK, composed by 2×107 6Li atoms
populating the two lowest Zeeman states mF = ±1/2 of the F = 1/2 manifold,
coexisting with about 2×106 53Cr atoms, asymmetrically distributed among the
four lowest-lying Zeeman state of the F =9/2 hyperfine level. Specifically, without
performing any Zeeman-selective optical pumping stage, about 55% of the Cr sample
are typically found in the lowest Zeeman state, mF = −9/2. The remaining Cr
atoms are distributed among the three higher-lying levels, mF =−7/2, −5/2 and
−3/2, with relative populations of 25%, 13% and 7%, respectively. This represents
the starting point for the successive stages of evaporative and sympathetic cooling,
that I describe in the following section. For convenience, in the following I denote
the different Zeeman levels of both species with Li|i〉 and Cr|i〉 respectively, with
i= 1, 2, ... labelling the atomic state starting from the lowest-energy one.

2.3 Evaporative and sympathetic cooling stages

Once the two species have been loaded into the BODT, while the green BODT beam
is ramped up to its maximum value, with a linear ramp of 5ms. Parallel to this, we
also found it convenient to linearly increase, within 55ms, the magnetic field bias
up to 880G, i.e. about 50G above the broad Feshbach resonance occurring between
the two lowest Zeeman states of lithium, Li|1〉-Li|2〉. At this field [7], intra-species
lithium collisions are unitarity-limited at all temperatures relevant for this thesis,
whereas inter-species Li-Cr collisions are at their background level, characterized
by a scattering length abg∼42 a0 determined by our team in Ref. [48] prior to the
start of my thesis. The magnetic-field curvature of our coils provides an additional
in-plane harmonic confinement, characterized at 880G by a lithium (chromium)
frequency of about 8.5Hz (7.0Hz), which adds to the BODT potential. The initial
trap depth ratio between the two components, ULi/UCr∼3, and the low initial value
of ηCr∼3, are not optimal for an efficient storage of chromium atoms in the presence
of the lithium sample. For this reason, we found it experimentally convenient to
start the evaporation immediately after the green beam was upraised.
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Figure 2.7. (a) Evolution of the IR and green BODT powers during the evaporation ramp.
The IR power is reduced through four consecutive exponential ramps, lasting 0.2, 0.25,
0.3 and 4 s, respectively, and characterized by 1/e decay times τ1=30ms, τ2=125ms,
τ3=150ms, and τ4=1.6 s. The green power is decreased through two consecutive ramps,
simultaneous to the last two IR ones, and featuring same durations and decay times.
(b) Evolution of the Li|1〉 (red circles) and Cr|1〉 (blue circles) atom number during the
evaporation ramp. Both datasets are normalized to the atom numbers recorded after
the first 165 ms of evaporation, where NLi|1〉=5.1(1)× 106 and NCr|1〉=1.05(3)×106.
Empty symbols refer to the number evolution when the “Feshbach cooling” stage is
applied, see text. (c) Same as panel (b) but for Li and Cr temperatures. For both
(b) and (c) panels, numbers and temperatures are obtained from Gaussian fits to the
atomic distributions, imaged after variable time-of-flight expansion. Note that, for the
coldest samples, the temperature extracted from the Gaussian fit overestimates the
real one, owing to Fermi degeneracy, up to about 40%. Each data is the average of
at least three independent measurements. Empty symbols refer to the temperature
evolution when the “Feshbach cooling” stage is applied. (d) Ratio between chromium
and lithium temperatures, without (full squares) and with (empty squares) application
of the “Feshbach cooling” stage.
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The evaporative cooling stage that we experimentally optimized during the first
period of my thesis, overall lasting for about 5 s, is performed by decreasing the
power of the BODT beams – hence the trap depth – through a series of exponential
ramps. These are schematically shown in Fig. 2.7(a) for the IR and green lights,
respectively. Figs. 2.7(b) and (c) show the corresponding evolution of the normalized
atom number and temperature, that we experimentally determined, for the Li|1〉
(red circles) and Cr|1〉 (blue circles) component, respectively. These observables were
extracted from Gaussian fits to the density distributions of the two atomic clouds,
monitored via spin-selective absorption imaging following time-of-flight expansion.
The Li|2〉 component, not shown in the Figure, throughout the evaporation stage was
found at a temperature equal to the one of Li|1〉, and the corresponding atom number,
relative to that of Li|1〉, remained roughly constant at a value NLi|2〉/NLi|1〉=0.71(5).
Additionally, Fig. 2.7(d) displays the ratio between the chromium and lithium
temperatures throughout the evaporation stage.

During the first 400ms of the optimized BODT-ramp, evaporative cooling of
lithium is established by decreasing only the IR beam power, from 130W down
to 28W. This first step, sufficiently slow to allow for intra-species thermalization
of lithium, is somewhat too fast for the chromium component, the temperature of
which is found to be about 50% higher than the lithium one, see Fig. 2.7(d). Despite
the rather poor efficiency of sympathetic cooling observed within this initial stage,
such a ramp allows us to rapidly diminish the ULi/UCr ratio, from the initial value
of 3, down to about 1. In order to maintain the chromium cloud well overlapped to
the lithium one at all times, we also found it convenient to minimize the differential
gravitational sag of the two components by applying a magnetic-field gradient b along
the vertical direction to counterbalance the gravitational force. Experimentally, we
found an optimum value of about 1.6G/cm, which corresponds to an almost perfect
levitation of the chromium component, and to an effective weak “anti-gravity” for
lithium, of about -g/2.

For evaporation times longer than 0.5 seconds, where ULi/UCr∼1, the observed
trajectories signal a good inter-species thermalization and a satisfactory sympathetic
cooling. The observed decrease in atom number is indeed significantly smaller for
the Cr than for the Li component (see Fig. 2.7(b)), while the chromium temperature
closely follows the lithium one with less than 15% mismatch, see Fig. 2.7(c) and (d),
up to about 4 s. Here, we typically obtain about 3×105 Cr|1〉 atoms at TCr∼1.5 µK,
coexisting with about 1.1×106 Li|1〉 and 7.5×105 Li|2〉 atoms at TLi∼1.35µK, close to
the onset of quantum degeneracy for both lithium components. By further decreasing
the BODT trap depth following our optimized trajectories shown in Fig. 2.7(a),
we observe a progressive increase of TCr/TLi, see Fig. 2.7(d). A convenient way to
circumvent such a limited inter-species thermalization is offered by the presence
of various s-wave Li-Cr Feshbach resonances, located at fields above 1400G and
experimentally discovered before the start of my thesis [48]. In particular, the
Li|1〉-Cr|1〉 mixture possesses a ∼0.5G-wide FR at 1414G, and the Li|2〉-Cr|1〉
combination exhibits a resonance of similar character around 1461G. Both features
are immune to two-body losses [48] and, in spite of their relatively narrow character,
allow us to magnetically control the Li-Cr scattering length a, and thus to increase
the Li-Cr elastic scattering cross section well above its background value.

In order to exploit such a possibility, about 1.5 s after the start of the evaporation
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stage, we linearly ramp the magnetic field from 880G, up to 2G above the center
of one of either resonances. There, the Li-Cr scattering length is not significantly
different from its background value, a∼abg, and also the intra-species Li|1〉-Li|2〉
scattering length approaches its large and negative background value, of about -2500
a0 [86]. About 4 s after the start of the evaporation, we then reduced the magnetic-
field detuning to .100mG from the resonance center, correspondingly tuning the
Li-Cr scattering length to a.-200 a0, yet not causing a significant enhancement
of inter-species three-body losses. A detailed characterization of such a “Feshbach
cooling” mechanism near a narrow resonance will be subject of a future study.
The empty symbols in Fig. 2.7(b)-(d) panels highlight the impact of the Feshbach
cooling mechanism on the final part of the evaporation ramps. One can see how,
for fixed BODT power ramps, an increased Li-Cr scattering rate negligibly affects
the Li temperature, whereas it causes a strong decrease of the Cr one, allowing
for a perfect cancelation of the relative temperature mismatch, see empty squares
in Fig. 2.7(d). The much quicker inter-species thermalization was found to be
accompanied by a more sizable atom loss of both species, see blue (red) empty circles
in Fig. 2.7(b) for the Cr (Li) component. Yet, this only moderately decreases the
degree of degeneracy of lithium, while for chromium the atom loss was outweighed
by the strong temperature reduction, resulting in a substantial increase in the Cr
phase-space density.

By following this protocol, overall lasting less than 5 s, we can experimentally
realize degenerate Li-Cr Fermi mixtures, comprising up to 3.5×105 Li|1〉 and 2.5×105

Li|2〉 atoms at T/TF,Li∼0.25, coexisting with about 105 Cr|1〉 atoms at T/TF,Cr∼0.5.
The corresponding degree of degeneracy T/TF,i was obtained by fitting time-of-
flight images to finite-temperature Fermi-Dirac distributions. For both species,
the extracted reduced temperatures were found to be compatible with the value
estimated on the basis of the measured atom number and trap frequencies (νx, νy,
νz) – within a 20% uncertainty equal to (16, 115, 156)Hz and (13, 124, 118)Hz
for Li and Cr, respectively – and given the temperature T= 130(20) nK, obtained
by fitting the low-density wings of the atomic density distributions. I also remark
that at the end of the evaporation the populations of the additional chromium
minority components Cr|i> 1〉, initially loaded within the BODT, were found to
be negligible, owing to the combined effect of inelastic two-body losses occurring
throughout the evaporation ramp, and to the lack of thermalization with lithium,
given the spin-selective character of the “Feshbach cooling” mechanism.

The evaporation trajectories summarized in Fig. 2.7(a) and currently used in
our experimental cycle, can be also adapted to produce single-species samples of
either species. For lithium, this is straightforward: without loading the chromium
component, the same BODT power ramps discussed above yield crossover superfluids
of more than 4.5×105 pairs, when the bias field is tuned towards the pole of the broad
intra-species Feshbach resonance at 832G. This number can be further increased
up to about 6×105 when the same time evolution of the trap depth is realized by
means of the sole IR light of the BODT, resulting in performances similar to, and
even slightly better than, those reported in Ref. [81].

To realize polarized Fermi gases of 53Cr, the protocols above discussed can be
modified only partially, owing to the fact that quantum degeneracy of this species
relies in our setup on sympathetic cooling with lithium. Yet, a slight increase
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Figure 2.8. (a) Lithium atom number, normalized to its value measured in the sole main
BODT at the end of the evaporation ramp, as a function of green and IR powers of the
crossed BODT. (b) Normalized lithium temperature, T/TF,Li, monitored as a function
of green and IR powers of the crossed BODT. The degree of degeneracy is obtained as
the average value extracted from fitting at least four independent Li images, acquired
at 3ms time-of-flight. (c) Same as in panel (b) for the reduced chromium temperature
T/TF,Cr. For chromium, a 4.6ms time-of-flight expansion was employed.

of the green-to-IR power ratio during the evaporation allows us to obtain about
70% larger Cr samples at 220(20) nK, at the expense of a significant reduction of
both Li components, which can be eventually completely removed at the end of
the evaporation stage by further increasing the power of the green BODT arm.
Sympathetic cooling of 53Cr with 6Li thus appears as a promising route to realize
large Fermi gases of this yet poorly explored atomic species, so far produced only
in combination with its most abundant bosonic isotope 52Cr [59]. In fact, the
possibility to exploit the different Li and Cr polarizabilities to the IR and green
lights of our BODT, absent when isotopic Cr mixtures are considered, together with
our substantially larger Cr MOT, allows for an almost 200 fold increase in the 53Cr
atom number that can be brought to T/TF,Cr.1, relative to previous studies [59].

2.4 Increasing quantum degeneracy in a crossed BODT

As discussed in the previous section, the degree of degeneracy, obtained at the end of
the evaporation stage discussed therein, is quite different for the two mixture compo-
nents, with lithium being highly degenerate while chromium featuring T/TF,Cr∼0.5.
By further decreasing the BODT trap depth, we never observed any substantial gain
in phase-space density, a reduced temperature being counterbalanced by a drop in
the atomic densities for both species.

To overcome this problem, once the evaporation stage is ended, we found it
convenient to raise a second bichromatic trapping beam, which crosses the main
BODT at an angle of about 15◦ from the vertical direction, see Fig. 2.4. Such a
secondary beam has been obtained by exploiting the same laser sources, recycling
part of the IR and green powers of the main BODT, damped at the end of the
evaporation procedure. Both IR and Green crossed beams are almost circular, and
at the atom position they feature waists of about 60 µm and 70µm, respectively.
Being oriented almost vertically, such a second bichromatic beam does not modify
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the overall trap depth experienced by the two atomic components, and hence their
temperature, whereas it allows us to control the confinement – and thus the density
and Fermi energy – of each cloud almost independently.

In order to test this possibility, once the evaporation ramp was performed, we
raised up the crossed BODT at various IR and green power levels through a 50ms
linear ramp. After about 50ms, we then recorded time-of-flight images of both Li|1〉
and Cr|1〉, and obtained the corresponding atom number and degree of degeneracy
by fitting the atomic clouds to a finite-temperature Fermi-Dirac distribution. We
checked that the employed timings, although not exceeding the typical axial ones
in the sole main BODT trap, do not cause any detectable excitation nor trigger
subsequent dynamics of the Li and Cr clouds. Exploitation of much longer ramp/hold
times resulted instead in a poorer collection efficiency of the lithium component
within the crossing region. The results of this characterization are summarized in
the contour plots in Fig. 2.8: panels (a) and (c) show the chromium and lithium
normalized temperatures T/TF,Cr and T/TF,Li, respectively, as a function of green
and IR powers of the crossed beam. Fig. 2.8(b) presents the corresponding trend for
the Li|1〉 atom number, normalized to 3.5×105, which is the value obtained without
application of the crossed beam. The chromium component, characterized by an
axial size in the main BODT roughly two times smaller than the lithium one, was
found to be efficiently transferred into the crossed trap at all green and IR powers
that we explored, resulting in a Cr number, not shown in Fig. 2.8, that varies less
than 15% throughout the investigated parameter space.

One can notice the qualitatively different response of the two mixture components
to the crossed BODT. On the one hand, for chromium, application of either crossed
beam leads to a substantial increase in the degree of degeneracy: as shown in
Fig. 2.8(c), we found several IR and green combinations that could yield a two-fold
decrease of T/TF,Cr, passing from about 0.5 down to 0.25, solely caused by the
large Cr density increase within the crossed trap. On the other hand, for lithium,
application of one single (IR or green) crossed beam caused a decrease of the atom
number, see Fig. 2.8(a), accompanied by a reduction of the degree of degeneracy,
see Fig. 2.8(b). The response to the IR trap can be explained by the initially larger
cloud size and mean energy-to-trap depth ratio of this atomic component, compared
to the Cr ones. These factors imply a limited collection efficiency and a progressively
increased anharmonicity of the experienced potential, which lead to a reduction
of local density and degree of degeneracy. The response to the green crossed trap
can instead be explained by the anti-confining effect on the Li species: even for low
green powers, the atom number reduction is accompanied by a drop of local density
within the crossing region, and hence of Fermi degeneracy.

