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Introduction

During the last ten years, an intense and exciting research work concerning the
investigation on ultracold and quantum degenerate matter has been performed by
several groups all over the world. The possibility to mold and control pure quantum
systems has been actually offered on a silver tray by the experimental observation of
Bose-Einstein condensation (BEC), claimed in 1995 and awarding three Nobel Prizes
in 2001 [1, 2]. This achievement has represented one of the most remarkable break-
throughs in the field of atomic physics all over the last century, since the capability
to handle BECs opened the door to the observation of fundamental quantum phe-
nomena on a macroscopic scale.

The investigation on BEC systems brought to study a wealth of processes that
represent the intersection between many different research fields [3], ranging from
quantum optics to solid state physics. This unique property arises from the nature of
a Bose-Einstein condensate, where atoms occupy the same ground state and, when
interactions are sufficiently small, are described by a global single particle wave
function, whose extension is larger than the particles spacing. This confers to these
ultracold atomic systems an undulatory character, where a moving condensate can
be treated as a traveling coherent matter wave. By exploiting the forces arising amongst
light and atoms, these matter waves can be managed and studied through interfer-
ometric techniques, proper of atom optics. In particular, the introduction of optical
lattices provided unique tools devoted to this purpose, such as mirrors and beam
splitters [4], or diffraction gratings [5] for atomic matter waves. The capability to
load cold atoms in a periodic light structures such as those represented by optical
lattices, traced the main route connecting the atomic and solid state physics frame-
works. Indeed, the motion of an electron propagating through a material crystal
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can be interpreted in terms of the motion of a single particle into a periodic array
of microscopic potentials, following the ordinary solid state physics rules relying on
the periodicity of the system. On the other hand, an ultracold degenerate sample
moving into a periodic structure made of light shows an analogous behavior, with
the relevant difference that an optical lattice can be reasonably considered as per-
fect even on a microscopic scale, since typical defects embedded in a material crystal
(such as vacancies, dislocations or phonons) are absent. Moreover, the investigation
scenario is enormously enriched by the presence of a well quantifiable interaction
between atoms, giving rise to intriguing effects proper of the atom optics realm such
as focusing and defocusing of the matter wave [6, 7], to novel quantum phase tran-
sitions such as the superfluid-Mott insulator one [8] or paving the way towards the
experimental investigation of the Bose-glass regime [9] once a controlled disorder
is added to the system. The first implementations of single and multi-dimensional
periodic optical potential showed the capability to diffract the atomic matter wave
[10, 11] mimicking the Bragg diffraction of electrons by a the material crystal. Fur-
ther experiments employed these periodic light structures to confine and trap the
cold sample and analyze the resulting quantized motion [12, 13]. Periodical light
structures have been exploited to achieve remarkable sub-Doppler and Raman cool-
ing of the sample [14, 15], while an ultracold sample has been shown to undergo
Bloch oscillations in an accelerated frame [16] due to its reduced momentum spread
compared to the lattice momentum ~klat, opening the door to ultra-high precision
measurements of inertial forces, recently proposed for a degenerate fermionic sam-
ple [17] considered the reduced decoherence of this system. The ability to degen-
erate bosonic samples below the BEC temperature transition gave a unique tool to
observe and investigate effects that were strictly related to the population of the lat-
tice ground state, such as tunneling and Josephson dynamics [18, 19], Bloch oscil-
lations [20] and dispersion inhomogeneity of the matter wave [6, 7]. Recent works
reported insightful investigations of various dissipative mechanisms, such as Lan-
dau damping or dynamical instability, representing the main limit on the coherence
of the system [21, 22, 23, 24, 25].

Even if ultracold single specie systems already show an extremely rich set of phe-
nomena to be investigated, the research scenario has been further broadened by the
recent development of sympathetic cooling techniques [26], allowing for the multi-
ple cooling of different atomic species. This gave the possibility to enter the appeal-
ing world of ultracold atomic mixtures. Exciting research guidelines have been covered
in this direction, and experiments and theoretical studies on degenerate mixtures of
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cold gases have been acquiring a growing interest. The vast majority of works have
featured Fermi-Bose mixtures, that have now been realized with several combina-
tions of atoms: 6Li-7Li [27], 6Li-23Na [28], 40K-87Rb [29], 6Li-87Rb [30]. Many exper-
iments focused on the degenerate Fermi gas, while the bosonic component has only
been a tool to reach Fermi degeneracy via sympathetic cooling. Remarkable achieve-
ments include BCS-BEC crossover [31, 32, 33, 34, 35, 36], fermionic Bloch oscillations
[37], observation of the 3D Fermi surface [38]. Besides, Fermi-Bose systems display
a wealth of interesting phenomena genuinely related to the presence of two species.
A few, like interspecies Fano-Feshbach resonances [39, 40, 41] and boson-induced
collapse of the Fermi gas [42, 43], have already been observed but many more have
been proposed and still await experimental confirmation, as e.g. boson-induced su-
perfluidity [44] and mixed phases in optical lattices [45].

On the other hand, Bose-Bose mixtures have remained relatively unexplored: af-
ter the pioneering work on 41K-87Rb [46], only one other double-specie condensate
has been recently produced, namely 174Yb-176Yb [47]. As for the K-Rb mixture, the
recent precise determination of the interspecies scattering length by Feshbach spec-
troscopy [48] promises a rich phase-diagram for the two species loaded in an op-
tical lattice, as recent theoretical works seem to proof [49, 50, 51, 52, 53]. Optical
lattices have also been recently employed in combination with the intriguing capa-
bility to magnetically tune interspecies interactions to produce long-lived homonu-
clear molecules from a Bose gas [54, 55] or from a Fermi gas [56, 57], to produce het-
eronuclear cold molecules from [58], and to obtain a homonuclear molecular Mott-
insulator state [59]. Contrarily to multi-component atomic mixtures, obtained from
a single atomic specie in which a mix of internal states has been prepared, Bose-Bose
mixtures compound by species of different mass such as 87Rb -39K or 87Rb -41K are,
show the insightful perspective to realize a material grating fully immersed into a
superfluid with tunable interactions, exploiting the capability to selectively obtain
a Mott-insulator state onsetting for different values of the lattice depth for the two
species. This intriguing system would not have any preceding analogous.

The broadness of evolution possibilities within this research panorama encour-
aged the realization of a new kind of experimental set-up to employ in the investi-
gation of Bose-Bose ultracold mixtures, whose main features were at the same time
a consistent versatility and robust stability. The decision to employ a Rb-K mixtures
relies on two main facts: the first is that 87Rb is the most widespread atom in the
laboratories devoted to laser cooling, and has good collisional properties with all the
three potassium isotopes, necessary to an efficient sympathetic cooling process. The
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second relies on the property of potassium to be the only alkali atom which has both
fermionic (40K ) and bosonic stable isotopes (39K and 41K ), one of which is provided
by attractive interaction (39K ). Moreover, bosonic potassium isotopes are predicted
to feature wide Feshbach resonances at moderate fields (< 1 kG). As a consequence,
optically trapped bosonic potassium appears a suitable candidate to realize a con-
densate with a scattering length tunable around zero. Such a condensate would
be interesting for interferometric purposes, as the interaction energy limits the ac-
curacy of interferometers employing Bose-Einstein condensates. In addition, wide
Feshbach resonances make potassium condensates particularly appealing to realize
double condensates in optical lattices, for quantum simulation purposes.

The experimental apparatus that has taken life during the three years of my Ph.D.
has been devised to allow for a fast switch between the two bosonic isotopes 39K and
41K (and at the occurrence the fermionic isotope 40K ), to provide the opportunity to
tune interactions amongst atoms by an external magnetic field (and hence to perform
an accurate Feshbach spectroscopy on the Rb-K mixture), and to have a sufficient op-
tical access to let a 3D optical lattice to be shone on the ultracold sample, generated
exploiting the sympathetic cooling process between rubidium and potassium. The
magnetic trapping of the mixture takes place in a novel kind of tightly confining
magnetic trap, the milli-trap. The particular feature of this device is to provide a
very strong confinement of the atomic sample without requiring a high power dis-
sipation, that represent a net improvement respect to ordinary ex-vacuo magnetic
trapping devices. Such features represent the most favorable starting point for an
insightful and prolific research activity on ultracold Bose-Bose atomic mixtures, that
can be eventually tailored on a wide range of investigation guidelines.

This thesis is structured as follows: Chapter 1 is focused on the fundamentals of
theory concerning the BEC phenomenon and on the basic concepts concerning Bose-
Bose mixture. A discussion on the topological state in the case of a K-Rb mixture
is reported. Chapter 2 is devoted to the a theoretical overview on ultracold atoms
in optical lattices, starting from the Bloch picture in the non-interacting regime and
discussing the role of interactions, leading to the insurgence of the superfluid-Mott
insulator transition, described in the Bose-Hubbard approach. Chapter 3 contains
a detailed description of the new apparatus built during the thesis work, with par-
ticular attention to the characterization of the new magnetic trapping device, the
milli-trap, that allows for a fast evaporation cycle leading to the Bose-Einstein con-
densation of the 87Rb sample. In Chapter 4 technical details on a new typology of 2D
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cold atomic sources of 39K and 41K , developed and tested during the thesis work,
are given together with an accurate characterization. Chapter 5 collects the results of
an experimental investigation performed on both the 87Rb -39K mixture and on the
collisional properties of 39K alone. In particular, in this Chapter an unprecedented
experimental demonstration of the efficiency of sympathetic cooling in the 87Rb -
39K mixture is reported. This method allowed to attain temperatures of the mixture
as low as 1 µK, and to obtain a direct determination of the triplet s-wave scattering
length aT for ultracold 39K by means of a method that is completely different respect
to the one that has been previously employed to determine aT [60]. Finally, in the
Conclusions and Perspective section, an overview on the research activity performed
during the last three years by our experimental group is given.
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Chapter 1
Some Elements of Theory

In this first Chapter I will point out the basic fundaments of theory on ultracold
gases. The dissertation will firstly focus on ultracold bosonic gases, whose quantum-
mechanical behavior culminates at very low temperatures into the phenomenon of
Bose-Einstein Condensation (BEC). This particular state of matter gives unique op-
portunities to study and observe exciting quantum effects on a macroscopic scale.
The main difference between a BEC and other quantum systems such as standard
superfluids or superconductors is the easier handling and ductility of the atomic sys-
tem, allowing a full control of the intrinsic system properties as well as the atomic
interactions, that can be controlled through an external magnetic field.

The second part of the Chapter will focus on double species bosonic mixtures,
whose interaction can reveal intriguing properties strongly related to the presence of
different co-existing atomic ensembles.

1.1 The Bose-Einstein Condensation

The Bose-Einstein condensation (BEC) is a phase transition relying on the indis-
tinguishability of particles composing the atomic ensemble, and has to be treated us-
ing a pure quantum mechanical approach. The first prediction of this phenomenon
was claimed for photons by Sathyendranath Bose in 1924 [61] and generalized to
bosons by Albert Einstein between 1924 and 1925 [62] starting from studies on the
black body radiation. The behavior of a classical Bose gas is completely determined
by the Maxwell-Boltzmann distribution since for ordinary gases, independently on
their fermionic or bosonic nature, the thermal energy kBT is much higher than the in-

7



1. SOME ELEMENTS OF THEORY

P

T

Liquid

Gas

Solid

BEC

Figure 1.1: Schematic Pressure-Temperature phase diagram for a bosonic element.
Dashed line marks the BEC transition for an ideal Bose gas.

trinsic level spacing of the system. A continuum of states is statistically occupied and
no quantum exchange phenomena have to be taken in account. Where the Maxwell-
Boltzmann theory fails is near the relevant temperature TdB below which the exten-
sion of the single atomic wavefunction become of the same order of magnitude than
the interatomic separation. From a quantum mechanical point of view, the mean
wavepacket extension at a certain temperature T is represented by the DeBroglie
wavelenght:

λdB =
h√

2πkBmT
, (1.1)

where m is the atomic mass, while the mean free path is inversely proportional to
the density n of the sample. These considerations show as a first approximation
that significant deviations the Maxwell-Boltzmann behavior should occur for λdB '
n−1/3. In this situation, a coherence amongst the atomic wavepacket grows, and a
macroscopic occupation of the ground state of the system appears. A more detailed
grand-canonical analysis predicts the BEC phase transition for

λ3
dB =

2.612
n

, (1.2)

where the quantity λ3
dBn has to be interpreted as the phase-space density (PSD) of

the sample. As we will see in the following Sections, while a free ideal Bose gas un-
dergoes only a momentum phase transition, a trapped Bose gas shows the transition

8



1.2. The ideal trapped Bose gas

both in momentum and position spaces. Ordinary gases in the standard conditions
have a PSD that is 12 ÷ 14 orders of magnitude smaller than the critical density.
The PSD can be increased either increasing the density of the sample or decreasing
the temperature. Anyway, as can be seen observing the schematic phase diagram
sketched in Fig. 1.1, the way to BEC is narrowed by the presence of interatomic inter-
actions, that in ordinary thermodynamic transformations lead to a stable solid phase.
The choice of ultra-dilute weakly interacting gases helps to go around this obstacle,
unavoidably preventing the observation of a full BEC in other standard superfluid
systems such as 4He, where only a 10% fraction undergoes this phase transition.

1.2 The ideal trapped Bose gas

1.2.1 T=0

The vast majority of experiments on BECs exploits harmonic trapping potentials
where the last part of the cooling process takes part. The description of the static
degenerate system can be obtained in the T = 0 limit considering a non-interacting
atomic ensemble. The trapping potential is

Vtrap =
m

2
(ω2

xx2 + ω2
yy2 + ω2

zz2). (1.3)

If no interaction between the N particles composing the system occurs, the total
Hamiltonian can be written as a sum of the N single-particle Hamiltonians. The
eigenvalues of these single-particle Hamiltonians are

εnxnynz = (nx + 1/2)~ωx + (ny + 1/2)~ωy + (nz + 1/2)~ωz, (1.4)

where ni, are the quantum numbers associated to the specific direction, and ωi are
the trapping frequencies. For T = 0 the entire set of atoms occupies the ground state,
ant the system wavefunction is the product of the N eigenfunctions obtained setting
nx=ny=nz=0:

Ψ0 =
N∏

i=1

ψ0(ri), (1.5)

with

ψ0(r) =
(mωho

π~

)3/4

exp
(
− m

2~
(ωxx2 + ωyy2 + ωzz

2)
)
, (1.6)

where ωho = (ωxωyωz)1/3 gives the geometric mean oscillation frequency in the trap.

9



1. SOME ELEMENTS OF THEORY

From Eq. (1.6) we can argue that, being n(r) = N |ψ0(r)|2 the particle density, the
atomic distribution has a mean width equal to:

σ = aho =
( ~

mωho

)1/2

, (1.7)

corresponding to the usual three-dimensional oscillator length. This is the first rel-
evant length scale of our system, and in actual experiments is of the order of 1 µm.
The spatial extension of condensed particles remains finite even in the case T = 0,
while the classical Maxwell-Boltzmann distribution width σT = aho(kBT/~ωho)1/2

tends to zero.
In our experimental apparatus, the milli-trap potential (Sec. 3.4) has a cylindrical

symmetry along the z axis. The single-particle wavefunction takes the form:

ψ0(r) ∝ exp
(
−1

2

(
z2

σ2
z

+
ρ2

σ2
⊥

))
, (1.8)

where ρ =
√

x2 + y2 is the distance from the z axis and σi = (~/mωi)1/2 are the
oscillator lengths along radial and longitudinal directions. The aspect ratio of the
system is given by ξ =

√
ωz/ω⊥.

1.2.2 T>0

An useful approach to describe the T > 0 case is the grand-canonical theory. In
this context, the total number of undistinguishable particles is given by

N =
∑

nx,ny,nz

{ 1
exp[ 1

kBT (εnxnynz − µ)]− 1

}
, (1.9)

while the energy is

E(T ) =
∑

nx,ny,nz

εnxnynz

{ 1
exp[ 1

kBT (εnxnynz − µ)]− 1

}
, (1.10)

where µ = ∂E/∂N represents the chemical potential and εnxnynz is the energy of the
state labeled by the quantum numbers nx, ny e nz .

The first equation shows that at low temperature the lowest energy level is the
only to be relevantly populated. If the total number is fixed, this population become
macroscopic, and the BEC phase transition onsets.

To determine the critical temperature TC , it is convenient to separate the lowest
level from the total sum:

N −N0 =
∑

nx,ny,nz 6=0

{ 1
exp[ 1

kBT (εnxnynz − µ)]− 1

}
. (1.11)
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1.2. The ideal trapped Bose gas

This quantity become small when µ → µc = ~
2 (ωx + ωy + ωz) = 3~

2 ω. For a cer-
tain number of particles N the energy levels spacing ~ωho becomes smaller than the
typical excitation energy of the system kBT , and Eq. (1.11) can be written as:

N −N0 =
∫∫∫

dn

exp
[
~

kBT ω · n
]
− 1

, (1.12)

where ω and n collects the trapping frequencies and the quantum numbers along
each direction. The integral can be analytically solved using the Riemann Zeta func-
tion ζ(n)1:

N −N0 = ζ(3)
(

kBT

~ωho

)1/3

. (1.13)

Imposing a null population of the ground state for T = TC we obtain the BEC
critical temperature:

Tc =
( N

ζ(3)

)1/3 ~ωho

kB
= 0.94

~ωho

kB
N1/3. (1.14)

Below this temperature the ground state is macroscopically populated and the con-
densate fraction grows. Inserting Eq. (1.14) into Eq. (1.13) we have:

N0

N
= 1−

(
T

Tc

)3

, (1.15)

expressing the condensed atom fraction as a function of the temperature for T < TC .
The two relevant energy scales of such a system are, as pointed out before, the

thermal excitation energy and the mean levels separation. For our experimental
apparatus, the typical trap frequencies for 87Rb (Sec. 3.4) are ωz = 2π · 19.6 Hz,
ωx = ωy = 2π · 467 Hz. Hence ωho ' 2π · 198 Hz, corresponding to a mean levels
spacing of 8 nK. From (1.14), setting N = 2 × 105, we obtain Tc ' 530 nK; since
kBTc À ~ωho, the semiclassical hypothesis exploited in Eq. (1.12) is fully confirmed.

It should nevertheless noticed that the critical temperature TC is properly de-
fined only in the thermodynamic limit, where N → ∞, Nω3

ho constant. It can be
shown [63], that finite size effects have the main consequence to reduce the con-
densed atomic fraction at a certain temperature, or on the other hand to lower the
ideal critical temperature by a factor proportional to N−1/3.

1This function defined as ζ(n) =
P∞

k=1 k−n
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1. SOME ELEMENTS OF THEORY

1.3 The Interacting Bose Gas at T=0: the Gross-Pitaevskii equation

The presence of interactions between atoms confers a wealth of intriguing fea-
tures to the ultracold atomic system, even in the case of one specie alone is studied.
Effects such the creation of non-spreading traveling matter waves, labeled as bright
solitons, have been predicted [64, 65, 66, 67, 68] in case of attractive interactions,
and observed in recent experiments [69, 70]; the four-wave mixing, analogous to
the standard non-linear optics observed in the laser light propagating in strongly
non-linear materials, has been observed for sodium condensates with different mo-
mentum components [71] after it was predicted in presence of non-linear interaction
between the particles [72, 73] (see below, Eq. (1.20)); again, self-focusing mechanisms
have been theorized [74] and investigated in presence of an external periodic poten-
tial [6].

Let’s consider the case of N interacting atoms, confined in an external potential
of the form 1.3. Using the second quantization formalism the global Hamiltonian
can be written as:

H̃ =
∫

drΨ̃†(r)
[
− ~2

2m
∇2 + Vtrap

]
Ψ̃(r) +

+
1
2

∫
drdr′Ψ̃†(r)Ψ̃†(r′)

[
Vint(r− r′)

]
Ψ̃(r)Ψ̃(r′). (1.16)

In this expression the last term represents the atom-atom interaction, and the
form of interaction, as we will see in the following, determines the main behavior
of the system. Ψ̃†(r) and Ψ̃(r) are bosonic field operators, creating or removing a
particle in a certain position r. Their expression can be reconstructed from ordi-
nary creation and destruction operators as a function of the single-particle states
ψj(r): Ψ̃(r) =

∑
j αjψj(r). The Bogoljubov theory exploits the macroscopic occu-

pation of one of these states when BEC onsets. In the thermodynamic limit, hence,
N0/N has a finite value for every T < TC . Since |N0, . . .〉 practically corresponds
to |N0 ± 1, . . .〉, the α operators can be treated as ordinary complex numbers where
α0 = α0

∗ =
√

N0. In the free case, the condensation process brings hence to the occu-
pation of the single-particle state Ψ̃(r) =

√
N0/V , where V is the volume occupied

by the gas. It should be noticed that this state is fully determined by a simple mul-
tiplication operator independent from r or N . The Bogoljubov theory [75] takes life
from this assumption to generalize it to the inhomogeneous time-dependent case,

12



1.3. The Interacting Bose Gas at T=0: the Gross-Pitaevskii equation

and decomposes the field operator in the Heisenberg representation as:

Ψ̃(r, t) = Υ0(r, t) + Ψ̃′(r, t), (1.17)

where Υ0 is the expectation value of the Ψ̃(r) operator and defines the condensate
density, while the second term is a perturbation term. Υ0(r, t) is a classical field,
named as order parameter, and represents the condensate wavefunction. Assum-
ing small perturbations on the system, corresponding to the position |Ψ̃′| ¿ |Υ0|,
the temporal evolution of the order parameter can be derived. The theory starts
from the time dependent Schrödinger equation in the Heisenberg formalism for the
Hamiltonian 1.16:

i~
∂

∂t
Ψ̃(r, t) = [Ψ̃(r, t), H̃]. (1.18)

Taking then the "point-like" interaction potential

Vint(r− r′) = g δ(r− r′), (1.19)

where g is the interaction constant, and substituting Ψ̃ by Υ0 in Eq. (1.18) one obtains
the noticeable Gross-Pitaevskii equation (GPE)(1961):

i~
∂

∂t
Υ0(r, t) =

[
(−~

2∇2

2m
+ Vtrap(r) + g|Υ0(r, t)|2

]
Υ0(r, t). (1.20)

The substitution of the field operator with the order parameter corresponds to the
implicit assumption that the interaction range of the potential (1.19) is much smaller
then the mean interatomic distance. Taking

g =
4π~2a

m
, (1.21)

with a scattering length for the atomic system, this corresponds to the condition
〈N/V 〉a3 ¿ 1. In the 87Rb case, a ' 6 nm. The dilution condition sets hence N/V ¿
5 · 1018 cm−3, widely fulfilled in all the present experiments on BEC. The ground
state of the system can be evaluated choosing a particular expression for the order
parameter, normalized to the total number N :

Υ0(r, t) = φ(r)e−iµt/~, (1.22)

where µ is the chemical potential, and φ(r) is assumed as real. The GPE reduces then
to: (

− ~
2∇2

2m
+ Vtrap(r) + g|φ(r)|2

)
φ(r) = µφ(r). (1.23)
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1. SOME ELEMENTS OF THEORY

As seen in this Section, the presence of interactions conspicuously alters the shape
and the properties of the ground state. The Bogoljubov theory, anyway, leads in the
perturbative regime to a relatively simple expression of the Schrödinger equation,
i.e. the Gross-Pitaevskii equation, that can be employed at low temperatures to cal-
culate variations of the order parameter over distances that should be larger than
the inter-atomic distance. Its simple form is proved to be of crucial importance to
obtain reliable numerical results on time-dependent problems concerning the BEC
state. Moreover, in the repulsive case (a > 0, see next Section), if N is sufficiently
large, a particular assumption can be done (the Thomas-Fermi approximation), and
the GPE can be analytically solved. The procedure, on the contrary, is much more
complicated in the case of attractive condensates (a < 0), where only numerical and
variational analysis can be developed.

1.3.1 The ground state for a>0: repulsive is easy!

In the previous section we pointed out that the dilution condition 〈N/V 〉a3 ¿ 1,
necessary to the derivation of the GPE, is commonly experimentally achieved. A
further assumption, useful to derive a particular expression for the ground state of
the system, can be taken in the so called Thomas-Fermi (TF) regime.

Comparing the interaction and the kinetic energies associated to N harmonic os-
cillators one obtains [63]:

Eint

Ecin
∝ N |a|

aho
. (1.24)

In the case N |a|
aho

À 1, the kinetic term −~2∇2

2m is much smaller than the external and
interaction terms, and can be neglected. The GPE then becomes:

[
Vtrap(r) + g|φ(r)|2

]
φ(r) = µ φ(r), (1.25)

allowing the non-trivial solution

|φ(r)|2 + n(r) =
(
µ− Vtrap(r)

)
g−1 (1.26)

in the region defined by µ > Vtrap, while is |φ(r)|2 = 0 otherwise. Formally, the
density profile has the same shape of the confining potential (Thomas-Fermi distri-
bution): for a harmonic trap, the density distribution is a inverted parabola whose
maximum coincides with the potential minimum. The distribution has no tails ex-
tending to infinity, since n(r) = 0 for Vtrap(r) = µ. The situation is really differ-
ent from the non-interacting case (Eq. (1.6)), where the ground state is given by a

14



1.3. The Interacting Bose Gas at T=0: the Gross-Pitaevskii equation

gaussian eigenfunction. From the normalization of Eq. (1.26) we can determine the
chemical potential:

µ =
1
2
~ωho

(
15Na

aho

)2/5

. (1.27)

Considering then the annihilation point of the density distribution defined by µ =
Vtrap(σTF ), with Vtrap(σTF ) = 1/2 mω2

hoσTF
2 in the harmonic case, we can rewrite

Eq. (1.27) to obtain the spatial extension of a condensate in the Thomas-Fermi regime
for a spherical trap:

σTF = aho

(
15Na

aho

)1/5

, (1.28)

having trivial generalization to the anisotropic case. The dependency of the exten-
sion on the atom number N is a peculiar feature introduced by the presence of inter-
actions in the TF regime.

1.3.2 Free expansion of a repulsive condensate

The small size and high densities proper of a BEC usually don’t allow for a direct
in-trap quantitative observation of the condensate. The sample can be observed after
a certain release time from the trap, in such a way the sample is expanded and the
density reduced. In this initial release phase, the residual energy of the sample, given
by the presence of interactions, confers an initial spread velocity, proportional to the
direction-specific trapping frequency. The result is that, for a repulsive condensate,
the expansion is enhanced along the direction the sample was more confined, and
less pronounced along the weak confinement axis. The quantitative dynamical anal-
ysis of the expansion can be performed introducing particular scaling parameters
[76]. If ξ = ωz/ω⊥ ¿ 1 is the aspect ratio of the system, given by the initial trapping
frequencies ω⊥ and ωz , the size of the condensate after a certain expansion time t

along the ⊥ and z directions are:

R⊥(t) ' R⊥(0)
[√

1 + (ω⊥t)2
]

(1.29)

Rx(t) ' Rx(0)
[
1 + ξ2

(
(ω⊥t) arctan(ω⊥t)− ln

√
1 + (ω⊥t)2

)]
. (1.30)

1.3.3 The ground state for a<0: the tricky attraction

The presence of attractive interaction, corresponding to a negative scattering
length value, sources a completely different behavior of the atomic system. Early
studies [77, 78, 79, 80] accomplished in the first years after the BEC was observed in
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Figure 1.2: Numerical estimation of the unitary energy 1.32 for an attractive interac-
tion between atoms. Different curves correspond to different total number of atoms.
For N > NC (red curve) no minimum exists and the condensate system is unstable.

repulsive samples, showed the presence of a critical atom number NC , over which
an unstable regime onsets. An attractive sample, indeed, tends to increase its in-
ner density and to reduce its extension until the kinetic pressure term balances the
interaction-driven contraction term. If the number of atoms is too high, the kinetic
energy is always smaller than the interaction term, and a collapse of the system is
predicted, induced by two main mechanisms individuated in multi-body recombi-
nation [81] and particle-ejection from the trap [78]. If the number of atoms is below
the critical number, a metastable state is predicted and a condensate can be formed.
The collapse dynamics have been investigated by several experimental [82, 83] and
theoretical [84, 85] works.

The estimation of the critical number and the calculation of the ground state of
the system as well can be done integrating the standard GP equation. The high
central densities of an attractive sample, anyway, don’t allow to exploit the TF ap-
proximation to obtain the ground state, since the kinetic term tends to grow as the
compression of the sample increases. The integration of the GPE equation can hence
be obtained through a variational analysis of the energy functional. The spherical
trap case is investigated in Ref. [86] using a gaussian ansatz for the condensate wave-
function. To have an idea of the critical number of atoms in the case of 39K for our
experimental conditions, we found convenient to introduce the mean harmonic os-

16



1.4. Bose-Bose mixtures

cillator frequency ωho = 3
√

ω2
⊥ωz , where ω⊥ and ωz are the radial and axial trapping

frequencies, in such a way to reduce the cylindrical symmetry of the trap to an effec-
tive spherical symmetry. The trial function we use is:

φ(r) =
(

N

θ3a3
hoπ

3/2

)1/2

exp
(
− r2

2θ2a2
ho

)
, (1.31)

where θ is the variational parameter. The minimization of the energy functional
leads to

E(θ)
N~ωho

=
3
4
(θ−2 + θ2)− 1

(2π)1/2

N |as|
aho

θ−3, (1.32)

giving the energy per particle in units of the oscillator energy. The annihilation of
first derivative of above expression gives θ ' 0.671, while through the annihilation
of the second derivative we can fix the critical number of atoms NC . For the typical
frequency values reported in Sec 3.4, in the case of 39K , this method gives a critical
number NC ' 400. Fig. 1.2 shows numerical evaluations of Eq. (1.32), as a function
of the variational parameter θ. Each curve corresponds to a specific number of atoms.
The red curve gives the limit case of N = NC . As we can see, for N > NC no
minimum appears in the rescaled energy, and a stable condensate cannot exist.

The critical number of atoms obtained through this simple effective spherical
model is in good agreement with the results given by a more detailed 3D-analysis
reported in [87] despite of the strong anisotropy typical our magnetic trap (Sec. 3.4).
Moreover, the model shows the capability to predict the right critical values corre-
sponding to other experimental systems, such as 7Li or 85Rb reported in Ref.[82] and
Ref.[83] respectively.

