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Abstract

Superfluids are one of the most intriguing among macroscopic quantum phenomena, where the
large-scale properties of the system reveal the small-scale quantum properties of its constituent
components: this happens because of the coherent interaction of this components, which
interfere constructively, and therefore amplify their characteristics. For the specific case of
superfluids, this is most famously manifest in their dissipationless flow, whose observation lead
to their discovery, but also in a plethora of other peculiarities, which are, as said, ultimately
due to coherence effects within the fluid particles. Apart from a low temperature laboratory, the
presence of superfluids has been hypothesized in many systems, ranging from superconductors
to neutron stars. A facet of superfluidity that has long been a fertile area of study is that of
multicomponent superfluids, where two different specimens of such fluids interact, giving rise
to novel and interesting phenomena, which would not be present in the single component case.
While different from stricto sensu superfluidity, Bose-Einstein condensation is intimately linked
to it, as it is, ultimately, its cause.

In this thesis, we focused on the physics of superfluids, investigated with a mixture of Bose-
Einstein condensates realized with ultracold 41K and 87Rb. These atoms have the capability,
which is of particular interest for our stated purpose, of tuning the interactions between the K
and the Rb atoms, enabling the exploration of the whole phase diagram of the mixture. The
work has been done in three phases.

In the first phase, we have developed a procedure to obtain the double condensate in the
correct hyperfine state, and has resulted in the production of Bose-Einstein condensates with
tunable interspecies interactions, having a total number of atoms ranging between 5×104 and
3×105, in a consistent and reliable way.

In the second phase, we have investigated the physics of the dipole oscillation of the
condensate mixture. Dipole oscillations are one of the possible collective excitations of a
condensates, and those where the presence of interspecies interactions more dramatically
changes the features of the modes, with respect to the single component case. We have
experimentally measured their behaviour for various interspecies interaction strengths, and
compared it with the theoretical models, finding which are more amenable to the description
of the observations in various cases.

In the third phase, we have designed and built a new, high-resolution imaging system. This
system is capable of resolution of approximately 1.5 µm, in contrast to the 5 µm previously
attainable, widening the capabilities of the apparatus. The system needed a compensation
of the objective, which is on the path of the magneto-optical trap laser beam, and a new
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sequence of imaging pulses, to adapt to the different orientation of the probe beam with
respect to the magnetic fields, and to the different strength of the latter when the image is
done on a trapped condensate, as opposed to one that is free-falling. We used this apparatus
to obtain some preliminary in-situ images of a quantum droplet. Quantum droplets are very
peculiar self-bound states of a mixture, where the collapse of the atomic cloud, in a regime of
very strong interspecies attraction, is impeded by the quantum fluctuations, and instead an
hydrodynamic equilibrium is reached. Such states have peculiar features not normally found in
quantum gases.

With the work done in this thesis, we have built the foundations for further investigations of
multicomponent superfluidity, with the eventual aim of contributing to the exploration of this
wide and fascinating subject.
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1

Introduction

Ever since its inception, the study of quantum physics has been inextricably intertwined with
the ideas and the methods of statistical mechanics [1]. This link is nowhere more evident than
in the concept of quantum statistics, in which the intrinsic indistinguishability of the particles
in a quantum regime changes drastically their thermodynamic properties, dividing particles
in two classes according to their behaviour: either exchange-symmetric bosons, following the
Bose-Einstein statistic [2, 3] or exchange-antisymmetric fermions, that obey the Fermi-Dirac
statistic [4, 5]. The phenomenon of Bose-Einstein condensation started to rouse the interest
of physicists worldwide after the discovery of superfluid liquid helium [6], when London
advanced an explanation that linked superfluidity with the formation of a condensate [7];
it was then further cast into spotlight when another macroscopic quantum phenomenon,
superconductivity [8], was explained in terms of condensation of quasiparticles by Bardeen,
Cooper, and Schrieffer [9].

The first impulse to the realization of a Bose-Einstein condensate in atomic gases was
given by Stwalley and Nosanow [10]: its experimental realization was achieved two decades
later—spurred by advances in laser cooling [11, 12] and atomic trapping [13]—first in 87Rb [14],
and then, after a few months, in 7Li [15] and in 23Na [16]. From these initial experiments, the
study of degenerate quantum gases has greatly expanded to many topics, encompassing both
fundamental and more applied physics.

Early proposals for the realization of a mixture of Bose-Einstein condensates [17, 18] were
focused on the investigation of multicomponent superfluidity, which theretofore had been
concentrated on superfluid helium [19–23]. This interest lies in the richer variety of phenomena
that the presence of an additional species offers, as the interaction between the atoms is
split into three relevant quantities: namely, one interspecies and two intraspecies, which
drastically change their properties with respect to the single species case. It is with these
goals in minds that the first experiments were realized, first with spin mixtures of 87Rb [24]
and 23Na [25], and after with an heteronuclear mixture of 41K-87Rb [26]. The understanding
of multicomponent superfluids, apart from the mentioned 3He-4He and 6He-4He systems,
could be crucial in other areas, such as for superconductors [27–30] or neutron stars [31–33].
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1. Introduction

Apart from multicomponent superfluidity, the variety of interesting phenomena with quantum
mixtures is astounding, including, but not limited to, the study of collective dynamics [26, 34,
35], of the physics of polarons [36–39], of quantum turbulence [40], the formation of solitonic
states [41, 42], three body physics, such as the formation of Efimov trimers [43–46], and
measurements of the equivalence principle [47–49]. Moreover, mixtures have been instrumental
in the formation and investigation of ultracold molecules, which, in and of itself, is a vast field
of inquiry [50–57].

Another area in which mixtures, both of the spin and of the chemical varieties, have been in
the spotlight is in study of quantum droplets. Quantum droplets are self-bound states, where
the equilibrium is given by the interplay between an attractive and a repulsive interaction,
which is ultimately due to quantum fluctuations [58]; as these interactions scale differently as
a function of density, there is a finite size for which an atomic cloud is stable in free space.
The first quantum droplets were obtained with dipolar quantum gases [59, 60]: when the
dipole-dipole interaction is attractive, these gases are unstable against collapse, that is, until
the beyond-mean-field effects mentioned before stop the collapse and achieve an hydrostatic
equilibrium. They have then been observed in 39K spin mixtures [61, 62], where the attractive
interaction was, instead, solely caused by the contact interaction, and therefore completely
isotropic. Due to the nature of the stabilizing force that intervenes in the droplet formation,
these states show peculiar properties similar to those of liquids, such as incompressibility [63];
they can also show a crossover, dictated by the total number of atoms in the state, between
a droplet proper and a bright soliton [64]—another kind of localized state—, when confined
by a trapping potential. The main obstacle to the characterization of a droplet is the fact
that, at the densities that it usually has, three-body recombination of the ultracold atoms leads
to a finite lifetime of the state: for this reason, droplets have been created in heteronuclear
mixtures [65, 66].

Given the central role of the interactions in the physics of mixtures, their tunability is one
of the main features of an atomic platform [67]. While many mechanisms to achieve this
exist, such as coherent coupling [68] or Raman coupling [69], the most widely used is that
of magnetic Feshbach resonances [70], especially for our case of interest of heteronuclear
mixtures.

A variety of mixtures have been experimentally realized, even if we limit ourselves to consid-
ering only mixtures of Bose Einstein Condensates with two chemically different species, as is
the one which is the topic of this thesis. The first of such mixtures realized experimentally was
41K-87Rb [26], with the aim of studying multicomponent superfluidity, and, in later incarnation,
of realizing double species quantum simulations and molecules in optical lattices [71], for
interferometry [72, 73], and the study of impurity physics [74]. This mixture has the capability
of tuning the interspecies interactions, while keeping the intraspecies interactions constant,
thanks to two conveniently located magnetic Feshbach resonances [71]. The next to reach
degeneracy was the 133Cs-87Rb mixture [75, 76], with the purpose of obtaining ultracold mo-
lecules with a permanent electric dipole moment, which were obtained a few years later [52]; in
this mixtures, both 133Cs-87Rb [77] and 133Cs-133Cs [78] Feshbach resonances are present, giving
the possibility of tuning both interactions in various regimes. The first mixtures involving an
alkali-earth metal were 88Sr-87Rb and 84Sr-87Rb [79], for production of ultracold molecules of
these two species: this is because the molecule formed by the combination of an alkali and
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an alkali-earth metal has not only electrical, but also a magnetic dipole moment, due to its
open shell. The tunability in this mixture is given by an interspecies Feshbach resonance [80].
Afterwards came the 39K-87Rb mixture, for studying quantum phase transitions [81] and the
formation of self-bound droplets [82]: these investigations are favoured by the present of a rich
resonance structure in the mixture, where both 39K-39K [83] and 39K-87Rb [84] can be tuned
via a Feshbach resonance. In 2018, condensation of 23Na-39K was achieved [85], with the stated
purpose of obtaining ultracold molecules which were chemically stable and bore an electric
dipole moment, and also the comparison of Bosonic and Fermionic (23Na-40K) molecules [57].
In the same year, another class of mixtures reached degeneration, namely the Er-Dy, in five
isotopic varieties: 166Er-164Dy, 168Er-162Dy, 168Er-164Dy, 170Er-162Dy, and 170Er-164Dy. Here
we have a rich Feshbach spectrum for both intraspecies collisions and for the interspecies
collisions [86]; moreover, the dipole-dipole interaction is present for all scattering pairs, giving
rise to a complex phase diagram [87] where anisotropic, long range effects play a key role. A
few years later came the condensation of 133Cs-170Yb and 133Cs-174Yb, where the availability
of various Yb isotopes for the realization of the mixtures, united with the Feshbach spectrum
of 133Cs and its large mass, give a large tunability range for the interaction parameters, that
enable the study of effects beyond the mean field approximation with this mixture [88]. Also
in 2021 a BEC of 23Na-133Cs was produced: for this experiment, the objectives include the
creation of ultracold molecules (which have the largest electric dipole for chemically stable
bialkali molecules), and their further employment to study dipolar crystals and fractional Mott
insulators [89]; apart from the Feshbach resonances in 133Cs, this mixture bears interspecies
resonances as well [90]. The last mixture obtained to date was 7Li-133Cs [91]: the strong
atomic mass imbalance in this mixtures, united with the presence 7Li-133Cs and 133Cs-133Cs
Feshbach resonances, makes it interesting for investigating Efimov phenomena and the physics
of polarons and impurities; in this last case, both the heavy and the light impurity regimes
could be investigated.

It is within this historical context that our experiment was conceived, with aims of exploring
the varied physics of multicomponent superfluids. Due to the aforementioned tunability of
the interspecies interaction strength with a magnetic Feshbach resonance, the physics that
can be investigated with this platform encompasses the whole phase diagram, going from
the immiscible regime, and the corresponding miscible-immiscible phase transition on the
repulsive side, to the investigation of beyond-mean-field structures, such as droplets, on the
other extreme. During the time span of my PhD, the focus was mainly on the attractive side,
looking into both collective excitations, where the character of the interspecies interactions
drastically changes the phenomenon characteristics, and on the realization of quantum droplets,
and their probing with a new and improved imaging apparatus.

This thesis is structured in the following way:

• In Chapter 2, we will talk about the theoretical framework for the description of the
41K-87Rb mixture, going over some fundamentals of the scattering theory for ultracold
atoms, as well as the theory of Bose-Einstein condensates for both the single and double
component cases. Finally, we will illustrate the basics of beyond-mean-field theory, in
order to describe quantum droplets.

3



1. Introduction

• In Chapter 3, we will look at the experimental techniques for the preparation of a
double condensate of 41K-87Rb with tunable interspecies interactions. We will start
with an exposition of the apparatus used in this experiment; we will then pass over to
the experimental sequence steps needed, in order, to reach degeneracy, to transfer the
condensates each to its respective hyperfine ground state, and finally to compensate
gravity, enabling the full overlap of the two clouds.

• In Chapter 4, we will focus on the dipole oscillations, which is a collective mode of a
Bose-Einstein condensate that, for a single component, would be characterized by its
insensitivity to the interactions, whereas this is not true anymore for a mixture. After
having seen the theory of the dipole mode, we will go on to the experimental protocol
for its excitation, ensuring that the excursion amplitude is low enough to remain in the
linear regime, and the analysis of the data thus obtained; we will then describe the main
results of our experimental measures, namely the frequencies and amplitudes, and the
role of the population imbalance on the frequency of an highly attractive state. We will
conclude with a brief look at the damping of the oscillations and its consequences. The
work presented here is part of what is found in [92].

• In Chapter 5, we will chronicle the implementation of an high-resolution imaging system
for the apparatus. We will start from the design of the objective, and its theoretical
performance, and then pass on to the compensation of the MOT beam, which is needed
because of the physical position, in the apparatus, of the objective tube. Then, the
objective is tested, on a test setup, in order to assess its real optical characteristics; it
is then mounted and calibrated on the experimental apparatus. We will go over the
details of high-field imaging for the mixture, which is needed to view the atoms in-situ
(the calculations of the transition frequencies are reported in Appendix A). Finally, we
will look at some high-resolution, in-situ images of the Bose-Bose mixture, in its most
demanding regime, namely that of mean-field-collapse.

• In Chapter 6, we will detail a part of the development work done during my stay in the
Quantum Gases Experiment group of Prof. Leticia Tarruell, with the eventual aim of
the realization of arbitrary optical potentials within the K experiment therein. First, the
setup for the performed tests is explained; then, we will look at calibration and defect
compensation routines, and, finally, at some characterization results.
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2

Dual species Bose-Einstein
condensates

Bose-Einstein condensation (BEC) is a physical phenomenon, defined as the macroscopic
occupation of the ground state for a many-body system: this is made possible, and indeed
necessary, by the quantum statistics of bosons [93].

Let’s take, for example, a system of non interacting, identical bosons in a closed box of
volume V. The occupations numbers, taking for the moment the energy states to form a
discrete spectrum, are

Ni = 1

exp
[︂

1
kBT

(︁
Ei −µ

)︁]︂−1
. (2.1)

In order to exclude nonphysical negative occupation numbers, we notice that the inequality
µ< E0 must hold.* If now we cool the box, the chemical potential will have to increase, in
order to keep the denominator constant. From our assumption that the box is closed, we can
impose the conservation of the total number of atoms; if we go to the continuum limit for the
states i > 0, we have [94]

N = N0 + V

(2πħ)3

∫︂
D(E)N (E)dE (2.2)

= N0 + V

λ3
T

g3/2(eβµ), (2.3)

where

λT =
√︄

2πħ2

mkBT
(2.4)

is the thermal wavelength, and

gp (z) =
+∞∑︂
l=0

z l

l p (2.5)

*We suppose here Ei < Ei+1.

5



2. Dual species Bose-Einstein condensates

is the polylogarithm function [95].
From this, we can see that N0 = 0 for temperatures above a critical temperature

Tc = mkB

2πħ2

(︃
V

g3/2(1)

)︃3/2

, (2.6)

while, below,

N0 =
[︄

1−
(︃

T

Tc

)︃3/2
]︄

(2.7)

meaning that we have a second order phase transition to a BEC.
In this chapter, we will lay the theoretical foundations upon which we will build all the

later parts of the thesis; given that our experimental system is a mixture of two condensates,
and that one of its main features is the capability of tuning the interspecies interactions, we
will have to add two ingredients to the perfect Bose gas: the first are interactions among the
atoms of which said gas is made of, and the second is the presence of a second species in the
condensate.

We will start, in Section 2.1, by looking at how interactions between cold atoms work, and
in Section 2.2 we will see what role they play in the theory of Bose-Einstein condensates. We
will then move on to explain, in Section 2.3, how the introduction of another component
shuffles the cards around yet again, with respect to the case of a single species BEC. Finally, in
Section 2.4, we will talk about another type of not previously treated interactions and of the
phenomena that this interactions give rise to.

2.1. Two body interactions in cold gases
While the phenomenon of condensation, in principle, would encompass any physical system
that obeys Bose-Einstein statistics, we will focus the treatment in this section on the pertinent
case of dilute and cold atomic gases. For this kind of system, the diluteness condition is valid:

r0 ≪ d (2.8)

where r0 is some kind of typical radius for the interaction, and d is the mean interparticle
distance.

Respecting such a condition is experimentally necessary, as none of the atoms commonly
used for the production of BECs is gaseous at temperatures below the critical temperature
for condensation. However, for desublimation (or liquefaction, in the case of He) to occur,
three-body collisions are necessary, and, due to gas diluteness, their rate is oftentimes—but
not always—sufficiently small, given the typical duration of an experiment.

2.1.1. Generalities of two-body scattering in cold gases
From quantum scattering theory [96], we know that, for two interacting particles, the solutions
of the Schrödinger equation, recast as a problem of a single particle of reduced mass µ moving
in a central potential V (r ), can be factorized into a radial and an angular part:

Ψ(r,θ,φ) = R(r )Ylm(θ,φ), (2.9)

6



2.1. Two body interactions in cold gases

where Yl m are the spherical harmonics, and R(r ) is a radial wave function, such that χ(r ) =
r R(r ) satisfies the radial Schrödinger equation:[︃

−ħ2

2µ

d2

dr 2 +V (r )+ ħ2l (l +1)

2µr 2

]︃
χ(r ) = Eχ(r ), (2.10)

where
µ= m1m2

m1 +m2
(2.11)

is the reduced mass.
It can be shown that, asymptotically [97],

lim
r k≫l

χ(r ) ∝ sin
(︂
kr − l

π

2
+δl

)︂
(2.12)

∝ sin
(︂
kr − l

π

2

)︂
+ tan(δl )cos

(︂
kr − l

π

2

)︂
(2.13)

where δl is called the scattering phase shift: this parameter characterizes completely the two
body scattering in the asymptotic regime. In the long wavelength regime k → 0, we have
that [98]

tan(δl ) ∝ k2l+1, (2.14)

which means that, for a fixed initial energy E , and thus fixed k =√︁
2µE/ħ, the effect of the

potential, measured by δl , decreases as l increases.† The starting wave function Ψ describes
a stationary scattering state, for which the asymptotic form will, in general, have a circular,
scattered wave superimposed with the incoming plane wave

lim
r k≫1

Ψ(r ,k) = eikz z + f (k,θ)
eikr

r
; (2.16)

we can express the scattering amplitude f (k,θ) as a partial wave expansion

f (k,θ) =
∑︂

l

(2l +1)Pl (cos(θ))
e2iδl −1

2ik
(2.17)

=
∑︂

l

(2l +1)Pl (cos(θ))

(︃
k

tan(δl )
− ik

)︃−1

, (2.18)

and, from that, the scattering cross section

σt =
∫︂ ⃓⃓

f (k,θ)
⃓⃓2 dΩ (2.19)

=
∑︂

l

4π

k2 (2l +1)sin2(δl (k)). (2.20)

†We suppose for V the boundary condition

lim
r→+∞V (r ) = 0. (2.15)
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2. Dual species Bose-Einstein condensates

If the two particles are indistinguishable, the scattering cross section changes, due to the
Pauli exclusion principle: exchanging two particles means, in the reduced problem, making
the transformation r →−r r. The symmetry of the wave function is instead dictated by the
spherical harmonics:

Ψl (−r ) = (−1)lΨl (r ), (2.21)

so, for the Pauli exclusion principles, only partial waves with even l are allowed for bosons,
and only partial waves with odd l are allowed for fermions. Moreover, due to the interference
between the indistinguishable particles, the differential cross section [99]

dσ= 1

2

⃓⃓
f (k,θ)± f (k,π−θ)

⃓⃓2 dΩ, (2.22)

where the + sign is for bosons and − for fermions, is markedly different from that of
distinguishable particles [100]

dσ=C csc4
(︃
θ

2

)︃
dΩ. (2.23)

From our previous considerations, we can see that the most important partial wave for
bosons is the s wave; according to (2.14) [97]:

lim
k→0

tan(δ0)

k
=−a (2.24)

where a has the dimensions of a length, and is for this reason called scattering length. For
fermions, or for non identical bosons at the second order of partial wave expansion, the same
line of reasoning brings to a scattering volume v :

lim
k→0

tan(δ1)

k3 =−v. (2.25)

2.1.2. Feshbach resonances
Feshbach resonances, also known as Fano-Feshbach resonances, are one kind of scattering
resonances occurring in the collisional physics of cold atoms [70]; they were introduced in
the context of nuclear physics by Feshbach [101, 102], and in the context of atomic physics by
Fano [103], because of the experimental observation that there were significant interactions
between continuum states and bound states: in Feshbach’s case, these interactions were
represented by a nucleon scattering resonantly with a nucleus in an atomic reaction, whereas
in Fano’s case they were represented by the phenomenon of autoionization, where an atom or
a molecule in an highly excited state spontaneously emits an electron [104].

Other relevant resonances for cold atoms are zero-energy resonances, shape resonances, and
confinement induced resonances. Zero-energy resonances happen only for s-wave scattering,
and are akin to the classical example of the scattering resonance from a square well [96]: the
scattering length diverges when there is a bound state just below the dissociation threshold,
which is also the energy of the scattering event (i.e. E = 0); this happens, for example, in
133Cs [105]. Shape resonances, on the other hand, happen only for l > 1 partial waves: here, a
bound state behind the centrifugal barrier resonantly enhances a scattering process when the

8



2.1. Two body interactions in cold gases

Figure 2.1.: Depiction of the two channel model used to explain Feshbach resonances. The
blue continuous line represents the potential for the open channel Vo, the orange one the
potential for the closed channel Vc, the dotted grey line the scattering energy Es, and the
dashed orange line the energy of a bound state in the closed channel.

collision energy is similar to that of the bound state; such a resonance has been found, for
example, in 87Rb [106] and 41K [107] for d-wave scattering. Confinement induced resonances,
along with Feshbach resonances, differ from the previous ones in that they involve two different
states: an energetically permitted unbound state, called the open channel, and an energetically
forbidden bound state, called the closed state: for confinement induced resonances, the
resonance happens when the transversal harmonic oscillator length a⊥ (see (2.79)) is equal to
C a, where a is the scattering length, and C is a numerical constant, due to the fact that external
confinement changes the density of states, which has a singularity for the aforementioned ratio
a⊥/a [108–110]; this kind of scattering resonance has also been predicted [111, 112] and seen [113]
in two-species cases when one of the two species is confined in a different dimensionality
regime than the other.

Ever since having been observed in a sodium BEC [114], Feshbach resonances have been a
workhorse of cold atom physics, mainly due to the fact that the resonant character—that is,
the scattering length—can be tuned with an external field, either magnetic [115], which is the
kind observed in the sodium BEC, or optical [116, 117], although the latter are usually employed
when a magnetically tunable Feshbach resonance is absent [70].
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2. Dual species Bose-Einstein condensates

A simple treatment of a Feshbach resonance, which is exposed in this paragraph, can
be found in the original work by Fano [103]. There, he starts from a two-channel model:
for a scattering energy Es , we have an open channel, that is, a configuration for which
the interatomic potential Vo(r ) is such that Vo(r →+∞) → Eo ≤ Es, and a closed channel
Vc(r ), where Vc(r →+∞) → Ec > Es; in other words, the open channel is determined by the
interatomic potential of the reactants, whereas the closed channel by that of the products,
which, in our case, are the two colliding atoms and the molecule that they would form. We
suppose also that Vc has a bound state (i.e. there is a molecular energy level) with an energy
Eb close to Es. An illustration of this model is shown in Figure 2.1. In this situation, we have
for this problem the Hamiltonian⟨︁

ψ(E)
⃓⃓

H
⃓⃓
ψ(Es)

⟩︁= Esδ(Es −E) (2.26a)⟨︁
ψ(Es)

⃓⃓
H

⃓⃓
φ

⟩︁=V (Es) (2.26b)⟨︁
φ

⃓⃓
H

⃓⃓
φ

⟩︁= Eb , (2.26c)

where |Ψ〉 is a scattering state in the open channel, and |φ〉 is a bound state in the closed
channel. We want to find the eigenstates |Ξ〉 of this Hamiltonian, which will be of the form

|Ξ(E)〉 =α(E) |φ〉+
∫︂
β(E ′) |ψ(E ′)〉dE ′. (2.27)

Using (2.27) as a solution of the system (2.26), we reduce it to

αEb +
∫︂
β(E ′)V (E ′)dE ′ = Eα (2.28a)

V (Es)α+Esβ(Es) = Eβ(Es); (2.28b)

by solving this system, we can express β as the formal solution

β(Es) =
[︃

1

E −Es
+ z(E)δ(E −Es)

]︃
V (Es)α, (2.29)

where z is a function to be determined by substituting back into (2.28a), obtaining

z(E) = E −Eb −F (E)

|VE |2
, (2.30)

where

F (E) =P

∫︂ +∞

−∞

⃓⃓
V (E ′)

⃓⃓2

E −E ′ dE ′, (2.31)

in which P denotes the Cauchy principal value of the integral.‡

‡Let a < b ∈R, f :R→R continuous ∀x ∈ [a,b], and x0 ∈]a,b[. Then

P

∫︂ +∞

−∞
f (x)

x −x0
dx = lim

ϵ→0

∫︂ x0−ϵ

a

f (x)

x −x0
dx +

∫︂ b

x0+ϵ
f (x)

x −x0
dx (2.32)

is the principal part of the integral [118].
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2.1. Two body interactions in cold gases

Assuming for the unbound state an asymptotic form analogous to (2.12)

lim
kr≫1

∫︂
β(E ′)ψ(E ′)dE ′ ∝ sin(kr +δ0 +δ(E)), (2.33)

we conclude that the energy dependent part of the scattering shift is§

tan(δ(E)) =− π |V (E)|2
E −Eb −F (E)

; (2.34)

The scattering length is, therefore,

a =− lim
k→0

tan(δ)

k

= π |V (0)|2
Eb −F (0)

, (2.35)

and we can see that a diverges when Eb = F (0). In the atom-molecule picture, the interpretation
of this fact is that a Feshbach resonance happens when the molecular bound state crosses the
interatomic dissociation threshold [119].