However, when both IR and green lights are applied, over a quite wide range of
parameters we observe an efficient storage of lithium atoms in the crossed BODT,
at an almost constant T/TF,Li, see Fig. 2.8(b). As expected, this occurs roughly
around the diagonal of Figs. 2.8(a) and (b), where the anti-confinement of the green
beam is (more than) counterbalanced by the IR light, and where anharmonicities
of the experienced potential – estimated through trap frequency measurements –
appear to be negligible. These observations highlight how the implementation of the
crossed BODT allowed us to significantly enhance the parameter space which can
be explored with the Li-Cr mixture in our setup: by simply tuning the (absolute
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Figure 2.9. Axially-integrated density profiles (black circles) of a lithium (panel (a))
and chromium (panel (b)) Fermi gas, simultaneously prepared into the main BODT
trap only. Profiles are obtained from the average of about 20 independent absorption
images, acquired after time-of-flight expansion and shown as insets. Experimental data
are compared with best fits to a Fermi-Dirac (blue line) and a Gaussian (red line)
distribution. A Gaussian fit to the low-density tails of the density distributions (green
line) accurately captures the atom temperatures whereas it overestimates the central
density of highly-degenerate samples. For each component, the reduced temperature
T/TF obtained from the former fit, together with the fit uncertainty, is specified in
the panel. Panels (c) and (d) show the same as (a) and (b), but for a Li-Cr mixture
released from a crossed BODT with IR and green powers set to 0.81W and 0.20W,
respectively. Application of such crossed BODT does not alter the lithium degree of
degeneracy, whereas it allows to strongly reduce T/TF,Cr, and to obtain Li-Cr mixtures
with both components at one fourth of their Fermi temperature.

and relative) powers of the two crossed lights, one can pass from the regime where
lithium is highly degenerate and chromium is an almost thermal gas, to the opposite
one.

Most importantly, over a sizable range of parameters we could simultaneously
achieve a high degree of degeneracy for both 6Li and 53Cr components. As an
example, in Figure 2.9 I show axially-integrated density profiles (black circles) of
lithium and chromium Fermi gases, obtained from absorption images, see insets,
acquired after time-of-flight expansion from the sole main BODT trap (panels (a)
and (b)), and from a crossed BODT (panels (c) and (d)). Data are compared
with best fits to a Gaussian and to a Fermi-Dirac distribution function, shown in
red and blue, respectively. In both configurations, the lithium sample exhibits a
roughly constant and low T/TF,Li value, see panels (a) and (c) in Fig. 2.9, and a
corresponding constant peak density of about 1×1012 cm−3. For the chromium
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component, application of the crossed beam negligibly affects the gas temperature
and the atom number, constantly about 1.0×105, while it strongly modifies the peak
density, which increases from slightly less than 2×1012 cm−3 in the sole main BODT,
to about 4×1012 cm−3 within the crossed trap. Correspondingly, the chromium
degree of degeneracy is substantially improved, with the initial T/TF,Cr=0.45(7)
being lowered down to 0.26(2), see Figs. 2.9(b) and (d).

In conclusion, the experimental procedures described in this Chapter, and that I
contributed to optimize during the initial period of my thesis, represent the starting
point for all experiments performed with Li-Cr Fermi mixtures in the regime of
strong interactions, that I discuss in the following Chapter.
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Chapter 3

Resonantly interacting mixtures:
Feshbach dimer formation, and
new technical challenges.

As anticipated in the Introduction, one of the major motivation to create Fermi
mixtures of lithium and chromium atoms is in the novel few- and many-body physics
that this system may allow us to explore, in the regime of strong interspecies
interactions. Since extensive Feshbach spectroscopy studies on Li-Cr were already
performed prior to the start of my thesis, and that these enabled our team to build
an accurate coupled-channel collisional model for this novel system [48], the natural
step, following the production of degenerate Fermi mixtures discussed in the previous
Chapter, was to explore the properties of such an ultracold system in the regime
of strong interactions, accessible near a Li-Cr s-wave resonance. Among various
possibilities to characterize the resonant regime, we have chosen to first focus our
efforts in the production of ultracold Feshbach LiCr dimers from the bi-atomic
mixture, and to investigate their properties: atom-to-molecule conversion efficiency
and magnetic moment.

In this Chapter, I will first provide a succinct overview of the scattering properties
and Feshbach resonances featured by the Li-Cr mixture, summarizing the results
detailed in Ref. [48]. Second, I will briefly recall a few experimental schemes that
are typically employed to form and probe ultracold dimers near a FR. Finally, I
will show preliminary results on Feshbach dimers and discuss how these provided
us evidence for a high atom-to-molecule conversion efficiency yielding more than
50k LiCr dimers, but, at the same time, how our data unveiled a few technical
limitations, which needed to be overcome.

3.1 Overview of FRs and scattering properties of Li-Cr

In the following, I will provide a brief overview of the scattering properties of 6Li-53Cr
Fermi mixtures which were recently characterized [48] – prior to the start of my thesis
– in a joint effort between our team – that performed extensive loss-spectroscopy
measurements – and the theorist Prof. A. Simoni (Univ. Rennes), who could build,
starting from experimental data, a full coupled-channel (CC) model for our Li-Cr
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system.
Experimentally, six different Li|i〉-Cr|j〉 spin-state combinations were investigated,

with i= 1, 2 and j= 1, 2, 3, each being characterized by the total spin projection
quantum number, Mf =mf,Li+mf,Cr=−i+ j−4, thus spanning −5≤Mf ≤−2. By
scanning the magnetic field from 0 up to about 1500G, more than 50 interspecies FRs
could be pinpointed through loss spectroscopy. The observed features are arranged
in complex but non-chaotic patterns and show qualitatively distinct features for B-
fields below and above 150G. While few, sparse and narrow resonances characterize
the B ≥150G high-field region, more complex patterns were found at lower fields,
with strong loss peaks often arranged in doublet or triplet structures, see Fig. 3.1,
taken from Ref. [48].

This suggested that narrow and isolated s-wave features only occur in the high-
field region, while the low-field spectra originate from strong FRs occurring in l> 0
partial waves – split by magnetic dipole-dipole interaction [87, 88] and possibly
other couplings [89] – as also supported by their sensitive dependence upon the
system temperature [48]. This intuition was indeed confirmed by the theoretical
analysis carried out by A. Simoni based on full CC calculations, which account
for: (i) the atomic hyperfine and Zeeman energies [90,91], defining the asymptotic
collision thresholds; (ii) The strong and isotropic electrostatic interaction – both l
and Mf conserving – represented by the sextet X6Σ+ and octet a8Σ+ potentials,
parametrized by sextet a6 and octet a8 s-wave scattering lengths, respectively, as
well as the dispersion coefficients C6 and C8; (iii) Weaker anisotropic couplings,
originating from both long-range magnetic spin and short-range second-order spin-
orbit interactions. These can couple different partial waves and hyperfine states with
different Mf or l, provided that ∆l= 0,±2 and Mf +ml is conserved, ml being the
projection of l along the magnetic-field quantization axis [7]. Through least-square
iterations by comparison with experimental data, the initially unknown values of a6,
a8, and of all other parameters entering the CC Hamiltonian were optimized [48].

A global least-square fit – able to reproduce all observed FR locations with very
good accuracy – provided the best-fit results a6 = 15.46(15) a0, a8 = 41.48(2) a0,
C6 = 922(6) a.u., and C8 = 9.8(5) 104 a.u., with errors denoting one standard
deviation obtained from the fit covariance matrix. The Li-Cr scattering properties
obtained from the optimized CC model of Ref. [48] can be summarized as follows:
First, the Li-Cr mixture exhibits a background s-wave scattering length, which is
almost everywhere close to the octet a8 value, of about 42 a0. The low-field spectral
region is entirely dominated by p-wave FRs, featuring ml splittings much larger
than those found in alkali systems [87–89], owing to the increased role of spin-spin
dipole coupling in Li-Cr mixtures, and to the coincidentally small relative magnetic
moment of the molecular states involved. Particularly interesting in this respect
is the presence, in the Li|2〉-Cr|1〉 mixture, of a strong p-wave FR with ml =−1,
centered around 24G and essentially immune to two-body losses. This feature, which
is intrinsically chiral in nature, could serve for future many-body surveys of p-wave
resonant Fermi mixtures [92] in yet unexplored regimes. Also several s-wave FRs
were identified within various Li-Cr spin-combinations. Owing to the relatively small
values of a6 and a8, similarly to the Li-K case [40,63], these features are generally
narrow in nature, since the FR character – as for bi-alkalis [7] – is determined by the
difference between sextet and octet scattering lengths, the larger being this difference,
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Figure 3.1. Overview of 6Li-53Cr loss spectra. The remaining Cr number, normalized to
its background value, recorded after an interaction time tH with lithium, is plotted as a
function of the magnetic field for four different combinations: (a) Li|2〉-Cr|3〉, Mf = −3;
(b) Li|2〉-Cr|2〉, Mf = −4; (c) Li|1〉-Cr|1〉, Mf = −4; (d) Li|2〉-Cr|1〉, Mf = −5. Each
point is the average of at least four independent measurements. tH =4 s for all but the
(c) panel, where tH =5 s. Features that the quantum collisional model developed by A.
Simoni links to s-, p- and d-wave molecular levels are colored blue, orange and green,
respectively. Numbers in brackets indicate the assigned ml. Figure and caption adapted
from Ref. [48].

the wider the corresponding features [7]. Specifically, the model of Ref. [48] connects
all FRs observed above 1400G to lr = 0 molecular levels of X6Σ+ potentials, all
featuring magnetic-field widths ∆B∼0.5G and differential magnetic moments δµ=2
µB, yielding effective-range parameters of R∗∼6000 a0, in perfect agreement with
the expectation given by Eq. (1.19). Most importantly, one of these features occurs
around 1414G within the absolute Li|1〉-Cr|1〉 ground state, thus completely immune
to two-body inelastic losses, and a second one is found at 1461G for the Li|2〉-Cr|1〉
mixture, also exhibiting negligible dipolar relaxation rates. These two features are
the ones that we have characterized in the experiments performed during my thesis,
focusing in particular on the atom-to-molecule conversion process, as outlined in the
following.
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Figure 3.2. Illustration of experimental schemes typically employed to create ultracold
molecules from ultracold atoms. The solid line marks the weakly bound molecular
state |m〉, which dissociates into the continuum – indicated by the dotted line – at
resonance B = B0. In panel (a), the magnetic field is ramped across the resonance, which
adiabatically converts two interacting atoms into one molecule; in (b), an oscillatory
magnetic field drives the transition from the scattering state to the molecular state.
In a similar way, a radio-frequency pulse can drive the transition from a non-resonant
scattering state into the dimer level, by changing the internal state of one (or both)
atoms; in (c), a three-body recombination event results in molecule formation. Figure
adapted from Ref. [7]

3.2 Ultracold Feshbach molecule formation

Realizing ultracold gases of molecules, rather than atoms, represents a major goal
for a rapidly developing and cross-disciplinary research field, spanning from cold
chemistry and precision measurements, to many-body physics studies and quantum
information processing. Among various possibilities, conversion of pairs of ultracold
atoms into weakly-bound molecules close to a Feshbach resonance, represents the
sole experimental method that, so far, has allowed to produce molecular gases in the
sub-µK temperature, and at phase-space densities close to, or even above, 1, i.e. in
the quantum-degenerate regime. Feshbach resonances here provide the experimental
key to bind pairs of colliding atoms into molecules. Various schemes to create
ultracold molecules near Feshbach resonances have been developed over the last two
decades, and most of them rely on the application of time-varying magnetic fields.
The three panels of Fig. 3.2, adapted from Ref. [7], summarize three of such schemes,
which have been applied to a variety of bosonic and fermionic atomic gases, as well
as to an increasing number of heteronuclear mixtures.

Ramping an external magnetic field across a Feshbach resonance is the most
commonly adopted scheme to form Feshbach molecules. This scheme, usually referred
to as a Feshbach ramp, or to magneto-association, is based on the concept that the
resonant coupling between the scattering state and the molecular one opens up a
way to adiabatically convert interacting atom pairs into weakly-bound molecules.
The atomic gas is prepared at a magnetic field Bi away from resonance on the BCS
side, where the two-body system does not support a weakly bound state, and the
scattering length is a < 0, see Chapter 1: in the example of Fig. 3.2(a), where the
magnetic moment of the molecular state is lower than that of the atomic state, this
corresponds to Bi > B0. In order to implement the adiabatic passage, the field is
then ramped to a final value Bf below the center of the resonance, Bf < B0, where
a weakly bound state exists just below the scattering threshold, thus converting
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atom pairs into Feshbach molecules. To optimize the atom-to-molecule conversion
on a specific Feshbach resonance, hence to maximize the final number of Feshbach
molecules, it is crucial to optimize the ramp speed and the phase-space density of
the parent atomic gases. Since this method relies on an adiabatic passage, in the
limit in which inelastic losses can be neglected, the efficiency is expected to increase
for decreasing B-field ramp rate. Quite generally the magneto-association efficiency
is well described by a Landau-Zener model of the following kind [93]:

f = f0
(
1− e−Γ/(f0|Ḃ|)

)
, (3.1)

where f is the efficiency, Γ is a characteristic ramp rate, and f0 is the saturation value
reached for slow B field ramps. For simplicity, we here assume f to be measured
with respect to the minority atomic component, although the discussion can be
equivalently carried out in the opposite case. This model is particularly instructive,
since it allows us to independently extract information about the fast-sweep regime,
i.e. Γ/(f0|Ḃ|)� 1 where f → Γ/|Ḃ|, and the saturated regime, i.e. Γ/(f0|Ḃ|)� 1
and f → f0. These two regimes are governed by different physical mechanisms.
The former only concerns the two-body physics and only depends on the collision
parameters, atomic densities and |Ḃ| as follows [93]:

Γ = 〈n〉(2π)2~
µ

|abg∆| . (3.2)

Here 〈n〉 is the density of the majority component averaged over the distribution of
the minority one, µ is the reduced mass of the system, abg is the background scattering
length, and ∆ is the width of the resonance. The latter, namely the saturated regime,
is determined by the thermodynamics of the sample, and experiments show that the
saturated efficiency increases with increasing phase-space density of atomic gases.
Despite the lack of analytical models, Monte-Carlo simulations based on the idea
that atoms can only be associated if they lie within a certain distance in phase-space
from each other, were shown to provide a quantitative description for Bose gases,
Fermi gases, as well as Bose-Fermi mixtures, albeit less accurately for heteronuclear
mixtures [7, 93,94].

Another powerful method to produce ultracold Feshbach molecules is based on
a modulation of the magnetic field strength, named “wiggle spectroscopy”. The
oscillating field induces a stimulated transition of two colliding atoms into a bound
molecular state, when the modulation frequency is tuned to match the dimer binding
energy, see Fig. 3.2(b). This technique is especially useful for bosonic gases, because
wiggle association can occur at bias fields B < B0 quite far away from the resonance
pole B0, where heating and atom losses remain moderate or negligible. An alternative
method conceptually similar to wiggle spectroscopy is based on RF spectroscopy. In
this case, a radio-frequency pulse can drive the transition from the scattering state
of a non-resonant atom pair into the dimer level associated with the FR, by changing
the internal state of one atom (or of both, in the case of spin-polarized bosons).
In contrast to the magnetic field modulation method, radio-frequency transitions –
typically falling in the range of tens of MHz – involve a change of spin channel.