1.4 Bose-Bose mixtures

If the presence of interaction between atoms, as seen in Sec. 1.3, enriches the con-
tents of the single specie research framework, in the case of a mixture, being either a
Bose-Bose or a Fermi-Bose mixture, the interactions between atoms of different na-
ture, and in particular the possibility to tune the interspecie scattering length a12,
opens a novel and relatively unexplored branch of investigation. In this paragraph
we will consider two coexisting atomic species trapped in a harmonic potential such
as the one described by Eq. (1.3) for a specific specie. We will focus on a Bose-Bose
mixture, since a vast literature exist on the topic of Fermi-Bose mixtures, while a
relatively small set of papers describes the properties of interacting Bose-Bose het-
eronuclear mixtures [88, 89, 90].

17



1. SOME ELEMENTS OF THEORY

1.4.1 A model for the ground state

Adapting the theoretical model devised and discussed in Ref. [89], in this Section
we will try to give some operating guidelines to deal with interacting binary Bose-
Bose mixtures, focusing the numerical analysis on the case of a degenerate 87Rb -41K ,
already obtained at LENS in Florence via the sympathetic cooling technique [88] but
still lacking a detailed phenomenological analysis. The strategy of the model [89]
tries to reconstruct the ground state wavefunction of both species slicing each of the
two atomic clouds in a non-overlapping portion (and hence without interspecies in-
teraction) and an overlapping (and interacting) part. From a general point of view,
the topological ground state of the mixture whose components are labeled by the in-
dex i is described by a coupled set of Gross-Pitaevskii equations for the condensates
wavefunction ψi in which the mutual interaction term has been included:

[
− ~2

2m1
∇2 + U1(x) + u11|ψ1|2 + u12|ψ2|2

]
ψ1 = µ1ψ1 (1.33)

[
− ~2

2m2
∇2 + U2(x) + u21|ψ1|2 + u22|ψ2|2

]
ψ2 = µ2ψ2, (1.34)

with the normalization condition
∫

d3x|ψi|2 = Ni . (1.35)

The coupling constant matrix uij is given in terms of the scattering lengths aij [91]
by

uij =




u11 = 4π~2
m1

a11 u12 = 2π~2(m1+m2)
m1m2

a12

u21 = 2π~2(m1+m2)
m1m2

a12 u22 = 4π~2
m2

a22




where we used the fact that a12 = a21. Hereinafter we will label the rubidium by
the index 1 and the potassium by the index 2. Since the intraspecie background
triplet scattering lengths (the only ones playing a role in binary collision for stretched
|F = 2, mF = 2〉 states, see Sec. 3.4) are 99 a0 for 87Rb and 60 a0 for 41K respectively
[48], we will furthermore restrict the analysis to the case a11, a22 > 0.

The total force acting on the atomic sample is the sum of the magnetic trapping
force given by the potential 1.3 and of the gravitational force mig, that acts along the
vertical z direction. The total potential can hence be put in the form:

U (i)(x) =


1

2
mi

∑

k=x,y,z

(ω(i)
k k)2 + U0i


 + migz i = 1, 2 , (1.36)
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1.4. Bose-Bose mixtures

with U0i = µBgFimFi|B0|, being gFi and B0 the specific Landé factor and the resid-
ual magnetic bias field in the center of the trap respectively (see Sec: 3.4). Note
that the vertical equilibrium position is different for the two species, since the trap
frequencies depend on mass as

√
m1
m2

. This gives the so called gravitational sag be-
tween the two species. Through an appropriate unitary coordinate scaling xk −→
x′k ≡ λkxk the trap geometry can be reduced to spherical for both species, since the
shape of both potentials is affected in the same way by the scaling. The parameter
λk is determined by the ratio of the trap frequency along the k direction to the mean

trap frequency ω̄(i) =
(∏

k=x,y,z ω
(i)
k

)1/3

:

λk =
ω

(i)
k

ω̄(i)
. (1.37)

The scaling factor, as anticipated some lines before, is independent on the atomic
specie. Omitting the apices to simplify the notation, the simplified potential reads:

Ui(x) =
1
2
mi(ω̄(i))2

(
r2 + (z − z0i)2

)
+ U0i, (1.38)

where we have defined r2 = x2 + y2, and

U0i = µBgFimFiB0 − 1
2
mi

g2

λ2
z(ω̄(i))2

(1.39)

z0i = − g

λz(ω̄(i))2
. (1.40)

Setting a
(i)
ho =

√
~/(miω(i)) and dz = z02 − z01, the system is then translated along

the z axis by a quantity z01. In this way the center of the reduced spherical profile
corresponding to the specie 1 coincides with the center of the new reference frame.
After this transformation, the rescaled potentials can be written as:

V1(x) ≡ U1(x)− U01 =
1
2

(
r2 + z2

)
(1.41)

V2(x) ≡ U2(x)− U02 =
1
2
η

(
r2 + (z − dz)2

)
, (1.42)

with

η =
m2(ω̄(2))2

m1(ω̄(1))2
=

gF2mF2

gF1mF1
(1.43)

dz =
g

λza
(1)
ho

(
1

(ω̄(2))2
− 1

(ω̄(1))2

)
=

g

λza
(1)
ho (ω̄(1))2

(
m2

ηm1
− 1

)
. (1.44)
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Note that if both 87Rb and 41K (or equivalently 39K ) are prepared in the same hy-
perfine state we have η = 1, since the Landé factors are the same for both species.

If the number of atoms is not too small, we can rely on the Thomas-Fermi ap-
proximation (Sec. 1.3.1) and neglect the kinetic term appearing in the coupled GP
equations, which become:

V1(x) + u11|ψ1|2 + u12|ψ2|2 = µ1 (1.45)

V2(x) + u21|ψ1|2 + u22|ψ2|2 = µ2, (1.46)

where the substitution µi −U0i → µi is done. The reduced coupling constant matrix
uij is written as:

uij =




u11 = 4π a11

a
(1)
ho

u12 = 2π a12

a
(1)
ho

(
1 + m1

m2

)

u21 = 2π a21

a
(1)
ho

(
1 + m1

m2

)
u22 = 4π a22

a
(1)
ho

m1
m2


 .

These coupled equations can be solved to obtain the ground state in the overlapping
region, where the interaction is actually present between the different species. On
the other hand, the solution in the non-overlapping region has to be find using the
standard set of decoupled GP equation, obtained setting u12 = u21 = 0.

1.4.2 Overlapping region

By defining the quantities

γ1 ≡ u21/u11 (1.47)

γ2 ≡ u12/u22 (1.48)

∆ = u11u22 − u2
12, (1.49)

the solution of Eq. (1.45) and Eq. (1.46) is given by:

|ψ1|2 = α1

(
R2

1 − r2 − (z − zc1)2
)

(1.50)

|ψ2|2 = α2

(
R2

2 − r2 − (z − zc2)2
)

(1.51)

where we have defined the radii Ri

R2
1(µ1, µ2) =

2(µ1 − γ2µ2)
1− ηγ2

+
ηγ2

(1− ηγ2)2
dz2 (1.52)

R2
2(µ1, µ2) =

2(µ2 − γ1µ1)
η − γ1

+
ηγ1

(η − γ1)2
dz2 (1.53)
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the position of the centers along z

zc1 =
−ηγ2

1− ηγ2
dz (1.54)

zc2 =
η

η − γ1
dz (1.55)

and the normalization factors αi

α1 = u22
1− ηγ2

2∆
(1.56)

α2 = u11
η − γ1

2∆
. (1.57)

The qualitative behavior of the system in the overlap region can be constructed
noticing that both right-handside members of Eq. (1.50) and Eq. (1.51) must be pos-
itive, since they have to equate a modulus squared. Each one of these members
is given by the product of a factor αi, plotted in Fig. 1.3(a) as a function of a12,
times the value of an expression directly related to the equation of a sphere, namely
R2

i = r2 + (z− zci)2. If αi is negative, the interaction region occupied by the element
i is given by R2

i > r2 + (z − zci)2, and hence lies inside the spherical region Σi of
radius Ri. In the case αi > 0, the interacting part of the cloud lies outside the surface
Σi. The intersection of surfaces defined by the sign of α1 and α2 delimits the actual
overlapping region between the two clouds. In this portion of space, the interaction
between the two species is ruled by the off-diagonal elements of the coupling matrix.

1.4.3 Non-overlapping region

The wavefunctions, in this region, have the ordinary Thomas-Fermi profile, since
no interaction between atoms of different species is present:

|ψ01|2 =
1

2u11

(
2µ1 − r2 − z2

)
(1.58)

|ψ02|2 =
η

2u22

(
µ2

η
− r2 − (z − dz)2

)
. (1.59)

Differently from the overlapping case, these solutions are defined inside a region of
space whose boundary is delimited by the surfaces Σ0i of equation R2

0i = r2 + (z −
z0
ci)

2, with R2
01 = 2µ1, R2

02 = 2µ2/η, z0
c1 = 0 and z0

c2 = dz, with no dependence on the
sign of external parameters. In this region, the shape of the wavefunctions is deter-
mined uniquely by the external potential. The presence of the interaction between
atoms in the overlapping region influences the non-interacting portion of the cloud
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1. SOME ELEMENTS OF THEORY

Figure 1.3: Normalization factors αi (Fig. (a)) and rescaled position zci/dz (Fig. (b))
plotted as a function of the interspecies scattering length a12 for the interacting sur-
faces Σi. Solid (dashed) lines correspond to 87Rb (41K ).

only through a re-normalization in the atomic density, without changing the shape
of the non-interacting wavefunction.

The continuity condition imposed on each of the ψi at the interface between the
overlapping and non-overlapping regions requires ψ1 = ψ01 on Σ2 (where |ψ2|2 =
0), and vice-versa [89]. This is relevant to discern between self-consistent and not-
self-consistent analytic solutions of Eqs. (1.52-1.53) once imposed the normalization
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1.4. Bose-Bose mixtures

condition 1.35. We will discuss this statement in the last part of the Section. To
qualitatively understand the behavior of the system, it is useful to notice that the
sign of the factors αi depends on the interplay between the sign of ∆ (changing sign
when u12 = ū ≡ √

u11u22, independently on i, where αi has poles) and the sign
of the numerators appearing in Eqs.(1.56)-(1.57). The latters change sign when u12

approaches the critical values u∗ = ηu11, u22/η, representing moreover a pole for
the vertical position of the interacting profiles centers zci. The choice to attribute the
index i = 1 to 87Rb fulfills the condition η2 ≤ u11/u22, and selects the value u∗ ≡ ηu11

in the region where ∆ > 0. In terms of scattering lengths, the corresponding critical
values are:

ā ≡ 2
( √

m1m2

m1 + m2

)√
a11a22, (1.60)

a∗ ≡ 2
(

m2

m1 + m2

)
a11. (1.61)

Note that, differently from the adimensional quantities ū,u∗ the critical values for the
scattering length do not depend on the trap frequencies. In the case the background
intraspecie scattering lengths a11 and a22 are not influenced by the external tuning
of the interspecies scattering length a12, as usually happens in a Rb-K system when
a Feshbach resonance is crossed to change the sign of a12, the values of ā and a∗ can
be assumed as constant. For a 87Rb -41K mixture generated in the experimental con-
ditions described in Sec. 3.4, the critical values are ā ' 72 a0 and a∗ ' 63 a0. Fig. 1.3
shows the plots for the normalization factors αi and of rescaled vertical positions of
the interacting surfaces centers zci/dz. This figure summarizes the role of the critical
values discussed before.

It can be show that an analytic overlap between the two condensates is admitted
only in the case ∆ > 0, corresponding to the range a12 ∈ (−ā, ā). In the case the
system approaches a12 = −ā+ a collapse of the system is predicted, while the strong
repulsion between the two atomic species leads to a phase separation for a12 →
ā−. Notice that if no external tuning of the mutual interaction a12 is imposed, the
background interspecies scattering length of the mixture 87Rb -41K (164 a0) is bigger
then the critical value ā = 72 a0. In this case, right after both species cross the BEC
phase transition temperature, a complete phase separation between rubidium and
potassium is predicted by the model.

The spatial topology of the overlap between the two condensates can result in
two main configurations, schematically sketched in left and right columns of Fig. 1.4.

• External Overlap : this case takes place when the two condensates are not
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Figure 1.4: Possible topologies for a binary mixture of two BECs. The left column
pictures the case of external overlap : a12 < 0 (a), 0 < a12 < a∗ (b), a∗ < a12 < ā (c),
and phase separation a12 = ū (d). The right column schematizes the case of internal
overlap : “full overlap” for a12 < 0 (e) and 0 < a12 < a∗ (f); “partial overlap” for
a∗ < a12 < ā (g) and phase separation a12 = ū (h). Dark and light grey represent
the regions occupied by the non-interacting condensates 1 and 2 respectively. The
shaded area indicates the overlapping region. The boundary of these regions are
delimited by the surfaces Σ0i (non-interacting, continuous and dotted lines) and Σi

(overlapping, dashed lines)[Adapted from [89]].
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fully compenetrated into each other. This situation happens for |R01 − R02| <

|dz| < R01 + R02, that is when the separation between the centers of the non-
interacting profiles is grater than the difference between their radii (Figs. 1.4(a)-
1.4(c)). The shape of the overlapping region, contained between the surfaces
Σ1 and Σ2 (dashed lines in figure) is ruled by the interspecies scattering length
a12. The three possible sub-configurations are shown in figure: −ā < a12 < 0
(a), 0 < a12 < a∗ (b), a∗ < a12 < ā (c), and a12 = ā which is a case of phase
separation (d). For a12 > ā the two condensates are no more interacting, and
the profiles become independent on the interspecies scattering length.

• Internal Overlap : When one of the two condensates is fully surrounded by
the other, namely for |dz| < |R01 − R02|, the system can display two more
sub-configurations, depending on the strength of mutual interactions: the first
corresponds to a full overlap, occurring when one specie (let’s say the specie
1) is fully immersed into the other and no regions containing only this specie
appear. Fig. 1.4(e)and 1.4(f) show this case for a12 < 0 and 0 < a12 < a∗

respectively. The second configuration (Fig. 1.4(g), a∗ < a12 < ā) represents
a partial overlap, occurring when the overlap region is a shell separating two
region of single specie condensates. The actual parameters set the inner and
outer element [92]. Fig. 1.4 shows the limit case of phase separation.

The resolution procedure of the topological problem has to be performed in a self-
consistent way, since in principle it is not possible to know a priori which of the
configurations depicted in Fig. 1.4 will be the more adequate to describe the system.
One has hence to write the normalization integrals for each of these configurations
and solve Eq. (1.35) to obtain the chemical potentials µi. This allows to construct the
interacting surfaces Σi and hence the overlap region, given by the intersection of Σ1

and Σ2. The noninteracting surfaces Σ0i are obtained solving separately Eq. (1.58)
and (1.59), without the intersection condition proper of the interacting surfaces. It
should be noticed that the external global surface delimiting the binary system is
represented by the union of the Σ01 surfaces, independently on the kind of overlap.
Once reconstructed the four surfaces, the continuity condition on the wavefunction
has to be written at the boundary of each region. Nevertheless, the number of initial
trials can be reduced noticing that the value of the interspecies scattering length fixes
the case along the vertical scale of Fig. 1.4. Given a certain value for the trapping fre-
quencies, the number of atoms of both species discriminates between the external
and internal overlap, i.e. between the left and right column of Fig. 1.4. An useful
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Figure 1.5: Different regions of validity for Eqs. (1.66) and (1.67) for two different
atom number regimes in the case a12 = 0. In the inner dark (light) gray region both
members of inequality 1.66 (1.67) are satisfied, and the system follows the external
overlap configuration. The outer regions corresponds to the internal overlap situa-
tion, and only the first members of the above inequalities are satisfied. The relative
abundance of the two species selects one of the two external regions.

hint about the best choice between external and internal normalization integrals can
be obtained considering the equilibrium condition of the two non-interacting con-
densates, distributed on two independent Thomas-Fermi profiles. The extension of
each distribution along the vertical direction equals the non-spherical Thomas-Fermi
radius:

R⊥ = σTF
ωho

ω⊥
= (15Na)1/5

a
4/5
ho

(
ωho

ω⊥

)
, (1.62)

to be evaluated for both species. Notice that we employed the radial trap frequency
ω⊥ since we assumed the system to have a cylindrical symmetry along an axis that
is orthogonal to the z direction. The vertical displacement between the two centers
is induced by the gravitational potential is:

∆z = z01 − z02 = − g

(ω(1)
⊥ )2

(
1− m2

m1

)
, (1.63)

and is equal to −0.53 µm for the 87Rb -41K mixture in our experimental conditions
(see Sec. 3.4, ω

(1)
⊥ = 2π × 497 Hz). The condition of external overlap |dz| > |R01 −
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Figure 1.6: Overlap diagrams for the 87Rb -41K mixture for N1 = 105 and N2 =
5× 104. The Thomas-Fermi profiles are calculated for 6 different interaction strength
values, reported along the right side. The left insets (distances shown in arbitrary
units) show the normalized profiles (compare to Fig. 1.4 for clarity), while the right
insets show the actual ground state of the mixture. Distances are expressed in µm.
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R02| = |R⊥1 −R⊥2| corresponds to:

|∆z| > σ
(1)
TF

3

√
ωz

ω⊥

∣∣∣∣∣N
1/5
1 −

(
a22

a11

m1

m2

)1/5

N
1/5
2

∣∣∣∣∣ , (1.64)

that in our case becomes:

3.013 >
∣∣∣N1/5

1 − 1.052N
1/5
2

∣∣∣ . (1.65)

The two atomic clouds will hence have an external overlap (left column of Fig. 1.4)
in the following different cases, depending on the relative abundance of the two
species:

N1 > 1.298N2 ∧ N
1/5
1 < 1.052N

1/5
2 + 3.013 ; (1.66)

N1 ≤ 1.298N2 ∧ N
1/5
1 > 1.052N

1/5
2 − 3.103 . (1.67)

If the 87Rb sample is the most abundant, only the inequalities (1.66) are satisfied,
while the inequalities (1.67) describe the case where the potassium sample is the
most abundant. Consider for now only the former case, where the 87Rb sample is
bigger than the 41K sample, if the second part of inequalities (1.66) is not satisfied,
the potassium sample will fully penetrate into the rubidium cloud, and the system
will enter the condition of "internal overlap", depicted in the right column of Fig. 1.4.
The whole situation is summarized in Fig. 1.5, where the validity regions of different
inequalities are represented with different colors. In the central diagonal region both
members of inequality (1.66) (dark gray) or (1.67) (light gray) are satisfied, and the
normalization integrals to be chosen are those corresponding to the external overlap.
On the contrary where the unbalance between the atom number of the two species
is more pronounced, i.e. in the outer regions of Fig. 1.5, the self-consistent normal-
ization integrals are those corresponding to the internal overlap. In these regions,
the less abundant element fills the inner core of the compound profile, while the
other constitutes the outer shell (Fig. 1.4(e-g)). This choice of the specific normal-
ization integrals set represents an exact method to obtain self-consistent solutions of
the coupled GP equations (1.33) and (1.34) only in the a12 = 0 case, since the phase
diagram reported in Fig. 1.5 is obtained treating the initial Thomas-Fermi profiles as
mutually non-interacting and only sensitive to the external gravitational potential,
fixing their unperturbed vertical position. The gradual increase of the mutual inter-
actions draws on the diagram represented in Fig. 1.5 a path that can bring the system
in a different overlap region. This is evident in Fig. 1.6, where the ground state of the
mixture is plotted for six different values of mutual interaction. The atom numbers
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1.4. Bose-Bose mixtures

are N1 = 105, N2 = 5 × 104. As can be seen, the particular kind of overlap changes
for −50 a0 < a12 < −20 a0, and the normalization integrals set has to be changed
from "external" to "internal" when this range is crossed. The non-interacting choice
method can nevertheless be reasonably employed in the case the interaction varia-
tion ∆a12 is much smaller than the lowest critical value a∗, where a crossing of the
overlap transition lines is very unlikely.

The relative number of atoms between the two species discriminates the evolu-
tion of the system when the interspecies scattering length is varied. For simplicity,
consider an initially non-interacting mixture, and suppose to increase the value of
a12. If the initial atom number imbalance is weak, the system will evolve towards an
external overlap configuration, even if the initial overlap configuration is internal.
If, on the other hand, the population are strongly unbalanced, let’s say N1 À N2,
the system can follow an evolution in which the internal core is more and more com-
pressed without being expelled, and the effect of repulsion can culminate in an inter-
nal phase separation between the two species, represented in Fig. 1.4(h). Anyway, a
heuristic analysis performed varying both atom numbers and interspecies scattering
length coupled GP equations, shows that the latter kind of overlap evolution is very
unlikely and persists only in a very narrow range of experimental conditions, whose
exact determination is beyond the scope of this thesis work.

A last thing to be noticed is the fact that the 87Rb -41K mixture is a strongly repul-
sive binary system. Since the background value of the interspecies scattering length
a12 = 164 a0 definitely exceed the critical value ā = 72 a0, in the Thomas-Fermi
regime the two condensates are produced in a complete phase separation (insets (d)
and (h) of Fig. 1.4) and the model is not adequate to describe the ground state of the
system. If a12 is not tuned by an external potential, the two BECs can only inter-
act via surface effects, while bulk interaction effects between the two species can be
observed only for smaller values of the interaction strength.
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Chapter 2
Ultracold Atoms in Optical
Lattices

This Chapter is devoted to the description of the basilar features characterizing
the behavior of an ultracold atomic sample loaded in a periodic optical potential.
Optical lattices represents the connection between the atomic and solid state physics
realms, since the center-of-mass motion of a Bose-Einstein condensate inside a pe-
riodic arrangement of microscopic potential wells can be described, in the case of
a shallow optical potential, by the standard solid state physics laws, governing the
dynamics of a an electronic wavepacket inside a material crystal. Moreover, optical
potentials have the unique property to be free from the vast majority of defects usu-
ally embedded in a material crystal, such as dislocations, vacancies and phonons.
The ability to degenerate bosonic samples below the BEC temperature transition
gave a unique tool to observe and investigate effects that were strictly related to
the population of the lattice ground state, such as tunneling and Josephson dynam-
ics [18, 19], Bloch oscillations [20] and dispersion inhomogeneity of the matter wave
[6, 7]. Recent works reported insightful investigations of various dissipative mecha-
nisms, such as Landau damping or dynamical instability, representing the main limit
on the coherence of the system [21, 22, 23, 24, 25]. Optical lattices have also been
recently employed in combination with the magnetic tuning of interactions to pro-
duce long-lived homonuclear molecules from a Bose gas [54, 55] or from a Fermi gas
[56, 57], to produce heteronuclear cold molecules from [58], and to obtain a homonu-
clear molecular Mott-insulator state [59].

On the other hand, the realm of binary Bose-Bose mixtures loaded in an optical
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2. ULTRACOLD ATOMS IN OPTICAL LATTICES

lattice has remained relatively unexplored, since only theoretical works [49, 50, 51,
52, 53] have investigated these kind of systems. This typology of systems seems to be
very promising as gives the possibility to explore the interplay between superfluids
of different mass, and between a superfluid and a Mott-insulator state. The rich-
ness of the phase diagram is remarkably increased, since the critical point becomes
dependent on the interspecie interactions, that are magnetically controllable.

In the first part of the Chapter the basic concepts related to the interaction be-
tween atoms and light are given in terms of dipole forces, and some fundamentals
of the optical lattices theory are given. The motion of a condensate in a periodic
structure is then analyzed through the concept of Bloch and Wannier states. A brief
overview on the superfluid-Mott insulator transition is reported. Finally, some hints
for further studies on Bose-Bose heteronuclear mixtures in optical lattices are given.

2.1 Optical Dipole Forces

The dynamics of an atom in an optical field is governed by a force that is propor-
tional to the intrinsic complex polarizability of the atom. This force is the sum of two
main terms:

• Radiation Pressure: this term represent the dissipative part of the force, and is
related to the absorption and spontaneous re-emission of photons belonging to
the light field by the atom. In this case the force acts an energy transfer between
atoms and light field. The randomness of these processes puts the basis for the
vast majority of the common laser cooling techniques.

• Dipole Force: the off-resonant dispersive behavior of the atom-light interaction
generates a force that is proportional to the intensity of the laser field but is not
capable to transfer energy amongst atoms and photons. This kind of force is
relevant to generate an optical potential able to confine and trap atoms without
changing the energy of the sample.

2.1.1 The atom-light interaction

An useful and comprehensive approach to the atom-light interaction is the semi-
classical one, described in detail in [93]. If

E(r, t) = êE(r)e−iωt + h.c. (2.1)
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2.1. Optical Dipole Forces

is the classical laser field oscillating at frequency ω and propagating along the z di-
rection, the electrical dipole moment induced by light on atom can be written as:

p(r, t) = αE(r), (2.2)

where α is the complex polarizability of the atom, strongly depending on the laser
frequency. The linear dependence of the induced dipole on the driving electrical field
holds only far from the saturation regime, where non-linear effects introduce higher
order terms in the above relation. The imaginary part of α governs the absorptive
phenomena and appears in the standard Lambert-Beer law, while the real part of the
polarizability is responsible for the elastic light scattering properties of the medium
and hence for the dispersion of light into it, and generates an out-of-phase oscillating
term. The optical dipole potential produced by the interaction between E and p is:

Udip(r) = −1
2
〈p ·E〉 = − 1

2ε0c
Re(α)I(r), (2.3)

where the brackets indicate the temporal mean over the optical oscillation period,
much shorter than the typical atomic motion scale, and I(r) is the mean field inten-
sity. Differentiating the previous expression one obtains the dipolar force acting on
atoms by the light field:

Fdip(r) = −∇Udip(r) =
1

2ε0c
Re(α)∇I(r). (2.4)

As happens for atoms moving in a magnetic induction field, the force vanishes when
the field is uniform, and is stronger where the inhomogeneity of the field is more in-
tense. This is relevant to engineer particular potentials starting from ordinary gaus-
sian beams, intrinsically producing an attractive or repulsive potential (depending
on the sign of α, see below) due to their non-uniform spatial intensity profile. The
number of absorption and re-emission cycles per unit time Γsc gives the intensity of
the heating of the sample due to the presence of the light field. This quantity can be
estimated by evaluating the ratio of the average absorbed energy by the atom in the
unit time to the photon energy ~ω:

Γsc(r) =

〈
dp
dt
·E

〉

~ω
=

1
~ε0c

Im(α)I(r). (2.5)

In the semiclassical approach, again neglecting nonlinear terms in the polarizability
expression, one can derive an expression for the complex polarizability that is the
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2. ULTRACOLD ATOMS IN OPTICAL LATTICES

same as the classical expression:

α = 6πε0c
3 Γ/ω2

0

ω2
0 − ω2 − i (ω3/ω2

0) Γ
, (2.6)

provided the natural linewidth Γ is calculated evaluating the dipole matrix element
〈e|µ|g〉 in the semiclassical aproximation:

Γ =
ω3

0

3πε0~c3
|〈e|µ|g〉|2 . (2.7)

In most experiments the laser frequency ω is tuned sufficiently away from the reso-
nance ω0 to neglect nonlinear interaction terms, but still close to resonance in such
a way the laser frequency detuning ∆ + ω − ω0 is much smaller then the resonant
frequency, i.e. |∆| ¿ ω0. In this situation, the rotating wave approximation holds in
a natural way, and Eq. (2.6) can be simplified to obtain the following useful expres-
sions for the dipolar potential and dissipative scattering rate:

Udip(r) =
3πc2

2ω3
0

Γ
∆

I(r) , (2.8)

Γsc(r) =
3πc2

2~ω3
0

(
Γ
∆

)2

I(r) . (2.9)

From these expression we can easily understand how the sign of the detuning de-
termines the attractive or repulsive character of the interaction: in the case of red

detuning (∆ < 0) the intensity maximum represents the minimum of the potential,
and atoms will be attracted towards the center of the light intensity profile; on the
contrary, when the detuning is blue (∆ > 0), atoms will be repelled from the light
intensity maximum. The above expressions are valid for a generic light field interact-
ing with a two-level atom, and constitute the basis for the light trapping mechanism.
As can be seen, the trapping strength depends on I/∆, while the scattering rate has
a I/∆2 behavior. The ratio of these two quantities suggests the optimal red trap con-
figuration to be the one having detuning and intensity as large as possible in order to
maintain the trapping strength I/∆ constant, suppressing at the same time the ratio
Γsc/Udip by a factor proportional to ∆.

In the case of a multilevel alkali atom, such as Rb and K are, the degeneracy of
ground and upper levels is removed by the hyperfine interaction. Moreover, if the
laser field wavelength is in the µm scale, the detunings ∆1, F and ∆2, F respect the
two fine D1 and D2 transitions are appreciably different, and a common detuning
can no more be assumed. In this situation, a more accurate treatment of the system
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red

blue

Figure 2.1: Schematic representation of a single gaussian beam optical trap. If the
detuning is red, i.e. ∆ < 0, atoms are attracted towards the intensity maximum. The
confining strength is pictorially represented by the size of arrows.

is required and it can be shown [93] that a slightly more complex formula for the
potential should be employed:

Udip(r) =
πc2 Γ
2ω3

0

(
2 + PgF mF

∆2, F
+

1− PgF mF

∆1, F

)
I(r) , (2.10)

where gF and mF are the ground state Landé factor and Zeeman hyperfine state
respectively, while P is a polarization-dependent factor, equal to 0,±1 for linear and
σ± polarization respectively.

In a standard gaussian beam whose wavelength is λ, propagating along the z

axis, the intensity profile is given by:

I(r, z) =
2P

πw(z)2
exp

(
− 2r2

w2(z)

)
(2.11)

where P is the beam power. The radial distance w(z) over which the intensity is
reduced to 1/e2 times its peak value is:

w(z) = w0

√
1 + (z/zR)2, (2.12)

with w0 defined as the beam waist and zR as the Rayleigh distance, defined by
zR = πw2

0/λ. If the beam frequency is red detuned, atoms will be attracted towards
the center of the beam where the intensity is maximum, as Fig. 2.1 shows. The trap-
ping strength will be much more pronounced along the radial direction, since along
this line the light intensity variation is much steeper than in the axial direction. The
recent development of commercial µm-range high power lasers (10÷100 W) allowed
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2. ULTRACOLD ATOMS IN OPTICAL LATTICES

the realization of pure optical dipole traps exploiting focused gaussian beams, excel-
lently suitable to trap the vast majority of alkali atoms with trapping frequencies that
are comparable to those proper of standard high-confining magnetic traps. If two or
more focused gaussian beams are crossed, a wealth of trap configurations can be en-
gineered (for a review see. [93]), and a conspicuous control of the trapping strength
along different directions can be obtained.