In our main case of interest, namely a magnetically tunable Feshbach resonance, we have
that the two channels have different magnetic momenta; thus [70]

Eb −E = δµ(B −Bb), (2.36)

where δµ is the difference between the magnetic moment of the scattering participants µa, and
the magnetic moment of the bound state µb: given that B externally controllable, this makes
possible the tuning of the scattering length. An experimentally useful form of the scattering
length for a magnetically tuned Feshbach resonance is

a(B) = abg

(︃
1− ∆

B −Br

)︃
, (2.37)

where ∆ and Br are phenomenological parameters related to the physical parameters of the
scattering [120].

There are various schemes for the classification of Feshbach resonances in ultracold atoms;
in most of those, the orbital quantum number l ′ of the molecule is the principal quantum
number of interest, as it is the most characterizing for the resonance properties [70]: we will
thus say s, p, d-wave resonances, and so on, according to this particular quantum number.
Note that this does not correspond to the order of the partial wave expansion needed for the
calculation of the resonance: for even l ′, all even partial waves in general can contribute, and
for odd l ′ all odd partial waves.

2.1.3. Interspecies Feshbach resonances for 41K-87Rb
Interspecies Feshbach resonances are an interesting part of the physics of the xK-87Rb mixtures,
and have been studied both theoretically and experimentally for all the isotopes of K [71, 121,
123–125].

§Following [103], we remark that, due to the normalization of the |ψ〉 in (2.26), V (E)2 has the dimensions of an
energy.
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2. Dual species Bose-Einstein condensates

Table 2.1.: Model parameters for the interatomic potential from [71]: as and at are, respectively,
the triplet and singlet scattering lengths and the Ci coefficients are those appearing in (2.42)
(the C10 coefficient is reported in [121] to be taken from [122]). The units of measurement are in
terms of Bohr’s radius a0 and Hartree energy EH. In the work from which this table is taken,
the magnitude of the exchange energy Aex is a fit parameter.

Parameter Value

as −109.6±2.0 a0

at −213.6±4.0 a0

C6 4288±2 a6
0EH

C8 (4.765±0.005)×105 a8
0EH

Aex (2.01±0.04)×10−3 EH

In order to study a particular Feshbach resonance, there is a need for a particular Hamilto-
nian to put into (2.26). In our case, the scattering event is between two spin-1/2 atoms, and, as
such, will have the further complication that the analysis has to be done taking into account
both the singlet 1Σ+

g state and the triplet 3Σ−
u state for each channel. The coupled channel

Hamiltonian, for the radial equation, is [126]:

Hαβ =
ħ2

2µ

∂2

∂r 2 +Esδαβ−Vαβ. (2.38)

The interchannel potential is:

Vαβ(r ) =
(︃
EF1,mF 1 +EF2,mF 2 +

ħ2l (l +1)

2µr 2

)︃
δαβ+V int

αβ , (2.39)

where EFi ,mF i are the hyperfine energies of the involved states, and V int is an interaction
potential given by the sum of two terms:

V int
αβ (r ) =V el

αβ(r )+V SS
αβ(r ), (2.40)

which are, respectively, the electronic and the spin-spin interaction potentials. An Hamiltonian
with this potential cannot be simultaneously diagonalized for all r [126].

The electronic interaction potentials used in [84, 121] for the theoretical study of the Feshbach
resonances are parametrized phenomenologically by three different terms:

V el
αβ(r ) =V d

αβ(r )±
V e
αβ

(r )

2
+V c

αβ(r ). (2.41)

The first term is called the dispersion term, and has a simple form

V d(r ) =−C6

r 6 − C8

r 8 − C10

r 10 , (2.42)

and is given by the first terms of a multipole expansion of the van der Waals interaction
between the two atomic clouds. The second term accounts for the exchange energy between
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2.1. Two body interactions in cold gases

Figure 2.2.: Interspecies scattering length as a function of the strength of an external magnetic
field. The two vertical dashed lines mark the positions of the (2,2,0) and (3,2,0) resonances
(see Table 2.2), which are the ones used in the experiment for the tuning of the interspecies
interactions.

channels in the asymptotic regime [127], where the sign of the interaction depends on the
symmetry of the state (+ for the triplet, − for the singlet), and the third is a correction term to
account for finite range effects in the close regime [128]; this last term is parametrized, and
parameters are changed in order to find the bast match with the scattering length of the triplet
and singlet states. The latest values for the parameters of this model, as reported in [129], are
based on simultaneous tuning of the data for all three isotopes of K, obtained from [84, 124,
129], and are reported in Table 2.1.

For our mixture, the tunability of the interspecies interactions is given by two interspecies
Feshbach resonances for both species in the |F = 1,mF = 1〉 hyperfine state [71]. The first
is for B0 = 39.4 G±0.2 G, with a width ∆ = 5.1 G±1.8 G, the molecular quantum numbers
( f ,m f , l ′) of the bound state are (2,2,0). The second resonance has molecular quantum
numbers (3,2,0), centre field B0 =78.92 G±0.09 G, and width ∆=0.35 G±0.14 G. In order to
tune the interspecies interactions, we use a uniform magnetic field along the vertical axis,
with field strengths varying in the range 66 G–77 G: this grants us the ability to explore all
the regions of the phase diagram for the double BEC. This magnetic field region is mostly
devoid of other resonances, apart from a d-wave resonance at 72.74 G, which is quite close
to the zero crossing of the interspecies scattering length; for this reason, we usually prepare
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2. Dual species Bose-Einstein condensates

Table 2.2.: Data for the experimentally confirmed interspecies Feshbach resonances in the
41K-87Rb mixture, with the theoretically calculated resonance field Bth, the field from the
experimental data Be, the molecular quantum numbers, and the source of the data. The
theoretically calculated field of the (2,2,0) resonance is not available in [71]. Field uncertainties
are not reported in [130], except for the Be of the (3,2,1) resonance for which a range is given:
that value is reported here as the middle point of the range, with an uncertainty equal to half
the range width.

Bth G Be G ( f ,m f , l ′) Source

— 39.4±0.2 (2,2,0) [71]
44.63±0.02 44.58±0.05 (2,1,2) [129]
47.90±0.06 47.96±0.10 (2,0,2) [129]

52 51.71±0.45 (3,2,1) [130]
65 64.73 (1,1,2) [130]
73 72.74 (1,0,2) [130]

78.67±0.04 78.57±0.05 (3,2,0) [129]

the condensates with a slightly attractive interaction. A summary of the known interspecies
Feshbach resonances known for our mixture is presented in Table 2.2, and a graph of the
scattering length in the region of the two resonances is in Figure 2.2.

2.2. Bose-Einstein condensation in interacting condensates
In this section, we will focus on the consequence of interactions in a degenerate Bose gas, that
is quite different with respect to the case of a perfect gas. Following the treatment of [94], we
will obtain the thermodynamic ground properties, and the elementary excitation spectrum
of a weakly interacting uniform BEC. Finally, we will describe the treatment of a trapped
condensate, by the means of the Gross-Pitaevskii equation.

2.2.1. Ground state and thermodynamic properties
We start by writing the field theoretic Hamiltonian for a Bose gas in a box of volume V:

Ĥ(p) =
∑︂

p

p2

2m
â†

p âp + 1

2V

∑︂
q ,p1,p2

Vq â†
p1−q â†

p2+q âp1 âp2 , (2.43)

where âp and â†
p are the annihilation and creation operator for a state with momentum p ,

and Vq is the momentum-space representation of the two-particle interaction potential

Vq =
∫︂

V (r )eiq ·r /ħdr ; (2.44)

as mentioned above, the diluteness condition (2.8) implies that we can neglect, at this stage,
three-body interactions between the particles.
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2.2. Bose-Einstein condensation in interacting condensates

The small moment limit which we considered in Section 2.1 means that we can consider
only the q = 0 contribution in (2.44), and construct thus an effective potential

V0 =
∫︂

Vq=0dr = 4πħ2a

m
= g , (2.45)

where a is the scattering length for the collision participants, to be substituted into (2.43). In
this way, we have substituted a complicated interatomic potential with an approximation that
will guarantee the right behaviour in the asymptotic limit: this kind of approximation is called
a pseudopotential [131].

It is then possible to employ a method, due to Bogoliubov [132], that consists in describing
the field Ψ̂ on which (2.43) acts on as

Ψ̂(r , t ) =ψ(r , t )+δψ̂(r , t ), (2.46)

where ψ is a classical field, equal to the expectation value of Ψ:

ψ(r , t ) = ⟨︁
Ψ̂(r , t )

⟩︁
(2.47)

=
√︄

N0

V
, (2.48)

where the last equation is valid for our uniform potential. In a low-temperature condensate,
we can neglect the number of particles in the excited states, making the so called mean-field
approximation

δψ̂≈ 0, (2.49)

from which we can obtain all the necessary thermodynamic properties. The ground state
energy is then given by

Eg = N 2g

2V
= 1

2
g nN , (2.50)

where n is the density n = ⃓⃓
ψ

⃓⃓2 = N /V, and we identified N0 ≈ N by using the mean field
approximation. From this energy, using the appropriate classical expression [93], the equation
of state

P =−
(︃
∂Eg

∂V

)︃
S,N

= 1

2
g n2, (2.51)

the speed of sound

c =
√︄

1

m

(︃
∂P

∂n

)︃
S
=

√︃
g n

m
, (2.52)

and the chemical potential

µ=
(︃
∂Eg

∂N

)︃
S,V

= g n = mc2 (2.53)

are obtained.
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2.2.2. Elementary excitations and quantum depletion
The next thing is to obtain a dispersion relation for the elementary excitations, in order to have
a known way of studying the perturbations and the dynamics of the condensate. For this, we
go beyond the mean field approximation, starting from the field-theoretic Hamiltonian (2.43),
and keeping all terms up to quadratic order for p ̸= 0, and quartic for p = 0:

H = g

2V
â†

0â†
0â0â0 +

∑︂
p

p2

2m
â†

p âp + g

2V

∑︂
p ̸=0

(︂
4â†

0â†
p â0âp + â†

p â†
−p â0â0 + â†

0â†
0âp â−p

)︂
(2.54)

= g N 2

2V
+
∑︂

p

p2

2m
â†

p âp + g n

2

∑︂
p ̸=0

(︂
2â†

p âp + â†
p â†

−p + â−p âp

)︂
, (2.55)

where, in the last passage, we have used the Bogoliubov approximation

â†
0 ≈ â†

0 ≈
⎷

N , (2.56)

and the expansion

â†
0â†

0â0â0 = â†
0

(︂
â0â†

0 −1
)︂

â0 (2.57)

=
(︄

N −∑︂
p

â†
p âp

)︄2

−
(︄

N −∑︂
p

â†
p âp

)︄
(2.58)

≈ N 2 −2N
∑︂
p

â†
p âp ; (2.59)

this Hamiltonian is known as the Bogoliubov Hamiltonian, and it can be diagonalized using
the Bogoliubov transformations

âp = up b̂p + v∗
−p b̂

†
p (2.60a)

â†
p = u∗

p b̂
†
p + v−p b̂p , (2.60b)

where b̂
†
p and b̂p are the creation and annihilation operators of the Bogoliubov quasiparticles,

which are bosonic quasiparticles that constitute the elementary excitations of the condensate.
It can then be shown that, for these particles, the dispersion relation is [132]:

ϵ(p) =
√︄

c2p2 +
(︃

p2

2m

)︃2

=
√︄

p2

2m

(︃
2mc2 + p2

2m

)︃
. (2.61)

This is known as Bogoliubov dispersion relation: in the low momentum limit, it is a linear
phononic dispersion ϵ(p) = cp, while in the high momentum limit it tends to a free particle
behaviour ϵ(p) = p2/(2m).

It is worth noting that, for g < 0, the sound speed becomes imaginary, which in turn means
that ϵ(p) is imaginary if

p2 < p2
c = 4m|g |n; (2.62)
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2.2. Bose-Einstein condensation in interacting condensates

this leads to the creation of exponentially increasing sound waves that ultimately destabilize
the condensate. However, such low momentum perturbations cannot be excited if the size of
the condensate is smaller than their wavelength

λc = h

pc
= h√︁

4m|g |n , (2.63)

and, therefore, condensates with dimensions comparable to λc are stable even with attractive
interactions.

A feature that arises from the introduction of interactions in a Bose gas is that, even at zero
temperature, there are still particles with p ̸= 0. We can calculate the expectation value for a
particle in a state p ̸= 0 by using (2.60):

〈a†
p ap〉 =

⃓⃓
v−p

⃓⃓2 + ⃓⃓
up

⃓⃓2 〈b†
p bp〉+

⃓⃓
v−p

⃓⃓2 〈b†
−p b−p〉 (2.64)

It can be proved [94] that this leads to an occupation number for the excited states of

np = 1

2

(︃
p2/2m +mc2

ϵ(p)

)︃
; (2.65)

the total density of the condensate is, therefore

n0 = N0

V
(2.66)

= 1

V

(︄
N − ∑︂

p ̸=0
np

)︄
(2.67)

= n

⎛⎝1− 8

3

√︄
na3

π

⎞⎠ . (2.68)

The non condensed part at T = 0 is called the quantum depletion, and its role will be crucial
when we will consider beyond-mean-field interactions, in Section 2.4.

2.2.3. Gross-Pitaevskii equation
The preceding relations have been obtained from the Hamiltonian of (2.43), which, however, is
valid for a uniform potential. It is instead relevant, especially since it is the most common
situation in experiments, to look at the Bose gas in a harmonic potential, where

Ve(r ) = 1

2
mω2

x x2 + 1

2
mω2

y y2 + 1

2
mω2

z z2. (2.69)

An equation of motion can be obtained for ψ in a non uniform potential, by using an
argument due to Gross [133, 134] and Pitaevskii [135]: writing the Heisenberg equation for our
problem

iħ ∂

∂t
Ψ̂(r , t ) = [︁

Ψ̂(r , t ), Ĥ(r , t )+Ve(r )
]︁

, (2.70)
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2. Dual species Bose-Einstein condensates

where Ĥ(r , t ) is the Hamiltonian (2.43) in the position representation, and using the pseudopo-
tential (2.45), we arrive at the Gross-Pitaevskii equation (GPE):

iħ ∂

∂t
ψ(r, t ) =

(︃
−ħ2∇2

2m
+Ve (r, t )+ g

⃓⃓
ψ(r, t )

⃓⃓2
)︃
ψ(r, t ), (2.71)

This equation has the shape of a Schrödinger equation, with an added self-interaction term
that makes it non linear.

As with the Schrödinger equation, if the potential term is time independent, we can factorize
the wave function by supposing

ψ(r , t ) = eiµt/ħψ(r ), (2.72)

where the spatial part obeys the time independent GPE:(︃
−ħ2∇2

2m
+Ve(r)+ g

⃓⃓
ψ(r)

⃓⃓2
)︃
ψ(r) =µψ(r). (2.73)

By rearranging the terms, we can see that, in this equation, the energy functional E is the
grand-canonical energy

E= E [ψ]+µ
∫︂ ⃓⃓

ψ(r )
⃓⃓
dr (2.74)

= E [ψ]+µN , (2.75)

with

E [ψ] =
∫︂

ħ2

2m

⃓⃓∇ψ⃓⃓2 +Ve(r )|ψ|2 + g

2
|ψ|4dr (2.76)

so, the chemical potential is (︃
∂E

∂N

)︃
S
=µ. (2.77)

Being nonlinear, in the general case the GPE has to be solved numerically [136, 137]; it is
however possible to have a simple solution when the kinetic energy is negligible with respect
to the internal energy [138]:

Ei

Ek
∝ N a

aho
≫ 1, (2.78)

where aho is the typical length scale of the harmonic oscillator

aho =
√︄

ħ
mω̄

, (2.79)

and ω̄= 3
⎷
ωxωyωz; this limit is called the Thomas-Fermi limit In this case, we can neglect the

kinetic term in (2.73), which becomes then an algebraic equation with solution

n(r ) =
⎧⎨⎩

1
g (µ−Ve(r )) = n0

(︂
1− x2

R2
x
− y2

R2
y
− z2

R2
z

)︂
if Ve(r ) ≤µ

0 otherwise
(2.80)
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2.3. A condensate of two species

where the Ri are called Thomas-Fermi radii of the density function

Ri =
√︄

2µ

mω2
i

(2.81)

This density is of a similar form to that given by the Thomas-Fermi equation for the density
of electrons in many-body systems [139]. We will use this approximation in the treatment of
dipole oscillations in Section 4.1.

2.3. A condensate of two species
Having our theory expressed in form of the GPE (2.71) is advantageous not only for handling
non-uniform potentials, but also because it is easy to generalize to the case of a mixture of
two species, such as the one in our experiment. If we start from the Hamiltonian

Hi =− ħ2

2mi
∇2 +Vei (r )+

2∑︂
j=1

gi j
⃓⃓
Ψ j

⃓⃓2 (2.82)

where the coupling parameters gi j are now

gi j =
2πai jħ2

µi j
, (2.83)

and µi j is the reduced mass, we arrive at the coupled GPE [18]:

iħ ∂

∂t
ψ1(r, t ) =

(︃
−ħ2∇2

2m1
+Ve1(r, t )+ g11

⃓⃓
ψ1(r, t )

⃓⃓2 + g12
⃓⃓
ψ2(r, t )

⃓⃓2
)︃
ψ1(r, t ) (2.84)

iħ ∂

∂t
ψ2(r, t ) =

(︃
−ħ2∇2

2m2
+Ve2(r, t )+ g12

⃓⃓
ψ1(r, t )

⃓⃓2 + g22
⃓⃓
ψ2(r, t )

⃓⃓2
)︃
ψ2(r, t ). (2.85)

In (2.82) we have neglected the interspecies velocity coupling [140] ji = ρi j v j which is otherwise
important for the study of the Andreev-Bashkin effect [22].

2.3.1. Phases of the interacting condensates
In order to characterize the phase diagram of our mixture, we will study the topology of the
condensates. In the most general case, the number of parameters complicates the argument
beyond comprehensibility: as such, following the treatment in [141], we will consider a simplified
model of a spherical trap, and add a gravitational field due to its relevance for experiments;
this can be further simplified by assuming a cylindrical trap. We start from the coupled
Thomas-Fermi equations in the region in which the condensates overlap:

g11n1(r )+ g12n2(r ) =µ1 −V1(r ) (2.86)

g22n2(r )+ g12n1(r ) =µ2 −V2(r ), (2.87)
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2. Dual species Bose-Einstein condensates

we can write the solutions as

n1 =α1
[︁
R2

1 − r 2 − (z − z2
c1)

]︁
(2.88)

n2 =α2
[︁
R2

2 − r 2 − (z − z2
c2)

]︁
, (2.89)

where Ri are the Thomas-Fermi radii for the respective traps, which are taken to be spherical
harmonic traps, with a gravity term causing a displacement of the centres along z. The other
quantities defined for (2.88) and (2.89) are: the normalization factors

α1 = g22
1−ηg12/g22

2δg 2 (2.90)

α2 = g11
η− g12/g11

2δg 2 , (2.91)

the centres

zc1 =− ηg12/g22

1−ηg12/g22
(z01 − z02) (2.92)

zc2 =− η

η− g12/g11
(z01 − z02), (2.93)

where z0i is the potential minimum for the i -th component, and the parameters

η= m2ω
2
2

m1ω
2
1

(2.94)

δg 2 = g11g22 − g 2
12. (2.95)

The poles of the αi , that occur for δg = 0, define three regions, which correspond to different
topologies:

1. g12 <−⎷g11g22. Here, the two condensates cannot overlap, as both αi are negative, and
thus would require ni = 0. In this region, the condensates collapse under the attractive
interspecies interactions [18, 142, 143].

2. g12 >⎷
g11g12. For the same reasons of the previous case, the two condensates cannot

overlap also in this range of scattering lengths, as they are immiscible [144, 145].

3. −⎷g11g22 < g12 <⎷
g11g22. Here, the two condensates can overlap in two ways, based

on the relative magnitude of ∆R = |R1 −R2| and ∆z = |zc1 − zc1|:
a) External overlap, if ∆z >∆R ,

b) Internal overlap, if ∆z ≤∆R . This kind of overlap, in its turn, can be total if

g12 < ηmin
{︁

g11, g22
}︁

, (2.96)

or partial otherwise.¶
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2.3. A condensate of two species

Figure 2.3.: Phase diagram for the 41K-87Rb mixture. On the left, the three interaction
regimes are shown, with a graph of the scattering length by which those regimes are defined
superimposed. On the right, pictograms for each of the possible configurations are reported.
The blue colour stands for the K condensate, while the red for the Rb one. Due to our trap
configuration, the trap centre for K is usually on top of that of Rb. The gray crossed area in
the mean-field collapse overlap region signifies that the two condensates cannot coexist there,
according to mean-field theory, if both densities are not zero.

A depiction of the phase diagram for the 41K-87Rb is in Figure 2.3. As the interspecies
scattering length is 100.4a0 for 87Rb and 62a0 for 41K, we see that the critical value separating
the three regions is 73.6a0. Therefore, the mean field collapse happens for a12 <−73.6a0, and
the immiscible regime is for a12 > 73.6a0. The critical value for the total overlap, instead,
depends on the trap frequencies, and is thus dependent on a particular trap configuration;
given that partial internal overlap is possible only in the miscible regime, we can set an upper

¶For our mixture, this condition reads
gK−Rb < ηgRb−Rb (2.97)
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2. Dual species Bose-Einstein condensates

boundary for η to have total internal overlap threshold:

ηgRb−Rb <⎷
gK−KgRb−Rb (2.98)

which, in turn, gives an upper bound for the ratio of the trap frequencies in the direction of
gravity:

ωK

ωRb
=

⌜⃓⃓⎷mRb

mK

√︄
gK

gRb

= 4

⌜⃓⃓⎷ aK

m3
K

m3
Rb

aRb
(2.99)

= 1.56 (2.100)

As we will see in Chapter 3, in the direction of gravity we have ωz = 2π×130 Hz for K and
ωz = 2π×67 Hz, and therefore the condensates could not overlap without a compensation
scheme: this is consistent with the calculations for the centres of the traps, which give a
difference in the position of the minimum of 16 µm along the vertical axis; the way in which
the two condensates are brought to overlap is explained in detail in Section 3.4.

2.3.2. Elementary excitations of a double BEC
In order to apply the Bogoliubov method to a mixture of two condensates, we will have to start
by generalizing (2.54): for the i -th species, the Hamiltonian is

Hi = gi i

2V
â†

0i â†
0i â0i â0i +

∑︂
p

p2

2mi
â†

pi âpi +
∑︂

j

gi j

2V

∑︂
p

Sint
i j (p), (2.101)

where

Sint
i j (p) = 4â†

0 j â†
p j â0 j â†

p j (2.102a)

+â†
pi â†

−p j â†
0i â†

0 j (2.102b)

+â†
p j â†

−pi â†
0 j â†

0i (2.102c)

+â†
0i â†

0 j â†
pi â†

−p j (2.102d)

+â†
0 j â†

0i â†
p j â†

−pi (2.102e)

This equation can be diagonalized using generalized Bogoliubov transformations [146]

âpi = upi

(︂
α̂p + β̂p

)︂
+ v∗

−pi

(︂
α̂†

p + β̂†
p

)︂
(2.103)

â†
pi = u∗

pi

(︂
α̂†

p + β̂†
p

)︂
+ v−pi

(︂
α̂p + β̂p

)︂
(2.104)

where now we have two Bogoliubov quasiparticles, due to the lifting of the degeneracy between
centre-of-mass motion and relative motion.
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2.4. Beyond-mean-field interactions and quantum droplets

The resulting dispersion relation is [146]

η(p) = 1⎷
2

⌜⃓⃓⎷
ϵ2

1(p)+ϵ2
2(p)±

√︄(︁
ϵ2

1(p)−ϵ2
2(p)

)︁2 + 2g12p2n1

m1
· 2g12p2n2

m2
, (2.105)

where ϵi (p) is the single-species Bogoliubov dispersion (2.61).
In this expression, we can see the effect of the aforementioned lifted degeneration between

the centre-of-mass and the relative motion, that is, the creation of two branches in the
excitation spectrum. This effect is analogous, for example, to the separation of the phononic
spectrum in solids into optic and acoustic branches when particles of two different masses are
introduced [147]. We also note that, in similarity with what happens in the single species case,
the lower branch can become unstable in the long wavelength limit: the condition for instability
is here g12 >⎷

g11g22, which is none other than the condition for condensate immiscibility.