A particular situation for molecule formation arises for spin mixtures of 6Li
near the broad 832G Feshbach resonance. On the low-field side of the FR there
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Figure 3.3. Scheme of the two methods used for detecting LiCr molecules. (above)
Exploiting the Stern-Gerlach force, we can spatially resolve dimers from atoms in
absorption imaging signals; (below) the RF cleaning method allows us to remove
unbound Li and Cr atoms via an RF transfer to a dark state that does not interact with
the imaging light.

is a wide field range, where the s-wave scattering length is large and positive and
where the weakly bound state exhibits a pronounced halo character, see Chapter 1.
The molecular state shows an extraordinary stability against inelastic decay, which
opened the way to efficiently create molecular BECs by straightforward evaporative
cooling at a constant magnetic field B < B0. The formation of molecules in this
region can be understood in terms of a chemical atom-molecule equilibrium [95,96],
where exoergic three-body recombination events compete with endoergic two-body
dissociation processes, see Fig. 3.2(c). From a balance of these processes one can
intuitively understand that molecule formation is favored at low temperatures and
high number densities, i.e. at high phase-space densities. Such a method is extremely
powerful, but it has a more limited range of applicability compared with the former
ones, as it requires fermionic species – or fermionic mixtures – that exhibit broad
resonances with sres � 1.

3.3 Ultracold Feshbach molecule detection

None of the techniques described above can be experimentally demonstrated and
optimized without counting the number of associated molecules. An implicit require-
ment is the ability to isolate and identify a molecule signal from an atomic signal
in absorption images. The main problem to be addressed is the fact that Feshbach
molecules, given their weak but non-zero binding energy, do not feature cycling
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optical transitions spectrally resolved from the atomic ones [7]. Typically, molecules
are imaged through their constituent atoms after dissociation. This can either be
forced by an inverse Feshbach ramp, or simply result from photon scattering when an
imaging pulse addressing the close-by atomic line is applied. While the former case is
quite general, the latter requires a sufficiently strong coupling of the Feshbach state
with the atomic light and, correspondingly, low binding energies [57,93]. Given the
lower effective cross-section of molecule-light interaction compared to the atom-light
case, the observed molecule numbers are in principle an underestimation [93].

There are two methods in which the resulting absorption signal can be isolated
from the atomic ones. The first method consists in a Stern-Gerlach type experiment,
in which the different acceleration resulting from a Stern-Gerlach force is exploited
to resolve the molecular from atomic clouds, see Fig. 3.3. After magneto-association,
the trap is switched off and a vertical magnetic field gradient ∇B is applied during
the subsequent time of flight. The centers of mass of the atomic and molecular
clouds will then be subject to different accelerations. Let us call m1,2 the atomic
masses, µ1,2 the atomic magnetic moments and µm the molecule magnetic moment.
Then the centers of mass of the atomic clouds will move with an acceleration
g + µ1,2 ×∇B/m1,2, while the molecular cloud will have an acceleration given by
g + µm ×∇B/(m1 +m2). Because of the time of flight expansion due to the small
but finite temperature of the ultracold gas, ∇B must be large enough to be able
to resolve the molecule cloud from the atomic one. Finally, absorption imaging is
performed. This method exploits the different kinematics to resolve the particle
species and isolate the molecule signal.

The second method requires the selective transfer of only the atomic component
to another internal state which does not interact with the imaging pulse, i.e. a dark
state, see Fig. 3.3. Recalling the main problem discussed above, the state transfer
cannot be typically performed optically. The transfer is often achieved by exploiting
a Radio-frequency transition from the initial Zeeman level |1〉 to a final Zeeman level
|2〉. The transition line is narrow enough to spectrally resolve molecules from atoms
even for very weak binding. Afterwards, absorption imaging can be performed. We
stress that this method can be used to expel the leftover atoms from the trap with
little effect on molecules, by exploiting a dedicated optical blast resonant with state
|2〉. Finally, we note that this method can be used in combination with an inverse
Feshbach ramp, as to dissociate molecules prior to the imaging pulse and resulting
in stronger absorption signal and more accurate counting [93].

In the following, both detection methods will be used, without the need for
an inverse Feshbach ramp before the imaging pulse over the explored final B-field
detunings. In fact, we have experimentally verified that, by doing so, the molecule
number is only slightly underestimated, by less than 10%, which can be neglected in
this work.

3.4 Experimental procedures and first results

The collision parameters associated with the Feshbach resonance exploited in the
experiment set some practical experimental requirements to be met in the laboratory.
To explore resonantly interacting Li-Cr Fermi mixtures and magneto-associate LiCr
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Figure 3.4. Cross section drawing of the experimental chamber where the main MOT and
Feshbach coils are shown.

dimers, we focused on the s-wave resonance between Li|1〉 and Cr|1〉, located at
approximately 1414G, and on the resonance between Li|2〉 and Cr|1〉 at 1461G, as
discussed in Chapter 3.1. This choice was motivated by three factors: first, the
absence of the centrifugal barrier in the interatomic potential due to its s-wave nature;
second, the largest available ∆B/B0 = 3× 10−4 of the entire Feshbach spectrum;
and finally, immunity to two-body losses. Meeting these practical requirements
associated with the collision parameters of the resonance was crucial for the success
of the experiment. The relevant collision parameters are the background scattering
length abg = 42 a0, the differential magnetic moment δµ = 2µB between the atomic
scattering state and the molecular state, the magnetic field width ∆B = 0.47G, and
R∗= 6000a0.

As explained in Chapter 1, these resonances are narrow, and the strongly inter-
acting region where we expect |kFa| > 1 for our sample conditions is of order 10mG,
to be compared with the offset field of 1414G. Moreover, since it is located at such
a high field, the RF-transitions between lowest lying, high-field seeking states of Li
and Cr are extremely weak.

The narrow resonance nature, combined with a high B0, calls for high stability
and precise tuning of the magnetic field. To achieve this, several sets of coils serve
for different purposes, as shown in Fig. 3.4. First, the large MOT coils offer the
bulk of the magnetic field bias, with a resolution of approximately 45mG. Their
current is stabilized using an UltraStab LEM (see Section 5 for details). Second,
the “Feshbach” coils produce a magnetic field gradient for the compensation of
the differential gravitational sag and Stern-Gerlach separation experiments. Third,
vertical compensation coils, located a few cm away from the MOT coils (not shown
in the Figure), finely tune the magnetic field on the few-ms timescale around the
MOT coils field bias, with a resolution of approximately 2mG. Finally, a small
one-loop coil beneath the bottom glass window (not shown in the Figure) drives
radio-frequency radiation, inducing transitions between lowest Zeeman levels of
lithium at around 80MHz.
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Figure 3.5. (a) Typical absorption image on the Li atomic line used to detect molecules
with the Stern-Gerlach method: LiCr molecules and lithium atoms are spatially resolved.
(b) Absorption image on the Li atomic line used to detect molecules with the RF
cleaning method: all the unbound atoms have been transferred into a dark state and
only molecules are visible.

The basic experimental sequence used to produce a molecular gas starts after
the forced evaporation and sympathetic cooling of the Li-Cr mixture described in
Chapter 2. After “Feshbach” cooling, we first ramp the field with the compensation
coils further away from the resonance pole on the BCS side to a detuning of about
100mG, where the atoms are only weakly interacting, and three-body recombination
is negligible. After that, we perform a linear ramp with a typical inverse rate of
about 100ms/G in order to cross the resonance and stop below the resonance pole
on the BEC side of it. Finally, we can detect the molecules with either of the two
methods described above, without the need for an inverse Feshbach ramp. For the
Stern-Gerlach type experiment, we employ the very same gradient already present at
the end of evaporation, of about 1.5G/cm, which levitates chromium atoms, pushes
lithium atoms upwards, and lets molecules fall. After switching off of the BODT,
atoms and molecules undergo a 10ms-long time of flight before absorption imaging,
which shows clearly resolved atomic lithium and molecules signal, see Fig. 3.5(a).

For the RF cleaning method, we switch off the ODT, we transfer lithium atoms
from state |1〉 to |2〉, and then take an absorption picture with zero atomic background,
see Fig. 3.5(b). The RF pulse is applied during the first few ms of time of flight,
when the atom-molecule density overlap is already dropped, as to avoid unwanted
shifts and broadening of the atomic transition line. Since the magnetic moment
of the transition of the lithium at this field is only 37.7045 kHz/G, the oscillating
B-field amplitude needed to drive 1ms-long π-pulses is about 13mG, which requires
sending about 20W of RF power to our antenna. For this purpose we employ a
100W amplifier after our waveform synthesizer.

In the following, I present preliminary results on the maximum number of
associated molecules and conversion efficiency. The initial atomic samples are
confined in the final bichromatic optical trap, as described in Chapter 2, the only
difference being that right before the magneto-association ramp, the power of the
green ODT is reduced to optimize the molecule number. The lithium sample has a
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Figure 3.6. Number of LiCr dimers as a function of the product between the initial lithium
and chromium atom number. The molecule number increases linearly with the initial
number of atom pairs, as expected.

temperature of approximately 160 nK, peak density of 8× 1011cm−3 and reduced
temperature T/TF Li = 0.25, while the chromium sample has a temperature 200 nK,
peak density of about 1× 1012 cm−3 and reduced temperature T/TFCr = 0.5. These
conditions represent typical Fermi mixtures obtained in our laboratory, consisting of
160× 103 6Li and 90× 103 53Cr atoms at the end of evaporation.

First, we measure the total number of Feshbach dimers as a function of NLi×NCr

via the Stern-Gerlach detection method. NLi ×NCr is varied by tuning the number
of Cr atoms loaded initially into the ODT from the C-MOT while keeping the
evaporation parameters and final trap configuration fixed. The results are reported
in Fig 3.6. Our results show that almost 50×103 molecules can be routinely produced
in our laboratory from the largest samples, and that the number of molecules is
indeed proportional to the product of NLi NCr as expected, with no sign of saturation
effects.

In the second measurement, exploiting the largest mixtures we could produce,
we measure the association efficiency with respect to the minority component of Cr
atoms, as function of the inverse B-field ramp rate. To perform this measurement,
we employ RF cleaning on lithium, followed by Li and Cr imaging pulses to count
the molecule number and the total number of associated and non-associated Cr
atoms, i.e. the initial Cr atom number. The results are presented in Fig. 3.7.

As explained in Section 3.2, the data can be fitted with the well-known Landau-
Zener functional form of Eq. (3.1), with best-fit parameters of f0 = 0.62(7) and
Γ = 6.8(4) × 10−3 G/ms, respectively. The solid line indicates the fitted Landau-
Zener behavior, the dashed line describes the fast-sweep regime, and the dotted line
shows the saturated conversion efficiency. It is worth noting that the obtained 62%
efficiency is relatively high compared to the literature, especially for other Fermi
mixtures using narrow Feshbach resonances (about 40% in 6Li-40 K, see Ref. [57]).
The extracted value of Γ can be compared with the theoretical prediction given by
Eq. (3.2), which yields 0.24G/ms, using the resonance parameters and the observed
Li density averaged over the Cr cloud of 〈nLi〉 = 4.7× 1011 cm−3. This value is more
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Figure 3.7. Atom-molecule conversion efficiency f referenced to the Cr atom number
as function of the inverse ramp rate x = 1/Ḃ. Red circles show the experimental
results, while the solid line shows the fitted Landau-Zener model. The dashed line shows
the derived efficiency in the fast ramp limit, and the dotted line shows the saturated
efficiency.

than one order of magnitude larger than the experimental value and the origin for
such a mismatch is currently under investigation.

These experimental results are extremely appealing, as they testify that Li-Cr
mixtures are ideal for studies of resonantly-interacting Fermi mixtures and production
of dimers. However, the experiment also highlighted some technical limitations. In
particular, if the end point of the magneto-association ramp was set too close to
the resonance pole, say within 20mG from it, the molecule number showed large
shot-to-shot fluctuations. This problem was avoided in the measurements described
above by setting a sufficiently large final detuning from resonance. Later and more
advanced experiments on LiCr molecules clearly showed the limitations arising from
magnetic field noise.

In order to quantitatively assess our magnetic field stability, we focused on
the molecule magnetic dipole moment. This is expected to vary as a function of
the detuning from resonance according to the mixing of the molecule and atomic
scattering state, which is quantified by the open and closed channel fractions (see
Chapter 1).

We measured the magnetic moment of LiCr dimers via a Stern-Gerlach type
experiment. In this experiment, the Stern-Gerlach force was applied for a fixed time
of flight but the final detuning from the resonance pole was varied. After the time of
flight an absorption picture was taken, from which the center of mass of the molecule
cloud was extracted and used to infer the magnetic moment, knowing the initial
in-situ position, the gradient ∇B, the molecule mass, mLi + mCr. The data are
shown in Fig. 3.8 together with the analytic theory curve Eq. (1.26). Interestingly,
despite the narrow character of the resonance, the magnetic field stability and the
signal to noise ratio in absorption images were high enough to observe the predicted
magnetic moment variation. However, on a quantitative basis, the data appeared to
be significantly smeared out, compared to the theoretical curve.
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Figure 3.8. Magnetic dipole moment of LiCr dimers as function of magnetic field detuning
(δB) from the resonance pole. Red circles show the measurement results and the solid
line is the theoretical expectation obtained from Eq. (1.26), using the open-channel
fraction in Eq. (1.25) to interpolate between the atomic (7µB) and molecule (5µB)
magnetic moments.

From the above discussion, we concluded that there were two main problems
to be addressed on the experiment. The first is the stability of the bias Zeeman
field, and the second is the inefficient driving of Li|1〉→Li|2〉 transitions at such
high B-fields. The latter issue is also a possible cause of magnetic field noise,
since when using high RF power, we observe a strong perturbations of the B-field
current stabilization electronics, hence of the magnetic field experienced by the
molecules. Moreover, independently of the antenna efficiency, the employed lithium
RF transition requires a strong oscillating B-field, which, by construction, has a
non-negligible component along the vertical axis, thus directly causing a modulation
of the bias B-field experienced by the molecules.

We found that using RF transitions on the chromium species is a principal solution
to these problems. Indeed, given the RF transition shift of δµ/h = 6.041 kHz/G
and δµ/h = 0.77 kHz/G, for Cr and Li respectively, the new antenna is expected to
yield a 8-fold increase in the sensitivity to the Zeeman field. As it will be explained
in Chapter 5, this will allow us to characterize the corresponding magnetic field
noise and significantly reduce it by active compensation. In addition, the transition
dipole moment of Cr|1〉→Cr|2〉 is about µeg/h = 156.402 kHz/G, while the one of
Li|1〉→Li|2〉 is µeg/h = 37.7045 kHz/G, thus leading to a four-fold increase of the
Rabi frequency for fixed RF B-field amplitude.