2.2 Optical Lattices: a beam against the other

The interference of two counterpropagating laser beams can be exploited to build
a stationary light pattern once the relative phase is locked. The stationary light pro-
file obtained in this way represents for an atom a periodic potential structure de-
scribed by Eq. (2.3). To obtain the explicit expression of the stationary intensity pro-
file, let’s consider two plane waves propagating along the z axis with a constant
relative phase ϕ and with frequencies ω1 and ω2 such as ∆ω + ω2 − ω1 ¿ ω1, ω2:

E→ = êE1cos(kz − ω1t)

E← = êE2cos(kz + ω2t + ϕ) , (2.13)

where ê is the polarization vector. The total instantaneous intensity is:

I(z, ϕ) = ε0c|E→ + E←|2. (2.14)

The intensity profile is defined positive, and the deepest modulation is obtained for
E1 = E2 = E. Supposing then the initial phase ϕ equal to zero, the total intensity is
in this case written as:

Itot(∆ω, ∆k) = 8ε0cE
2cos2

(
kz − ∆ω

2
t

)
cos2

(
∆k

2
z + ωt

)
, (2.15)

where k ' (k1 +k2)/2 and ω ' (ω1 +ω2)/2. The potential effectively acting on atoms
is obtained integrating the fast oscillation term over the oscillation period 2π/ω. This
leads to an mean intensity profile equal to:

I(∆ω) = 4ε0cE cos2
(

kz − ∆ω

2
t

)
= 4I0 cos2

(
kz − ∆ω

2
t

)
, (2.16)

providing through Eq. (2.10) the optical potential that acts on atoms:

Ulat = sErec cos2
(

kz − ∆ω

2
t

)
, (2.17)
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where we defined the height of the potential as measured in units of the atom-
specific recoil energy Erec = ~2k2/2m1. Using Eqs. (2.8) and (2.11), in the realistic
case of gaussian beams the potential height reads:

s =
2P

πw2

4
Erec

πc2 Γ
2ω3

0

(
2 + PgF mF

∆2, F
+

1−PgF mF

∆1, F

)
. (2.18)

Introducing the atomic mass number Z, the lattice wavelength λlat, and the mean
transition wavelength λ0 weighted on the D1 and D2 transitions, in the case of linear
polarization the above expression becomes:

s = 2.19× 1020 P

w2
Z Γλ3

0λ
3
lat

(
2λ2

λlat − λ2
+

λ1

λlat − λ1

)
(2.19)

where λ1 and λ2 represent the D1 and D2 transitions wavelength respectively, and
all the quantities are expressed in SI units. In our setup (see Chap. 3) λlat = 1064
nm, while the bosonic mixture to be loaded into the periodic lattice potential is the
binary 87Rb -41K mixture. For 87Rb the in-air transition wavelenght are λRb

2 ∼780.0
nm and λRb

1 ∼795.0 nm [94] respectively, while for K is λK
2 ∼767.0 and λK

1 ∼770.4
nm [95]. Assuming λ0 = (λ1 + λ2)/2, the specific potential depths result:

sRb = 3.5× 106 × P [W]
(w[µm])2

(2.20)

sK = 1.5× 106 × P [W]
(w[µm])2

. (2.21)

As we can see, the difference between the mass and level structure of Rb and K
causes the total potential to be much shallower for potassium than for Rb.

A very common way to build a 1D optical lattice is to retroreflect a gaussian
beam. If w0 is the minimum beam waist, the global potential acting on atoms is
given by the sum of the periodic potential plus a radial confinement arising from the
optical dipole force (2.8):

Ulat(r, z) = sErec e
− 2r2

w2
0 sin2(kz) ' sErec

(
1− 2

r2

w2
0

)
sin2(kz) , (2.22)

where we assumed the radial extension of the atomic cloud to be much smaller than
the beam waist.

1In our experimental setup, λlat = 1064 nm. In this situation, ERb
rec = 1.34 × 10−30 J, and EK

rec =
2.84× 10−30 J

37
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2.2.1 Moving lattices and the band structure

The total optical potential (2.17) generated by the laser intensity profile, as we
have seen, is a periodic structure whose spatial period is λlat/2. The nodes and
antinodes of the intensity profile are stationary only if the difference between the
frequencies of the beam is zero and hence ∆ω t/2 = 0 in time. If ∆ω 6= 0, the inten-
sity profile is stationary in a reference frame that moves along the beam axis with a
velocity −vlat, where vlat is given by:

vlat =
∆ω

2k
=

λlat

2
∆ν . (2.23)

This means that the lattice velocity in the laboratory frame vlat can be easily managed
through varying one or both the beam frequencies. Obviously, the occurrence of
phase fluctuations between the two beams in time leads to a stochastic variation of
the lattice velocity. For this motivation, the two lattice beams have to be split and
generated using the same coherent laser source, and their frequencies have to be
locked in such a way phase fluctuations between the two beams are suppressed. The
residual phase modulation, in the case the rate of the photon-atom scattering (2.5)
can be neglected, represents the main limit to the lifetime of the cold sample loaded
into the lattice, since it corresponds to an effective shaking of the periodical potential
along the beams axis.

The center-of-mass motion of a condensate through the moving lattice, as antici-
pated before, can be described using the single particle approach proper of the solid
state physics, describing the motion of an electron through the ions lattice in terms
of energy bands En and quasimomentum q. In such a situation, the wavefunction
Ψn,q(x) of the particle obeys the standard Bloch-Floquet theorem,

Ψn,q(x) = eiqxun,q(x) (2.24)

un,q(x) = un,q(x + a) (2.25)

with a = λ/2, and can be found solving the Schröedinger equation:

ĤΨn,q(x) =
[
− ~

2

2m

∂2

∂x2
+ sErec cos2 (kx)

]
Ψ(x) = En(q)Ψn,q(x). (2.26)

This equation, provided the bisection relation cos2(α) → 1 + cos(2α)
2

is applied, be-
longs to the class of Mathieu equations [97], whose solution is not analytic but can be
numerically evaluated. The eigenfunctions Ψn,q(x) are called Bloch states. The dis-
crete spatial translation invariance of the system stated by the Bloch-Floquet theorem
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2.2. Optical Lattices: a beam against the other

Figure 2.2: Solid lines: plot of the first three energy bands (a), their correspondent
Bloch velocity (b), and effective mass (c). Dashed lines correspond to the free case
(s = 0). The potential height is set to s = 4. Adapted from [96].
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does not allow to take the wavefunctions (2.24) as eigenfunctions of the momentum
operator as well, that ceases to be a good quantum number once the periodic poten-
tial is switched on. On the other side, the Fourier transform of these eigenfunctions
shows a correspondent periodicity in the momentum space as well. The minimal pe-
riodicity cells, whose width is 2π/a = 4π/λ are the Brillouin zones, and the quantum
number q appearing in the eigenfunctions (2.24), the quasimomentum, can assume

the discrete values q =
4π

Nλ
, where N is the number of lattice sites. If N is sufficiently

large, as in actual experiments, the quasimomentum discretization dissolves and q

acquires a physical meaning that, inside each of the Brillouin zones, is practically
coincident with the ordinary momentum. For a given q, many Bloch eigenstates for
the problem (2.26) do exist, each one labeled by the index n corresponding to a spe-
cific energy band En(q). A numerical estimation of the energy bands obtained from
Eq. (2.26) is reported in Fig. 2.2(a) for s = 4. The first three Brillouin zones are shown,
together with the parabolic free particle energy spectrum (solid line). This periodic
representation of the energy spectrum takes the name of repeated zone scheme. As
we can see, three main features arise from this picture:

• Near the zone boundaries an energy gap appears, and its width is related to
the potential height. In correspondence of the zone boundaries the bands have
null derivative. Moreover, each band has a value of q corresponding to a flex
point in the energy spectrum. This has relevant effects on the dynamics of a
Bloch wavepacket, as we will show in the following.

• At low energies (En(q) ¿ sErec) the bands are almost flat. For increasing
height of the periodic potential the flatness increases, and the energy asymp-
totically tends to the eigenenergies of the harmonic oscillator obtained with a
parabolic approximation of the single lattice site potential.

• At high energies (En À sErec) the energy spectrum is pretty similar to the free
particle spectrum (except for a zero-point energy shift, E1(q = 0)) and differs
from the latter only near the boundaries of the Brillouin zones. The difference
increases with the potential height.

The specific shape of the Bloch states can be extracted in two main cases, correspond-
ing to the weak and tight binding regimes. In the first case, the potential height is
much smaller than the recoil energy (s ¿ 1), corresponding to the free energy at the
first zone boundary. The Bloch function is almost completely delocalized all over
the lattice and is well-fit by a plane wave whose momentum is q, since the peri-
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2.2. Optical Lattices: a beam against the other

Figure 2.3: Plot of the first band Wannier function w1(x) localized into the 0th lattice
site for a lattice height s = 3.5 (a) and s = 11 (b). The periodic potential is represented
in both cases as well. Both vertical and horizontal scales are in arbitrary units.

odic modulation term un,q(x) gives a small contribution. If the potential height is
increased, the wavefunction becomes more and more localized at each lattice sites,
and ceases to be delocalized over the entire lattice. In this case, the contribution of
the un,q(x) factor becomes fundamental for the behavior of the global wavefunction
of the particle. A convenient way to write the Bloch state can be obtained exploit-
ing an orthonormal set of eigenfunctions located at each lattice sites, called Wannier
functions wn(x− ja):

Ψn,q(x) =
∑

j

eijqa wn(x− ja), (2.27)

where eijqa is a quasimomentum dependent phase factor. When the lattice depth is
increased, each of the Wannier function acquires a stronger localization to the spe-
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cific lattice site j, and their sidelobes exponentially vanish (see Fig. 2.3). In the limit
of infinite lattice height and extension, the wavefunction is constituted by an equal
distribution of Wannier functions whose tails do not overlap since the tunneling be-
tween adjacent sites is suppressed. It can be shown that in the tight binding regime
a good approximation of the global wavefunction is provided by a sum of slightly
overlapping narrow gaussian functions centered on each lattice site. The tunneling
matrix element J describing the tunneling probability between two adjacent lattice
sites is related to the width of the lowest energy band, and is given by [98]:

J =
max(E0(q))−min(E0(q))

4
. (2.28)

2.2.2 Dynamics of a Bloch wavepacket

If a condensate is loaded into an optical lattice, its wavefunction can be de-
composed over a superposition of Bloch states, eigenstates of the Mathieu equation
(2.26). If the wavepacket momentum spread ∆q is much smaller than the extension
of the Brilloiun zone, i.e. ∆q ¿ 4π/λ, the mean momentum q can be identified with
a well defined quasimomentum value, and the band theory can be applied to under-
stand the center-of-mass dynamics. Actually, for a BEC this is not a hard task to be
accomplished, since for a typical axial extension of∼ 100 µm the Heisenberg limit on
the momentum gives ∆q ∼ 10−3k. The physical consequence of this feature is that
the motion of a condensate into an optical potential can be reasonably described us-
ing a single particle approach, motivating the employ of the standard energy bands
theory, originally developed for electrons moving along a material crystal. Follow-
ing this approach, the wavepacket moves along the lattice with a velocity equal to:

vn(q) =
1
~

∂En(q)
∂q

, (2.29)

which takes the name of Bloch velocity of the wavepacket. This quantity is analogous
to the standard group velocity vg describing the propagation of a free wavepacket,

defined by vg =
∂ω

∂k
. In a semiclassical approach, the external forces Fext acting on

the wavepacket, that we assume as slowly varying on the timescale of the lattice
potential and sufficiently small not to induce interband transitions, will modify its
quasimomentum following the fundamental equation of dynamics

Fext = ṗ = ~q̇. (2.30)
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2.3. Multidimensional optical lattices

The above expression can be inserted in the temporal derivative of Eq. (2.29) to ob-
tain:

v̇n = ~−2 ∂2En(q)
∂q2

Fext , (2.31)

which suggests a particular viewpoint to interpret the wavepacket dynamics: the
motion of the single particle center-of-mass along a periodic potential can be recon-
structed through the standard second Newton’s law once an effective mass m∗

n(q) is
introduced. The value of this effective mass (see Fig. 2.2(c)) is varying throughout
the Brillouin zone and depends on the band index n, and is obtained once the energy
spectrum is known:

m∗
n(q) = ~2

[
∂2En(q)

∂q2

]−1

. (2.32)

Note that m∗
n(q) assumes negative values where the Bloch velocity (Fig. 2.2(b)) has a

negative first derivative, diverging where the Bloch velocity reaches a local station-
ary point. In these points an external force tends to have a vanishing effect on the
wavepacket, while it produces a negative acceleration in the zones where m∗

n(q) < 0.
When the approximation of weak forces ceases to be valid and the quasimomen-

tum variations are fast, interband transitions (the so called Landau-Zener tunneling)
may take place. The probability for this process to happen is [99]:

Γ ∝ e−ac/a, (2.33)

where ac = d(∆E)2/4~2 is a critical acceleration dependent on the lattice spacing d

and the energy gap ∆E between the lower and the higher band.

2.3 Multidimensional optical lattices

If more than one couple of retroreflected beams cross orthogonally in a certain
point of space, multidimensional and exotic periodic potentials can be obtained,
whose peculiar features depend on the polarization and relative phase of the beams.

2D optical lattices

This configuration can be obtained crossing two orthogonal standing waves. At
the trap center, the global potential acting on atoms will be:

Ulat(x, y) = sErec

(
cos2(kx) + cos2(ky) + 2ê1 · ê2 cosϕ cos(kx) cos(ky)

)
, (2.34)
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Figure 2.4: Schematic representation of a 2D optical lattice, constructed superimpos-
ing two orthogonal laser beam pairs. If the beam polarizations are those shown in
figure, a bi-dimensional array of 1D wells is realized. Adapted from [100].

where ϕ represents a time phase between the orthogonal standing waves. As we can
see, a fully separable potential can be obtained only if the third term vanishes. This
happens in two cases:

• The two polarizations are mutually orthogonal, and hence ê1 · ê2 = 0.

• A certain frequency difference is introduced between the two standing waves
in such a way the time phase rapidly rotates, and the third term mediates to
zero.

In order to avoid heating of the sample coming from residual phase fluctuations,
anyway, the best thing to do is to employ both orthogonal polarizations and to in-
troduce a frequency detuning (10 ÷ 100 MHz) between the beam pairs. If this is the
situation, a 2D array of 1D atomic tubes is obtained (see Fig. 2.4), and once the radial
confinements are included, the potential reads:

Ulat(x, y, z) = Erec

[
sx e

−2 y2+z2

w2
x sin2(kx) + sy e

−2 x2+z2

w2
y sin2(ky)

]
. (2.35)

Here sx and sy are the lattice depths along the two beams directions x and y. Restrict-
ing to a small zone around the center, the trapping potential can be approximated as
the sum of a homogeneous lattice plus an additional external harmonic confinement:

Ulat(x, y, z) ' Erec

[
sx sin2(kx) + sy sin2(ky)

]
+

m

2
[
ω2

xx2 + ω2
yy2 + ω2

zz2
]

, (2.36)
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Figure 2.5: Schematic representation of a 3D optical lattice, constructed superimpos-
ing three orthogonal laser beam pairs. If the beam polarizations are those shown in
figure, a simple cubic structure is realized. Adapted from [100].

where the frequencies result from the radial contributions of both standing waves
and are given by:

ω2
x =

2sy

w2
y

(
h

mλ

)2

, ω2
y =

2sx

w2
x

(
h

mλ

)2

, ω2
z = ω2

x + ω2
y . (2.37)

3D optical lattices

If three pairs of retroreflected beams are orthogonally superimposed, a 3D peri-
odic arrangement of lattice sites can be constructed. The simple cubic lattice struc-
ture is obtained fixing a zero time phase between the three pairs of beams and in-
serting a detuning between their frequencies, analogously to what is done in the 2D
case, in such a way to eliminate the inter-beams interference patterns (see Fig. 2.5.
The trapping potential can be written as:

Ulat(x, y, z) ' Erec

[
sx sin2(kx) + sy sin2(ky) + sz sin2(kz)

]
+

m

2
[
ω2

xx2 + ω2
yy2 + ω2

zz2
]
,

(2.38)
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where the frequencies have a general expression and can be calculated through a
cyclical permutation on the parameters corresponding to the three directions:

ω2
x = 2

(
sy

w2
y

+
sz

w2
z

)(
h

mλ

)2

,

ω2
y = 2

(
sx

w2
x

+
sz

w2
z

)(
h

mλ

)2

,

ω2
z = 2

(
sx

w2
x

+
sy

w2
y

)(
h

mλ

)2

. (2.39)

If the lattice depth is sufficiently high, the external potential terms appearing in
Eq. (2.38) are practically constant on a sufficiently small portion of space, where the
single well potential can reasonably assumed as harmonic. Restricting to the central
trapping region, the single-well frequencies along each direction are hence given by:

ω2
lat,i = si

(
2πh

mλ2

)2

, i = x, y, z . (2.40)

In the case a mixture is inserted into the lattice, the relation between the lattice fre-
quencies is ω

(2)
lat = ω

(1)
lat

m1

m2

√
s2
s1

. A detailed discussion on the single-well frequencies

reduction, induced by the Gaussian beam shape when the analysis is not restricted
to the trap center, can be found in Ref. [100]. Here we only notice that in ordinary
experiments the typical frequency variation along the symmetry axis of the conden-
sate does not exceed 5% and can usually be neglected when performing an energetic
analysis of the system.

2.4 A BEC in an optical lattice: role of interactions

Up to now the discussion on ultracold atoms loaded in an optical lattice has been
limited to a single particle approach, motivated by the reduced momentum spread of
a BEC and by the peculiar property of condensed atoms to occupy exactly the same
quantum level. This viewpoint is indeed adequate to the description of the center-
of-mass motion of the atomic ensemble, especially in the low-density regime where
the atom-atom interaction can be neglected. However, several recent works, starting
from the ordinary Bloch theory, demonstrated the insurgence of exotic effects strictly
related to the presence of interactions between particles. It has been demonstrated
that in a regime where inter-atomic interactions are non negligible with respect to
the tunneling energy, the energy spectrum of the BEC into the optical potential can
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undergo noticeable deviations from the single particle case, in such a way loops
("swallow tails") appear in proximity of the band edges [101, 102, 103]. Moreover,
strong cross-dimensional effects have been observed during the expansion of the
condensate in a moving lattice [6, 7]. The recent observation of the superfluid to Mott
insulator transition in a 87Rb condensate [8] and the generation of cold molecular
samples through the management of the intra-specie scattering in optical lattices
[59] represented only the first milestones in the investigation of interaction effects in
optical lattices.

From a quantitative point of view, the single particle Schrödinger equation (2.26)
has to be modified through the insertion of the non-linear Gross-Pitaevskii term,
accounting for the presence of short-range interactions between atoms:

ĤΨ(x) =
[
− ~

2

2m

∂2

∂x2
+ Ulat (x) + g|Ψ(x)|2

]
Ψ(x) = EΨ(x) . (2.41)

The effective shape of the localized wavefunctions ϕj(x, y, z) on which is convenient
to to decompose the global condensate wavefunction (see Eq. (2.27) valid for a 1D
case) depends on the dimensionality of the system. Indeed, the presence of repulsive
interactions tends increase the size of the density profiles along the weak confine-
ment directions. Qualitatively, in a 1D lattice configuration the localized wavefunc-
tions will approximately look like 2D prolate disk profiles strongly confined along
the lattice direction, while in a 2D lattice the confinement will localize the wave-
function along the two beam directions, while the density profiles will be broadened
along the shallow-confining transverse direction. Along the lattice directions, the
wavefunction profile corresponding to the j-th site is hence reasonably given by a
localized Wannier-like function w, while along the axes of shallow confinement a
broad gaussian function Θ will provide a better fit to the actual profile:

ϕj(x) = wx(x− jxd)Θy(jxd, y − jyd)Θz(jxd, z − jzd) 1D lattice

ϕj(x) = wx(x− jxd) wy(y − jyd) Θz(jxd, jyd, z − jzd) 2D lattice

ϕj(x) = wx(x− jxd) wy(y − jyd) wz(z − jzd) 3D lattice (2.42)

where the vector j = (jx, jy, jz) identifies the specific lattice site. The global wave-
function is hence reconstructed by:

Ψ(x) =
∑

j

√
n̄j eiφj ϕj(x) , (2.43)

where n̄j is the average occupation number of the j-th lattice site. Notice that this
number is usually much less than one in the case of thermal cold gases, and reaches
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values comparable or bigger than unity only for condensate clouds. When the lattice
depth is increased and the tunneling amplitude drops to zero, the average occupa-
tion becomes an exact quantum number and Fock states are adequate to provide the
localized wavefunction, leading to the Gutzwiller approximation (see below). No-
tice again that the dependence of the wavefunction on the specific lattice site along
the lattice directions is due to the inhomogeneity introduced by the external confine-
ment potential. The energy shift εj of the j-th site due to the external potential is
given by εj = mω2

ext(aj)
2/2, while the on-site interaction energy U is calculated as:

U = g

∫
|ϕj(x)|4dx . (2.44)

It can be shown that in the Thomas-Fermi regime the total energy corresponding to
the j-th lattice site is approximately:

Ej ' εjn̄j +
U

2
n̄2
j , (2.45)

leading to the following expression for the inhomogeneous chemical potential:

µj =
∂Ej

∂nj
= εj + Un̄j . (2.46)

2.4.1 The Bose-Hubbard model and the Mott insulator phase

The dynamics of an interacting gas of bosons at zero temperature in an optical
lattice has been shown to be accurately described in the second quantization formal-
ism by the Bose-Hubbard model [104]. Beyond this purely ideal system, anyway,
an ultracold bosonic sample represents an optimal tool to investigate the existence
of nontrivial mean field effects arising from the presence of interaction in a periodic
structure [105].

The mean field approach is conveniently obtained constructing the second quan-
tization Hamiltonian operator:

Ĥ =
∫

dx Ψ̂†(x)
[
− ~

2

2m
∇2 + Ulat(x)

]
Ψ̂(x) +

+
1
2

4π~2

m
a

∫
dx Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x) , (2.47)

where Ψ̂(x) is a bosonic field operator for atoms in a given internal atomic state,
Ulat(x) is the optical lattice potential, and a is the interatomic atomic scattering
length. The lattice potential is given by Eq. (2.38) and potentially it includes the
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2.4. A BEC in an optical lattice: role of interactions

confinement effects due to the gaussian beams profile or to an external magnetic po-
tential. It is convenient to collect these contributions in an additional potential term
Uext, and to consider Ulat as a pure periodic potential. In the end of the Section we
will discuss about how the inhomogeneity of the system affects the ground state and
in particular how it eases the experimental observation of the Mott insulator phase.

If a ¿ āho ¿ d =
λlat

2
we can neglect the inter-band tunneling process, since the en-

ergies in play are much smaller than the mean oscillator energy gap ~ω̄ho = ~2/mā2
ho

associated to the potential of each lattice site j. Under this condition, we can expand
the field operators in the Wanner basis (2.27), keeping only the first band contribu-
tion:

Ψ̂(x) =
∑

j

bj w(x− jd) , (2.48)

where the operators bj and b†j are respectively the annihilation and creation operator
for a boson at the site j, obeying the commutation relation [bi, b

†
j ] = δij and d is the

isotropic lattice periodicity. With this expression for the ground state wavefunction
the Hamiltonian (2.47) reduces the usual Bose-Hubbard form:

Ĥ = −J
∑

<i,j>

b†i bj +
∑

i

(εi − µ) n̂i +
1
2

U
∑

i

n̂i(n̂i − 1) , (2.49)

where the operator n̂ = b†i b
†
i gives the number of particles occupying the i-th site. The

parameters U and J correspond to the on-site repulsion energy and to the tunneling
energy respectively. The on-site interaction U (see also Eq. (2.44)) depends on the
mean value of the single Wannier function corresponding to the j-th site:

U = g

∫
|w(x− jd)|4 dx , (2.50)

where g =
4π~2

m
a. This term describes the repulsive interaction of each atom pop-

ulating the lattice site with the remaining n̂ − 1. A detailed analysis of the Bose-
Hubbard model in presence of attractive interactions can be found in [106]. Since
the expression of the coupling strength g requires a point-like interaction between
particles the interaction range is very small compared to the lattice spacing, and con-
sidered the fact that the overlap between wavefunctions corresponding to different
lattice sites is very small, all terms arising from nearest neighbor sites can be ne-
glected. The tunneling of particles between adjacent sites gives a contribution J to
the total energy of the system, proportional to the overlap of the Wannier wavefunc-
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Figure 2.6: Momentum distribution of a BEC after expansion from an optical lattice,
obtained at LENS in Florence (2005). Images are taken for different lattice height s.
If the potential depth is above the critical value sc ∼ 12.5 the system looses the long
range coherence and the interference peaks broaden until they disappear in the deep
insulator regime (s = 22.5).

tion relative to two neighboring sites:

J =
∫

w(x− jd)
[
− ~

2

2m
∇+ Ulat(x)

]
w(x− jd) dx . (2.51)

The energy εj represents the energy shift induced by the inhomogeneity of the po-
tential, and can be hence evaluated as:

εj =
∫
|w(x− jd)|2Uext dx . (2.52)

The key point of the Bose-Hubbard model lays in the property of the Hamiltonian
(2.47) to admit two distinct ground-states depending on ratio U/J and correspond-
ing to two distinct phases of the system. When the interaction energy U has a value
that is much smaller than the tunneling energy J the system behaves in superfluid
way, well described by the Bloch picture reported in the previous Sections. The su-
perfluid state of a N-particle superfluid spreading over M sites is given by:

|ΨSF〉 =


 1√

M

M∑

j

b̂†j




N

|0〉 , (2.53)
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that represents a macroscopically coherent state. In this situation the phase is con-
stant all over the lattice, and this leads to the insurgence of interference peaks in
the expansion of the condensate through the lattice, acting as a grating for a matter
wave. The conjugate variable of the lattice phase, the atom number, remains on the
other hand undetermined under the effect of Poissonian fluctuations.

When the interaction is increased, or analogously the tunneling is decreased, the
system enters a phase where atoms tend to be strongly localized into each lattice
site, being the number fluctuations through tunneling processes very costly from an
energetic point of view. The system starts to behave as an insulator, rather than a
superfluid, and the phase transition obtained when U ' J takes the name of Mott
transition. In this regime where U À J the number of atoms populating a single
lattice site is perfectly determined, but the phase coherence is completely lost [8].
In the Mott insulator regime, indeed, the expansion of the condensate through the
lattice does not lead to the insurgence of narrow peaks in the density profile. If the
filling factor n̄ = N/M assumes an integer value and J → 0, the insulator ground
state is compound by M distinct condensates, each having a random phase:

|ΨMI〉(n̄) =
∏

j

(|n̄〉j) ∝
∏

j

(a†j )
n̄|0〉j , (2.54)

representing the product of local Fock states with n̄ atoms per site. In this phase,
the behavior of the system is driven by the strong coupling between atoms, whereas
no macroscopic coherence proper of a superfluid survives along the lattice. In this
situation the condensate is no more superfluid and the mean field GPE approach is
no more valid, since no macroscopic wavefunction is present. The defining property
of the gas in this phase is its incompressibility, ∂n/∂µ = 0. To understand the im-
portance of optical lattices in reaching the strong coupling regime U À J , it is useful
to extract an explicit (and approximate) form for the parameters J and U . This can
be done in the deep lattice limit s = Ulat/Erec À 1, where the localized wavefunc-
tion can be reasonably assumed as gaussian [107]. Solving the 1D Mathieu equation
(2.26) we can calculate the tunneling amplitude:

J =
4√
π

Erec s3/4 e−2
√

s , (2.55)

decreasing exponentially as the square root of lattice depth s. For the interaction
strength, the dimensionality of the system plays a relevant role. In the 3D case one
obtains:

U = 4
√

2π

λlat
aEr s3/4 , (2.56)
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this time proportional to the height of the lattice potential. The ratio of the above
quantities yields:

U

J
'
√

2π

λlat
a e2

√
s . (2.57)

From this relation it is evident that an optical lattice represents a unique and easy
tool to investigate the superfluid-insulator transition, since the relevant parameter
U/J scales exponentially as the lattice depth s: the Mott insulator regime can be
reached simply increasing the lattice beams intensity. Fig. 2.6 shows the expansion of
a condensate after a certain hold time in an optical lattice for different lattice height.
When the lattice depth is moderate the long range coherence yields to narrow Bragg
peaks in the momentum space. When s approaches a critical value (sc ∼ 12.5 in
Figure) the long range coherence drops and the interference peaks start to broaden
until they completely disappear for s = 22.5, where the deep insulator phase is
reached.

The ratio (2.57) allows a rough estimate of the critical lattice depth sc above which
the insulating phase arises:

1 '
(

U

J

)

c

=
√

2π

λlat
a e2

√
sc . (2.58)

The above calculation gives sc∼3.6 for 87Rb and sc∼4.7 for 41K if a laser with λ =
1064 nm is employed to generate the 3D optical lattice. A more accurate 3D mean-
field calculation of the ground state [105, 108, 109] gives (U/J)c = z·5.8 (with z = 2·D
the number of nearest neighbors) in the case n̄ = 1, and (U/J)c = z · 4.2 for n̄ À 1.
In the 1D case, strong deviations from the mean field predictions are expected, and
the critical value is seen to be (U/J)c = 3.6 [110]. In particular, Eqs. (2.55) and
(2.56) are obtained assuming a gaussian ansatz for the localized wavefunction. If
this assumption is released and Wannier function are rather employed, a significative
deviation from the above behavior can be obtained [111].

The schematic phase diagram of the Bose-Hubbard Hamiltonian (2.47) is reported
in Fig. 2.7, where the chemical potential, i.e. the density of the sample µ/U is re-
ported as a function of the interaction strength J/U . As we can see, different lobes
appear, corresponding to different commensurate filling factor n̄. If the mean atom
number 〈n̂〉 is exactly integer and the potential height is raised up to the value sc,
the system moves along the dashed lines and enters the Mott phase from the ex-
treme points of the lobes. In this case n̄ atoms are trapped at each lattice site the
tunneling is heavily suppressed and the phase is no more defined on the entire sam-
ple. Nevertheless, in the realistic situation in which 〈n̂〉 is not exactly integer, e.g.
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Figure 2.7: (a) Phase diagram of the Mott-Hubbard Hamiltonian. Under a critical
value of (J/U)c, and hence over a certain lattice depth sc, Mott insulator lobes appear
for different filling factors n̄. The inhomogeneity of the system induces the formation
of a shell structure with the mechanism reported in the right inset. (b) Density profile
of the sample plotted as a function of the distance from the center of the trap and of
the total atom number, leading to a different filling factor. Adapted from [112].