2.4. Beyond-mean-field interactions and quantum droplets
The mean-field theory is generally adequate for treatment of phenomena in which the gas
parameter na3 is small, but it is insufficient in cases such as the mean-field collapse regime, in
which the predicted densities diverge. However, it is possible to calculate, starting from (2.54),
a first correction to the mean field energy, which becomes

Eg = g
N 2

2V

⎛⎝1+ 16

5

8

3

√︄
na3

π

⎞⎠ , (2.106)

the energy due to the second term in (2.106) is called the Lee-Huang-Yang (LHY) energy [148,
149], and corresponds to the zero point energy of the Bogoliubov quasiparticles [58], that
causes also the quantum depletion; we also notice that both quantities share the

⎷
na3/π

dependence, which is a signature of beyond-mean-field behaviour.
In a mixture, the energy density of the LHY term is [150]:

E

V
= 8

15π2 m3/2
1 (g11n1)5/2 f

(︃
m1

m2
,

g12

g11g12
,

g22n2

g11n1
,

)︃
(2.107)

where f is a positive definite quantity, with the dimensions of a pure number. For the
homonuclear case, in which m1 = m2, f assumes a simple form [58]:

f (1, y, z) = 1⎷
32

∑︂(︃
1+ z ±

√︂
(1− z)2 +4x y

)︃5/2

, (2.108)

but, in case of an heteronuclear mixture, the expression is much more complicated [151]:

f (x, y, z) = 15

32

∫︂ +∞

0
k2F(k, x, y, z)dk, (2.109)
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where

F(k, x, y, z) =
√︃
A(k, x, z)+

√︂
B(k, x, y, z)+

√︃
A(k, x, z)−

√︂
B(k, x, y, z)

− 1+x

2x
k2 − (1+ z)+ 1

k2

[︂
1+ z2x +4y z

x

1+x

]︂ (2.110)

A(k, x, z) = 1

2

[︃
k2

(︂
1+ z

x

)︂
+ k4

4

(︃
1+ 1

x2

)︃]︃
(2.111)

Bk, x, y, z = 1

4

[︃(︃
k2 + k4

4

)︃
−

(︃
z

x
k2 + k4

4x2

)︃]︃2

+ y zk4

x
. (2.112)

It has been demonstrated that, due to the fact that f is always > 0, the LHY interaction
can stabilize a BEC mixture against collapse even in the g12 < −⎷g11g22 regime [58].‖ To
understand this, we can use a simple model for a quantum fluid [152]: the energy density can
be written as

ϵ(n) =−1

2
αn2 + 2

5
βn5/2, (2.113)

with α> 0, β> 0. The pressure for this is

P =−ϵ(n)+n
∂ϵ

∂n
=−1

2
αn2 + 3

5
βn5/2. (2.114)

As the two terms in (2.113) have opposite sign, and scale with different powers of n, we are
inclined to believe that this energy density may have a minimum at finite density. We can find
this value of density nd by imposing that the system is in mechanical equilibrium with vacuum,
that is P = 0: from this, we get

nd =
(︃

5α

6β

)︃2

, (2.115)

which is the density value for our droplet. We also remark that the chemical potential

µ(nd) =−αnd +βn3/2
d (2.116)

=−1

6
ndα (2.117)

is negative, which means that the system is also stable against particle loss. A bound state
stabilized by the LHY term in this way is called a quantum droplet.

Quantum droplets are a very peculiar state of matter, as they are stabilized by quantum
fluctuations. The first droplets in atomic gases have been obtained experimentally in Dys-
prosium [59, 153] and Erbium [60] dipolar quantum gases, where the mean-field energy is
given by the dipole-dipole interaction. They have been subsequently observed in gases with
isotropic interactions in 39K spin mixtures [61, 62], and in the 41K-87Rb mixture [65].

These droplets receive their name from their analogous counterparts in liquid He, which
also exist in equilibrium with vacuum, but for which the attractive and repulsive interactions
giving rise to the stabilizing action are of a different nature [154]. Nevertheless, with their

‖In a single condensate, this cannot happen, as the LHY and mean-field density always have the same sign.
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2.4. Beyond-mean-field interactions and quantum droplets

Helium counterparts they share the property of having a constant bulk density and a spherical
shape, as can be seen from the expression for the droplet radius [58]

4π

3
R̃

3 = Ñ , (2.118)

where R̃ is measured in units of characteristic radius

ξ=
√︄

3

2

⎷
g11 +⎷

g22⎷
g11

1

m|δg | (2.119)

and

Ñ i = N

ni 0ξ3 . (2.120)

This is further confirmed by numerical solutions of the GPE for the ground state, which display
a flat top profile that becomes larger for larger Ñ [58].

From the simple model of (2.113), it would seem that a droplet always forms, regardless of
other conditions. This is not the case: when the rescaled atom number Ñ < 22.55, the bound
state is metastable, and it is completely unstable for Ñ below a critical atom number Ñ c ,
whose value is approximately 18.65 [58]. This behaviour is well reproduced by a liquid drop
model [155]:

Eld(Ñ ) = EBÑ +ESÑ
2/3 +ECÑ

1/3
, (2.121)

where the name is due to the analogy with liquid droplets. The first term is called the bulk
term, and it is the energy for a uniform liquid with energy per particle EB; in order to have a
droplet, this term has to be negative. The second is called the surface term, and it accounts for
the fact that atoms near the surface feel a different attraction with respect to those in the bulk,
giving rise to a surface tension T = Es/(4πR̃); this coefficient is generally positive. The last
term is called the curvature term, and it is proportional to the radius of the droplet; while the
physical interpretation is less immediate than that of the other two terms, its role is typically of
limited in equilibrium droplets [152]. We can thus see that, for smaller Ñ , the binding energy
Eld(Ñ )/N tends to a positive value, where the droplet can no longer subsist. This divides the
phase diagram of quantum gases in the mean-field collapse regime into two regions: a first
one, for higher numbers of atoms, where a droplet forms, and another, for lower Ñ , where
there is no stable self-bound state but for which, nevertheless, beyond-mean-field interactions
are comparable to their mean-field counterpart, called a LHY gas. An example of this phase
diagram, for the specific case of the 41K-87Rb mixture, is shown in Figure 2.4.

The implications of this last point are of crucial importance for the experimental study of
quantum droplets: at the high densities that these bound states attain, three body collisions
start to become important, and recombination events greatly limit the lifetime of the droplet.
For 39K, the longest measured lifetimes for a droplet have been of about 25 ms while keeping
the droplets on a light sheet [61]; this is approximately the same lifetime as was observed
in the 41K-87Rb mixture in free space, although numerical simulations of the same systems
have predicted lifetimes of more than an order of magnitude longer [65]. In both platforms,
droplets in waveguides have been observed after substantially longer times [64, 65]. The
longest lifetimes to date have been observed in dipolar quantum gases, where stable droplet
cores have been observed after up to 500 ms–1000 ms [60].
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2. Dual species Bose-Einstein condensates

Figure 2.4.: Phase diagram of the 41K-87Rb BEC in the strongly attractive regime, as a
function of the interspecies scattering length a12 and of the total number of atoms N1+N2. For
these parameters, we can define three regions: a first one is the mean-field stable region, where
δg > 0, and the interspecies interactions are not strong enough to overcome the intraspecies
repulsion. On the left, there is the mean-field collapse region, in which, above a certain total
number Nc(a12), the LHY interaction is strong enough to stabilize the gas, thus forming a
droplet. Below that critical number, the state is an LHY gas, for which beyond-mean-field
interaction are important, but below the threshold of creating a self bound state.
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3

Preparation of a double species
Bose-Einstein Condensate

The preparation of a double condensate of 41K and 87Rb in the lowest hyperfine state
(F = 1,mF = 1) is the first step in any of the experimental investigations with our mixture.

In this chapter, we will illustrate how this double condensate is obtained. We will begin
with a description of the experimental apparatus (Section 3.1), and of the cooling sequence
(Section 3.2), at the end of which a double condensate in the F = 2,mF = 2 state is obtained;
this is because we find advantageous to employ an hybrid optical and magnetic evaporation
technique on a magnetically trappable state [156]. The BECs are then transferred to the desired
hyperfine state; the details of this transfer are reported in Section 3.3. The final step of the
preparation is to counteract gravity and overlap the condensates, such that the effect of the
tunable interspecies interaction can be appreciated (Section 3.4).

After this preparation, the interactions can be tuned in a wide range of values, according to
the phase diagram in Figure 2.3. Some examples of condensates obtained with this procedures
can be seen in Figure 3.1.

3.1. Experimental apparatus
In this section, we describe the experimental apparatus that has been used for the work of this
thesis. The apparatus is nearly identical to that reported in for [65, 156], except for a new and
improved optical trapping setup, which substitutes the inclined geometry mentioned in the
aforementioned articles with a planar one.

The machine is distributed among two tables, one for the laser sources used for cooling and
probing the atoms (see Subsection 3.1.2 for the sources, and Subsection 3.1.3 for the frequency
locking), and another which houses both the far-detuned optical dipole optics and the vacuum
setup (see, respectively, 3.1.4 and 3.1.1), to which the magnetic field coils are fastened (described
in 3.1.5).
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3. Preparation of a double species Bose-Einstein Condensate

Figure 3.1.: Double BEC in the lowest hyperfine state in two different regimes for interactions:
beyond mean field collapse with aK-Rb = −84a0 (first row), and immiscible at aK-Rb = 94a0

(second row). In both cases, the K condensates are imaged after 27 ms of time of flight
expansion (TOF), and the Rb condensates are imaged after 30 ms TOF, using absorption
imaging. In the mean field collapse case, the total atom number is of the order of 5×104,
whereas in the immiscible case we have around 3×105 atoms.

3.1.1. Vacuum apparatus
A schematic view of the apparatus is shown in figure 3.2. There are two vacuum chambers in the
setup. The first encountered by the atoms is the 2D MOT chamber, which is directly connected
to the two reservoirs; those reservoirs are metallic samples at natural isotopic abundance. In
order for K to achieve a reasonable partial pressure of approximately 4×10−8 Torr, its reservoir
is heated to 36 ◦C, while Rb at room temperature (25 ◦C) already has an acceptable vapour
pressure of about 4×10−7 Torr [157]. An ion pump maintains the vacuum in this chamber at
pressures of the order of 1×10−8 Torr. The thermal atomic beams are transversally cooled
here, and then are pushed by a resonant beam into a differential pumping section, and then
into the second chamber. In order to prevent deposition of K, the entrance to the differential
pumping section is further heated to 50 ◦C.
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3.1. Experimental apparatus

Figure 3.2.: Simplified view of the experimental apparatus. The vacuum setup is described
in Subsection 3.1.1; shown here are the MOT chambers, the differential pumping section, the
reservoirs, and the ports for the ion pumps. The yellow cylinders represent the 3D MOT
beams; only the two horizontal beams are shown, while the third beam, along the vertical
direction, is not visible. The coils for the production of the magnetic fields, as described
in 3.1.5, are here represented by their outer casing. The two sets of coils are coaxial, and their
axis is along the vertical direction.

After the differential pumping section, the atoms are pushed into the science chamber. This
section is maintained at a higher vacuum by two combined ion and non evaporable getter
(NEG) pumps*; the pressure there is of the order of 1×10−11 Torr.

3.1.2. Laser sources
All laser sources needed for optical cooling are arranged on a dedicated table, on which the
laser beam is separated into all the needed independent beams, amplified with the usage of
taper amplifiers, and modulated by acousto-optic modulators (AOMs). A simplified scheme of
the sources table can bee seen in figure 3.3.

To cool both species, we use the respective D2 transitions, connecting the 2S1/2 and
2P3/2 levels. Due to the hyperfine structure of these levels, two wavelengths are actually
needed: one to address the |2S1/2,F = 1〉 → |2P3/2,F = 2〉 transition, and one to address the
|2S1/2,F = 2〉→ |2P3/2,F = 3〉 transition [158]; we call these two light beams, respectively, the
repumper and the cooler. The cooling wavelengths for Rb and K can be seen in figure 3.4.

For K, the source is a Toptica TA Pro Extended Cavity Diode Laser (ECDL) with a wavelength
of 767 nm. From this single source, both cooler and repumper lines are derived by modulating
with AOMs, as the hyperfine splitting is 254 MHz. On the other hand, Rb has two laser

*SAES NexTorr D200–5
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42S1/2

F = 2

F = 1

254.0 MHz

λ= 766.700nm Cooler Repumper

42P3/2

F ′ = 3

F ′ = 2

F ′ = 1
F ′ = 0

13.4 MHz

3.4 MHz

(a) 41K (adapted from [159])

52S1/2

F = 2

F = 1

6.834 GHz

λ= 780.032nm Cooler Repumper

52P3/2

F ′ = 3

F ′ = 2

F ′ = 1

F ′ = 0

266.7 MHz

156.9 MHz

72.2 MHz

(b) 87Rb (adapted from [160])

Figure 3.4.: Energy levels of the 41K and 87Rb D2 lines. The cooler and repumper transitions
are highlighted. For 41K, the hyperfine structure of the excited state is badly resolved, with a
total splitting of about 16.8 MHz. For this, both cooler and repumper lights are usually red
detuned with respect to the whole 2P3/2 manifold; such a scheme is customary in laser cooling
of K [158].

sources, one for the cooler wavelength, which is a Toptica DL 100 Pro ECDL, and another for
the repumper wavelength, which is a Toptica DL 100 Distributed Feedback (DFB) laser; this
is because the hyperfine splitting is 6.8 GHz, and such a frequency is outside of the band of
typical AOMs.

A small fraction of the 1.3 W output power of the K laser is picked off and sent to the
locking setup (not shown in figure 3.3). Then, the light is further separated into cooler and
repumper branches. From each of those, three independent beams are derived: one for the 3D
MOT, one for the 2D MOT, and one for Probe, Push and OP beams. The 3D MOT cooler and
repumper paths join before being injected into a Tapered Amplifier (TA) with nominal power
of 500 mW. The 2D MOT beams are separately amplified by two TAs, each with nominal
power of 500 mW, and are then joined together. The Push-Probe-OP beam separates into its
three constituents, in each of whom the cooler and repumper components are overlapped. All
of these lights, apart from the push beam, are overlapped with the corresponding Rb beams
and then injected into optical fibres.

The Rb cooling laser is split into five independent beams: the first is sent to the frequency
locking setup (not shown in figure 3.3), the second is used for the push beam, the third for
the probe beam, the fourth for the MOT, and the fifth is used for the OP beam. A residual
is picked off from the last cube, and is then used as a reference for the beat note locking of
the repumper laser. For the repumper laser, first a small portion is picked off for usage in the
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3. Preparation of a double species Bose-Einstein Condensate

(a) (b)

Figure 3.5.: Optical schemes for laser locking using modulation transfer spectroscopy (a) and
a beat note scheme (b). The fibre couplers labelled "Lock" and "Beat" come from the respective
couplers shown in Figure 3.3.

beat note stabilization, then the light is sent to a common switch AOM, which can be used
both to switch on or off the whole Rb repumper line, as well as to add some further frequency
offset (this is particularly useful for the high-field imaging of Rb). The repumper beam is then
divided in a Probe, and OP and a MOT beam. The MOT beams of both wavelengths are
joined together before being injected into a TA with nominal power of 500 mW. The light
amplified in such a manner is further divided into a 3D MOT line and a 2D MOT line, with
most of the power going into the former, as the latter is then amplified again by another TA,
this with nominal power of 1 W. The 2D MOT beams are then separated into a vertical and
an horizontal branch, which are then injected into the respective fibres, after being mixed with
the K light.

3.1.3. Laser locking
Due to the inevitable fluctuations in the external environment, laser frequencies need to be
locked to an absolute reference. For two of the three sources, namely the Rb cooling laser and
the K laser, we use an atomic spectroscopy technique, whereas the Rb repumper is locked to
its cooler with an offset technique; the optical schemes for the aforementioned techniques can
be seen in Figure 3.5.

Modulation transfer spectroscopy is a variation on the basic scheme of saturated absorption
spectroscopy. In saturated absorption spectroscopy, the atomic sample is illuminated with
two counter-propagating laser beams, the pump and the probe. At a certain laser frequency
ωL , the atoms with velocity v = (ωL −ω0)/kL (where ω0 is the atomic transition frequency) are
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3.1. Experimental apparatus

excited by the pump beam, which is the stronger of the two; at the same time, the probe beam
interacts with those atoms for which v =−(ωL −ω0)/kL. When ωL =ω0, the atoms pumped
in the excited state create a dip in the absorption signal seen by the probe; this dip only
comprises the part of the ensemble for which v = 0 [161].

The specificity of modulation transfer spectroscopy is that the pump beam is phase modu-
lated by an electro-optic modulator (EOM); the modulation of the pump is then transferred to
the probe beam via for wave mixing, enabled by the non-linearity of the atomic medium [162].
For an input field of frequency ωL, modulated at frequency ωm,

E = E0 sin(ωLt +ϵsinωm) (3.1)

we obtain a spectroscopic signal on the probe (considering only the first side bands) [163]

S(ωm) ∝ J0(ϵ)J1(ϵ)√︂
Γ2 +ω2

m

(3.2)

×[(L−1 −L1 +L−1/2 −L1/2)cos
(︁
ωm t +φ)︁

+(D1 +D−1 −D1/2 −D−1/2)sin
(︁
ωmt +φ)︁

],

where

Ln = Γ2

Γ2 + (ω0 −ωL −nωm)2 , (3.3a)

Dn = Γ(ω0 −ωL −nωm)

Γ2 + (ω0 −ωL −nωm)2 , (3.3b)

Γ is the natural transition line width, and Ji is the i -th Bessel function. The signal is then
demodulated with a lock-in amplifier, where an appropriate choice of the phase lag between
the modulating and demodulating signal maximizes the derivative component (3.3a) with
respect to (3.3b). The resulting error signal is then sent to a PID controller for correction, using
both the piezoelectric transducer of the laser cavity and the laser current. The advantage of
modulation transfer spectroscopy, as opposed to similar schemes, is that the dispersion signal
background is flat [164], and, as such, is particularly fit for usage in stabilization schemes.

The beat note scheme is conceptually and optically simpler. Here, light from the two laser
sources is collected on the same photodiode, where the resulting signal is proportional to the
intensity

I ∝ sin
(︁
∆ωt +φ)︁

, (3.4)

where ∆ω is the frequency difference between the cooler and repumper light which, in the case
of 87Rb, is 6.567 GHz. The photodiode signal passes through a chain of frequency dividers,
and is then compared to a reference signal. The frequency of the repumper light is then
adjusted by acting on the laser diode current.

3.1.4. Optical dipole trap
A 1064 nm, 30 W Azurlight System ALS-IR-976 laser is used to create the optical potentials
needed for both the evaporative cooling and the trapping of the condensate. A scheme of the
trapping light setup is visible in figure 3.6.
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The laser beam, after some conditioning, is split in two: one called the dimple beam, and
the other called the crossed beam. The portion of the intensity which goes to each beam
is controllable with a motorized rotating wave plate†, which can be moved between two
predefined positions during the preparation sequence using a TTL signal. Each of the two
beams is then modulated by an AOM, and injected into an optical fibre. The AOMs serve
both for controlling the intensity of the beams (each separately), and to avoid interference
effects between the crossed and dimple beams: for this, one of them is aligned to use the
+1 diffraction order, and the other to use the −1 diffraction order; the signal entering each
AOM is around 100 MHz, which results in a detuning of around 200 MHz. Each beam is then
injected into a fibre, that brings the light closer to the vacuum chamber, and also provides a
good amount of shaping.

After the fibres, a small portion of each beam is redirected to a photodiode, which constitutes
the sensing part of a PID control loop, that acts on the amplitude of the radio frequency
injected in the AOMs, in order to stabilize the power in the trapping beams. The crossed
beam goes to a linear photodiode, and, as such, the power output for this beam, as a function
of the photodiode voltage, is P = mVpd +P0; typical values for the parameters are P0 =67 mW,
and m =587 mWV−1. The dimple beam goes to a logarithmic photodiode, for which the
power output of the beam, as a function of the photodiode voltage, is P = P0 + AeVpd/Γ; typical
values for the parameters are P0 =1.5 mW, A =7×10−7 W, Γ=0.087 V. The dimple beam is
then magnified 1.5 times with a telescope ( f1 =−100 mm, f2 =150 mm), before being focalized
by a f = 500mm lens, obtaining a waist of 79 µm, and can provide a maximum of around
5 W of power on the atomic sample. The crossed beam, instead, is magnified 2 times with a
telescope ( f1 =−100 mm, f2 =200 mm), and then focalized with a f = 750mm lens, resulting
in a waist of 95 µm, and can provide a maximum power of around 6 W on the atoms. The
beams intersect in the horizontal plane at an angle of 45◦, as shown in figure 3.6.

Given the theoretical framework for trapped gases, we are interested in knowing the harmonic
oscillator trap frequencies for a potential like (2.69) given a certain trap configuration. To
do so, we shall approximate the real potential produced by the optical dipole trap with an
harmonic approximation:

U (x) ≈ 1

2
xT H(Ud)(x0)x , (3.5)

where H(U0)(x0) is the Hessian matrix of the potential calculated at x0. By comparing (3.5)
with (2.69), we find that

ωi =
√︄

hi

m
, (3.6)

where hi is the i−th eigenvalue of H(Ud ) (which we suppose is not degenerate). In our case of
a far detuned laser, with linear polarization, and of an alkali atom with nuclear spin I = 3/2,
we have that the optical dipole potential is [165]

Ud(x) = πc2Γ

2ω3
0

(︃
2

ω−ωD2
+ 1

ω−ωD1

)︃
⏞ ⏟⏟ ⏞

F

I (x), (3.7)

†Thorlabs PRMTZ8
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3. Preparation of a double species Bose-Einstein Condensate

where ωD1 and ωD2 are the angular frequencies of the corresponding transitions in each
species.‡ Given that is the only spatially varying part, the intensity profile is the only non
constant factor in the calculation of the Hessian. The intensity distribution of the trapping
light can be approximated by a Gaussian beam [166]:

I (x, y, z) = 2P0

πw2
0⏞ ⏟⏟ ⏞

I0

(︃
w0

w(x)

)︃2

exp

(︃
−2

z2 + y2

w(x)2

)︃
, (3.8)

where

w(x) = w0

√︄
1+

(︃
x

xR

)︃2

, (3.9)

and w0 is the waist at the origin, P0 the total beam power, and

xR = πw2
0

λ
(3.10)

is the Rayleigh length of the laser beam, in which λ is the laser wavelength in the medium in
which the propagation takes place. Calculating the Hessian for I (x), we find

H(I )|x=0 =−2I0

⎛⎜⎜⎝
1

x2
R

0 0

0 2
w 2

0
0

0 0 2
w 2

0

⎞⎟⎟⎠=
⎛⎝b 0 0

0 a 0
0 0 a

⎞⎠ (3.11)

The geometry of our trap is such that we have two trap beams which cross at a 45◦ angle; by
linearity of the Hessian matrix, we can write

H(Ictd)|x=0 =

⎛⎜⎝bd + ac+bc
2

bc−ac
2 0

bc−ac
2 ad + ac+bc

2 0
0 0 ac +ad

⎞⎟⎠ , (3.12)

where c and d subscripts stand for crossed and dimple beams, respectively. The frequencies,
extracted from the eigenvalues of (3.12), are thus

ωz =
√︄

F

m
(ac +ad) (3.13)

ωx,y =
√︄

F

2m

(︃
(ac +bc)+ (ad +bd)∓

√︂
(ac −bc)2 + (ad −bd)2

)︃
(3.14)

Given that the typical powers in our trap are Pd =200 mW and Pc =500 mW, we have
for Rb trap frequencies (ωx ,ωy ,ωz ) = 2π× (39,95,103)Hz, and for K trap frequencies of
(ωx ,ωy ,ωz ) = 2π× (53,130,140)Hz. This is due to the different values of the factor F/ω for
the two species.
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Figure 3.7.: Expanded cutout view of the vacuum chamber (see 3.2) with emphasized position
of quadrupole and Feshbach coil housing. The axes are in the same orientation as in Figure 3.2.

3.1.5. Magnetic fields
In order to prepare and manipulate the atoms, the apparatus is equipped with two pairs of
coils. The first pair of coils is in a quadrupole configuration, and generates a field which, to
first order, is [167]:

B (x, y, z) = I b′
(︂
−x

2
,− y

2
, z

)︂
, (3.15)

where I is the current, and b′ =0.56 G/cm/A. Those coils are called the quadrupole coils,
and have their symmetry axis along the vertical direction, and the centre of the quadrupole
approximately at the centre of the vacuum chamber. Their current is supplied by an Agilent
6617A power supply, and an additional is an Agilent N5744A power supply, in parallel, which
has a faster slew rate. The current sign can be additionally flipped by using an H-bridge,
which can be triggered with a TTL command.