The use of a new chromium antenna, which I will discuss in the next Chapter, has
several important implications that have enabled us to improve the overall quality
of our experiments. First, a lower RF power is required for fixed antenna radiation
efficiency, which reduces the cross-talk with current stabilization electronics. This
has allowed us to minimize the effect of undesired interference, and to improve the
precision of our measurements. Additionally, the smaller amplitude of the oscillating
B-field needed for fixed π-pulse time in combination with a dedicated antenna design,
significantly reduces the unwanted modulation of the bias B-field onto the molecules.
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In the following chapters, I will provide a detailed explanation of how I built an
efficient antenna addressing chromium RF transitions, and how I used it to charac-
terize and improve the B-field stability of the experiment. Thanks to these technical
improvements, which represent my major contribution to the Li-Cr experimental
setup during my thesis period, we have been able to optimize our experimental
apparatus, and to improve the accuracy and precision of our measurements.
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Chapter 4

Radio-Frequency antenna

One of my main contributions to the experiment during my thesis has been the
realization of a high-current radio-frequency (RF) antenna, allowing us to perform
fast and coherent transitions between the lowest Zeeman levels of the ground-state
of 53Cr at high magnetic fields of about 1.4 kG. With the constant support of
A. Trenkwalder I designed, produced and tested the antenna that I subsequently
installed on the main experimental apparatus, above the top re-entrant window of
the experimental chamber. Since the coupling term of the transition Cr|1〉→Cr|2〉
is relatively low, i.e. µ⊥/h =156.402 kHz/G � µB/h =1.4MHz/G, we need a
sufficiently high RF intensity in order to drive fast transitions on the Cr atoms. For
this reason, the AC current through the antenna and thus the transverse B-field has
to be maximized and the antenna has to be placed close to the atoms on a viewport
to avoid shielding of the metallic vacuum chamber, but without blocking optical
access. Moreover, unwanted radio-frequency interference with other parts of the
experiment should be minimized.

To take all these issues into account, I made use of the idea of F. Scazza et
al. [97], who created a highly-performing banana-shaped antenna at 80 MHz, for the
lithium experiment at LENS. In addition to taking into account space limitations,
and without blocking access for laser beams, the banana-shaped antenna also allows
for an excellent efficiency in terms of radiated power. The main difference from the
design in Ref. [97] is our operating frequency of 240MHz used to transfer chromium
atoms between the two lowest hyperfine states around 1414G. The three times
higher frequency results in small modifications of the design of the antenna matching
circuit compared to Ref. [97].

In this chapter, following a brief theoretical introduction on radiation-matter
interaction, I will present the details of the technical challenges which we had to
overcome to finally construct an efficient high-power RF antenna at this frequency.
In detail, I will explain the estimation of the magnetic field generated by the antenna
coil, and the design and simulation of the matching circuit. I will describe how I
have built the antenna and optimized the matching for the designed frequency and I
will finally present measurements conducted with chromium atoms that show that
this antenna performs very well and perfectly matches the expectations.
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4.1 Atoms interacting with electro-magnetic fields: re-
call of some textbook results

Let us approximate an atom as a two-level system, which is immersed in a radiation
field oscillating at frequency ω. The two-level approximation is justified when ω ∼ ω0,
where ω0 is the frequency separation between the two atomic levels (see Fig. 4.1). A
generic state can be expressed as [98]

|ψ〉 = ag |g〉+ ae |e〉 , (4.1)

where |g〉 and |e〉 represent the electronic ground state and the excited state with
energies ~ωg and ~ωe, respectively. The separation in energy between these states
defines the resonance frequency in radians per second ω0 = ωe−ωg. The Hamiltonian
relative to the unperturbed atom can be written in its eigen-basis as:

Hat = ~ωg |g〉 〈g|+ ~ωe |e〉 〈e| (4.2)

Following Ref. [98] we introduce the relevant Hamiltonian for the atomic electron
interacting with an external electromagnetic field:

H = [p+ eA(r, t)]2

2m − eV (r, t) + U(r), (4.3)

whereA(r, t) and V (r, t) are, respectively, the vector and scalar potentials describing
the electromagnetic field, which are connected to the electric field E and to the
magnetic field B by the relations

B = ∇×A

E = −∇V − ∂A

∂t
.

(4.4)

U(r) accounts for the interaction between the atomic nucleus and the electron. We
are examining the scenario of classical radiation, where the field propagates in the

Figure 4.1. Scheme of a two-level atom, ground state |g〉 and exited state |e〉, separated by
an energy ~ω0, immersed in an electromagnetic field oscillating at frequency ω, detuned
by δ.
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direction of the z-axis as a planar wave, exhibiting both electric and magnetic fields

E(z, t) = E0 cos (kz − ωt) x̂ = E0
2
[
ei(kz−ωt) + h.c.

]
x̂

B(z, t) = B0 cos (kz − ωt) ŷ = B0
2
[
ei(kz−ωt) + h.c.

]
ŷ.

(4.5)

The measurable fields B and E associated with the potentials A and V are
invariant under “gauge” transformations

A→ A′ = A+∇χ

V → V ′ = V − ∂χ

∂t
,

(4.6)

where χ is an arbitrary scalar function.
Therefore, the potentials A and V are not unique but an appropriate “gauge”

must be selected. We use the radiation gauge:

A(z, t) = E0
2

[ 1
iω
ei(kz−ωt) + h.c.

]
x̂

V (z, t) = 0.
(4.7)

The spacial dependence of the vector potential can be approximated by a series
expansion of the eikz term. Typical dimensions of atomic orbitals are on the order
of the Bohr radius (a0 ' 0.53Å), which is significantly smaller than the wavelength
λ = 2π/k of the radiation required to resonantly excite the atoms (in the visible, or
in the RF range, as for our case of interest). Consequently, since a0 � λ, the spacial
variation of the electromagnetic field on the unperturbed electron wavefunction
can be neglected, kz � 1, and the zero-order electric dipole approximation can be
applied, i.e.

eikz ∼ 1. (4.8)

Under the electric dipole approximation, A does not depend on position. It is
thus possible to choose a gauge function χ = −r ·A, which allows us to cancel the
contribution of the vector potential:

A′(r, t) = 0

V ′(r, t) = r · ∂A
∂t

= −r ·E(t).
(4.9)

With this convenient gauge choice for the electromagnetic potential, the derivation
of the interacting Hamiltonian is easier, and Eq. (4.3) can be written as

H = p2

2m + U(r) + e r ·E(t), (4.10)

in which we recognize p2/2m+ U(r) as the unperturbed Hamiltonian Ha, and the
interaction term that corresponds to the potential energy −d ·E(t) of an electric
dipole d = −e r in an oscillating electric field E(t).
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On the basis spanned by the unperturbed electronic states |g〉 and |e〉, it is easy
to show that the dipole interaction Hamiltonian Hint = e r ·E(t) has off-diagonal
matrix elements, i.e. it couples the ground and excited states according to:

〈e|Hint |g〉 =
∫
dr ψ∗e(er ·E)ψg =

= 1
2eE0

(
e−iωt + c.c.

) ∫
dr ψ∗e r ψg =

= 1
2eE0

(
e−iωt + c.c.

)
· deg

= ~
Ω
2
(
e−iωt + c.c.

)
,

(4.11)

with deg denoting the |g〉 → |e〉 transition dipole moment, defined as

deg ≡ −e 〈e| r |g〉 = −e
∫
dr ψ∗e r ψg (4.12)

which only depends on the unperturbed wavefunctions. The Rabi frequency, is
defined as

Ω ≡ −deg ·E0
~

(4.13)

and it quantifies how strong is the coupling between the two levels with the electro-
magnetic field. Considering that r is an odd operator, so that

〈g|Hint |g〉 = 〈e|Hint |e〉 = 0. (4.14)

The total Hamiltonian reads

H = ~ωg |g〉 〈g|+~ωe |e〉 〈e|+
~Ω
2 (e−iωt+c.c.) |e〉 〈g|+ ~Ω∗

2 (e−iωt+c.c.) |g〉 〈e| (4.15)

which can be represented in the matrix form

H = ~
(

ωg
Ω∗
2 (e−iωt + c.c.)

Ω
2 (e−iωt + c.c.) ωe

)
. (4.16)

In this representation, a constant energy term can be subtracted from the diagonal
of the Hamiltonian. This redefinition ensures that the energy of the ground state is
zero, while the energy of the excited state is given by ~ω0 = ~(ωe − ωg).

Let us now focus our attention to the time-dependent Schrödinger equation that
governs the dynamics of the system described by the Hamiltonian

i~
∂

∂t
|ψ〉 = H |ψ〉 (4.17)

with
|ψ〉 = ag |g〉+ ae |e〉. (4.18)

Solving the time-dependent Schrödinger equation thus amounts to solve the system
of coupled equations {

iȧg = Ω∗
2 (e−iωt + c.c.) ae

iȧe = Ω
2 (e−iωt + c.c.) ag + ω0 ae

(4.19)
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for the amplitudes ag and ae, respectively. The dotted coefficients ȧg and ȧe indicate
their time derivatives. The differential equations with time-dependent coefficients in
(4.19) can be simplified to a system of equations with constant coefficients using the
rotating wave approximation (RWA). This amounts to expressing the equations in a
rotating basis, and neglecting the fast-oscillating terms. One can choose different
bases for the system, but a convenient option is to consider a new basis in which
the ground state |g̃〉 is identical to |g〉, and the excited state |ẽ〉 differs from |e〉 by a
phase factor rotating at the same frequency ω as the driving field. Using this basis,
the state |ψ〉 can be expanded as follows:{

ãg = ag

ãe = aee
iωt.

(4.20)

Substituting Eq. (4.20) in Eq. (4.19) we obtain the equations for the new coeffi-
cients {

i ˙̃ag = Ω∗
2 (1 + e−2iωt)ãe

i ˙̃ae = Ω
2 (1 + e2iωt)ãg − δãe,

(4.21)

where δ = ω − ω0 is the detuning, namely the difference between the oscillation
frequency of the field and the one of the unperturbed atomic transition.

Since typically the Rabi frequency Ω� ω and ω0, and |ω−ω0| = |δ| � ω+ω0 ∼
2ω, one can safely neglect the fast oscillating terms with e±2iωt in Eq. (4.21), applying
the RWA. As a result, the total Hamiltonian does no longer depend on time, and

HRWA = ~
(

0 Ω∗
2

Ω
2 −δ

)
. (4.22)

The Schrödinger equation can now be solved analytically. Assuming that at t = 0
ψ(0) = |g〉, so that {

ãg(t = 0) = 1
ãe(t = 0) = 0.

(4.23)

It is easy to verify that the population of the ground and excited levels will evolve
according with |ãg|

2 = |a2
g| = 1− |Ω|

2

Ω′2 sin2
(

Ω′
2 t
)

|ãe|2 = |a2
e| =

|Ω|2
Ω′2 sin2

(
Ω′
2 t
)
.

(4.24)

Here I have defined Ω′ =
√
δ2 + |Ω|2 as the generalized Rabi frequency. Hence,

the probability |ae|2 to have the atom in the excited state oscillates in time with
frequency Ω′, performing Rabi oscillation, shown in Fig. 4.2 for different values
of detunings, see legend. The green and orange lines represent two examples of
off-resonance oscillations. When the radiation field is resonant with the atomic
transition, the detuning is zero, and from Eq. (4.24) one obtains

|ae|2 = sin2
(Ω

2 t
)
. (4.25)

This case is illustrated in Fig. 4.2 by the blue curve. Red dots in the Figure mark
peculiar times of the oscillation at δ = 0 explained below:
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Figure 4.2. Rabi oscillations. The probability of the excited state population |ae|2 is
shown as a function of time normalized to the on-resonance Rabi period T = 2π/Ω.
Blue line is relative to zero detuning. Green and orange lines are for δ = Ω and δ = Ω/2
respectively. A and E points indicate atoms in the ground state. The point C identifies
when the atoms are in the exited state, while in B and D the atoms are in a balanced
superposition state between |g〉 and |e〉.

• A) At t = 0, the system is in the ground state |ψ〉 = |g〉.

• B) At t = π
2Ω , the system is in a superposition state |ψ〉 = 1√

2(|g〉− i |e〉). This
transfer time is named π/2-pulse time.

• C) At t = π
Ω , π-pulse, the population inversion is complete, |ae|2(π/Ω) = 1

• D) At t = 3π
2Ω , |ψ〉 = 1√

2(− |g〉 − i |e〉)

• E) At t = 2π
Ω , the atoms are transferred back to the initial state, |ae|2(2π/Ω) =

0.

In the out-of-resonance cases (green and orange lines), the excited state population
oscillates at faster frequencies Ω′(δ) > Ω, and the maximum possible transfer is
given in this case by

|ae|2max = |Ω|
2

Ω′2 = 1
1 + δ2

|Ω|2
. (4.26)

For our case, the two atomic levels of chromium Cr|1〉 and Cr|2〉 are coupled by
a magnetic dipole transition. The theoretical treatment leads to the same results,
with few differences, explained below.

The electric dipole interaction term in Eq. (4.10) was derived from the approxima-
tion in Eq. (4.8), which involves neglecting the phase variation of the electromagnetic
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field across the atomic orbitals. By retaining additional terms in the expansion,
higher-order interaction processes can occur, which have associated different selection
rules

eikz ' 1 + ikz + ... (4.27)

The effect of the first-order ikz term is now being considered using the same
approach as above, with technical details omitted. With this approximation, the
electromagnetic potentials in the radiation gauge can be expressed as

A(z, t) = E0
2
[
(1 + ikz) e−iωt + h.c.

]
x̂

V (z, t) = 0
(4.28)

and the resulting electric and magnetic fields, defined by Eq. (4.4), are

E(z, t) = E0
2
[
(1 + ikz) e−iωt + h.c.

]
x̂

B(z, t) = B0
2
[
e−iωt + h.c.

]
ŷ.

(4.29)

Performing the gauge transformation in Eq. (4.6) with the function χ = −r ·A(0, t),
one finds the new electromagnetic potentials, and a new interacting Hamiltonian

Hint = −µ ·B(t)− 1
6Qzx

∂Ex
∂z

. (4.30)

The first term represents a magnetic dipole interaction between the magnetic dipole
moment µ associated to the orbital angular momentum L and the oscillating magnetic
field B(t). The second one is relative to the electric quadrupole moment, that can
be neglected in our case.

To obtain the complete description the spin angular momentum will have to
be accounted for in the theory. Quite generally, the magnetic dipole moment is
expressed as µ = gµBJ/~, where J is the relevant angular momentum operator
and g is the corresponding gyromagnetic factor, which is -1 for the electron orbital
moment. µB = e~/2me represent the Bohr magneton. For details of this calculation
see [98]. In this case the Rabi frequency definition becomes

Ωmag ≡
µeg ·B0

~
, (4.31)

in analogy with Eq. (4.13), with µeg = 〈e|µ|g〉 being the magnetic dipole moment of
the transition between state |g〉 and |e〉. In the following we will refer to the transition
dipole moment with µeg, and to the Zeeman shift of the transition frequency with
δµeg = d/dB(~ω0). Note here that both µeg and δµeg depend on the magnetic
dipole operator. However, while the former is an off-diagonal matrix element of the
magnetic dipole operator evaluated between initial and final states, the latter is
the difference between the expectation values 〈e|µ‖|e〉 − 〈g|µ‖|g〉 of the longitudinal
component of the magnetic dipole parallel to the bias Zeeman field. Furthermore,
note that the RF transition under study, between Cr|1〉 and Cr|2〉, requires a change
in the total spin projection onto the quantization axis MF by one unit, i.e. from -9/2
to -7/2. In this case the component of the magnetic dipole along the quantization
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axis µ‖ is zero, while the transverse component µ⊥ remains finite at all fields. This
implies that the transition is only induced by the oscillating B field component
perpendicular to the quantization axis.