〈n̂〉 = 1 + ε, even for (J/U) < (J/U)c a superfluid component persists and a fraction
ε of atoms moves completely delocalized all over the lattice. If the potential barrier
is increased, the system moves along the "grazing" dotted line, which never crosses
the MI-SF transition lobe even for (J/U) → 0. In this situation, the system would
never enter the insulating phase, since the superfluid fraction would maintain a long
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range phase coherence.
Consider now the real system in which a harmonic potential is added to the pe-

riodic lattice. In this situation, the density of atoms will no more be uniform all over
the lattice, since atoms tend to accumulate in the center of the trap rather than in the
external regions. The chemical potential µ becomes hence dependent on position,
and in particular it reaches the highest value µ(0) in the center of the trap, while it
rapidly decreases as the distance from the trap center is increased. Since the mean
occupation number depend on the density, which is directly related to the chemical
potential, the most populated sites will lay in the central region. With the assump-
tion that the external potential is slowly varying on the lattice timescales, anyway,
the local chemical potential µ̃→µ(x) − εj is slowly varying and the system behaves
locally as in the homogeneous case. The spatial configuration of a Mott insulator in
this inhomogeneous case can thus qualitatively be understood with reference to the
phase diagram reported in Fig. 2.7(a). Suppose the total atom number sufficient to
reach the condition n̄ = 3 in the center of the trap. If the potential depth is increased
to a value s∗ > sc, only the portions of the cloud having an appropriate local den-
sity (and hence a proper value of the local chemical potential) will enter the Mott
insulator phase, while the remaining shells will maintain a superfluid behavior. By
increasing the distance from the trap center, the system shows several MI-SF shells
with decreasing number of atoms per site, until the density is so low that 〈n̂〉 < 1 and
the last, outer SF shell is formed. Each insulating shell has a vanishing compressibil-
ity and as a consequence a constant density. This wedding cake-like structure of the
density profile is schematically shown in Fig. 2.7(b), where the density of the atomic
cloud is plotted as a function of the distance from the trap center and of the total
atom number. It is evident that higher numbers of atoms corresponds to higher fill-
ing factors, and hence to a bigger number of shells constituting the Mott phase. The
effect of increasing the potential is to reduce the extension of the SF shells: the step-
like behavior of the density profile becomes sharper and sharper as the lattice height
is increased and the tunneling probability reduced. In the limit s →∞ the density is
exactly constant over each insulating shell and the sample is perfectly incompress-
ible, since no superfluid "pillows" are present.

A last remark on the Mott insulator phase properties. In the former part of this
Section we saw how the loss of long range phase coherence represents a clear signa-
ture of the the insurgence of the phase transition. Actually, since in optical lattices
many processes (see previous Sections of this Chapter) are responsible for a deco-
herence of the sample, an additional feature of the insulating phase can be exploited
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as a textmark of the superfluid-insulator transition. Demanding to any solid state
textbook for details on the argument, contrarily to what happens in a superfluid sys-
tem, in a Mott insulator a gap is predicted to appear in the Bogolijubov excitation
spectrum. The gap corresponds to energy of the simplest excitation allowed in the
Mott phase, that occurs when a particle is removed from a site and tunneled in to the
neighboring one. The energy cost is exactly the interaction energy U . This gap can be
revealed applying a variable potential gradient [8, 100] along one of the lattice beams
directions: if atoms are in the Mott insulator state, excitations are created only when
the potential gradient equals the energy difference of two neighboring sites, that is
U , giving chance to the pinned atoms in a certain site to tunnel to the next site and to
create a particle-hole excitation. This corresponds to the insurgence of a sharp peak
in the excitation spectrum, that is on the contrary very broad in the case the sample
is in the superfluid regime.

2.4.2 Atomic mixtures in optical lattices

In the previous Section we have seen how a BEC trapped in an optical lattice
exhibits novel and intriguing features such as the quantum phase transition from
superfluid to Mott insulator. Moreover, in the previous Chapter we discovered how
the presence of two bosonic interacting species, co-existing in an external confining
potential, spans a rich set of configurations depending on the interspecies interac-
tion strength, adjustable through an external magnetic field. It is worth to end this
Chapter remarking the importance to have a heteronuclear binary system loaded into
a periodic optical potential. For these systems, indeed, the richness of the phase
diagram opens up a wealth of insightful research guidelines, up to now relatively
unwalked, such as the study of the combined superfluidity of two different super-
fluids, or the determination of the topology of a double Mott insulator system. As an
example, a binary system provides an unique tool to build a material lattice of par-
ticles and to immerse it into a superfluid sea, with the revolutionary breakthrough
constituted by the ability to precisely control the interactions between the material
lattice and the superfluid gas. However, since the literature concerning this topic is
still debated or far away to give a simple and exhausting description of these sys-
tems in terms of experimentally accessible parameters we defer to existing theoreti-
cal works for a deeper insight on the double species phase diagram in optical lattices
[49, 50, 51, 52, 53].
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Chapter 3
The New Machine

In this Chapter I will focus on the experimental apparatus, born in a cold and
empty room nearly three years ago, whose design and construction has represented
the main work of my PhD thesis. The first year has been devoted to the development
of the whole laser sources system, to their frequency stabilization and to the realiza-
tion of the whole optical system requested to process and deliver the laser beams to
the vacuum apparatus in which atoms are trapped and cooled. In this period the
main part of the electronics necessary to control the experiment has been mounted
and tested. The vacuum system, previously projected and designed with F. Minardi,
has been assembled and completed during the second year, together with all the
magnetic fields generation system, such as coils or low current drivers. The optical
setup surrounding the science cells has been assembled in this period as well, while
the magnetic translation scheme, as well as the PC interface to the experiment have
been developed in a parallel effort. A novel kind of magnetic trap (called "milli-trap")
has been designed and tested during these years.

The system can be schematically pictured as follows: two independent bright
atomic sources (2D-MOT) generate atomic beams of 87Rb and 39K , 40K or 41K se-
lectively. The laser system is developed to allow a fast switch between the three
potassium isotopes, in order to study both Bose-Bose and Fermi-Bose ultracold mix-
tures. The two cold beams converge in a ultra-high-vacuum (UHV) cell, with large
3D optical access, and feed a multi-specie 3D-MOT, that represents the starting point
towards the degeneracy of the mixture. A snapshot of the vacuum system is reported
in in Fig. 3.1. The evaporative an sympathetic cooling of the laser cooled atoms takes
place in a novel kind of magnetic trap, previously named as milli-trap due to its
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Figure 3.1: Snapshot of the vacuum apparatus and of the optical system surrounding
the UHV cell (central zone) and 2D-MOT chambers (left and right sides). The trans-
lation stage is visible in front of the central cell. We defer to the text for a detailed
description of the apparatus.

reduced extension (Sec. 3.4). The main feature of this trap is to be directly inserted
in vacuo, hence requiring only few tenth of watts as current power to deliver the
requested magnetic confinement, and to let a conspicuous 3D optical access to the
science region. This trap shows the advantages of the tightest magnetic traps, i.e.
the micro-chip traps, avoiding at the same time the disadvantages constituted by the
non-3D optical access these traps provide. Test and simulations on the milli-trap can
be found in Sec. 3.4. Since the 3D-MOT and milli-trap centers are not coincident,
the quadrupolar magnetic field coils used to pre-load atoms in a purely magnetic
environment after the MOT phase are mounted on a remotely controlled brushless
translation stage, whose 3 cm travel connects the "milli-trapping" region to the MOT
zone.
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3.1. The Laser System

3.1 The Laser System

The development and experimental achievement of laser cooling and magneto-
optical trapping (MOT) techniques, first studied in the ’70s and then demonstrated
in the late ’80s [114, 115, 116, 117, 118] have represented the first feasible doorway
to ultra-low energy physics, opening the way to cool dilute atomic samples to tem-
peratures of the order of few recoil temperatures TR = ~2k2/kBm (∼ 350 nK for Rb).
The further milestone placed along the road of quantum manipulation of degener-
ate atomic ensembles is represented by the innovative evaporative cooling technique
[119], taking place once atoms have been laser-cooled and held in a purely mag-
netic trap, thus avoiding all the heating mechanisms induced by the presence of the
laser field. This evaporative stage allows a net increase in the density of the sample,
whose diluteness would prevent any transition to Bose-Einstein condensate (BEC).
The combination of these cooling techniques paved the way towards the reaching of
quantum degeneracy in atomic dilute alkali gases, namely to BEC in dilute vapors,
which brought to the assignment of the 2001 Nobel Prizes in Physics [1, 2].

3.1.1 Potassium and Rubidium: where’s the real difference?

In Fig. 3.2 the levels diagrams for the bosonic isotopes of Rb and K are shown. As
one can see from these diagrams, the level structure is similar for the two elements,
since both have nuclear spin I=3/2. The D2 line links four hyperfine P states excited
states to two low-lying S states, and the selection rules, since the angular quantum
numbers are the same, are identical. This leads to identical allowed hyperfine tran-
sitions for both atoms. The natural linewidth is 6.0 MHz for 87Rb and 6.2 MHz for
K.

The cooling transition used for both atoms is the |F = 2〉 → |F ′ = 3〉, being the
only ideally closed transition present in the D2 structure. Nevertheless, the presence
of a multiplet structure in the lower fine states unhinges the possibility to obtain a
working MOT using only one transition: this is due to the fact that the presence of
off-resonance contributions |F = 2〉 → |F ′ = 2〉 and |F = 2〉 → |F ′ = 1〉 would
readily deplete the starting |F = 2〉 level, filling the |F = 1〉 ground state. This obsta-
cle can be overwhelmed adding an extra beam tuned slightly below the |F = 1〉 →
|F ′ = 2〉 transition, whose purpose is to refill continuously the |F = 2〉 level. For this
reason this laser light is called repumping. Usually, for alkali atoms such as rubid-
ium, the power needed for the repumping transition is much lower than the cooling
power, since off-resonant terms give a transition probability some orders of magni-
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Figure 3.2: Atomic levels diagrams for 87Rb and K bosonic isotopes. In the upper
part natural abundances are reported. δ1 and δ2 are the frequency detunings relative
to rempumping and cooling transitions respectively. Figure is not to scale.

tude smaller than the cooling term. The situation is completely different for bosonic
potassium, where the tight hyperfine 42P3/2 level spacings are comparable to the
natural linewidth Γ. In this case, the cooling transition |F = 2〉 → |F ′ = 3〉 is far to
be closed since the |F ′ = 1, 2〉 states are excited with similar rates. A fast depletion of
the |F = 2〉 ground state towards the |F = 1〉 ensues, the repumping light needs to
be fairly intense and the cooling force arises from both frequencies [120]. Hence, the
distinction between cooling and repumping light makes no more sense. However,
according to a widespread convention, we call repumping and cooling the transitions
indicated respectively by ω1 and ω2 in Fig. 3.2. Moreover, while for 87Rb all the D2

hyperfine transitions are separated and clearly distinguishable by means of ordinary
saturated absorption spectroscopy, for bosonic potassium the lines connecting one of
the two possible starting levels, i.e. the 42S1/2 F = 1 or F = 2 level, with the tight
42P3/2 excited level are melted in a unique broad transition profile, and excited F ′

states can be no more distinguished from each other.
This different quantitative structure of potassium makes its cooling really harder

and more dependent on fine frequency tuning if compared to that of Rb. The differ-
ence, already evident in the study reported in in Ref. [120] for a 3D-MOT, becomes

60



3.1. The Laser System

Figure 3.3: Snapshot of laser sources breadboard.

absolutely striking for a 2D-MOT system, realized and characterized for bosonic
potassium isotopes for the first time in this thesis work (see Chap. 4).

3.1.2 Laser sources: lights on!

The laser sources system has been projected and realized entirely during my fist
year of Ph.D. thesis. As seen before, we need four different frequencies, two for the
rubidium and two for potassium.

Rubidium

Both repumping and cooling lights are generated by solid state diode lasers in
hand-made external cavity. The radiation coming from a Sanyo DL7140-201 Diode
Laser is collimated by a large aperture aspherical collimator (Thorlabs C330TM-B,
f=3.1 mm, NA=0.68), then sent on a holografic diffraction grating (Edmund NT43-
774, 1800 groves/mm) machined for UV radiation. In this Littrow configuration,
the -1 order of diffraction is injected back into the diode laser facet with an effi-
ciency below 10% to narrow the emission linewidth. An IR grating would inject
too much power back into cavity, hence limiting the output power of the extended
cavity and damaging the solid state junction even for current values well within the
normal free-running operating range. The large number of groves per mm in the
grating gives a high frequency selectivity to the diffracted order. In this way we
obtain an output of ∼20 mW with an estimated linewidth of few hundreds kHz for
both repumping and cooling cavities. The wavelenght is coarse set by regulating
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with a precision screw the angular position of the grating, while the fine tuning is
obtained either by moving the current and the grating position by a piezoelectric ac-
tuator fixed besides the grating holder. The piezo gives thus the possibility to send
a feedback to the cavity and hence to stabilize the laser frequency. While the out-
put power, in the case of Rb, is fully sufficient for the repumping light, the cooling
transition light needs to be amplified by means of a commercial Tapered Amplifier
(Toptica TA-100), with 0.5 W nominal output power. This device exploits the par-
ticular funnel-like structure of a diode junction to enhance the injection light power
with gain up to 30 dB, preserving its main spectral features as central emission and
linewidth. The output power we obtain is ∼600 mW.

The frequency stabilization is obtained withdrawing a small fraction of output
power directly from the extended cavities and sending it through a temperature con-
trolled absorption cell filled with Rb vapors. For saturation spectroscopy we have
chosen the modulation transfer scheme: in this scheme only the pump beam is pro-
cessed by a double passage Acusto-Optical Modulation (AOM) stage. The frequency
shift of the pump beam is 2δ, δ being the AOM induced frequency shift, while the
effective locking point frequency shift is δ. The saturated absorption signal is re-
vealed by inversely polarized standard photodiodes, and the signal is processed by
a custom lock-in amplifier to obtain a first derivative dispersive signal. A custom
proportional-integral servo amplifier (PI controller) then processes the signal, and
finally the feedback signal drives directly the piezo actuator to frequency stabilize
the cavity.

The cavity output light is locked 168.8 MHz below the |F = 2〉 → |F ′ = 3〉
transition for the cooling radiation, while is locked 77.7 MHz over the |F = 1〉 →
|F ′ = 2〉 line for the repumping light.

Potassium

As shown in the previous Section, potassium bosonic isotopes require a much
higher optical power to achieve an effective cooling process. This reason hinders to
use, even for repumping light, a commercial diode laser alone to generate the re-
quired light. For this reason, in our setup, the repumping light is generated by a
commercial Grating Stabilized Tapered Amplifier from Toptica (DLX-110). The first
version of this device has been upgraded to the so called RockSolid version, since
a high environmental acoustic noise dependence of output beam parameters was
found in the former. This device exploits the spontaneous broadband back-emission
of a tapered amplifier, diffracting it on a grating and reinjecting the -1 order, such as
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Figure 3.4: Laser frequency locking data and scheme for both 39K and 41K . The
reference lines are chosen in the 39K D2 line spectrum. The gray circles in the figures
represent the reference line in the 39K spectrum.

the standard Littrow configuration does. The radiation is therefore frequency nar-
rowed and is amplified by the chip itself. To reach the lasing region of the cavity, the
output facets of these chips should be more reflective than those of common tapered
amplifiers. These feature reduces the maximum output power of the chip if com-
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pared to the simple tapered amplifier configuration. The DLX can deliver an output
power to 550 mW and has 1 MHz linewidth. Part of the output power is withdrawn,
processed by a multiple passage AOM stage and injected into a hand-made tapered
amplifier. In this way the repumper laser source acts as master oscillator for cooling
light as well. The tapered amplifier chip (EagleYard EYP-TPA-0765) is optimized for
potassium wavelenght of 767 nm, and is capable to deliver, working at a current of
2.5 A, an output power of 1.3 W with a mode-matched 12 mW input. Actually, since
the multiple passage AOM stage deteriorates the DLX beam quality (that actually is
very poor ab-initio, M2 ∼ 1.6), the actual value for the TA output power is 900 mW.
The copper base supporting the chip has a very good thermal conductivity to flow
away the conspicuous dissipation coming from the chip. The input and output colli-
mation stages are identical to those used in the external diode laser cavities, and are
solidly glued to the base, without any regulation stage, to avoid any possible drift in
time of the beam output characteristics.

The multiple passage AOM stage that shifts the repumping laser main frequency
to the right value for the cooling light is suitable for both 39K and 41K isotopes, pro-
vided the frequency value and the number of passages are changed. The AOMs
configuration has been devised with the requirement that no optical components or
AOMs need to be replaced or moved to switch between the isotopes. Furthermore,
in this novel scheme, only the repumping laser has to be frequency locked, and only
one set of stabilization electronics is needed. In Tab. 3.4 frequency locking details for
both isotopes are reported. The frequency stabilization is realized exactly as for ru-
bidium, hence through modulation transfer saturated absorption spectroscopy. Both
39K and 41K are locked on a 39K transition, being the most abundant isotope in the
natural composition of potassium (see. Fig. 3.2). The locking point, as anticipated
before, can be chosen relying only on the 42S1/2 |F = 1, 2〉 → 42P3/2 mean tran-
sitions, being the upper level structure spacing comparable to the linewidth Γ. In
Fig. 3.4 details of the laser frequency locking are reported for both 39K and 41K .

3.1.3 Main Beams Processing and Fibers Launching

The six main beams obtained in this way have still to be split to create the suf-
ficient number of beams for the science cells, and tuned in frequency to reach the
right working values, lying between the resonance and some Γ of red detuning de-
pending on the purpose of the single specific beam. This is obtained through a series
of 12 double-passage AOM branches (see the picture in Fig. 3.5, 4 for rubidium and
8 for potassium. This system gives both frequency and amplitude remote control
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Figure 3.5: Snapshot of AOM branches processing and splitting the six main cooling
and repumping beams.

possibility on every beam utilized in the experiment. For Rb we use 80 MHz AOMs
(Crystal Technology 3080-122, 1 W RF power), while for K we employ 200 MHz
AOMs (Crystal Technology 3200-124, 2 W RF power). All the AOM branches are set
in the "cat’s-eye" configuration, to reduce any possible deflection of the beam once
their frequencies are changed.

Differently from the case of Rb, where the use of the same repumping frequency
ω1 for 3D and 2D MOTs (see Sec. 3.2.1 and Sec. 3.2.4) is not affecting the quality of
the cooling process, the trapping and cooling of K requires a more specific control of
the beams frequencies. In particular, the 2D and 3D cooling schemes require differ-
ent detunings even for repumping light, hence increasing the necessary number of
beams. For this reason, the AOMs employed for rubidium are 5, i.e. only one for the
repumping beam, while for 39K and 41K we have a completely symmetrical situation
(4+4) between cooling and repumping AOMs.

Once all beams have been prepared each exiting from an AOM branch, they need
to be properly overlapped and mixed with the right polarization to be launched in a
fiber system and transferred to the second table. This system is compound by 7 dif-
ferent fibers (OZ Optics PMJ series, core PANDA, 80 µm cladding), and three of them
have to bring 4 different frequency components (2 for Rb and 2 for K), maintaining
anyway their incoming polarizations. Since every fiber has two specific polariza-
tion maintaining axes, i.e. the fast and slow one, this requires to employ particular
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Figure 3.6: Schematics of the optical setup realized during the thesis work. Red lines
represent the Rb system, blue lines the K system, while purple ones indicate the
mixed frequency (Rb+K) parts.
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Figure 3.7: Sketch of a 1D-MOT. A two level atom is in the central region, where two
anti-Helmholtz coils generate a linear field. Two laser beams with opposite polariza-
tion are shone along the horizontal direction.

dichroic polarizing λ/2 plates, custom made by LENS-Optics GmbH, with the pe-
culiarity to act only on the 767 component of the light, leaving untouched the Rb
beams polarization. Their purpose is more clear with reference to Fig. 3.6, where the
schematics of the whole beam splitting optical setup is sketched.

3.2 Magneto-Optical Traps

This kind of trap is based on both laser and magnetic fields, whose particular
combination gives the net effect to transfer the kinetic energy of room temperature
atoms to the electromagnetic field through spontaneous emission processes. The
resulting global force acting on an atom moving with velocity v at a distance |x|
from the zero magnetic field point has the form F = −γv − kx, that is the sum
of a dissipative plus a conservative harmonic term. This force has the capability
to cool and confine atoms entering the magnetic+laser field region. The working
principle of a MOT can be understood considering a two level atom with |F = 0〉
ground state and |F = 1,mF = 0,±1〉 excited state, moving away from center of
a quadrupolar magnetic field B = bx. This situation is depicted in Fig. 3.7 for the
1D case. The linear field is commonly obtained using two coils placed in a anti-
Helmholtz configuration, so that we can consider with good approximation the field
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as linear in the central region. Two counterpropagating red detuned1 laser beams
with opposite polarization are shone in this region along the flight direction. The
Zeeman energy shift EZ(x) of atomic levels corresponds to zero for the ground state,
while is EZ(x) = µBgF mF B(x) for the excited state sublevels, µB and gF being the
Bohr magneton and the upper level Landé factor respectively. In this configuration,
an atom leaving the center of the MOT will preferably receive a momentum kick
from the laser beam propagating in the opposite direction, since it is red detuned
and the selection rules allow the transition towards the downward shifted excited
level. This has the effect to reduce the velocity of the atom of an amount ~kL/m,
where kL is the wavevector of the laser. If the transition as in our case is closed,
many absorption cycles will take place, so that the stochastic photon re-emission
processes will average to zero the velocity variations along all the three directions.
The velocity of the atom along the x direction will progressively decrease until the
particle will invert its motion. The atom will cross the center of the MOT, and again
it will prefer to absorb photons coming from the counterpropagating beam, again
slowing down the particle. Due to its dissipative term, the force will drive the atom
closer and closer to the center of the MOT with a damped oscillating trajectory, with
the net effect to cool and store atoms near the central region of the trap. We can
generalize this reasoning to all the three directions, and obtain the stationary state
balancing the MOT force with the scattering pressure coming from the re-emission
precesses involving the the other atoms. The typical fluorescence coming from atoms
stored in a MOT represents the energy the trap is subtracting to the atomic sample.
Typical temperatures of a MOT are of the order of 100 µK, or of the order of a few µK
if the hyperfine structure of the atom allows a strong sub-Doppler cooling process.

The line structure of the atom will obviously influence the behavior and the effi-
ciency of the MOT. In particular, the assumption to work with perfectly closed tran-
sitions is hardly adequate for the major part of the employed elements.

3.2.1 The 2-Dimensional MOTs (2D-MOTs)

Our set-up is designed to generate independently two bright cold atomic beams
of 87Rb and 39K (or 41K ), both exploiting a 2-dimensional trapping and cooling
scheme. In the last years, two-dimensional magneto-optical traps (2D-MOTs) of
87Rb have been investigated by several groups [121, 122]. While this technique is
well established in the case of 87Rb , an extensive study of a 2D cooling scheme in

1Hereinafter we will use the convention to call red detuned a radiation if ωrad < ω0, the latter being
the resonance frequency of the considered atom.
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the case of K was not present before this thesis work was completed.
An intense and reliable source of cold atoms represents a favorable starting point

for every degenerate mixture experiment, but since ultracold atomic samples life-
times are really dependent on the background gas pressure, a single 3D-MOT sys-
tem directly loaded from background vapor pressure does not represent an optimal
environment to reach degeneration of atoms. A net improvement is obtained if an
extra 3D-MOT is added in a ultra-high-vacuum (UHV) region of the apparatus, con-
nected to the high pressure zone by a narrow pipe with limited conductance. If a
beam, usually called push beam, is properly shone along the line connecting the
high-pressure to the low-pressure 3D-MOT centers, a high flux of cold atoms can be
extracted from the former and driven to feed the UHV 3D-MOT without increasing
the low background pressure, provided the small pipe and the pumping system are
able to maintain a good differential vacuum between the two regions. Ordinary BEC
experiments are based on such double 3D-MOT system [123], where the first high
pressure MOT has the only function to load a second UHV MOT. Anyway, this 3D-
3D loading scheme generates typical atomic fluxes of 107÷108 atoms/s, and several
tens of seconds are required to load the second MOT to a typical size of 109 atoms.
On the other hand, 2D-MOTs represent one of the brightest sources of slow atoms,
providing fluxes up to 1010 atoms/s for 87Rb . Since the 2D-MOT scheme provides
high atomic flux through a small aperture between the two chambers, it appears per-
fectly suited for loading an ordinary 3D-MOT in UHV environment. This motivation
led us to choose 2D-MOTs as atomic sources for our apparatus.

3.2.2 Principle of operation: only the coolest!

The 2-dimensional trapping and cooling mechanism follows the same guidelines
of the 3-dimensional scheme. To understand qualitatively the behavior of a 2D-MOT
(see Chap. 4 for a more quantitative description), let’s consider a standard 3D-MOT,
and suppose to remove one of the three counterpropagating beams pairs, say the
one lying along the z direction. In this situation, no cooling mechanism is present
along the free z direction. Thermal atoms will therefore maintain their initial velocity
vT along this direction (densities in an ordinary MOT are not sufficient to give rea-
sonable cross-dimensional thermalization rates), and after a certain time tc (strictly
depending on the velocity class they belong to and hence on vT ) they will escape
from the volume, since the MOT magnetic gradient (usually ∼10 G/cm) is too shal-
low to confine room temperature particles. Atoms entering the beams region will
be cooled along the xy plane exactly for a time tc. Let’s now imagine to stretch the
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Figure 3.8: Schematics of the 2D-MOT system designed to provide bright atomic
fluxes for both Rb and bosonic K in our experiment.

MOT beams and the quadrupole field along the z direction, and to place at a certain
distance on the z axis a small diaphragm with diameter d. Atoms entering the MOT
region will now be cooled along the xy plane for a time t′c < tc, and will fly towards
the diaphragm with velocity vT and residual transverse velocity spread σxy. The
only atoms flying through the diaphragm will be the ones whose velocity vT is so
small to give them a sufficient cooling time tc to reduce the transverse spread, in such
a way their extension will be smaller than the hole diameter d. Strictly speaking, for
this reason a 2D-MOT acts like a temperature reducer along the xy plane, and only
as a velocity selector along the z direction, allowing only the coolest atoms to pass
through the small aperture.

3.2.3 Our 2D-MOTs

In our system the 2D-MOT chambers for K and Rb are perfectly identical, and,
if not specified otherwise, we will hereafter describe the common details of the two
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2D systems. The 2D-MOT set-up is schematically reported in Fig. 3.8. Four rectan-
gular 80×35 mm BK7 antireflection coated windows, providing optical access to the
four transverse trapping beams, are glued on a metallic rectangular frame, machined
from a titanium block. The bi-component epoxy glue (Aremco 631C) is a commercial
product, specially designed to be employed in UHV environment, whose thermal ex-
pansion coefficient is very similar to the coefficient of he BK7 glass. For the chamber
structure, titanium was preferred over stainless steel for its lower thermal expansion
coefficient, closer to the value of BK7 glass [124]. This is devised to avoid as far
as possible any mechanical stress on the glass windows. If mechanical stresses are
present, heavy vacuum losses would be induced even for small temperature varia-
tions. The rear part of the chamber is designed to hold five standard CF-35 flanges,
to connect the ion pumps (Varian Diode Cell 20 l/s, one per chamber), the current
feedthrough for dispensers (see below) and a glass window to give optical access
along the longitudinal z direction. The atomic vapor is released in natural abundance
for both Rb and K by dispensers (SAES Getters), whose regulated injection current
controls the pressure in the 2D-MOT chambers from vapor pressure up to some 10−7

mbar (see Sec. 4.1.3). In the actual working regime, dispensers operate in DC mode
and, especially for Rb, the stabilization of the pressure is reached only after a quite
long period (∼1 h) from the initial ignition. This is due to a non negligible heating of
the vacuum system part surrounding the dispensers current feedthrough, leading to
a vapor outgassing from the chamber walls that increases with the dispensers tem-
perature. Better stabilization would be obtained by stabilizing the chamber walls
temperature as well. For this reason our 2D-MOT loading regime can be defined as
combined, since atoms entering the cooling region are fed both by the dispensers
and the outgassing from overheated chamber walls. The front part of the chamber is
equipped via a CF-16 connection providing access to the UHV region.

Two pairs of retroreflected laser beams with σ polarization are shone orthogo-
nally on atoms along the x and y directions, and intersect in the center of the cell.
The shape of the beams is elliptic with a 3:1 aspect ratio. This is realized through
a pair of confocal cylindrical lenses (f=-50 mm and +150 mm respectively), which
stretches the beam waist along the horizontal direction of a factor 3, leaving un-
touched the vertical waist, starting from a standard 1" optics aperture limited beams
set. The retroreflection is done after a λ/4 waveplate to reverse the backpropagating
beam polarization in order to fulfil the proper MOT cooling scheme (see Sec. 3.2.2).

The magnetic quadrupole field is obtained through a pair of anti-Helmholtz rect-
angular coils, surrounding the protruding edges of glass windows, wired by em-

71



3. THE NEW MACHINE

Figure 3.9: Sketch of the main titanium structure constituting the 2D-MOT chamber.
The red part represents the hollow mirror housing and the CF-16 connection to the
UHV chamber.

ploying a 1 mm× 3 mm copper wire and gluing the loops on an aluminum support
directly fixed on the vacuum system. This shape gives a cylindrical symmetry along
the z axis to the magnetic field, required by the 2D-MOT scheme. The currents on
each coil are independently regulated by linear current generators (CEP 03LD15B),
so that they can be unbalanced to match the vertical alignment of the quadrupole
field with the laser field. This current balance is found to be very critical for the
optimization of the flux: current drifts of the order of ∼5% can heavily deplete the
atomic beam especially in the case of potassium. The typical transversal magnetic
gradient is ∼17 G/cm for a 5 A current, while the longitudinal gradient is ten times
smaller and will be neglected in the following. Coils are air cooled.

The atomic flux obtained using a 2D-MOT can be heavily enhanced if a proper
laser beam is shone through the rear glass windows along the z direction towards
the UHV region (see Sec. 4.1.4). This laser beam, whose waist is 1.5 mm, is called
push beam.