Another set of coils is set up in an Helmoltz configuration, which is used to give a uniform
magnetic field along its symmetry axis. Due to construction constraints, the distance between
the coils is not equal to their radius, and so the magnetic field is

B (x, y, z) = I

⎛⎜⎝ −b2xz
−b2 y z

b0 +b2

(︂
z2 − x2

2 − y2

2

)︂
⎞⎟⎠ (3.16)

‡We neglect all excited levels out of the 52Px manifold.
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Figure 3.8.: Depiction of the field of (3.16) in two planes. The axial view depicts the magnetic
field in the x, y plane, with a positive offset in the z direction to show the curvature (for a
negative offset, the curvature is in the other direction). The frontal view depicts the magnetic
field in the x, z plane, without any offset. The coefficient ratio b2/b0 is exaggerated with
respect to the actual values for our experiment to make the curvature more evident.

where b0 =2.40 G/A, and b2 =1.678×10−1 G/cm/A; a graph of the field is shown in Figure 3.8.
Given their main purpose, these are called the Feshbach coils, and are powered by a Delta
SM18–220 power supply.

There are three additional pairs of coils, which are used for compensation of external
magnetic fields, and to provide an offset field during the quadrupole transfer.

3.2. Cooling sequence
The cooling sequence starts with the loading of the 3D MOT from the 2D MOT, when the
atoms are pushed into the science chamber by a push beam: the K MOT is loaded for about
8 s, and the Rb MOT is loaded for about 6 s, and happens simultaneously with the last part of
the K MOT loading.

Typical orders of magnitude for the number of atoms in the MOTs are 109–1010 atoms for
Rb and 107–108 for K. The number of atoms in each MOT can be controlled by a Schmitt
trigger stabilization scheme. A Schmitt trigger is a type of digital comparator that compares
an input signal I to a threshold T . If I < T −∆T , where ∆T > 0, then the output is the logical
low state, and if I > T +∆T , the output is the logical high state; if T −∆T < I < T +∆T , then
the output is at the same logical level as it was at the previous instant. The Schmitt trigger
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3.2. Cooling sequence

Figure 3.9.: Timing diagram of the cooling sequence, showing the main fields of interest
(optical, magnetic, microwave) and the main phases (hatched areas).

here compares the fluorescence level of each MOT to a fixed threshold, and adjusts the loading
rate of the MOTs by turning on or off the push beam according to the aforementioned method.
The fluorescence is collected by one photodiode for each species, each equipped with an
interferential filter to remove the fluorescence signal from the other species.

The atoms then undergo a brief (≈20 ms) Compressed MOT (CMOT) phase, which further
cools both clouds [168]; as the optimal magnetic field gradient is different for K and Rb, the
current in the quadrupole coils during this phase can also be used for a rough control of their
number balance. After the CMOT, the Rb atoms are cooled to sub-Doppler temperatures
with an optical molasses for 2 ms; while schemes for cooling 41K exist both using its D2 [169]
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Figure 3.10.: Potential, as seen by the atoms, at the end of the evaporation. The potential
is shown in the laboratory reference frame (i.e., the same reference frame as used by equa-
tions (3.8)–(3.16)).

and D1 [170] lines, we find that the benefits of having sub-Doppler K are smaller than the
costs in terms of added experimental complexity. After this phase, the temperature for Rb is
approximately 17 µK [171].

The atoms are then optically pumped in order to be in the F = 2,mF = 2 Zeeman level of
the ground state, as this is a magnetically trappable state. After that, the magnetic quadrupole
trap is turned on to a field gradient of 157 G/cm; typical numbers are of 3×107 K atoms and
4×109 Rb atoms [156]. In this magnetic trap, Rb is cooled with forced evaporative cooling,
while K is sympathetically cooled by Rb. The evaporative cooling is done by sweeping a
microwave from 6.894 GHz to 6.840 GHz (approximately, the transition energy is kB×1.78 mK
at the beginning, and kB×191 µK at the end of the microwave ramp) in 4 s. In the meanwhile,
the optical dipole trap is turned on: the dimple beam is brought to approximately 3 W, and the
crossed beam to 500 mW. After finishing the microwave ramp, the quadrupole is decompressed
to 22.4 Tm−1 in 500 ms, and then ramped to zero current in 7 s.§ This causes the atoms in
the quadrupole to be slowly loaded in the crossed trap, whose centre is 76 µm below. After
2 s since the end of the quadrupole decompression, the dimple beam power is ramped from
3 W to 200 mW. This final passage cools the atoms to degeneracy. The potential as seen by
the atoms is shown in figure 3.10. The trap frequencies for this configuration are (including
gravity), for K 2π× (52,127,130)Hz, and for Rb 2π× (35,85,67)Hz; due to the different masses
and atomic polarizabilities, there is a difference in the vertical plane for the two minima,
called gravitational sag, which, at the end of the evaporation, is about 16 µm; a procedure for
compensating this effect in the F = 1,mF = 1 state will be detailed in 3.4.

Using this sequence, we obtain a double condensate of K and Rb in the F = 2,mF = 2
hyperfine state, of 4×104–1.6×105 and 1.6×105–3.0×105 atoms, respectively. The species
imbalance can be controlled by changing the MOT stabilization cutoffs, or the value of the

§Just after the decompression, in order to avoid Majorana spin flip losses, a bias field of approximately 0.25 G
along the z axis is added.
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CMOT gradient; this capability is ultimately due to the anti-correlation of the number of atoms
in the quadrupole between the two species. For a representative condensate with 2×105 Rb
atoms and 7×104 K atoms, we obtain chemical potentials of kB×6×10−9 K and kB×5×10−9 K,
and Thomas-Fermi radii of (20,8,6) µm and (10,6,6) µm for each species, respectively.

3.3. Hyperfine transfers
The double condensate produced at the end of the cooling sequence is in the F = 2,mF = 2
hyperfine state, which is the highest in the ground state manifold. In order to be able to
tune the interactions, we have to transfer the atoms in the F = 1,mF = 1 state. Here, we have
two accessible Feshbach resonances, one at 47.96 G±0.10 G, and one at 78.57 G±0.05 G [129],
which provide a convenient way of tuning the interspecies scattering length by staying at field
intermediate between those two.

The transfer protocol used for both uses a rapid adiabatic passage to the target state,
though with some minor differences between the protocols for the two atomic species, dictated
by technical requirements. Rapid adiabatic passage occurs in a two level system when an
electromagnetic field, to which the system is coupled, is slowly swept through the resonance.
This ensures that the composite system of the radiation and the two level atom remains in
the same dressed state, and thus go from the unperturbed ground state to the respective
excited state (or vice versa, as in our case) [172]. This kind of transfer protocol is more robust
with respect to the inevitable noise present in both the amplitude and frequencies of the
electromagnetic field used for the transition, and in the two level energy separation. The
probability of transition is [172]:

Pt = 1−exp

(︃
πΩ2

2∆̇

)︃
, (3.17)

where Ω is the Rabi frequency, ∆̇= d
dt∆, and ∆=ω−ω0 is the detuning of the angular frequency

of the field ω from the transition frequency of the two level system ω0. In our case, the energy
of the magnetic levels m = mI ±1/2 of the hyperfine ground state of alkali atom in a magnetic
field B is given by the Breit-Rabi formula [173]:

∆E(B ,m) =− ∆Ehfs

2(2I +1)
+ g I mµBB ± ∆Ehfs

2

√︃
1+ 4m

2I +1
x +x2

=−∆Ehfs

8
+ g I mµBB ± ∆Ehfs

2

√︁
1+mx +x2, (3.18)

where

x =
(︁
g J − g I

)︁
µBB

∆Ehfs
, (3.19)

∆Eh f s is the hyperfine splitting of the unperturbed ground state, I is the nuclear quantum
number, which for both species is 3/2, and g J and g I are, respectively, the electronic and
nuclear gyromagnetic factors. Relevant values for 41K and 87Rb are shown in table 3.1, and a
graph of the transition levels is shown in figure 3.11.

Prior to the transfer, the Feshbach field is ramped from 0 G to 72.8 G in 40 ms. At this point,
we first transfer K to the F = 1,mF = 1 hyperfine ground state by sweeping a radio frequency
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(a) (b)

Figure 3.11.: Magnetic level energies as a function of the external field.

Table 3.1.: Nuclear gyromagnetic factors and dipole constants for 41K[174] and 87Rb[174, 175],
which are needed to calculate the hyperfine energies with equation (3.18).

g I ∆Ehfs/h(Hz)

41K −7.790600(8) ×10−5 254.0138704(12) ×106

87Rb −9.951414(10)×10−4 6.8346826109043(9) ×109

from 425.7 MHz to 427.3 MHz, with an efficiency ranging from 70% to more than 95%,¶ and
the fraction left in F = 2,mF = 2 is pushed away with a pulse of resonant light. Then, we apply
a microwave pulse of 5 ms at a fixed frequency of 6.987275 GHz, while ramping the Feshbach
field from 72.81 G to 72.57 G, to transfer Rb to the F = 1,mF = 1 hyperfine ground state; also
for this transfer, the efficiency is above 96%.

The optimal central frequency and sweep length have been found by measuring the fraction
of the atoms in each of the two states using a Stern-Gerlach-like protocol. The condensate is
released from the trap, freely falling for 3 ms, after which the quadrupole field is turned on
at 5.5 Tm−1 for 13 ms; finally, the atoms have another 16 ms of free fall. This ensures a good
separation of F = 2,mF = 2 and F = 1,mF = 1, due to their magnetic moments of opposite
signs.

¶We typically cannot observe efficiencies above that, as the fraction of atoms in the starting state is not visible
anymore
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3.3.1. Feshbach field calibration
The b0 coefficient from equation (3.16) has been determined by performing microwave spectro-
scopy on the Bose-Einstein condensate. This ensures that the atoms are in the same region
of the magnetic field where they will be during subsequent experiments, which is important
due to the inhomogeneity of the Feshbach field itself, and the gradient that is added for the
compensation of the gravitational sag.

The calibration is done, with a Rubidium only BEC, in two steps. First, the Feshbach field
is calibrated in isolation: this is done by producing a condensate, and then transferring it to
the F = 1,mF = 1 state with the Feshbach field kept at a fixed current I f , by shining a 5 ms
pulse of microwave light at a fixed frequency ωµ; the fraction in each state is then measured
with the above described Stern-Gerlach protocol. By scanning ωµ, we find a Gaussian transfer
efficiency curve; an example of such a curve can be seen in Figure 3.12. We can then compare
the Gaussian peak to the transfer frequency |∆E(B∗(If),1)−∆E(B∗(If),2)|/ħ in order to extract
the value of the magnetic field at the atom position B . We fit the obtained data to a linear
model, and we obtain, for the b0 coefficient, a value of 2.353 G/A±0.014 G/A, with the error
taken as the standard error of the parameter. The constant part of the linear model is
−0.37 G±0.40 G, which does not reject the null hypothesis that the magnetic field at zero
current is zero (p −value ≈ 0.4): in other words, while this method is quite adequate for the
calibration of the coils in object, it is not currently possible to get information on spurious
magnetic fields. The fitted calibration line is reported in figure 3.13a.

The second step of the calibration is adding the effects of the quadrupole field on the
Feshbach field. Differently from the Fesbach only calibration, here the BEC is first transferred
to the F = 1,mF = 1 state following the standard Landau-Zener procedure described above.
Then, the Feshbach current is brought to a fixed value If =30.5 A, and the gradient current is
put to a value Iq. From here, the procedure is identical to the previous calibration, with the
only difference that the transfer is done in reverse; this is done to ensure that the atoms are in
the exact same position where they would be during the experiment, which is important due
to the intrinsic inhomogeneity of the quadrupole field. We then fit the difference between the
expected field and the actual field with a linear model

B = Bf +αIq (3.20)

and find the effect of the quadrupole on the Feshbach field. We find for the parameter α a
value of 9.48×10−3 G/A±0.12×10−3 G/A. For Bf, we obtain a value of 71.365 G±0.002 G; in
figure 3.13b we report a summary of this calibration. We can compare this with the prediction
of the previous model at the same current, which is 71.40 G± 0.02 G; a z-test performed
with this data results in a p value of 0.17, and thus we can say that the two models are not
incompatible.
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3. Preparation of a double species Bose-Einstein Condensate

Figure 3.12.: Transfer efficiency curve for Feshbach field calibration acquired at a current of
28 A. The dots represent the average of the individual transfers at the particular frequency,
and the continuous line represents a fit with a Gaussian function. The peak frequency is
6975.415 MHz, with a full width at half maximum (FWHM) of 2.7 kHz; for both parameters,
the fit uncertainty is of the order of 1 kHz.

3.4. Gravity compensation
As mentioned, the two condensates do not overlap at the end of the evaporation. In the
simplest case of an harmonic optical potential plus a gravity term,

Ui =
miω

2
i

2
z2

i +mi g zi , (3.21)

the gravitational sagging is due to the difference in frequencies

∆z =
⃓⃓⃓⃓
⃓ω

2
Rb −ω2

K

g

⃓⃓⃓⃓
⃓ , (3.22)
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(a) (b)

Figure 3.13.: Calibration lines for the Feshbach field alone (a) and for the quadrupole at a
fixed Feshbach current of 30.5 A (b). Each data point is the weighted mean of the field extracted
from the central peaks for the Gaussian fits, and the error bars are the corresponding standard
errors.

which is ultimately due to the difference in polarizability and mass between 41K and 87Rb.
This can be countered by adding another potential term which induces an equal and opposite
shift, and which, in our case, is the quadrupole field: that is because the two species have,
within the region in which we vary our Feshbach field, different magnetic moments µ. With a
magnetic term µi Bqzi added, (3.22) becomes, to first order in z,

∆z =
⃓⃓⃓⃓
⃓ mRbω

2
Rb

mRbg +µRbBq
− mKω

2
K

mKg +µKBq

⃓⃓⃓⃓
⃓ . (3.23)

The magnetic moment for each species is

µ=−∂E

∂B
(3.24)

= g IµB + ∆Ehfs
(︁
x ′+x ′2B

)︁
2
⎷

x2 +x +1
(3.25)

E is given, up to an additive constant, by (3.18), x = (g J −g I )µBB/∆Ehfs is the same as in (3.19),
and x ′ = ∂B x. A graph of µ as a function of B is reported in figure 3.14. While, a priori, the
B for (3.24) would include all fields, in all practical cases the quadrupole correction to the
Feshbach field (3.20) is negligible: to make an example, the maximum difference between
neglecting and including the quadrupole correction in the values calculated for figure 3.14 is
3×10−6µB for Rb, and 8×10−5µB for K.
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3. Preparation of a double species Bose-Einstein Condensate

Figure 3.14.: Magnetic moment, in Bohr
magnetons, of 41K and 87Rb in the F =
1,mF = 1 state in an external magnetic field,
as calculated with (3.24). The red line rep-
resents Rb, which is constant to 4% in the
selected range, whereas the blue line is 41K.
A typical experiment is performed within
the 60 G–80 G range.

Figure 3.15.: Position of the centre of mass
of the condensates as a function of the cur-
rent. The dots represent the weighted means
of the positions for the corresponding fields,
and the error bars their corresponding stand-
ard error. The two continuous lines repres-
ent the linear fits of the position; the point at
which they overlap is the calibration result.

The overlapping sequence is done as follows: first, the trap is recompressed, ramping
the dimple power to 300 mW and the crossed power to 800 mW in 250 ms, raising ωz to
2π× 170Hz for K and 2π× 115Hz. This is done because otherwise the trap depth would
be insufficient to hold the condensates once the quadrupole field is added, as it pushes the
condensates in the same direction as gravity.‖ Then, the field is raised to the compensation
value, linearly, in 150 ms. This is done to ensure that atoms in the spurious F = 2,mF = 2 state
are separated from the condensates before they reach their final densities.

The compensation value, due to dependence of the trap frequencies themselves on the
magnetic field in (3.23), is calculated numerically, and we find a value of 16.5 G/cm; this
corresponds to a coil current of 29.5 A. Within this approximation, the residual sagging is less
than 1×10−2 µm.

The compensation field value obtained above can be easily checked. For this purpose, we
measure the vertical position of the condensate in situ. We first prepare a Rb condensate
in the lowest hyperfine state with the same sequence as above, but this time the crossed is
compressed to about 1.2 W. At the end of the process, the dimple beam is ramped to 0 W in
10 ms, and, after 12.5 ms, the condensate is imaged (see Section 5.4 for more details on the
imaging of condensates with non-zero magnetic fields). The same is then done with a K only

‖The zero of the total magnetic field is above the optical trap centre, and F = 1,mF = 1 is an high-field seeking
state.
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condensate, which is obtained by blasting away Rb atoms before the transfer with a 1 ms pulse
of resonant light. By varying the quadrupole field, we can see the translation of the centre of
mass of each cloud. Fitting each with a linear function zi = zi 0 +βi Iq, we find the coil current
for which the two species are overlapped:

I∗q = zRb0 − zK0

βK −βRb
. (3.26)

The fitted coefficients are zRb0 =−23.7 µm±0.4 µm, βRb =−0.42 µmA−1 ±0.02 µmA−1, zK0 =
−13.9 µm±0.9 µm, and βK =0.83 µmA−1 ±0.03 µmA−1; this gives a compensation current of
24 A±6 A; a z-test with the prediction has a p value of 0.64, and thus the two values are not
incompatible. A graph of the data with the fits can be seen in figure 3.15.
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4

Dipole oscillations of an interacting
bosonic mixture

In this chapter, we will look at the physics of dipole oscillations in our mixture. While for
a single trapped gas dipole oscillations are employed to measure the trap frequencies—role
for which they are particularly suited due to the fact that the frequencies thus obtained
are independent of the interactions [176]—for a mixture interspecies coupling changes the
picture. There has been considerable interest in collective excitations in general for this kind of
systems, whether they are spin mixtures [41, 177–180], immiscible condensates [26], or strongly
imbalanced condensates [88]; dipole oscillations in mixtures have also been employed as a
tool for measuring interspecies interactions [35, 181], and to better understand the nature of
multi-component superfluidity [34, 182]. Here, we will look at dipole oscillations for various
regimes of interspecies interactions, expanding on the results presented on the publication
upon which this chapter is based [92].

In Section 4.1, we will look at the theoretical aspects of dipole oscillations; then we will
see, in Section 4.2, how the experimental protocols worked, both from the side of exciting
the dipole oscillation, and of analyzing the collected data. The results thus obtained will be
discussed in Section 4.3 for what concerns the frequencies and amplitudes of the oscillations,
in Section 4.4 to expound on the role of population imbalance, and finally in Section 4.5 for
some considerations on the damping of the oscillation amplitude.

4.1. Theoretical framework
In this section we will talk about the theoretical framework for dipole oscillations. We will start
with the theory for collective excitations for the case of a single condensate in Subsection 4.1.1,
where we look at the shape of a condensate during a dipole oscillation using both a first-
principle approach from the hydrodynamic equations and an ansatz solution for the GPE. In
Subsection 4.1.2, we will look at two semi-classical models for dipole oscillations, namely the
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4. Dipole oscillations of an interacting bosonic mixture

sum rules model for collective excitations, applied to our specific case, and a model based on
Ehrenfest’s theorem.

4.1.1. Classification of the collective excitations
Collective oscillations are usually classified in terms of multipole expansion terms: monopole,
dipole, quadrupole, and so on and so forth. This can be derived from the hydrodynamic
theory for a single Bose-Einstein Condensate. The hydrodynamic equations can be derived
from the Gross-Pitaevskii Equation (2.71), assuming for the wave function the form

Ψ(r , t ) =
√︁

n(r , t )eiS(r ,t ); (4.1)

they are [94]:
∂

∂t
n +∇· (vn) = 0 (4.2)

and

m
∂

∂t
v +∇

(︃
1

2
mv 2 +Ve + g n

)︃
= 0, (4.3)

where the superfluid velocity is

v (r , t ) = ħ
m

∇S(r , t ), (4.4)

and Ve is an external potential.
We will look at the case of an harmonic potential (2.69) in the spherical case ωx =ωy =

ωz = ω. Making a small perturbation ansatz for the solutions of (4.2)-(4.3), δn(r , t )e−iωt =
n(r , t )−n0(r ), where n0 is a stationary solution, we obtain the linearized equation, valid in
the Thomas-Fermi limit [138]:

ω2δn =−1

2
ω2

0∇
(︁
R2 − r 2)︁∇δn, (4.5)

where R is the Thomas-Fermi radius; the equation is valid for −R < r < R . Solutions for this
equation have the form [138]

δn = δn0P 2 j
l

(︂ r

R

)︂
Ylm(θ,φ), (4.6)

where P 2 j
l (x) = 1+a2x2 +·· ·+a2 j x2 j , and Ylm(θ,φ) are the spherical harmonics, and j is the

radial number of nodes.
For the specific case of dipole oscillations (l = 1, j = 0), we can write explicitly

δnd(r , t ) = δn0
r

R

1

2

√︃
3

π
×

{︄
cosθ for m = 0

∓e±iφ sinθ for m =±1
(4.7)

and, so,

n(x, y, z, t ) = n0 +Re(δn(r , t ))
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= n0 +δn0
1

2

√︃
3

π

z

R
cos(ωt ), (4.8)

assuming that the oscillation is along z.
Given that (4.5) is derived in the Thomas-Fermi limit, we can assume for n0 a Thomas-Fermi

density shape, so

n(r , t ) = n0

(︃
1− r 2

R2

)︃
+δn0

1

2

√︃
π

3

z

R
cos(ωt ) (4.9)

= n0

(︃
1− x2 + y2

R2 − z2

R2 + z

R

δn0

n0

1

2

√︃
π

3
cos(ωt )

)︃
(4.10)

and we find that the peak of the density distribution moves along z as

z0 = R
δn0

n0

√︃
3

π
cos(ωz t ). (4.11)

There is another way of obtaining the wave function for dipole oscillations [94]. If we assume
the functional form

Ψ(r , t ) = e−i(φ(t )−zβ(t ))/ħΨ0(x, y, z −α(t )), (4.12)

for the Gross-Pitaevskii equation (2.71), where Ψ0 is a solution of (2.73). We find that

β= mα̇ (4.13)

β̇=−mω2
zα, (4.14)

which is solved, up to a constant phase factor, by

α(t ) = A cos(ωz t ) (4.15)

β(t ) = Aωz sin(ωz t ), (4.16)

giving
Ψ= e−i(φ(t )−zωz A cos(ωz t ))/ħΨ0(x, y, z − A cos(ωz t )), (4.17)

and thus
n(x, y, z, t ) = ⃓⃓

Ψ0(x, y, z − A cos(ωz t ))
⃓⃓2 ; (4.18)

we can fix A by looking at (4.11).
If we compare (4.8) and (4.18), we see that, in both cases, the distributions undergo a rigid

translation along the oscillation axis. The actual wave function will be different in the two
cases, because in (4.8) the Thomas-Fermi approximation is used, whereas in (4.18) it is not,
nevertheless this difference is simply the difference in ground state wave function between
the full Gross-Pitaevskii Equation and its approximated form. It is also worth noting that the
oscillation frequency is determined only by the trap frequency, in analogy to what Kohn’s
theorem predicts for the cyclotron frequency of an electron gas [176]; a consequence of Kohn’s
theorem is that a thermal gas, or the thermal fraction of a partially condensed sample, would
also oscillate at the same frequency as a BEC.
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4. Dipole oscillations of an interacting bosonic mixture

4.1.2. Coupled models of dipole oscillations
While the equations (4.2) and (4.3) are useful for treating dipole oscillations of single component
BECs with repulsive interactions, for our purposes they are not sufficient, as we have a double
species BEC, and we would like to investigate both the attractive and the repulsive regimes.
That is because, as we will see later, the presence of the interactions changes the character of
the dipole oscillations, introducing a dependence of the frequencies and amplitudes of said
oscillations on the strength and sign of the interspecies interaction.