The Cr|1〉 to Cr|2〉 transition at 1414G has a ω0 = 2π × 240.152MHz, δµeg/h =
6.041 kHz/G, and µ⊥/h = 156.402 kHz/G, calculated numerically by A. Ciamei.

4.2 Antenna: basic concept
An antenna is basically a conductor that allows electromagnetic energy to be radiated
or received. To fully understand the antenna one has to solve the Maxwell equations
which is not the scope of this thesis. Instead, I will show below in Sec. 4.4 a simple
model of the antenna which allows to estimate the magnetic field of the antenna
using the Biot-Savart law, see Eq. (4.32) below.

A time-varying electric current flowing through a conductor radiates a magnetic
field from it, which in turn generates an electric E field according to the Maxwell
equations, neglecting feedback onto the source current. Conversely, time-varying
electro-magnetic fields can induce a current within an electrical conductor. Although
any conductor can behave as an antenna, optimised efficiency and particular direc-
tional characteristics can only be achieved with certain geometry and dimension
of the conductor. In fact, optimum size and shape vary depending on the design
frequency, and for the radiation field required, i.e. besides of the frequency ν and
wavelength λ = c/ν also the polarization and directionality must be considered.

4.2.1 Near and far field

The field, generated by the antenna, can be characterized by two distinct regions:
the near field and the far field, illustrated in Fig. 4.3. The intensity of the electric E
and magnetic B fields in the far field diminishes as ∼ 1/r2, with r the distance from
the source, while in the near field, the intensity decreases more rapidly, typically
following ∼ 1/r3.

The distinction between the near and far field is somewhat arbitrary and it
depends on the size of the radiating component, and the dominant wavelength λ
produced by the source.

The near field pertains to regions in the proximity of the antenna conductors,
typically within a distance of about one wavelength. Since the conductor is strongly
coupled to everything within its near-field environment, also its impedance can be
significantly modified compared to the same conductor placed in vacuum. Locally,
the E- and B-field components can fluctuate significantly.

A notable example of a near-field effect is the variation of noise levels received
by a pair of “rabbit ear” TV antennas, when a human body part is moved close
to them. Similarly, the sound quality of an FM radio tuned to a distant station
changes when a person moves around within arm’s length of the radio antenna.

The primary aim of conventional antennas is to facilitate wireless communication
over long distances well into their far fields, and for most basic antennas, the intricate
effects in the near field can be disregarded in radiation and reception calculations.
This is not our case, because we need an antenna performing as good as possible
in the closest near field region, also known as reactive region. This zone is roughly
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Figure 4.3. Field regions for antennas shorter than one-half wavelength of the radiation
they emit, divided in near-field region (within a distance of λ) and the far-field region,
beyond a distance of 2λ. The intermediate zone is called transition zone. The near-field
region is subdivided in two other sub-regions, named reactive and radiative, respectively,
with a separation zone that is about a λ/(2π) distance. Figure taken from [99].

within 1/6 of a wavelength of the nearest antenna surface. Our antenna, which
needs to operate at 240MHz, with a corresponding wavelength of λ =1.25m, fits
into this classification, as we want to maximize the field at a distance of a few cm.
At larger distances, in the radiative region, the antenna is not anymore disturbed
by the back-action of nearby objects, but the electro-magnetic field is distorted by
them. The intermediate region, between near- and far-field, approximately starts
at one wavelength from the antenna, where the electric and magnetic parts of the
radiated waves first balance out.

The far field of the antenna is characterized by transverse electric and magnetic
fields with a constant ratio between the intensities of E and B fields known as the
wave impedance of the medium.

4.3 Constraints for the antenna design

The task of our antenna is to induce a transition between two Zeeman levels of the
hyperfine ground state of 53Cr. The broadest s-wave FB resonances of Li|1〉 and
Cr|1〉 is at 1414G. The Cr|1〉 and Cr|2〉 levels are separated by h× 240MHz.

Since at that magnetic field the Rabi frequency given by µ⊥/h = 156.402 kHz/G
� µB/h = 1.4MHz/G is relative small, the power driven by the antenna has to be
sufficiently high in order to allow for sub-ms π-pulse time. In order to interact with
chromium atoms, it is crucial that the field strength felt by the atoms is maximized,
and that the antenna is positioned as close as possible to the atomic cloud.

In atomic physics experiments, ultracold gases are produced within an ultra-high
vacuum chamber – typically made of glass or stainless steel – equipped with optical
viewports that allow to shine in the various laser beams required for laser cooling and
trapping. A sketch of the vacuum setup of our experiment is shown in Fig. 4.4, taken
from Ref. [60], where many further details regarding our experimental setup can be
found. Thermal atoms of lithium and chromium are produced in their respective
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Figure 4.4. Overview of our vacuum setup. Two independent Zeeman Slower (ZS) lines
connect the Li and Cr effusion cells to a custom spherical octagon chamber of radius 13
cm (manufactured by Kimball Physics, Inc.). In the horizontal x-y plane, the cell has 8
CF DN40 windows, spaced out by CF DN16 windows. Along the vertical z direction,
two re-entrant CF DN200 windows with a wide clear aperture (radius 45 mm) ensure
large optical access. Two large MOT coils, embedded within a resin structure, are fixed
at the top and bottom of the experimental chamber, in a concentric configuration with
respect to the smaller Feshbach coils, hosted within the re-entrant part; see section view
on the top left. The large radius of our MOT coils ensures the merging of the two ZS
field profiles with the MOT quadrupole radial profile (for more details, see Ref. [78]).

ovens and they undergo the initial phase of deceleration through two independent
Zeeman slowers. Subsequently, they are collected and trapped in the center of the
experimental chamber. Since the metal chamber would shield the RF signal we
must place the antenna in front of a glass viewport. There are two options available:
either behind the CF40 or CF16 viewports, positioned on the chamber plane, or
close to one of the two CF200 re-entrant windows along the vertical axis. Due to the
chamber dimensions, given by a diameter of 30 cm in the horizontal plane and by an
overall height of 8 cm, the best solution is to exploit the re-entrant windows, along
the vertical axis, as they allow for the closest access to the atoms (see scheme in
Fig. 4.5). When the antenna is placed on top of the glass viewport, indeed, it is only
22.5mm away from the atom position. Our re-entrant windows have a clear aperture
with a diameter of 90mm, and both the MOT-z beam and the two ODT crossed
beams pass through the viewport center. The MOT beam, which has a diameter
of approximately 25mm, and provides the major constraint for the choice of the
physical dimensions of the RF antenna (see Fig. 4.5(a)). We use the banana-shaped
antenna design proposed by Scazza et.al., [97], which is a very good solution, both
to tackle the physical limits of the antenna and, at the same time, to maximise the
magnetic field in the precise area where the atoms are located. Additionally, this
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Figure 4.5. (a) top view of the re-entrant window. MOT-z and crossed beams pass through
its center. The crossed BODT beams are smaller than the MOT beams and therefore
not shown. The banana-shaped antenna is positioned right next to the laser beams in a
free region. (b) side view of the vacuum chamber scheme.

design minimizes the vertical field component which does not contribute to the Rabi
oscillation frequency but creates unwanted modulations of the offset field.

4.4 Antenna magnetic field radiation

In order to simplify the calculation of the magnetic field radiated from the banana-
shaped antenna, it is convenient to schematize its geometry as 2 half-loops of
inner (outer) radius R1 (R2) connected by two linear wires, see sketch in Fig. 4.6.
Furthermore, let’s assume the antenna to lay in the z = 0 plane, and that the loop
center is located at x = y = 0. We then evaluate the radiated field at x = y = 0, at
a vertical distance z0 = −22.5mm below the plane of the antenna, i.e. at the atom
position. To this end, we start by writing the Biot-Savart law, where the magnetic
field is expressed as a line integral, evaluated over the path C in which the electric
current I flows:

B(r) = µ0
4π

∫
C

Id`× r′

|r′|3 . (4.32)

where d` is a vector along the path C, and its magnitude is the length of the
differential element of the wire in the direction of conventional current; ` is a point
on the path C; r′ = r− ` is the vector from the wire element (d`) at point `, to the
position in space at which the field is computed (r), and µ0 is the vacuum magnetic
permeability.
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Figure 4.6. Schematic view of the banana-shaped antenna coil. R1 and R2 are the inner
and the external radius, respectively; a and b denote the extremes on the x-axis of the
straight wire segment, useful for calculating the magnetic field; I is the current.

4.4.1 B field for a finite straight wire

We assume to have a straight wire along the x-axis bounded by a and b, as shown in
Fig. 4.6. Since the d` element lies on that axis, and since we calculate the field at a
point along the z-axis, the vector product at the nominator of Eq. (4.32) is non-zero
only for the y component of the B field:

Bwire
y (z) = µ0I

4π

∫ b

a

r

(x2 + z2)3/2dx = µ0I

4πr

(
b√

b2 + z2
− a√

a2 + z2

)
, (4.33)

whereas Bwire
x = Bwire

z = 0 for all z values. For the second straight wire on the
negative x-axis side, replacing a→ −b and b→ −a, one finds that the magnitude
and direction of the field is the same.

4.4.2 B field for a half loop wire

Let us consider now a wire forming a half-loop (HL) of radius R on the x-y plane,
in which flows a constant current I. In this case, only the x component is zero,
BHL
x = 0. The other two components are instead given by:

BHL
y (z) = µ0I

2π
R z

(R2 + z2)3/2 (4.34)

BHL
z (z) = µ0I

4
R2

(R2 + z2)3/2 (4.35)

4.4.3 Magnetic field calculation

For our system, the bias magnetic field generated by both pairs of MOT and
“Feshbach” coils, see Fig. 4.4, points along the z-axis. For this reason, we want the
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Figure 4.7. Vertical (a) and transversal (b) components of the field generated by the
RF antenna as a function of the vertical position z. Red lines mark, in each panel, the
position of the atoms at z = -22.5mm. Two configurations of the antenna are plotted:
orange (blue) with R1 = 15mm (22mm) and R2 = 40mm (35mm) corresponding to
the ideal (actual used) configurations given the constraints discussed in Sec. 4.3. The
curves are calculated with Eqns. (4.33)–(4.35) using a current of 3.75A.

field component generated by our antenna along z to be 0, so that the RF field does
not affect the net bias field value, experienced by the atomic sample, and maximizes
the circularly polarized B-field component inducing the Rabi frequency of the RF
transition. Along the two concentric half-loop wires, one has a current that has equal
magnitude, but opposite sign, see Fig. 4.6. This means that there exists a position z
where the vertical component of the B-field is zero. As already seen, the contribution
along the bias field direction ẑ from the two straight wires is zero. We thus search for
the right configuration of the parameters – i.e. inner and outer radii of the antenna
– so that Bz is zero at the position of the atomic cloud, whereas the transverse
component Btot

y is maximized. The overall magnetic field is easy to calculate at
this point: we need to sum the two concentric half loops with two different radii,
and two straight wires as shown in Fig. 4.6. Among all possible solutions, the ideal
case that best fits our technical constraints, and that simultaneously allows us to
maximize the Btot

y field component while minimizing the Bz component at the atom
position, is for Ri1 = 15mm and Ri2 = 40mm, respectively. However, during the first
tests of the antenna we have reduced the overall loop size since we had problems to
reach 240MHz with the ideal dimensions. The final antenna still has the smaller
dimensions of Ra1 = 22mm and Ra2 = 35mm and generates about half of the ideal
B-field.

The two field components, of the ideal (orange) and actual case (blue), are
plotted in Fig. 4.7, assuming a current of 3.7A. We can focus on the field magnitude
at the atom position, which is highlighted on the graphs by the red line. With this
ideal (actual) radii configuration, we have a small Bz component of 60mG (17mG),
and a sufficiently large By of 162mG (83mG).

4.5 Matching circuit

In order to maximize the B-field radiated by the RF antenna, one has to maximize
the power transferred from the RF generator towards the antenna. If the impedance
of the antenna does not match the impedance of the RF amplifier, then a significant
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Figure 4.8. Scheme of a two-port network.

amount of power can be reflected back, leading to a small signal on the atoms and
possible damage to the RF amplifier. Therefore, a matching circuit needs to be
inserted between the RF amplifier and the antenna, which helps to minimize these
reflections and to ensure efficient transfer of power between the components.

The reflection coefficient Γ quantifies the ratio of the reflected root-mean-square
(rms) voltage Vr over the rms input voltage Vi:

Γ = Vr
Vi
. (4.36)

This can be recast in the following forms:

Γ = ZL − Z0
ZL + Z0

= z − 1
z + 1 . (4.37)

with ZL denoting the load resistance and Z0 the characteristic impedance of the
system (for us Z0 = 50 Ω), and z is the relative impedance, given by z = ZL/Z0.

The impedance of the load, ZL, may be a complex number, implying that there
could be a phase shift between the reflected signal and the input signal. When
ZL is equal to the characteristic impedance of the system, Z0, then the reflection
coefficient Γ is zero, meaning that no reflection will occur, and all the power will
be transmitted. Therefore, in order to ensure efficient transmission of an RF signal
from one network to another, the matching condition, ZL = Z0, has to be fulfilled.

An alternative way to describe this is through the S-matrix [100], typically used
in the field of signal processing and communication engineering to describe the
relationship between the input and output signals of a linear system. By measuring
the S-matrix parameters, it is possible to characterize the behavior of a network
under different impedance conditions. For a two-port model, shown in Fig. 4.8, the
network is described by a 2×2 square matrix of complex numbers: a1 is the input
voltage across port 1; b1 is the reflection voltage from port 1; b2 is the output voltage
across port 2; a2 represents the incoming reflection voltage from a following circuit.

The relationship between the reflected and incident waves through the S-
parameter matrix is then given by [101]:(

b1
b2

)
=
(
S11 S12
S21 S22

)(
a1
a2

)
, (4.38)

yielding
b1 = S11a1 + S12a2 (4.39)

and
b2 = S21a1 + S22a2. (4.40)
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Each equation establishes the connection between the incident and the reflected
waves at the network ports 1 and 2, in terms of the network S-parameters. If port 2
is terminated onto a load identical to the system impedance Z0, by the maximum
power transfer theorem [102], b2 will be totally absorbed, thus making a2 = 0. In
that way is easy to determinate

S11 = b1
a1

∣∣∣∣
a2=0

S21 = b2
a1

∣∣∣∣
a2=0

. (4.41)

Similarly, if port 1 is terminated on the system impedance, then a1 = 0, giving

S12 = b1
a2

∣∣∣∣
a1=0

S22 = b2
a2

∣∣∣∣
a1=0

. (4.42)

The complex 2-port S-parameters have the following generic descriptions: S11 is
the input port voltage reflection coefficient, S12 is the reverse voltage gain, S21 is
the forward voltage gain, and S22 is the output port voltage reflection coefficient.
In the characterization of a network S-parameters, measuring S11 and S22 can be
accomplished by terminating the circuit with the characteristic impedance Z0, and
observing the reflected signal. On the other hand, obtaining S21 and S12 requires to
measure the transmission of the network.