A metallic mirror, tilted 45◦ with respect to the longitudinal axis, is placed near
the end of the 2D-MOT chamber and close to CF-16 exit tube. A 1 mm hole is drilled
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3.2. Magneto-Optical Traps

at the center of the mirror to let the atoms exit the 2D-MOT chamber. This mirror
allows us to send a hollow beam along the z direction, counterpropagating with
respect to the atoms and obtained simply inserting a horizontal beam from a side
window, so that, if necessary, we can turn to a 2D+-MOT configuration [121]. Ac-
tually, as explained later, we found convenient not to shine this hollow beam, since
no particular flux enhancement is observed when the beam is on. The mirror is ma-
chined polishing a simple stainless steel disk. The reflectivity of the mirror is ∼0.5
at λ=780 nm. The small hole in the mirror, then, acts as a diaphragm for atoms,
necessary to give thermal selectivity along the z direction to the 2D-MOT system.
Again, the hollow mirror has the fundamental purpose to reduce the conductance of
the connection between the 2D and UHV chambers, so that an efficient differential
pumping scheme can be established (see Sec. 3.2.4). A vertical resonant laser beam
(plug beam) is shone in in front of the hole when the atomic flux has to be shuttered,
e.g. when time-of-flight tests on the 2D-MOTs are performed (Sec. 4.1.1).

The 2D and UHV chambers are connected via a 10 cm long flexible stainless steel
CF-16 bellow, whose main purpose is to absorb the mechanical stresses between the
chambers. In order to increase the differential pumping ratio, inside the bellow are
placed three graphite tubes of increasing inner diameter (6-8-10 mm respectively).
Their diameters are chosen as the smallest still not limiting the solid angle defined
by the center of the 2D-MOT and the hole in the metallic mirror. An in-line valve
(Meca2000) is inserted to physically separate, in case of partial bake-out of the vac-
uum system, the 2D and UHV regions.

3.2.4 The 3D-MOT and the UHV chamber

The 3D-MOT is realized in a steel chamber designed to give a large optical access
all over the three directions for MOT, imaging and optical dipole traps beams. The
height of the chamber is 90 mm, while its outer diameter is 180 mm. The schematic
drawing is reported in Fig. 3.10. The main horizontal viewports are antireflection
coated glass windows with a clear diameter of 130 mm, allowing for vertical MOT
beams and vertical high resolution imaging beam. The vertical MOT windows are
held by standard CF-35 flanges and have a clear aperture of more than 1". Two ad-
ditional CF-35 flanges are placed along the symmetry axis of the cell. One of them
connects the UHV region to a 55 l/s ion and to a Ti sublimation pump, leaving a lon-
gitudinal wide optical access. The other one is used to insert and hold the milli-trap
system (see. Sec. 3.4), providing at the same time optical access along the longitudi-
nal direction, which is used to shine horizontal imaging and dipole trap beams. The
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Figure 3.10: Schematics of the vacuum apparatus (top view). In the center there
is the large optical access UHV cell in which the combined 3D-MOT is generated.
The expansions of the milli-trap are visible in the lower part of the UHV cell. On
opposite sides two independent 2D-MOT chambers for Rb (left) and K (right) are
shown, together with their connections to the central chamber. The shaded areas
represent the optical accesses through the UHV chamber. Vertical beams and the
magnetic translation stage are not shown.

MOT and magnetic trap centers are displaced by 25 mm, in such a way the milli-
trap expansions don’t interfere with the horizontal MOT beams. For this reason,
either the horizonal transverse lattice beams, shone through two additional CF-16
windows, and the vertical imaging beam are displaced from the center of the cham-
ber to intersect the atom cloud in the center of the milli-trap. This is the reason for
the very large diameter of the horizontal viewports.

The magnetic field for the MOT (see. Sec. 3.5) is generated by means of a pair
of copper wired coils (wire section 1 mm × 3 mm), fixed on an aluminium water-
cooled plain heatsink, with a 65 mm radius and a 40 mm clear aperture to provide
vertical optical access to the chamber (see Fig. 3.19). This structure can be smoothly
moved towards the milli-trap and hence gives the capability to magnetically trans-
port the atoms from the MOT to the magnetic trap. The vertical magnetic gradient is
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39

K

41

K

Cooling Beams

45

43

23

22

87

Rb 40 6.0

Detuning [ ]d G2

Repumping Beams

Power [mW] Power [mW]

- 2.8

- 3.0

- 1.0

- 0.5

- 7.5

- 4.0

Number of
Atoms

3 10x

9

1 10x

7

3 10x

6

Detuning [ ]d G1

Table 3.1: Experimental parameters optimizing the 3D-MOT for 87Rb and both
bosonic isotopes of K

∼15 G/cm for a 4 A current.
The MOT beams, contrarily to the 2D-MOT case, are not retroreflected: to reach a

finer optimization, in the 3D case we split the main cooling and repumping beams in
six beams whose polarization can be independently controlled by λ/4 waveplates.
The four frequencies for Rb and K, as said before, are brought to the UHV chamber
by the same fiber, and consequently split by the same optical elements. This method
gives a practically perfect alignment between the Rb and K beams, hence simplifying
the task of overlapping the cold atomic clouds in the MOT. The fine overlapping
of the MOTs is obtained regulating the micrometric waveplate rotators acting on
the UHV beam splitting system (see Fig. 3.6). In this way one can exactly overlap
the two MOTs slightly unbalancing the relative intensity of the beams. Table 3.1
summarizes the optimal parameters found for 87Rb , 39K and 41K 3D-MOT, and the
typical number of atoms. Detunings δ1 and δ2 (see Fig. 3.2) are expressed in units of
linewidth Γ.

The presence of external fields like the magnetic field of the earth is balanced
by three set of remotely controlled Helmholtz-like coils, called shim coils, giving a
uniform field near the center of the UHV cell.

3.3 Purely Magnetic Trapping: lights off!

After the pre-cooling MOT stage, where temperatures of the order of 100 µK are
reached, atoms have still to gain a factor 108 in their phase-space density to reach
quantum degeneration. A way to avoid the heating of the atomic sample natu-

75



3. THE NEW MACHINE

rally induced by multiple light scattering is to load atoms in a purely magnetic trap,
where no atom-photon processes take place. Lifetimes of magnetic traps are gener-
ally very long, and this is a fundamental requirement for a final evaporative cooling
phase. The magnetic trapping of an atomic sample was firstly demonstrated for a
Zeeman-slowed sodium beam [125]. This trapping technique relies on the position-
dependent Zeeman magnetic shift induced on atoms by an inhomogeneous mag-
netic B(r) field. If the field variations felt by an atom are slower than the Larmor
precession time, i.e. if

1
B

∣∣∣∣
dB

dt

∣∣∣∣ ¿
µBB

~
= ωL, (3.1)

the magnetic dipole of the atom will adiabatically align to the field, and the magnetic
interaction energy can be written as:

U(r) = −µ ·B(r) = µBmF gF |B(r)|, (3.2)

where µB is the Bohr magneton, |F,mF 〉 is the hyperfine atomic state and gF is the
hyperfine Landé factor. As a first consequence, atomic states for which the product
mF gF is positive are "low-field seeking", and hence will be trapped in a minimum
of the external magnetic field. Before loading a magnetic trap, atoms are optically
pumped into the specific sublevel by a short light pulse with a specific σ polarization.

The simplest B field configuration having the capability to confine atoms is the
quadrupole configuration, obtained, as explained in Sec. 3.2, using the two MOT
coils. As we will see below, anyway, this field doesn’t allow the degeneration of the
sample, since it is completely inadequate to hold atoms at very low temperatures.

To circumvent this problem, a widely used magnetic trap configuration is the
Ioffe-Pritchard one [126, 127], where a harmonic potential is generated near the cen-
ter of the coils system. Beyond the quadratic dependence of the field on position,
the IP configuration mainly differs from the quadrupolar one by the presence of
an overall bias field B0 preventing Majorana spin-flip induced trap losses (see next
Section). Lots of different conductors arrangements (QUIC [128], cloverleaf [129],
baseball [130]) provide the same IP field near the center of the trap. In our system,
this IP configuration is obtained by means of the novel milli-trap system described
in Sec. 3.4.

3.3.1 The quadrupole field

For small distances x from the center of the system, where the field has zero value,
this configuration gives a linear behavior of the B field along the three directions,
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B(x, y, z) = b(x + y − 2z). The trapping potential results:

UQ(x, y, z) = µBmF gF b
√

x2 + y2 + 4z2. (3.3)

The main disadvantage of this kind of trap is the presence of a zero in the field
for x = 0, where the Larmor frequency ωL diverges and the adiabaticity condition
(3.1) is not fulfilled. This leads to a high trap losses rate due to Majorana spin-
flips [131], exponentially increasing as temperature decreases, and hinders the cre-
ation of ultracold samples directly in a quadrupole trap. On the other hand, an
intense quadrupole field can be obtained simply using the MOT two-coils set, and
gives a simple way to compress the atomic cloud cooled in the MOT to match the
magnetic trap size where the evaporation will take place. Indeed, the extension of a
MOT for a given temperature T , a given magnetic field gradient ∇B and a certain
number of atoms N can be really different from that of a magnetic trap. In our case,
the typical size of the MOT is ∼1 mm, while in the same conditions the milli-trap
potential has an extension of 10×100 µm. These different extensions can be matched
by an appropriate quadrupole compression before inserting the atoms into the milli-
trap (see below). The quadrupole current matching our 3D-MOT dimensions can be
estimated equating the measured size of the MOT to the theoretical RMS width of
the cloud trapped in a quadrupolar field:

σ2
Q(T ) =

∫
x2exp[−β( p2

2m + UQ(x))]d3pd3x∫
exp[−β( p2

2m + UQ(x))]d3pd3x
, (3.4)

where we used the expression (3.3) for the magnetic energy. Factorizing the p de-
pendent terms we obtain:

σ2
Q(T ) =

∫
x2exp[−β(µBmF gF b

√
x2 + y2 + 4z2)]d3x∫

exp[−β(µBmF gF b
√

x2 + y2 + 4z2)]d3x
. (3.5)

From an analytical evaluation of this expression we obtain

σ2
Q(T ) =

4(kT )2

(µBmF gF )2 b2
. (3.6)

This expression gives the possibility to estimate the matching current, that in our
experimental conditions is found to be 20 A. After the MOT phase, hence, a current
boost (see next Section) raises the current from 4 (MOT value) to 20 A, in such a way
the atomic cloud is transferred into the quadrupolar field without heating. A 500
ms adiabatic ramp, then, brings the quadrupole current to 65 A, compressing the
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Figure 3.11: Schematic drawing of the Ioffe-Pritchard trap scheme. Four bars are
generating the quadrupolar field, while the two coils give a bias field.

sample to reduce again its extension before transferring the sample into the milli-
trap. The field has a cylindrical symmetry along coils axis, and the vertical gradient
is 260 G/cm, while the horizontal is 130 G/cm.

Even though no BEC degeneration can take place in a purely quadrupolar mag-
netic trap, this kind of potential can be used to match the transfer of atoms from
the MOT to the milli-trap and to obtain an efficient magnetic transport scheme (Sec.
3.5.3).

3.4 The Milli-Trap

This novel trapping geometry, that is a direct evolution of the one presented
in [132], substantially mimics a Ioffe-Pritchard field configuration. Extensive tests
on this trap are reported in this Section.

The core of this device (Fig. 3.12) is machined out of an oxygen-free copper cylin-
der (9.0 mm external diameter and 17.0 mm height). Along the z axis a 5 mm clear
hole is drilled to provide longitudinal optical access, while four 45◦ radial slits give
radial optical access to the center of the structure and create the characteristic four
lateral quadrupole bars, typical of a Ioffe-type trap. Both ends of the trap have a
semicircular shape to provide an overall bias field B0, mimicking the function of
the two Helmholtz coils of Fig. 3.11. The upper part of the milli-trap is bound by
a particular brazing procedure to 300 µm thick copper routes etched on a ceramic
chip. A 4 mm diameter hole in the center of the chip provides longitudinal optical
access to the trapping region. The negative pole of the chip is in electrical contact
from the rear side with a copper tube. The positive pole of the trap is connected
to the external power supply by a copper via inserted into the chip and brazed to
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Figure 3.12: Schematic drawing of the milli-trap inserted in our system.
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the base of another copper tube, coaxially inserted inside the first. Both tubes are
welded to vacuum connections by a Kovar-ceramic soldering. The inner copper tube
is holding a CF-16 glass viewport, while the outer is fixed to a CF-35 flange block-
ing the entire trapping system to the vacuum apparatus. Current is fed wiring the
copper terminals exiting from the vacuum system. The impedance of the milli-trap
expansions is 1.5 mΩ, while the impedance of the whole electrical circuit is 40 mΩ.
For a 95 A working current, the required power is less than 400 W, mainly sinking
on connection cables and MOSFETSs, and not directly on the in-vacuo parts. This
is a fundamental feature of the milli-trap system, since ordinary off-vacuum mag-
netic traps require 1÷5 kW as standard driving power to obtain the same confining
strength (see below).

The intrinsic bias field B0 can be adjusted by controlling the current intensity
flowing in an external bias coil, generating a longitudinal uniform field B′

0. This bias
coil is a 90 loops square coil with a side lenght of 25 cm, and is orthogonal to the z

axis, placed 4 cm away from the center of the trap.
The magnetic field generated in the central region of the milli-trap has the Ioffe

form and can be expanded to the second order of multipoles in cylindrical coordi-
nates:

|B(z, ρ)|2 =
(

(B0 + B′
0) +

1
2
B2z

2

)2

+ (B1ρ)2, (3.7)

where B′
0 is the bias coil uniform field, B1 and B2 are the first and second order

terms of multipoles expansion, and B0 is the intrinsic bias field of the trap for r=0.
B0, B1 and B2 depend on the current I . For

z2 ¿ 2
(

B0 + B′
0

B2

)
ρ2 ¿

(
B0 + B′

0

B1

)2

(3.8)

the trap field is harmonic and has cylindrical symmetry:

|B(z, ρ)| = (B0 + B′
0) +

(
B2

2

)
z2 +

(
B2

1

2(B0 + B′
0)

)
ρ2. (3.9)

Near the center, hence, atoms will follow oscillatory trajectories with the frequencies

ω2
z = µBmF gF

B2

m
, ω2

⊥ = µBmF gF
B2

1

(B0 + B′
0)m

, (3.10)

where ωz and ω⊥ are the axial and radial frequencies respectively, and m is the mass
of the atom. Since mRb = 87

39mK, the frequencies for 39K can be obtained directly
rescaling the frequencies for Rb:

ωK =

√
87
39

ωRb, (3.11)
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Figure 3.13: Milli-trap magnetic field simulations along the three axis for a current
of 100 A. The field represents the intrinsic field, without the contribution of the ad-
ditional bias coils.

and vice-versa. If not specified otherwise, we will hereinafter refer to Rb trapping
frequencies.

As we can see from (3.10), the axial frequency depends only on the milli-trap de-
sign and current, while the radial frequency can be conspicuously increased varying
B′

0 via the the bias coil: virtually, in the situation B0 = −B′
0 the radial frequency

diverges, while the axial frequency is not affected. Recently an additional 6 loops
square coil was inserted in series to the milli-trap circuit to reduce the high intrinsic
bias field B0 from 18 to 7.9 G for a 95 A working current, in such a way the bias field
can be varied by the bias coil from few mG to 15 G. For a typical bias field of 2 G we
have

ωz ' 2π × 19.6 Hz

ω⊥ ' 2π × 497 Hz (3.12)

for Rb atoms in the |F = 2,mF = 2〉 state.
To find the extension of the harmonic trapping region, we can insert these fre-

quency values in (3.10) and extract the corresponding values B1 = 552 G/cm and
B2 = 237 G/cm2. From these values, having as first approximation the physical
meaning of gradient and curvature of the induction field, we rewrite the harmonic
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limit (3.8) to obtain
zho . 1.5 mm ρho . 40 µm, (3.13)

which gives a mean harmonic extension σho = (zhoρ
2
ho)

1/3 = 135 µm. A fundamen-
tal parameter is the limit temperature above which atoms start to feel anharmonic
contributions coming from higher order terms in the multipole expansion (3.7) [133].
Given a certain temperature T the Maxwell-Boltzmann distribution width for atoms
trapped in a harmonic potential can be evaluated using the energetic equipartition
theorem:

σ2(T ) =
kBT

m (ωzω2
⊥)2/3

, (3.14)

where we exploited the cylindrical symmetry to evaluate the mean 3D oscillator fre-
quency ωho = (ωxωyωz)1/3. Now, only atoms having σ(T ) . σho will respect the
harmonic approximation (3.10) and move in the harmonic region of the potential.
In the case of 87Rb , this gives a related upper limit on the temperature of atoms of
T . 150 µK. Atoms trapped at higher temperature will feel a more complex potential
that can be as first approximation taken as quadrupolar. Numerical simulations on
the milli-trap field corresponding for a current I = 100 A are displayed in Fig. 3.13.
The graphs show orthogonal 2D sections along the three planes of the estimated in-
trinsic field generated by the milli-trap, when no contributions arising from the bias
coils are present. The ceramic chip is on the left side of the xz and yz contour plots.
The trap depth is defined as the difference between the magnetic field value at its
lowest saddle point and the intrinsic bias B0. From Fig. 3.13 we can extract a trap
depth of 86 G, set by a the saddle point generated in the center of the two half-rings
connecting the end of the four Ioffe bars. At the opposite end of the trap another
saddle point arises, laying anyway at a higher field due to the closeness of the bias
copper route etched on the ceramic chip. The cylindrical asymmetries in the mag-
netic field shape come mainly from the asymmetries in the rear side Ioffe half loops,
that shifts the center of the trap from the z axis by∼0.1 mm. The expected cylindrical
symmetry, anyway, is not corrupted near the center of the trap.

The trap depth sets the maximum temperature allowed for atoms to be trapped
by the device. Indeed, atoms are trapped until their thermal energy is lower than the
maximum potential energy UB . The critical temperature, obtained imposing kBTµ ∼
UB , is:

Tµ ∼ 67×mF gF

∣∣B[G]
∣∣ µK, (3.15)

and hence atoms in the |F = 2, mF = 2〉 state are trapped until their temperature is
lower than ∼ 6 mK. This trap depth is 5 times higher than the temperature of atoms
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6

7

Figure 3.14: Measured milli-trap mean life (left column) and heating rate (right
column) for different values of the current, shown in each panel.
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trapped in the milli-trap right after the transfer phase, and hence is not limiting the
atom number in the first phase of the evaporation.

Fig. 3.14 reports measured mean life (left column) and heating rate (right col-
umn) of our milli-trap. The solid lines represent exponential fits on lifetime datasets
and linear fits on heating rate datasets. Measurements are performed for different
values of the current, in order to determine if and how the milli-trap temperature
influences the quality of the atomic sample. The observed lifetimes do not show a
strong dependence on the trap current, attesting on a value that is around 60 s. On
the contrary, the heating rate H is strongly dependent on the current value. This be-
havior is compatible with the presence of a ripple noise in the milli-trap circuit, that
has however been measured to be less than 5× 10−4. This noise seems to be able to
shake the sample held during the evaporation, but not to expel atoms from the trap
through resonant coupling to untrapped Zeeman sublevels. For a current of 70 A
(chosen as working value to obtain the 87Rb BEC) the heating rate is H=1.9 µKs−1.
The value of this parameter is fundamental when working with sub-µK samples,
since it remains constant even at low temperatures, hence giving a fast depletion of
the BEC state.

3.4.1 Measuring the trap frequencies

A fundamental test performed on the milli-trap is the measurement of the trap
frequencies. There are substantially two ways to obtain their values:

• Parametric Heating

• Collective oscillations

3.4.2 Parametric heating

This method is based on the heating of the sample induced by a small modulation
of the trapping potential:

U(t) = U0[1 + ε(t)]. (3.16)

The transition rate from a stationary state n to another final stationary state m can be
calculated following the first order perturbation theory [134]:

Rm,n =
1

T~2

∣∣∣∣
∫ t

0

〈m|U0|n〉ε(t)eiωmn dt

∣∣∣∣
2

, (3.17)
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Figure 3.15: Measured temperature of the cold atomic sample after a 2s modulation
as a function of the radial (a) and axial (b) modulation frequency ω. The peaks corre-
spond to ω = 2ω⊥ and ω = 2ωz , where ω⊥,z are the radial and axial trap frequencies
respectively. The solid lines are fits obtained using the function reported in the in-
sets. A broad peak, coming from higher order therm in the perturbation theory, is
visible in (a) for ω = ωz .

85



3. THE NEW MACHINE

where ωmn = (Em−En)/~. If the temperature of the atomic sample is below Tµ, the
potential can be taken as harmonic along both radial and axial directions, and the
above integral gives:

Rn,n =
πω2

i

16
S(0)(2n + 1) (3.18)

Rn,n±2 =
πω2

i

16
S(2ωi)(n + 1± 1)(n± 1), i = z,⊥ (3.19)

where S(2ωi) = 2
π

∫ T

0
cosωi〈ε(t)ε(t + τ)〉dτ . Hence selection rules forbid n± 1 transi-

tions, and heating will be present only for ω = 2ωz, 2ω⊥ modulation of the trapping
potential. The thermal heating of the cold sample can be evaluated from Eq. (3.19)
[134]:

〈Ė〉
〈E〉 =

π

2
ω2

i S(2ωi). (3.20)

Integrating this equation, we obtain an exponential growth of the temperature in
time after the onset of excitation.

The radial vibrational mode can be excited by a modulation of the bias field B′
0,

that influences only the radial direction (Sec. 3.4), executed through the external bias
coil. The axial modes, on the contrary, have to be excited modulating the whole
potential through a modulation of the milli-trap current. The cold sample (T=10 µK)
is excited for 2 s, then 2 s are required to achieve cross-dimensional thermalization
of the sample. After an expansion time t the sample is then imaged (Sec. 3.7), and
the final temperature T is extracted from the gaussian widths σi of the cloud:

T =
m

kB

(
ω2

i

1 + ω2
i t2

)
σ2

i . (3.21)

Since the actual relevant measurement is not the absolute temperature T of the sam-
ple, but the temperature variation after the parametric heating, the dependence of T

on ωi is not relevant, and one can use an estimated trap frequency to plot the esti-
mated final temperature as a function of the modulation frequency. Fig. 3.15(a) and
Fig. 3.15(b) report the data for radial and axial modulation respectively. The max-
imum variation in the sample temperature corresponds to a modulation frequency
ω = 2ω⊥, 2ωz . The above measurements are performed on a 87Rb sample with a total
bias of 0.8 Gauss and a trap current of 95 A, and the obtained trap frequencies are
ω⊥ = (833 ± 7) Hz and ωz = (20.4 ± 0.5) Hz. The first lower peak slightly visible
in the axial modulation profile comes from an excitation at ω = ωz corresponding to
higher order terms of the perturbation theory.
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Figure 3.16: Calibration of the milli-trap radial frequency as a function of the ex-
ternal bias field B′

0, obtained through dipolar oscillations of the sample. The solid
line is a fit obtained using the function (3.22). The black points are data obtained
from 87Rb sample, while the empty point refers to a 39K sample. Measurements are
performed at T = 10 µK.

3.4.3 Collective excitations

The other way to measure the milli-trap frequencies relies on the theory of collec-
tive excitations of an interacting atomic ensemble trapped in a magnetic potential.
The motion of a bosonic atomic ensemble in a harmonic trap has been subject of in-
sightful studies [135, 136, 137, 138, 139]. In this context, anyway, it will be sufficient
to limit our discussion to the low density regime: observed densities for a tempera-
ture well above the critical temperature Tc, indeed, don’t allow the system to enter
in the hydrodynamic region, that is hardly attainable even for degenerate systems.
Considering an atomic sample whose temperature is 10 µK the regime is collision-
less and substantially three different collective modes can be excited by a sudden
variation in the trapping potential, i.e. the dipole, the quadrupole and the breath-
ing modes. Each mode will preferentially be excited depending on the excitation
frequency and way of excitation.
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• dipole mode: this mode represents a collective center of mass oscillation into
the harmonic trapping potential, and can be excited simply displacing the trap
center along the axial or radial direction. The cloud starts to oscillate with
frequencies ωd = ω⊥,z depending on the direction of displacement of the trap.
Observing the periodic motion of the center of mass one obtains the direct mea-
surement of the trap frequency along a certain direction.

• quadrupole mode: this mode represents an out-of-phase periodic variation of
both radial and axial sizes and hence of aspect ratio of the system. After a
sudden variation of the potential shape, the axial cloud starts to oscillate with
frequency ωq = 2ωz . Observing the periodic variation of the axial or both radial
and axial sizes of the cloud gives a direct measurement of the trap frequency.

• breathing mode: this mode represents a in-phase periodic variation of both
axial and radial sizes. The mode of excitation is the same as the quadrupole
mode. The cloud radial size starts to oscillate with frequency ωb = 2ω⊥. Ob-
serving the periodic variation of the radial size of the cloud gives a direct mea-
surement of the trap frequency.

In order to obtain the radial trap frequency value, we performed an analysis of the
simplest dipolar motion of a 87Rb cloud along the vertical radial direction. The tem-
perature of the sample is 10 µK. The displacement of the trap center is obtained
adding a vertical uniform field to the trapping potential via a pair of horizontal
Hemholtz coils. The oscillating sample is held in the trap for a time going from
zero to several oscillation periods after the trap is displaced, and then is imaged af-
ter 10 ms of free expansion. In this way we reconstruct the sinusoidal motion of the
center of mass as a function of the oscillation time and extract the trap frequency
through a three parameters fit. The measurement is performed for various values of
current flowing into the bias coil, in order to obtain an experimental calibration of
the radial trap frequency as a function of the total bias field. The experimental data
are reported in Fig. 3.16. The solid line is the fit obtained using the function

ω⊥ =
2πf0√

B0[G]− 2.45 IB [A]
, (3.22)

directly derived from Eq. (3.10). In the previous formula, f0 is the trap frequency
when the total bias field equals 1 G, B0 is the intrinsic trap bias field, IB is the bias
coil current, and the factor 2.45 comes from the measured current-field characteristic
of the bias coil. The best fitting values are found to be f0 = 726 Hz and B0 = 7.9
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Gauss. A measurement performed on 39K is reported in Fig. 3.16 for IB = −1 A
(empty squares), after the frequency has been rescaled by the mass-to-mass ratio√

mRb/mK .

3.5 Controlling the Magnetic Field

The control of the magnetic fields during the transfer phase from the quadrupole
the milli-trap plays a fundamental role for the efficiency of the process. In particular,
time constants of the control circuits have to be carefully set. To this scope, both
the quadrupole and milli-trap controllers are designed and realized by our research
group.

3.5.1 The quadrupole current controller

The quadrupole coils have an impedance of 0.5 Ω and an inductance of 2 mH.
The power supply (Agilent 6692A, 6.6 kW) can deliver 110 A at a maximum volt-
age of 60 V. Even if the actual current needed for the MOT phase is only 4 A and
65 A for the quadrupole, we can use the same coils set to produce Fano-Feshbach
uniform fields up to 1000 G at 110 A, once the current directions are switched to
the Helmholtz configuration. The power supply is remotely controlled via the GPIB
interface and an analog current control. The former is used to program the current
and voltage working values of the power supply during a run when no particular
temporal resolution is needed, since typical jitter of instructions on the GPIB bus is
∼20 ms. The latter is used to control the current in the circuit when higher temporal
accuracies are required, e. g. during the short (5 ms) molasses phase.

A schematic drawing of the control circuit is shown in Fig. 3.17. The intrinsic
time constant of the quadrupole coils+supply circuit is τc=50 ms. An IGBT transistor
(Motorola n-channel MG200Q1US51, Vmax=1.2 kV) is inserted to break the current
flow when the magnetic field has to be turned off in sub-ms time intervals, as before
the molasses phase. When the base-emitter voltage is driven to zero via a TTL driver,
the circuit is suddenly opened, and the potential drop between source and drain
terminals can reach very high values (exceeding some kV). A 75 volts AC varistor
is connected between collector and emitter terminals, and has the double feature
to protect the IGBT from the aperture extra-voltage and to set the fall time of the
magnetic field. With this value of breakdown voltage the current fall time is reduced
to 1 ms. When a fast extinguishing of the field is not required the GPIB interface can
be employed.
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Figure 3.17: Schematics of the circuit employed to control the quadrupole coils cur-
rent.

To reduce the field rise time as well, a boost circuit is inserted parallel to the power
supply terminals. The 30 µF, 1000V capacitor is loaded during the stationary opera-
tion of the circuit. A thyristor (30TPS16 npnp 300 A 1000V), in this phase, connects
the positive terminal of the power supply to the upper coil, so that the power supply
feeds the stationary required current. When a TTL signal is sent to the thyristor gate,
the connection is extended to the positive terminal of the capacitor, that acts like a
current reservoir for the circuit. Its loading voltage Vc sets the peak current IB fed by
the boost circuit, while its capacity sets the rise time τB . The thyristor maintains the
connection until the power supply reaches an operating value equal to the residual
capacitor voltage, and then disconnects the capacitor from the current circuit. Be-
yond this point, the current grows again with the slow time constant τc up to the
programmed value. A high current diode (IOR 15DU120 150 A, Vbreak=1200 V is
placed in series to the power supply positive terminal to avoid any reverse current
pumping into the supply when the capacitor is connected by the thyristor. This sys-
tem provides a fast non-adiabatic deformation of the potential from the MOT value
to the quadrupole value, allowing a matching of the MOT and quadrupole exten-
sion. The optimal value for the peak boost current is 20 A with a rise time τB=0.5
ms, while the slow time constant tc does not substantially influence the quadrupole
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Figure 3.18: Schematics of the circuit employed to control the milli-trap and bias coil
current.

loading efficiency. A set of two electromechanical normally-open relais can be used
to revert the current flow in one of the two coils, so that a Fano-Feshbach uniform
field can be established in the center of the coil system. This switching operation can
only take place when no current is flowing in the coils, and the commutation time of
the relais is ∼200 ms.

The current stability of the whole system is the nominal stability of the Agilent
6692A power supply.