A widely used approach for this kind of calculations is based on sum rules [138, 183]. This
approach is based on linear response theory [184]: for a scalar potential φ(q ,ω) with an
interaction Hamiltonian

Hi = F †
qφ(q ,ω)e−iωt +Fqφ(q ,ω)eiωt , (4.19)

the response of the observable connected to F is

〈F (q ,ω)〉 = ⟨︁
Ψ(r , t )

⃓⃓
Fq e(iω−η)t

⃓⃓
Ψ(r , t )

⟩︁
(4.20)

where Ψ is a state of the perturbed Hamiltonian, is proportional to the perturbation via the
susceptibility χ(q ,ω): ⟨︁

F (q)
⟩︁=χ(q ,ω)φ(q ,ω), (4.21)

which has the form
χ(q ,ω) =

∑︂
n

⃓⃓⃓⟨︂
0
⃓⃓⃓
F †

q

⃓⃓⃓
n

⟩︂⃓⃓⃓2 2ωn0

(ω+ iη)2 −ω2
n0

. (4.22)

The real component of the exponential in (4.20) is added to ensure causality [184]; the final
values are to be taken after going to the limit η→ 0 at the end of the calculation. The density
response function can be expressed in term of its spectral density

χ(q ,ω) =
∫︂ +∞

0
S(q ,ω′)

(︃
− 1

ω−ω′+ iη
− 1

ω+ω′+ iη

)︃
dω′ , (4.23)

which is called the dynamic structure factor. In the usual case of a discrete spectrum, the
dynamic structure factor is

S(q ,ω) =
∑︂

n

⟨︂
n

⃓⃓⃓
F †

q

⃓⃓⃓
0
⟩︂
δ(ω−ωn0). (4.24)

The sum rules approach hinges on the calculation of the moments of the dynamic structure
factor [185]:

mn =
∫︂ +∞

−∞
ωnS(q ,ω)dω (4.25)

=
∑︂

l

(ωl 0)n
⟨︂

l
⃓⃓⃓
F †

q

⃓⃓⃓
0
⟩︂

; (4.26)
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for these moments we have the relations

· · · ≥ mk+2

mk+1
≥

√︃
mk+2

mk
≥ mk+1

mk
≥ ·· · , (4.27)

where the equal sign holds when the sum (4.24) for the calculation of S has only one term,
that is, if only one collective mode is excited. These ratios can be used to define average
frequencies:

ω1,k = mk+1

mk
(4.28)

ω2,k =
√︃

mk+2

mk
. (4.29)

For the first few moments, we have simple closed forms in terms of commutators [·, ·] and
anticommutators {·, ·} [186]:

m0 = 1

2
〈0 | {F,F } |0〉−〈0 |F |0〉2 (4.30)

m1 = 1

2
〈0 | [F, [H ,F ]] |0〉 (4.31)

m2 = 1

2
〈0 | [{F, H } , {H ,F }]〉 (4.32)

m3 = 1

2
〈0 | [[F, H ] , [H , [H ,F ]]] |0〉 , (4.33)

and thus we can express the collective excitation frequency as

ω2 = m3

m1
. (4.34)

In our case, the observable of interest is the position of the two centres of mass, given by the
dipole operator D [187]:

D =α1

N1∑︂
i=1

x1i +α2

N2∑︂
i=1

x2i (4.35)

where 1,2 indicate the species, α2
1 +α2

2 = 1 are mixing parameters, and the Hamiltonian is that
of the coupled GPE (2.82). Calculating (4.34), the oscillation frequency is [183]:

ω2 =
N1
m1
α2

1ω
2
1 + N2

m2
α2

2ω
2
2 − g12I

(︂
α1
m1

− α2
m2

)︂2

N1
m1
α2

1 + N2
m2
α2

2

, (4.36)

where

I =
∫︂
∂n01

∂x

∂n02

∂x
dr , (4.37)

and n0i is the ground state density of the i -th condensate. The frequencies of the two
eigenmodes are obtained then by setting

α1 = cosθ+ sinθ⎷
2

(4.38)
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α2 = cosθ− sinθ⎷
2

(4.39)

and calculating the mixing angle θ for which the frequency is stationary:

∂ω2(θ)

∂θ
= 0. (4.40)

This equation gives two mixing angles, θ±, which correspond to two solutions ω±.
While the sum rule theory has its advantage in generality, there is another, more immediately

physical approach, based on the Ehrenfest’s theorem [183]. The theorem states that [188]:

m
d2

dt 2
〈r 〉 =−〈∇V 〉 , (4.41)

where, for a Bose-Einstein condensate, V is the potential in the GPE (or in the coupled GPE
for a mixture). If we define ξi = 〈xi 〉, we obtain

ξ̈i (t ) =−ω2
i ξi (t )−

∑︂
j

gi j

mi Ni

∫︂
ni

∂

∂x
n j dr . (4.42)

Because we are interested in dipole oscillations, we can use (4.8) and a small oscillation
approximation to calculate the integral in the previous equation:

n ≈ n0 − ∂n0

∂x
ξ, (4.43)

so that
ξ̈i (t ) =−ω2

i ξi −ηi
∑︂

j
ξ j , (4.44)

where

ηi = g12I

mi Ni
. (4.45)

This is a matrix equation:(︃
ξ̈1

ξ̈2

)︃
=

(︃
ω2

1 −η1 η1

η2 ω2
2 −η2

)︃(︃
ξ1

ξ2

)︃
= M

(︃
ξ1

ξ2

)︃
, (4.46)

the eigenvalues ω± of the dynamic matrix M are the frequencies of the eigenmodes of the
oscillations; it has been shown [183] that this method is equivalent, for dipole oscillations, to
the sum rule method. If we define Ω2

i =ω2
i −ηi , we obtain the eigenvalues

ω2
± = Ω2

1 +Ω2
2

2
±

⌜⃓⃓⎷(︄
Ω2

1 +Ω2
2

2

)︄2

+ω2
1η2 +η1ω

2
2 −ω2

1ω
2
2 (4.47)

and the eigenvectors

v± = 1√︃(︂
Ω2

2+ω2
±

ω2
2

)︂2
+1

(︄ (Ω2
2+ω2

±)
ω2

2

1

)︄
. (4.48)
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Figure 4.1.: Relative intensity (left) and normalized frequency (right) predicted by the semi-
classical approaches (respectively, (4.49) and (4.47)). The quantities for the non-interacting case
(r = 1, ω± = 1) are highlighted.

From (4.47), we can see that the oscillation decomposes in two proper modes, a low frequency
mode oscillating at a frequency ω−, and an high-frequency mode oscillating at a frequency
ω+, and that, as said above, the oscillation frequency depends on the interspecies interaction
via the ηi parameters. We also remark that, in the attractive regime, the low frequency
mode corresponds to the in-phase motion of the condensates, while the high-frequency mode
corresponds to the out-of-phase motion; in the repulsive regime, the roles are reversed.

The amplitude of the oscillation modes can then be obtained from the eigenvectors by trans-
forming back the motion in the proper coordinates to that in the centre-of-mass coordinates.
It is useful to construct two ratios, r+ = v+1/v+2 and r− = v−2/v−1, which represent the ratio
between the two modes in the centre-of mass coordinates; they are equal to [183]:

(r±)±1 = 1

2

[︄
(1−β)+ ω2

1 −ω2
2

2η2

]︄
±

⌜⃓⃓⎷ (1+β)2

4
+ (1−β)

ω2
1 −ω2

2

2η2
+

(︄
ω2

1 −ω2
2

2η2

)︄2

. (4.49)

An important feature of the models seen so far is that they depend on the assumption that
the motion amplitude is small and the translation purely rigid.* As we will see later, these
assumptions are not always valid, and, ultimately, the most accurate predictions come from
numerical simulations of the full coupled GPE. Nevertheless, these theoretical approaches
are useful for understanding the main physical features of dipole oscillations: namely, the
dependence of the frequencies and amplitudes on the interspecies interaction parameter g12.

*From sum rule theory, we know that the frequencies found would, in this case, just be an upper bound of the
actual motion frequency.
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4.2. Experimental protocol
The experimental procedure in our study of the dipole oscillations starts after the last stage
of preparation described in Chapter 3, namely with the two non interacting overlapped
condensates in a crossed dipole trap. After tuning the interspecies interaction to the target
value, a dipole oscillation along the vertical axis can then be excited by suddenly changing the
gradient from the gravity compensation value to some other value; in this way, the centres of
the two traps are shifted, while the condensates, due to their finite mass, remain approximately
in place. For the purposes of what is exposed in this chapter, the quadrupole field is suddenly
shifted from the compensation value of 16.5 G/cm to 14.5 G/cm, causing a displacement of
≈1 µm for Rb and ≈2 µm for K [92].† Given the bare trap frequencies ωz of 2π×185 Hz
for K and 2π×135 Hz for Rb, we have a worst case scenario tsωz /(2π) of 0.19, which we
find sufficient to avoid that the condensates adiabatically follow the displacement of the trap
minima.

After the excitation of dipole motion, the condensates are held in the trap for a variable
amount of time tt, then released from the trap, undergoing a ballistic fall for a time tTOF, and
finally imaged with absorption imaging. We varied tt from 0 ms to 20 ms, with a sampling time
of 1 ms for non-interacting oscillations, and 0.5 ms for interacting oscillations; each oscillation
is repeated five times to achieve a better signal-to-noise ratio. The interspecies interactions are
varied between 6.6 a0 ±1.2 a0 and −84.0 a0 ±1.2 a0. A graph for a typical oscillation, namely
one where a12 =−19.5±1.2a0, is reported in Figure 4.2.

We explored mainly the attractive side due to the fact that for interspecies repulsion, even
in the miscible regime, and even for the small differential shifts used, the condensates tend to
go out of the linear regime. This results in a rapid heating of the samples, and the loss of the
condensate before a sufficient part of the oscillation can be sampled.

The time of flight has the effect of amplifying the oscillation amplitude: the displacement of
the centre of mass from the neutral position is, up to a constant phase:

∆z(tt, tTOF) = z(tt, tTOF)− at 2
TOF

2
(4.50)

= x0(tt)+ v0(tt)tTOF (4.51)

= A sin(ωtt)+ AωtTOF cos(ωtt) (4.52)

= A
√︂

1+ (ωtTOF)2 sin

(︃
ωtt +arctan

(︃
1

ωtTOF

)︃)︃
(4.53)

In our procedure, we have a time of flight for K of 35 ms and for Rb of 38 ms, giving, for the
bare trap frequencies, an amplification factor of, respectively, 41 and 32.

As the eigenmode frequencies and amplitudes vary with the number of atoms (see (4.36)),
we keep NK ≈7×104 and the population imbalance α= NRb/NK within the range 1.5–4.0; this
is done by regulating the MOT fluorescence with the methods exposed in Section 3.2, and
subsequently discarding shots outside of the specified α range.

†The settling time ts of the current in the quadrupole coils is of about 1 ms; we define settling time as the
time between the rising edge of the input, supposed of negligible width, and the earliest instant after which the
difference between the instantaneous value of the signal and its mean steady-state value is within ±2% of the signal
excursion [189].
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Figure 4.2.: Dipole oscillation of the mixture with an interspecies scattering length of
−19.5 a0 ±1.2 a0. On the first row, we can see the data for K, and on the second for Rb. The
left column shows the average of the centre of mass for each evolution time, along with an
error bar representing its standard deviation of the mean; the continuous line is the prediction
of the fitted model. On the right column, we see the spectrum of the data, calculated with the
methods described in this section. The dashed line represents the threshold for a false alarm
probability below 5%, and the circlets the location of the detected peaks.
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Figure 4.3.: Frequency of non interacting oscillations for K (left panel) and Rb (right panel)
for the various days of measurement. A new non-interacting oscillation is taken whenever
the optical dipole trap is realigned. A dashed line is put at the average of all the obtained
oscillation frequencies, and a band spans a range of plus or minus one standard deviation of
the oscillation frequencies centred on the aforementioned average frequency.

As we will see in Section 4.3, the oscillation frequencies and amplitudes are normalized
to the respective values for the non-interacting case. In order to counteract drifting effects
due to the finite precision of the beam alignment and of the trap laser power stabilization, a
non-interacting oscillation is taken each day of measurement and each subsequent time during
the day in which the optical dipole trap is realigned. A graph of the non interacting oscillation
frequencies, analyzed with the methods discussed below, is visible in Figure 4.3. The mean
value for the non interacting frequencies over all the measurements is for Rb 135 Hz, and for
K 187 Hz, with a standard deviation of the frequency for both of 5 Hz.‡

For each oscillation, the analysis is done in two steps. The first step is a preliminary
assessment of the harmonic content of the centre of mass motion: this is done with a
Lomb-Scargle periodogram analysis [191, 192]. This kind of spectral estimation technique is
particularly suited to our situation as it relaxes two assumptions which are fundamental to
other popular methods, such as the simple periodogram [193] or Welch’s method [194], which
is that the samples are equally spaced and with negligible uncertainty.§ The Lomb-Scargle

‡The usual, and more correct, way of assessing the stability of an oscillator is using the Allan variance [190]; in
our case, the way in which the oscillation frequency is estimated is not amenable to evaluation with this kind of
metric, which assumes an oscillator sampled at regular intervals. The irregularity of our sampling times (i.e. the
time between two non-interaction oscillations) means that we rarely have three points with the same delay between
them, which is the minimum for evaluation of the Allan variance.

§Removing the uniform sampling constraint is useful if, for example, there are no acquired points for a certain
specific te, but this did not happen for the data acquired in the work presented here. The handling of statistical
uncertainty, as can be seen in Figure 4.2, is a more pressing concern.
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power spectral density (PSD) is given by [192]:

P (ω) = 1

2

[︁∑︁
i S(ti )cos(ω(ti −τ))

]︁2∑︁
i cos2(ti −τ)

+ 1

2

[︁∑︁
i S(ti )sin(ω(ti −τ))

]︁2∑︁
i sin2(ti −τ)

, (4.54)

where S(ti ) is the i−th sample of the signal under consideration, and

τ= 1

2ω
arctan

(︃ ∑︁
i sin(2ωti )∑︁
i cos(2ωti )

)︃
. (4.55)

It is possible to show [192] that the PSD obtained by (4.54) is equal to

P (ω) = 1

2

[︄∑︂
i

S(ti )2 −min
A,B

∑︂
i

(S(ti )−Υ[A,B ,ω](ti ))2

]︄
, (4.56)

with
Υ[A,B ,τ,ω](ti ) = A cos(ωti −τ)+B sin(ωti −τ) ; (4.57)

this approach is known as the least squares spectral estimation. We can see that the second term
in (4.56) is nothing but the χ2 of our signal; therefore, we can handle the uncertainties in S by
substituting it with the reduced-χ2 for the model Υ and the experimentally obtained S(ti ) and
σi [195]:

χ2
r =

∑︂
i

(︃
S(ti )−Υ(ti )

σi

)︃2

. (4.58)

We evaluate the PSD from 0 Hz to 1 kHz, with a frequency resolution of 2.5 Hz.¶‖ From this
data, we get the spectral peaks whose level is over the 5% false alarm probability threshold [200],
in order both to have initial starting values for the subsequent fitting procedure and to estimate
the number of frequencies to be included into the oscillation model. This is important because,
while the theory predicts that both frequencies should appear in all the oscillations for both
species, in practice some of them could be so suppressed that the results from the analysis of
that frequency would not be accurate.

The second step is then doing a least square fit of the oscillation data directly with a
sinusoidal model, which can be either

Ys(t ) = Ae−t/τ sin
(︁
ωt +φ)︁

(4.59)

for the single frequency case, or

Yd(t ) = A+e−t/τ+ sin
(︁
ω+t +φ+

)︁+ A−e−t/τ− sin
(︁
ω−t +φ−

)︁
(4.60)

for the double frequency. The minimization of the residual sum of squares is done with
the Levenberg-Marquardt algorithm [201, 202], which has the twofold advantage of being

¶In the general case of non-uniform sampling, the Nyquist-like frequency is not the usual N f = fs /2, with fs
the sampling frequency, but much higher [196]. In our case, however, all the samples are at integer multiples of the
sampling frequency, and so it reduces to fs /2.

‖For this analysis, the software implementation used has been provided by the Astropy package, version
5.3.2 [197–199].
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4. Dipole oscillations of an interacting bosonic mixture

widely available in an already implemented form, and of providing estimates for the standard
deviation of the fitted parameter value.** This is because the algorithm minimizes the χ2

statistic by iteratively solving the system [202]

(Hi +λi I )δi+1 =∇χ2
ri , (4.61)

where H is the Hessian matrix of χ2
r for our model equation calculated at the point in fitting

parameter space βi =βi−1+δi , χ2
ri is the reduced-χ2 for the model calculated at βi , and λi is

a parameter retuned at every step.†† Because of this, it is straightforward to get the covariance
matrix V = H−1/2 from the last algorithm step [205], and so the error estimates σi =

⎷
Vi i .

4.3. Frequencies and amplitudes of the oscillations
With this method, we obtain the frequencies and amplitudes of the oscillation for each species.
First, the oscillation frequency for each eigenmode is averaged across the two species, in the
cases for which it appears in both; then they are normalized to the bare oscillation frequencies
of K and Rb, for the high and low mode respectively.

A graph of the frequencies for the different interspecies scattering length is shown in
Figure 4.4, along with a comparison with both the Gross-Pitaevskii predictions, and with the
Ehrenfest theorem predictions.

By looking at the graphs, we can see that the frequencies, as predicted from theory, differ
substantially from the bare trap frequencies that would have been measured in the non
interacting case. We remark also that, for the in-phase mode, the accord with predictions,
both with the models explored in Subsection 4.1.2 and with the GPE simulations, is good;
for the out-of-phase mode, on the other hand, the discrepancies of the experimental results
with the GPE simulations are larger, and the Ehrenfest-Sum rules results fail to describe the
experimental data.

We can also observe from the figure that the relative magnitude of the in-phase and out-of-
phase frequencies depend on the sign of the interactions: while for negative a12 the in-phase
frequency is lower than the out-of-phase one, for positive scattering lengths the roles are
reversed. This can be explained with an intuitive physical picture, derived from the eigenvalue
analysis of (4.47): in the case of attractive interactions, the interaction energy is negative,
and thus it is energetically favourable for the two condensates to move together, whereas for
repulsive interactions, the lower energy motion is the one in which they spend the least time
occupying the same portion of space.

The amplitudes of the K and Rb oscillations depend on how the eigenmode was projected
on the single species mode, which, in turn, depends on the excitation protocol via the initial
conditions of the dynamic equations; for this reason, we normalize the oscillation amplitude
for each species to its corresponding value for the non-interacting case; a figure comparing the
experimental values with the corresponding GPE predictions can be seen in Figure 4.5. There,
we see that, for Rb, the out-of-phase mode is always suppressed below the detection threshold,
but for the in-phase mode, there is a match with the prediction from the GPE simulations;

**The software implementation used here is from the Scipy package [203], version 1.10.1.
††The actual updating strategy differs from implementation to implementation; see, for example, [204].
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4.3. Frequencies and amplitudes of the oscillations

Figure 4.4.: Frequencies of the dipole oscillations for the low frequency mode (left panel)
and the high frequency mode (right panel). The data points are the result of the least squares
fits, averaged, where applicable, over the results obtained for the two species, and the error
bars represent their standard errors. The dotted and dashed lines represent the theoretically
calculated frequencies for the case of α = 1.5 and α = 4.0, respectively; the shaded areas
between these lines represent the method used for the calculation of the theoretical values:
solid (and color-coded for the respective mode) for the GPE simulations, and hatched grey for
the Ehrenfest model values. The low mode frequencies are normalized to the non-interacting
Rb frequency (ω2), whereas the high mode frequencies are normalized to the non-interacting
K frequency (ω1). In both panels, the grid lines where a12 = 0 and ω±/ωi = 1 are emphasized.

for K, on the other hand, the out-of-phase mode is the only one visible for a12 ≳−20a0, then,
in the range −60a0 ≲ a12 ≲−20a0, both modes are visible, and, finally, for a12 ≲−60a0, the
out-of-phase mode is suppressed. This indicates that, in this last regime, the strength of the
interspecies interaction is such that the two species oscillate in unison.

A more quantitative estimate of the discrepancy between the predicted and the experiment-
ally measured frequencies can be made if we take the overlap integral between the probability
distribution of ω and the predicted region. For a given fit result ω̄ with a standard error σω,
the overlap with the theoretically predicted region [ω1,ω2] is

O =
∫︂ +∞

−∞
1[ω1,ω2](o)

1√︂
π2σ2

ω

e
− (o−ω̄)2

2σ2
ω do (4.62)

=
∫︂

ω2

ω1

1√︂
π2σ2

ω

e
− (o−ω̄)2

2σ2
ω do (4.63)

= 1

2
erf

(︃
ω2 − ω̄⎷

2σω

)︃
− 1

2
erf

(︃
ω1 − ω̄⎷

2σω

)︃
(4.64)
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4. Dipole oscillations of an interacting bosonic mixture

Figure 4.5.: Amplitudes of the dipole oscillations for K (left panel) and Rb (right panel).
The data points are the results of the least squares fits, and the error bars represent their
standard errors. The dotted and dashed lines represent the amplitudes extracted from the
GPE simulations for the cases of α= 1.5 and α= 4.0, respectively. The amplitudes of the low
frequency mode are represented coloured green, while those of the high frequency mode are
coloured purple. Each amplitude is normalized to the amplitude of the respective species (A1

for K, and A2 for Rb) in the non-interacting case. In both panels, the grid lines where a12 = 0
and A/Ai = 1 are emphasized.

where 1S is the indicator function for the set S:

1S(x) =
{︄

1 if x ∈ S

0 otherwise
(4.65)

and erf is the error function of the standard Gaussian

erf(x) =
∫︂ x

0

1⎷
2π

e−
ξ2

2 dξ . (4.66)

In order to make the comparison of different values possible, we normalize O by its maximum
value O∗, which would occur if ω̄= (ω2 +ω1)/2. In Figure 4.6 the values of |O/O∗| for both
modes, comparing Ehrenfest and GPE predictions, are shown. There, we can see that, while for
the in-phase mode both overlaps are comparable, for the out-of-phase mode the normalized
overlap of the Ehrenfest prediction is consistently less than 1%, once we go below ≈−20a0.

With respect to the Ehrenfest model, we can see that GPE simulations systematically predict
lower energies. This is because, for the out-of-phase mode, the assumptions made in both
the Ehrenfest and the sum rules treatment of the problem are not valid anymore: namely, the
linearity assumption central to this problem is not fulfilled anymore. When the oscillations are
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Figure 4.6.: Absolute value of the normalized overlap between the empirical frequency
distribution and the theoretical prediction. The continuous lines represent overlaps with the
GPE predictions, the dashed lines the overlaps with the Ehrenfest model predictions, and the
dotted line a constant at 1%. In the right panel, Ehrenfest values for a12 <−40a0 are cutoff, as
the overlap is below the floating point precision of the machine on which these quantities were
calculated (∼10−16).

not linear, the modes in the multipole expansion are mixed, and therefore the rigid translation,
that constitutes the dipole oscillation, is not the only collective excitation that is initially
excited, that is to say that the initial density distribution changes shape. This is consistent
with the sum rules theory, which states that the frequency it predicts is just an upper bound
for the actual frequency, whenever there is more than one mode, i.e. out of the linear regime:
from what we have said before, we see that the Ehrenfest predictions (which are identical to
the sum rules predictions) are consistently higher than both the GPE and the experimentally
detected values.

From Figure 4.5, instead, we can see that the out-of-phase amplitude of Rb is always
suppressed below the detection threshold and, as such, has never been observed; the symmetric
case is also true for K where the in-phase mode is never detected for a12 > −20a0: this is
because the mode which is due to the other species is suppressed until sufficient mixing is
achieved, i.e. until the interactions are sufficiently strong. The out-of-phase mode is, for
scattering lengths a12 < −60a0, absent also in the K oscillation, as in this region the two
condensates tend to stick together.
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4. Dipole oscillations of an interacting bosonic mixture

Figure 4.7.: Effect of the population imbalance on the oscillation frequency, keeping fixed
the intraspecies scattering length at a12 = −83.4a0. The hatched rectangles represent the
experimental data, where the horizontal width of the rectangle represents the width of the
binning interval, and the error bars the standard error on the fit result. The continuous line
represents the GPE prediction, while the dashed line the Ehrenfest prediction.

4.4. Role of population imbalance
In the strongly attractive regime, as we have seen before, the in-phase mode is strongly
enhanced over its competitor. The frequency of this mode tends to the bound state value

ωb =
√︄

N1m1ω
2
1 +N2m2ω

2
2

N1m1 +N2m2
, (4.67)

which as an intuitive physical interpretation as the weighted mean of the two bare frequencies,
where the weights are the total masses of the condensates. In order to assess the precision of
(4.67), we compare it with experimental data taken at a fixed interspecies scattering length,
a12 =−83.4a0, and with a wide range of α, from 0.74 to 14.3. The oscillation data is binned
into six bins, in order to have an appropriate number of points at each evolution time te for
each of the bins, and then they are fitted. We can see in Figure 4.7 the comparison between
the experimental frequencies, the frequencies extracted from the GPE with an added LHY
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term to the energy functional, and the classical bound state prediction

ωb

ω2
=

⌜⃓⃓⃓
⎷γm1

m2

(︂
ω1
ω2

)︂2 +1

γm1
m2

+1
, (4.68)

where γ= 1/α= N1/N2. We can see that there is a good agreement between the predictions
and the data for both predictions: more quantitatively, a Kolmogorov-Smirnov goodness-of-fit
test [206] for (ωth −ωexp)/σω does not reject the null hypothesis that the residuals belong to
standard normal distributions (p-values ≈ 0.6 and ≈ 0.2 for the GPE and Ehrenfest predictions,
respectively), and a two sample Kolmogorov-Smirnov test does not reject the null hypothesis
that the residuals come from the same distribution (p-value ≈ 0.5).

Given that, as mentioned above, the GPE simulation includes a LHY term in the energy
functional, which is necessary due to the fact that −83.4a0 is well within the mean-field-collapse
region; on the other hand, the frequency prediction (4.67) does not include beyond-mean-field
effects, as the bare trap frequencies are insensitive to intraspecies interactions. The inability of
distinguishing between the two makes us conclude that, within our experimental precision, we
are not able to see beyond mean field effects on the dipole oscillation of the droplet.