In the field of antenna engineering, it is common practice to use the Smith chart
as a graphical tool for analyzing and designing transmission lines and matching
circuits. It is a polar plot that allows to easily visualize the complex impedance of a
transmission line, or load, at any frequency. The chart provides a way to quickly
determine the correct matching network to transform the impedance of the load
to the characteristic impedance of the transmission line and, ultimately, to the
impedance of the antenna.

The Smith chart has two simultaneous readings, as illustrated in Fig. 4.9. It
contains the relative impedance z and, simultaneously, the reflection coefficient Γ.
Knowing a certain impedance load, its normalized value z can be placed as a point
on the Smith chart using the circles emphasized in the left panel of Fig. 4.9. The
distance between this point and the center of the chart represents the Γ value. From
here, by adding elements such as resistors, inductors or capacitors, one can move
along the curves to reach the centre of the chart, which corresponds to z = 1. As
shown in Fig. 4.9, these lines can be subdivided in two types. First, in blue, we
find the constant resistance circles, in which the real part of the impedance is kept
constant. One can move along these circles clockwise, adding a series impedance.
Otherwise, one can move counter-clockwise by adding a series capacitor. In green
are represented the other kind of lines, namely circumferential arcs with constant
reactance. Along these lines one can move by adding a purely resistive component.
The matching is achieved when the centre of the chart for a given frequency is reached.
We use the Smith chart in Fig. 4.17(c) to display the result of the simulation of the
final antenna design.

4.5.1 Matching examples

In the following, I illustrate a few examples of impedance matching, useful to
understand our strategy to optimize the matching circuit for the RF antenna.



58 4. Radio-Frequency antenna

Figure 4.9. Smith chart showing the normalized impedance z = ZL

Z0
(left) with ZL the

load impedance and Z0 the characteristic impedance of the system, and the reflection
coefficient Γ (right). See text for details. Figure taken from [103].

Inductive impedance load

First let’s consider the case of a pure inductive load, for which the impedance is
purely imaginary ZL = jωL, where j is the imaginary number commonly used in the
field of electronics. In the complex plane ZL is represented by the red point on the
positive side of the imaginary axis, see Fig. 4.10(a). In order to achieve impedance
matching at 50 Ω (yellow point), additional elements must be incorporated, to shift
the impedance towards the 50 Ω point on the real axis. A straightforward solution
is to insert a capacitor in series with the load, which provides an impedance of
ZC = 1/(jωC) and moves the impedance closer to the real axis. To achieve the
desired impedance, the condition jωL = j/(ωC) must be satisfied. Finally, a series
resistor of 50 Ω can be added to move along the real axis, resulting in a fully matched
circuit. Since our antenna is essentially a wire loop, its impedance can be mainly
represented as an inductor and we use a capacity to make its impedance real valued.

Capacitive impedance load

A similar strategy is applied when the load is a capacitor, for which the impedance
ZC is purely imaginary, but with Im[ZC ] < 0, see Fig. 4.10(b). In order to achieve
impedance matching in this case, an inductance can be added in series to shift the
impedance along the imaginary axis, followed by a resistor to reach the desired 50 Ω
impedance point on the real axis.

Real impedance load

Another standard case of impedance matching arises when the load impedance is
real and small, e.g. ZL = 8 Ω, like it is typical for a loud speaker, and needs to be
matched to the characteristic impedance of the transmission line, Z0 = 50 Ω, see
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Figure 4.10. Three examples of matching on the impedance complex plane. (a) Starting
from a purely inductive impedance (red dot), adding a capacitor and a 50 Ω resistor in
series (blue arrows) moves the impedance to Z0 = 50 Ω (yellow point). (b) Similar to
(a), starting from a pure capacitive impedance, adding an inductor and resistor in series
moves the impedance to Z0. (c) Starting from 8 Ω adding a resistor of 42 Ω gives perfect
matching but at the cost of reduced power on the load. Adding a 5 : 2 transformer in
series to the 8 Ω load does the same but without loss of power.

Fig. 4.10(c). A first option is to add another resistor, with a value of Rm = 42 Ω, for
impedance matching. However, this approach is not ideal, as only a small fraction
of the power is delivered to the load. Indeed, denoting the power on the load as PL
and the total power given by the generator as Ptot, one can easily find that

PL
Ptot

= P2
P1

= V2 I2
V1 I1

= V2
V1

= V1 8/50
V1

= 8
50 = 0.16. (4.43)

Here V1,2 and I1,2 are, respectively, the voltage and the current at the input (1) and
at the output (2) of the matching network, and in Eq. (4.43) we have used I2 = I1
and V1 = (ZL + Rm)I1 = I1 50 Ω and V2 = ZL I1. When the impedance ZL > Z0
a resistor in parallel to the load can be employed for matching, but again only a
fraction of the power is transmitted to the load. A better method for matching uses
a transformer, which in the ideal case allows to transmit the full power to the load,
as discussed in the following.

Transformer

Let’s consider the case of an ideal transformer (Fig. 4.11), which consists of two
coils wound on a shared magnetic core, ensuring efficient magnetic coupling between
them. In this ideal scenario, the output voltage V2 = nV1 and current I2 = I1/n of
the transformer are functions of the winding ratio n = N2/N1, where N1 and N2
are the numbers of windings in the primary and secondary coil, respectively. For
n > 1, the transformer is called a step-up transformer, and the voltage is increased
while the current is decreased. Conversely, for n < 1, the transformer is called a
step-down transformer, and the voltage is decreased while the current is increased.
The input impedance of a transformer is

Z1 = V1
I1

= V2
I2 n2 = Z2

n2 , (4.44)
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Figure 4.11. Sketch of an ideal transformer. Two coils, with N1 and N2 windings
respectively, are wound on the same magnetic core. It allows perfect matching without
loss of power in resistive elements.

where Z1 and Z2 are the input and output impedances, respectively. Therefore, a
transformer can be used to match the impedance between two circuits. A step-up
transformer (n > 1) can be used to match ZL > Z0 and a step-down transformer
(n < 1) can be used to match ZL < Z0. For our example above in Fig. 4.10(c), to
match the 8 Ω with 50 Ω we can use a step-down transformer with n =

√
8/50 = 0.4.

Thus using a 5:2 transformer for impedance matching instead of a resistor, has the
clear advantage that the power on the load is the same as on the input, ensuring
maximum power transfer efficiency. In the case of our antenna, after we have added
a matching capacitor, we use a step-down transformer to bring the small remaining
real part to 50 Ω. This has the additional advantage that the current and thus
the magnetic field can be further increased. However, a disadvantage of using
a classical transformer with magnetic coupling is that, for high frequencies, the
spurious impedance of the transformer cannot be neglected, and it can be challenging
to have high power transformers operating at high frequencies. One solution is
discussed in the following.

4.5.2 Quarter-wave transformer

Achieving the required ratio of the number of turns for our low-impedance antenna,
of about 1 Ω, with a step-down transformer, n =

√
1/50 ' 1/7, would require seven

times more windings on the primary side than on the secondary one, leading to a
large transformer with a significant spurious impedance. Additionally, in order to
handle our required power of up to 100W, the transformer would require thick wires
and a sizeable construction, further increasing the spurious impedance. At high
frequencies, such magnetically coupled “classical” transformer become impractical.
The quarter-wave transformer, see Fig. 4.12(a), is a highly effective solution to the
aforementioned issue. This design consists of a short section of transmission line,
which can be a coaxial cable, that is a quarter of the wavelength at the desired
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Figure 4.12. (a) Impedance-matching using a quarter-wavelength transmission line. Figure
taken from [104]. (b) Simulation with QUCS [105] of S11 (red solid, left axis) and S21
(magenta dashed, right axis) of a quarter-wavelength transmission line vs. frequency.
The quarter-wave condition is fulfilled for 80MHz and 240MHz (Z ′0 = 25 Ω, ZL = 12.5 Ω,
l = 0.656m, vF = 0.7).

frequency. This section of the transmission line is connected between the load and
the source, and it acts as an impedance transformer. This design is simple, easy
to implement, and can handle high power. However, it works only at the design
frequency.

Let’s consider a certain transmission line with a characteristic impedance of Z ′0
connected to an impedance load ZL. The general expression for the input impedance
of a lossless transmission line is [104]

Zin(l) = Z ′0
1 + Γe−i2kl

1− Γe−i2kl (4.45)

where k = 2π/λ and l is the length of the transmission line. When l = λ/4

2 k l = 2 2π
λ

λ

4 = π (4.46)

Subsequently,

Zin

(
λ

4

)
= Z ′0

1 + Γe−iπ

1− Γe−iπ = Z ′0
1− Γ
1 + Γ = (Z ′0)2

ZL
, (4.47)

where we have used the definition of the reflection coefficient Γ.
This means that, similar to the classical transformer, the load impedance ZL can

be adjusted to match Zin = Z0 by selecting the suitable length and characteristic
impedance Z ′0 of a transmission line. Since the speed of light in the transmission
line cline is reduced with respect to the speed of light in vacuum cvac by the velocity
factor vF = cline/cvac ≈ 1/√εr with εr the dielectric constant of the medium, the
calculation of the length of the quarter-wavelength transformer must take this into
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Figure 4.13. Quarter-wave transformers illustrated in an impedance Smith chart. When
observing a load through a lossless transmission line with a certain length l, the normalized
impedance undergoes changes as l increases, which can be represented as a blue circle
on the chart. When l = λ/4, the normalized impedance is mirrored around the center of
the chart. Figure taken from [103].

account. Note that the quarter wavelength condition is even fulfilled for any odd
multiple of λ/4, i.e. l = (2N + 1)λ/4 with N a positive integer, see Fig. 4.12(b).

A coaxial cable can be considered as a transmission line, with a characteristic
impedance Z ′0, approximately equal to Z ′0 ∼

√
L/C where L is the series impedance

and C the parallel impedance of an infinitely small section of the cable [106]. By
selecting appropriate materials and inner diameter d and outer diameter D for the
coaxial cable, the characteristic impedance Z ′0 can be adjusted to the required value,
according to the following formula [107].

Z ′0 ∼
138Ω
√
εr

log10

(
D

d

)
. (4.48)

Neglecting any losses, the current on the load can be determined from the power
P , which is related to the current I1, and characteristic impedance Z0, by P = Z0I

2
1 .

Similarly, the current I2, and load impedance ZL, are related by P = ZLI
2
2 . It

follows that the ratio I2/I1 =
√

(Z0/ZL) = Z0/Z
′
0. This implies that, for Z0 > Z ′0,

the current is increased while the voltage, calculated in the same way, is decreased
by the same factor. This behavior is reminiscent of the transformer described earlier,
and is the reason why this device is known as a quarter wave impedance transformer.

The quarter-wave impedance transformer is a highly effective solution for high-
frequency applications, characterized by low losses and the ability to handle high
power. However, the length of the transformer must be carefully chosen to match
the design frequency (see Fig. 4.13).

To match the low-impedance antenna and to enhance the current flowing through
the antenna, we implemented a quarter-wave transformer as a step-down transformer.
In order to determine the appropriate length and characteristic impedance of the
transformer, we performed a simulation considering also the matching circuit and
antenna parameters.
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Figure 4.14. Numerical simulation (performed by A. Trenkwalder with COMSOL Mul-
tiphysics) of the real part (a) and imaginary part (b) of the impedance (blue dots)
of a realistic banana-shaped antenna vs. frequency. The result is fitted with a simple
resonance model containing a resistor of R = 0.5 Ω in series to an inductor L = 180 nH
and parallel to both a capacitor of 1 pF. The resonance frequency is about 375MHz.
Antenna dimensions are R1 = 15mm, R2 = 42.5mm, wire diameter = 1mm, input wire
connection radius = 3mm. Wire material is copper and the antenna is immersed in a
sphere of radius R = 1.5m filled with air bounded by a 0.5m thick perfectly matched
layer which avoids reflections and simulates the far field region. The red data point close
to the center of the resonance was excluded from the fit.

4.5.3 Impedance of the antenna and its self-resonance

In the low-frequency regime, our antenna can be approximated as a RLC circuit, with
a resistor and an impedance in series, and a capacitor in parallel. Using numerical
simulation results of the antenna provided by COMSOL Multiphysics, my colleague
A. Trenkwalder has fitted the characteristic parameters of a realistic banana-shaped
antenna with the ideal dimensions and has obtained a low ohmic resistance of 0.5 Ω,
an inductance of 180 nH, and a capacitance of 1 pF, see Fig. 4.14.

Exploiting the equation [102]

ν = 1
2π
√
LC

, (4.49)

we get the resonance frequency of 375MHz. At this frequency, the antenna radiates
strongly, and the real and imaginary parts of its impedance approach infinity. This
makes it difficult to match the antenna and one has to work below the resonance.
Additionally, small stray capacitances and changes in the environment can shift
the resonance, limiting how close one can work to the resonance. At 240MHz, the
impedance of the antenna is approximately 1 Ω + j 500 Ω.

Before discussing further details, we summarize the applied matching concept
for our antenna: a matching capacitor is added to compensate for the inductive
part, following the concepts illustrated in Sec. 4.5.1. A quarter-wave impedance
tranformer is used as step-down transformer to match to 50 Ω and to transmit all
power into the antenna, as previously shown in Sec. 4.5.1. By doing so, the magnetic
field generated by the antenna is directly increased.

There are several problematic details that need to be addressed for the design of
the antenna. First, the matching capacitor would need to be very small to reach
the relatively high frequency of 240MHz. Second, it is important to ensure that the
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Figure 4.15. A common mode voltage (sum of red voltages) is generated when a quater-
wave transformer (blue) and the load (orange) are directly connected to the RF source
(green).

antenna is radiating and not the entire circuit, which can be challenging to achieve.
These issues need to be resolved to optimize the performance of the antenna and
achieve the desired results.

4.5.4 Symmetric matching design

Fig. 4.15 schematically shows what happens when one connects the load (idealized
antenna as 3.25 Ω resistor, orange), and the quarter-wave transformer (blue) directly
to the RF source (green). Since in the Fig. 4.15 we have Z ′0 = Z0/4, the transformer
increases the input current Iin by a factor of 4 and the input voltage Uin is reduced
by a factor of 4 over the load, see Sec. 4.5.2. This circuit is problematic since the
current going out of the source is not the same as coming back into the source.
Assuming that the RF source gives a symmetric voltage before the 50 Ω internal
source resistances, it is easy to show, that the voltages on the input (+2Uin, red)
and output (+Uin, red) of our circuit are not symmetric around earth. The sum of
the two voltages is referred to the “common-mode voltage” (+3Uin here) and when
it is non-zero causes that the entire circuit starts to radiate. This “electromagnetic
interference” (EMI) has to be avoided to prevent other electronic devices to pick
up noise and to protect humans – and other living beings – from harmful radiation.
In the balanced case, the source requires only 3× Uin to drive the circuit, while in
the shown case it requires twice the voltage and thus twice the power to provide
the same current. To avoid EMI and for better efficiency, a symmetric – also called
“balanced” – design must be employed such that the currents going out of the source
and returning are the same. To achieve this, a second matching circuit is placed
after the antenna. It includes a step-up transformer that decreases the current and
increases the voltage. In addition, a high-power 50 Ω resistor is positioned near
the RF source to act as a dummy load and absorb most of the power. Note that
even in the balanced case stray capacities, or an improper connection to ground on
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Figure 4.16. Scheme of the antenna matching circuit.

the antenna, can cause unwanted currents going back to the source avoiding the
second matching circuit. This leads in a similar way to imbalanced currents and a
common-mode voltage causing EMI. Special designs exist to avoid such problems
(for example see Ref. [108]).