3.5.2 The milli-trap current controller

As seen before, due to its particular design, the milli-trap system has small impedance
and inductance if compared to the quadrupole coils system. The handling of cur-
rents, hence, is much easier than in the case of the quadrupole coils. In this case,
indeed, both the switching on and off of the current are managed by a MOSFET
transistor (IXFN230N10 n-channel, 230 A, 100 V), whose gate is controlled by a TTL
signal. The schematic drawing of the circuit is shown in Fig. 3.18. The power sup-
ply (Agilent 6671) delivers a maximum current of 240 A at 8 V, and can in principle
increase the current to the working value of 95 A with a rise time of 0.5 ms. As
we will see in the following Section, anyway, the loading of the milli-trap should
take place adiabatically respect to the radial trapping frequencies (Sec. 3.4). For this
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Figure 3.19: Schematics od the coils support directly fixed to the translation stage
(not shown). The coils are employed to generate both the MOT and the high
quadrupole field to transport the atoms from MOT to milli-trap region.

reason, the rise time has been increased adding a RC circuit directly acting on the
MOSFET gate. The capacity is fixed to 10 µF, while the variable resistor allows the
variation of the rise time τm from 1 to 2500 ms. The optimal loading time is set to
τm=300 ms. The fall time of the current, as in the quadrupole case, is established by
a varistor (07D180K) connected between the drain and the source terminals of the
transistor. In these conditions, the fall time is 600 µs. The bias coil, placed in series
to the milli-trap, is driven by the same control circuit.

3.5.3 Magnetic transport: atoms and motors

Since the milli-trap center is 25 mm away from the center of the 3D-MOT, atoms
has to be physically moved from their initial position, coinciding with the center
of the UHV cell. This can be done translating the atoms while they are trapped in
the quadrupole field after the molasses phase. To this scope, the MOT coils sup-
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port is directly fixed to a linear endless screw translation stage, and can travel along
the longitudinal axis of the cell until its center exactly matches the milli-trap center.
This translation stage (THK KR series) is driven by a brushless DC motor (Parker
SMH82), which is remotely controllable with a precision of 1/1024 turns. The com-
plete motion takes 500 ms, and the velocity profile of the rail velocity is trapezoidal:
100 ms of acceleration (0.7 m/s2), 300 ms of uniform velocity and 100 ms of deceler-
ation (0.7 m/s2). 200 ms after the rail is stopped the current in the milli-trap is raised
to 95 A, and the quadrupole current is lowered to 10 A in 80 ms and then switched
off by the MOSFET transistor.

The DC motor driver emulates a stepping-like behavior of the motor, that can be
thus controlled by a sequence of TTL pulses, without introducing additional noise
coming from the discretization of the motion as a common stepping motor does.
This gives the system a mechanical position reproducibility of 6 µm, substantially
limited by the mechanical features of the linear translation stage. The particular
design (see Fig. 3.19) avoids any limitation to the optical access of the cell, and the
stainless steel bars holding the coils confer a high robustness to the system, since
high forces are acting between the coils when the current is raised. The repulsive
(quadrupole configuration) or attractive (Feshbach field configuration) force can be
estimated as ∼5 Kgf/kA. This can lead to very strong attraction between the coils
when a high Feshbach field is activated. To avoid as much as possible any field
deviation or drift, the entire structure is built in amagnetic aluminium and steel. The
efficiency of the transfer procedure is strictly related to the vertical and horizontal
alignment of the system respect to the milli-trap longitudinal axis. The vertical set
of shim coils, conventionally called lambda, is employed to compensate the vertical
misalignment, while the horizontal position of the rail is mechanically optimized by
means of two horizontal locking screws acting directly on the rail base.

To optimize the transfer process, the motion of the quadrupole field is stopped
1.8 mm after the center of the milli-trap. This could result at a first sight somewhat
surprising, since one expects to find the best performance when the two trap cen-
ters are perfectly overlapped. To understand this behavior, we analyzed through
simulation the shape of the total magnetic field resulting from the addition of the
quadrupole and milli-trap potentials varying the distance between the two centers.
Simulations show the growth of a local secondary minimum connecting the region
in which atoms are trapped to a saddle point that can reduce the trap depth to ∼ 10
Gauss during the quadrupole switch off phase. The presence of a 1.8 mm distance
between the two center maximizes the potential barrier between the two minima in
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Figure 3.20: Magnetic field simulations during the milli-trap switch on process. The
simulations are done along the vertical plane containing the longitudinal z axis of
the milli-trap. The magnetic field intensity is expressed in Gauss.
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Figure 3.21: Magnetic field simulations during the quadrupole switch off process.
The simulations are done along the vertical plane containing the longitudinal z axis
of the milli-trap. The magnetic field intensity is expressed in Gauss.
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Selective

removal

Thermalization

Figure 3.22: Schematic picture of evaporative cooling: trapped atoms in |2, 2〉 state
are selectively removed by a microwave radiation, which transfers atoms with
higher temperature into the |1, 1〉 state, and are hence expelled from the trap. Af-
ter a certain rethermalization time, atoms redistribute following a new Maxwell-
Boltzmann distribution with smaller width.

the intermediate phase, hence minimizing the reduction of trap depth during the
last phase of the transfer. It could be easier to understand this peculiarity looking
to the simulations describing this optimal configuration, reported in Figs. 3.20 and
3.21. Fig. 3.20 reports the simulations of the field when the milli-trap is progres-
sively switched on while the quadrupole is still active and holds the atoms after the
translation. Fig. 3.21 reports the next phase, when the quadrupole is progressively
switched off and atoms are transferred in the milli-trap potential. Both figures show
a vertical planar section containing the milli-trap longitudinal z axis. While dur-
ing the first transfer phase the minimum trap depth is 70 Gauss (Fig. 3.20(f)), in the
second phase, when the quadrupole current is decreased to 30 A, the trap depth is
reduced by the presence of the second maximum and the saddle point to 25 Gauss
(Fig. 3.21(c)) before increasing again to the final milli-trap value of 70 G. In this opti-
mal configuration we obtain an overall transfer process efficiency near 30%.

3.6 Evaporative Cooling

Evaporative cooling technique [140], firstly demonstrated in the polarized hy-
drogen cooling [141], represented the decisive final step toward the Bose-Einstein
degeneration of a dilute gas in a magnetic trap [142, 143]. This technique up to now
has been applied to cool several neutral atomic species from mK to sub-µK temper-
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atures, and different schemes relying on purely optical trapping are demonstrated
[144]. Finally, evaporative cooling showed to have fruitful employments in other
fields of research, as the one reported in [145].

The idea of evaporative cooling relies on a continuous energy-selective removal
of hottest atoms from the magnetic trapping volume, so that the temperature of the
remaining sample is progressively reduced. Atoms trapped in a harmonic magnetic
potential (Sec. 3.3) will feel a position-dependent Zeeman shift of their energy levels
equal to:

∆E(F,mF , x) = µBmF gF |B(x)−B(0)| = µBmF gF

∣∣∣∣
B′′

2
x2 −B0

∣∣∣∣ , (3.23)

where x is the distance from the center of the trap, B′′ is the field curvature and B0

is the bias field at the center of the trap. Since trapped atoms are described by a
Maxwell-Boltzmann distribution, particles having a big velocity and hence a higher
energy belong to the tails of the distribution function, and will preferentially move
away from the trap center. A particular energy class is thus directly connected to a
certain spatial position in the trap and, as a consequence of Eq. (3.23), has a precise
magnetic energy.

Using a narrow microwave radiation, atoms trapped in the |2, 2〉 level can be
transferred into the untrapped state |1, 1〉 and hence expelled from the trap. The fre-
quency νµ determines the energy class to be expelled. Hence, as Fig. 3.22 sketches,
by setting the right microwave frequency we can cut the distribution tails. A pro-
gressive reduction of the cutting frequency can thus lead to a cooling of the sample
at the expense of the atom number. If the frequency sweep is too fast, anyway, the
sample has not time to rethermalize between two consecutive steps of the evapora-
tion, and atoms are expelled from the trap before they have time to be cooled down.
The maximum sweep velocity is determined by the elastic collision rate γel which
leads to the sample rethermalization without inducing trap losses:

γel ∝ n̄σv̄, (3.24)

where n̄ is the numerical density, σ = 8πa2 is the elastic cross section (with a the s-
wave scattering length) and v̄ = 4

√
kBT/(πm) is the mean thermal velocity. During

the evaporation, n̄ grows while v̄ reduces, but a good evaporation should maintain
their product at least constant. If the initial atom number and phase space density
(PSD) are sufficiently large, the sample can reach a temperature T lower than the crit-
ical temperature TC , and a BEC is obtained. In elongated samples, if the frequency
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Figure 3.23: Evolution of the temperature (a) and of the phase space density (b) of a
87Rb sample during a typical evaporation ramp (see Fig. 3.24). The milli-trap current
is set to 70 A.

sweep is too fast, an inhomogeneity between temperatures along radial and axial di-
rection could appear, since the system is not able to follow a quasi-equilibrium path
in the phase space. On the contrary, if a proper sweep is employed the system is
step by step in a quasi-equilibrium state and both radial and axial temperatures take
the same value. This optimal situation is shown in Fig. 3.23(a), where the measured
temperatures are reported as a function of the evaporation process progression. As
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can be seen, no inhomogeneity between radial and axial temperatures arises during
the whole process. The efficiency of the entire process is connected to the scatter-
ing length amplitude a: the larger a, the faster the rethermalization time. This fact
gives important constraints on the particular atomic species that can be cooled by an
evaporation technique. For 87Rb the scattering length a corresponds to 99 a0, where
a0 is the Bohr radius, while for 39K (41K ) is a ∼ −33 a0 (a ∼ 60 a0). For this reason,
while 87Rb can be nicely condensed by this technique, collisional rates for potassium
bosonic isotopes are very weak and efficient evaporative cooling requires long evap-
oration times for this elements. Moreover, the direct evaporation process wastes a
big amount of atoms, and since the number of K atoms that are collectable in a MOT
is reduced, this would lead to a very poor potassium sample at the end of the evap-
oration process. Anyway, K-Rb interspecie collisional rates are sufficiently large to
allow an efficient sympathetic cooling process, as shown in Sec. 5.1.

In our system the required microwave frequency is generated by a coaxial res-
onator oscillator (Miteq BCO-10-6830 series) locked on the 683th harmonic of a mas-
ter signal of frequency νM coming from a synthesized function generator (Stanford
Research DS345). The frequency ramp is sent to the instrument and triggered via
the GPIB bus. The frequency resolution is 683×0.001 Hz, the latter being the nomi-
nal resolution of the 10 MHz reference signal. The output signal is amplified by 55
dB, and the 8 W output total power is coupled to the atomic system via a five loops
antenna that induces magnetic dipole transitions on atoms.

In our 87Rb system, the sample is prepared and trapped in the 52S1/2 |2, 2〉 Zee-
man sublevel, and transitions are induced towards the 52S1/2 |1, 1〉 state. The hy-
perfine splitting between F = 1 and F = 2 levels is ν0 = 6.8346826 GHz, and the
magnetic field dependence for these levels is 0.7|mF | MHz/Gauss. Therefore the
frequency νM corresponding to a cut in the atomic distribution at an energy ET is:

νM [MHz] =
1

683

[
ν0[MHz] + 0.7× (

mtr
F + muntr

F

)
(B0 + B′

0)[G] +

+10−6 ET

h

(
1 +

muntr
F

mtr
F

) ]
(3.25)

valid for every mtr
F . In this expression, mtr

F and muntr
F are the trapped starting

level and the untrapped target level respectively, connected by the selection rule
muntr

F = mtr
F ± 1, 0. Usually, ET is expressed as a function of the actual tempera-

ture of the sample by ET = ηkBT , where η is an experimental parameter that can
be considered as constant throughout the whole evaporation. A reasonable value
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Figure 3.24: Typical evaporation ramp (solid line) for a total bias field of 2 Gauss.
The dashed line represents the threshold frequency for atoms in the |2, 2〉 state. The
inset shows the last part of evaporation ramp.

for this parameter is η ∼ 6. In the above expression, setting T = 0, one finds the
threshold frequency νth below which no atomic class is resonant with the radiation
and no transitions are carried out. For atoms prepared in the |2, 2〉 state we have:

νth =
(

10.006856 +
2.1
683

(B0 + B′
0)[G]

)
MHz, (3.26)

that for a typical total bias field of 2 Gauss gives νth = 10.013005 MHz.
We observed a conspicuous dependence of the evaporation efficiency on the pu-

rity of the |2, 2〉 sample. In the case a small fraction of |2, 1〉 population is left in the
trap by an imperfect hyperfine optical pumping after the molasses phase, or is gen-
erated by spurious spin-flipping events during the evaporation phase, we observed
a critical collisions-induced heating of the sample for temperatures lower than 5 µK,
preventing the phase transition to BEC. To avoid this harmful heating, we mixed
to the evaporation radiation an additional frequency, whose power is 3 W, to blow
away atoms belonging to |1, 1〉 level. This is done sweeping a signal whose mas-
ter frequency is tuned on the |1, 1〉 threshold frequency (10.008906 MHz @ 2 Gauss).
The sweep amplitude is ±4 kHz, while the sweep period is 2 s. In this way, atoms in
the unwanted state are continuously removed, while atoms in the |2, 2〉 state are not
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influenced, since they are never resonant with the sweeping frequency.
The typical evaporation ramp profile is composed by 5 linear steps (Fig. 3.24),

each optimized by maximizing the final collisional rate γel or, analogously, the final
PSD. This can be done by measuring the evolution of the sample temperature as a
function of the evaporation progression. Fig. 3.23(b) shows the behavior of the PSD
(left) and γel (right) during the evaporation ramp. If the temperature is sufficiently
low for atoms to be trapped in the harmonic region of the potential (see above),
the PSD can be reconstructed by integrating the Maxwell-Boltzamnn distribution to
obtain the mean atomic density n̄, and remembering that PSD= n̄λ3

dB :

PSD = N

(
~ω̄ho

kBT

)3

, (3.27)

where ω̄ho is the mean oscillator frequency of the trap. In a similar way, from Eq. (3.24)
one obtains the expression for the collision rate:

γel =
1

2π2

(
mω̄3

ho

kBT

)
Nσel , (3.28)

As can be seen in Fig. 3.23(b), the optimal evaporation ramp shown in Fig. 3.24 in-
creases both PSD and γel as the number of atoms is decreased, and the efficiency
of this process decreases only in the very last part of the evaporation. For this last
fundamental step we found convenient to optimize the peak optical density (see
Sec. 3.7) which is proportional to the collisional rate, amounting to a net decrease of
the evaporation sweep rate. The total duration of the ramp depends on the density
of the sample, hence on atomic number and on the trap frequencies. The lower the
frequencies, the longer has to be the ramp duration. This argument privileges strong
traps, like the milli-trap, since a short evaporation time reduces background collision
losses from the trap and hence results in a higher number of condensed atoms. For
typical bias field of 2 Gauss, the milli-trap allows evaporation ramps shorter than
15 s. This value has to be compared to typical ramp durations in QUIC or baseball
traps, usually longer than 30 s.

3.7 The Imaging System

The imaging technique is based on the absorption of a resonant laser light by the
ultracold atomic sample. Since atomic densities in the condensed state can achieve
very high values (1013 ÷ 1014 cm−3), this method can give a high signal-to-noise ra-
tio even for relatively small atomic samples (104 atoms). Since in our system both
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87Rb and 39K samples are cooled in the |2, 2〉 state, the imaging light is resonant with
the |F = 2〉 → |F ′ = 3〉 transition, and no repumping light is needed to observe the
atomic clouds. The radiation has a σ+ polarization. The cloud can be imaged along
the milli-trap axis, or in the vertical direction. The horizontal and vertical imaging
beams cross the center of the milli-trap, and have a power of∼ 30 µW, corresponding
to a maximum relative intensity of 0.5Isat. The resolution of the system is given by
the diffraction limit l = 1.22(f/D)λ, where f and D are the focal length and diameter
of the exit lens respectively, and λ is the radiation wavelenght. The horizontal imag-
ing system has an actual resolution of 15 µm and the magnification factor is 2. The
vertical beam has an actual resolution of 8 µm, and the magnification factor is 2.5.
The imaging procedure is the following: after the evaporative cooling the milli-trap
and the bias coil are simultaneously switched off. The atomic sample falls under the
effect of the gravity, and the cloud expands because of the residual internal energy.
After a certain expansion time texp the laser beams are shone on the atomic sample,
and the resulting planar intensity profile is collected on a CCD camera (Theta Sys-
tem SIS1-s285, CCD sensor: Sony ICX285AL 1040×1392 pxl, 6.45×6.45 µm). This
imaging method is destructive, since the ultracold atomic sample is blown away di-
rectly by the resonant probe beam. To increase the S/N ratio of the planar intensity
distribution, three images are consequentially snapped:

1. Atoms+Probe: for 87Rb a 50 µs pulse (30µs for K) is shone on atoms while the
CCD is integrating. The absorption intensity profile IAT is collected on the
CCD.

2. Probe: an identical pulse is shone once atoms have been blown away, and the
probe beam intensity profile ILAS is captured.

3. Obscure: an empty image, registering only intensity profile IO coming from
the electronic noise and the environmental stray light, is captured by the CCD
after an integration time equal to the previous two snapshots.

In the case of a homogeneous material, the residual intensity after absorption
is given by the standard Beer law I = I0e−αy , where I and I0 are the incoming
and outgoing beam intensities, y is the thickness of the absorber along the imaging
direction, and α = σ0n is the absorption coefficient, proportional to the absorption
cross section σ0 and hence to the material density n. In the case of a inhomogeneous
atomic cloud, the Beer law can be extended defining the optical density ñ directly
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from the column density of the distribution along the imaging direction:

ñ(x, z) = σ0

∫
n(x)dy, (3.29)

being σ0 = 3λ2/2π the absorption scattering length for a two level atom and n(x) the
spatial density of the sample. In this way, the Beer law for each pixel of coordinates
(x, z) takes the form −ln(I/I0) = ñ(x, z) = σ0

∫
n(x)dy. The optical density can

hence be obtained through a numerical combination of the three intensity profiles:

ñ(x, z) = −ln
(

IAT − IO

ILAS − IO

)
. (3.30)

This technique, if the initial distribution function of trapped atoms is known, gives
the opportunity to reconstruct important information about the atomic cloud, such
as the total atom number N , the temperature T or the spatial widths σi.

Thermal atoms

In this case, the initial distribution of trapped atoms can be reasonably taken as
gaussian [146], where the width are directly connected to the momentum distribu-
tion of the atoms and hence to their temperature. For an harmonic trap, symmetric
along the z direction and centered in x0, we can write

n(x, y, z) =
N

(2π)3/2σ2
⊥σz

exp
(
− (x− x0)2 + (y − y0)2

2σ2
⊥

− (z − z0)2

2σ2
z

)
(3.31)

ñ(x, z) = σ0
N

(2π)σ⊥σz
exp

(
− (x− x0)2

2σ2
⊥

− (z − z0)2

2σ2
z

)
. (3.32)

The function we use to fit the optical density is:

ñ†(x, z) =
A

103
exp

(
− (x− x0)2

2σ2
⊥

− (z − z0)2

2σ2
z

)
+

B

103
, (3.33)

where A, B, σ⊥, σz, x0, z0 are the fit parameters. From this choice we obtain:

peak OD = 10−3 A (3.34)

N =
(

2π

λ

)2
A

3× 103
σ⊥σz (3.35)

Ti =
m

kB

(
ω2

i

1 + ω2
i t2

)
σ2

i , (3.36)

where t is the expansion time from the trap and λ the specific resonance wavelenght.
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Figure 3.25: Typical expansion of a 87Rb BEC from the anisotropic axially symmetric
milli-trap. The absorption images show different expansion times, going from 2 to
45 ms. The expansion is enhanced in the direction the trap is tighter (radial), while
is strongly reduced in the shallow direction (axial).

Bose-Einstein Condensates

When the temperature of the sample trapped in a harmonic potential is lowered
down to ∼Tc, the system undergoes the Bose-Einstein phase transition, and as den-
sity increases a narrow peak in the phase space density distribution appears (see
Fig. 3.26). In the limit of pure condensates, the momentum spread ∆pi and Thomas-
Fermi radius σi are Heisenberg limited, giving ∆piσ1 ∼ ~. If the trap is strongly
anisotropic, the uncertainty limit enhances the expansion of the sample in the direc-
tion the trap is tighter, i.e. in the radial direction⊥, as consecutive absorption images
reported in Fig. 3.25 show. The BEC distribution is described by the Thomas-Fermi
function (see Eq. (1.26)). Differently from the thermal case, anyway, in a BEC no
details on the sample temperature can be extracted from the free expansion of the
system. Again, for a symmetric trap along the z direction we have:

n(x, y, z) =
15N

8πR2
⊥Rz

(
1− (x− x0)2 + (y − y0)2

R2
⊥

− (z − z0)2

R2
z

)
(3.37)

ñ(x, z) =
5N

2πR⊥Rz

(
1− (x− x0)2

R2
⊥

− (z − z0)2

R2
z

)3/2

(3.38)

These expressions are valid for (x− x0)2, (y − y0)2 < R2
⊥; (z − z0)2 < R2

z , where Ri

are the Thomas-Fermi radius of the distribution. The fitting function for the optical

104



3.8. Experimental procedure to a BEC

density is:

ñ†(x, z) =
A

103

(
1− (x− x0)2

R2
⊥

− (z − z0)2

R2
z

)3/2

+
B

103
, (3.39)

where A, B, R⊥, Rz, x0, z0 are the fit parameters. From this choice we obtain:

peak OD = 10−3 A (3.40)

N =
(

8π

1.5× 104

)
R2
⊥Rz A. (3.41)

3.8 Experimental procedure to a BEC

In this Section we summarize the typical experimental sequence employed to
generate a 87Rb BEC exploiting the new milli-trapping system features. For the
moment we focus in the 87Rb sample alone, since the whole procedure is mainly
symmetrical for 87Rb and 39K (or 41K ). Details on the sympathetic cooling process
between 87Rb and 39K are given in Chap. 5.

1. MOT phase: 2D-MOT and 3D-MOT beams are turned on, together with the 2D
and 3D quadrupole current coils. In this way two independent bright beams of
cold 87Rb and 41K or 39K source from the 2D-MOTs and go to feed the 3D-MOT
situated in the UHV region of the apparatus. The typical loading time for the
87Rb 3D-MOT is around 5 seconds, while for potassium isotopes the optimal
sympathetic cooling is reached for loading time of ∼ 0.5 s (see Chap. 5 for
details). In this phase, typically 2× 109 atoms are pre-cooled to a temperature
of 100 µK (1 mK for K).

2. C-MOT phase: In order to increase the density of the sample without increas-
ing its temperature before loading the quadrupole, after the 3D-MOT phase
the current is raised from 4 A to 10 A, and after 85 ms the cooling beams are
shifted further away from the resonance (−5Γ for both 87Rb and 39K ), while
the frequency detuning of the 39K repumping beams is set to −8.5Γ. The latter
phase has a duration of 10 ms.

3. Molasses and Optical pumping phase: The 2D beams are turned off, together
with the currents in the 2D and 3D magnetic coils. In order to obtain a further
decrease in the temperature of the sample, the 87Rb cooling beams are moved
to the MOT frequency detuning value (−2.8Γ), while for 39K they are shifted
very close to resonance. The 39K repumping beams are moved to −4.5Γ from
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a) b) c)

200 mm

Figure 3.26: Typical absorption images of 87Rb taken for different values of the evap-
oration frequency cut. (a) Thermal atoms right above the transition: the density
profile is fitted by a gaussian function. (b) Mixed cloud: a narrow peak arises from
the thermal background during the phase transition to BEC. (c) Pure condensate:
all atoms occupy the ground state and the density profiles is fitted by an inverted
parabola (Thomas-Fermi function). Images are taken after 15 ms of expansion.

resonance. This molasses phase has a duration of 2.5 ms, after which the cooling
beams for both species are turned off, while the repumping beams are left on 1
ms further, in order to populate the desired F = 2 ground hyperfine level. The
molasses has a duration of 3.5 ms. To achieve a full hyperfine transfer of atoms
in the desired Zeeman sublevel, we generate a uniform 0.5 G bias field along
a horizontal direction, and shine herein a resonant σ+ polarized beam with
both repumping and cooling components (optical pumping beam). Again, the
switching-off order enhances the efficiency of the specific optical pumping. Ini-
tially all the 87Rb and 39K optical pumping beams are shone simultaneously.
After 190 µs the potassium cooling beams are turned off; 160 µs later the rubid-
ium cooling beams are turned off as well, so that only the repumping beams
are still on. At this point the quadrupole field is activated, and after 3 ms the
repumping beams are switched off. The total length of the optical pumping
pulse is hence 3.350 ms, divided in a different way for 87Rb and 39K . The light

106



3.8. Experimental procedure to a BEC

power is 200 µW for both the 87Rb beams, while in the case of 39K it is 200 µW
and 600 µW for repumping and cooling beams respectively.

4. Quadrupole loading and transfer to milli-trap: After the optical pumping phase,
the fast quadrupole current boost is activated, and then the current is raised
to the stationary value of 65 A in 50 ms. Atoms are hence moved from the
MOT zone to the milli-trap region by means of the brushless translation stage.
During this phase all beams shutters are closed in order to avoid any heating
due to spurious photons entering the UHV cell. The current in the milli-trap
is adiabatically raised in 350 ms, and after it has reached its working value the
quadrupole current is turned off.

5. Evaporative cooling: After 200 ms necessary to the stabilization of the system,
typically 2 × 108 rubidium atoms are ready to undergo the evaporative cool-
ing process. The initial temperature ranges between 0.2 and 1 mK. The num-
ber of potassium atoms depends on the loading time and is critical for the
efficiency of the eventual sympathetic cooling process. After the evaporation
ramp (whose duration depends on the number of species to be cooled and
on the milli-trap frequencies, and can vary between 10 and 30 s), the sample
reaches the critical temperature necessary for the degeneration and enters the
BEC phase. Fig. 3.26 shows three images corresponding to different values of
the final µ-wave frequency employed for the evaporation process.
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Chapter 4
Intense Slow Beams of Bosonic
Potassium Isotopes

One of the remarkable features of the new apparatus, as explained in Sec. 3.2.1,
is the possibility to load the UHV 3D-MOT necessary to collect and pre-cool the
atomic mixture by means of two independent bright sources of cold atoms, one for
87Rb and the other for 39K or 41K . Both sources exploit a 2D-MOT cooling scheme.
Even though different schemes relying on the 2D-technique have been developed by
several groups for 87Rb [121, 122, 147], to our knowledge no detailed characterization
of such schemes was present for K isotopes at the time this thesis work started. The
aim of this part of the work is to address the question of how efficiently the 2D-
MOT scheme works for bosonic potassium isotopes, since the physical features of
87Rb and K are consistently different each other (Sec. 3.1.1).

In the first part of this Chapter we will report the results of extensive tests and
calibration of the 2D-MOTs apparatus, whose structural features have already been
described in the previous Chapter (Sec. 3.2.3). In the last part of the Chapter a sim-
plified multilevel theoretical model, tailored to obtain a simulation of the atomic flux
behavior, is reported.

4.1 Characterization of 39K and 41K Bright Sources

The characterization of the 2D-MOT system has been performed for both 39K and
41K , before the milli-trap was inserted into the vacuum system and the coils system
for the 3D-MOT were placed. The investigation analyzed three main aspects of the
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Figure 4.1: Schematics of the 2D-MOT system, reported again for clarity. In the time-
of-flight imaging technique, a plug beam is placed near the hole in the mirror to
shutter the atomic beam, and a probe beam is used to detect the atomic flux in the
UHV chamber.

system: the trapping beams parameters, the vapor pressure influence on atomic flux,
and the push beam effects. The analysis has been performed on the same guidelines
as Ref. [121]. The characterization of 41K source was started only after optimization
of frequencies and power for the 39K, the former having lower relative abundance
(6.7%) than the latter (93.3%). The region of vapor pressure spanned in the analysis
goes from 2.9 × 10−8 to 3.9 × 10−7 mbar, corresponding to the maximum allowed
current in the dispenser. We estimate the background gas pressure to be around 10−9

mbar. If not otherwise specified, in the experiment we set the K gas total pressure to
7×10−8 mbar.

4.1.1 Detection technique

The whole optimization of the 2D-MOT system has been performed analyzing
the atomic flux (Sec. 3.2.2) by means of time-of-flight (TOF) fluorescence detection.
This is accomplished exposing the atomic flux to a vertical sheet of light (called, in
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(a) (b)

s

f
d

Figure 4.2: (a) Typical acquisition of the fluorescence signal. At t=0 ms the plug
beam is turned on, and after a delay of ∼ 8 ms the fluorescence starts decaying
to zero. (b) Measured velocity distribution (dots) of atomic beam obtained by a
discrete derivative of (a) and Gaussian fit to data (solid line). The fitted peak velocity
is 32 m/s with a FWHM of 4.5 m/s.

this Chapter, probe beam, and not to be confused with the probe beam for the cold
atomic cloud) near the center of the UHV chamber, 30 cm after the mirror hole, and
collecting the emitted fluorescence into a broad area photodiode. The peak intensity
of the probe beam exceeds 0.5 W/cm2, divided between ω1 and ω2, both resonant, in
a ratio 1:2.

Switching on the plug beam (see Sec. 3.2.3) we interrupt the atomic flux; then,
from the analysis of the decaying fluorescence signal SF (t) as a function of time, we
obtain the longitudinal velocity distribution ρ(v) of atoms. Denoting with τ the time
required for an atom with velocity v along z to travel the distance L between the
plug beam and the probe light sheet, we can write the total flux Φ as:

Φ =
∫

ρ(v)dv, where ρ(v) = −τ

η

d

dτ
SF (τ), (4.1)

with τ = L/v. Here η is an experimental coefficient accounting for the calibration of
the photodiode and for the collection solid angle. Fig. 4.2(a) shows a typical acquisi-
tion of the TOF signal, while the corresponding velocity distribution ρ(v), as derived
from Eq. (4.1), is displayed in Fig. 4.2(b). To obtain the total atomic flux Φ, the peak
velocity and the velocity spread, we fit the data with a gaussian function.

The divergence of the atomic beam is measured by imaging with a CCD camera
the fluorescence emitted in the −x direction. The image profile along z corresponds
to the gaussian profile of the short axis of probe light sheet, while the vertical (y
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direction) image profile extension is limited by the mirror hole. From the known
width of the probe beam we calibrate the image magnification and therefore measure
the size of the atomic beam in the y direction. Given the distance of the probe beam
from the mirror hole, we calculate a divergence of (34± 6) mrad.

4.1.2 Trapping beam parameters

To characterize the 2D-MOT, we first set the intensity of both repumping and
cooling 2D-MOT beams to their maximum, respectively 50 and 80 mW per beam.
We then make a scan of both frequencies ω1 and ω2, searching for the values that
maximize the fluorescence signal, hence the total flux of atoms.