In order to confirm whether the oscillating gas is actually in a droplet state, we follow the
time-of-flight expansion of the cloud, varying the time of flight from 10 ms to 25 ms, while
keeping the interspecies interaction strength at the same value of −83.4a0. The cutoff for
the TOF is equal to the lifetime for this kind of droplets, as measured in [65]: this is much
shorter than the TOF for the oscillation measurement, which is 35 ms for K; for this reason,
the presence of a droplet state could not be directly confirmed during the measurement of the
oscillation frequency. Because the atomic cloud expand during the TOF, we conclude that, in
conditions identical to those encountered during the dipole oscillation, droplet states did not
form. The only way in which we were able to create a non-expanding droplet was by going
further on the attractive side, but the density of the resulting condensate greatly increased the
three body losses, making it impossible to meaningfully see any in-trap dynamics.

4.5. Oscillation damping
The amplitude of the dipole oscillations was experimentally observed to decay with time; this
consideration was already included in the fitted model equations (4.59) and (4.60). In order to
have a more controlled insight into what happens with the decay, we acquired, for interspecies
scattering lengths of a12 =−58.6a0 and a12 =−19.5a0, one set of measurements with initial
displacement of 3.5 µm for K and 1.5 µm for Rb, along with their respective non-interacting
oscillations; for the corresponding oscillations, the initial amplitudes were 2.35 µm for K and
0.74 µm for Rb. These oscillations are visible in Figure 4.8, with the results of the fit reported
in Table 4.1.
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4. Dipole oscillations of an interacting bosonic mixture

Figure 4.8.: Dipole oscillation decay for a large initial displacement (Rb: 1.5 µm, K: 3.5 µm),
for two different values of a12 (−19.5 a0, −58.6 a0). The dots represent the mean of the points
acquired for the same evolution time te , and the error bars their standard error, the continuous
line represents the prediction from the fit results, and the dotted lines the envelope of the
oscillation, as predicted by the fit.
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4.5. Oscillation damping

Table 4.1.: Oscillation decay times for the oscillations shown in Figure 4.8. The decay times
are obtained by fitting with the procedure detailed in Section 4.2. We indicate with +∞ a
decay time for an observed mode when 1/τ would be compatible with 0; we indicate with a
dash (—) the lack of a decay time due to an unobserved mode.

K Rb

a12 (a0) τL (ms) τH (ms) τL (ms) τH (ms)
0 — 80(20) 130(40) —

-19.8 +∞ 30(10) 160(50) —
-58.6 40(10) — 41(8) —

From these results, we can see that the damping time depends on the interspecies inter-
action. When the condensates are not interacting, the damping is purely dependent on the
anharmonicity of the trap, which couples the dipole mode to other collective modes. For
moderately attractive interactions (a12 =−19.8a0), the damping times of the low frequency
mode are unchanged with respect to the non interacting case (the comparison is only possible
in Rb, where the low mode is present also without interspecies coupling), while the lifetime
of the high-frequency mode is remarkably shorter. Finally, in the strongly interacting regime
(a12 =−58.6a0), the damping time is the same in both species, as is to be expected for almost
unison motion.

Concerning the damping of the high mode at moderately attractive interactions, we note
that, for this mode and in this interaction regime, the motion of the condensate is out-of-phase
and, therefore, one possible hypothesis is that the relative velocity, in some parts of the
oscillation, exceeds the critical superfluid velocity, thereby exciting other modes. For our case,
the critical (rescaled) momentum k̃c is given by [207]:

2k̃
2
c =

(︁⎷
γm +⎷

γ2
)︁2

(︃
1− γ12⎷

γ2

)︃
+αγ12

(︁⎷
γ2 +γ12

)︁2 +βγ2
12

(︁⎷
γ2 −γ12

)︁
, (4.69)

where we have defined

α= (︁⎷
γ2 +⎷

γm
)︁(︁⎷

γ2 −2 4
⎷
γmγ2 +⎷

γm
)︁
γ−3/2

2 (4.70a)

β= (︁
γm −2

⎷
γ2γm +γ2

)︁
γ−3/2

2 (4.70b)

γ2 = g22n2

g11n1
(4.70c)

γ12 =
g12

⎷
n1n2

g11n1
(4.70d)

γm = m2

m1
, (4.70e)

and the critical momentum k̃c is related to the critical relative velocity vc by

k̃c = m2vc√︁
2m2g11n1

. (4.71)
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We can therefore calculate vc: from the simulations, we know that, for a12 = −19.8a0, the
maximum density of the condensates is 180 µm−3 for K and between 254 µm−3 and 367 µm−3

for Rb, depending on the atom number; the critical relative velocity is, therefore, between
8.2 mms−1 and 8.9 mms−1. Also from the simulation data, we can say that the maximum
velocity is within the interval 2.05 mms−1–2.18 mms−1.

Given that this range is much lower than the critical velocity range, we can say that the
damping of the out-of-phase mode is less likely due to counterflow instability; however, the
calculation was done assuming that the relevant density for the calculation of the critical
velocity is the maximum density, which is strictly true only for homogeneous condensates: for
trapped condensates, even in the simple case given by the local density approximation, there
could still be (and, from a strictly mathematical point, there is certainly) a region in which the
critical velocity is below the observed maximum velocity. In conclusion, counterflow instability
cannot be ruled out, although within our current framework is a disfavoured explanation for
the oscillation damping.
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5

High resolution imaging of a
Bose-Bose mixture

The implementation of a high resolution imaging system has been planned for the K-Rb
experiment since the design of the vacuum apparatus, where the re-entrant viewports have the
express purpose of being closer to the atomic cloud, enabling imaging at higher numerical
apertures. The necessity for a high-resolution system is further corroborated by the aim of
imaging quantum droplets, whose size is below the resolution of the current imaging (≈5 µm),
and of further studies into multicomponent superfluidity of the K-Rb mixture, where the
production of vortices, for example, would also not be detectable with the aforementioned
system.

To do so, we characterize and mount an high-resolution objective that was developed
in [208]. In Section 5.2, we will look more in detail at the design of the objective and of the
MOT compensation scheme; we will then proceed to the characterization of its performance
in Section 5.3. In-situ imaging of the mixture necessitates the tuning of probe beam frequency
and polarization: those concerns are addressed in Section 5.4. Finally, the high-resolution
image of a double condensate is shown in Section 5.5.

5.1. Absorption imaging of degenerate quantum gases
Absorption imaging is the most widely used technique to probe degenerate quantum gases,
due to its versatility and relative simplicity [209].

Let’s assume that an electric field with amplitude E0 and frequency ω is impinging on an
atomic cloud. The electric field, while being absorbed and refracted by the cloud, is

E ′(z) = E0eiω(ñz/c−t ), (5.1)

where ñ is the complex refractive index [210]; for a gas of two level atoms, ñ is [209]

ñ = 1+ρσ0λ

4π

i−δ
1+δ2 , (5.2)
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where ρ is the atomic density,

σ0 = 3

2π
λ2 (5.3)

the resonant cross-section,
δ= ω−ω0

Γ/2
(5.4)

the detuning, ω0 is the transition frequency, and Γ its width.
The intensity of this beam is given by the Lambert-Beer law

I (z) = I0 exp

(︃
−4π

λ
Im(ñ)z

)︃
(5.5)

= I0 exp
(︂
−ρ(z)

σ0

1+δ2 z
)︂

; (5.6)

the total absorption of the cloud is

I = I0 exp

(︃
− σ0

1+δ2

∫︂
ρ(z)dz

)︃
(5.7)

= I0e−OD, (5.8)

where in the last passage we have defined a quantity called optical density. We see that

OD(x, y, z) ∝
∫︂
ρ(x, y, z)dz (5.9)

=
∫︂ ⃓⃓

Ψ(x, y, z)
⃓⃓
dz, (5.10)

and, therefore, by imaging the optical density, we will obtain the spatial distribution of the
wave function of the atomic cloud.

Experimentally, the intensity distribution will not be uniform and, therefore, a simple
logarithm of I (x, y) will not give the desired information. A more general form of the
transmitted intensity is [209]:

I (x, y) = I0
(︁
P (x, y)e−OD(x,y) +S(x, y)

)︁+N (x, y), (5.11)

where P is the normalized beam profile in the object plane, S is the light scattered after the
object plane, and N is the external background light. Therefore, if we acquire an image of the
same beam, but without the atoms,

I2(x, y) = I0
(︁
P (x, y)+S(x, y)

)︁+N (x, y) (5.12)

and another of the background
I3(x, y) = N (x, y) (5.13)

we can calculate the optical density, by supposing S small,

OD(x, y) =− ln
I (x, y)− I3(x, y)

I2(x, y)− I3(x, y)
. (5.14)
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Table 5.1.: Technical data for the asphere [211] and meniscus [212] lenses in the objective.

Asphere Meniscus

Diameter mm 40.000+0.000
−0.025 30.0±0.1

Clear aperture mm 39.00 >27
Centre thickness mm 14.7±0.1 2.40±0.05
Coating 600 nm–1050 nm Uncoated
Material N-SF5 (Schott) UVFS
Producer Edmunds Optics Inc. Fuzhou Solid Photon
Catalogue number 16-986 Custom

While the performance of the imaging system should theoretically be the same for each shot,
it is nevertheless important to remark that the optical density obtained in (5.14) is accurate as
long as there are no external vibrations, which shift P , S and N and cause additional noise
in the optical density image. Therefore, mechanical vibrations shall be reduced as much as
practically possible, and, with high magnification imaging systems such as the one described
in this chapter, a way of reducing this noise may also be needed, as we will see in Section 5.5.

5.2. Design
The high-resolution objective to be used in this experiment had been previously designed [208]:
the design characteristics will be briefly summarized in Subsection 5.2.1. Due to the fact that
the tube occupies a space in which the MOT beam also passes, a scheme for the compensation
of the objective is needed: we will talk about this scheme in Subsection 5.2.2

5.2.1. Description of the objective
The objective is composed of two lenses: an asphere and a meniscus. The aspheric lens is an
Edmunds plano-convex lens, with a numerical aperture of 0.5 and an effective focal length of
40 mm. The meniscus is a custom ordered Solid lens, it has a focal length of 1000 mm and a
diameter of 30 mm, and its purpose is the compensation of the glass of the vacuum chamber
viewport. More technical data on the objective can be found in Table 5.1. A technical drawing
of the objective, showing the lenses and the tube, is shown in Figure 5.1

The objective tube has a diameter of 53 mm: this was chosen in order to fit inside the
internal hole of the housing of the magnetic coils; similarly, its free length (84 mm) was chosen
as to be able to clear completely the height of said housing while the objective rests on the
vacuum chamber window.

The objective body and the retaining ring for the aspheric lens are made of polyether ether
ketone (PEEK) plastic: this material was selected both for its excellent mechanical stability
properties, and for its lack of magnetism. The spacer ring is made of machined aluminium, in
order to ensure the best possible dimensional tolerances: while aluminium is not completely
amagnetic, its effects on the atoms consist of the introduction of a spurious magnetic field,
which however can be eliminated by appropriately setting our compensation coils, and of a
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reduced efficiency of the atomic transfer at low magnetic fields of around 5 G–10 G, which
however can be compensated by transferring the atoms at higher fields (72.8 G, see Section 3.3).

The optical system formed by the viewport, the meniscus, and the objective lens was
simulated with ray tracing software [208]. These simulations give some figures of merit with
which the optical performance of a system can be characterized.

The most used and usually most relevant figure of merit is the resolution, which is the
minimum distance between two point-like sources to be distinguishable. Due to the wave
nature of electromagnetic radiation (in the regimes relevant to our discourse), the image of
a point-like object is not another point, but rather a diffraction pattern: for a perfect system
with radial symmetry, this pattern is given by an Airy function. The most common definition
of resolution, called Rayleigh’s criterion, prescribes that two points are resolved when the peak
of one point is on the minimum of the other; from this, we can obtain the formula for the
resolution of an optical system [213]:

δ= 1.22
λ

NA
, (5.15)

where λ is the wavelength of the imaging light and NA is the numerical aperture

NA = n sin(θ), (5.16)

with n the refractive index of the propagation medium, and θ the maximum acceptance angle
for an object at the focal length. For a non perfect imaging system, the function will, in general,
be different from an Airy pattern; the intensity distribution of the image of a point-like object
is called the point-spread function (PSF) of the system.

A second metric, closely related to the PSF, is the Strehl ratio. This is defined as the fraction
of the light that falls inside the central maximum of the PSF, and can be used to measure
aberrations. This is because the Strehl ratio can be related to the RMS value of the difference
between the ideal and the real wave fronts on the surface of the optical system, σφ [214]:

SR = e−σ
2
φ (5.17)

An optical system is considered, by convention, diffraction limited if SR≳ 0.8. The PSF and
SR are usually given for the point in the image plane which intersects the optical axis. If we,
instead, calculate the SR as a function of the distance r from the optical axis, we can define
the diffraction limited field of view as

rfov = min{r s.t. SR(r ) ≤ 0.8} . (5.18)

Another relevant figure of merit is the cutoff frequency. Due to the finite resolution we
mention above, we can think of any optical system as a filter: we can think of the PSF as the
impulse response function of the system. Due to the linearity of the optical system (in the far
field), we can write the output intensity Io as the convolution between the PSF and the input
intensity Ii [213]:

Io(x, y) ∝
∫︂ ⃓⃓

PSF(x −x ′, y − y ′)
⃓⃓

Ii(x ′, y ′)dx dy. (5.19)
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Figure 5.1.: High resolution imaging system: view of the objective inside the apparatus
(a), technical drawing of the objective (b), and (simplified) optical scheme (c) in the 10×
configuration. The objective is in the vertical direction, which allows to be closer to the atoms
due to the re-entrant viewports. The vertical direction is, however, also the direction of one
of the MOT beams. In order to be able to have two beams in the same direction, a remote
controlled translation stage moves a cage in which a mirror and a 75 mm lens are coaxially
mounted. MOT compensation is treated in more detail in Subsection 5.2.2. In (b) we see
that the objective is composed of two lenses, an asphere with focal length of 40 mm, and a
meniscus with focal length 1000 mm, which is used for compensation of the vacuum chamber
window. As for (c), the image is magnified 10 times before being collected on a CCD. All the
optics are mounted on a breadboard above the vacuum chamber, and parallel to the horizontal
plane; the optical axis is bent 90◦ between the two lenses (not shown in (c)).
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5. High resolution imaging of a Bose-Bose mixture

Table 5.2.: Optical data for the objective, from the simulations in [208]. The depth of field is
an upper bound, and the actual depth of field is lower.

Illumination wavelength

780 nm 766 nm
δ (µm) 1.34 1.32
Effective f (mm) 39.43 39.4
Effective NA 0.3553 0.3551
k0 (lp/mm) 915.1 932.3
On axis SR 0.917 0.914
rFOV (mm) 0.187 0.179
DF (mm) ≪ 0.025

A convolution in the Fourier domain becomes a multiplication, therefore

F[Io] (kx ,ky ) = OTF(kx ,ky )F[Ii] (kx ,ky ), (5.20)

where F[g ] denotes the Fourier transform of g ; from this equation, we can see that the intrinsic
properties of the optical system are completely described by the optical transfer function
(OTF), which is defined as the normalized Fourier transform of the PSF:

OTF(kx ,ky ) = F[PSF ](kx ,ky )∫︁ |PSF (x, y)|2dx dy
. (5.21)

It can be shown [213] that, for coherent light on a circular aperture, the OT F of a perfect
optical system with diameter D , effective focal length f , and imaging wavelength λ is not null
up for frequencies

k =
√︂

k2
x +k2

y ≤ k0 = D

2λ f
, (5.22)

which defines the cutoff frequency k0. The cutoff frequency is generally measured in lp/mm
(line-pairs per mm); a line-pair is defined in object space as two rising edges from maximum
to minimum light intensity (or vice-versa), therefore 1lp/mm = 2mm−1.

Finally, one last parameter is the depth of field (DF), which is the maximum distance that an
object can be from the focal plane in order to be acceptably focused.

The figures of merit here defined, taken from the simulations in [208], are reported in
Table 5.2. From there, we can see that the objective performs reasonably well within the target
resolution of 1 µm–2 µm, which is the expected size of a double BEC well within the MF
collapse regime (see Section 5.5). We can also remark that the objective is diffraction limited,
having an SR above 0.9. It is also important to notice that there is significant chromatic
aberration: the distance between the focal plane for K and for Rb is of 20 µm, which is more
than the depth of field, and which will have to be compensated (see Section 5.5 for more
details).

After the objective, a second lens acts as a tube lens, as we can see from Figure 5.1c. This
second lens is a f = 400mm, D = 50.8mm from Thorlabs,* which grants a total magnification

*Catalogue number LA1725-B.
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factor of 10. The (linear) pixel size of the CCD used† is 16 µm [215], and, therefore, a pixel in
the object plane would cover 1.6 µm. In order to improve pixel usage, a second telescope with
magnification 2 was later mounted with its object plane on the image plane of the tube lens.

5.2.2. MOT compensation
As we can see from Figure 5.1a, the objective is in the path of the vertical MOT beam coming
from above, and would be focalized on the atomic sample, were it not for some kind of
objective compensation.‡

Whereas the design of the objective lens needs specialized software, ray tracing the system
needed for MOT compensation is much easier, using matrix optics. This kind of treatment of
optical systems is valid in the paraxial approximation: for a ray of light coming at an angle
θ with the optical axis, the paraxial approximation is sin(θ) ≈ θ, which is valid in the θ≪ 1
regime (paraxial condition).

Here, we can represent a ray of light as a vector [216](︃
y
θ

)︃
, (5.23)

where theta is the aforementioned angle, and y is the ray’s height from the optical axis. The
action of a single optical element on the ray is then represented by a 2×2 (real) matrix, and
the whole system will then be represented by the product of the matrices representing the
optical elements.

For this design, we will need only two matrices: the translation matrix, representing empty
space between two elements,

T (d) =
(︃
1 d
0 1

)︃
, (5.24)

and the thin lens matrix

L( f ) =
(︃

1 0
−1/ f 0

)︃
(5.25)

After some preliminary trials, we concluded that a three lens configuration, with f1 =−1000 mm,
f2 =75 mm, and f3 =40 mm as the respective focal lenses, could provide a good compensation,
while keeping at a minimum the number of optical elements needed. The total transfer matrix
for this system will then be:

M = T (d3)L( f3)T (d2)L( f2)T (d1)L( f1); (5.26)

in writing this, we have neglected both the viewport and the compensation meniscus.
As we are interested in keeping the beam as similar as possible to the input MOT beam, we

will look at magnification

my = yout

yin
(5.27)

†Andor (Oxford Instruments), iXon Ultra 897 EMCCD.
‡As mentioned in Section 3.1, each the MOT beams are not made from a single retroreflected beam, but by

two independent beams. In this case, the vertical MOT beam coming from below has already interacted with the
atoms, and therefore does not need any compensation.
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5. High resolution imaging of a Bose-Bose mixture

and beam divergence
mθ = θout −θin; (5.28)

we are interested in making the former as close as possible to 1, and the latter as close as
possible to 0. In order to do so, we define d3 =80 mm, in order to account for the travel
through the vacuum chamber and have a reasonable safety factor. We will then find the
optimal distances d1 and d2 by solving the optimization problem

min f (d1,d2) (5.29)

800mm ≤ d1 ≤ 1000mm (5.30)

130mm ≤ d2 ≤ 150mm (5.31)

1000mm ≤ d1 +d2 ≤ 1100mm, (5.32)

where the target function is either
fy = (my −1)2 (5.33)

to find the parameters that correspond to the best magnification, or

fθ = (mθ mod 2π)2 (5.34)

to find those that give the best divergence. The constraints are given by the mechanical
dimensions of the apparatus.

Solving the problem,§ we find that the optimal parameters for fy are d1 =870 mm and
d2 =130 mm, while for fm they are d1 =950 mm and d2 =150 mm. These values are at the
extremes of the acceptable region, so we try to find another optimum for fθ inside the region;
this also gives a compromise between the two functions. We find it at d 1 =908 mm and
d 2 =134 mm; we will use this point for further characterization of the compensation system.
These results are summarized in Figure 5.2.

We then proceed to ray trace the system, using the parameters found so far. The input
beam is collimated, and has a diameter of 25 mm, as this is the diameter of the λ/4 wave plate
that sets the MOT beam polarization. The results of this ray tracing can be seen in Figure 5.3.
The magnification and divergence give acceptable results, with |my | ≈ 1.4 and mθ ≈ 0◦.

However, the beam is cut at the last lens (we consider its diameter as the diameter of the
objective entrance): the beam radius is 1.34 mm too big. To see if this loss is acceptable, we
put an iris on the path of the MOT beam which will be affected, and progressively close it:
we find that the MOT is well within acceptability limits for apertures higher than 13 mm,
concluding therefore that the restriction due to the objective entrance aperture does not
preclude a successful compensation with this scheme.

In order to switch between the probe and the MOT compensation, we will have to move the
75 mm lens and the MOT mirror (see Figure 5.1) out of the way after the MOT. This is done
by mounting both the lens and the mirror on a coaxial mount, and by placing this mount on a
translating stage, ¶ which can then be toggled between the MOT and the probe position by a
TTL signal from our control system.

§The solution is found the constrained optimization routines of the Scipy Python package [203], using a
constrained trust-region algorithm [217].

¶Thorlabs DDS100/M linear direct-drive translation stage.
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Figure 5.2.: Optimization of the MOT compensation scheme. The contour plot represents
the length of the vector (my ,mθ), and the shaded area the region for which the constraints are
valid. Three points are also included, corresponding to the minimum of fy , the minimum of
fθ, and a compromise point in between.

5.3. Objective performance
In order to evaluate the actual performance of the objective, we will have to acquire its PSF
and MTF. We have mounted to this purpose the objective on a test bench, with an optical
setup identical to that used in Figure 5.1. More specifically, the same lenses as those used in
the final setup of the optical system, in its 10x configuration, have been used for this test, and
a glass window, equivalent to those used for the vacuum chamber, was put between target and
objective, to simulate the effects of the viewport. The illumination was provided by a 780 nm
ECDL.

The evaluation of the MTF is usually done by imaging a standard pattern, known as the
1951 USAF resolution test chart [218]. This test chart is made of three-line elements, repeated
in a horizontal and vertical orientation, and labelled with a number from 1 to 6; they are
further collected into groups of six, each in turn also designated with a number. The spatial
frequency k, in lp/mm, for the element e of the group g , is

log2 k = g + e −1

6
. (5.35)
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5. High resolution imaging of a Bose-Bose mixture

Figure 5.3.: Optical scheme for the MOT compensation. The orange line represents the
ray tracing of a marginal ray, going from the left to the right. We can see that this system
preserves collimation to a good degree, and that the magnification is close to 1. On the last
lens (corresponding to the objective), we see that the laser beam is cut by the aperture of the
objective, but the reduction in diameter is still within a value amenable to the MOT.

Figure 5.4.: Image of the USAF 1951 resolution chart, acquired using a test assembly of the
high-resolution imaging system. The visible groups in this image are group 6 and 7, the
smallest present in the target at our disposal. We can see that both horizontal and vertical
lines in the sixth element of the seventh group are clearly visible. The performance of the
optical system is therefore sufficient to image frequencies up to, at least, 228 lp/mm.
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Figure 5.5.: Image of a pinhole with diameter of 1 µm. This image well approximates the PSF.
In the left and upper panels, we can see the slices of the image passing through the centre,
also indicated by the dashed line of the corresponding colour in the intensity image. The
gray continuous line is the result of the fit of the respective image slice, with the waist and its
width indicated. The two measured waists are 1.71 µm±0.03 µm and 1.56 µm±0.02 µm in the
horizontal and vertical directions, respectively. Their difference indicates a slight astigmatism
of the optical system. The theoretical waist from the simulated PSF is 1.52 µm, which indicates
agreement with the vertical waist, and a small (13%) discrepancy with the horizontal waist.

It is then possible, by visual inspection of the resulting image, to have some rough indication
of the capabilities of the optical system at the spatial frequency of the observed element.

The image of the sixth and seventh groups of a test target is shown in Figure 5.4. From
there, we can see that, in the smallest element of the group seven, the lines are visible in
both directions, and that means that the optical system performs to specification, at least up
to 228 lp/mm. From the test target, we can also see that the effect of fringing, due to the
coherence of the optical source, has an impact on image quality, particularly in the vicinity
of optical defects. This is a known problem for imaging with lasers, and solutions have been
proposed to obviate it [219]; however, due to the additional technical complexity and the
limited quantity of light available for the probe beam, we decided against implementing such a
measure, and therefore it was not tested.

The PSF instead is well approximated by imaging an object whose size is below the expected
resolution. We tested the resolution of the imaging by projecting a pinhole with a diameter
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5. High resolution imaging of a Bose-Bose mixture

of 1 µm; the image of this pinhole can be seen in Figure 5.5. In order to extract quantitative
information, we took a slice of the image, passing through its centre, and fitted it with a
Gaussian function; this was done for each of the two directions. The obtained values for the
waists, in pixels, are then divided by the magnification factor of 10, and multiplied by the pixel
size of the camera used for the acquisition, of 6.7 µm. This gives us waists of 1.56 µm±0.02 µm
for the vertical direction, and 1.71 µm±0.03 µm for the horizontal direction.‖ The same value,
extracted by fitting the same function to the simulation PSF, is 1.52 µm [208], so in the
horizontal direction the agreement is good, while in the vertical direction there is a 13%
discrepancy. This difference in values could indicate an astigmatism either of the objective in
itself, or a slight misalignment of the optical system; either way, such a discrepancy is to be
expected in any optical system.