4.5.5 QUCS simulation

Once the design of the whole circuit was conceptually devised, and rough estimates
for the various components were made, we used the QUCS software [105] to simulate
the specific details of the antenna setup.

To solve the issue of the small matching capacity, we split the capacitor into 2
larger capacities in series with a second coaxial cable transmission line in-between.
Varying the length of this transmission line the impedance of the antenna is rotated
into a more favorable regime around the center of the Smith chart, see right panel
in Fig. 4.13. This gives another degree of freedom which we numerically optimize
for perfect matching.

Fig. 4.16 shows a schematic representation of the final setup I implemented.
Using QUCS, I varied the cable lengths and capacitance values in order to have a
good matching for our frequency of interest, 240MHz. The results of the simulations
are displayed in Fig. 4.17. Panel (a) shows the reflection coefficient S11, represented
by the solid red line, and the transmission coefficient S21, represented by a dashed
magenta line, as a function of the RF frequency. Fig. 4.17(b) shows the current
flowing into the antenna (blue line) and the voltage across the antenna (magenta
line). Panel (c) shows the reflection coefficient S11 in the Smith chart.

The data presented in all panels unambiguously indicate that the design is
optimized for a good impedance matching and high current delivery to the antenna
at a frequency of 240MHz.

4.6 Realization

Once the entire setup was planned, and its performance was optimized with QUCS,
I proceeded to realize both RF antenna and the whole matching circuit.

Figure 4.18 displays a photo of the antenna. It is mounted on a Polypropylene
tube (80mm diameter, 2.4mm wall thickness). On the mid-top of the photo one can
see the prototyping board (green) which we used to place the adjustable capacitor
and which connects to the second transformer.
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Figure 4.17. Results of the simulation of the antenna circuit made with the QUCS software:
(a) solid red line and dashed magenta line represent the reflection coefficient S11 and the
transmission coefficient S21 respectively, as function of frequency; (b) current (blue line)
and voltage (magenta line) on the antenna as function of the frequency; (c) reflection
coefficient S11 plotted in the Smith chart. For this simulation was used the circuit in
Fig. 4.16, with a RF power of 100W.

For the antenna body we use a rectangular copper wire with cross section of
3.2mm × 1.5mm. A thick wire and short feeding connections are essential to keep
the inductance low to reach high frequencies and to be able to use not too small
capacitors. The antenna is fixed and soldered to an electrical prototyping board
on which the capacities C2 and C3 are placed with C3 adjustable from 4-20 pF. As
already mentioned, the second transmission line (length 0.58m, Z ′0 = 25 Ω created
by two parallel coaxial cables of the same type as for the quarter-wave transformer)
is placed between the two matching capacitors: C1 and C2 on one side and C3 and
C4 on the other side of the antenna. For the quarter-wave transformer we wanted to
have the possibility to use it at 240MHz and also at 80MHz for lithium. Therefore,
we have selected the length to be 3λ/4 ≈ 0.6m (at 240MHz with a velocity factor
of 0.7). We have chosen to use 4 standard 50Ω coaxial cables in parallel (QAXIAL
RG316/50-FLEX, non-magnetic), which gives an effective Z ′0 = 50 Ω/4 = 12.5Ω.
With this choice the load impedance is

ZL = Z ′20
50 Ω = 50 Ω

16 = 3.125 Ω (4.50)

and the increase in current is Z0/Z
′
0 = 50/12.5 = 4. Although the real part of

the impedance of the antenna is smaller than the one calculated, the simulation
shows that with the sum of all components a good matching is possible (see previous
section). All non-tunable capacitors are non-magnetic, high-voltage (1 kV) porcelain
multilayer SMD from American Technical Ceramics (ATC 100B series).
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Figure 4.18. Photo of the banana-shaped antenna in its mounting system.

4.7 Measurement of the coupling efficiency

After I have designed and built the antenna and the matching circuit, I moved to
fine tune the parameters – trimmer capacitor and eventually the cable lengths –
and to optimize its performance at the desired frequency. When the antenna is
tuned correctly, one expects that the reflection is minimum and the transmission
is maximum (see Fig. 4.17). In order to measure the reflection I used a directional
coupler (Mini-Circuits ZFDC-15-8) as schematically illustrated in Fig. 4.19. This
device allows signals to flow from input to output, with a small fraction (-15 dB)
of the input power being sent to the coupling output. When the signal flows in
the opposite direction, instead, a much smaller fraction (-45 dB) is delivered at the
coupling output. Therefore, by connecting the RF source on the output and the
matching circuit with the input, I could measure – connecting the spectrum analyzer
on the coupling output – how much power is reflected back from the matching circuit.

Figure 4.19. Schematic of a 3-port directional coupler in a simple reflectometer setup.
Figure adapted from [109].
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Figure 4.20. Reflection (a) and emission (b) from the antenna, measured by scanning the
frequency from 150MHz to 300MHz. Red arrows identify the dip (in the reflection) and
the peak (in the emission) at 240MHz. (c) Simulation with QUCS of the reflected (S11,
red) and the transmitted signals (S21, magenta dashed) as in Fig. 4.17(a), but a wider
range of frequencies is plotted.

Fig. 4.20(a) shows the reflected signal from 150MHz to 300MHz, performing a
frequency sweep with the generator, and monitoring with a spectrum analyzer (using
the “max hold” option to display the maximum reflected signal during scanning of
the frequency).

We are looking for a dip – identified by a red arrow in Fig. 4.20(a) – in the
reflected signal of the antenna, for which most of the power is transmitted to the
antenna. Tuning the trimmer capacitor C3 we can move this dip in a range of a
few tens of MHz. But we usually find three dips in the reflection where the one
at lower frequency (around 195MHz) is not affected much by C3, while the other
two dips (245MHz and 285MHz) shift with C3. To understand at which frequency
the radiation of the antenna is truly maximized, we are using another antenna,
called pick-up antenna, which is a very small single-loop antenna without matching
circuit placed close to our matched antenna. This pick-up antenna must have a
small size so that its inductance is small enough that its self-resonance frequency
is at much higher frequency than our measurement frequency range such that the
pick-up antenna is operated in the flat gain region. Panel (b) in Fig. 4.20 shows the
signal of the pick-up antenna connected directly to the spectrum analyzer (again
taken with the “max hold” function). We find still three peaks corresponding to the
three dips but shifted by about 5MHz towards lower frequencies.

The simulation with QUCS confirms the presence of three features roughly
at the observed frequencies, but the center one should be more pronounced, see
Fig. 4.20(c). Adding a coupler to the simulation better matches the observation and
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Figure 4.21. Energy of the hyperfine levels of ground-state 6Li (a) and 53Cr (b) atoms as
function of the magnetic field. Energy levels calculated and plotted by A. Trenkwalder.

shows also small frequency shifts but the details depend strongly on the configuration.
Additionally, the self-resonance of the antenna and that of the pick-up coil can modify
significantly the observations.

Therefore, our interpretation is that only the center peak of the pick-up antenna
around 240MHz is the correct peak and we adjust it with the trimmer C3 to the
desired chromium transition frequency. This interpretation has been confirmed by
the measurement on the atoms which will be presented next.

4.8 Test on atoms

We tested the new antenna on the experiment with ultracold chromium atoms. Our
goal is to address the transition between the first and the second lowest Zeeman levels
of atomic 53Cr in the ground state, labeled as Cr|1〉 and Cr|2〉. Fig. 4.21 depicts the
magnetic field dependence of the hyperfine levels of the electronic ground-state of
Li on the left, and Cr on the right. The two lowest levels of interest for chromium
are colored in blue and light blue, respectively. The Zeeman energy, as a function
of magnetic field, for alkali-like atoms – as lithium – with a total electron spin
of 1/2, can be calculated with the formula by Breit and Rabi [110]. However, for
chromium, which has a total electron spin of 3, a numerical solution is required.
This means, the Hamiltonian with the Zeeman and Hyperfine contributions needs
to be diagonalized numerically for each relevant magnetic field. The results of this
calculation, made by A. Trenkwalder, are plotted in Fig. 4.21. At our magnetic field
of interest of 1414G, the two ground state levels of chromium are separated by an
energy of h× 240.152MHz.

In order to characterize the antenna performance, we conducted a spectroscopic
measurement and we observed Rabi oscillations of the atomic population. We
prepare a spin polarized sample of chromium atoms in the ground state as follows.
After the evaporative cooling, we are left with an ultracold mixture of Li|1〉, Li|2〉,
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Cr|1〉 and Cr|2〉. The last one, being only a small fraction, is completely removed
by waiting a certain time on the nearby Li|1〉-Cr|2〉 Feshbach resonance at 1418G.
Instead, the two lithium species are removed by applying resonant light.

In order to improve the accuracy on the atomic populations and minimize the
systematics arising from atom number fluctuations, it is desirable to normalize the
number of transferred atoms by the total number. This requires counting atoms in
both states Cr|1〉 and Cr|2〉. Since at this field we have only laser light available
for imaging of Cr|1〉, we employ following strategy to obtain the number of Cr|1〉
and Cr|2〉. After the spectroscopy RF pulse, we shine the imaging pulse to detect
the remaining atoms in the Cr|1〉 state. A second (strong) RF π-pulse on resonance
is applied so that all atoms are transferred from the Cr|2〉 state back to the Cr|1〉
state, where the atoms are imaged with a second optical pulse onto the same camera.
This second RF pulse is with 200µs relative short such that B-field fluctuations do
not matter and 100% of the atoms are transferred.

Hence, for each experimental cycle, we get informations about the population of
the two levels, NCr|1〉 and NCr|2〉 respectively, with which we can define the relative
transferred population of chromium as

S =
NCr|2〉

NCr|1〉 +NCr|2〉
. (4.51)

We first study the frequency spectrum measured as the transition probability
as function of the frequency detuning from resonance. Before starting to acquire
the spectroscopy measurement, we find the right parameters – RF power at a given
pulse length – in order to have a π-pulse, which at resonance allows a complete
transfer of the atoms from Cr|1〉 to Cr|2〉. For this measurement, these parameters
are fixed at P = 40mW and τ = 1.8ms. By varying the frequency of the RF pulse
around the resonance, we get a distribution of data as shown in Fig. 4.22.

The spectroscopy signal follows Eq. (4.24) which I repeat here:

S(δ) = Ω2

δ2 + Ω2 sin2
(
τ

2
√
δ2 + Ω2

)
, (4.52)

where τ is the pulse duration – fixed at 1.8ms – and δ the detuning. Note that
for a π-pulse with τ = π/Ω, Eq. (4.52) can be recast into a sinc2 function, which
is reminiscent of the Fourier transform of a square pulse but with the detuning
scaling as

√
δ2 + Ω2. S(δ) well fits the chromium data, from which we get the central

frequency of 240.424938(6)MHz, and the Rabi frequency Ω = 2π × 267(7)Hz.
As a second experiment, we study the time evolution of the atomic populations

in states |1〉 and |2〉 resonantly coupled by the oscillating magnetic field. Starting
again from a spin polarized sample in the Cr|1〉 state, we measure the transition
probability as function of the time duration of a resonant RF pulse for P = 40mW.
The population of state |2〉 as function of the pulse duration is shown in Fig. 4.23.
The data show clear Rabi flopping and are well fit by the analytic function:

S(t) = A sin2
(Ω

2 t+ ϕ

)
(4.53)

with A the amplitude, ϕ a phase factor and Ω the Rabi frequency. From the fit
I get the following parameters and errors: A = 1.000(5); ϕ = -0.053(7); Ω =
2π × 264.6(3)Hz.
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Figure 4.22. Chromium spectrum of the transition Cr|1〉→Cr|2〉, with a pulse power of
40mW and a pulse length of 1.8ms. Orange dots are the data with their error bar. Solid
blue line represents the fit with Eq. (4.52).

The Rabi frequency obtained from the two measurements are perfectly consistent.

Comparison of the Rabi frequency

Now, it is useful to compare the Rabi frequency measured, with that expected from
the theoretical calculation. We scale the measured Rabi frequency in Fig. 4.23 from
40mW to 100W which was used in the simulation in Fig. 4.17.

Ω100 W = Ω40 mW

√
100
0.04 = 2π × 13.23 kHz. (4.54)

Recalling Eq. (4.31), to calculate the Rabi frequency we use µ⊥/h = 156.402 kHz/G
calculated by A. Ciamei and the magnetic field amplitude B0. In order to calculate
the magnetic field (Sec. 4.4.3) generated at the atoms position we need the current
that flows in the coil. From the QUCS simulation we get that current (Fig. 4.17)
with a RF power of 100W, i.e. Imax = 5.30A. This is the current oscillation ampli-
tude but for the effective B-field we have to use the root-mean-square value (rms),
namely Irms = 3.75A. The distance between antenna and atoms we estimate to
be 22.5(2.5)mm (see Ref. [78]). Using B0 = 83(10)mG, see Fig. 4.7, we obtain a
calculated Rabi frequency of 13(1) kHz which is within 2% of the measured one.

In this chapter I have described how I designed a high-power RF antenna at
240MHz for efficient RF transfer of chromium atoms between the two lowest hyperfine
states around 1414G. The antenna is optimized to maximize in the near-field regime
the transversal magnetic field produced at the position of the atoms, while unwanted
magnetic fields in the vertical direction are suppressed. I have presented the basic
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Figure 4.23. Rabi oscillation at the resonance between states Cr|1〉 and Cr|2〉, for an RF
pulse of 40mW. Orange dots are the data with their error bar. Solid blue line represents
the fit result using Eq. (4.53) which gives Ω = 2π × 264.6(3)Hz.

theoretical concepts of the antenna and a simple model to analytically calculate the
magnetic field produced by the antenna. I have designed and simulated the matching
circuit for the realistic antenna. After I have built the antenna and matching circuit
I present how the matching was optimized for the design frequency. Finally, I
have presented measurements on chromium atoms showing the performance of the
antenna and that it perfectly matches with the expectations. In the next Chapter I
will present the application of the antenna for the characterization and improvement
of the magnetic field stability at 1.4 kG.
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Chapter 5

Magnetic field stabilization

In order to experimentally explore the rich physics mentioned in the Introduction,
fine tuning of interactions close to a Feshbach resonance is needed. As I already
discussed in Chapter 3, our Li-Cr mixture exhibits only narrow Feshbach resonances,
with a magnetic width of about 0.5G at rather high magnetic fields, above 1400G.
In order to scan the value of the inter-species scattering length and probe the region
of strong interactions, i.e. kF |a| > 1, one has to tune the magnetic field by a
small fraction of the resonance width. Given our sample conditions, we aim for
a resolution better than 5mG and a corresponding fractional stability of about
5mG/1400G = 4ppm. (1 ppm = 1 part per million = 10−6) has to be achieved. In
this Chapter I will describe how this could be achieved through a combined active
field stabilization of the offset magnetic field, and compensation for the residual 50Hz
line noise by giving a feed-forward signal on a dedicated set of AC compensation
coils. The detection, characterization, and reduction of magnetic field noise required
extensive use of the Cr RF antenna described in the previous Chapter. Finally, I
will show how these hardware upgrades significantly improved our accuracy in the
experimental determination of the Feshbach molecule magnetic moment as function
of the detuning from resonance.