We only present data on the total flux Φ because the atomic velocities display
no significant variations with the 2D-MOT parameters. The measured peak veloc-
ities span a range between 28 and 35 m/s, while the typical distribution spread is
4.5 m/s (FWHM). Experimental results for 39K detunings are plotted in arbitrary
units normalized to the maximum value in Fig. 4.3(a). The detunings are defined
throughout as follows: δ1 = ω1−ω12 and δ2 = ω2−ω23, where we denote with ωFF ′

the atomic transition |42S1/2, F 〉 → |42P3/2, F
′〉. Note that for these measurements

the push beam contains only the repumping component with a power of 6 mW and
frequency ωp = ω12 − 5.2Γ. A more detailed analysis of the push beam features is
reported in Sec. 4.1.4. The detunings optimizing the atomic flux are δ1 = −3.9Γ and
δ2 = −5.8Γ, which correspond to neither of the two configurations reported in [120].
In that work, a MOT is best loaded with both lasers detuned below all hyperfine
components, in a Raman configuration such as |δ2 − δ1| = ∆32 where ∆32 = 2π × 21
MHz is the hyperfine separation between the |F ′ = 3〉 and |F ′ = 2〉 excited levels.
Similar results were later confirmed in [148]. We speculate that, since our available
laser beam intensities are a fifth to a tenth of those in [120], we are unable to reach
such large values of detunings.

Then we fix the detunings and decrease both the cooling and repumping beams
intensity. Fig. 4.3(b) shows the 39K atomic flux as a function of the beams intensity:
as we see, there are no maxima in the explored range. Thus, an increase of the laser
power should make the atomic beam more intense.

The analysis on 41K is performed along the same lines. Here, the push beam
power is set to 6 mW and its frequency to ωp = ω12 − 4.5Γ. Experimental results are
plotted in Fig. 4.3(c, d). As before, while a peak is clearly visible in the frequency
dependence of the signal, there is none in the intensity-dependent plot. Even for
41K, more laser power would enhance the number of atoms in the beam.
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Figure 4.3: Measured 39K atomic flux normalized to unity as a function of transverse
2D-MOT beams detuning (a), and of their intensities (b). The detuning values that
maximize the atomic flux are δ1 = −3.9Γ and δ2 = −5.8Γ. In (c) and (d) we report
equivalent results obtained for 41K atomic beam, for which the optimal detunings
are δ1 = −2.5Γ and δ2 = −3Γ. No data are taken in the patterned regions.

The largest contribution to the error on the measured total flux comes from the
calibration parameter η, more precisely from the evaluation of the solid angle in
which fluorescence is collected. We estimate this systematic uncertainty to be 20%,
while the statistical error is 5%.

4.1.3 Vapor pressure

In order to investigate the dependence of the atomic flux upon the potassium
gas pressure, we found it convenient to establish a calibration of the vapor pressure
p against the dispenser supply current I . This is done by probing the atomic vapor
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Figure 4.4: Measured 39K gas pressure p in the 2D-MOT chamber reported as a func-
tion of dispenser current I . The solid line is a fit obtained using Eq. (4.2).

using linear absorption spectroscopy. We simultaneously record the Doppler absorp-
tion profiles of the cooling transition in the 2D-MOT chamber and in the reference
cell used for laser frequency locking. The pressure of the latter is inferred from its
temperature: 2.2 × 10−7 mbar at 43 ◦C. The calibration curve of p as a function of I

is well-fit by an exponential function:

p = A + exp(I/I0 −B), (4.2)

with A = (3.8 ± 1) · 10−8 mbar, I0 = (0.54 ± 0.07) A and B = (26.7 ± 1.8). Both the
experimental data and the fit for 39K are reported in Fig. 4.4.

The maximum allowed current in the dispenser, 6.4 A, sets the highest pressure
we reach, i.e. 3.9 × 10−7 mbar. Below the dispenser ignition point, a residual pres-
sure of 4× 10−8 mbar is likely due to potassium vapor slowly released by the cham-
ber walls. This contribution is very dependent on the temperature of the vacuum
chamber walls, and is conspicuous for long running times when chamber walls are
warmed up by thermal contact with dispensers.

In Fig. 4.5(a) we report the measured atomic flux as a function of the pressure for
39K. As we can see, the flux increases with pressure until a critical point and then
decreases. In the case of 39K this critical point occurs at p = 2.1× 10−7 mbar where a
flux of 1.0× 1011 atoms/s is reached. Such a critical point has been observed also for
Rb [121, 122, 149] and ascribed to collisions with the background vapor. When the
inverse collision rate becomes of the same order of the cooling time tc, i.e. the time
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Figure 4.5: Measured 39K atomic flux (a) and peak velocity (b) reported as a function
of gas pressure in the 2D-MOT chamber. Over the critical value p = 2.1 × 10−7

mbar the atomic flux starts to be depleted by collisional effects. The solid line is a fit
obtained using Eq. (4.4).

required to reach the mirror hole, the probability for an atom to reach the mirror hole
drops. Assuming this is the case also for 39K, we fit our data to obtain the collision
rate. The total flux is:

Φ =
∫ ∞

0

ϕ(tc)dtc (4.3)

where ϕ(tc) is the cooling time distribution.
In the collisionless regime ϕ(tc) is linearly proportional to the density, hence the

pressure, in the 2D-MOT chamber. In presence of collisions with the background
vapor, ϕ(tc) is depleted for tc > γ, where γ = κp is the collision rate, proportional to
the pressure p. Indeed, a single collision with an atom at room temperature (vth =
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250 m/s) is sufficient to remove the cold atoms from the 2D-MOT velocity capture
range. Then, if we assume that the cooling time distribution is a Gaussian

ϕ(tc) =
Φ√
2πσ

exp
(
− (tc − t0)2

2σ2

)
,

Eq. (4.3) is modified to

Φ =
∫ ∞

0

ϕ(tc)e−γtcdtc

=
Φ
2

e−γt0+γ2σ2/2

(
1 + Erf

(
t0 − γσ2

√
2σ

))
, (4.4)

where Erf(x) = 2√
π

∫ x

0
exp(−t2)dt is the usual definition of the error function.

From the numerical simulations illustrated below, we obtain the first and second
moment of the cooling time distribution: t0 = 5.1 ms and σ = 1.7 ms. We then use
Eq. (4.4) to fit the data, with two free parameters: an overall scaling factor and the
collision rate to pressure ratio κ. The results of the fitting is shown by the solid line
in Fig. 4.5(a). The collision rate given by the fit γ(s−1) = (8.6± 0.6)× p (10−8 mbar)
is approximately one order of magnitude larger than the value reported in [150]: 0.3
s−1 at p = 4 × 10−9 mbar, i.e. 0.75 s−1 × p (10−8 mbar). Our value is closer to the
collision rates observed with rubidium. A meaningful comparison with Ref. [150] re-
quires a more detailed investigation on the role of light-assisted collisions, assumed
negligible for the 2D-MOT.

Another noticeable effect upon pressure increase is the slowing down of the
atomic beam, as shown by the plot of the peak velocity in Fig. 4.5(b). This behav-
ior is in contrast with the case of the simple rubidium 2D-MOT described in [122],
where an increase of the gas pressure corresponds to the increase of the peak veloc-
ity. Therefore we attribute the observed effect to the progressive absorption of the
push beam along its propagation path by the atomic gas since, as reported below,
the peak velocity decreases as the push beam intensity is reduced.

As mentioned before, when not otherwise specified all data reported in this work
have been taken at p = 7× 10−8 mbar.

4.1.4 Push beam

We turn to the experimental investigation of the atomic beam behavior when
the push beam parameters are changed. This is a crucial characterization since we
observe no atomic flux in absence of the push beam, in accordance with the findings
in experiments with rubidium [121, 122] where the 2D-MOT without push beam

116



4.1. Characterization of 39K and 41K Bright Sources

1 2 3 4 5 6 7 8 9

22

24

26

28

30

32

34

36

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
ea

k 
ve

lo
ci

ty
 (m

/s
)

Push beam power (mW)

(b)

 

A
to

m
ic

 fl
ux

 (a
rb
. u

ni
ts

)

(a)

Figure 4.6: Atomic flux Φ (a) and peak velocity (b) measured for 39K atomic beam as
a function of the push beam power. In this analysis we set δp = −5.2Γ.

is not efficient in our pressure range. Surprisingly, for potassium the push beam
works best if one uses only repumping light, and therefore we define the push beam
detuning δp = ωp−ω12. We defer the discussion of this point to the end of the Section.

First we report the atom flux and peak velocity, Figs. 4.6(a) and 4.6(b) respectively,
for 39K at fixed detuning δp = −5.2Γ as a function of power. Above 6 mW, the
atom number is approximately constant, while the peak velocity keeps increasing.
Therefore, we use a power equal to 6 mW (peak intensity of 170 mW/cm2) in order
to have the maximum flux with a velocity distribution still within the capture range
of the 3D-MOT in which the atoms will be collected. Then, setting this value of
power, we study the dependence of atomic flux and peak velocity on the push beam
frequency for both 39K and 41K . Experimental results are reported in Fig. 4.7.
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Figure 4.7: Measured atomic flux Φ and peak velocity of 39K (a, b) and 41K (c, d) as
a function of the push beam frequency detuning δp. The push beam power is set to
6 mW.

No clear enhancements of the flux stem from the addition of a counterpropagat-
ing hollow beam along −z direction (2D+-MOT configuration). Only a 20% reduc-
tion in mean velocity was found for a σ− beam polarization.

Given the hyperfine structure of potassium, one would expect to increase the
efficiency of the push force using both cooling and repumping beams, since this
avoids the depletion of the ground state population. On the contrary, the atomic
beam is deteriorated even by a small fraction of cooling light ω2 and it is almost
extinguished when the ω2 intensity approaches that of ω1. We attribute this effect to
an increase of both the longitudinal velocity and the radial temperature of the atoms,
when pushed by both frequencies. Instead, with a single frequency the hyperfine
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Repumping Cooling Push Atomic Peak
beams beams beam flux velocity

P δ1 P δ2 P δp

[mW] [Γ] [mW] [Γ] [mW] [Γ] [atoms/s] [m/s]

87Rb 1.5 -0.3 55 -1.2 5 -1.5 5× 109 30

39K 50 -3.9 80 -5.8 6 -5.2 6.2× 1010 35

41K 47 -2.5 85 -3.0 6 -4.5 5.2× 109 33

Table 4.1: Optimal experimental beams power values (P) and detunings (δ) used to
generate a cold beam of 87Rb , of 39K and 41K . In the right part of the table the
total flux Φ values and the corresponding peak velocities are reported. The pressure
working point is set to 7× 10−8 mbar. The magnetic field gradient is 17 Gauss/cm.

optical pumping confines the action of the push force within the 2D-MOT volume
and the atoms drift freely after the mirror hole.

One may argue that the push beam should then work also with the frequency
ω2 alone. We experimentally find that, at equal power, ω2 light is far less efficient
than ω1. We speculate that this is due to ω2 being more prone to hyperfine optical
pumping for two reasons: (i) in the 2D-MOT there is more cooling than repumping
light, (ii) ω2 detuned a few linewidths to the red of the |F = 2〉 → |F ′ = 3〉 transition
is near to the |F = 2〉 → |F ′ = 1, 2〉 resonances causing hyperfine optical pumping
(the same effect is less important for the ω1 light, since the transitions |F = 1〉 →
|F ′ = 2, 1〉 are closer and there is no hyperfine optical pumping for |F = 1〉 →
|F ′ = 0〉). Another possible way to avoid hyperfine optical pumping is to use a blue
detuned cooling light [151], even if this would increase the pushing efficiency mainly
on fast atomic classes and hence confer to the atomic flux a higher peak velocity.

As Fig. 4.6(a) shows, decreasing the intensity of the laser beam the atomic flux de-
creases as well. In the pure 2D-MOT configuration, when no push beam is shone on
atoms, no flux is detected, independently of both power and frequency of transverse
beams and quadrupole magnetic field gradients.

4.1.5 Summary

In Tab. 4.1.5 are summarized all the experimental parameters which maximize
the total atomic flux Φ of 87Rb and of the two K isotopes, and the values of the corre-
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sponding fluxes. For p = 7× 10−8 mbar high atomic fluxes are achieved, containing
6.2 × 1010 atoms/s and 5.2 × 109 atoms/s for 39K and 41K respectively. The pres-
sure value and their small peak velocities, respectively 35 and 33 m/s, are perfectly
adequate to an efficient subsequent loading in a UHV environment 3D-MOT. By in-
creasing p up to 2.1× 10−7 mbar a flux of 1.0× 1011 atoms/s of 39K is then observed.
Nearly the same gain is expected for 41K flux as well at the same value of pressure p.

The high intensity of atomic fluxes is an essential point in order to reach a degen-
erate regime for K isotopes following a double MOT cooling and trapping scheme.
At optimal detunings, with a 15 times lower light intensity, we achieve a 3D-MOT
loading rate higher than the one reported in [120]. Thus, we conclude that, to gener-
ate a cold atomic beam, a 2D-MOT shows a much higher efficiency when compared
to an ordinary 3D-MOT.

4.2 A Simplified Multilevel Theoretical Model

To have a quantitative description of our observations we use an extension of
the theoretical model discussed in [149]. This model shortcuts the integration of the
optical Bloch equation by assuming a heuristic expression of the total force exerted
by the different beams, all having the same frequency, on a two-level atom:

f =
~Γ
2

∑

i

ki
si

1 +
∑

j sj
, (4.5)

sj =
Ij

Is

Γ2

Γ2 + 4(δj − kj · v)2

where i, j denote the beams and Is = πhcΓ/(3λ3) is the two-level saturation inten-
sity, equal to 1.8 mW/cm2 for potassium D2 line. Authors of Ref. [149] employ this
model to analyze a 3D-MOT of Rb with the addition of a push beam. The extension
of this treatment to bosonic potassium, because of the narrow upper level structure,
requires to take into account all the allowed hyperfine transitions. For this purpose,
we introduce the further assumption that forces arising from different transitions
add independently. This consistently disregards coherences among the two 4S1/2

hyperfine states, which however play no role in the Doppler cooling mechanism. In
principle, we should consider even the Zeeman structure of the hyperfine levels; in
practice, to reduce the number of transitions contributing to the total force, we cal-
culate the detunings and the line strength in a manner to average out the Zeeman
sublevels. For each laser beam i and each transition |F 〉 → |F ′〉, we define the av-
erage detuning ∆FF ′

i as the center-of-mass of all the Zeeman components weighted
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by the squared Clebsch-Gordan coefficients |c(F ′,m′; 1, σi, F,m)|2, where σi denotes
the beam polarization (all beams are circularly polarized with the MOT required he-
licity). This detuning depends linearly on the displacement from the 2D-MOT axis
via the magnetic field gradient. We then define the strength of each hyperfine tran-
sition:

GFF ′
i =

∑
m,m′ |c(F ′,m′; 1, σi, F, m)|2∑

F ′,m,m′ |c(F ′,m′; 1, σi, F, m)|2 .

We incorporate hyperfine optical pumping by breaking the force into two parts,
due to the cooling and the repumping light, weighted by the relative populations in
the F = 2 and F = 1 ground levels. Therefore, the expression (4.5) of the total force
is generalized as follows:

f =
p1

p1 + p2
f1 +

p2

p1 + p2
f2 (4.6)

fF =
~Γ
2

∑

i

ki
si,F

1 + sF
, F = 1, 2 (4.7)

with

si,F =
Ii,F

2Is

∑

F ′
GFF ′

i

Γ2

Γ2 + 4
(
δi,F − ki · v −∆FF ′

i

)2 ,

where sF =
∑

j sj . Here, Ii,1, Ii,2 are respectively the repumping and cooling inten-
sity of the i-th beam, and δ1, δ2 the corresponding detunings as defined earlier. The
populations p1, p2 are taken as the equilibrium values of the rate equations for the
six hyperfine components.

4.2.1 Numerical Simulations

A numerical integration of the classical equations of motion yields the phase-
space trajectories. We consider only the atoms that, at t = 0, lie on the boundary
surface S of the 2D-MOT volume, approximated by a rectangular box with sizes
equal to the beam diameters. In sampling the velocity-space, the Boltzmann factor
is nearly unity for all velocities lying within the 2D-MOT capture range, well below
the 250 m/s thermal velocity. From the integration we extract: (i) the fraction ℘ of
the atoms exiting the mirror hole to the atoms entering the 2D-MOT volume, (ii)
the longitudinal velocity distribution of the atomic beam, and (iii) the distribution of
the cooling time ϕ(tc), as defined earlier. To obtain the total flux, we only need to
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(a)

(b)

(c)

(d)

Figure 4.8: Results of simulations for 39K : total flux and peak velocity as a function
of the push beam power (a,b) and detuning (c,d).

multiply ℘ by the total number of atoms entering the cooling volume per second, at
pressure p and room temperature T :

Φ = ℘× S
p√

2πmkBT
. (4.8)

In our simulation multiple scattering of light and intra-beam atomic collisions
are neglected. The collisions with background gas, occurring at rate γ = 60 s−1, are
accounted for by weighting each trajectory with a factor exp(−γtc) to deplete the tail
of atoms with long cooling times tc. We also select only those atoms flying in a cone
34 mrad wide around the longitudinal axis z.

Setting the experimental parameters as in Table 4.1.5, with a quadrupole mag-
netic field gradient of 17 Gauss/cm, for 39K we obtain a total flux Φsim = 8.7 ×
1010 atoms/s, with a peak velocity of 30.2 m/s, in good agreement with the experi-
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mental values reported in Table 4.1.5. Repeating the simulation for different values
of the push beam power and detuning we find the curves plotted in Fig. 4.8. The
agreement with the experimental findings is satisfactory for the peak velocities. As
for the total flux, the model shows saturation in push power at lower values than
in the experiment and an optimum detuning of −6Γ close to the observed value of
−5.2Γ. The calculated dependence of atomic flux on push beam power and detun-
ing reproduces only qualitatively the experimental curves of Figs. 4.6(a) and 4.7(a).
We believe that coherent effects ignored in our simulations are likely responsible for
the discrepancies with data. A more exact analysis based on the integration of opti-
cal Bloch equations is needed to address these issues but is beyond the scope of our
simplified model.
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Chapter 5
Collisional Properties of
Sympathetically cooled 39K

In this Chapter I report the state of the art of our experimental investigation about
the properties of a sympathetically cooled 39K sample. The experimental demonstra-
tion of the efficiency of sympathetic cooling process among 87Rb and 39K represented
one of the main goals of this work, since it opens the way to the investigation of true
ultracold collisional studies, previously restricted to a MOT environment via a pho-
toassociation method [60]. This method allowed a determination of the intra-specie
scattering length value of 39K, measured as −33 a0 [60], negative and one third in
modulus the intra-specie scattering length of 87Rb . The attractive and weak char-
acter of the interactions, together with the limited number of 39K atoms that is col-
lectable in a MOT, determines the importance of an efficient sympathetic process in
the 87Rb -39K mixture. The presence of 87Rb as a "refrigerative" specie, indeed, eases
the cooling of 39K to ultra low temperatures, since the relatively small initial number
of 39K atoms coming out from the MOT phase is preserved during the sympathetic
cooling process, and allows to obtain a reliable ultracold potassium sample in the
µK regime. Moreover, in the case of attractive samples, the scattering theory pre-
dicts a sudden reduction of the cross section in proximity of a certain value of the
temperature (Rmasauer minimum), corresponding to 320 µK for 39K. This obstacle
is overcome by the sympathetic cooling process, since the character of interspecies
interaction in the 87Rb -39K mixture is repulsive (a12 = 36 a0) and no reduction of
the cross section is predicted.

In the first part of the Chapter we will describe the optimization of the sympa-
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thetic cooling process via the calibration of the evaporative ramp when both species
have to be cooled, while the second part will be devoted to report the measured in-
traspecie collisional properties obtained through a cross thermalization procedure
on the sympathetically cooled 39K sample.

5.1 Sympathetic Cooling of 39K

The technique of sympathetic cooling has been first proposed for two-component
plasmas [152], and subsequently applied to cool neutral atoms and obtain double
state BEC [26]. By means of this technique Fermi gases has recently been brought to
fractional Fermi energy [153] and the degeneration has clearly been signed by the di-
rect observation of Fermi pressure [154, 155], while double species condensates has
been simultaneously obtained and characterized [88, 156]. The idea of sympathetic
cooling relies on the efficiency of the rethermalization process occurring between
two different atomic species, among which only one is provided by a high scattering
length value and hence can undergo an effective cooling via an evaporation proce-
dure. In this way the most interacting specie acts as a coolant for the other specie.

Obviously, this procedure is far away to work for every elements pair. In par-
ticular, if the interspecie triplet cross section σ12 does not reach a proper value the
sympathetic cooling process, occurring on a timescale of the order of the thermal-
ization time τth, would require such long times to give to the background collision
processes the time to ruin the binary sample. The zero energy cross section for the
87Rb -39K mixture is σ0

12 = 4π a2
12 = 4π (36 a0)2, corresponding approximately to

1
8 the 87Rb intraspecie value. This does not give the possibility to predict a priori
the effectiveness of a sympathetic cooling for this mixture. Moreover, as we will
briefly see in the following, the temperature dependence of the scattering amplitude
can lead to a strong deviation of the collisional rate from its zero energy expression,
which becomes a good approximation only in the last part of the evaporation proce-
dure when µK temperatures are reached. On the other hand, this behavior would be
much more accentuated in the case 39K is directly cooled by means of an evaporative
procedure. Indeed, as shown in Ref. [26], the attractive character of the intraspecie
interaction opens the possibility for a system (not necessarily binary) to undergo a
drop in the interaction strength due to the Ramsauer-Townsend effect, predicting a
zero in the cross section for a certain collision energy (and hence temperature). Last
but not least, the reduced number of atoms in a potassium MOT (see Chap. 3) would
not allow for a direct evaporation process due to its intrinsic atom-wasting nature,
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5.1. Sympathetic Cooling of 39K

which would lead to an eventual very poor ultracold sample. For this motivations
the demonstration of the reliability of a sympathetic process in the 87Rb -39K mixture
is far from being trivial and acquires a consistent relevance.

The temperature dependence of the interspecies s-wave cross section σ12 comes
out from effective range theories and is embedded in the dependence on temperature
of the relative wave vector k:

σ12 ' 4πa2
12(

1− 1
2
rsk2a12

)2

+ a2
12k

2

, (5.1)

where rs is the effective range of the potential, depending on the van der Waals
coefficients and more in general on the shape of the interaction potential. If the
temperature is not exceeding values of the order of ∼ 50 µK, the dependence on k2

(i.e. on energy) can be usually neglected, to recover the usual energy independent
expression for the cross section:

σ0
12 ' 4πa2

12 . (5.2)

In our experimental apparatus a cold mixture of 87Rb and 39K is prepared after a
MOT pre-cooling phase with the procedure described in Sec. 3.8. A total number of
NRb = 2 × 108 87Rb atoms with a starting temperature of ∼ 500 µK is prepared as
a thermal bath for the 39K sample that comes out from the pre-cooling stage with a
higher temperature (∼ 1 mK) due to the absence of sub-Doppler processes (see Sec.
3.1.1). As we will see in the following, the initial atom number NK for 39K shows a
deep influence on the sympathetic evaporation process, eventually leading to a full
depletion of the 87Rb sample before the evaporation end is reached if NK exceeds a
critical value.

5.1.1 Effects on the evaporation ramp

As a first consideration, since the interspecies scattering length a12 is smaller than
the 87Rb intraspecie scattering length a1, we expect the interspecies rethermaliza-
tion process to be the limiting factor in the evaporation ramp velocity. We would
hence expect a longer duration of the whole evaporation process if compared to the
87Rb alone. To get an idea of the timescale over which the sympathetic evapora-
tion should take place, we neglect the effective range correction to Eq. (5.1) and the
eventual contribution of p-wave collisions to the thermalization process, usually neg-
ligible for temperatures below ∼ 100 µK if particular shape resonances are absent.
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We then note that the variation timescale τev of the µ-wave cut in the 87Rb velocity
distribution should not exceed the interspecie thermalization rate τth of the binary
mixture, determined by the interspecie collision rate γ12 = 1/τ12 and thermalization
cross section σth, in such a way the potassium sample walks through a continu-
ous series of quasi-equilibrium states and follows the 87Rb temperature, decreasing
throughout the evaporation. It can be shown, analogously to the single specie case
[157, 158], that the evaporation rate for 87Rb is given by the expression:

τev =
√

8n̄ σ1v̄ η e−η , (5.3)

where n̄ and v̄ represent the mean density and collisional velocities, given by Eq. (5.10).
The parameter η is an experimental factor of proportionality between the energy cor-
responding to the frequency cut and the actual temperature of the sample during
the evaporation in such a way ET = η kBT . A reasonable value of this parameter
is usually much higher than 1, where the above expression for τev holds. For our
evaporation, the typical initial value for η is 6, and is assumed constant throughout
the whole evaporation process.

For a binary mixture compound by N1 + N2 atoms the thermalization rate has
recently shown to be [159]:

1
τth

=
8
3

N1 + N2

N1N2

m1m2

(m1 + m2)2
〈σth〉
〈σ12〉 Γ12 (5.4)

where the 〈·〉 quantities represent the thermal average of the collisional and thermal
cross sections keeping into account for the energy distribution of the clouds. The
total number of collision events per unit time is calculated as:

Γ12 = N1N2 c
〈σ12〉
π2
√

2

(
µω1ω2

kBT

(m1 + m2)ω1ω2

m1ω2
1 + m2ω2

2

)3/2

, (5.5)

with ω1,2 mean oscillator frequencies of the trap for both species and c =
√

2kBT/µ.
For a cross section of the form σ12 = 4πa2

12/(1 + a2
12k

2), one finds:

〈σ12〉 = 4πa2
12ξ[1− ξeξΓ(0, ξ)],

〈σth〉 = 2πa2
12ξ[1− ξ + ξ2eξΓ(0, ξ)], (5.6)

where ξ = ~2/(2µkBTa2
12) and Γ(a, z) =

∫∞
z

ta−1e−tdt, being µ the reduced mass
of the system. In the very low temperature limit ξ À 1, we have 〈σ12〉 = 〈σth〉 =
4πa2

12; in the unitary limit ξ ¿ 1, we obtain 〈σ12〉 = 2〈σth〉 = 2π~2/(µkBT ). As a
consequence, in the case of distinguishable atoms having the same mass, the number
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τthΓ12/Ni of inter-species collisions per atom required to equilibrate the temperature
of a two-component system made of atoms of the same mass varies from 1.5 in the
very low temperature limit to 3 in the unitary limit. It is wort noticing that the
validity of condition re ¿ a12 has to be verified in each single case, and that where
re ' a12 the a12rek

2 term appearing in the expression (5.1) is of the same order of the
a2
12k

2 term and can no more be neglected.
With the above expressions, we can calculate the collisional rate γ12 at a given

temperature T and hence the expected ratio τth/τev for each point of the ramp. A
good sympathetic cooling efficiency is obtained if τth < τev, that we call runaway
condition. For N1 = 2 × 108, N1 = 4 × 104 and T = 200 µK, representing a point
lying typically initial part of the ramp, we obtain τth/τev ∼ 2, meaning that the
ramp velocity has to be nearly 2 times the value that is optimizing the ramp for
the 87Rb alone. For a typical point representing the end of the evaporation process
(N1 = 1 × 105, N1 = 2 × 104 and T = 1 µK) we obtain τth/τev ∼ 1.3, that is closer
to the runaway condition but still higher than 1. By doubling the ramp duration we
obtain τth/τev < 1 both in the initial and final part of the evaporation, due to the fact
that the η parameter value depends on the sweep rate of the ramp, increasing with
the ramp duration. A typical value of η = 7 is sufficient to achieve the runaway of
the sympathetic cooling process, since in this case we get τth/τev < 0.8.

5.1.2 Experimental evidence for sympathetic cooling in the 87Rb -
39K mixture

As done for the 87Rb alone, the procedure to optimize the evaporation ramp
when a mixture has to be sympathetically cooled consists in the maximization of
the phase space density (PSD) or elastic collisional rate γi for each specie after every
linear step of the µ-wave frequency sweep. This can be done both by varying the
frequency sweep and by adjusting the relative number of atoms between the two
species. The goal is to obtain a sub-µK binary sample with a balanced atom number.
Since the evaporative cooling procedure acts on 87Rb alone while the atom losses due
to background gas collisions act on both species with the same rate, the 87Rb atom
number NRb will be strongly depleted if compared to the NK. On the other hand,
if during the procedure the thermal bath reduces too much the 39K sample starts to
overheat the 87Rb cloud, leading the latter towards a premature cut by the µ-wave
radiation. More quantitatively, the condition for 87Rb to represent a good thermal
bath for the 39K sample corresponds to a condition on the thermal capacities Ci of
the two species, namely CRb ≥ CK. For an ideal classical gas the thermal capacity is
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Figure 5.1: Atoms numbers of the two species for a fixed duration of the evaporation
ramp (19 s). Full and empty circles represent 87Rb and 39K respectively. Data are
reported as a function of the 3D-MOT loading time, varied through the duration of
the push beam generating the 39K cold atomic beam. The initial 87Rb atom number
is fixed to 2× 108.

independent on the mass of the atoms, and is given by Ci = 3NikBT , thus leading
to:

NRb ≥ NK , (5.7)

holding for two atomic clouds with the same temperature. This condition has to be
fulfilled during the whole ramp.

The initial relative atom number can be varied simply by controlling the duration
of the 39K atomic flux feeding the 3D-MOT (Sec. 3.2.1), that is nicely proportional
to the total atom number loaded into the milli-trap before evaporation starts. The
results of the measurement of NRb and NK for both species after an evaporation
ramp of 19 s are reported in Fig. 5.1. The initial atom number for 87Rb is set to
2 × 108, obtained for a fixed loading time of the 87Rb 3D-MOT equal to 8 s. If the
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Figure 5.2: Absolute temperature of the two species for a fixed duration of the evap-
oration ramp (19 s). Full and empty circles represent 87Rb and 39K respectively. Data
are reported as a function of the 3D-MOT loading time, varied through the dura-
tion of the push beam generating the 39K cold atomic beam. The initial 87Rb atom
number is fixed to 2× 108.