We also tested the dispersive characteristics of the objective. For this purpose, we recorded
the distance between the focal points of the 1 µm pinhole with two wavelengths: 780 nm, and
635 nm. We find that the focus is displaced by 2.18 µmnm−1, which would give 30.5 µm as
the distance between the foci for K and Rb.

Due to the performance of the objective within our design targets, we decided to mount it
on the apparatus.

5.3.1. Magnification calibration
To have a reliable estimate of the condensate size, the actual magnification of the imaging
system, as mounted on the apparatus, has to be assessed.

In order to achieve this, we use a method with two separate calibrations. First, we calibrate
the pixel size of our frontal imaging, and, then, we do a series of fixed translations of a Rb
condensate, and image the results in the two directions. By comparing the slopes of the two,
we get the wanted magnification.

The calibration of the frontal imaging is made by acquiring the ballistic fall path of a Rb
BEC. We then fit the position as a function of time with a second degree polynomial, and
compare the second degree term (divided by 2) with the standard acceleration of gravity [220];
we obtain a pixel size in object space of 3.8 µm. This value agrees with previous calibrations
of the pixel size done in the same way.

We then proceed to move the condensate in the vacuum chamber by using the compensation
coils. We know that, in order to move the condensate on a line perpendicular to the dimple
beam, and lying on the horizontal plane, the current in the compensation coils named x and
y have to be changed by the same quantity, but with opposite signs [221]. We move the coils
with current magnitudes varying from 80 mA to 200 mA. For each current value, we acquire
the position of the centre of mass of the condensate for both the vertical and the horizontal
imaging. The positions of the centres of mass are then fitted, as a function of the coil current,
with a line.

In Figure 5.6 we can see the results of this calibration. The slope for the frontal imaging
is 361 px/A±2 px/A, while that of the vertical imaging is 914 px/A±1 px/A, giving a relative
magnification of 2.53± 0.02. This means that, for a pixel size in the object plane of the

‖The uncertainties are taken from the covariance matrix calculated from the fit Hessian; the σ on each pixel
value is specified as the square root of the pixel intensity, supposing a counting statistic.
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Figure 5.6.: Displacement of the centre of mass of the condensate, as a function of the
current in the compensation coils. The blue circles represent the data acquired from the
frontal imaging, and the orange circles the data acquired with the vertical imaging; the solid
lines represent the fitted calibrations. The zero of the displacement is arbitrarily chosen at
the midpoint of the current excursion; this does not influence the analysis, which is done by
comparing the slopes only.

frontal imaging of 3.8 µm, we have a pixel size in the object plane of the vertical imaging of
1.50 µm±0.01 µm.

Given that, as mentioned before, the camera used for the high-resolution imaging has a
pixel size of 16 µm [215], we have an effective magnification of 10.7, which is compatible with
the design value of 10.

5.4. High-field imaging
Given that we want to image the dynamics of the mixture, we have to do the imaging in the
closest possible conditions to those in which the dynamics happens, without any possible
disturbance that may be induced by the switching off of the fields. This includes the switching
off of the magnetic fields, and implies the necessity of doing imaging at magnetic fields of
around 70 G, whereas usually our TOF imaging is done at 0 G.

The first step is finding one or more suitable transitions on which to probe the condensates.
We start by finding the energy difference between the ground state 2S1/2, F = 1,mF = 1, and the
excited manifold 2P3/2; this can be done by finding the eigenvalues of the Zeeman Hamiltonian

H = Hhfs −µ ·B , (5.36)

The quantization axis is chosen along the z axis (which would correspond to the symmetry
axis of the Feshbach coils in the apparatus); as such, the symmetry is cylindrical along this

81



5. High resolution imaging of a Bose-Bose mixture

Figure 5.7.: Allowed transitions from the F = 1,mF = 1 2S1/2 to the 2P3/2 for 41K and 87Rb,
as a function of the external magnetic field. The line styles represent the polarization of the
transition, assuming the probe beam to be along the quantization axis.

axis, and the Hamiltonian commutes with the z component of F :

[H ,Fz ] = 0. (5.37)

The Hamiltonian is thus block-diagonal, with each block corresponding to an eigenvalue M of
Fz . While F is not a good quantum number for every field strength, we will use it to label the
transitions, understanding that we are referring to the level which is adiabatically connected
to the corresponding state in the low-field limit. The strength of the transition, instead, is
given by the square modulus of the matrix elements, in the same basis, of the optical dipole
Hamiltonian

Hopt =−d ·E . (5.38)

A more detailed treatment of these calculations, along with the numerical codes employed, is
found in Appendix A.

The detunings from the repumper transition, as a function of the magnetic field, are shown
in Figure 5.7; the strengths of the corresponding transitions are shown in Figure 5.8. For
K, there are three conveniently located transitions: a π-polarized transition, which is almost
constant with magnetic field, a σ− transition roughly 10 MHz above, and a σ+ transition
130 MHz below; due to the probe beam being along the polarization axis, the π transition is
not visible. For rubidium, instead, the only reachable transitions are the σ− and π that start
from the F ′ = 1 state; as with K, the π transition cannot be used.

For K, we searched for the transitions by imaging the K condensate alone at 0 G, for
reference, and at 67.2 G, looking for peaks of the detected optical density. The F ′ = 0 transition
strength impedes a good imaging of the condensate clouds at high densities: the dimensions
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Figure 5.8.: Relative strengths for the imaging transitions, which are optical dipole transitions
starting from the hyperfine ground state F = 1,mF = 1, as a function of the external magnetic
field. The probabilities are normalized in order to have strength 1 for the σ+, F ′ = 2 transition.

of this condensate at 67.2 G are higher than those of condensates of the same species imaged
at 0 G: fitting with a Gaussian, the former had a σ̄=⎷

σxσy of approximately 13 µm, while
the latter of 8 µm; we also found that decreasing the imaging pulse length, from 151 µs to
51 µs, does not significantly change the sigmas. Therefore, we turned to the weaker F ′ = 1 σ−

transition. Here, aided by a further reduction of the imaging pulse to 30 µs, we were able to
see a σ̄ of around 5 µm at 67.2 G.

Due to the fact that Rb imaging is usually perturbed by the K imaging being done before,
and by the fact that between the two images a minimum of 2 ms has to pass in order for the
Rb condensate to fall into the focal plane of the objective, we are able to image the Rb atoms
at zero field, and we are therefore not concerned with the frequency of the transition because,
as we can see in Figure 5.7, there are three degenerate transitions at that field strength. In
order to avoid saturation effects, as seen with K, we do only a repumper pulse of 11 µs.

83



5. High resolution imaging of a Bose-Bose mixture

Figure 5.9.: High-resolution absorption image of the mixture in the beyond-mean-field
collapse regime. The interspecies scattering length is a12 =−85a0, and the two condensates
have approximately the same number of atoms (≈ 403). The K condensate is imaged in situ at
67 G, while the Rb condensate is imaged after 2 ms TOF, with the field turned off.

5.5. In situ images of a Bose-Bose mixture
We proceed to image the mixture with the high-resolution setup developed thus far. We
produce the double condensate in the F = 1,mF = 1 state, using the procedure explained
in Chapter 3, and we tune the interspecies interactions to −85a0, well below the mean-
field-collapse threshold, and aim to have an approximately balanced number of atoms,
NK ≈ NRb ≈ 40×103. The trap frequencies are 2π×(65,190,179) Hz for K and 2π×(48,138,131)
Hz for Rb, in the x, y , and z directions respectively.

The image of the double BEC can be seen in Figure 5.9, where the K is imaged in situ
at 67 G, and the Rb after 2 ms TOF, at zero magnetic field, and using only the repumper
light. The image is then subjected to a noise removal algorithm, which is reported briefly in
Appendix B. We can check that the resolution is as expected by fitting the image of the K
cloud with a Gaussian, and comparing it with the numerically simulated distribution. We find
that the transversal and longitudinal sigmas from the experimental image are, respectively,
σt =1.2 µm and σl =2.2 µm, which are in good agreement with the predicted values σt =1 µm
and σl =2 µm[222].

After this confirmation that the imaging system is in good order and performs as predicted,
we proceed to add a further telescope after the first one; the two lenses of which it is composed
have focal length 100 mm and 200 mm, in order to have an additional magnification factor of
2. We calibrate the effective magnification as detailed above, obtaining a pixel size of 0.8 µm
in object space.

Finally, we prepare the mixture in a quantum droplet state, and image it. The droplet
preparation procedure starts with two non interacting condensates, whose trap frequencies are
analogous to those used for the attractive mixture image (Figure 5.9), and with atom numbers
of the order of 3×104 for K and 1×105 for Rb. Then, we linearly ramp the Feshbach field,

84



5.5. In situ images of a Bose-Bose mixture

(a) (b)

Figure 5.10.: High-resolution image of a quantum droplet (a), and geometric average of
droplet σ during waveguide evolution (b). The droplet is imaged after 30 ms of waveguide
evolution; in the marginal axes we can see the data of an image slice along the Gaussian centre
(grey dots), along with a slice of the corresponding Gaussian fit (blue lines). These states do
not expand during their waveguide evolution, as can be seen in (b), where we have the blue
dots as the average of the geometric mean of σx and σy for various realizations of quantum
droplets; a dotted grey line represents the overall mean size.

bringing the scattering length a12 down to −66 a0 in 20 ms, and then further to −89 a0 in
10 ms. Afterwards, we ramp down the dimple beam to 0 W in 10 ms, reaching trap frequencies
of 2π× (2,116,153)Hz for K and 2π× (1,85,112)Hz for Rb. From there, we let the droplet
expand in the waveguide for a variable time between 20 ms and 35 ms, and then we image the
condensate with the same pulse sequence as was used for obtaining Figure 5.9.

We can see an image of the K condensate in a localized state, after 30 ms of waveguide
expansion, in Figure 5.10a; fitting this image with a Gaussian, we obtain a σx =1.2 µm and
σy =1.3 µm. It is worth noting that the state is self bound, as there is no size change during
the waveguide evolution up to 35 ms, where the droplet begins to vanish, probably because
of three-body losses, as can be seen in Figure 5.10b. While this is not the final step in the
characterization of a droplet state in the waveguide, as an expansion sequence would have to
be taken for various scattering lengths to ensure the proper dependency of the condensate
size on the interspecies interactions, it is nevertheless possible to conclude that this imaging
system is adequate in imaging droplet-sized objects.
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6

Characterization of a Digital
Micromirror Device

In this Chapter, I will summarize the work done during my internship, from January to
April 2023, in the Quantum Gases Experiment group of Prof. Leticia Tarruell at ICFO - The
Institute of Photonic Sciences. The aim of this period was to characterize a Digital Micromirror
Device (DMD), which is a device capable of modulating light, in order to create an arbitrary
intensity profile; moreover, this intensity profile can be changed in real time, allowing the
implementation of dynamical potentials. Due to its high flexibility, generation of atomic optical
potentials with a DMD is rapidly gaining traction within the quantum gases community.

More specifically, I evaluated the characteristics of a Vialux V-9501 DMD, and its suitability
for the 39K experiment, where it would be used for the aforementioned generation of arbitrary
optical potentials.

The chapter is structured as follows: Section 6.1 is devoted to the explanation of the optical
setup of the imaging apparatus in which the DMD has been used. We will then pass on in
Section 6.2 to the procedures used for calibration of the DMD image, and the compensation of
the image defects. Finally, in Section 6.3, I will give an account of some of the more relevant
performance measures of the DMD.

6.1. DMD Setup
In Figure 6.1 the DMD setup is shown. It is composed of two main parts: an illumination
assembly, before the DMD, and an imaging assembly after it.

The illumination assembly sources the light from a 767 nm ECDL (not shown in the figure),
which is then injected into an optical fibre and transported to the output coupler shown
in figure. The output polarization is cleaned by a combination of a half-wave plate and a
polarizing beam splitter. A small fraction is then diverted by a beam sampler and directed to a
photodiode; the signal of this photodiode is connected to a PID controller, whose output is in
turn connected to the current modulation input of the laser controller: in this way, the current
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Figure 6.1.: Optical scheme of the DMD setup. The illumination is provided by a laser
module (not shown); the diode current of the laser is modulated by the output of the PID
controller to ensure a constant output power.

can be slightly adjusted around its nominal set point to ensure a constant power output for
the illumination assembly. The output power with this stabilization was (measuring after the
coupler) of around 19 mW. Afterwards, the beam goes onto a neutral density (ND) filter, with
an OD of 3: this was deemed necessary as the unattenuated beam is adequate for aligning the
system with the aid of an IR visor, but would saturate the imaging camera,* even at its lowest
exposure time. Afterwards, the beam is magnified by a factor of 4 using a telescope; the beam
is big enough to cover a good fraction of the DMD active area, but, at the same time, the
amount of light spilling out of this area is minimized.

The laser beam then encounters the DMD,† which is a chip made of a square array of small
(7.56 µm) mirrors. Each of these mirror is hinged about its diagonal, and can be oriented in
one of two positions, with an angle of, respectively, 12◦ or −12◦ with respect to the chip plane,
enabling thus a selective reflection of an incoming beam. By placing the outgoing optical path
onto one of these two directions, we can shape the beam with arbitrary intensity profiles; the
only limit to this is the discrete spatial distribution and state (on or off) of the mirrors.

Being composed of multiple mirrors at an angle, the DMD surface acts as a diffraction
grating, it is therefore necessary to orient the DMD in a specific direction, with respect to
the incoming beam, to achieve a good diffraction efficiency. We see an illustration of this in
Figure 6.2a, where we also define the angles that will be used in the following paragraph: we
use θi and θr to describe the angle, respectively, of the incoming and reflected ray with respect

*FLIR Blackfly S BFS-U3-16S2M-CS USB.
†The chip on the tested device is a DLP9500 from Texas Instruments [223].
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Figure 6.2.: Angle definitions (a) and optimal orientation (b) for the DMD orientation. In
(a), the mirrors are shown at α= 12◦ from the DMD plane, meaning that they are in the on
direction; in the off direction, they would sit at −12◦. In (b), the two circlets highlight the
optimal incident angle θ∗i and its corresponding reflection angle θ∗r .

to the normal to the DMD surface, and φi and φr to denote those same angles with respect to
the mirror normal. The maximum of the diffraction efficiency is achieved, for the diffraction
order m, when the diffracted angle is equal to the reflected angle [224], satisfying the blazing
condition:

φr =φm =−φi, (6.1)

which, translated to the DMD plane, means that

θr = θm =−θi −2α. (6.2)

The grating equation gives an expression for θm :

sin(θm)+ sin(θi) = mλ

a
, (6.3)

where λ is the wavelength, and a is the pitch of the grating (i.e. the mirror diagonal, 10.7 µm);
this equation can be inverted, giving

θm = arcsin

(︃
sin(θi)− mλ

a

)︃
, (6.4)

89



6. Characterization of a Digital Micromirror Device

which, in turn, can be recast as a constraint equation for θi:

θi +2α+arcsin

(︃
sin(θi)− mλ

a

)︃
= 0. (6.5)

Equation (6.5) can be solved numerically for m = −1, · · · ,5, the solutions are shown in
Figure 6.2b. We see that, for increasing |m|, the two angles are closer both to each other,
and to the DMD normal. We select the −5 diffraction order, to minimize the reflection angle
and thus defocusing aberrations: for this order, the optimal angles are θ∗i = 44◦ and θi = 19◦.
The DMD is mounted on a goniometric stage, which enables precise rotation; by setting
the rotation to the optimal angle, and then adding a slight rotation, we achieve the blazing
condition. In this configuration, the total reflection efficiency in the selected order is 30%.

The imaging assembly comes after the DMD, and its purpose is to image the density
distribution into the camera—or, in the final configuration, on the atomic plane. First,
a diffraction order is selected using a slit; then, after two steering mirrors, the beam is
demagnified by a telescope: this telescope is formed by two achromatic lenses, the first with a
focal length of 200 mm, and the second an aspheric lens with a focal length 50 mm, which is
of the same type as the one that will be eventually used in the apparatus, for a demagnification
factor of 4. At the focal point of the first lens, there is an iris, whose aperture can be modified
to filter the high frequencies of the projected image. Finally, the picture is collected by a
camera, for subsequent analysis.

6.2. Image calibration and optimization
After projection, the final image is rarely as intended. Completely counteracting these defects
is normally done with holographic techniques, in which the Fourier transform of the desired
pattern is projected, and the imaging is done on the conjugate Fourier plane of the DMD
with the aid of an additional lens [225]. There are, however, other techniques, more readily
implemented with our direct imaging setup [226, 227], which we will implement here: we will
show a geometric calibration technique, to counteract rotations and magnifications, and an
intensity optimization technique, to counteract the varying intensity of the illumination beam.

6.2.1. Geometric calibration
The DMD mirrors hinge about one of their diagonals: because of this, in order to have the
illumination beam and the projection beam aligned on the same plane, the DMD needs to
be rotated by 45◦. While this bears no prejudice on the optical performance of the system,
every image projected with the DMD will be rotated by the same amount. Another, and more
serious, defect introduced by the imaging setup after is the stretching of the image: this is due
to both an intrinsic component, due to the focal ratio of our setup, and to aberrations: those
two introduce, respectively, a common magnification to both axes belonging to the object
plane, and a differential amount for the two.‡ Another critical unwanted transformation is

‡Our setup was intended for test purposes, hence the placement of the camera after the first telescope. A final
setup for mounting on the experiment would have greater demagnification, and, if present, another telescope after

90



6.2. Image calibration and optimization

Figure 6.3.: Geometric calibration of the DMD. The first image on the left is the projected
image, with the three alignment dots labeled. The second is the uncalibrated output image,
where the three alignment dots have been detected and classified. On the right we have a
picture of the input image, after passing through the calibration procedure.

shearing, where one of the image axes is rotated with respect to the other. Finally, the image
centre will, in general, be off-centred with respect to the centre of the camera.

The general combination of a translation, a shear, and a (generally inhomogeneous) magni-
fication is called an affine transformation. In two dimensions, an affine transformation of a
point x can be represented by a matrix(︃

x ′

1

)︃
=

(︃
A b
0 1

)︃(︃
x
1

)︃
, (6.6)

where b is the translation vector, and A is a 2×2 matrix representing the other transformations.
We suppose that our system will impart an affine transformation M on the projected image;
therefore, transforming the image with M−1 prior to the projection will counteract those
defects, giving as output our desired image.

In order to fully specify M , we need the image through the transformation of three distinct
points. For this purpose, we synthesize an image with three dots in an inverted "L" shape, with
decreasing intensities. Then, we acquire the image of those three dots, and find the centres of
the dots using the DAOFIND algorithm [228]; then each dot is paired to its corresponding
input by matching the relative intensities. Having the coordinates, the affine transform is
found using the getAffineTransform function from the OpenCV library [229]: this outputs
the (A|b) matrix, which can subsequently be inverted and used to transform the input image
using either the warpAffine function from OpenCV, or by manually implementing (6.6). We
can see the three aforementioned steps in Figure 6.3, in which we show the input image, the
uncalibrated output, with the dots classified, and the same image after calibration.

the atomic plane for imaging the projected intensity pattern. As such, the common magnification component can
be virtually eliminated, leaving for correction just the differential amount.
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6. Characterization of a Digital Micromirror Device

6.2.2. PI optimization
After the geometric calibration, a second correction can be done to the image, compensating
for the varying intensity of the illumination beam. For a same input value of, say, 50% intensity,
the actual output value could be higher or lower, depending on illumination intensity. To
counteract this, provided that the target intensity is lower, in the image region, than the lowest
illumination intensity, is to reduce the input intensity where the illumination is brighter.

This is achieved using a PID-like scheme. Suppose we have a target image R : the first step
for this procedure is to set the projection image X0 = R . The difference between the output
Y0 and the target is the error matrix: E0 = R −Y0; we then calculate the next input using the
relations

X j+1 = X j +U j+1 (6.7)

U j+1 = kPE j +kI

j∑︂
l=0

El , (6.8)

where kP and kI are real parameters called, respectively, the proportional and integral gains
of the PID. Afterwards, the procedure can be iterated, until the compensated input image
converges.

For a good performance of this procedure, we need to find the optimal values for kP and kI,
which will result in the lowest possible RMS error after a set number of iterations. We use
an optimization routine base on the differential evolution algorithm [230], which is a global
optimization algorithm; the function to be optimized is the RMS error of the image of a square
with a side of 50 µm after ten PID iterations. The obtained gains are then saved for later use.

This image optimization can achieve a 50% to 75% reduction of the RMS value of E (i.e. the
RMS error) in less than five iterations.

6.3. Characterization
6.3.1. Timing properties
In order to measure the timing properties of the DMD, we used a modified setup, where the
iris in Figure 6.1 was replaced with a photodiode: in this way, we were able to efficiently collect
all of the DMD reflected intensity, which was focalized in a point on the photodiode chip. The
signal can then be visualized and analyzed using an oscilloscope.

First, we measured the frame rate by projecting an alternating sequence of black and white
images, which correspond to all mirrors, respectively, in the on or off position. The maximum
frame rate of 25 kHz was found to be slightly higher than the nominal frame rate of 24 kHz.
We found that the maximum difference between the real and the nominal frame rate was, in
the worst case, 10%; while this could be a problem if higher precision is required, such as in
the case of the generation of a dynamic potential, for this board the frame advancement can
be controlled with an external trigger[231].

Then, we measured the dark time: during projection, there is a transition time between
two images, in which the mirrors are held neither in the on, nor in the off position, but in an
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(a)
(b)

Figure 6.4.: Inverted square, with L =50 µm (a), and effect of the square size on the distribution
of raise lengths (b), as a box plot. In a box plot, the middle line of each box represents the
distribution median, and its limits represent the interquartile ranges. The lines extending
above and below represent the range of points within 1.5 interquartile ranges; points outside
this region are classified as outliers, and displayed singularly.

intermediate parking direction, parallel to the DMD plane (i.e. with α= 0◦). We projected a
sequence of white images, with all the mirrors in the on position; the time with a low signal
between each couple of images is the dark time. While the nominal value for this board is
40 µs, we measured an effective dark time of 17 µs±2 µs. If static or slowly evolving patterns
are needed, this dark time could be ignored; nevertheless, the device can be operated in an
uninterrupted mode [231], in which the dark time is reduced to zero. The only disadvantage
of the uninterrupted mode is the impossibility of obtaining grey tones on a single pixel by
modulating its duty cycle, but this modulation could actually be detrimental in a cold atoms
experiment, where noise in the potential could heat the atomic sample: therefore, there are no
net drawbacks to the employment of the uninterrupted mode.

6.3.2. Sharpness
Another important feature of the imaging system is the sharpness of the image, which we
define as the transition length of the optical system, given a step-type input

u(x) =
{︄

I0 if x ≥ 0

0 otherwise
; (6.9)

this transition length is dictated by the optical transfer function. It is also worth noting that,
while in the case of incoherent illumination we expect an image of a step-type object as a
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6. Characterization of a Digital Micromirror Device

smoothed out version of u, for coherent illumination we have a sinusoidal oscillation in the
bright part [213].

In order to measure sharpness, images of a square

s(x, y) =
{︄

I0 if 0 ≤ |x| ≤ L/2∧0 ≤ |y | ≤ L/2

0 otherwise
(6.10)

and of an inverted square q(x, y) = I0 − s(x, y) were projected, with I0 set to half the maximum
illumination intensity (acquired with a white image), and L ranging from 31.1 µm to 117.4 µm.
This was done to evaluate if the sharpness is lower for smaller squares. The images, after
being acquired by the camera, were analyzed by finding the width of the edges, which is
defined as the distance between the last pixel at 90%I0 and the first at 10%I0.§ A box plot of
the distributions can be found in Figure 6.4b: as we can see from the image, we found no
significant trends in the data. Combining all data, we get a mean edge width of 5.5 µm, with
a standard deviation of 3.6 µm; the distribution has a median of 4.6 µm and an interquartile
range of 5.2 µm.

6.3.3. Residual light
In the case of a repulsive potential, the amount of residual light in the dark area is a relevant
characteristic of the system. To characterize it, we acquire the distribution of the intensity in
the dark area of the inverted squares acquired in the previous subsection; from the nominal
dark area we subtract a region of 3 px around the edge centre (in its steep direction), to exclude
the roughness due to the square border. This data is plotted in Figure 6.5a; we can see that,
after the smallest square, for which the residual light is visibly higher, for the others we have a
slightly decreasing function of square size.

As we are interested in lowering this residual light, we tried to see if lower values of image
intensity would reduce the amount of light scattered into the dark region. For this purpose,
we projected a square with L =75 µm (where the effect of the square size on the residual
light begins to taper off) at various image intensities, from 20 to 180 on a maximum of 255,
and measured the residual light intensity as done before. The data is shown in Figure 6.5b:
there, we see that, for lower intensities, the amount of light scattered into the dark region,
peak-to-peak, is half the peak-to-peak value of the light scattered for higher intensities (80 or
more). We can then say that, in order to reduce the amount of scattered light by a factor of
two, we have to reduce the intensity of the image by a factor of four; this trade-off between
power and roughness has to be evaluated for each specific situation.