5.1 Active current stabilization

The first method we employ in the experiment to stabilize the magnetic field involves
an active approach, utilizing a proportional-integral-derivative feedback circuit (PID)
to stabilize the current responsible for generating the high offset field of more than
1400G. The current is monitored by a current transducer (ITN-600S Ultrastab by
LEM), which has an offset drift of ±0.8 ppm/month, linearity error of ±1.5 ppm, and
temperature coefficient of ±0.5 ppm/K. This transducer provides a secondary current
output, that is proportional to the primary current through the B-field generating coil.
With a current slightly below 200A (our offset field coils setup being characterized
by a field-to-current ratio of about 7.7G/A), the current-carrying cables were wound
three times around the transducer, to fully exploit its maximum primary current
of 600A, see Fig. 5.1. In order to convert the secondary current output into the
appropriate input voltage required by the PID, an ultra-high-precision resistor with
a nominal value of 5Ω was utilized. The resistor (Y14675R00000B9L from Vishay) is
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Figure 5.1. Design of the copper bars used to feed the same current three times through
the current transducer (grey, hole diameter 30mm). The current of up to 200A (DC) is
entering on the top crimp terminal and passes on the top copper bar (red) through the
transducer, is fed on the left side back to the input of the transducer and passes through
the middle copper bar (blue), is fed on the right side back to the input of the transducer
and passes the third time (green) and exits through the bottom crimp terminal on
the bottom side. The three 8mm thick copper bars passing though the transducer are
isolated with 0.5mm thick plastic from each other and all bars are connected with M8
screws.

designed to handle a maximum power of 10W, and it has a temperature coefficient
of 0.2 ppm/K. This ensures that any change in temperature does not significantly
affect the performance and accuracy of the overall system. The output voltage
of the PID is transmitted to the analog programming input of the power supply
(GSP80-195 from TDK-Lambda), in the range of 0-10V, to maintain a constant
output current through the system. In order to prevent any external radiation to
couple into the control electronic circuit, both the PID and the ultra-high-precision
resistor are enclosed within a metal box. Furthermore, as anticipated in Sec. 3.4,
in order to enable fine-tuning of the magnetic field, and to allow for fast changes
in the field, a smaller additional pair of coils (DC comp coils) was utilized. These
coils are capable of handling a maximum current of 5A (0.51G/A) and their output
is independently stabilized via another transducer combined with a PID (Stanford
Research). Finally, a third pair of coils is used to generate a magnetic field gradient
in order to levitate the atoms. This is however not stabilized.

5.2 Measurement of the B-field noise

Long-term magnetic field fluctuations are determined by the sum of two different
contributions. One is random fluctuations of the background magnetic field due
to the unpredictable influence of the environment. The other contribution is syn-
chronous with the 50Hz line and can either originate from residual current noise on
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Figure 5.2. Transferred chromium atom fraction with (Left) and without (Right) “stop-
trigger” at fixed time in the experimental sequence.

the MOT coils or unwanted periodic magnetic fields induced by the surrounding
instrumentation. Different dedicated strategies are used to cancel random and 50Hz
noise. The former requires a feed-back control based on magnetic field sensors, while
the latter can be achieved with a feed-forward.

We characterized the B-field noise in the vicinity of one of the Feshbach resonances
at 1414-1461G, probing the radio-frequency transition Cr|1〉→Cr|2〉 between the
lowest two Zeeman levels of atomic Cr. By determining the frequency of maximum
transfer, we could calibrate the absolute magnetic field, see Fig. 4.21. At these
high fields, the electron and nuclear spin angular momenta decouple, resulting in
nearly parallel Zeeman lines, thereby reducing the sensitivity of RF transitions to
the magnetic field. The lithium Zeeman shift of the transition is < 0.8 kHz/G, while
that of chromium is 6.041 kHz/G, making chromium 7.5 times more sensitive to the
magnetic field fluctuations than lithium. For this reason, we specifically designed
the RF antenna to address the Cr|1〉→Cr|2〉 transition.

We start the measurement with a spin polarized sample of chromium in the
Cr|1〉 state after the end of the evaporation stage. Lithium atoms are removed with
a strong resonant light pulse. We set the RF pulse intensity and length to make a
properly detuned π-pulse, such that 50% of the atoms are transferred into the Cr|2〉
state. From any noise seen on the transferred number of atoms, we can infer the
magnetic field fluctuation using Eq. (4.52), which is a sinc2 function for a π-pulse as
discussed in Sec. 4.8. On the one hand, the length of the RF pulse should be long to
have a high spectral resolution, hence high magnetic field sensitivity. On the other
hand, the length is limited by the B-field noise level: given a fluctuation amplitude
there exists a maximum pulse time for which the binary relation between transfer
efficiency and B-field detuning is unique. Since this is of order of the FWHM of
the sinc2 function, we get that Max[T ] = (δµ∆B)−1. In the experiment we set the
longest pulse time for which the transfer efficiency falls into the 20%-80% region,
and find it to be 1.8ms. So, moving the time in which the RF pulse occurs, we
acquire the magnetic field behavior versus time.

Despite the presence of noise, we clearly observe 50Hz fluctuations of the bias
field out of statistical noise. Our analysis revealed that the dominant contribution
to B-field fluctuations is synchronous with the AC line and shows a 50Hz carrier
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Figure 5.3. (a) Measurement of the magnetic field fluctuation seen through variation
in the the transferred atom fraction. A π-pulse is applied with detuning to have 50%
transfer. The time of the RF pulse is varied with respect to the second line trigger; (b)
data of plot in (a) with the transferred fraction converted in mG; (c) FFT of the signal
noise, with red dots highlighting the main frequency components.

frequency with additional higher harmonics at 100Hz and 150Hz. To measure better
this noise, we have two options: (a) measure the phase of the power line at the start
of each RF pulse, or (b) synchronize the experiment to ensure the same phase for
each repetition. We choose the second option, as it enables us to later compensate
for the AC power line noise (see next Section).

In our laboratory, we utilize a 10Hz signal which provides a TTL pulse in
synchronization with the AC power line. This “line-trigger” signal marks the
beginning of each experiment. The control system waits for the line-trigger to start
the experimental sequence, which guarantees a fixed phase of the power line at the
beginning of the experiment. However, as the line frequency deviates from 50Hz by
up to ±0.2Hz over extended periods of time [111], the typical jitter after one second
can be up to ±4ms. After 10 seconds of experiment time, this jitter can increase up
to ±40ms, making it unacceptable for measuring a 50Hz signal with a period of
20ms.
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Figure 5.4. The same measurement of Fig. 5.3 with the first AC line compensation
implemented. (a) Measurement of the residual magnetic field fluctuations after the first
compensation; (b) data of plot in (a) with the transferred fraction converted in mG; (c)
FFT of the signal noise, with red dots highlighting the main frequency components.

In order to reduce the jitter caused by the AC line frequency, we program the
control system to stop the experiment at a given time via a “stop-trigger”, and only
continue the experimental sequence at the arrival of the next line trigger. This allows
us to minimize the jitter to order of ±0.1ms, making the phase jitter negligible.

A comparison of the jitter with and without the second line trigger is presented
in Fig. 5.2, which shows the fluctuation of the transferred chromium fraction from
shot-to-shot, once the RF frequency detuning is set to – ideally – yield a 50% transfer.
This method ensures accurate and reliable measurement of the line induced noise,
which is crucial for our experimental setup.

By using an optimal 1.8ms-long RF pulse, Fig. 5.3(a) shows the transferred
number of chromium atoms as a function of the time between the line trigger and the
start of the RF pulse. Fig. 5.3(b) shows the calculated magnetic field fluctuations
δB obtained from S(δ) by numerical inversion of Eq. (4.52) using a perfect π-pulse
with τ = π/Ω. In order to convert the frequency detuning δ into a magnetic field
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Figure 5.5. Residual magnetic field noise after two compensations implemented.

detuning δB, we use the relation

δ = 2π · 6.041
(kHz

G

)
· δB(G) = 2π · 6.041

( Hz
mG

)
· δB(mG). (5.1)

We find that the magnetic field fluctuations are of order of 30-40mG peak-to-
peak, and the Fourier transform of the noise presented in Fig. 5.3(c) shows clear
peaks at 50Hz, 100Hz and 150Hz, respectively. The source of the noise was not
investigated thoroughly, but we suspect that the main component is due to the
current producing the offset field, possibly created by ground loops between the
control computer, the PID and the power supply.

5.3 AC line noise compensation

In order to mitigate the AC line noise, we employ the measured B-field fluctuations
in Sec. 5.2 and feed a typical 60mA AC current into a third coil, wound around the
resin support of the top MOT coil, and featuring a field-to-current ratio of about
0.5G/A. Each current value – extrapolated from the FFT parameters – is sent every
10µs. This method allowed us to nearly cancel out the AC line noise.

After that, we took a further measurement of the residual noise as in Sec. 5.2,
but now with the compensation applied, and with a longer RF pulse of 3.6ms,
which correspondingly increased our sensitivity by a factor 2. This measurement
allows us to evaluate the effectiveness of the compensation, and to verify that the
residual noise was indeed significantly reduced. By comparing the results of this
measurement, shown in Fig. 5.4, with the ones obtained without compensation, a
significant reduction in noise was observable, even if not completely eliminated. In
particular, a non-zero contribution at the line frequency component was still evident.
We thus added the measured remaining noise to the previously measured one and
feed the combined signal into the AC compensation coil. With this applied we
verify in a third measurement the residual noise, again with the 3.6ms-long pulse,
see Fig. 5.5. We see that all datapoints remain within about 13mG peak-to-peak
and no significant AC line contribution is visible, meaning that only random noise
remains. The standard deviation of this data is 3.2mG and fitting a Gaussian into
the histogram of the data gives a sigma of 3.6(6)mG. Note that this result includes
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Figure 5.6. Magnetic moment of LiCr Feshbach dimers as function of magnetic field
detuning (δB) from the resonance pole. Red circles show the measurement results before
B-field stabilization and with RF cleaning on Li, while blue circles show the results after
B-field stabilization and with the RF cleaning on Cr. The solid line is the theoretical
expectation, neglecting B-field noise and inhomogeneities, obtained from Eq. (1.26),
using the open-channel fraction in Eq. (1.25) to interpolate between the atomic (7µB)
and molecule (5µB) magnetic moments.

also noise coming from imaging and fitting of the atom number. Therefore this is an
upper boundary.

This is an impressive result, given the relatively simple scheme followed to
implement the stabilization, and considering that no extreme care was taken, so far,
to physically remove from the experimental table several possible sources of B-field
noise (such as low-power power supplies, etc.).

At 1414G offset field the remaining noise corresponds to 2.5(4) ppm relative
magnetic field stability which is even better than what was our defined goal at the
beginning of this chapter. Moreover, it will allow us to finely control the Li-Cr
interactions near the 1414G and 1461G Feshbach resonances.

Finally, I show how the B-field stabilization, and the use of the Cr RF antenna
instead of the Li antenna, have impacted on the experimental investigation of the
magnetic moment of LiCr Feshbach dimers. The measured magnetic moment as
function of detuning from the Feshbach resonance pole is shown in Fig. 5.6 both
after these hardware upgrades (blue circles) and before (red circles) as reported
earlier in Fig. 3.8.

With this improvement, there is now a significant enhancement in the quality of
the measurement: the experimental data now shows a much better agreement with
the theoretical curve, allowing for a more accurate and precise determination of the
physical parameters of interest. Additionally, the field stability achieved allows us to
reduce the step size with which the field can be adjusted, resulting in more detailed
and refined data. Overall, the magnetic field stabilization has significantly increased
the reliability and accuracy of the measurements.
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Conclusions

In conclusion, during my master thesis I contributed to provide a substantial upgrade
in the Lab. 9 experimental setup, allowing to significantly boost the investigation of
resonantly-interacting Fermi mixtures of ultracold lithium and chromium atoms.

On the one hand, I actively participated to the optimization of the experimental
routine, that allowed us to produce, on a 12 s-long duty cycle, highly-degenerate
6Li-53Cr Fermi mixtures of more than 2× 105 and 105 atoms per species, at reduced
temperatures of T/TF ∼ 0.25, for both components simultaneously.

On the other hand, the design, realization and successful test of a new RF setup
for the controlled manipulation of the spin-state of chromium atoms, enabled us to
efficiently transfer the atomic mixture in and out of the resonantly-interacting regime,
as well as to precisely characterize the magnetic field stability in the experiment. In
turn, this latter characterization was crucial to devise a simple but efficient scheme
to actively stabilize the magnetic-field bias. This allowed me to achieve a rather
impressive compensation of the B-field noise, reducing it, over several tens of ms,
down to a few mG at bias values of more than 1400G, i.e. down to a few ppm.

The successful implementation of these important technical upgrades on the
main experimental machine, and their integration within the experimental cycle, has
already opened the possibility to controllably produce, and to precisely characterize,
ultracold lithium-chromium mixtures under resonantly-interacting conditions.

Besides the characterization of LiCr dimer formation near the high-field Feshbach
resonance above 1.4 kG, currently still ongoing, my thesis paves the way to a wealth
of exciting studies in the near future. In fact, the possibility to controllably access the
strongly-interacting region with an accuracy of a few mG over about 100ms, will allow
us to perform investigation of the rich few- and many-body phenomena mentioned
in the Introduction of my thesis. For instance, if the collisional stability of Feshbach
dimers – at present ongoing research in the lab – will enable to achieve molecule
lifetimes of a few tens of ms, realization of molecular Bose-Einstein condensates of
weakly-bound LiCr dimers could be within experimental reach in the forthcoming
months. This would not only represent the first step towards the experimental study
of the BCS-BEC crossover within a mass-imbalanced fermionic system, but it would
also represent a pristine starting point towards the realization – through coherent
optical transfer – of degenerate Bose gases of LiCr ground-state, paramagnetic polar
molecules.

Finally, the design of the RF setup, that I implemented here to efficiently control
the internal state of chromium atoms, could be rather straightforwardly adapted
also to the spin manipulation of the lithium component. In turn, the experimental
ability to reliably drive RF transitions on both fermionic species, would represent
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an excellent possibility to perform investigation of both heavy and light impurity
problems within the same experimental setup and physical system, as well as to
disclose, through state-of-the-art RF spectroscopy schemes, elusive few-body cluster
states, or non-trivial resonant processes in the atom-dimer scattering.
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