39K push beam duration is very short the initial 39K atom number remains much
smaller than the 87Rb atom number during the whole evaporation, and the µ-wave
manages to cool down the 87Rb atomic cloud without particular losses respect to the
single specie case, corresponding to t = 0. For increasing loading times the initial
39K atom number increases, and the cooling process becomes harder and harder
for the 87Rb sample. The effect is a reduction of the final 87Rb atom number, due
to the fact that a bigger fraction of 87Rb is overheated and undergoes an expulsion
from the trap by the frequency cut. For this specific evaporation ramp, the critic
condition (5.7) is reached for a loading time of∼ 300 ms, where NRb = NK = 4×105

is measured at the end of the ramp. A further increase of the loading time has as
effect to shift the critical condition towards earlier steps of the ramp, and the final
87Rb atom number results conspicuously depleted, vanishing for loading times of
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Figure 5.3: Temperature difference between the two species measured as a function
of the relative atom number. The ramp length is 19 s, while the initial 87Rb atom
number is set to 2× 108.

the order of 1 s. Error bars are obtained for a statistical uncertainty of 10% over
measured temperatures and atom numbers. Since the final temperature in the critical
case is 27 µK for the 87Rb sample, a further decrease of the final temperature requires
a reduction of the initial 39K atom number, in such a way the critical condition is
avoided for longer evaporation times as well.

If the temperatures of both species, rather than the atom numbers, are reported
as a function of the loading time of this evaporation ramp (Fig. 5.2), the effect of the
presence of 39K atoms on 87Rb sample is mapped onto the permanence of a tempera-
ture difference ∆T among the two species at the end of evaporation. The amplitude
of ∆T is a direct hint on the goodness of the initial conditions and ramp details that
have been chosen. As we can see, for long loading times the big 39K atom number
unhinges the efficiency of the sympathetic cooling process since the thermal capac-
ity of 87Rb drops as the 87Rb atom number. In this situation the residual ∆T is of
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the same order of the final temperature. The 87Rb temperature is practically fixed
by the final frequency of the µ-wave cut. In an optimized situation the ramp should
lead to a runaway condition (see above), meaning that no lag between the two tem-
peratures should appear. Fig. 5.2 shows how this ramp attains this condition for
loading times t . 200 ms, where the temperatures of both species are equal within
the experimental uncertainty.

A deeper information on the runaway regime can be extracted from Fig. 5.3,
where the measured difference between the temperatures of the two species is re-
ported as a function of the final relative atom number NK/NRb. Here an optimized
ramp is employed to cool the mixture for a fixed time of 21 s. As we can see,
the actual runaway condition for the sympathetic cooling process is reached for
NK

NRb
. 0.3. Below this value the 39K sample maintains a thermal equilibrium with

the 87Rb cloud throughout the whole evaporation, and no temperature difference is
observed among the two species. Notice that this experimental value differs by a
factor 3 from the value (5.7), that represents anyway a simple estimation obtained
through intuitive considerations.

The evolution of the binary system during an optimized ramp is shown in Fig. 5.4,
where the absolute temperatures (a) and atom number (b) of both samples are re-
ported as a function of the ramp evolution time. The final temperature attained is
T ' 2 µK, while the atom numbers are NK = 2 × 104 and NRb = 8 × 104. In
this situation, the efficiency of the sympathetic cooling in the 87Rb -39K mixture is
demonstrated by the absence of any lag among the temperature of 87Rb (full cir-
cles) and 39K (empty dots) along the whole evaporation of 87Rb . The 87Rb atoms
number is exponentially decreasing following the µ-wave frequency sweep, while
the 39K atoms number decreases under the only effect of the background gas hot
collisions on the milli-trap lifetime timescale (∼ 30 s for a trap current of 95 A).

Up to now we have shown the efficiency of the sympathetic cooling to achieve
ultra-low temperatures, anyway higher than 1 µK. A further cooling of the binary
system towards sub-µK temperatures requires a small change in the strategy of the
very last part of the sympathetic cooling process. Indeed, our experimental inves-
tigation pointed out that when one tries to cool the mixture below 3 µK by slowly
reducing the µ-wave frequency cut, the net effect is a rapid depletion of the 87Rb sam-
ple, while the 39K temperature starts to lag above the 87Rb temperature. This process
onsets for T ' 3 µK. We have found that a way to come around this obstacle is to
avoid an excessive slowing down of the frequency sweep in the last part of the ramp
(. 3 µK), while is preferable to maintain the same slope of the ramp until the fre-
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a)

b)

Runaway Evaporation

10 s

Figure 5.4: Typical evolution of the binary sample in an evaporation runaway. Mea-
sured temperatures (a) and atom numbers (b) for both species as a function of the
evaporation time. The runaway of sympathetic cooling is demonstrated by the ab-
sence of any lag among the temperature of 87Rb (full circles) and 39K (empty dots).
The final temperature is T ' 2 µK, while the atom numbers are NK = 2 × 104 and
NRb = 8× 104 respectively.
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Figure 5.5: Snapshots of the 87Rb sample (left) and 39K sample (right) taken in the
last part of the evaporation ramp after 1 ms of free expansion from the milli-trap.
The corresponding atom numbers are NK = 2× 104 and NRb = 3× 104.

quency value corresponding to TRb ' 1 µK is reached. Then the µ-wave is left on
for a rethermalization time of ∼ 1 s required to complete the sympathetic cooling
process. During this time the small lag in the 39K vanishes at the expense of the
87Rb atom number, that anyway does not undergo a fast depletion as in the previ-
ous case. In this phase the 87Rb sample acts as a thermal buffer for the 39K sample.
The presence of the microwave frequency is crucial to achieve a µ-wave shielding
against a heating of the 87Rb cloud, whose population is in this phase comparable to
the population of 39K . The result of this change in the sympathetic cooling strategy
is evident in Fig. 5.5, where a final temperature of 1 µK is obtained for both rubidium
and potassium. The atoms numbers are NK = 2×104 and NRb = 3×104 respectively.
The thermal buffer depletion, testified by an enhanced decrease of the 87Rb optical
density (Sec. 3.7) is evident for T < 1.2 µK. This depletion experimentally increases
if the plateau in the ramp is held at lower frequencies, since the probability for a
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87Rb atom to receive an energy kick beyond the cutting edge of the evaporation fre-
quency from a hotter 39K atom gets higher.

Lower temperatures could probably be attained if the initial 87Rb atom number
is increased and the duration of the plateau is slightly increased, in such a way the
thermal buffer is more populated and the final buffer cooling process can be actuated
at a lower frequency cut.

136



5.2. Cross Thermalization in Ultracold 39K

5.2 Cross Thermalization in Ultracold 39K

In this second part of the Chapter we report experimental results concerning
cross thermalization measurements performed on an ultracold 39K sample, cooled
by means of a sympathetic procedure described and characterized in the previous
part of the Chapter. This technique allowed us to measure the low energy cross sec-
tion for 39K and to obtain an estimation of the triplet s-wave scattering length aT

[160].
Cross thermalization refers to the relaxation process of an atomic sample after

an energy imbalance has been introduced between two orthogonal directions. Since
the temperature of an harmonically trapped gas is proportional to the squared RMS
width of the gaussian atomic distribution (see Sec. 3.4), the evolution of this energy
imbalance can be extracted by observing the size of the cloud along different direc-
tions. Notice that since the system is brought away from thermal equilibrium by an
external excitation the temperatures along different directions are not necessarily co-
incident. We will hereinafter refer to these temperatures as orthogonal temperatures.
In a cylindrical system where z is the symmetry axis we will label as Tz and Tr the
axial and radial temperatures respectively. In the ideal case of a noninteracting gas,
anyway, if an initial difference is induced between two orthogonal temperatures,
shaking for instance the system in a specific direction for a certain time, this differ-
ence will not vary in time. This behavior comes directly from the independence of
the orthogonal degrees of freedom of a harmonically trapped ideal gas, reflecting
the separability of the trapping potential. On the other hand, if the gas is interacting
the thermal equilibrium can no more be defined for both directions separately, and
the collisions between atoms, whose rate is proportional to the squared intraspecie
scattering length a2 drive the system towards a global thermal equilibrium through
a cross dimensional rethermalization. The number of collisions α necessary to an ef-
fective cross dimensional energy exchange is usually taken as a free parameter and
can be obtained for our system through a numerical simulation of the collisional
processes after the directional excitation is induced, yielding α = 2.7. This number
represents the ratio of the collisional rate γel to the thermalization rate 1/τ = γth:

α = γel τ . (5.8)

The collisional scattering rate can be obtained once the mean density n̄ is introduced:

γel = n̄〈σv〉 , (5.9)
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where σ represents the collisional cross section, v the thermal velocity of two collid-
ing atoms and 〈·〉 an average over the thermal distribution of the atoms. For low
temperatures σ is barely dependent on temperature (Sec. 5.1) and results σ = 8πa2

T ,
with aT the triplet scattering length. In this way the average 〈·〉 appearing in the
above equation can be factorized as 〈σv〉 = 8πa2

T 〈v〉. It is worth mentioning that for
appreciable temperature variations the analogous of the formula (5.1) should rather
be employed to obtain an average cross section weighted on the atomic momentum
distribution. The last part of this Section contains a deeper analysis of this issue.
For an harmonic trap whose radial and axial frequencies are ωr/(2π) and ωz/(2π)
respectively we have:

n̄ =
(

m

4πkBT̄

)3/2

Nω̄3 (5.10)

〈v〉 = 4
(

kBT̄

πm

)1/2

, (5.11)

where T̄ = 3
√

T 2
r Tz and ω̄ = 3

√
ω2

rωz indicate the geometric average of the two or-
thogonal temperatures and frequencies respectively. Thus, assuming a constant av-
erage density during the relaxation process, and defining an average temperature-
dependent cross section as:

σ̃ =
〈σv〉
〈v〉 , (5.12)

the relaxation rate can be written as:

1
τ

=
σ̃(T̄ )

α

N

2π2kB

mω̄3

T̄
. (5.13)

As we checked by means of numerical calculations, the average cross section de-
fined by Eq. (5.12) represents, in our experimental conditions, a good approximation
of the actual cross section σ. The assumption of constant density in time holds only
if the relaxation time is much smaller than the typical trap lifetime, limited by the
background gas collisions rate. In our experiment the atom losses during the relax-
ation process are not negligible. It can be numerically shown that these losses have
as a consequence to shift the equilibrium value of the temperature aspect ratio Tz/Tr

from 1, which is hence left as a free parameter in our data analysis. This obviously
influences the equilibrium value of the physical aspect ratio of the cloud as well, de-
viating the system from the stationary value ∆z/∆r =

√
ωr/ωz , where we used the

RMS gaussian widths of the cloud.
Using Eq. (5.13) it is clear that by performing a measurement of the cross col-

lisional thermalization time τ one can trace back the value of the triplet scattering
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length aT at low energies, or more in general, the value of the collisional cross sec-
tion σ and its dependence on temperature.

It is important to stress that the relaxation time τ refers to the energetic relaxation
of the system, that is directly related to the temperature relaxation along each direc-
tion. We will henceforth extract the relaxation time constant by looking at the temper-
atures, rather than by measuring directly the evolution of the size of the system as in
other works is done [161, 162, 163]. This is equivalent to observe the evolution of the
squared size of the cloud. An a posteriori analysis has nevertheless demonstrated that
with our experimental timescale and within experimental uncertainties these two
time constants are undistinguishable and, for all practical purposes, both the width
of the cloud and its square relax exponentially. A typical evolution of the cloud RMS
axial and radial sizes and of their ratio is reported in Fig. 5.6. This measure corre-
sponds to a 39K sample compound by N = 3 × 105 atoms at a mean temperature
of 16 µK. As can be seen, the axial extension progressively grows under the effect
of the cross dimensional rethermalization, while the initially excited axial extension
slightly decreases. Notice that the total energy, i.e. the mean RMS size of the cloud
has to remain constant during the evolution, and possible observed variations have
to be attributed to the effect of the collisions with the background gas.

5.2.1 Experimental procedure

The cold 39K sample is prepared by means of the experimental procedure de-
scribed in the previous Section and in Chap. 3, through a sympathetic cooling tech-
nique with 87Rb . The evaporation is stopped when the desired temperature is
reached, and then the 87Rb sample is blown away from trap by means of a fast reso-
nant light pulse (200 µs) with 10 mW of power. The milli-trap current is set to 95 A
with∼ 6 G as bias field, producing frequencies ωr = 2π× 447 Hz and ωz = 2π× 29.2
Hz for 39K . This step avoids any further collisional relaxation between the two differ-
ent species. The initial energetic imbalance between the two directions is introduced
by modulating for a time tmod the radial frequency of the magnetic trap at twice it
stationary value ωr for 39K . This procedure introduces a parametric heating in the
system (see Sec. 3.4.2), and if tmod is sufficiently small compared to the relaxation
time τ only the radial direction will be affected by this excitation. In our procedure
the modulation is performed on the bias field current, acting on the radial frequency
alone, for a time tmod = 100 ms that is much longer than ω−1

r . The RMS current
modulation depth depth is 15%. Starting from this point we follow two different
procedure to measure the evolution of the system:
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Figure 5.6: Axial and radial RMS widths (upper panel) and their ratio (lower panel)
in a 39K sample with N = 3×105 and T̄ ' 16 µK, measured after a variable hold time
following a radial excitation of the trap and a fixed expansion time of 2 ms. The trap
current is set to 50 A with 3 G as bias field. Dashed lines represent exponential fits
to data. During the relaxation the shape of system evolves towards the unperturbed
configuration.

• we let evolve the cloud into the trap with the original frequencies ωr = 2π×447
Hz and ωz = 2π × 29.2 Hz for an evolution time t, and then we perform an in
situ imaging of the 39K cloud. The orthogonal temperatures are extracted from
the cloud size by Ti = mω2

i ∆xi
2/kB ; the advantages of this scheme is to pro-

vide a good S/N ratio due to the high optical densities of the trapped cloud.
On the other hand the radial size is very small, even if it remains bigger than
the diffraction limit of the optical system, and suffers of a conspicuous uncer-
tainty. We checked that the magnetic field inhomogeneity due to the presence
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Figure 5.7: Absorption images of the 39K cloud for different evolution times after the
parametric heating taken in the decompressed trap after 2 ms of expansion (a), and
in situ (b). The axial direction is the vertical, and the two panels are not to scale. As
can be seen, in both cases the system relaxes by increasing its axial width in time.

of the trap did not introduce uncontrolled effects in the imaging. The mean
initial temperature of the sample is T̄ ' 29 µK.

• After the modulation phase we adiabatically decompress the magnetic trap,
lowering the current to 50 A and increasing the bias field to 6 G. In this situation
the evolution of the cloud sizes takes place with ωr = 2π × 290 Hz and ωz =
2π × 21.2 Hz. After a variable hold time t the trap is released and the cloud
expands for Texp = 2 ms. This procedure allows a zero-field imaging of the
sample, avoiding any possible spurious effects due to the inhomogeneity of
the magnetic field. Moreover, each experimental cycle is consistently reduced,
thus allowing for longer evolution times of the sample in the trap. On the other
hand, optical densities are smaller if compared to the trapped case and the
detection of the sample is harder. The mean initial temperature of the sample
is T̄ ' 16 µK.

Fig. 5.7 reports a series of three images taken for different evolution times in the
case of decompressed trap (a) and with an in situ observation (b). The axial direction
is the vertical, and the two panels are not to scale. As can be seen, in both cases the

141



5. COLLISIONAL PROPERTIES OF SYMPATHETICALLY COOLED 39K

Figure 5.8: Evolution of the aspect ratio (∆z/∆r) (lower panel) and of (∆z/∆r)2

(upper panel), proportional to the orthogonal temperatures, in a 39K sample with
N = 3 × 105 and T̄ ' 16 µK. The evolution is measured after a variable hold time
following a radial excitation of the trap and a fixed expansion time of 2 ms. The trap
current is set to 50 A with 6 G as bias field. Dashed lines represent exponential fits to
data. For a given atom number the time constants for the evolution of (∆z/∆r) and
(∆z/∆r)2 are consistent each other within the experimental uncertainties.

system relaxes by increasing its axial width in time. These measurements require
a careful control on the atom number. The uncertainty on N is represented by the
standard deviation on the measured initial atom number. If a binning is performed
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on N , three different datasets for each of the procedures above mentioned can be
extracted, reported as different symbols in Fig. 5.8 in the decompressed trap case.
The atoms numbers are N1 = 2 × 105 (red circles), N2 = 3 × 105 (black squares),
and N2 = 5 × 105 (blue triangles). As comes out from Eq. (5.13), the thermalization
rate 1/τ is observed to depend on the atom number N . The dashed lines represent
exponential fits of the form y = y0 − y1exp(−t/τN ), where τN gives the relaxation
time for a specific atom number N . Notice that the asymptotic value y0 is left as a
free parameter and is slightly different for each N , reflecting the effect of atom losses
from the trap during the evolution time. Error bars are obtained taking the standard
deviation on both ∆z and ∆r and adding their relative uncertainties.

5.2.2 Determination of the triplet scattering length of 39K

Our measurements provide two distinct sets of thermalization times τ , each de-
pending on the specific trap configuration employed during the evolution of the
system after the parametric heating. In both expanded and in situ configurations the
determination of the axial and radial temperatures does not represent a particular
task, due to the relatively big size of the sample. The mean temperature T̄ appear-
ing in Eq. (5.13) is hence tagged with sufficient accuracy by the 2D fits performed
on the absorption images (see Sec. 3.7) and can be taken as a known value. On
the contrary, for lower temperature values the determination of the temperature in
the trapped system usually represents a hard task, since the radial extension of the
cloud becomes comparable to the diffraction limit of our imaging system, hindering
a precise determination of the temperature and atom number of the sample. The
measured thermalization rates γ = 1/τN are reported in Fig. 5.9 as a function of the
atom number N. The two panel correspond to the decompressed trap case after 2 ms
of free expansion (a), and to in situ configuration (b). As can be seen in figure, in both
experimental cases the cross thermalization rate 1/τ shows a linear dependence on
the atoms number N . To determine the collisional triplet cross section σ from the
measured scattering rates it is worth noticing that Eq. (5.13) holds only in the case
the trapping potential is fully separable. In a real trap, anyway, the presence of a
residual anharmonicity (Sec. 3.4) and more in general of a non complete separability
of the potential causes the system to cross-relax even in the ideal case of non inter-
acting particles, the relaxation being mediated by the coupled degrees of freedom of
the trapped atoms. We refer to this process as to ergodic mixing of the atomic ensem-
ble. This mixing potentially can deviate the dependence of the scattering rate on the
number of atoms, introducing a residual collisional rate γmix occurring for N = 0.
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The ergodic mixing contribution can be taken into account by separating the com-
ponent of the relaxation rate which is linear in N , from the extrapolation in the limit
of zero density where relaxation can only occur through ergodic mixing. One can
therefore assume that

1
τ

=
1
α

dγel

dN
N + γmix = AN + γmix . (5.14)

By using Eq. (5.13) one hence has:

A =
σ̃

α

mω2
rωz

2π2kBT̄
, (5.15)

The values of this parameter can be extracted, together with the residual mixing rate
γel, from a two parameter linear fit of the form y = A N + γmix performed separately
on the two datasets. The best fit functions are reported in Fig. 5.9 as dashed lines.
We note here that one should expect the ergodic mixing effect to be less severe in
the weak trap case than in the tight trap regime, since the harmonic trapping region
has an extension that is decreasing as ω̄−1. From the fit results, reported in the fig-
ure insets, we extract a residual ergodic mixing that is largely consistent with zero
within the experimental uncertainties. From the value of the parameter A optimiz-
ing the fit to the data we obtain two different values for the triplet scattering length,
corresponding to two distinct values of the temperature:

σ̃ = (2.2± 0.8)× 10−16 m2 ; σ̃′ = (0.91± 0.22)× 10−16 m2 , (5.16)

for T̄ = (16.0 ± 0.9) µK and T̄ ′ = (28.9 ± 1.0) µK respectively. Even if these values
are statistically different, the zero energy approximation does not include any de-
pendence of the thermalization cross section on temperature, and the difference in
the values we measured cannot be directly addressed to the temperature difference
between the two datasets. Within the zero energy approximation we have σ = 8πa2

T ,
and the measured values for the scattering length aT are:

|aT (16µK)| = (57± 11)a0 ; |a′T (29µK)| = (36± 5)a0 , (5.17)

where a0 is the Bohr radius. The presence of the absolute value is due to the temper-
ature independence of the scattering length expression.

Actually, in order to account for the occurrence of a temperature dependence of
the collisional rate the simple zero energy form σ = 8πa2

T can no more be employed
for the determination of the scattering length even in a low temperature regime. As
explained above, in an effective potential picture one has to account for the effective
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Figure 5.9: Cross thermalization rates γ = 1/τ , reported as a function of the number
of atoms, in the case of decompressed trap (a) and in situ (b) measurement. Each dat-
apoint is extracted from a fit performed on different set of measurements as the ones
reported in Fig. 5.8. The two different methods correspond to two different tempera-
tures, 16 µK (a) and 29 µK (b) respectively. The fit results are: γmix = −(0.003±0.065)
s−1 and A = (5.5± 1.6)× 10−7 s−1 for figure (a) and γmix = (0.0005± 0.034) s−1 and
A = (4.0± 1.0)× 10−7 s−1 for figure (b).
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range contribution to the expression of the cross section, given by Eq. (5.1) provided
a factor 2 is introduced to account for the undistinguishability of the particles. We
remark that this involves the calculation of the effective range for the specific colli-
sional potential [164], that can be calculated once the C6 coefficient of the van der
Waals potential is known [165]. This should confer a temperature dependence to the
cross section, that remains anyway closely tied to the theoretical values of the col-
lisional parameters mentioned above. If the values of the effective range obtained
combining Refs. [164, 165] are employed, a significative modification of the scatter-
ing length values is obtained:

aT (16µK) = −(65± 11) a0 ; a′T (29µK) = −(45± 5) a0 . (5.18)

These values are different by 1.75∆a, where ∆a =
√

(∆a1)2 + (∆a2)2 is the com-
bined standard deviation calculated from the specific standard deviations ∆a1 and
∆a2. The calculated effective range values are rs = 2119 a0 and rs = 995 a0 for
aT = −33 a0 and a0 = −57 a0 respectively. For comparison, we notice that, if we ne-
glect the effective range contribution, the absolute values of above scattering lengths
would be (57 ± 11) a0 and (36 ± 5) a0 respectively. The quoted uncertainties derive
mainly from the error on the time constant of the relaxation process obtained by
fits on data as the ones reported in Fig. 5.8, and from the atom number calibration
(±20%), performed independently for each data set.

We carefully checked that the systematical contributions to this discrepancy have
been, as far as possible, minimized. The main contributions can arise from: (a) the
calibration factor that gives the number of atoms from the absorption images in the
two different trap configurations; (b) an imperfect optical pumping procedure that
leads to a residual population of the |F = 2,mF = 1〉 state, whose presence would
alter the effective collisional properties of the sample. Since the whole discrepancy
cannot be fully attributed to a temperature dependence of the collisional cross sec-
tion, from the above values we extract the final value for the triplet s-wave scattering
length aT by calculating the weighted mean value, and by multiplying the associated
uncertainty by a factor

√
χ2 = 1, 65 in order to set the confidence level to 68% [166]:

aT = −(51± 7)a0 . (5.19)

We remark that a detailed analysis of the collisional properties of an ultracold
39K sample requires a temperature dependent expression for the cross section even
for temperatures as low as 16 µK, since the deviations introduced by the effective
potential approach are not negligible.
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We notice again that, even if the measured triplet scattering length should in prin-
ciple be sufficiently large to allow for a direct evaporative cooling of the 39K sample,
the relatively low number of atoms that can be collected in a MOT for the potassium
isotopes (Sec. 3.1) is expected to prevent the possibility to exploit the direct evapora-
tion to cool a reliable number of atoms to the µK temperature regime.
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Conclusions and Perspectives

This thesis has been devoted to the description of a new generation apparatus
devised to produce ultracold K-Rb atomic mixtures and to study their fundamental
properties. The design, the realization and the characterization of this new machine
have represented the main part of my Ph.D. work, which started three years ago.

The decision to develop a reliable and highly versatile experiment to employ in
the investigation of heteronuclear Bose-Bose mixtures has been motivated by the rel-
atively small amount of experimental and theoretical works available at that time
[88, 89, 90]. This could appear somewhat surprising, since the coexistence of two
different bosonic species in external potentials opens the way to the observation of in-
triguing and insightful phenomena. In particular, the possibility to reach a combined
BEC and to tune the interspecies scattering length through an external magnetic field
in proximity of a Fano-Feshbach resonance gives the opportunity to study the inter-
play between two superfluids whose interaction can be easily managed. The basilar
features of the ground state of such a system have been theoretically revised in the
end of the first chapter. Moreover, the recent development of high power infrared
lasers eases the exploration of the quantum phase transition from superfluid to Mott
insulator, recently observed in single specie systems [8]. The ability to create a multi-
specie BEC with tunable interactions and to load it into a high power optical lattice
paves the way towards the experimental investigation of an insightful physical sys-
tem of unprecedented realization: since the phase transition to Mott insulator repre-
sents a localization of an integer number of atoms per lattice site, and its onset differs
for the two species, one can in principle achieve the condition in which one of the
two species is in the superfluid phase, while the other is in the insulating regime and
is arranged in discrete and regularly spaced clusters, constituting an actual material

149



Conclusions and Perspectives

lattice for the superfluid. The intriguing dynamics of a superfluid immersed into a
periodical material crystal whose interactions can be arbitrarily controlled could in
principle be studied, as well as the phase diagram of the heteronuclear mixture in
the optical lattice [49, 52, 53]. A whole chapter has been devoted to the extraction of
the crucial theoretical aspects concerning ultracold atoms in optical lattices.

Having these guidelines in mind, a highly reliable cold atoms sources system
has first of all been designed. The development of this 2D-MOT system for both
87Rb and bosonic potassium isotopes yielded a net improvement on the existing
methods to generate cold atomic beams, the staring point for every experiment de-
signed to achieve quantum degeneracy in dilute atomic gases with high efficiency.
Bi-dimensional magneto-optical trapping methods in potassium isotopes were lack-
ing of studies before this work has been started. Despite of the difficulties arising
from the levels structure of bosonic potassium isotopes, a detailed experimental
analysis performed on both 39K and 41K 2D-MOTs has demonstrated an unprece-
dented efficiency in the production of cold atomic beams, leading to atomic fluxes
as high as 1011 atoms/s with a mean velocity not exceeding 35 m/s. This allowed to
shorten the 3D-MOT loading time by a factor 3 respect to preceding ordinary double
3D-MOT schemes with heavy reflections on the experiment duty cycle.

A consipicuous part of the thesis work has then been devoted to the characteriza-
tion of a novel kind of magnetic trap, that we named "milli-trap", whose introduction
has improved the confining capabilities of standard magnetic confining systems for
neutral atoms such as ordinary QUIC traps. This is due to the fact that this new de-
vice is directly inserted in-vacuo, and the distance to the trapped sample is on the
mm scale. Hence, the current power to be employed is significatively reduced, as
well as the power that sinks on the trapping system. To our knowledge, the milli-trap
is the most tightly confining magnetic device still providing a full three-dimensional
optical access to the atomic system. Radial trap frequencies can attain values as high
as 800 Hz with a bias field of 1 G. This allows to compress the atomic sample during
the evaporative cooling process and to increase its density up to values that allow for
a very fast evaporation process, whose timescales are of the order of 10 s. This rep-
resented an improvement of a factor 3÷ 5 respect to ordinary ex-vacuo traps, where
the evaporation process for 87Rb takes 30 ÷ 50 s. Exploiting these unique features
and the intensity of atomic sources our apparatus is capable to degenerate ∼ 2× 105

87Rb atoms to the BEC regime in experimental cycles as short as 25 s.
During the last period of my Ph.D. work two main experimental results have

been obtained concerning both the 87Rb -39K mixture and the 39K alone. It is worth
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remembering that this element presents attractive intraspecie interactions due to the
negative value of the triplet scattering length. This confers to the 39K system intrigu-
ing features, such as the presence of a critical atom number over which the degener-
ation is not allowed and the system is supposed to collapse [78, 84, 85], or the pos-
sibility to study the evolution of particular solutions of the non-linear Schrödinger
equation that governs the system, namely the dynamics of solitons. On the other
hand, the inefficiency of the 3D-MOT cooling scheme that is intrinsic in the level
structure of this isotope does not allow to employ a atoms-wasting technique such
as the direct evaporative cooling to bring to the sub-µK regime a 39K sample. This
motivates the relevance of an experimental demonstration of the feasibility of a sym-
pathetical cooling process among 87Rb and 39K , that is one of the main results ob-
tained during the last six months of the Ph.D. work. By loading the binary mixture
in the milli-trap and optimizing the evaporation procedure on 87Rb , we have been
able to sympathetically cool ∼ 2 × 104 potassium atoms to the sub-µK regime. This
represents a waypoint for eventual investigations on attractive condensates, never
obtained up to now by means of the sympathetic cooling technique [82, 83].

Having demonstrated the feasibility of the sympathetic cooling process in the
87Rb -39K mixture, we exploited this technique to investigate the intrinsic collisional
properties of ultracold 39K for temperature below 50 µK. In particular, trough the ob-
servation of cross-dimensional rethermalization processes we measured the triplet
collisional cross section of 39K [160], finding a value (σ = −(51 ± 7) a0, a0 being
the Bohr radius) that is only partially consistent with the previously direct measure-
ments result of [60], obtained by means of a completely different approach.

It is worth mentioning that exploiting the high versatility of the experimental ap-
paratus, we have recently observed the simultaneous BEC of a 41K -87Rb heteronu-
clear mixture, with temperatures as low as 70 nK and number of atoms around 2×104

for each specie.
The nearest perspectives of the experiment aim to the investigation of the dynam-

ics of 87Rb -39K and 87Rb -41K Bose-Bose mixtures, in particular to the modification
of the collective excitation properties that have already led to fruitful results in the
single specie case. Furthermore, the current control and the magnetic coils system
that are necessary to tune the interactions among atoms by means of an external
magnetic field has been entirely built-up, and is ready to work. This will allow to
scan a wide range of magnetic field intensities (0-1000 G) and to perform a detailed
Fano-Feshbach spectroscopy both on single specie and binary mixture, up to now
never performed on ultracold 39K -39K and 87Rb -39K systems. Again, the very last
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part of my Ph.D. work has been devoted to devise the optical system that is neces-
sary to introduce a high power 3D optical lattice in the apparatus. This represents
the next evolution of the set-up, since as we have seen before the investigation of ul-
tracold mixtures loaded in a periodic potential opens a wealth of intriguing research
perspectives, such as the determination of the superfluid-insulator phase diagram in
the case of a heteronuclear mixture [49, 52, 53], peculiar of a purely bosonic ultracold
system.
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