6.3.4. Filtering
In the setup, an iris is put in the focal plane of the first imaging telescope lens to give the
ability of filtering the high-frequency components of the image. This filters the corresponding
noise in the image, but, at the same time, lowers sharpness: our aim here is to find the response
of those two quantities for various diameters of the iris.

§In this definition, we assume that the edge direction is from the bright zone to the dark zone.
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(a)
(b)

Figure 6.5.: Violin plots of residual light intensities for (a) different square sizes, and (b) for
different illumination intensities. The width of the area represent the probability density of
the observed distribution, estimated with the kernel density estimation (KDE) technique [232,
233]. Superimposed on this, we also show each observation as a translucent black dot (i.e.,
blacker areas correspond to more observation where they would otherwise overlap).¶ It is
worth noting the low number of observations for L = 31µm, which would necessitate some
caution in reaching conclusions based on that data point alone; nevertheless, it can be seen
that the trend of increasing intensity for smaller squares is seen in all of the other data points.

In order to do so, a square with a side of 500 µm is projected, and we measure both the
RMS error of the output image, with respect to the target image, and the edge width, for
various iris diameters. The values of these two functions (with the edge width reported as the
median value of its distribution) are shown Figure 6.6. For the RMS error, we see that, as
expected, it decreases for smaller diameters; if we define a cutoff as the input (iris diameter)
value that causes the signal (RMS error) to fall to 0.25 of its amplitude (i.e. the range of the
RMS error), we see that the cutoff diameter is 4.13 mm, with a cutoff error of 2.33. Also as
expected, for the median edge width we have the inverse behaviour, with image sharpness
falling for smaller apertures; if we define a cutoff in the same way for this function, we find a
cutoff diameter of 2.90 mm, with a corresponding median edge width of 7.45 µm.

We notice therefore the same kind of sharpness-error trade-off that was present in the
sharpness data. Also in this case, the exact amount to which one side of the trade-off is to be
favoured will be dictated by the specificity of the problem at hand.
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6. Characterization of a Digital Micromirror Device

Figure 6.6.: Effect of filtering on a square image. In each image, the data points taken are
represented by blue dots; these data point are interpolated by a cubic spline, represented by
the orange line. The grey dotted line highlights the value and the diameter of the cutoff point.
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Conclusions and outlook

In this thesis, we report experimental investigations of the physics of Bose-Einstein condensate
mixtures, with the aim of understanding the physics of multicomponent superfluids.

First, we demonstrated the preparation of a double Bose-Einstein condensate with tunable
interspecies interactions, using a 41K-87Rb mixture in its lowest hyperfine state. The cooling
sequence was reworked and improved, and we obtained a reliable way of obtaining condensates
in the F = 2,mF = 2 state, with both species reaching orders of magnitude of 105 atoms in
the condensate part. The hyperfine transfers were calibrated and characterized, leading
to an improvement in their transfer efficiency, and in the stability of the procedure. The
improved optical dipole trap, along with the magnetic trapping capabilities, makes it possible
to manipulate the atomic sample with ease and accuracy, opening novel possibilities for
experiments with this mixture.

Then, we showed the study of the dipole oscillations, a collective mode of the mixture. From
a theoretical point of view, we have seen that this mode is characterized by a rigid translation
of the centre of mass of the condensate, and that, while for a single condensate the effect of
the interactions on the mode observables is null, for a mixture interspecies interactions change
both frequency and amplitude of this oscillation. On the experimental side, we have devised a
protocol for the excitation of this mode, and established the statistical analysis to be done to
extract and discuss the quantities of interest, namely frequency and amplitude. We have then
compared the results thus obtained with two models of coupled oscillation, concluding that,
while semi-classical models have a good accuracy in the prediction of the in-phase mode, for
the out-of-phase mode only numerical simulations of the Gross-Pitaevskii equation can give
correct results: this is due to the actual violation of the rigid-translation hypothesis for the
out-of-phase mode, which is indeed at the heart of the aforementioned semi-classical models.

We implemented an high-resolution imaging system, that makes this apparatus capable
of in-situ probing of the double condensate. We looked at the design of the objective, and
assessed its adequacy to the specifications, with a nominal resolution of approximately 1.3 µm.
We designed a compensation scheme for the beam of the magneto-optical trap, which is
necessary due to the position that the objective will have in the apparatus, and concluded
that it meet its operational requirements. After mounting the objective in the apparatus, we
calibrated the magnification, extracting a pixel size compatible with the expected value for
the system. We calculated the transition frequencies at high fields, and selected, for K, those
gentle enough not to perturb the sample during the probe pulse, resulting in an accurate
measurement of the condensate size; for Rb, we decided to image the condensate at zero field,
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during the differential time-of-flight expansion needed to bring the cloud into focus—which is
different because of the chromatic aberration of the objective. Finally, we photographed the
mixture in the mean-field-collapse regime, the most demanding in terms of resolution, and
obtained values which are compatible with numerical simulations of the ground state.

We have seen the characterization of a Digital Micromirror device, to be used in the K
experiment of the Quantum Gases Experiment group of Prof. Leticia Tarruell at ICFO. We
have found the optimal configuration for reflective operation, and found a power efficiency of
30%. We implemented a calibration procedure to correct the macroscopic distortions due to
the projection optics. We characterized the performance of the optical system, finding an edge
resolution of 16.5 µm±1.5 µm; moreover, we characterize how the residual noise depends on
the projected images.

The work done for this thesis could be useful for various developments in the exploration
of multicomponent superfluids. We know from statistical mechanics that the features of a
quantum degenerate system depend strongly on its underlying topology: therefore, the study
of the mixture in a non-trivial topology could be a very interesting direction in which to
move. For this purpose, we could look at the shell configuration: in the immiscible regime,
a thin layer of K is predicted to be formed around a Rb core. Moreover, the physics of the
miscible-to-immiscible phase transition has been hitherto unexplored in mixtures. On the
other side, in the strongly attractive regime, states in the beyond-mean-field regime, such
as droplets and Lee-Huang-Yang fluids, are, from an experimental point of view, relatively
unexplored. Another goal would be the experimental observation of dissipationless drag, also
known as the Andreev-Bashkin effect, which to this day remains elusive.

All those future possibilities are based on the results and the considerations exposed in
the chapters before: it is therefore to be expected that, on these foundations, some ulterior
brickwork in the edifice of physics could be laid.
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A

Calculation of high-field imaging
transitions

In this appendix, we will illustrate the calculation of the transition frequencies and amplitudes
for the imaging transitions at arbitrary fields from 0 G to 100 G.

A.1. Transition frequencies
In order to calculate the imaging frequencies, we will have to calculate the change in energy,
as a function of the magnetic field, for both the ground state 2S1/2, in the F = 1,mF = 1 state,
and the 2P3/2 excited states, for the relevant hyperfine components. These hyperfine levels can
be found with the selection rules for electric dipole transitions [173]:

∆F = 0,±1, F = 0↮ F ′ = 0, (A.1)

∆M = 0,±1; (A.2)

given that we start from F = 1,mF = 1, the allowed transitions are to the F ′ = 0,1,2, mF = 0,1,2
states. This is ultimately achieved by diagonalizing the Hamiltonian (5.36)

H = Hhfs −µ ·B⏞⏟⏟⏞
Hmag

. (A.3)

For the ground state, it is straightforward because, having J = 1/2, the Breit-Rabi formula
applies (3.18). We restate it here for ease of consultation (for the case I = 3/2 relevant to our
atomic species):

∆E(B ,m) =−∆Ehfs

8
+ g I mµBB ± ∆Ehfs

2

√︁
1+mx +x2, (A.4)

where

x =
(︁
g J − g I

)︁
µBB

∆Ehfs
. (A.5)
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Table A.1.: Hyperfine splittings of the 2P3/2 for 41K and 87Rb [160].

∆Ehfs/h (MHz)

F Rb K

0 0 0
1 72.22 0.1
2 229.17 3.5
3 495.82 16.9

The excited state needs a more detailed treatment. The hyperfine splittings of the F = 3
state, which constitute the diagonal of Hhfs are shown in Table A.1. The projection quantum
number M is a good quantum number for each field strength, as its corresponding operator
commutes exactly with the Hamiltonian:

[H ,Fz ] = 0; (A.6)

the total moment quantum number F = I + J , on the other hand, it is not: we will, nevertheless,
calculate the states in the basis |I , J ,F, M〉, understanding that the states with a certain high-field
F will be those adiabatically connected to the low-field states with that same F .

Each sub-matrix of µ ·B , with fixed M , has elements⟨︁
I , J ,F1, M

⃓⃓
Hmag

⃓⃓
I , J ,F2, M

⟩︁
, (A.7)

with M ≤ Fi ≤ 3. The expectation value has to be calculated by expressing the state in the
|L,S, I ,mL ,mS ,mI 〉 basis, which gives⟨︁

I , J ,F1, M
⃓⃓

Hmag
⃓⃓

I , J ,F2, M
⟩︁= (A.8)

=µBBz

1/2∑︂
mS=−1/2

b∑︂
mL=a

C(I , M − (mL +mS), J ,mL +mS ,F1, M)

×C(I , M − (mL +mS), J ,mL +mS ,F2, M)

×C(L,mL ,S,mS , J ,mL +mS)2

×(mL + gSmS + g I (M −mL −mS)),

where the summation limits

a = max{−I −mS +M ,−L} (A.9)

b = min{I −mS +M ,L} , (A.10)

and
C( j1,m1, j2,m2, J , M) = ⟨︁

j1, j2, J , M
⃓⃓

j1,m1, j2,m2
⟩︁

(A.11)

are the Clebsch-Gordan coefficients.

100



A.1. Transition frequencies

Table A.2.: C and C3 coefficients for calculation of the magnetic part of the Zeeman Hamilto-
nian.
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We proceed to write the Hamiltonian by expressing, for each triplet of M ,mL ,mS , the
needed coefficients as a vector

Ci = (C(I , M − (mL +mS), J ,mL +mS , i , M), · · · ) i = M , . . . ,3 (A.12)

and a number
C3 = C(L,mL ,S,mS , J ,mL +mS). (A.13)

The values for these quantities are reported in Table A.2. The magnetic parts of the Hamilto-
nian can thus be written as:

Hmag =
1/2∑︂

mS=−1/2

b∑︂
mL=a

(︁
C TCC3

)︁
(mS ,mL ,M) · (mL + gSmS + g I (M −mL −mS)). (A.14)

It is now possible to write the numeric codes that give the transition frequencies. We will
use the Python programming language [234], using the Numpy [235] and Sympy [236] libraries.

The Breit-Rabi function is straightforward, given that we don’t have to account for the
M =±(I +1/2) states [160]:
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1 import numpy as np
2

3 muB = 1.399624624 # Bohr magneton, in MHz/G
4 gJ = 2.00233113 # Landé g-factor for GS
5 # nuclear g factors:
6 gIK = -7.790600e-5 # for K
7 gIRb = -9.951414e-4 # for Rb
8 # hyperfine GS splittings
9 DFK = 2 * 127.0069352 # for K, MHz

10 DFRb = 2 * 3.417341305452145e3 # for Rb, MHz
11

12 def brx(B: np.ndarray, gI: float, deltaE: float):
13 """Calculate x variable in Breit-Rabi formula"""
14 return (gJ - gI) * muB * B / deltaE
15

16 def br(B: np.ndarray, gI: float, deltaE: float):
17 """Calculate Breit-Rabi formula for F=1, m_F=1"""
18 xx = brx(B, gI, deltaE)
19 term1 = -deltaE / 8
20 term2 = -gI * muB * B
21 qterm = 1 + xx + np.square(xx)
22 term3 = deltaE / 2 * np.sqrt(qterm)
23 return term1 + term2 - term3
24

25 # define field for calculations
26 # 100 equidistant points from 0 G to 100 G
27 B = np.linspace(0, 100, 100)
28

29 # K ground state frequencies
30 gsK = br(B, gIK, DFK)
31

32 # Rb ground state frequencies
33 gsRb = br(B, gIRb, DFRb)

For the excited state, we first express the magnetic Hamiltonians obtained using equa-
tion (A.14), then we add the hyperfine splitting Hamiltonian, and, in the end, we diagonalize it
for each value of B that we want to calculate. For example, for Rb we have:

1 import numpy as np
2 import sympy as sp
3

4 muB = 1.399624624 # Bohr magneton, in MHz/G
5

6 # Hyperfine splittings in MHz
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A.1. Transition frequencies

7 Fhfs0 = 0
8 Fhfs1 = 72.22
9 Fhfs2 = Fhfs1 + 156.6

10 Fhfs3 = Fhfs2 + 266.65
11 # Hyperfine splitting Hamiltonian as a diagonal matrix
12 hhfs = np.diag([Fhfs0, Fhfs1, Fhfs2, Fhfs3])
13

14 # field intensity as a symbolic value
15 B = sp.symbols("B")
16

17 # magnetic part of the Hamiltonian
18 # block M = 0
19 hm0 = np.array([
20 [0, -1.49268, 0, 0],
21 [-1.49268, 0, -1.19414, 0],
22 [0, -1.19414, 0, -0.895608],
23 [0, 0, -0.895608, 0]
24 ]) * muB * B
25 # add the hyperfine splitting
26 hm0 += hhfs
27 # convert the symbolic expression in a computationally
28 # efficient form
29 hm0f = sp.lambdify(B, hm0)
30

31 # magnetic part of the Hamiltonian
32 # block M = 1
33 hm1 = np.array([
34 [0.666551, -1.03416, 0],
35 [-1.03416, 0.666551, -0.844387],
36 [0, -0.844387, 0.666551]
37 ]) * muB * B
38 # for M > 0, we select only the relevant hyperfine
39 # terms
40 hm1 += hhfs[1:]
41 hm1f = sp.lambdify(B, hm1)
42

43 # magnetic part of the Hamiltonian
44 # block M = 2
45 hm2 = np.array([
46 [1.3331, -0.667547],
47 [-0.667547, 1.3331]
48 ]) * muB * B
49 hm2 += hhfs[2:]
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A. Calculation of high-field imaging transitions

50 hm2f = sp.lambdify(B, hm2)
51

52 # these lists will hold the values for the calculated
53 # energy levels
54 m0f0 = [] # M = 0, F = 0
55 m0f1 = [] # M = 0, F = 1
56 m0f2 = [] # M = 0, F = 2
57 m1f1 = [] # M = 1, F = 1
58 m1f2 = [] # M = 1, F = 2
59 m2f2 = [] # M = 2, F = 2
60

61 # 100 field values, from 0 to 90 (in G)
62 BG = np.linspace(0, 90, 100)
63

64 for b in BG:
65 # get the eigenvalues of the matrix
66 ev, _ = np.linalg.eig(hm0f(b))
67 # exclude the last value from ev
68 for l, v in zip([m0f0, m0f1, m0f2], ev[:-1]):
69 l.append(v)
70

71 ev, _ = np.linalg.eig(hm1f(b))
72 for l, v in zip([m1f1, m1f2], ev[:-1]):
73 l.append(v)
74

75 ev, _ = np.linalg(hmf2(b))
76 m2f2.append(ev[0])

We then subtract, for each hyperfine level, the ground state energy obtained before, and
obtain the detuning of the imaging transition, such as those of Figure 5.7.

A.2. Transition amplitudes
For the optical transitions we are using, the relevant operator is the electric dipole operator

d =−ere , (A.15)

where re is the position of the open-shell electron. The interaction between the atom and the
light is governed by the Hamiltonian

Hopt =−d ·E . (A.16)

The transition probability P is given by [172]

P= ⃓⃓⟨︁
I , J ′,F ′, M ′ ⃓⃓ Hopt

⃓⃓
I , J ,F, M

⟩︁
,
⃓⃓2 (A.17)
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where J = 1/2, J ′ = 3/2, F = 1, and M = 1; the nuclear moment I = 3/2 only intervenes in the
computation of the limits for F ′. For each polarization of the incident light, we can write the
matrix elements of this equation as

Eq
⟨︁

I , J ′,F ′, M +q
⃓⃓
dq

⃓⃓
I , J ,F, M

⟩︁
, (A.18)

where q = 0 for π polarized and q =±1 for σ± polarized light, respectively. In the case of a
completely polarized incident radiation, the electric field component Eq can be put equal to
unity, and dropped altogether.

It can be shown [237] that, for this case, P is

P= (2F +1)(2F ′+1)

(︃
F 1 F ′

M q −M ′
)︃2 {︃

F 1 F ′

J ′ I J

}︃2 ⃓⃓⟨︁
J
⃦⃦

d
⃦⃦

J ′
⟩︁⃓⃓2 , (A.19)

where the object in round brackets is a Wigner-3 j symbol[238](︃
j1 j2 J

m1 m2 M

)︃
= (−1) j1− j2−M

⎷
2J +1

C( j1,m1, j2,m2, J ,−M), (A.20)

that in curly brackets a Wigner-6 j symbol{︃
j1 j2 j3

J1 J2 J3

}︃
= (2 j3 +1)

∑︂
Mp ,mq

(−1)
∑︁

(Ji+Mi )
(︃

J1 J2 j3

M1 −M2 m3

)︃(︃
J2 J3 j1

M2 −M3 m1

)︃
(A.21)

×
(︃

J3 J1 j2

M3 −M1 m2

)︃(︃
j1 j2 j3

m1 m2 m3

)︃
,

and
⟨︁

J
⃦⃦

d
⃦⃦

J ′
⟩︁

is the reduced matrix element of the Wigner-Eckart theorem, which is constant
within all the transitions on the D2 line. Therefore, the relative transition probability can
be calculated from (A.19) by setting the reduced matrix element equal to 1. We also remark
that all the species-dependent information is stored in the reduced matrix and, therefore, the
relative strength is valid for both species, as they have the same nuclear spin.

The Sympy package, already used in the previous codes, has routines available for calculation
of 3 j and 6 j symbols, based on [239]. It is then possible to implement the calculation for the
transition amplitude, for example, for the Rb σ− transition:

1 import numpy as np
2 import sympy as sp
3 from sympy.physics.wigner import wigner_6j, wigner_3j
4

5 muB = 1.399624624 # Bohr magneton, in MHz/G
6 Fhfs0 = 0
7 Fhfs1 = 72.22
8 Fhfs2 = Fhfs1 + 156.6
9 Fhfs3 = Fhfs2 + 266.65

10 hhfs = np.diag([Fhfs0, Fhfs1, Fhfs2, Fhfs3])
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A. Calculation of high-field imaging transitions

11 B = sp.symbols("B")
12

13 # Hyperfine splitting of ground state
14 DF = 2 * 3.417341305452145e3 # in MHz
15

16 def amptr(Fg, Mg, Fe, Me):
17 """Calculate probability amplitude of transition
18 From state with F=Fg, M=Mg to state with F=Fe, M=Me"""
19 # Sympy numeric constant for exact expressions
20 I = sp.S(3) / 2
21 Jg = sp.S(1) / 2
22 Je = sp.S(3) / 2
23

24 # polarization
25 q = Me - Mg
26

27 # sign factor has to be added to account for square root
28 a = (-1)**(Fg - 1 + Me) * sp.sqrt(2 * Fe + 1)
29 b = wigner_3j(Fg, 1, Fe, Mg, q, -Me)
30 c = (-1)**(Fg + Je + 1 + I) * sp.sqrt((2 * Fg + 1) * (2 * Je + 1))
31 d = wigner_6j(Fg, 1, Fe, Je, I, Jg)
32 # convert to float for efficient computation
33 return float(a * b * c * d)
34

35 # Ground state magnetic Hamiltonian, M=1
36 hgm1 = sp.Matrix([
37 [-0.501827, -0.867466],
38 [-0.867466, 0.499836]]) * muB * B
39 hgm1 += np.array([[0, 0], [0, DF]])
40 hgm1f = sp.lambdify(B, hgm1)
41

42 # excited state Hamiltonian, M=0
43 hm0 = np.array([
44 [0, -1.49268, 0, 0],
45 [-1.49268, 0, -1.19414, 0],
46 [0, -1.19414, 0, -0.895608],
47 [0, 0, -0.895608, 0]
48 ]) * muB * B
49 hm0 += hhfs
50 hm0f = sp.lambdify(B, hm0)
51

52 # Magnetic field intensity
53 BG = np.linspace(0, 90, 100)
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54 # eigenvectors of ground state Hamiltonian
55 gs = []
56 for b in BG:
57 _, evg = np.linalg.eig(hgRb(b))
58 # component with F=1
59 gsRb.append(esg[:, 0])
60

61 # calculate dipole matrix
62 qsm = -1 # sigma- polarization
63 dipmat = [Prf(Fg, Mg, Fe, Mg + qsm)
64 for Fe in [0, 1, 2, 3] for Fg in [1, 2]]
65 # reshape list as 4x2 matrix
66 dipmat = np.array(dipmat).reshape(4, 2)
67

68 # empty vectors to hold transition probabilities
69 smf0 = np.zeros(len(BG)) # F'=0
70 smf1 = np.zeros(len(BG)) # F'=1
71 smf2 = np.zeros(len(BG)) # F'=2
72

73 # enumerate gives, for each iteration,
74 # index and value of vector element
75 for i, b in enumerate(BG):
76 # eigenvectors of excited state Hamiltonian
77 _, es = np.linalg.eig(hm0f(b))
78 # transition probability
79 # (@ is matrix multiplication)
80 row = (es.T @ dipmat @ gsK[i])**2
81

82 smf0Rb[i] = row[0]
83 smf1Rb[i] = row[1]
84 smf2Rb[i] = row[2]

The results from this computation (along with the corresponding computations for the other
imaging transitions) are shown, for K and Rb, in Figure 5.8.
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B

Denoising an Optical Density image

Due to the high magnification of the high-resolution imaging system, it becomes desirable
to have the ability of removing noise from the images, as even small amount of mechanical
vibrations can shift the beam, with respect to the CCD camera, in the time between the
acquisition of the three images necessary for the construction of the optical density image.

While some sophisticated methods for noise removal in atomic absorption images have
been developed, for example [240, 241], their implementation is not necessarily suited for
our situation, as they require a training phase which is specific to the kind of image to be
processed.

We opted therefore for a simpler method, used in astronomical photometry [242]. The first
step is discriminating the portion of the image that constitute the background from those in
which a signal (condensate) is present. To do so, we use a technique called σ-clipping: for an
optical density image, we assume that the pixels corresponding to a condensate constitute a
brightness peak, with a lower background made of normally distributed values. It is possible
to separate the brightness peak by calculating the mean µ and the variance σ2 of the pixel
brightness distribution, and then excluding from the image all those pixels whose intensity is
more than µ+ασ, for some specified α; the procedure is then repeated until no more pixels
are excluded. By appropriately choosing α, we can make sure that the portion of the image
with the condensate is correctly marked as such. Then, the portions of the image classified
as background are convoluted with a Gaussian kernel, to smooth high-frequency noise, and,
afterwards, divided in square tiles. For each image tile, a statistic of the intensity distribution
is calculated, and its value is assigned to the tile; in our case, we found that the median of
the tile gave a good background reduction. Finally, the background image is upscaled to the
original resolution by interpolating the missing pixels with a cubic spline.

The code used for this procedure uses functions provided by the Photutils and Astropy
packages [197–199, 242]. For example, for the K sub-image of Figure 5.10, the code used was:

1 from photutils.background import Background2D, MedianBackground
2 from astropy.stats import SigmaClip
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B. Denoising an Optical Density image

Figure B.1.: Optical density image of K, with the same data as in Figure 5.10, before and after
the denoising treatment.

3 # parameters are selected by maximizing
4 # the amount of noise removed, while avoiding touching
5 # the actual absorption signal
6 tilesz = 2 # tiling size
7 filtsz = 5 # sigma of the Gaussian blur
8 sgth = 2.0 # alpha for sigma clipping
9

10 # initialize sigma clipping procedure
11 sigma_clip = SigmaClip(sigma=sgth)
12 # select background estimation statistic
13 # we use the median, as it provides good denoising
14 # and does not change the signal
15 bkg_estimator = MedianBackground()
16 # estimate the background image
17 bkg = Background2D(
18 imgK, # raw image for K
19 (tilesz, tilesz), # tile sizing
20 filter_size=(filtsz, filtsz), # filter sizing
21 sigma_clip=sigma_clip, # sigma clipping procedure
22 bkg_estimator=bkg_estimator # estimation statistic
23 )
24 # subtract the background
25 imgKden = imgK - bkg.background
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Figure B.2.: Absolute value of the Fourier transform of the corresponding images of Figure B.1,
along with the Fourier transform of the estimated background.

A before and after view of the K image, with a wider crop than in Figure 5.10, is shown
in Figure B.1. We can see that the long-wavelength fringes in the images are quite reduced
with respect to the original image: by fitting a Gaussian to the image, we compare the RMS
value of the fit residuals of the two images; the noise reduction, measured with this method, is
of approximately 5 dB. Also, we assess which kind of noise is more suppressed by with this
method: in Figure B.2, we show the 2-dimensional Fourier transform of the images and of
the estimated background: we see that this denoising technique is most effective on the lower
spatial frequencies, as we expected by looking at Figure B.1.
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